Earth Science Missions Engineering Challenges
NASA Technical Reports Server (NTRS)
Marius, Julio L.
2009-01-01
This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.
Connecting NASA science and engineering with earth science applications
USDA-ARS?s Scientific Manuscript database
The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...
NASA Astrophysics Data System (ADS)
Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.
2004-12-01
The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended field programs, which lay the foundation for leadership positions, but which may be difficult for young faculty. The strategy is to use the Earth Institute as a test bed for institutional change, and then expand the successful programs to other Columbia Science and Engineering Departments, as appropriate. Columbia's administration is committed to changing policies and supporting successful programs beyond the completion of the NSF grant. Earth Institute ADVANCE programs include (a) a self study including a climate survey modeled after the 1999 MIT study, (b) a senior faculty working group that will facilitate recruitment and retention by providing support for searches, faculty development, and retention, (c) internal funding competitions designed to recruit and retain women scientists and engineers, and (d) focused workshops and conferences. The ADVANCE program will establish offices both on the Morningside campus in Manhattan and Lamont campus in Palisades, NY.
Arctic Science, Engineering and Education. Awards: Fiscal Years 1987 and 1988.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This document summarizes the dispersal of funds on Arctic research by the National Science Foundation during fiscal years 1987 and 1988. Major areas considered were: atmospheric sciences; oceanography; biological sciences; earth sciences; science and engineering education; small business research; engineering and permafrost; Arctic information and…
Associations and Committees of or for Women in Science, Engineering, Mathematics and Medicine.
ERIC Educational Resources Information Center
Aldrich, Michele, Comp.; Leach, Alicia, Comp.
Provided is a list of associations and committees of or for women in science, engineering, mathematics, and medicine. The list is organized by discipline, with cross-referencing to cognate specialties. The disciplines include: anthropology; astronomy; atmospheric sciences; biology; chemistry; computer sciences; earth sciences; energy; engineering;…
ERIC Educational Resources Information Center
Dankenbring, Chelsey; Capobianco, Brenda M.
2016-01-01
Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…
The Electronic Encyclopedia of Earthquakes
NASA Astrophysics Data System (ADS)
Benthien, M.; Marquis, J.; Jordan, T.
2003-12-01
The Electronic Encyclopedia of Earthquakes is a collaborative project of the Southern California Earthquake Center (SCEC), the Consortia of Universities for Research in Earthquake Engineering (CUREE) and the Incorporated Research Institutions for Seismology (IRIS). This digital library organizes earthquake information online as a partner with the NSF-funded National Science, Technology, Engineering and Mathematics (STEM) Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. Although conceived primarily as an educational resource, the Encyclopedia is also a valuable portal to anyone seeking up-to-date earthquake information and authoritative technical sources. "E3" is a unique collaboration among earthquake scientists and engineers to articulate and document a common knowledge base with a shared terminology and conceptual framework. It is a platform for cross-training scientists and engineers in these complementary fields and will provide a basis for sustained communication and resource-building between major education and outreach activities. For example, the E3 collaborating organizations have leadership roles in the two largest earthquake engineering and earth science projects ever sponsored by NSF: the George E. Brown Network for Earthquake Engineering Simulation (CUREE) and the EarthScope Project (IRIS and SCEC). The E3 vocabulary and definitions are also being connected to a formal ontology under development by the SCEC/ITR project for knowledge management within the SCEC Collaboratory. The E3 development system is now fully operational, 165 entries are in the pipeline, and the development teams are capable of producing 20 new, fully reviewed encyclopedia entries each month. Over the next two years teams will complete 450 entries, which will populate the E3 collection to a level that fully spans earthquake science and engineering. Scientists, engineers, and educators who have suggestions for content to be included in the Encyclopedia can visit www.earthquake.info now to complete the "Suggest a Web Page" form.
NASA Astrophysics Data System (ADS)
Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.
2017-12-01
The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may increase the rate of scientific discoveries and the transition of discoveries into real-world impacts.
NASA Astrophysics Data System (ADS)
Hodges, K. V.
2007-12-01
Earth science --- when defined as the study of all biological, chemical, and physical processes that interact to define the behavior of the Earth system --- has direct societal relevance equal to or greater than that any other branch of science. However, "geology", "geoscience", and "Earth science" departments are contracting at many universities and even disappearing at some. This irony speaks volumes about the limitations of the traditional university structure that partitions educational and research programs into specific disciplines, each housed in its own department. Programs that transcend disciplinary boundaries are difficult to fit into the traditional structure and are thus highly vulnerable to threats such as chronic underfunding by university administrations, low enrollments in more advanced subjects, and being largely forgotten during capital campaigns. Dramatic improvements in this situation will require a different way of thinking about earth science programs by university administrations. As Earth scientists, our goal must not be to protect "traditional" geology departments, but rather to achieve a sustainable programmatic future for broader academic programs that focus on Earth evolution from past, present, and future perspectives. The first step toward meeting this goal must be to promote a more holistic definition of Earth science that includes modes of inquiry more commonly found in engineering and social science departments. We must think of Earth science as a meta-discipline that includes core components of physics, geology, chemistry, biology, and the emerging science of complexity. We must recognize that new technologies play an increasingly important role in our ability to monitor global environmental change, and thus our educational programs must include basic training in the modes of analysis employed by engineers as well as those employed by scientists. One of the most important lessons we can learn from the engineering community is the value of systems-level thinking, and it makes good sense to make this the essential mantra of Earth science undergraduate and graduate programs of the future. We must emphasize that Earth science plays a central role in understanding processes that have shaped our planet since the origin of our species, processes that have thus influenced the rise and fall of human societies. By studying the co-evolution of Earth and human societies, we lay a critical part of the foundation for future environmental policymaking. If we can make this point persuasively, Earth science might just be the "next great science".
Making Connections: Where STEM Learning and Earth Science Data Services Meet
NASA Technical Reports Server (NTRS)
Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda
2016-01-01
STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.
NASA and Earth Science Week: a Model for Engaging Scientists and Engineers in Education and Outreach
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; deCharon, A.; Brown de Colstoun, E. C.; Chambers, L. H.; Woroner, M.; Taylor, J.; Callery, S.; Jackson, R.; Riebeek, H.; Butcher, G. J.
2014-12-01
Earth Science Week (ESW) - the 2nd full week in October - is a national and international event to help the public, particularly educators and students, gain a better understanding and appreciation for the Earth sciences. The American Geosciences Institute (AGI) organizes ESW, along with partners including NASA, using annual themes (e.g., the theme for 2014 is Earth's Connected Systems). ESW provides a unique opportunity for NASA scientists and engineers across multiple missions and projects to share NASA STEM, their personal stories and enthusiasm to engage and inspire the next generation of Earth explorers. Over the past five years, NASA's ESW campaign has been planned and implemented by a cross-mission/cross-project group, led by the NASA Earth Science Education and Pubic Outreach Forum, and utilizing a wide range of media and approaches (including both English- and Spanish-language events and content) to deliver NASA STEM to teachers and students. These included webcasts, social media (blogs, twitter chats, Google+ hangouts, Reddit Ask Me Anything), videos, printed and online resources, and local events and visits to classrooms. Dozens of NASA scientists, engineers, and communication and education specialists contribute and participate each year. This presentation will provide more information about this activity and offer suggestions and advice for others engaging scientists and engineers in education and outreach programs and events.
Urban Elementary STEM Initiative
ERIC Educational Resources Information Center
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
Middle School Regional Science Bowl Competition | Argonne National
biology, chemistry, earth science, physics, energy, and math. The winner of the academic portion of the Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov
NASA Technical Reports Server (NTRS)
2004-01-01
Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.
ERIC Educational Resources Information Center
Chinn, Pauline W. U; Businger, Steven; Lance, Kelly; Ellinwood, Jason K.; Stone, J. Kapomaika'i; Spencer, Lindsey; McCoy, Floyd W.; Nogelmeier, M. Puakea; Rowland, Scott K.
2014-01-01
"Kahua A'o," a National Science Foundation Opportunities for Enhancing Diversity in the Geosciences project, seeks to prepare educators to address issues of underrepresentation of Native Hawaiian students in Earth and Space Science (ESS) and science, technology, engineering, and mathematics (STEM) fields. An interdisciplinary team…
Mother, Earth, Father Sky Symposium
NASA Technical Reports Server (NTRS)
Bowman, B.
1977-01-01
A conference was held in which minority aerospace scientists and engineers interacted with the minority community, particularly at the junior high, high school, and college levels. There were two presentations in the biological sciences, two in the physical and environmental sciences, seven in engineering and computer sciences, and nine in aerospace science and engineering. Aerospace technology careers and aerospace activities were discussed as to how they are relevant to minorities and women.
Artificial intelligence applications concepts for the remote sensing and earth science community
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Roelofs, L. H.
1984-01-01
The following potential applications of AI to the study of earth science are described: (1) intelligent data management systems; (2) intelligent processing and understanding of spatial data; and (3) automated systems which perform tasks that currently require large amounts of time by scientists and engineers to complete. An example is provided of how an intelligent information system might operate to support an earth science project.
Story-telling, Earth-Sciences and Geoethics
NASA Astrophysics Data System (ADS)
Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.
2015-04-01
People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens. Such earth-science narrations could convene value statements on how humankind activities intersect the geosphere; and thus, they are narrations on geoethics.
Laboratory Directed Research and Development Annual Report for 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Pamela J.
2012-04-09
This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.
Building a better search engine for earth science data
NASA Astrophysics Data System (ADS)
Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.
2017-12-01
Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search interfaces.
Life sciences space biology project planning
NASA Technical Reports Server (NTRS)
Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.
1988-01-01
The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.
NASA Astrophysics Data System (ADS)
Lange, B. A.; Bottoms, J.
2011-12-01
This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth science industry through a student satellite development program is one of the best methods of developing the next generation of space and earth science engineers and scientists.
Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Management System Environmental Outreach Feature Stories Individual Permit for Storm Water Public Reading Management (First-line and Mid-level) (Engineering Management, Research Management, Technical Management
R and T report: Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald A. (Editor)
1993-01-01
The 1993 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) flight projects; (2) space sciences including cosmology, high energy, stars and galaxies, and the solar system; (3) earth sciences including process modeling, hydrology/cryology, atmospheres, biosphere, and solid earth; (4) networks, planning, and information systems including support for mission operations, data distribution, advanced software and systems engineering, and planning/scheduling; and (5) engineering and materials including spacecraft systems, material and testing, optics and photonics and robotics.
Using the Lens of Social Capital to Understand Diversity in the Earth System Sciences Workforce
ERIC Educational Resources Information Center
Callahan, Caitlin N.; Libarkin, Julie C.; McCallum, Carmen M.; Atchison, Christopher L.
2015-01-01
In this commentary, we argue that social capital theory, the idea that membership in a group creates opportunities to acquire valuable information and resources from other group members, is a useful framework in which to consider ways to increase diversity in the Earth System Sciences (ESS) and in the science, technology, engineering, and…
Goddard Earth Sciences and Technology Center (GEST)
NASA Technical Reports Server (NTRS)
2002-01-01
This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.
Earth Science Education Plan: Inspire the Next Generation of Earth Explorers
NASA Technical Reports Server (NTRS)
2004-01-01
The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.
NASA Technical Reports Server (NTRS)
Russell, Yvonne; Falsetti, Christine M.
1991-01-01
Customer requirements are presented through three viewgraphs. One graph presents the range of services, which include requirements management, network engineering, operations, and applications support. Another viewgraph presents the project planning process. The third viewgraph presents the programs and/or projects actively supported including life sciences, earth science and applications, solar system exploration, shuttle flight engineering, microgravity science, space physics, and astrophysics.
Science at the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
White, Nicholas E.
2012-01-01
The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
Requirements Engineering in Building Climate Science Software
ERIC Educational Resources Information Center
Batcheller, Archer L.
2011-01-01
Software has an important role in supporting scientific work. This dissertation studies teams that build scientific software, focusing on the way that they determine what the software should do. These requirements engineering processes are investigated through three case studies of climate science software projects. The Earth System Modeling…
Undergraduate Students As Effective Climate Change Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2014-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. The program is in its third year. More than 75 students participated in a guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Three Colleges were involved in the program: Engineering, Education, and Science.
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Life Sciences, Arts and Sciences, Medicine, and Engineering and Mathematics; and Schools of..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean Sciences Science Building (Bldg. #080); McCormack Building (Bldg. #020); and Wheatley Building (Bldg. #010...
Pilot Program for Teaching Earth Science in New York
NASA Astrophysics Data System (ADS)
Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark
2013-06-01
During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.
NASA Earth Science Education Collaborative
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.
2016-12-01
The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.
ERIC Educational Resources Information Center
McDaris, John R.; Manduca, Cathryn A.; Iverson, Ellen R.; Orr, Cailin Huyck
2017-01-01
Despite gains over the last decade, the geoscience student population in the United States today continues to lag other science, technology, engineering, and mathematics disciplines in terms of diversity. Minority-serving institutions (MSIs) can play an important role in efforts to broaden underrepresented student engagement with Earth Science…
NASA Technical Reports Server (NTRS)
1988-01-01
A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.
Berkeley Lab - Materials Sciences Division
Ramamoorthy Ramesh The Metals Society Bardeen Prize in Electronic Materials Rob Ritchie Elected as a Foreign into the earth Rob Ritchie Elected Foreign Member of the Royal Swedish Academy of Engineering Sciences PECASE (Presidential Early Career Award for Scientists and Engineers) Eli Yablonovitch Elected as Foreign
NASA Earth Science Research and Applications Using UAVs
NASA Technical Reports Server (NTRS)
Guillory, Anthony R.
2003-01-01
The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.
Nelson, Janice S.
2011-01-01
The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To communicate with us, or for more information about EROS, contact: Communications and Outreach, USGS EROS Center, 47914 252nd Street, Sioux Falls, South Dakota 57198, jsnelson@usgs.gov, http://eros.usgs.gov/.
Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution
NASA Astrophysics Data System (ADS)
Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.
2009-12-01
The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre-conception surveys and post-tests indicate a significant gain in these teachers' knowledge of petroleum science and technology. In particular, teachers noted that a large area of new knowledge was gained in the area of carbon capture and storage technology.
Outstanding Science Trade Books for Children in 1989.
ERIC Educational Resources Information Center
Science and Children, 1990
1990-01-01
Listed are 100 trade books with brief descriptions and availability information. Categories include animals, biography, space science and astronomy, anthropology and paleontology, life sciences, earth science, conservation, medical and health sciences, physics, technology, and engineering. Criteria for inclusion in this annual list are presented.…
Utah's Mobile Earth Science Outreach Vehicle
NASA Astrophysics Data System (ADS)
Schoessow, F. S.; Christian, L.
2016-12-01
Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.
ESPACE - a geodetic Master's program for the education of Satellite Application Engineers
NASA Astrophysics Data System (ADS)
Hedman, K.; Kirschner, S.; Seitz, F.
2012-04-01
In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are involved in ESPACE. This paper will first give the background and objectives of ESPACE with focus on its specific position in geodetic education programmes. Second, we will introduce the interdisciplinary study program and explain the involvement of external teaching staff. Further we will give an up-to-date description of current students and ESPACE alumni. The job market and international demand for satellite application engineers will be shown especially with focus to geodetic fields.
Mission EarthFusing GLOBE with NASA Assets to Build SystemicInnovation in STEM Education
NASA Astrophysics Data System (ADS)
Czajkowski, K. P.; Garik, P.; Padgett, D.; Darche, S.; Struble, J.; Adaktilou, N.
2016-12-01
Mission Earth is a project funded through the NASA CAN that is developing a systematic embedding of NASA assets that is being implemented by a partnership of organizations across the US. Mission Earth brings together scientists and science educators to develop a K-12 "Earth as a system" curriculum progression following research-based best practices. GLOBE and NASA assets will be infused into the curricula of schools along the K-12 continuum, leveraging existing partnerships and networks and supported through state departments of education and targeting underrepresented groups, as a systemic, effective, and sustainable approach to meeting NASA's science education objectives. This presentation will discuss plans for the Mission Earth project and successes and lessons learned in the first year. Mission Earth is developing curricular materials to support vertically integrated learning progressions. It develops models of professional development utilizing sustainable infrastructures. It will support STEM careers focusing on career technical education (CTE). And, it will engage undergraduate education majors through pre-service courses and engineering students through engineering challenges.
Outstanding Science Trade Books for Children in 1987.
ERIC Educational Resources Information Center
Science and Children, 1988
1988-01-01
Contains the annotated bibliographies of 78 trade books from 1987. Includes an explanation of the criteria for selection of books. Categories include animals, biography, space science and astronomy, earth science, environment and conservation, life sciences, medical and health sciences, physics, technology and engineering, and others. (CW)
Digital Earth for Earth Sciences and Public Education
NASA Astrophysics Data System (ADS)
Foresman, T. W.
2006-12-01
Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.
Nanotechnologies (CINT) Los Alamos Neutron Science Center (LANSCE) National High Magnetic Field Laboratory (NHMFL Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Integrated Nanotechnologies Lujan Neutron Scattering Center National High Magnetic Field Lab Quantum
Outstanding Science Trade Books for Children in 1988.
ERIC Educational Resources Information Center
Science and Children, 1989
1989-01-01
Lists annotations of books based on accuracy of contents, readability, format, and illustrations. Includes number of pages in each entry, price, and availability. Topics cover animals, biographies, space science, astronomy, archaeology, anthropology, earth and life sciences, medical and health sciences, physics, technology, and engineering. (RT)
STEM Integration in Middle School Life Science: Student Learning and Attitudes
NASA Astrophysics Data System (ADS)
Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario
2016-08-01
In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.
An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education
NASA Astrophysics Data System (ADS)
Lulla, Kamlesh
2012-07-01
This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.
The Goddard Earth Sciences and Technology Center (GEST Center)
NASA Technical Reports Server (NTRS)
2002-01-01
The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.
Earth Control and Investigations, Training Course 1972.
ERIC Educational Resources Information Center
Department of the Interior, Denver, CO. Engineering and Research Center.
Compiled in this notebook is material from an Earth Control and Investigations Course offered by the Earth Science Branch of the Division of General Research, Engineering and Research Center, Denver, Colorado. The training is designed to promote consistency and uniformity in control and investigation procedures throughout the Bureau of…
In Brief: Revitalizing Earth science education
NASA Astrophysics Data System (ADS)
Showstack, Randy
2008-12-01
A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.
Judicious use of custom development in an open source component architecture
NASA Astrophysics Data System (ADS)
Bristol, S.; Latysh, N.; Long, D.; Tekell, S.; Allen, J.
2014-12-01
Modern software engineering is not as much programming from scratch as innovative assembly of existing components. Seamlessly integrating disparate components into scalable, performant architecture requires sound engineering craftsmanship and can often result in increased cost efficiency and accelerated capabilities if software teams focus their creativity on the edges of the problem space. ScienceBase is part of the U.S. Geological Survey scientific cyberinfrastructure, providing data and information management, distribution services, and analysis capabilities in a way that strives to follow this pattern. ScienceBase leverages open source NoSQL and relational databases, search indexing technology, spatial service engines, numerous libraries, and one proprietary but necessary software component in its architecture. The primary engineering focus is cohesive component interaction, including construction of a seamless Application Programming Interface (API) across all elements. The API allows researchers and software developers alike to leverage the infrastructure in unique, creative ways. Scaling the ScienceBase architecture and core API with increasing data volume (more databases) and complexity (integrated science problems) is a primary challenge addressed by judicious use of custom development in the component architecture. Other data management and informatics activities in the earth sciences have independently resolved to a similar design of reusing and building upon established technology and are working through similar issues for managing and developing information (e.g., U.S. Geoscience Information Network; NASA's Earth Observing System Clearing House; GSToRE at the University of New Mexico). Recent discussions facilitated through the Earth Science Information Partners are exploring potential avenues to exploit the implicit relationships between similar projects for explicit gains in our ability to more rapidly advance global scientific cyberinfrastructure.
Implications of the Next Generation Science Standards for Earth and Space Sciences
NASA Astrophysics Data System (ADS)
Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.
2012-12-01
The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.
National Science Foundation Grants and Awards for Fiscal Year 1982.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1982. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, earth, and ocean sciences…
National Science Foundation. Grants and Awards for Fiscal Year 1981.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
Provided is a listing of all National Science Foundation (NSF) program grants and contracts awarded in Fiscal Year 1981. The listing is organized by specific NSF programs within these areas: (1) mathematical and physical sciences; (2) engineering; (3) biological, behavioral, and social sciences; (4) astronomical, atmospheric, earth, and ocean…
Studies of Scientific Disciplines. An Annotated Bibliography.
ERIC Educational Resources Information Center
Weisz, Diane; Kruytbosch, Carlos
Provided in this bibliography are annotated lists of social studies of science literature, arranged alphabetically by author in 13 disciplinary areas. These areas include astronomy; general biology; biochemistry and molecular biology; biomedicine; chemistry; earth and space sciences; economics; engineering; mathematics; physics; political science;…
NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise
NASA Astrophysics Data System (ADS)
Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.
2017-12-01
Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the processes involved in observational research. Through EOL's Education and Outreach Program, we strive to inspire and develop the next generation of observational scientists and engineers by offering a range of educational, experiential, and outreach opportunities, including engineering internships.
Developing Data System Engineers
NASA Astrophysics Data System (ADS)
Behnke, J.; Byrnes, J. B.; Kobler, B.
2011-12-01
In the early days of general computer systems for science data processing, staff members working on NASA's data systems would most often be hired as mathematicians. Computer engineering was very often filled by those with electrical engineering degrees. Today, the Goddard Space Flight Center has special position descriptions for data scientists or as they are more commonly called: data systems engineers. These staff members are required to have very diverse skills, hence the need for a generalized position description. There is always a need for data systems engineers to develop, maintain and operate the complex data systems for Earth and space science missions. Today's data systems engineers however are not just mathematicians, they are computer programmers, GIS experts, software engineers, visualization experts, etc... They represent many different degree fields. To put together distributed systems like the NASA Earth Observing Data and Information System (EOSDIS), staff are required from many different fields. Sometimes, the skilled professional is not available and must be developed in-house. This paper will address the various skills and jobs for data systems engineers at NASA. Further it explores how to develop staff to become data scientists.
Nelson, Janice S.
2010-01-01
The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To communicate with us, or for more information about EROS, contact: Communications and Outreach, USGS EROS Center, 47914 252nd Street, Sioux Falls, South Dakota 57198, jsnelson@usgs.gov, http://eros.usgs.gov/.
Designing Innovative Lessons Plans to Support the Next Generation Science Standards (NGSS)
NASA Astrophysics Data System (ADS)
Passow, M. J.
2013-12-01
The Next Generation Science Standards (NGSS) issued earlier in 2013 provide the opportunity to enhance pre-college curricula through a new focus on the ';Big Ideas' in Science, more attention to reading and writing skills needed for college and career readiness, and incorporation of engineering and technology. We introduce a set of lesson plans about scientific ocean drilling which can serve as a exemplars for developing curricula to meet NGSS approaches. Designed for middle and high school students, these can also be utilized in undergraduate courses. Development of these lessons was supported through a grant from the Deep Earth Academy of the Consortium for Ocean Leadership. They will be disseminated through websites of the Deep Earth Academy (http://www.oceanleadership.org/education/deep-earth-academy/) and Earth2Class Workshops for Teachers (http://www.earth2class.org), as well as through workshops at science education conferences sponsored by the National Earth Science Teachers Association (www.nestanet.org) and other organizations. Topics include 'Downhole Logging,' 'Age of the Ocean Floors,' 'Tales of the Resolution,' and 'Continental Shelf Sediments and Climate Change Patterns.' 'Downhole Logging' focuses on the engineering and technology utilized to obtain more information about sediments and rocks cored by the JOIDES Resolution scientific drilling vessel. 'Age of the Ocean Floor' incorporates the GeoMap App visualization tools (http://www.geomapapp.org/) to compare sea bottom materials in various parts of the world. 'Tales of the Resolution' is a series of ';graphic novels' created to describe the scientific discoveries, refitting of the JOIDES Resolution, and variety of careers available in the marine sciences (http://www.ldeo.columbia.edu/BRG/outreach/media/tales/). The fourth lesson focuses on discoveries made during Integrated Ocean Drilling Program Expedition 313, which investigated patterns in the sediments beneath the continental shelf off New Jersey with respect to climate changes. The lesson plans include examples of addressing new demands to incorporate more English Language Arts and Math Common Core Standards, engineering design, and cutting-edge scientific investigations.
Software Development in the Water Sciences: a view from the divide (Invited)
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2013-12-01
While training in statistical methods is an important part of many earth scientists' training, these scientists often learn the bulk of their software development skills in an ad hoc, just-in-time manner. Yet to carry out contemporary research scientists are spending more and more time developing software. Here I present perspectives - as an earth sciences graduate student with professional software engineering experience - on the challenges scientists face adopting software engineering practices, with an emphasis on areas of the science software development lifecycle that could benefit most from improved engineering. This work builds on experience gained as part of the NSF-funded Water Science Software Institute (WSSI) conceptualization award (NSF Award # 1216817). Throughout 2013, the WSSI team held a series of software scoping and development sprints with the goals of: (1) adding features to better model green infrastructure within the Regional Hydro-Ecological Simulation System (RHESSys); and (2) infusing test-driven agile software development practices into the processes employed by the RHESSys team. The goal of efforts such as the WSSI is to ensure that investments by current and future scientists in software engineering training will enable transformative science by improving both scientific reproducibility and researcher productivity. Experience with the WSSI indicates: (1) the potential for achieving this goal; and (2) while scientists are willing to adopt some software engineering practices, transformative science will require continued collaboration between domain scientists and cyberinfrastructure experts for the foreseeable future.
NASA Astrophysics Data System (ADS)
Wang, J. S.; Glaser, S. D.; Moore, J. R.; Hart, K.; King, G.; Regan, T.; Bang, S. S.; Sani, R. K.; Roggenthen, W. M.
2007-12-01
On July 10, 2007, the former Homestake Mine, Lead, South Dakota, was selected as the development site for the Deep Underground Science and Engineering Laboratory, to become the Sanford Underground Science and Engineering Laboratory at Homestake. Work on refurbishment and certification of the Ross Shaft began in August 2007 to effect pumping of water that had reached the 5000 level in late July. Completion of this work will allow a physics and geosciences laboratory to be constructed on the 4,850 ft level (1,478 m from the surface). Concurrent with reentry operations, several earth science research activities have been initiated. These early activities are as follows: (1) Seismic monitoring system: Accelerometers will be installed in surface boreholes and underground drifts as they become available as a result of the reentry work. (2) Evaluation of the 300 level (91 m), which has multiple locations for horizontal access, is ongoing. This near- surface level, with varying overburden thicknesses, offers excellent opportunities to investigate the "critical zone" in terms of hydrology, ecology, and geochemistry, yielding measurements of both moisture and carbon fluxes to evaluate fluid exchanges with the atmosphere. (3) Water and soil samples were collected in the Ross Shaft as part of the first reentry work. Molecular survey of microbial diversity showed the presence of mesophilic and thermophilic cellulose-degrading microorganisms. (4) Supercritical carbon dioxide injection experiments are being planned that will take advantage of three pairs of existing, nearly vertical, open 8-inch (0.2 m) boreholes that are easily accessible from the Ross Shaft. The candidate holes are located between the 1550 and the 2900 levels and are between 90 to 180 m in length (5) Monitoring of the response of the water during the dewatering operations will be facilitated by the use of existing boreholes. Ultimately, the dewatering operation provide access to the 8000 level (depth of 2,438 m), the deepest level. These five examples of ongoing research activities should provide a basis for many other earth science and engineering investigations at this multilevel facility, which already has extensive underground workings. These examples address different aspects of three main themes identified as important by deep underground research communities: restless earth for geo-science, ground truth for geo-engineering, and dark life for geo-microbiology.
Earth observations taken by the Expedition Seven crew
2003-08-24
ISS007-E-13397 (24 August 2003) --- This view of Ithaca, New York was taken by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). Ithaca is the home of Cornell University, where astronaut Edward T. Lu, NASA ISS science officer and flight engineer, received a Bachelor of Science degree in electrical engineering and the Cornell University Presidential Scholar award.
2018 USA Science and Engineering Festival
2018-04-06
Steven Pawson, Chief of the Global Modeling and Assimilation Office at NASA's Goddard Space Flight Center, speaks about NASA's observations of Earth during Sneak Peek Friday at the USA Science and Engineering Festival, Friday, April 6, 2018 at the Walter E. Washington Convention Center in Washington, DC. The festival is open to the public April 7-8. Photo Credit: (NASA/Joel Kowsky)
NASA Astrophysics Data System (ADS)
Kitanidis, P. K.
1997-05-01
Introduction to Geostatistics presents practical techniques for engineers and earth scientists who routinely encounter interpolation and estimation problems when analyzing data from field observations. Requiring no background in statistics, and with a unique approach that synthesizes classic and geostatistical methods, this book offers linear estimation methods for practitioners and advanced students. Well illustrated with exercises and worked examples, Introduction to Geostatistics is designed for graduate-level courses in earth sciences and environmental engineering.
NASA Astrophysics Data System (ADS)
Mussett, Alan E.; Aftab Khan, M.; Button, Illustrated By Sue
2000-12-01
Looking Into the Earth comprehensively describes the principles and applications of both `global' and `exploration' geophysics on all scales. It forms an introduction to geophysics suitable for those who do not necessarily intend to become professional geophysicists, including geologists, civil engineers, environmental scientists, and field archaeologists. The book is organised into two parts: Part 1 describes the geophysical methods, while Part 2 illustrates their use in a number of extended case histories. Mathematical and physical principles are introduced at an elementary level, and then developed as necessary. Student questions and exercises are included at the end of each chapter. The book is aimed primarily at introductory and intermediate university students taking courses in geology, earth science, environmental science, and engineering. It will also form an excellent introductory textbook in geophysics departments, and will help practising geologists, archaeologists and engineers understand what geophysics can offer their work. Accessible to students with little background in maths and physics Covers both global and applied geophysics Well illustrated and contains many student exercises and case studies Written by experienced teachers of geophysics
Future STEM Leaders Prepare for the National Science Bowl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benjamin, Angela
2014-06-11
Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.
Future STEM Leaders Prepare for the National Science Bowl
Benjamin, Angela
2018-05-18
Each year, students from across the country converge on Washington, DC, for the National Science Bowl, an intense academic competition that tests the students' knowledge in science, engineering, chemistry, math and Earth science. Follow one team, from Washington DC's Woodrow Wilson High School, as they prepare for and compete in the 2014 National Science Bowl.
USA Science and Engineering Festival 2014
2014-04-25
An attendee of the USA Science and Engineering Festival is measured by a laser at the NASA Stage. A NASA Staff member describes the Ice, Cloud, and land Elevation Satellite (ICESat) mission, which operated from 2003-2009, and pioneered the use of laser altimeters in space to study the elevation of the Earth's surface and its changes. ICESat-2 is a follow-on mission to continue the ICESat observations and is scheduled to launch in 2017. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
Climate Change Communicators: The C3E3 Project
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.
2013-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
NASA Astrophysics Data System (ADS)
Brady, M. E.; Nelson, F.
2014-12-01
The Next Generation Science Standards (NGSS) call for a shift from science learning as a fixed body of decontextualized facts toward a deliberate integration of three dimensions that transcend instructional level: 1) Disciplinary Core Ideas, 2) Crosscutting concepts, and 3) Science & Engineering Practices. This new approach to K-12 science education requires a dedicated effort to address teacher preparation in ESS. Here, we present an instructional model that explicitly integrates the three dimensions of the NGSS as an organizing framework in large-enrollment, undergraduate introductory geoscience courses targeted toward future teachers. This curriculum development is part of a campus-wide collaboration among science, engineering, and education faculty to enhance science teacher preparation. This approach reflects NGSS conceptual shifts and promotes a learner-centered environment where students regularly engage with each other and course material as part of the course: 1) In terms of content, Earth systems and interactions, are emphasized; rocks and minerals are discussed in the context of their use to understand and predict changes over Earth's past, present, and future; and engineering and technology are incorporated into discussions of mediating human impacts on Earth systems. 2) Cross-cutting concepts, such as cycles and flows, are explicitly referenced throughout the course to promote connections between and application of prior knowledge and new information or situations. 3) Guided by explicit prompts for partner discussions in class, students regularly engage in scientific practices, such as arguing by evidence and constructing an explanation. We will provide examples of student learning assessment, including in-class responses pre- and post- partner discussions, short written reflections, and cumulative projects. Ongoing evaluation of this instructional approach will include pre- and post- Geoscience Concept Inventory responses.
NASA Technical Reports Server (NTRS)
Liu, Z.; Acker, J.; Kempler, S.
2016-01-01
The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.
Institutional profile: the London Centre for Nanotechnology.
Weston, David; Bontoux, Thierry
2009-12-01
Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.
Improvements to the Ontology-based Metadata Portal for Unified Semantics (OlyMPUS)
NASA Astrophysics Data System (ADS)
Linsinbigler, M. A.; Gleason, J. L.; Huffer, E.
2016-12-01
The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support Earth Science data consumers and data providers, enabling the latter to register data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS complements the ODISEES' data discovery system with an intelligent tool to enable data producers to auto-generate semantically enhanced metadata and upload it to the metadata repository that drives ODISEES. Like ODISEES, the OlyMPUS metadata provisioning tool leverages robust semantics, a NoSQL database and query engine, an automated reasoning engine that performs first- and second-order deductive inferencing, and uses a controlled vocabulary to support data interoperability and automated analytics. The ODISEES data discovery portal leverages this metadata to provide a seamless data discovery and access experience for data consumers who are interested in comparing and contrasting the multiple Earth science data products available across NASA data centers. Olympus will support scientists' services and tools for performing complex analyses and identifying correlations and non-obvious relationships across all types of Earth System phenomena using the full spectrum of NASA Earth Science data available. By providing an intelligent discovery portal that supplies users - both human users and machines - with detailed information about data products, their contents and their structure, ODISEES will reduce the level of effort required to identify and prepare large volumes of data for analysis. This poster will explain how OlyMPUS leverages deductive reasoning and other technologies to create an integrated environment for generating and exploiting semantically rich metadata.
NASA Technical Reports Server (NTRS)
Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.
2004-01-01
For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne diseases, forecasts of harmful algal blooms as well as forest fires and wildfires, and the intercontinental transport of dust storms and pollution.
NASA Astrophysics Data System (ADS)
Harris, A. T.; Ramachandran, R.; Maskey, M.
2013-12-01
The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.
NASA Astrophysics Data System (ADS)
Cervato, C.; Jach, J. Y.; Ridky, R.
2003-12-01
Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms of student demographics and socioeconomic variables (e.g., year in school, gender).
ERIC Educational Resources Information Center
Salmun, Haydee; Buonaiuto, Frank
2016-01-01
The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships to 40 academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics…
NASA Center for Climate Simulation (NCCS) Advanced Technology AT5 Virtualized Infiniband Report
NASA Technical Reports Server (NTRS)
Thompson, John H.; Bledsoe, Benjamin C.; Wagner, Mark; Shakshober, John; Fromkin, Russ
2013-01-01
The NCCS is part of the Computational and Information Sciences and Technology Office (CISTO) of Goddard Space Flight Center's (GSFC) Sciences and Exploration Directorate. The NCCS's mission is to enable scientists to increase their understanding of the Earth, the solar system, and the universe by supplying state-of-the-art high performance computing (HPC) solutions. To accomplish this mission, the NCCS (https://www.nccs.nasa.gov) provides high performance compute engines, mass storage, and network solutions to meet the specialized needs of the Earth and space science user communities
NASA Astrophysics Data System (ADS)
Branch, B. D.; Raskin, R. G.; Rock, B.; Gagnon, M.; Lecompte, M. A.; Hayden, L. B.
2009-12-01
With the nation challenged to comply with Executive Order 12906 and its needs to augment the Science, Technology, Engineering and Mathematics (STEM) pipeline, applied focus on geosciences pipelines issue may be at risk. The Geosciences pipeline may require intentional K-12 standard course of study consideration in the form of project based, science based and evidenced based learning. Thus, the K-12 to geosciences to informatics pipeline may benefit from an earth science experience that utilizes a community based “learning by doing” approach. Terms such as Community GIS, Community Remotes Sensing, and Community Based Ontology development are termed Community Informatics. Here, approaches of interdisciplinary work to promote and earth science literacy are affordable, consisting of low cost equipment that renders GIS/remote sensing data processing skills necessary in the workforce. Hence, informal community ontology development may evolve or mature from a local community towards formal scientific community collaboration. Such consideration may become a means to engage educational policy towards earth science paradigms and needs, specifically linking synergy among Math, Computer Science, and Earth Science disciplines.
Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory
NASA Astrophysics Data System (ADS)
Roggenthen, W.; Wang, J.
2004-12-01
The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.
NASA Astrophysics Data System (ADS)
Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.
2004-12-01
A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and micro/molecular evolution. Ideas articulated both at and subsequent to the workshop will be evolved in site-specific programs at Henderson Mine, CO; Homestake Mine, SD; Icicle Creek, WA; Kimballton Mine, VA; Mt. San Jacinto, CA; Soudan Mine, MN; Waste Isolation Pilot Plant, NM; and several other potential sites in abandoned mines and new tunnels below high mountains. The feasibility of multiple DUSELs is being investigated. The sites also offer opportunities to study tectonic and crustal evolution from deep crust in ancient rocks, in sedimentary formations, to igneous processes. Although any one site is inevitably limited with respect to the research scope, advances in understanding and in testing techniques from DUSEL can facilitate shorter-term studies at environmental and industrial sites, where access for long-term research is not possible. International integration with the Underground Research Laboratories (URLs) is intended. Scientists conducting ongoing studies in energy/resource production, environmental protection, earthquake prediction, and industrial manufacture in low-background underground settings are all welcome to participate/contribute to both generic and site-specific proposals for DUSELs.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2017-04-01
Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.
NASA Astrophysics Data System (ADS)
Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.; Bohon, W.; Pacheco, H. A.; Schwab, P.; Baumback, D.; Pettis, L.; Colunga, J.; Robinson, S.; Dick, C.
2012-12-01
The EarthScope Program (www.earthscope.org) funded by the National Science Foundation fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. EarthScope scientific data and findings are transforming the study of Earth structure and processes throughout the planet. These data enhance the understanding and mitigation of hazards and inform environmental and economic applications of geoscience. The EarthScope Program also offers significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO continues to actively support and promote E&O with programmatic activities such as a regularly updated presence on the web and social media, newsletters, biannual national conferences, workshops for E&O providers and informal educators (interpreters), collaborative interaction with other Earth science organizations, continuing education for researchers, promotion of place-based education, and support for regional K-12 teacher professional-development programs led by EarthScope stakeholders. EarthScope E&O, coordinated by ESNO, leads the compilation and dissemination of the data, findings, and legacy of the epic EarthScope Program. In this presentation we offer updated reports and outcomes from ESNO E&O activities, including web and social-media upgrades, the Earth Science E&O Provider Summit for partnering organizations, the Central Appalachian Interpretive Workshop for informal Earth science educators, the U.S. Science and Engineering Fair, and collaborative efforts with partner organizations. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
NASA Technical Reports Server (NTRS)
Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.
2012-01-01
Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.
NASA Technical Reports Server (NTRS)
2012-01-01
The NASA Thesaurus contains the authorized NASA subject terms used to index and retrieve materials in the NASA Aeronautics and Space Database (NA&SD) and NASA Technical Reports Server (NTRS). The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and the biological sciences. The NASA Thesaurus Data File contains all valid terms and hierarchical relationships, USE references, and related terms in machine-readable form. The Data File is available in the following formats: RDF/SKOS, RDF/OWL, ZThes-1.0, and CSV/TXT.
NRC Grants for Federal Research
NASA Astrophysics Data System (ADS)
The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.
Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions
NASA Technical Reports Server (NTRS)
Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.
2015-01-01
Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.
Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers
ERIC Educational Resources Information Center
Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara
2014-01-01
Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…
The Spacelab Accomplishments Forum
NASA Technical Reports Server (NTRS)
Emond, J. (Editor); Bennett, N. (Compiler); McCauley, D. (Compiler); Murphy, K. (Compiler)
2000-01-01
This document is a record of the Spacelab Accomplishments Forum held in March 1999. Presentations made at the Forum covered the design, engineering, utilization, and science associated with Spacelab, as well as the international associations and impact of Spacelab and its use in the design and utilization of the International Space Station. Topics included Earth observations, space science, life science, commercial uses, microgravity science, and international participation.
NASA Astrophysics Data System (ADS)
Case, K. E.; Nash, A. E., III
2017-12-01
Earth Science missions are increasingly challenged to improve our state of the art through more sophisticated hypotheses and inclusion of advanced technologies. However, science return needs to be constrained to the cost environment. Selectable mission concepts are the result of an overlapping Venn diagram of compelling science, feasible engineering solutions, and programmatic acceptable costs, regardless of whether the science investigation is Earth Venture or Decadal class. Since the last Earth Science and Applications Decadal Survey released in 2007, many new advanced technologies have emerged, in instrument, SmallSat flight systems, and launch service capabilities, enabling new mission architectures. These mission architectures may result in new thinking about how we achieve and collect science measurements, e.g., how to improve time-series measurements. We will describe how the JPL Formulation Office is structured to integrate methods, tools, and subject matter experts to span the mission concept development lifecycle, and assist Principal Investigators in maturing their mission ideas into realizable concepts.
Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2015-12-01
NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.
NASA Astrophysics Data System (ADS)
Bower, P.; Liddicoat (2), J.
2009-04-01
Brownfield Action (BA - http://www.brownfieldaction.org) is a web-based, interactive, three-dimensional digital space and learning simulation in which students form geotechnical consulting companies and work collaboratively to explore and solve problems in environmental forensics. BA is being used in the United States at 10 colleges and universities in earth, environmental, or engineering sciences undergraduate and graduate courses. As a semester-long activity or done in modular form for specific topics, BA encourages active learning that requires attention to detail, intuition, and positive interaction between peers that results in Phase 1 and Phase 2 Environmental Site Assessments. Besides use in higher education courses, BA also can be adapted for instruction to local, state, and federal governmental employees, and employees in industry where brownfields need to be investigated or require remediation.
The PACES Summer Science Trek: A Pre-College Science
NASA Technical Reports Server (NTRS)
Smith, Michelle B.
1997-01-01
The University of Texas at El Paso (UTEP) received five-year funding to form the Pan American Center for Earth and Environmental Studies (PACES) in July 1995. PACES has as its goals to conduct research contributing to NASA's Mission to Planet Earth and to develop skilled scientists and engineers. PACES seeks to gain a more comprehensive understanding of geological, ecological and environmental processes and changes taking place in the southwestern United States and northern Mexico region. The PACES center has collaborative ties with two NASA field center (Goddard Space Flight Center and Ames Research Center) and the Jet Propulsion Laboratory. The original proposal contained no provision for outreach programs. However, at a meeting in the fall of 1995, Dan Goldin, NASA Administrator, issued the challenge that in order to accomplish NASA's goals to educate more of the citizenry in science and engineering, the Centers should take a broader perspective aimed at younger children.
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
Undergraduate Students as Climate Communicators
NASA Astrophysics Data System (ADS)
Sharif, H. O.; Joseph, J.; Mullendore, G. L.
2012-12-01
The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) are partnering with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students will have the opportunity to participate in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. An integral part of the learning process will include training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of a webcast about investigating aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.
European aerospace science and technology, 1992: A bibliography with indexes
NASA Technical Reports Server (NTRS)
1993-01-01
This bibliography contains 1916 annotated references to reports and journal articles of European intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include: spacecraft and aircraft design, propulsion technology, chemistry and materials, engineering and mechanics, earth and life sciences, communications, computers and mathematics, and the natural space sciences.
Earth Sciences annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younker, L.W.; Donohue, M.L.; Peterson, S.J.
1988-12-01
The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.
Aqua Education and Public Outreach
NASA Astrophysics Data System (ADS)
Graham, S. M.; Parkinson, C. L.; Chambers, L. H.; Ray, S. E.
2011-12-01
NASA's Aqua satellite was launched on May 4, 2002, with six instruments designed to collect data about the Earth's atmosphere, biosphere, hydrosphere, and cryosphere. Since the late 1990s, the Aqua mission has involved considerable education and public outreach (EPO) activities, including printed products, formal education, an engineering competition, webcasts, and high-profile multimedia efforts. The printed products include Aqua and instrument brochures, an Aqua lithograph, Aqua trading cards, NASA Fact Sheets on Aqua, the water cycle, and weather forecasting, and an Aqua science writers' guide. On-going formal education efforts include the Students' Cloud Observations On-Line (S'COOL) Project, the MY NASA DATA Project, the Earth System Science Education Alliance, and, in partnership with university professors, undergraduate student research modules. Each of these projects incorporates Aqua data into its inquiry-based framework. Additionally, high school and undergraduate students have participated in summer internship programs. An earlier formal education activity was the Aqua Engineering Competition, which was a high school program sponsored by the NASA Goddard Space Flight Center, Morgan State University, and the Baltimore Museum of Industry. The competition began with the posting of a Round 1 Aqua-related engineering problem in December 2002 and concluded in April 2003 with a final round of competition among the five finalist teams. The Aqua EPO efforts have also included a wide range of multimedia products. Prior to launch, the Aqua team worked closely with the Special Projects Initiative (SPI) Office to produce a series of live webcasts on Aqua science and the Cool Science website aqua.nasa.gov/coolscience, which displays short video clips of Aqua scientists and engineers explaining the many aspects of the Aqua mission. These video clips, the Aqua website, and numerous presentations have benefited from dynamic visualizations showing the Aqua launch, instrument deployments, instrument sensing, and the Aqua orbit. More recently, in 2008 the Aqua team worked with the ViewSpace production team from the Space Telescope Science Institute to create an 18-minute ViewSpace feature showcasing the science and applications of the Aqua mission. Then in 2010 and 2011, Aqua and other NASA Earth-observing missions partnered with National CineMedia on the "Know Your Earth" (KYE) project. During January and July 2010 and 2011, KYE ran 2-minute segments highlighting questions that promoted global climate literacy on lobby LCD screens in movie theaters throughout the U.S. Among the ongoing Aqua EPO efforts is the incorporation of Aqua data sets onto the Dynamic Planet, a large digital video globe that projects a wide variety of spherical data sets. Aqua also has a highly successful collaboration with EarthSky communications on the production of an Aqua/EarthSky radio show and podcast series. To date, eleven productions have been completed and distributed via the EarthSky network. In addition, a series of eight video podcasts (i.e., vodcasts) are under production by NASA Goddard TV in conjunction with Aqua personnel, highlighting various aspects of the Aqua mission.
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Peticolas, L. M.; Shipp, S. S.; Smith, D. A.
2014-12-01
Since 1993, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The result is significant, evaluated EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advance STEM education and literacy, and enable students and educators to participate in the practices of science and engineering as embodied in the 2013 Next Generation Science Standards. This presentation by the leads of the four NASA SMD Science EPO Forums provides big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting tools that were developed to foster a collaborative community and examples of program effectiveness and impact. The Forums are led by: Astrophysics - Space Telescope Science Institute (STScI); Earth Science - Institute for Global Environmental Strategies (IGES); Heliophysics - University of California, Berkeley; and Planetary Science - Lunar and Planetary Institute (LPI).
NASA Astrophysics Data System (ADS)
Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.
2004-12-01
The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that complements and augments current and planned space-based observing systems.
Slope Stability. CEGS Programs Publication Number 15.
ERIC Educational Resources Information Center
Pestrong, Raymond
Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…
From Earth to Moon to City Hall
ERIC Educational Resources Information Center
MOSAIC, 1972
1972-01-01
Account of four senior aerospace engineers, each acting as Science and Technology Advisor to the City Manager'' of the cities of Anaheim, Fresno, Pasadena, and San Jose, California. The objective is to bring the technological expertise of the aerospace engineer to bear on the problems of Urban management. (LK)
Planetary Exploration Education: As Seen From the Point of View of Subject Matter Experts
NASA Astrophysics Data System (ADS)
Milazzo, M. P.; Anderson, R. B.; Gaither, T. A.; Vaughan, R. G.
2016-12-01
Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) was selected as one of 27 new projects to support the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice. Our goal is to develop and disseminate out-of-school time (OST) curricular and related educator professional development modules that integrate planetary science, technology, and engineering. We are a partnership between planetary science Subject Matter Experts (SMEs), curriculum developers, science and engineering teacher professional development experts and OST teacher networks. The PLANETS team includes the Center for Science Teaching and Learning (CSTL) at Northern Arizona University (NAU); the U.S. Geological Survey (USGS) Astrogeology Science Center (Astrogeology), and the Boston Museum of Science (MOS). Here, we present the work and approach by the SMEs at Astrogeology. As part of this overarching project, we will create a model for improved integration of SMEs, curriculum developers, professional development experts, and educators. For the 2016 and 2017 Fiscal Years, our focus is on creating science material for two OST modules designed for middle school students. We will begin development of a third module for elementary school students in the latter part of FY2017. The first module focuses on water conservation and treatment as applied on Earth, the International Space Station, and at a fictional Mars base. This unit involves the science and engineering of finding accessible water, evaluating it for quality, treating it for impurities (i.e., dissolved and suspended), initial use, a cycle of greywater treatment and re-use, and final treatment of blackwater. The second module involves the science and engineering of remote sensing as it is related to Earth and planetary exploration. This includes discussion and activities related to the electromagnetic spectrum, spectroscopy and various remote sensing systems and techniques. In these activities and discussions we include observation and measurement techniques and tools, as well as collection and use of specific data of interest to scientists. These two modules will be tested and refined based on educator and student feedback, with expected final release in late summer of 2017.
E55_Inflight_Purdue_University_2018_0511_2329_651933
2018-05-14
SPACE STATION CREW MEMBER RECEIVES HONORARY DEGREE IN ORBIT----- Aboard the International Space Station, Expedition 55 Flight Engineer Drew Feustel of NASA received an honorary doctorate degree from his alma mater, Purdue University, during a unique ground-to-space ceremony on May 11. Feustel, who previously received a Bachelor of Science degree in Solid Earth Sciences and a Master of Science degree in Geophysics from Purdue, was hooded by his crewmate, Purdue graduate Scott Tingle of NASA, who has a Master of Science degree in Mechanical Engineering from the institution. The ceremony originated at Purdue, whose president, Mitch Daniels, introduced the crew members on orbit.
Research and technology annual report, FY 1990
NASA Technical Reports Server (NTRS)
1990-01-01
Given here is the annual report of the John C. Stennis Space Center (SSC), a NASA center responsible for testing NASA's large propulsion systems, developing supporting test technologies, conducting research in a variety of earth science disciplines, and facilitating the commercial uses of NASA-developed technologies. Described here are activities of the Earth Sciences Research Program, the Technology Development Program, commercial programs, the Technology Utilization Program, and the Information Systems Program. Work is described in such areas as forest ecosystems, land-sea interface, wetland biochemical flux, thermal imaging of crops, gas detectors, plume analysis, synthetic aperture radar, forest resource management, applications engineering, and the Earth Observations Commercial Applications Program.
NASA Astrophysics Data System (ADS)
Gorelick, Noel
2013-04-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
NASA Astrophysics Data System (ADS)
Gorelick, N.
2012-12-01
The Google Earth Engine platform is a system designed to enable petabyte-scale, scientific analysis and visualization of geospatial datasets. Earth Engine provides a consolidated environment including a massive data catalog co-located with thousands of computers for analysis. The user-friendly front-end provides a workbench environment to allow interactive data and algorithm development and exploration and provides a convenient mechanism for scientists to share data, visualizations and analytic algorithms via URLs. The Earth Engine data catalog contains a wide variety of popular, curated datasets, including the world's largest online collection of Landsat scenes (> 2.0M), numerous MODIS collections, and many vector-based data sets. The platform provides a uniform access mechanism to a variety of data types, independent of their bands, projection, bit-depth, resolution, etc..., facilitating easy multi-sensor analysis. Additionally, a user is able to add and curate their own data and collections. Using a just-in-time, distributed computation model, Earth Engine can rapidly process enormous quantities of geo-spatial data. All computation is performed lazily; nothing is computed until it's required either for output or as input to another step. This model allows real-time feedback and preview during algorithm development, supporting a rapid algorithm development, test, and improvement cycle that scales seamlessly to large-scale production data processing. Through integration with a variety of other services, Earth Engine is able to bring to bear considerable analytic and technical firepower in a transparent fashion, including: AI-based classification via integration with Google's machine learning infrastructure, publishing and distribution at Google scale through integration with the Google Maps API, Maps Engine and Google Earth, and support for in-the-field activities such as validation, ground-truthing, crowd-sourcing and citizen science though the Android Open Data Kit.
NASA Technical Reports Server (NTRS)
1998-01-01
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
1998-06-08
The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.
FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research
NASA Technical Reports Server (NTRS)
Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.
2016-01-01
The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.
2018-04-30
iss055e043245 (April 30, 2018) --- NASA astronaut Ricky Arnold transfers frozen biological samples from science freezers aboard the International Space Station to science freezers inside the SpaceX Dragon resupply ship. The research samples were returned to Earth aboard Dragon for retrieval by SpaceX engineers and analysis by NASA scientists.
Archiving and access systems for remote sensing: Chapter 6
Faundeen, John L.; Percivall, George; Baros, Shirley; Baumann, Peter; Becker, Peter H.; Behnke, J.; Benedict, Karl; Colaiacomo, Lucio; Di, Liping; Doescher, Chris; Dominguez, J.; Edberg, Roger; Ferguson, Mark; Foreman, Stephen; Giaretta, David; Hutchison, Vivian; Ip, Alex; James, N.L.; Khalsa, Siri Jodha S.; Lazorchak, B.; Lewis, Adam; Li, Fuqin; Lymburner, Leo; Lynnes, C.S.; Martens, Matt; Melrose, Rachel; Morris, Steve; Mueller, Norman; Navale, Vivek; Navulur, Kumar; Newman, D.J.; Oliver, Simon; Purss, Matthew; Ramapriyan, H.K.; Rew, Russ; Rosen, Michael; Savickas, John; Sixsmith, Joshua; Sohre, Tom; Thau, David; Uhlir, Paul; Wang, Lan-Wei; Young, Jeff
2016-01-01
Focuses on major developments inaugurated by the Committee on Earth Observation Satellites, the Group on Earth Observations System of Systems, and the International Council for Science World Data System at the global level; initiatives at national levels to create data centers (e.g. the National Aeronautics and Space Administration (NASA) Distributed Active Archive Centers and other international space agency counterparts), and non-government systems (e.g. Center for International Earth Science Information Network). Other major elements focus on emerging tool sets, requirements for metadata, data storage and refresh methods, the rise of cloud computing, and questions about what and how much data should be saved. The sub-sections of the chapter address topics relevant to the science, engineering and standards used for state-of-the-art operational and experimental systems.
The Moon: Been there, done that?
NASA Technical Reports Server (NTRS)
Cohen, Barbara
2013-01-01
Lunar science is planetary science. Lunar samples teach us about the formation and evolution of the Moon, and the history of all the planets. The Moon is a cornerstone for all rocky planets, since it formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids. Lunar robotic missions provide important science and engineering objectives, and keep our eyes on the Moon.
NASA Technical Reports Server (NTRS)
Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.
2008-01-01
One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.
Informal STEM Education in Antarctica
NASA Astrophysics Data System (ADS)
Chell, K.
2010-12-01
Tourism in Antarctica has increased dramatically with tens of thousands of tourists visiting the White Continent each year. Tourism cruises to Antarctica offer a unique educational experience for lay people through informal science-technology-engineering-mathematics (STEM) education. Passengers attend numerous scientific lectures that cover topics such as the geology of Antarctica, plate tectonics, glaciology, and climate change. Furthermore, tourists experience the geology and glaciology first hand during shore excursions. Currently, the grand challenges facing our global society are closely connected to the Earth sciences. Issues such as energy, climate change, water security, and natural hazards, are consistently on the legislative docket of policymakers around the world. However, the majority of the world’s population is uninformed about the role Earth sciences play in their everyday lives. Tourism in Antarctica provides opportunities for informal STEM learning and, as a result, tourists leave with a better understanding and greater appreciation for both Antarctica and Earth sciences.
High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations
NASA Technical Reports Server (NTRS)
Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.
2003-01-01
Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.
Exploring Sustainability Using images from Space
NASA Astrophysics Data System (ADS)
Chen, Loris; Salmon, Jennifer; Burns, Courtney
2016-04-01
Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks, laptops, iPads). As a result, web-based resources are incorporated into student learning on a daily basis. This has created a truly global classroom for students who, via the Internet, can and do access materials from any country in the world. Students work collaboratively using Google Classroom and a suite of Google apps. Teacher-created websites serve as the textbook with text, video, static images, interactive images, and external links designed to stimulate student growth in scientific literacy, language arts, and mathematics. Images of Earth's systems generated from data collected by Earth orbiting spacecraft are essential tools for understanding sustainability concepts at global, national, regional, and local scales. Images and supporting data from NASA (U.S.), ESA (Europe), and JAXA (Japan) are used to explore Earth's atmosphere, hydrosphere, and geosphere. Simulations, time-lapses, and graphical representations of historical and real-time, remote-sensing data stimulate student questions and engage students in learning as they design and test models to explain complex interactions of Earth's systems and feedback loops between natural and human-made environments. As students make meaning of observations and communicate their perceptions and understandings to a variety of audiences, they gain mastery of scientific literacy, language arts skills, and mathematics skills.
Developing the Next Generation of Science Data System Engineers
NASA Technical Reports Server (NTRS)
Moses, John F.; Behnke, Jeanne; Durachka, Christopher D.
2016-01-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects.The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peermentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breadth of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multidiscipline science and practitioner communities expect to have access to all types of observational data.This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
Developing the Next Generation of Science Data System Engineers
NASA Astrophysics Data System (ADS)
Moses, J. F.; Durachka, C. D.; Behnke, J.
2015-12-01
At Goddard, engineers and scientists with a range of experience in science data systems are needed to employ new technologies and develop advances in capabilities for supporting new Earth and Space science research. Engineers with extensive experience in science data, software engineering and computer-information architectures are needed to lead and perform these activities. The increasing types and complexity of instrument data and emerging computer technologies coupled with the current shortage of computer engineers with backgrounds in science has led the need to develop a career path for science data systems engineers and architects. The current career path, in which undergraduate students studying various disciplines such as Computer Engineering or Physical Scientist, generally begins with serving on a development team in any of the disciplines where they can work in depth on existing Goddard data systems or serve with a specific NASA science team. There they begin to understand the data, infuse technologies, and begin to know the architectures of science data systems. From here the typical career involves peer mentoring, on-the-job training or graduate level studies in analytics, computational science and applied science and mathematics. At the most senior level, engineers become subject matter experts and system architect experts, leading discipline-specific data centers and large software development projects. They are recognized as a subject matter expert in a science domain, they have project management expertise, lead standards efforts and lead international projects. A long career development remains necessary not only because of the breath of knowledge required across physical sciences and engineering disciplines, but also because of the diversity of instrument data being developed today both by NASA and international partner agencies and because multi-discipline science and practitioner communities expect to have access to all types of observational data. This paper describes an approach to defining career-path guidance for college-bound high school and undergraduate engineering students, junior and senior engineers from various disciplines.
NASA Astrophysics Data System (ADS)
Martinez, A. O.; Bohls-Graham, E.; Jacobs, B. E.; Ellins, K. K.
2014-12-01
Texas teachers have expressed a need for engaging activities for use in high school Earth science courses. With funding from the NSF, geoscience and education faculty from different institutions around the state collaborated with ten Earth science teachers to create five online Earth science instructional blueprints. The work is part of the DIG (Diversity and Innovation for Geosciences) Texas Instructional Blueprint project. A blueprint stitches together nine units for a yearlong Earth science course (scope and sequence). Each unit covers three weeks of teaching and contains lectures, readings, visualizations, lab investigations, learning activities, and other educational materials from credible sources, which are aligned with Texas state science standards for Earth and Space Science and the Earth Science Literacy Principles. Taken together, the collection of activities address the Next Generation Science Standards (NGSS). During summer 2014, three minority-serving secondary teachers completed a six-week internship at The University of Texas Institute for Geophysics (UTIG). As DIG Texas Education Interns, we organized and revised the content of the units, created scaffolding notes, and built blueprints by selecting groups of nine units from the project's current collection of twenty-one units. Because fieldwork is an important element of geoscience learning, we integrated virtual field trips into each unit. We (1) gained expertise in selecting high quality activities that directly correlate with state standards and address the Earth Science Literacy Principles; (2) developed a keen awareness of the value of the NGSS; (3) learned how to navigate through the NGSS website to track the relationships between the Science and Engineering Practices, Disciplinary Core Ideas, and Crosscutting Concepts for Earth science, as well as connections to other disciplines in the same grade level. Collaborating with other secondary Earth science teachers introduced each of us to new teaching practices, allowing us to build relationships that we expect to last for many years. UTIG researchers mentored and introduced us to their research and methodology. In addition, they helped us find high quality activities for the units. In turn, we shared our knowledge of pedagogy and classroom expertise with them.
Broadening the Participation of Native Americans in Earth Science
NASA Astrophysics Data System (ADS)
Bueno Watts, Nievita
Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists can begin broaden participation by engaging in community-inspired research, which stems from the needs of a community and is developed in collaboration with it. Designed to be useful in meeting the needs of the community, it should include using members of the community to help gather and analyze data. These community members could be students or potential students who might be persuaded to pursue an Earth Science degree.
Role of High-End Computing in Meeting NASA's Science and Engineering Challenges
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Tu, Eugene L.; Van Dalsem, William R.
2006-01-01
Two years ago, NASA was on the verge of dramatically increasing its HEC capability and capacity. With the 10,240-processor supercomputer, Columbia, now in production for 18 months, HEC has an even greater impact within the Agency and extending to partner institutions. Advanced science and engineering simulations in space exploration, shuttle operations, Earth sciences, and fundamental aeronautics research are occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. This talk describes how the integrated production environment fostered at the NASA Advanced Supercomputing (NAS) facility at Ames Research Center is accelerating scientific discovery, achieving parametric analyses of multiple scenarios, and enhancing safety for NASA missions. We focus on Columbia s impact on two key engineering and science disciplines: Aerospace, and Climate. We also discuss future mission challenges and plans for NASA s next-generation HEC environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... fuel economy standards in our Nation's history--standards that will save families money at the pump... foundation in science, technology, engineering, and math for every student will help ensure our youth have...
Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates
2015-09-26
Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
Explore@NASAGoddard celebrates the 25th anniversary of the launc
2015-09-26
Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
People’s Republic of China Scientific Abstracts, Number 195.
1978-08-01
regarding China. 17. Key Word« and Document Analysis. 17a. Descriptors China x Agricultural Science and Technology x Bio-Medical Sciences x...Chemistry Cybernetics, Computers, and Automation Technology x Earth Sciences 17b. ldentifiers/Open-Eoded Terms X X Engineering and Equipment...safety in astronautics, especially in reentry; 3. Producible with current technology ; *t. Provides an increased range of astronautical acti
The 1984 NASA/ASEE summer faculty fellowship program
NASA Technical Reports Server (NTRS)
Mcinnis, B. C.; Duke, M. B.; Crow, B.
1984-01-01
An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy.
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
Earth and Space Science Ph.D. Class of 2003 Report released
NASA Astrophysics Data System (ADS)
Keelor, Brad
AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.
NASA Astrophysics Data System (ADS)
Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.
2015-12-01
The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.
Kockelman, William J.
1976-01-01
An inventory of the use of USGS products in selected planning studies, plans, ordinances, and other planning activities was made for eight counties in the San Francisco Bay region--a region of almost five million people. This inventory was designed to determine and document the use of the 87 earth-science information products prepared as a part of the San Francisco Bay Region Environment and Resources Planning Study (SFBRS). The inventory showed that: (1) all eight counties had planning staffs who were very familiar with SFBRS products and had made frequent use of such products; (2) all eight counties had prepared planning documents which cite SFBRS products; (3) the types of planning applications most often indicated were: geologic hazards studies, seismic safety and public safety plan elements, general reference, and the preparation and review of environmental impact reports and statements; (4) over 90 percent of the 87 SFBRS products were used at least once, and nine of the products were used over 30 times each for various county planning activities; and (5) at least 85 other USGS products were also used for various county planning activities. After the inventory, selected county officials, employees, and consultants were interviewed and asked--among other things--to indicate any problems in the use of the SFBRS products, to suggest improvements, and to identify any needed or desired earth-science information. The responses showed that: (1) the scales commonly used for working maps were 1:62,500 or larger and for plan implementation were 1:24,000 or larger; (2) only one county had a geologist on its planning staff, although six others had the benefit of geotechnical services from private consulting firms, county engineering staffs, or the State Division of Mines and Geology; (3) seven of the eight counties expressed some problems in using the products, primarily because of their small scale or lack of detail; (4) all eight counties expected to continue to use the products and expressed a need or desire for additional earth-science, engineering, or other information; (5) all eight counties suggested specific improvements to future products, primarily larger scale or more detail and fewer technical or more interpretive products; and (6) all eight counties received educational, advisory, and review services from USGS personnel. Seventeen selected examples of the application of SFBRS products to various county planning activities are discussed and illustrated. These examples include four planning studies, seven plans, and two ordinances. From the inventory and responses to the interviews, it is concluded that the counties in the Bay region are very familiar with, have made frequent use of, and will continue to use SFBRS products for a wide range of county planning activities. Suggestions to ensure more effective use of earth-science information in the future include: (1) monitoring emerging critical issues and analyzing new state and federal laws and regulations so as to better anticipate and respond to county earth-science information needs; (2) creating a users advisory committee to help identify critical issues and user needs; (3) providing engineering interpretations and land- and water-use capability ratings to make earth-science information more readily usable; (4) giving priority to areas impacted by development so as to husband staff resources; (5) providing earth-science information at the larger scale and greater detail commonly used and needed by counties; (6) releasing earth-science information earlier and according to a formal distribution pattern; and (7) providing educational, advisory, and review services in connection with any earth-science information designed for planners and decisionmakers.
NASA Astrophysics Data System (ADS)
Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.
2016-12-01
Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.
Connecting NASA Airborne Scientists, Engineers, and Pilots to K-12 Classrooms
NASA Astrophysics Data System (ADS)
Schaller, E. L.
2015-12-01
The NASA Airborne Science Program (ASP) conducts Earth system science research missions with NASA aircraft all over the world. During ASP missions, NASA scientists, engineers and pilots are deployed to remote parts of the world such as Greenland, Antarctica, Chile, and Guam. These ASP mission personnel often have a strong desire to share the excitement of their mission with local classrooms near their deployment locations as well as classrooms back home in the United States. Here we discuss ongoing efforts to connect NASA scientists, engineers and pilots in the field directly with K-12 classrooms through both in-person interactions and remotely via live web-based chats.
Design of Scalable and Effective Earth Science Collaboration Tool
NASA Astrophysics Data System (ADS)
Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.
2014-12-01
Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).
Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.
2004-01-01
The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2018-03-01
Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations, theory development, and predictions.
How Long Does It Take for a Satellite to Fall to Earth?
ERIC Educational Resources Information Center
Lira, Antonio
2015-01-01
The purpose of this paper is to introduce students of science and engineering to the orbital lifetimes of satellites in circular low Earth orbits. It is only necessary to know about classical mechanics for this calculation. The orbital decay of satellites is due to the interaction of the satellite with the surrounding gas, atmospheric drag.…
NASA Astrophysics Data System (ADS)
Semken, S. C.; Robinson, S.; Bohon, W.; Schwab, P.; Arrowsmith, R.; Garnero, E.; Pettis, L.; Baumback, D.; Dick, C.
2014-12-01
The EarthScope Program (www.earthscope.org), funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of geodesy, seismology, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. EarthScope data, and the scientific findings they underpin, continue to revolutionize geoscientific research, enhance understanding and mitigation of geologic hazards, and bolster applications of geoscience in environmental management and sustainability. The EarthScope Program also produces and shares a wide range of resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and the web, inSights newsletters and published articles, E&O workshops for informal educators (interpreters), an annual Speaker Series, assistance to grassroots K-12 STEM teacher professional development projects (typically led by EarthScope researchers), continuing education for researchers, collaborations with other Earth-science E&O providers, and biennial National Conferences. The EarthScope E&O program at ESNO, now in its final year at Arizona State University, leads and supports wide dissemination of the data, findings, and legacy of EarthScope. Significant activities in 2014 include an Interpretive Workshop in Alaska; the US Science and Engineering Festival; the Decade Symposium in Washington, DC; the Great ShakeOut; local and regional outreach; and a continued strong and exemplary E&O presence online. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Water Reclamation Technology Development at Johnson Space Center
NASA Technical Reports Server (NTRS)
Callahan, Michael R.; Pickering, Karen
2014-01-01
Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.
2018-01-31
Michael Moloney, Director for Space and Aeronautics at the Space Studies Board and the Aeronautics and Space Engineering Board of the U.S. National Academies of Sciences, Engineering, and Medicine, delivers opening remarks during an event celebrating the 60th Anniversary of the Explorer 1 mission and the discovery of Earth's radiation belts, Wednesday, Jan. 31, 2018, at the National Academy of Sciences in Washington. The first U.S. satellite, Explorer 1, was launched from Cape Canaveral on January 31, 1958. The 30-pound satellite would yield a major scientific discovery, the Van Allen radiation belts circling our planet, and begin six decades of groundbreaking space science and human exploration. (NASA/Joel Kowsky)
SANs and Large Scale Data Migration at the NASA Center for Computational Sciences
NASA Technical Reports Server (NTRS)
Salmon, Ellen M.
2004-01-01
Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.
2014-12-01
EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of how learners can engage in authentic research experiences using real data in the secondary science classroom. In this session you will receive a brief overview of the EarthLabs project, learn more about IODP Expedition 341, and see some of the resources that the module makes available to students to help them analyze the data.
NASA's Systems Engineering Approaches for Addressing Public Health Surveillance Requirements
NASA Technical Reports Server (NTRS)
Vann, Timi
2003-01-01
NASA's systems engineering has its heritage in space mission analysis and design, including the end-to-end approach to managing every facet of the extreme engineering required for successful space missions. NASA sensor technology, understanding of remote sensing, and knowledge of Earth system science, can be powerful new tools for improved disease surveillance and environmental public health tracking. NASA's systems engineering framework facilitates the match between facilitates the match between partner needs and decision support requirements in the areas of 1) Science/Data; 2) Technology; 3) Integration. Partnerships between NASA and other Federal agencies are diagrammed in this viewgraph presentation. NASA's role in these partnerships is to provide systemic and sustainable solutions that contribute to the measurable enhancement of a partner agency's disease surveillance efforts.
NASA Astrophysics Data System (ADS)
Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.
2012-12-01
In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one-third are the first in their families to attend college. For eight weeks, SURGE scholars conduct independent research with the guidance of faculty, research group mentors, and program assistants. The primary objectives of the SURGE program are to (1) provide undergraduates with a research experience in SES; (2) prepare undergraduates for the process of applying to graduate school; (3) introduce undergraduates to career opportunities in the geosciences and engineering; and (4) increase diversity in SES graduate programs. Independent research, network building, and intense mentoring culminate in a final oral and poster symposium. SESUR and SURGE scholars jointly participate in enrichment activities including faculty research seminars; career, graduate school, and software training workshops; GRE preparation classes; and geoscience-oriented field trips. Interaction among our students takes place through both research and enrichment activities, creating a critical mass of undergraduate scholars and promoting community development. Pre- and post-program surveys indicate that the overall goals of both programs are being achieved.
Swedish Delegation Visits NASA Goddard
2017-12-08
Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Photo Credit: NASA/Goddard/Rebecca Roth Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Swedish Delegation Visits NASA Goddard
2017-12-08
Swedish Delegation Visits GSFC – May 3, 2017 - Members of the Royal Swedish Academy of Engineering Sciences listen to Dr. Compton Tucker’s presentation on NASA’s earth science research activities in the Piers Sellers Visualization Theatre in Building 28 at NASA Goddard. Credit: NASA/Goddard/Bill Hrybyk Read more: go.nasa.gov/2p1rP0h NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
USA Science and Engineering Festival 2014
2014-04-25
A NASA staff member describes the Global Precipitation Measurement Mission. The GPM Core Observatory satellite was launched into space on February 27, 2014 and will measure rain and snow worldwide every three hours. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)
The 1991 research and technology report, Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)
1991-01-01
The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.
NASA Astrophysics Data System (ADS)
Tavadyan, Levon, Prof; Sachkov, Viktor, Prof; Godymchuk, Anna, Dr.; Bogdan, Anna
2016-01-01
The 2nd International Symposium «Fundamental Aspects of Rare-earth Elements Mining and Separation and Modern Materials Engineering» (REES2015) was jointly organized by Tomsk State University (Russia), National Academy of Science (Armenia), Shenyang Polytechnic University (China), Moscow Institute of Physics and Engineering (Russia), Siberian Physical-technical Institute (Russia), and Tomsk Polytechnic University (Russia) in September, 7-15, 2015, Belokuriha, Russia. The Symposium provided a high quality of presentations and gathered engineers, scientists, academicians, and young researchers working in the field of rare and rare earth elements mining, modification, separation, elaboration and application, in order to facilitate aggregation and sharing interests and results for a better collaboration and activity visibility. The goal of the REES2015 was to bring researchers and practitioners together to share the latest knowledge on rare and rare earth elements technologies. The Symposium was aimed at presenting new trends in rare and rare earth elements mining, research and separation and recent achievements in advanced materials elaboration and developments for different purposes, as well as strengthening the already existing contacts between manufactures, highly-qualified specialists and young scientists. The topics of the REES2015 were: (1) Problems of extraction and separation of rare and rare earth elements; (2) Methods and approaches to the separation and isolation of rare and rare earth elements with ultra-high purity; (3) Industrial technologies of production and separation of rare and rare earth elements; (4) Economic aspects in technology of rare and rare earth elements; and (5) Rare and rare earth based materials (application in metallurgy, catalysis, medicine, optoelectronics, etc.). We want to thank the Organizing Committee, the Universities and Sponsors supporting the Symposium, and everyone who contributed to the organization of the event and to publication of this proceeding.
NASA Astrophysics Data System (ADS)
Keith, D. W.
2005-12-01
The post-war growth of the earth sciences has been fueled, in part, by a drive to quantify environmental insults in order to support arguments for their reduction, yet paradoxically the knowledge gained is grants us ever greater capability to deliberately engineer environmental processes on a planetary scale. Increased capability can arises though seemingly unconnected scientific advances. Improvements in numerical weather prediction such as the use of adjoint models in analysis/forecast systems, for example, means that weather modification can be accomplished with smaller control inputs. Purely technological constraints on our ability to engineer earth systems arise from our limited ability to measure and predict system responses and from limits on our ability to manage large engineering projects. Trends in all three constraints suggest a rapid growth in our ability to engineer the planet. What are the implications of our growing ability to geoengineer? Will we see a reemergence of proposals to engineer our way out of the climate problem? How can we avoid the moral hazard posed by the knowledge that geoengineering might provide a backstop to climate damages? I will speculate about these issues, and suggest some institutional factors that may provide a stronger constraint on the use of geoengineering than is provided by any purely technological limit.
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Gold, A. U.
2017-12-01
There is a deluge of earth systems data available to address cutting edge science problems yet specific skills are required to work with these data. The Earth analytics education program, a core component of Earth Lab at the University of Colorado - Boulder - is building a data intensive program that provides training in realms including 1) interdisciplinary communication and collaboration 2) earth science domain knowledge including geospatial science and remote sensing and 3) reproducible, open science workflows ("earth analytics"). The earth analytics program includes an undergraduate internship, undergraduate and graduate level courses and a professional certificate / degree program. All programs share the goals of preparing a STEM workforce for successful earth analytics driven careers. We are developing an program-wide evaluation framework that assesses the effectiveness of data intensive instruction combined with domain science learning to better understand and improve data-intensive teaching approaches using blends of online, in situ, asynchronous and synchronous learning. We are using targeted online search engine optimization (SEO) to increase visibility and in turn program reach. Finally our design targets longitudinal program impacts on participant career tracts over time.. Here we present results from evaluation of both an interdisciplinary undergrad / graduate level earth analytics course and and undergraduate internship. Early results suggest that a blended approach to learning and teaching that includes both synchronous in-person teaching and active classroom hands-on learning combined with asynchronous learning in the form of online materials lead to student success. Further we will present our model for longitudinal tracking of participant's career focus overtime to better understand long-term program impacts. We also demonstrate the impact of SEO optimization on online content reach and program visibility.
Tracking Clouds on Venus using Venus Express Data
NASA Astrophysics Data System (ADS)
Pertzborn, Rosalyn; Limaye, Sanjay; Markiewicz, Wojciech; Jasmin, Tommy; Udgaonkar, Nishant
2014-05-01
In the US, a growing emphasis has been placed on the development of inclusive and authentic educational experiences which promote active participation by the K-12 learning community as well as the general public in NASA's earth and space science research activities. In the face of growing national and international budgetary constraints which present major challenges across all scientific research organizations around the world, the need for scientific communities to dramatically improve strategies for effective public engagement experiences, demonstrating the relevance of earth and space science research contributions to the citizenry, have become paramount. This presentation will provide an introduction to the online Venus Express Cloud tracking applet, an overview of feedback from educational users based on classroom/pilot implementation efforts, as well as the concept's potential viability for the promotion of expanded public participation in the analysis of data in future planetary exploration and research activities, nationally and internationally. Acknowledgements: We wish to acknowledge the contributions of Mr. Nishant Udgaonkar, a summer intern with the S.N. Bose Scholars Program, sponsored by the Science and Engineering Board, Department of Science and Technology, Government of India, the Indo-U.S. Science and Technology Forum, and the University of Wisconsin-Madison. We also wish to acknowledge the Space Science and Engineering Center as well as NASA for supporting this project.
NASA Astrophysics Data System (ADS)
Roberts, Simon J.
2014-01-01
The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.
Center Director Chris Scolese visits displays at Explore@NASAGod
2015-09-26
Center Director Chris Scolese visits displays at Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
Buildings 7 & 29. Explore@NASAGoddard celebrates the 25th annive
2015-09-26
Buildings 7 & 29. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
Buildings 7 & 29. Explore@NASAGoddard celebrates the 25th annive
2015-09-25
Buildings 7 & 29. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
Delivering Images for Mars Rover Science Planning
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
A methodology has been developed for delivering, via the Internet, images transmitted to Earth from cameras on the Mars Explorer Rovers, the Phoenix Mars Lander, the Mars Science Laboratory, and the Mars Reconnaissance Orbiter spacecraft. The images in question are used by geographically dispersed scientists and engineers in planning Rover scientific activities and Rover maneuvers pertinent thereto.
2018-05-15
NASA engineers discussed the Life Sciences Glovebox, the agency's newest research facility for the International Space Station today at Marshall Space Flight Center in Huntsville, Alabama. The Life Sciences Glovebox will be used to study the long-term impact of microgravity on human physiology, revealing new ways to improve life on Earth while protecting human explorers during long-duration deep space missions.
NASA Astrophysics Data System (ADS)
2014-03-01
The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.
College and University Earth System Science Education for the 21st Century (ESSE 21)
NASA Astrophysics Data System (ADS)
Johnson, D. R.; Ruzek, M.; Schweizer, D.
2002-12-01
The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, minors or degree tracks, and programs or departments that are self-sustaining in the coming decades. Interdisciplinary college and university teams are competitively selected through a peer-reviewed Call for Participation. ESSE 21 offers an infrastructure for an interactive community of educators and researchers including under represented participants that develops interdisciplinary Earth system science content utilizing NASA resources involving global change data, models, visualizations and electronic media and networks. The Program provides for evaluation and assessment guides to help assure the pedagogical effectiveness of materials developed. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system.
EarthScope Education and Outreach: Accomplishments and Emerging Opportunities
NASA Astrophysics Data System (ADS)
Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.
2014-12-01
EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through informal education venues" Leveraging ESNO, IRIS, and UNAVCO resources has exceeded the capabilities of any single entity, thereby amplifying the impact of EarthScope's education and outreach effort.
NASA Advanced Computing Environment for Science and Engineering
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2017-01-01
Vision: To reach for new heights and reveal the unknown so that what we do and learn will benefit all humankind. Mission: To pioneer the future in space exploration, scientific discovery, and aeronautics research. Aeronautics Research (ARMD): Pioneer and prove new flight technologies for safer, more secure, efficient, and environmental friendly air transportation. Human Exploration and Operations (HEOMD): Focus on ISS operations; and develop new spacecraft and other capabilities for affordable, sustainable exploration beyond low Earth orbit. Science (SCMD): Explore the Earth, solar system, and universe beyond; chart best route for discovery; and reap the benefits of Earth and space exploration for society. Space Technology (STMD): Rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies through collaborative partnerships, expanding the boundaries of aerospace enterprise.
An Architecture Trade Study for Passive 10-km Soil Moisture Measurements from Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Pellerano, Fernando; ONeill, P.; Dod, L.; Krebs, Carolyn (Technical Monitor)
2001-01-01
In 1999 NASA HQ, as a result of an internal NASA study on potential Earth Science Enterprise Post-2002 Missions, directed the hydrology community to focus on achieving a 10-km spatial resolution global soil moisture mission. This type of resolution represents a significant technological challenge for an L-band radiometer in sun-synchronous low-earth orbit. An engineering trade study has been completed to determine alternative system configurations that could achieve the science requirements and to identify the most appropriate technology investments and development path for NASA to pursue in order to bring about such a mission. The results of the study are presented here together with a short discussion of future efforts.
The International Space Station: A National Science Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2011-01-01
After more than a decade of assembly missions and on the heels of the final voyage of Space Shuttle Discovery, the International Space Station (ISS) has reached assembly completion. With visiting spacecraft now docking with the ISS on a regular basis, the Station now serves as a National Laboratory to scientists back on Earth. ISS strengthens relationships among NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. In this lecture we will explore the various areas of research onboard ISS to promote this advancement: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science. The ISS National Laboratory will also open new paths for the exploration and economic development of space.
Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.
A Spacelab Expert System for Remote Engineering and Science
NASA Technical Reports Server (NTRS)
Groleau, Nick; Colombano, Silvano; Friedland, Peter (Technical Monitor)
1994-01-01
NASA's space science program is based on strictly pre-planned activities. This approach does not always result in the best science. We describe an existing computer system that enables space science to be conducted in a more reactive manner through advanced automation techniques that have recently been used in SLS-2 October 1993 space shuttle flight. Advanced computing techniques, usually developed in the field of Artificial Intelligence, allow large portions of the scientific investigator's knowledge to be "packaged" in a portable computer to present advice to the astronaut operator. We strongly believe that this technology has wide applicability to other forms of remote science/engineering. In this brief article, we present the technology of remote science/engineering assistance as implemented for the SLS-2 space shuttle flight. We begin with a logical overview of the system (paying particular attention to the implementation details relevant to the use of the embedded knowledge for system reasoning), then describe its use and success in space, and conclude with ideas about possible earth uses of the technology in the life and medical sciences.
Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette
2013-01-01
The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Mexicotte, D.
2017-12-01
A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.
2017-12-01
"Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of "Water in the Solar System" and lessons learned.
Total and Spectral Solar Irradiance Sensor (TSIS) Project Status
NASA Technical Reports Server (NTRS)
Carlisle, Candace
2018-01-01
TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).
The role of Facilities in Engaging and Informing the Public of EarthScope Science
NASA Astrophysics Data System (ADS)
Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.
2013-12-01
The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development and dissemination of materials for the scientifically interested public at science and technology centers. The presentation will also share techniques used and future plans for evaluation of the public impact of EarthScope.
The PRIME Partnership: 9th Graders, Graduate Students and Integrated, Inquiry-Based Science
NASA Astrophysics Data System (ADS)
Gaffney, A. M.; Miguelez, S.
2001-12-01
The PRIME program (Partnership for Research in Inquiry-based Math, science and engineering Education) is a collaboration between the UW Colleges of Education and Engineering and several Seattle-area school districts. This project, funded by the NSF GK-12 program, pairs UW graduate students from math, science and engineering disciplines with local middle school teachers. The graduate student spends a year working with the teacher, on projects designed to meet the needs and interests of the specific partnership and classroom. In the partnership, the graduate student spends 15 hours per week in the classroom, interacting with the students, as well as additional planning time outside of the classroom. Goals of the PRIME program are enriched learning by middle school students, professional development for middle school teachers, improved communication and teaching skills for the graduate students, and strengthened partnerships between the University of Washington and local school districts. The goal of our partnership was to develop an inquiry-based, 9th grade unit that integrates the pre-existing Earth Science and Chemistry units, and to assess the effectiveness of teaching Chemistry in the context of Earth Science. We have observed that students often become engaged and excited when they do hands-on activities that utilize the intrinsic understanding that they have of concepts that draw upon experiences in their daily lives. When science is taught and learned in one such context - in the context of the natural world - the students may gain a more solid fundamental understanding of the science that they learn. The day-to-day activities for this unit vary widely. We started each topic with a question designed to get the students thinking independently and to identify the preconceptions that the students brought into the classroom. Discussions of students' preconceptions served as a justification and springboard for the subsequent activities and experiments. Examples of questions used to spark student thought are: "What do you think the inside of the Earth looks like?," "What makes a volcano erupt?," and "Do mountains last forever?." We evaluated the effectiveness of this approach through a combination of classroom observations, formal and informal interviews, and surveys
A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation
NASA Technical Reports Server (NTRS)
Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier
2015-01-01
Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science goals without having to delve into the details of the engineering design process.
Research and Technology Report. Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Soffen, Gerald (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)
1996-01-01
This issue of Goddard Space Flight Center's annual report highlights the importance of mission operations and data systems covering mission planning and operations; TDRSS, positioning systems, and orbit determination; ground system and networks, hardware and software; data processing and analysis; and World Wide Web use. The report also includes flight projects, space sciences, Earth system science, and engineering and materials.
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
Role of High-End Computing in Meeting NASA's Science and Engineering Challenges
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2006-01-01
High-End Computing (HEC) has always played a major role in meeting the modeling and simulation needs of various NASA missions. With NASA's newest 62 teraflops Columbia supercomputer, HEC is having an even greater impact within the Agency and beyond. Significant cutting-edge science and engineering simulations in the areas of space exploration, Shuttle operations, Earth sciences, and aeronautics research, are already occurring on Columbia, demonstrating its ability to accelerate NASA s exploration vision. The talk will describe how the integrated supercomputing production environment is being used to reduce design cycle time, accelerate scientific discovery, conduct parametric analysis of multiple scenarios, and enhance safety during the life cycle of NASA missions.
NASA Technical Reports Server (NTRS)
Barth, Janet L.; LaBel, Kenneth; Brewer, Dana; Withbroe, George; Kauffman, Billy
2001-01-01
NASA has initiated the Living with a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. A pre-formulation study determined the optimum combination of science missions, modeling, and technology infusion elements to accomplish this goal. The results of the study are described.
NASA Applied Sciences Program Rapid Prototyping Results and Conclusions
NASA Astrophysics Data System (ADS)
Cox, E. L.
2007-12-01
NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five NASA centers (GSFC, LaRC, SSC, MSFC, ARC) participated and are currently conducting fifteen prototyping experiments covering eight of the twelve national priority applications - Energy, Coastal, Carbon, and Disaster Management; Agricultural Efficiency, Aviation, Air Quality, and Ecological Forecasting. Results from six experiments will be discussed highlighting purpose, expected results, enhancement to the decision-making process achieved, and the potential plans for future collaboration and sustainable projects.
NASA Technical Reports Server (NTRS)
Ferguson, James S.; Ferguson, Joanne E.; Peel, John, III; Vance, Larry
1995-01-01
Since initial contact between Earth Search Sciences, Inc. (ESSI) and the Idaho National Engineering Laboratory (INEL) in February, 1994, at least seven proposals have been submitted in response to a variety of solicitations to commercialize and improve the AVIRIS instrument. These proposals, matching ESSI's unique position with respect to agreements with the National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) to utilize, miniaturize, and commercialize the AVIRIS instrument and platform, are combined with the applied engineering of the INEL. Teaming ESSI, NASA/JPL, and INEL with diverse industrial partners has strengthened the respective proposals. These efforts carefully structure the overall project plans to ensure the development, demonstration, and deployment of this concept to the national and international arenas. The objectives of these efforts include: (1) developing a miniaturized commercial, real-time, cost effective version of the AVIRIS instrument; (2) identifying multiple users for AVIRIS; (3) integrating the AVIRIS technology with other technologies; (4) gaining the confidence/acceptance of other government agencies and private industry in AVIRIS; and (5) increasing the technology base of U.S. industry.
NASA Astrophysics Data System (ADS)
Whittington, Kayla Lee
This study examined the impact of an inquiry based Next Generation Science Standard aligned science unit on elementary students' understanding and application of the eight Science and Engineering Practices and their relation in building student problem solving skills. The study involved 44 second grade students and three participating classroom teachers. The treatment consisted of a school district developed Second Grade Earth Science unit: What is happening to our playground? that was taught at the beginning of the school year. Quantitative results from a Likert type scale pre and post survey and from student content knowledge assessments showed growth in student belief of their own abilities in the science classroom. Qualitative data gathered from student observations and interviews performed at the conclusion of the Earth Science unit further show gains in student understanding and attitudes. This study adds to the existing literature on the importance of standard aligned, inquiry based science curriculum that provides time for students to engage in science practices.
From Earth to Orbit: An assessment of transportation options
NASA Technical Reports Server (NTRS)
Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur
1992-01-01
The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.
Are Earth System model software engineering practices fit for purpose? A case study.
NASA Astrophysics Data System (ADS)
Easterbrook, S. M.; Johns, T. C.
2009-04-01
We present some analysis and conclusions from a case study of the culture and practices of scientists at the Met Office and Hadley Centre working on the development of software for climate and Earth System models using the MetUM infrastructure. The study examined how scientists think about software correctness, prioritize their requirements in making changes, and develop a shared understanding of the resulting models. We conclude that highly customized techniques driven strongly by scientific research goals have evolved for verification and validation of such models. In a formal software engineering context these represents costly, but invaluable, software integration tests with considerable benefits. The software engineering practices seen also exhibit recognisable features of both agile and open source software development projects - self-organisation of teams consistent with a meritocracy rather than top-down organisation, extensive use of informal communication channels, and software developers who are generally also users and science domain experts. We draw some general conclusions on whether these practices work well, and what new software engineering challenges may lie ahead as Earth System models become ever more complex and petascale computing becomes the norm.
The need and potential for building a integrated knowledge-base of the Earth-Human system
NASA Astrophysics Data System (ADS)
Jacobs, Clifford
2011-03-01
The pursuit of scientific understanding is increasingly based on interdisciplinary research. To understand more deeply the planet and its interactions requires a progressively more holistic approach, exploring knowledge coming from all scientific and engineering disciplines including but not limited to, biology, chemistry, computer sciences, geosciences, material sciences, mathematics, physics, cyberinfrastucture, and social sciences. Nowhere is such an approach more critical than in the study of global climate change in which one of the major challenges is the development of next-generation Earth System Models that include coupled and interactive representations of ecosystems, agricultural working lands and forests, urban environments, biogeochemistry, atmospheric chemistry, ocean and atmospheric currents, the water cycle, land ice, and human activities.
SOCCER: Comet Coma Sample Return Mission
NASA Technical Reports Server (NTRS)
Albee, A. L.; Uesugi, K. T.; Tsou, Peter
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.
NASA Technical Reports Server (NTRS)
1998-01-01
This report highlights the challenging work accomplished during fiscal year 1997 by Ames research scientists and engineers. The work is divided into accomplishments that support the goals of NASA s four Strategic Enterprises: Aeronautics and Space Transportation Technology, Space Science, Human Exploration and Development of Space (HEDS), and Earth Science. NASA Ames Research Center s research effort in the Space, Earth, and HEDS Enterprises is focused i n large part to support Ames lead role for Astrobiology, which broadly defined is the scientific study of the origin, distribution, and future of life in the universe. This NASA initiative in Astrobiology is a broad science effort embracing basic research, technology development, and flight missions. Ames contributions to the Space Science Enterprise are focused in the areas of exobiology, planetary systems, astrophysics, and space technology. Ames supports the Earth Science Enterprise by conducting research and by developing technology with the objective of expanding our knowledge of the Earth s atmosphere and ecosystems. Finallv, Ames supports the HEDS Enterprise by conducting research, managing spaceflight projects, and developing technologies. A key objective is to understand the phenomena surrounding the effects of gravity on living things. Ames has also heen designated the Agency s Center of Evcellence for Information Technnlogv. The three cornerstones of Information Technology research at Ames are automated reasoning, human-centered computing, and high performance computing and networking.
2009-10-08
ISS020-E-049859 (8 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21/22 flight engineer, uses science hardware RUSALKA at a window in the Zvezda Service Module of the International Space Station to take methane and carbon dioxide measurements in Earth's atmosphere at sunset.
3 CFR 8802 - Proclamation 8802 of April 20, 2012. Earth Day, 2012
Code of Federal Regulations, 2013 CFR
2013-01-01
.... As we work to leave our children a safe, sustainable future, we must also equip them with the tools... strong foundation in science, technology, engineering, and math for every student will help ensure our...
Special Issue on Earth Science: The View From '76
ERIC Educational Resources Information Center
Geotimes, 1976
1976-01-01
Presents the latest developments concerning the following topics: astrogeology, coal, deep sea drilling project, engineering geology; environmental geology, exploration geophysics, geochemistry, geodynamics project, hydrology, industrial minerals, international geology, mapping, mathematical geology, metals, mineralogy, oil and gas, invertebrate…
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
2002-10-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Middle and high school students shine
NASA Astrophysics Data System (ADS)
Asher, Pranoti; Saltzman, Jennifer
2012-02-01
Middle and high school students participating in after-school and summer research experiences in the Earth and space sciences are invited to participate in AGU's Bright Students Training as Research Scientists (Bright STaRS) program. The Bright STaRS program provides a dedicated forum for these students to present their research results to the scientific community at AGU's Fall Meeting, where they can also learn about exciting research, education, and career opportunities in the Earth and space sciences. Last year's program included 33 abstracts from middle and high school students involved with the Stanford University School of Earth Sciences; Raising Interest in Science and Engineering summer internship program sponsored by the Office of Science Outreach at Stanford; Lawrence Hall of Science at the University of California, Berkeley; the University of California, Santa Cruz; California Academy of Science; San Francisco State University; the University of Arizona; and the National Oceanic and Atmospheric Administration's Gulf of the Farallones National Marine Sanctuary. Their work spanned a variety of topics ranging from structural geology and paleontology to environmental geology and polar science. Nearly 100 Bright STaRS students presented their research posters on Thursday morning (8 December) of the Fall Meeting and had a chance to interact with scientists, AGU staff, and other meeting attendees.
Development of Site Characterization Simulator Specifications
1996-11-01
Jeff Farrar, Geotechnical Engineer with Earth Sciences Laboratory, Bureau of Reclamation; Jason Smolensky, Hydrogeologist at SRK-Canada, and Doctors Ed...Heyse and Mark Goltz , Department of Engineering and Environmental Management, Air Force Institute of Technology). Considering these discussions, the...Windows 3.1 or higher, 35mb, hard disk. Delta Research Corporation, Niceville FL. 139 Roberts, P.V., Goltz , M.N., and Mackay, D.M. 1986. A Natural
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Collaborative Science Using Web Services and the SciFlo Grid Dataflow Engine
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.; Yunck, T.
2006-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* &Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client &server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. The scientist injects a distributed computation into the Grid by simply filling out an HTML form or directly authoring the underlying XML dataflow document, and results are returned directly to the scientist's desktop. Once an analysis has been specified for a chunk or day of data, it can be easily repeated with different control parameters or over months of data. Recently, the Earth Science Information Partners (ESIP) Federation sponsored a collaborative activity in which several ESIP members advertised their respective WMS/WCS and SOAP services, developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. For several scenarios, the same collaborative workflow was executed in three ways: using hand-coded scripts, by executing a SciFlo document, and by executing a BPEL workflow document. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, and further collaborations that are being pursued.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation
NASA Technical Reports Server (NTRS)
Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.
2018-01-01
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems
NASA Technical Reports Server (NTRS)
Ullman, Richard; Burnett, Michael
2013-01-01
The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.
The TXESS Revolution: A Partnership to Advance Earth and Space Science in Texas
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Olson, H. C.; Willis, M.
2007-12-01
The Texas State Board of Education voted in 2006 to require a fourth year of science for graduation from high school and to authorize the creation of a new senior level Earth Systems and Space Science course as an option to fulfill that requirement. The new Earth Systems and Space Science course will be a capstone course for which three required science courses(biology, chemistry and physics)are prerequisites. Here, we summarize the collective efforts of business leaders, scientists and educators who worked collaboratively for almost a decade to successfully reinstate Earth science as part of Texas' standard high school curriculum and describe a new project, the Texas Earth and Space Science (TXESS) Revolution, a 5-year professional development program for 8th -12th grade minority and minority-serving science teachers and teacher mentors in Texas to help prepare them to teach the new capstone course. At the heart of TXESS Revolution is an extraordinary partnership, involving (1) two UT-Austin academic units, the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering; (2) TERC, a not-for-profit educational enterprise in Massachusetts with 30 years experience in designing science curriculum; (3) the University of South Florida; and (4) the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, a statewide network of teacher mentors and science teachers. With guidance from the Texas Education Agency, the state agency charged with overseeing education, the TXESS Revolution project will provide teachers with access to high quality materials and instruction aligned with the Texas educational standards for the new capstone course through: a program of eight different 3-day professional development academies offered to both teachers and teachers mentors; immersive summer institutes, field experiences, and a Petroleum Science and Technology Institute; training on how to implement Earth Science by Design, a teacher professional development program developed by TERC and the American Geological Institute with National Science Foundation (NSF) funding; and an online learning forum designed to keep teachers and teacher mentors in contact with facilitators and fellow project-participants between and after training, as well as share best practices and new information. The new capstone course promises to be a rigorous and dynamic change to the way Earth and Space Science has been presented previously anywhere in the U.S. and will provide many opportunities for professional development and the dissemination of suitable Earth and Space Science curriculum. The TXESS Revolution project welcomes opportunities to collaborate with geoscience consortia, programs, organizations and geoscience educators to advance Earth and Space Science in Texas. NSF's Opportunities to Enhance Diversity in the Geosciences program, the Shell Oil Company and the Jackson School of Geosciences are together funding the TXESS Revolution project.
Engineering uses of physics-based ground motion simulations
Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.
2014-01-01
This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.
NASA Technical Reports Server (NTRS)
Dickinson, William B.
1995-01-01
An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.
Computational Earth Science: Big Data Transformed Into Insight
NASA Astrophysics Data System (ADS)
Sellars, Scott; Nguyen, Phu; Chu, Wei; Gao, Xiaogang; Hsu, Kuo-lin; Sorooshian, Soroosh
2013-08-01
More than ever in the history of science, researchers have at their fingertips an unprecedented wealth of data from continuously orbiting satellites, weather monitoring instruments, ecological observatories, seismic stations, moored buoys, floats, and even model simulations and forecasts. With just an internet connection, scientists and engineers can access atmospheric and oceanic gridded data and time series observations, seismographs from around the world, minute-by-minute conditions of the near-Earth space environment, and other data streams that provide information on events across local, regional, and global scales. These data sets have become essential for monitoring and understanding the associated impacts of geological and environmental phenomena on society.
NASA's Earth Science Flight Program overview
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Volz, Stephen M.
2011-11-01
NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.
2000-08-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, Stanford engineer, Chris Gray, is inspecting the number 4 gyro under monochromatic light. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Stanford University.)
NASA Astrophysics Data System (ADS)
Johnson, R. M.; Passow, M. J.; Holzer, M. A.; Moore, J.
2014-12-01
The Next Generation Science Standards (NGSS) provide an historic opportunity to significantly improve Earth and space science (ESS) education nationally at the K-12 level. The increased emphasis on ESS related topics in the NGSS relative to previous standards provides a real opportunity for ensuring all K-12 students in adopting states learn about the ESS - allowing us to reach many more students than are currently are exposed to our discipline. The new standards are also exciting in that they explicitly couple science and engineering practice, cross-cutting concepts, and disciplinary core ideas in such a way that student must actively demonstrate their understanding through actions rather than through mere regurgitation of memorized responses. Achieving mastery of NGSS Performance Expectations will require practice with higher-order learning skills - with students engaging in the practices of scientists and engineers. Preparing students for this mastery will be a challenging task for teachers, since in many states professional development support is limited at best for the current curriculum - let alone the curricula that will be developed to address the NGSS. As adoption of the NGSS expands across the country, states will be at various levels of implementation of the new standards over the next several years - and there is real concern that teachers must have sufficient professional development to be able to be successful in preparing their students - particularly in view of likely coupled assessments and teacher evaluations. NESTA strongly supports implementation of the NGSS, and the rigorous and compelling ESS education it will engender, when coupled with a strong emphasis nationwide on teacher professional development. For the past two years, the National Earth Science Teachers Association (NESTA) has continued our leadership in K-12 ESS education through workshops, web seminars, events and publications that emphasize implementation of the NGSS in ESS-related courses. Our recent survey of K-12 Earth and space science educators confirms widespread enthusiasm about the potential offered by the new standards, as well as concern about the urgent need for professional development to support teacher implementation of the standards.
NASA Technical Reports Server (NTRS)
1984-01-01
Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.
ERIC Educational Resources Information Center
Hardcastle, Joseph; Herrmann-Abell, Cari F.; DeBoer, George E.
2017-01-01
Energy is a critically important topic in the K-12 science curriculum, with many applications in the earth, physical, and life sciences and in engineering and technology. To meet the challenges associated with teaching energy, new tools and assessment instruments are needed. In this work we describe the development of a three-tier assessment…
Geomagnetically induced currents: Science, engineering, and applications readiness
NASA Astrophysics Data System (ADS)
Pulkkinen, A.; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P. J.; Welling, D.; Savani, N. P.; Weigel, R. S.; Love, J. J.; Balch, C.; Ngwira, C. M.; Crowley, G.; Schultz, A.; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J. J.; MacAlester, M.
2017-07-01
This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the "impact" aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.
Geomagnetically induced currents: Science, engineering, and applications readiness
Pulkkinen, Antti; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P.J.; Welling, D.; Savani, N.P.; Weigel, R.S.; Love, Jeffrey J.; Balch, Christopher; Ngwira, C.M.; Crowley, G.; Schultz, Adam; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J.J.; MacAlester, M.
2017-01-01
This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.
The Energy Lands Program of the U.S. Geological Survey, fiscal year 1976
Maberry, John O.
1978-01-01
The Energy Lands Program of the U.S. Geological Survey comprises several projects that conduct basic and interpretive earth-science investigations into the environmental aspects of energy-resource recovery, transmission, and conversion. More than half the coal reserves of the United States occur west of the Mississippi River; therefore, the program concentrates mostly on coal-producing regions in the Western interior. Additional studies involve the oil-shale region in Colorado, Wyoming, and Utah, and coal-related work in Alaska and Appalachia. The work is done both by USGS personnel and under USGS grants and contracts through the Energy Lands Program to universities, State Geological Surveys, and private individuals. Maps and reports characterizing many aspects of environmental earth science are being prepared for areas of Alaska, Montana, North Dakota, Wyoming, Utah, Colorado, New Mexico, Arizona, Oklahoma, Kansas, and Texas. Types of studies underway include bedrock, surficial, and interpretive geology; engineering geology, geochemistry of surface materials and plants; climatic conditions as they influence rehabilitation potential of mined lands; and feasibility of surface vs. underground mining. The purpose common to all investigations in the Energy Lands Program is to provide timely earth-science information for use by managers, policy-makers, engineers, scientists, planners, and others, in order to contribute to an environmentally sound, orderly, and safe development of the energy resources of the Nation.
NASA Technical Reports Server (NTRS)
Killough, Brian D., Jr.; Sandford, Stephen P.; Cecil, L DeWayne; Stover, Shelley; Keith, Kim
2008-01-01
The Group on Earth Observations (GEO) is driving a paradigm shift in the Earth Observation community, refocusing Earth observing systems on GEO Societal Benefit Areas (SBA). Over the short history of space-based Earth observing systems most decisions have been made based on improving our scientific understanding of the Earth with the implicit assumption that this would serve society well in the long run. The space agencies responsible for developing the satellites used for global Earth observations are typically science driven. The innovation of GEO is the call for investments by space agencies to be driven by global societal needs. This paper presents the preliminary findings of an analysis focused on the observational requirements of the GEO Energy SBA. The analysis was performed by the Committee on Earth Observation Satellites (CEOS) Systems Engineering Office (SEO) which is responsible for facilitating the development of implementation plans that have the maximum potential for success while optimizing the benefit to society. The analysis utilizes a new taxonomy for organizing requirements, assesses the current gaps in spacebased measurements and missions, assesses the impact of the current and planned space-based missions, and presents a set of recommendations.
NASA Technical Reports Server (NTRS)
Freitas, R. A., Jr. (Editor); Carlson, P. A. (Editor)
1983-01-01
Adoption of an aggressive computer science research and technology program within NASA will: (1) enable new mission capabilities such as autonomous spacecraft, reliability and self-repair, and low-bandwidth intelligent Earth sensing; (2) lower manpower requirements, especially in the areas of Space Shuttle operations, by making fuller use of control center automation, technical support, and internal utilization of state-of-the-art computer techniques; (3) reduce project costs via improved software verification, software engineering, enhanced scientist/engineer productivity, and increased managerial effectiveness; and (4) significantly improve internal operations within NASA with electronic mail, managerial computer aids, an automated bureaucracy and uniform program operating plans.
Worldwide Report: Telecommunications Policy, Research and Development, No. 285.
1983-09-02
Computers and Automation Technology Earth Sciences Electronics and Electrical Engineering Engineering and Equipment Machine Tools and Metal ...the De - partment of Communications had said the project, was \\ViableL ^woüld ’ not ’require^ continuing" federal govern- ment support and would...34The second is that the satel- lite will offer genuine com- plementary services rather than seek to engage in de - structive and damaging com
CloudSat system engineering: techniques that point to a future success
NASA Technical Reports Server (NTRS)
Basilio, R. R.; Boain, R. J.; Lam, T.
2002-01-01
Over the past three years the CloutSat Project, a NASA Earth System Science Pathfinder mission to provide from space the first global survey of cloud profiles and cloud physical properties, has implemented a successful project system engineering approach. Techniques learned through heuristic reasoning of past project events and professional experience were applied along with select methods recently touted to increase effectiveness without compromising effiency.
Air Tight: Building Inflatables/Inflatable Construction: Planning and Details
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
2016-01-01
A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.
NASA Astrophysics Data System (ADS)
Lumban Gaol, Ford; Soewito, Benfano
2015-01-01
The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2014. The Editors of the AeroEarth 2014 Proceedings Dr. Ford Lumban Gaol Dr. Benfano Soewito
NASA SMD STEM Activation: Enabling NASA Science Experts and Content into the Learning Environment
NASA Astrophysics Data System (ADS)
Hasan, Hashima; Erickson, Kristen
2018-01-01
The NASA Science Mission Directorate (SMD) restructured its efforts to enhance learning in science, technology, engineering, and mathematics (STEM) content areas through a cooperative agreement notice issued in 2015. This effort resulted in the competitive selection of 27 organizations to implement a strategic approach that leverages SMD’s unique assets. Three of these are exclusively directed towards Astrophysics. These unique assets include SMD’s science and engineering content and Science Discipline Subject Matter Experts. Awardees began their work during 2016 and span all areas of Earth and space science and the audiences NASA SMD intends to reach. The goal of the restructured STEM Activation program is to further enable NASA science experts and content into the learning environment more effectively and efficiently with learners of all ages. The objectives are to enable STEM education, improve US scientific literacy, advance national educational goals, and leverage efforts through partnerships. This presentation will provide an overview of the NASA SMD STEM Activation landscape and its commitment to meeting user needs.
1997-04-22
STS085-S-001 (May 1997) --- The mission patch for STS-85 is designed to reflect the broad range of science and engineering payloads on the flight. The primary objectives of the mission are to measure chemical constituents in Earth?s atmosphere with a free-flying satellite and to flight-test a new Japanese robotic arm designed for use on the International Space Station (ISS). STS-85 is the second flight of the satellite known as CRISTA-SPAS-02. CRISTA, depicted on the right side of the patch pointing its trio of infrared telescopes at Earth?s atmosphere, stands for Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere. The high inclination orbit is shown as a yellow band over Earth?s northern latitudes. In the space shuttle Discovery?s open payload bay an enlarged version of the Japanese National Space Development Agency?s (NASDA) Manipulator Flight Demonstration (MFD) robotic arm is shown. Also shown in the payload bay are two sets of multi-science experiments: the International Extreme Ultraviolet Hitchhiker (IEH-02) nearest the tail and the Technology Applications and Science (TAS-01) payload. Jupiter and three stars are shown to represent sources of ultraviolet energy in the universe. Comet Hale-Bopp, which will be visible from Earth during the mission, is depicted at upper right. The left side of the patch symbolizes daytime operations over the Northern Hemisphere of Earth and the solar science objectives of several of the payloads. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Living on an Active Earth: Perspectives on Earthquake Science
NASA Astrophysics Data System (ADS)
Lay, Thorne
2004-02-01
The annualized long-term loss due to earthquakes in the United States is now estimated at $4.4 billion per year. A repeat of the 1923 Kanto earthquake, near Tokyo, could cause direct losses of $2-3 trillion. With such grim numbers, which are guaranteed to make you take its work seriously, the NRC Committee on the Science of Earthquakes begins its overview of the emerging multidisciplinary field of earthquake science. An up-to-date and forward-looking survey of scientific investigation of earthquake phenomena and engineering response to associated hazards is presented at a suitable level for a general educated audience. Perspectives from the fields of seismology, geodesy, neo-tectonics, paleo-seismology, rock mechanics, earthquake engineering, and computer modeling of complex dynamic systems are integrated into a balanced definition of earthquake science that has never before been adequately articulated.
Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.
NASA Astrophysics Data System (ADS)
Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.
2016-12-01
The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.
Righting the balance: Gender diversity in the geosciences
NASA Astrophysics Data System (ADS)
Bell, Robin E.; Kastens, Kim A.; Cane, Mark; Muller, Roberta B.; Mutter, John C.; Pfirman, Stephanie
The blatant barriers are down. Women are now routinely chief scientists on major cruises, lead field parties to all continents, and have risen to leadership positions in professional organizations, academic departments, and funding agencies. Nonetheless, barriers remain. Women continue to be under-represented in the Earth, ocean, and atmospheric sciences. Let's do the numbers: As of 1997, women received 41% of all Ph.D.s in science and engineering, but only 29% of the doctorates in the Earth, atmospheric, and oceanographic sciences [NSF, 1999a]. Women were 23% of employed Ph.D.s across all fields of science, but only accounted for 13% in the geosciences. Women's salaries also lag: the median salary for all Ph.D. geoscientists was $60,000; for women, the figure is $47,000 [NSF, 1999b]. The growing number of women students is a step in the right direction, but only a step.
Opportunity to Participate in ESSE 21: The 2003 Call for Participation
NASA Astrophysics Data System (ADS)
Ruzek, M.; Johnson, D. R.
2003-12-01
Earth System Science Education for the 21st Century (ESSE 21), sponsored by NASA through the Universities Space Research Association (USRA), is a collaborative undergraduate/graduate education program offering small grants to colleges and universities to engage a diverse interdisciplinary community of faculty and scientists in the development of courses, curricula and degree programs and sharing of learning resources focused on the fundamental understanding and application of Earth system principles for the classroom and laboratory. Through an expanded focus including partnerships with minority institutions, ESSE 21 is further developing broadly based courses, educational resources, electronic learning materials and degree programs that extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing the fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. The thrust to establish Earth system and global change science within the classrooms of colleges and universities is critical to laying and extending the foundation for knowledge-based decision making in the 21st century by both scientists and society in an effort to achieve sustainability. ESSE 21 released a Call for Participation (CFP) in the Fall of 2002 soliciting proposals from undergraduate institutions to create and adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. In February 2003, twelve college and university teams were competitively selected through the CFP as the Year 1 and Year 2 Program participants. Eight of the participating teams are from minority institutions. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, degree tracks or programs, and departments that are self-sustaining in the coming decades. ESSE 21 offers an expanded infrastructure for an interactive community of educators and researchers including minority participants that develops interdisciplinary Earth system science content. Emphasis is on the utilization of NASA resources involving global change data, models, visualizations and electronic media and networks. The ultimate aim of ESSE 21 is to expand and accelerate the nation's realization of sound, scientific interdisciplinary educational resources for informed learning and decision-making by all from the perspective of sustainability of the Earth as a system. The next Call for Participation will be released in late 2003.
Practical Applications of a Space Station
NASA Technical Reports Server (NTRS)
1984-01-01
The potential uses of a special station for civil and commercial applications is examined. Five panels of experts representing user-oriented communities, and a sixth panel which dealth with system design considerations, based their studies on the assumption that the station would be a large platform, capable of housing a wide array of diverse instruments, and could be either manned or unmanned. The Earth's Resources Panel dealt with applications of remote sensing for resource assessment. The Earth's Environment Panel dealt with the Earth's atmosphere and its impact on society. The Ocean Operations Panel looked at both science and applications. The Satellite Communications Panel assessed the potential role of a space station in the evolution of commercial telecommunication services up to the year 2000. The Materials Science and Engineering panel focused on the utility of a space station environment for materials processing.
The Art and Science of Systems Engineering
NASA Technical Reports Server (NTRS)
Singer, Christopher E.
2009-01-01
The National Aeronautics and Space Administration (NASA) was established in 1958, and its Marshall Space Flight Center was founded in 1960, as space-related work was transferred from the Army Ballistic Missile Agency at Redstone Arsenal, where Marshall is located. With this heritage, Marshall contributes almost 50 years of systems engineering experience with human-rated launch vehicles and scientific spacecraft to fulfill NASA's mission exploration and discovery. These complex, highly specialized systems have provided vital platforms for expanding the knowledge base about Earth, the solar system, and cosmos; developing new technologies that also benefit life on Earth; and opening new frontiers for America's strategic space goals. From Mercury and Gemini, to Apollo and the Space Shuttle, Marshall's systems engineering expertise is an unsurpassed foundational competency for NASA and the nation. Current assignments comprise managing Space Shuttle Propulsion systems; developing environmental control and life support systems and coordinating science operations on the International Space Station; and a number of exploration-related responsibilities. These include managing and performing science missions, such as the Lunar Crater Observation and Sensing Satellite and the Lunar Reconnaissance Orbiter slated to launch for the Moon in April 2009, to developing the Ares I crew launch vehicle upper stage and integrating the vehicle stack in house, as well as designing the Ares V cargo launch vehicle and contributing to the development of the Altair Lunar Lander and an International Lunar Network with communications nodes and other infrastructure.
Center Director Chris Scolese with Sobe Restaurant owners Tony a
2015-09-26
Center Director Chris Scolese with Sobe Restaurant owners Tony and Josette Simpson and Nichelle Schoultz. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.
NASA Technical Reports Server (NTRS)
1987-01-01
Three broad goals were presented by NASA as a guide to meet the challenges of the future: to advance scientific knowledge of the planet Earth, the solar system, and the universe; to expand human presence beyond the Earth into the solar system; and to strengthen aeronautics research and technology. Near-term and new-generation space transportation and propulsion systems are being analyzed that will assure the nation access to and presence in space. Other key advanced studies include large astronomical observatories, space platforms, scientific and commercial payloads, and systems to enhance operations in Earth orbit. Longer-range studies include systems that would allow humans to explore the Moon and Mars during the next century. Research programs, both to support the many space missions studied or managed by the Center and to advance scientific knowledge in selected areas, involve work in the areas of atmospheric science, earth science, space science (including astrophysics and solar, magnetospheric, and atomic physics), and low-gravity science. Programs and experiment design for flights on the Space Station, free-flying satellites, and the Space Shuttle are being planned. To maintain a leadership position in technology, continued advances in liquid and solid propellant engines, materials and processes; electronic, structural, and thermal investigations; and environmental control are required. Progress during the fiscal year 1987 is discussed.
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, left, and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Exploratory Research and Development Fund, FY 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmond, B.
2002-05-20
Sixty-four scientists from universities, national laboratories, and other research institutions worldwide met to evaluate the feasibility and potential of the Biosphere2 Laboratory (B2L) as an inclusive multi-user scientific facility (i.e., a facility open to researchers from all institutions, according to agreed principles of access) for earth system studies and engineering research, education, and training relevant to the mission of the United States Department of Energy (DOE).
2003-07-11
The space vehicle for Gravity Probe B (GP-B) arrives at the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
NASA Astrophysics Data System (ADS)
Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.
2014-12-01
Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide more resources useful for educators seeking to introduce NGSS-based programs in their districts. The E2C model can be applied in other settings, with appropriate modifications.
NASA Astrophysics Data System (ADS)
Moore, R. T.; Hansen, M. C.
2011-12-01
Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.
Laboratory Directed Research and Development FY2010 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, K J
2011-03-22
A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader nationalmore » needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.« less
NASA Astrophysics Data System (ADS)
Gaol, F. L.
2016-02-01
The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants come from 8 countries. There are 4 (four) Parallel Sessions and 3 (Three) Keynote Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2015.
2014-08-05
ISS040-E-088798 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088800 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
2014-08-05
ISS040-E-088801 (5 Aug. 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, removes hardware for the combustion experiment known as the Burning and Suppression of Solids (BASS-II) from the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft. NASA astronaut Reid Wiseman, flight engineer, looks on.
Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Lynnes, C.
2009-05-01
A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues' expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable "software appliance" to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish "talkoot" (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a "science story" in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using "service casts" and "interest casts" (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH's Mining Workflow Composer and the open-source Active BPEL engine, and JPL's SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the "sociological" problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).
NASA Astrophysics Data System (ADS)
Stavros, E. N.; Owen, S. E.
2016-12-01
Information products are assimilated and used to: a) conduct scientific research and b) provide decision support for management and policy. For example, aboveground biomass (i.e. an information product) can be integrated into Earth system models to test hypotheses about the changing world, or used to inform decision-making with respect to natural resource management and policy. Production and dissemination of an information product is referred to as the data product life cycle, which includes: 1) identifying needed information from decision-makers and researchers, 2) engineering an instrument and collecting the raw physical measurements (e.g, number of photons returned), 3) the scientific algorithm(s) for processing the data into an observable (e.g., number of dying trees), and 4) the integration and utilization of that observables by researchers and decision-makers. In this talk, I will discuss the data product life cycle in detail and provide examples from the pre-Hyperspectral Infrared Imager (HyspIRI) airborne campaign and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission. Examples will focus on information products related to terrestrial ecosystems and natural resource management and will demonstrate that the key to providing information products for advancing scientific understanding and informing decision-makers, is the interdisciplinary integration of science, engineering and applied science - noting that applied science defines the wider impact and adoption of scientific principles by a wider community. As pre-HyspIRI airborne data is for research and development and NISAR is not yet launched, examples will include current plans for developing exemplar data products (from pre-HyspIRI) and the mission Applications Plan (for NISAR). Copyright 2016 California Institute of Technology. All Rights Reserved. We acknowledge support of the US Government, NASA, the Earth Science Division and Terrestrial Ecology program.
NASA Astrophysics Data System (ADS)
LaConte, K.; Shipp, S.; Shupla, C.; Shaner, A.; Buxner, S.; Canipe, M.; Jaksha, A.
2015-11-01
Libraries are evolving to serve the changing needs of their communities—and many now encompass science, technology, engineering, and mathematics (STEM) programming. For 15 years, the Lunar and Planetary Institute (LPI) has partnered with library staff to create over 100 hands-on Earth and space science and engineering activities. In-person and online librarian training has prepared a vibrant network of over 1000 informal educators. Program evaluation has shown that Explore! training increases participants' knowledge, and that participants actively use Explore! materials and feel more prepared to offer science and engineering experiences and more comfortable using related resources. Through training, participants become more committed to providing and advocating for science and engineering programming. Explore! serves as a model for effective product development and training practices for serving library staff, increasingly our partners in the advancement of STEM education. Specific approaches and tools that contributed to the success of Explore! are outlined here for adoption by community STEM experts—including professionals and hobbyists in STEM fields and STEM educators who are seeking to share their passion and experience with others through partnerships with libraries.
Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matter, J.; Chandran, K.
2013-05-31
Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologicmore » formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at the end of the report for reference.« less
NASA Technical Reports Server (NTRS)
1994-01-01
CESDIS, the Center of Excellence in Space Data and Information Sciences was developed jointly by NASA, Universities Space Research Association (USRA), and the University of Maryland in 1988 to focus on the design of advanced computing techniques and data systems to support NASA Earth and space science research programs. CESDIS is operated by USRA under contract to NASA. The Director, Associate Director, Staff Scientists, and administrative staff are located on-site at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The primary CESDIS mission is to increase the connection between computer science and engineering research programs at colleges and universities and NASA groups working with computer applications in Earth and space science. The 1993-94 CESDIS year included a broad range of computer science research applied to NASA problems. This report provides an overview of these research projects and programs as well as a summary of the various other activities of CESDIS in support of NASA and the university research community, We have had an exciting and challenging year.
NASA Technical Reports Server (NTRS)
Morris,Bruce; Sullivan, Greg; Burkey, Martin
2010-01-01
It's a cliche that rocket engineers and space scientists don t see eye-to-eye. That goes double for rocket engineers working on human spaceflight and scientists working on space telescopes and planetary probes. They work fundamentally different problems but often feel that they are competing for the same pot of money. Put the two groups together for a weekend, and the results could be unscientific or perhaps combustible. Fortunately, that wasn't the case when NASA put heavy lift launch vehicle designers together with astronomers and planetary scientists for two weekend workshops in 2008. The goal was to bring the top people from both groups together to see how the mass and volume capabilities of NASA's Ares V heavy lift launch vehicle could benefit the science community. Ares V is part of NASA's Constellation Program for resuming human exploration beyond low Earth orbit, starting with missions to the Moon. In the current mission scenario, Ares V launches a lunar lander into Earth orbit. A smaller Ares I rocket launches the Orion crew vehicle with up to four astronauts. Orion docks with the lander, attached to the Ares V Earth departure stage. The stage fires its engine to send the mated spacecraft to the Moon. Standing 360 feet high and weighing 7.4 million pounds, NASA's new heavy lifter will be bigger than the 1960s-era Saturn V. It can launch almost 60 percent more payload to translunar insertion together with the Ares I and 35 percent more mass to low Earth orbit than the Saturn V. This super-sized capability is, in short, designed to send more people to more places to do more things than the six Apollo missions.
Teaching Environmental Entrepreneurship at an Urban University: Greenproofing
ERIC Educational Resources Information Center
Foster, Kevin; Jelen, Jonathan; Scott, Anasa
2010-01-01
The authors provide a case study of their own experience teaching Environmental Entrepreneurship. For the past six years, they have been teaching about sustainability through social entrepreneurship in an interdisciplinary partnership with faculty in management, engineering, and earth science. The authors have developed a course in Environmental…
Philips with stowage bags in MPLM
2005-07-30
ISS011-E-11331 (30 July 2005) --- Astronaut John L. Phillips, Expedition 11 NASA space station science officer and flight engineer, retrieves supplies from the Raffaello Multi-Purpose Logistics Module (MPLM), which was brought to Earth-orbit by the seven-member STS-114 crew of the space shuttle Discovery.
A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.
Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari
2018-06-08
A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.
Digital Earth reloaded - Beyond the next generation
NASA Astrophysics Data System (ADS)
Ehlers, M.; Woodgate, P.; Annoni, A.; Schade, S.
2014-02-01
Digital replicas (or 'mirror worlds') of complex entities and systems are now routine in many fields such as aerospace engineering; archaeology; medicine; or even fashion design. The Digital Earth (DE) concept as a digital replica of the entire planet occurs in Al Gore's 1992 book Earth in the Balance and was popularized in his speech at the California Science Center in January 1998. It played a pivotal role in stimulating the development of a first generation of virtual globes, typified by Google Earth that achieved many elements of this vision. Almost 15 years after Al Gore's speech, the concept of DE needs to be re-evaluated in the light of the many scientific and technical developments in the fields of information technology, data infrastructures, citizen?s participation, and earth observation that have taken place since. This paper intends to look beyond the next generation predominantly based on the developments of fields outside the spatial sciences, where concepts, software, and hardware with strong relationships to DE are being developed without referring to this term. It also presents a number of guiding criteria for future DE developments.
Using Recreational Drones to Promote STEM Learning
NASA Astrophysics Data System (ADS)
Olds, S. E.; Dahlman, L. E.; Mooney, M. E.; Russell, R. M.
2017-12-01
The popularity of unmanned aerial vehicles (UAVs or drones) as a fun, inexpensive (<$100), and easy to fly "toy" continues to grow yearly. Flying drones can also serve as a great entry point to stimulate curiosity and encourage students to engage in science, technology, engineering, and math (STEM) investigations. Leveraging the popularity of recreational drones, the Education Committee at the Earth System Information Partners (ESIP) has worked with educators, researchers, and data scientists to develop a Drones for STEM initiative to inspire learners to use drones as a platform to collect and analyze local-scale data using lightweight cameras and/or sensors. In 2016, the initiative developed learning activity outlines and piloted the materials at an ESIP-sponsored teacher workshop and National Science Teacher Association sessions. After incorporating feedback from those sessions, ESIP collaborated with the UCAR Center for Science Education to publish finalized activities. Available on the UCAR SciEd website (SciEd.ucar.edu/engineering-activities), the activities encompass skills to measure drone payload, flight height, and velocity. Investigations also encourage the use of repeat photography, comparing images from drones and satellites, and creating 3D structure from motion (SfM) models from overlapping photographs. The site also offers general guidance to develop science projects or science fair investigations using Next Generation Science Standards science and engineering practices. To encourage the use of drones in STEM, UNAVCO and NOAA staff, sponsored by ESIP, led two hands-on workshops this summer; a three half-day workshop at the Earth Educator Rendezvous (EER) and a half-day session during the ESIP Educator Workshop. Participants practiced UAV flying skills, experimented with lightweight sensors, and learned about current drone-enhanced research projects. In small groups, they tested existing activities and designed student-focused investigations. Examples of projects include measuring aeromagnetics, developing 3D topographic models, creating vertical profiles over various land-surfaces at different temporal intervals, and developing a multi-semester drone-focused curriculum. This presentation will elaborate upon the workshops, learning materials, and insights.
2000-04-12
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Exploring Earth Systems Through STEM
NASA Astrophysics Data System (ADS)
Chen, Loris; Salmon, Jennifer; Burns, Courtney
2015-04-01
During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.
NASA Astrophysics Data System (ADS)
Ajhar, Edward A.; Blackwell, E.; Quesada, D.
2010-05-01
In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)
NASA Astrophysics Data System (ADS)
Alcott, G.; Kempler, S.; Lynnes, C.; Leptoukh, G.; Vollmer, B.; Berrick, S.
2008-12-01
NASA Earth Sciences Division (ESD), and its preceding Earth science organizations, has made great investments in the development and maintenance of data management systems, as well as information technologies, for the purpose of maximizing the use and usefulness of NASA generated Earth science data. Earth science information systems, evolving with the maturation and implementation of advancing technologies, reside at NASA data centers, known as Distributed Active Archive Centers (DAACs). With information management system infrastructure in place, and system data and user services already developed and operational, only very small delta costs are required to fully support data archival, processing, and data support services required by the recommended Decadal Study missions. This presentation describes the services and capabilities of the Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) (one of NASAs DAACs) and their potential reuse for these future missions. After 14 years working with instrument teams and the broader science community, GES DISC personnel expertise in atmospheric, water cycle, and atmospheric modeling data and information services, as well as Earth science missions, information system engineering, operations, and user services have developed a series of modular, reusable data management components currently is use in several projects. The knowledge and experience gained at the GES DISC lend themselves to providing science driven information systems in the areas of aerosols, clouds, and atmospheric chemicals to be measured by recommended Decadal Survey missions. Available reusable capabilities include data archive and distribution (Simple, Scalable, Script-based, Science [S4] Product Archive aka S4PA), data processing (S4 Processor for Measurements aka S4PM), data search (Mirador), data browse, visualization, and analysis (Giovanni), and data mining services. In addition, recent enhancements, such as Open Geospatial Consortium (OGC), Inc. interoperability implementations and data fusion prototypes, will be described. As a result of the information management systems developed by NASAs GES DISC, not only are large cost savings realized through system reuse, but maintenance costs are also minimized due to the simplicity of their implementations.
The International Space Station: A National Laboratory
NASA Technical Reports Server (NTRS)
Giblin, Timothy W.
2012-01-01
After more than a decade of assembly missions and the end of the space shuttle program, the International Space Station (ISS) has reached assembly completion. With other visiting spacecraft now docking with the ISS on a regular basis, the orbiting outpost now serves as a National Laboratory to scientists back on Earth. The ISS has the ability to strengthen relationships between NASA, other Federal entities, higher educational institutions, and the private sector in the pursuit of national priorities for the advancement of science, technology, engineering, and mathematics. The ISS National Laboratory also opens new paths for the exploration and economic development of space. In this presentation we will explore the operation of the ISS and the realm of scientific research onboard that includes: (1) Human Research, (2) Biology & Biotechnology, (3) Physical & Material Sciences, (4) Technology, and (5) Earth & Space Science.
NASA Astrophysics Data System (ADS)
Pyle, E. J.
2013-12-01
The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims of match must be supported not just by disciplinary core ideas, but also by SEPs and CCCs. Such a structured approach to Earth science instruction also requires specialized approaches to teacher preparation and professional development. Many teachers of Earth science are underprepared, and an examination of how Earth science teachers are prepared and supported to use to new curricular materials is also warranted. This presentation will (a) compare the structure of the NGSS and NSES for Earth & Space Science, (b) discuss the review of the NGSS drafts with respect to the intent of the Curriculum Framework, (c) provide definition to the particular challenges to instruction offered by the NGSS beyond prior instructional experience, and (d) define and reinforce concepts of what it means for curricula, instructional materials, and teacher preparation and professional development to be considered 'aligned' with the NGSS.
The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit
NASA Technical Reports Server (NTRS)
Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.
2007-01-01
The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.
2003-06-01
NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.
Laboratory directed research and development annual report 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less
Board on Earth Sciences and Resources and Its Activities -- Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony R. de Souza, Ph.D. Director, Board on Earth Sciences and Resources
2003-09-26
The Board on Earth Sciences and Resources (BESR) provided oversight of the earth sciences and resources activities with the National Research Council (NRC). The Board reviewed research and public activities in the earth sciences; undertook analyses relevant to the discovery, supply, delivery, waste disposal and associated impacts and issues related to hydrocarbon, metallic, and nonmetallic mineral resources; and monitored the status of the earth sciences, assessed the health of the disciplines, identified research opportunities, and responded to specific agency requests for advice. These tasks were conducted by distinguished volunteers and NRC staff members that are representative of the breadth andmore » depth of the earth sciences and resources disciplines (e.g., ecology, geophysics, geochemistry, geobiology, hydrology, geography, geographic information science, materials science, mineral resources and mining, energy resources, paleontology, visualization, remote sensing, geophysical data and information). Each year the Board held two meetings. Most recently at the May 2003 Board meeting, the main topic of discussion was Coordination of Geospatial Data in the Era of the Department of Homeland Security. Speakers were Steven Cooper, DHS; Barry Napier, FEMA; Bill Shinar, VGIN; Barbara Ryan, USGS; and Hank Garie, DOI. Other topics were Circum-Pacific Council for Energy and Mineral Resources and New Opportunities in the Geology Discipline (Pat Leahy, USGS); Challenges to Understanding Biological Change in a Fluid Landscape (Sue Haseltine, USGS); and GIS and Remote Sensing at the USDA (Rodney Brown, USDA). The Board and the AGI also held a Leadership Forum. At the October 2003 Board meeting in Irvine, California, the Board plans to discuss earth resource issues, develop a white paper on the future directions of the Board, and review two of its standing committees--Committee on Seismology and Geodynamics, and the Committee on Geological and Geotechnical Engineering. The Board will also review the status of studies under way (e.g., Research Priorities--Earth Science and Medicine) and the status of studies under development (e.g., Understanding and Confronting Terrorism). As a result of the continuous strategic planning process, the Board and its standing committees have become more active as exemplified by the increasing number of ad hoc study committees and reports published during the last few years. The Board collaborated throughout the reporting period with several NRC units (e.g., National Materials Advisory Board, Ocean Studies Board, Board on Agriculture and Natural Resources, Board on Atmospheric Sciences and Climate, and the Committee on the Human Dimensions of Global Change). The Board provided oversight of the earth sciences and resources activities at the NRC. In particular, it provided oversight of its ad hoc and continuing activities. Under NRC guidelines, the Board holds its committees' study findings confidential until reports are published.« less
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
Lessons Learned from a Collaborative Sensor Web Prototype
NASA Technical Reports Server (NTRS)
Ames, Troy; Case, Lynne; Krahe, Chris; Hess, Melissa; Hennessy, Joseph F. (Technical Monitor)
2002-01-01
This paper describes the Sensor Web Application Prototype (SWAP) system that was developed for the Earth Science Technology Office (ESTO). The SWAP is aimed at providing an initial engineering proof-of-concept prototype highlighting sensor collaboration, dynamic cause-effect relationship between sensors, dynamic reconfiguration, and remote monitoring of sensor webs.
E55_Inflight_JAXA_Tenku_2018_0426_1159_645182
2018-04-26
SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS-----Aboard the International Space Station, Expedition 55 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital outpost during an in-flight event April 26 with students gathered in Tokyo at an engineering and science exposition. Kanai arrived on the station for a six-month mission last December and is scheduled to return to Earth on June 3.
Automating U-Pb IDTIMS data reduction and reporting: Cyberinfrastructure meets geochronology
NASA Astrophysics Data System (ADS)
Bowring, J. F.; McLean, N.; Walker, J. D.; Ash, J. M.
2009-12-01
We demonstrate the efficacy of an interdisciplinary effort between software engineers and geochemists to produce working cyberinfrastructure for geochronology. This collaboration between CIRDLES, EARTHTIME and EarthChem has produced the software programs Tripoli and U-Pb_Redux as the cyber-backbone for the ID-TIMS community. This initiative incorporates shared isotopic tracers, data-reduction algorithms and the archiving and retrieval of data and results. The resulting system facilitates detailed inter-laboratory comparison and a new generation of cooperative science. The resolving power of geochronological data in the earth sciences is dependent on the precision and accuracy of many isotopic measurements and corrections. Recent advances in U-Pb geochronology have reinvigorated its application to problems such as precise timescale calibration, processes of crustal evolution, and early solar system dynamics. This project provides a heretofore missing common data reduction protocol, thus promoting the interpretation of precise geochronology and enabling inter-laboratory comparison. U-Pb_Redux is an open-source software program that provides end-to-end support for the analysis of uranium-lead geochronological data. The system reduces raw mass spectrometer data to U-Pb dates, allows users to interpret ages from these data, and then provides for the seamless federation of the results, coming from many labs, into a community web-accessible database using standard and open techniques. This EarthChem GeoChron database depends also on keyed references to the SESAR sample database. U-Pb_Redux currently provides interactive concordia and weighted mean plots and uncertainty contribution visualizations; it produces publication-quality concordia and weighted mean plots and customizable data tables. This initiative has achieved the goal of standardizing the data elements of a complete reduction and analysis of uranium-lead data, which are expressed using extensible markup language schema definition (XSD) artifacts. U-Pb_Redux leverages the freeware program Tripoli, which imports raw mass spectrometer data files and supports interactive review and archiving of isotopic data. Tripoli facilitates the visualization of temporal trends and scatter during measurement, statistically rigorous filtering of data and supports oxide and fractionation corrections. The Cyber Infrastructure Research and Development Lab for the Earth Sciences (CIRDLES) collaboratively integrates domain-specific software engineering with the efforts EARTHTIME and Earthchem. The EARTHTIME initiative pursues consensus-based approaches to geochemical data reduction, and the EarthChem initiative pursues the creation of data repositories for all geochemical data. CIRDLES develops software and systems for geochronology. This collaboration benefits the earth sciences by enabling geochemists to focus on their specialties using robust software that produces reliable results. This collaboration benefits software engineering by providing research opportunities to improve process methodologies used in the design and implementation of domain-specific solutions.
Advance the Earth Science Education in China by Using New Technology
NASA Astrophysics Data System (ADS)
Qian, R.; Wang, X.; Sun, L.
2013-12-01
With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the students are not able to receive sufficient guide from the educators. All these reforms above have been proved with good achievements.
From Dr. Steven Ashby, Director of PNNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashby, Steven
Powered by the creativity and imagination of more than 4,000 exceptional scientists, engineers and support professionals, at PNNL we advance the frontiers of science and address some of the most challenging problems in energy, the environment and national security. As DOE’s premier chemistry, environmental sciences and data analytics laboratory, we provide national leadership in four areas: deepening our understanding of climate science; inventing the future power grid; preventing nuclear proliferation; and speeding environmental remediation. Other areas where we make important contributions include energy storage, microbial biology and cyber security. PNNL also is home to EMSL (the Environmental Molecular Sciences Laboratory),more » one of DOE’s scientific user facilities. We apply these science strengths to address both national and international problems in complex adaptive systems that are too difficult for one institution to tackle alone. Take earth systems, for instance. The earth is a complex adaptive system because it involves everything from climate and microbial communities in the soil to emissions from cars and coal-powered industrial plants. All of these factors and others ultimately influence not only our environment and overall quality of life, but cause the earth to adapt in ways that must be further addressed. PNNL researchers are playing a vital role in finding solutions across every area of this complex adaptive system.« less
Scientific Visualization & Modeling for Earth Systems Science Education
NASA Technical Reports Server (NTRS)
Chaudhury, S. Raj; Rodriguez, Waldo J.
2003-01-01
Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).
NASA Astrophysics Data System (ADS)
Grefenstette, Brian
2017-08-01
Small satellites (<50 kg) have revolutionized the possibilities for inexpensive science from space-borne platforms. A number of scientific CubeSats have been recently launched or are under development, including some bound for interplanetary space. Recent miniaturization of technology for high-precision pointing, high efficiency solar power, high-powered on-board processing, and scientific detectors provide the capability for groundbreaking, focused science from these resource-limited spacecraft. Similar innovations in both radio frequency and optical/laser communications are poised to increase telemetry bandwidth to a gigabit per second (Gb/s) or more. This enhancement can allow real-time, global science measurements and/or ultra-high fidelity (resolution, cadence, etc.) observations from tens or hundreds of Earth-orbiting satellites, or permit high-bandwidth, direct-to-earth communications for (inter)planetary missions. Here we present the results of a recent Keck Institue for Space Science workshop that brought together scientists and engineers from academia and industry to showcase the breakthrough science enabled by optical communications on small satellites for future missions.
Opportunity Science Using the Juno Magnetometer Investigation Star Trackers
NASA Astrophysics Data System (ADS)
Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.
2013-12-01
The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.
Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-05-01
The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, foreground, Expedition 10 Commander, Russian Space Forces cosmonaut Yuri Shargin and NASA Science Officer Leroy Chiao, background, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Security controls access to the Soyuz capsule and test stand area, Friday, Oct. 5, 2004, at the Baikonur Cosmodrome. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao, giving thumbs up, Russian Space Forces cosmonaut Yuri Shargin and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov, right, Expedition 10 Commander and NASA Science Officer Leroy Chiao, Russian Space Forces cosmonaut Yuri Shargin, left, donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
Earth-to-Orbit Education Program 'Makes Science Cool'
NASA Technical Reports Server (NTRS)
2002-01-01
In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'
Earth-to-Orbit Education Program 'Makes Science Cool'
NASA Technical Reports Server (NTRS)
2002-01-01
In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'
Eliciting and characterizing students' mental models within the context of engineering design
NASA Astrophysics Data System (ADS)
Dankenbring, Chelsey
Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.
Minority Universities Systems Engineering (MUSE) Program at the University of Texas at El Paso
NASA Technical Reports Server (NTRS)
Robbins, Mary Clare; Usevitch, Bryan; Starks, Scott A.
1997-01-01
In 1995, The University of Texas at El Paso (UTEP) responded to the suggestion of NASA Jet Propulsion Laboratory (NASA JPL) to form a consortium comprised of California State University at Los Angeles (CSULA), North Carolina Agricultural and Technical University (NCAT), and UTEP from which developed the Minority Universities Systems Engineering (MUSE) Program. The mission of this consortium is to develop a unique position for minority universities in providing the nation's future system architects and engineers as well as enhance JPL's system design capability. The goals of this collaboration include the development of a system engineering curriculum which includes hands-on project engineering and design experiences. UTEP is in a unique position to take full advantage of this program since UTEP has been named a Model Institution for Excellence (MIE) by the National Science Foundation. The purpose of MIE is to produce leaders in Science, Math, and Engineering. Furthermore, UTEP has also been selected as the site for two new centers including the Pan American Center for Earth and Environmental Sciences (PACES) directed by Dr. Scott Starks and the FAST Center for Structural Integrity of Aerospace Systems directed by Dr. Roberto Osegueda. The UTEP MUSE Program operates under the auspices of the PACES Center.
NASA Astrophysics Data System (ADS)
Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.
2014-12-01
Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this presentation will detail the intensive review process educators utilized to determine the viability of the resources included in the blueprints. A short summary of first-year implementation results will be shared, along with the second year now in progress.
NASA Astrophysics Data System (ADS)
Li, X.; Palo, S. E.; Kohnert, R.; Gerhardt, D.; Blum, L. W.; Schiller, Q.; Turner, D. L.; Tu, W.
2012-12-01
The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, scheduled for launch into a low-Earth, polar orbit after August 14th, 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles (SEP) reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics (LASP). The REPT instrument will fly onboard the NASA/Radiation Belt Storm Probes (RBSP) mission, which consists of two identical spacecraft scheduled to launch after August 23rd, 2012 that will go through the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3 MeV. Such differential flux measurements have significant science value, and a number of engineering challenges were overcome to enable these clean measurements to be made under the mass and power limits of a CubeSat. The CSSWE is an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project. We will report the first results from this exciting mission.
NASA Astrophysics Data System (ADS)
Li, Xinlin
2013-04-01
The Colorado Student Space Weather Experiment (CSSWE) is a 3-unit (10cm x 10cm x 30cm) CubeSat mission funded by the National Science Foundation, launched into a low-Earth, polar orbit on 13 September 2012 as a secondary payload under NASA's Educational Launch of Nanosatellites (ELaNa) program. The science objectives of CSSWE are to investigate the relationship of the location, magnitude, and frequency of solar flares to the timing, duration, and energy spectrum of solar energetic particles reaching Earth, and to determine the precipitation loss and the evolution of the energy spectrum of trapped radiation belt electrons. CSSWE contains a single science payload, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), which is a miniaturization of the Relativistic Electron and Proton Telescope (REPT) built at the Laboratory for Atmospheric and Space Physics for NASA/Van Allen Probes mission, which consists of two identical spacecraft, launched 30 August 2012, that traverse the heart of the radiation belts in a low inclination orbit. CSSWE's REPTile is designed to measure the directional differential flux of protons ranging from 10 to 40 MeV and electrons from 0.5 to >3.3 MeV. The commissioning phase was completed and REPTile was activated on 4 October 2012. The data are very clean, far exceeding expectations! A number of engineering challenges had to be overcome to achieve such clean measurements under the mass and power limits of a CubeSat. The CSSWE is also an ideal class project, providing training for the next generation of engineers and scientists over the full life-cycle of a satellite project.
NASA Astrophysics Data System (ADS)
Richard, G. A.
2003-12-01
Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with Stony Brook's Department of Technology and Society. During the academic year, a college-level Earth science course is offered to tenth graders from Sayville, New York. In both programs, students conduct research projects as one of their primary responsibilities. In collaboration with the Museum of Long Island Natural Sciences on the Stony Brook campus, two programs have been developed that enable visiting K-12 school classes to investigate earthquakes and phenomena that operate in the Earth's deep interior. From 1997 to 1999, the weekly activity-based Science Enrichment for the Early Years (SEEY) program, focusing on common Earth materials and fundamental Earth processes, was conducted at a local pre-K school. Since 2002, ESERC has worked with the Digital Library for Earth System Education (DLESE) to organize the Skills Workshops for their Annual Meeting and with EarthScope for the development of their Education and Outreach Program Plan. Future education programs and tools developed through COMPRES partnerships will place an increased emphasis on deep Earth materials and phenomena.
Engineering models for catastrophe risk and their application to insurance
NASA Astrophysics Data System (ADS)
Dong, Weimin
2002-06-01
Internationally earthquake insurance, like all other insurance (fire, auto), adopted actuarial approach in the past, which is, based on historical loss experience to determine insurance rate. Due to the fact that earthquake is a rare event with severe consequence, irrational determination of premium rate and lack of understanding scale of potential loss led to many insurance companies insolvent after Northridge earthquake in 1994. Along with recent advances in earth science, computer science and engineering, computerized loss estimation methodologies based on first principles have been developed to the point that losses from destructive earthquakes can be quantified with reasonable accuracy using scientific modeling techniques. This paper intends to introduce how engineering models can assist to quantify earthquake risk and how insurance industry can use this information to manage their risk in the United States and abroad.
Expanded Benefits for Humanity from the International Space Station
NASA Technical Reports Server (NTRS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-01-01
In 2012, the International Space Station (ISS) partnership published the updated International Space Station Benefits for Humanity, 2nd edition, a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, Innovative Technology, merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continues to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
Expanded benefits for humanity from the International Space Station
NASA Astrophysics Data System (ADS)
Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore
2016-09-01
In 2012, the International Space Station (ISS) (Fig. 1) partnership published the updated International Space Station Benefits for Humanity[1], a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, "Innovative Technology," merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are examples of materials improvements that are being developed using data from ISS. The publication also expands the benefits of research results in human health, environmental change and disaster response and in education activities developed to capture student imaginations in support of science, technology, engineering and mathematics, or STEM, education internationally. Applications to human health of the knowledge gained on ISS continue to grow and improve healthcare technologies and our understanding of human physiology. Distinct benefits return to Earth from the only orbiting multi-disciplinary laboratory of its kind. The ISS is a stepping stone for future space exploration by providing findings that develop LEO and improve life on our planet.
Underrepresentation of women in the senior levels of Brazilian science.
Valentova, Jaroslava V; Otta, Emma; Silva, Maria Luisa; McElligott, Alan G
2017-01-01
Despite significant progress, there is still a gender gap in science all over the world, especially at senior levels. Some progressive countries are recognizing the need to address barriers to gender equality in order to retain their best scientists and innovators, and ensure research excellence and social and economic returns on the investment made by taxpayers each year on training women scientists. We investigated the gender distribution of: (i) the productivity scholarship (PS) holders of the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, N = 13,625), (ii) the members of the Brazilian Academy of Science (Academia Brasileira de Ciências, ABC, N = 899), and (iii) the amount of funding awarded for top quality research ("Universal" Call of CNPq, N = 3,836), between the years of 2013 and 2014. Our findings show evidence for gender imbalances in all the studied indicators of Brazilian science. We found that female scientists were more often represented among PS holders at the lower levels of the research ranking system (2). By contrast, male scientists were more often found at higher levels (1A and 1B) of PS holders, indicating the top scientific achievement, both in "Engineering, Exact Sciences, Earth Sciences", and "Life Sciences". This imbalance was not found in Humanities and Social Sciences. Only 14% of the ABC members were women. Humanities and Applied Social Sciences had a relatively low representation of women in the Academy (3.7%) compared to Engineering, Exact and Earth Sciences: 54.9% and Life Sciences: 41.4%. Finally, female scientists obtained significantly more funding at the lower level of the research ranking system (2), whereas male scientists obtained significantly more funding at the higher levels (1A and 1B). Our results show strong evidence of a gender imbalance in Brazilian science. We hope that our findings will be used to stimulate reforms that will result in greater equality in Brazilian science, and elsewhere.
Mentoring, Women in Engineering and Related Sciences, and MentorNet
NASA Astrophysics Data System (ADS)
Dockter, J.; Muller, C.
2003-12-01
Mentoring is a frequently employed strategy for retention of women in engineering and science. The power of mentoring is sometimes poorly understood, and mentoring is not always effectively practiced, however. At its strongest, mentoring is understood as a powerful learning process, which assures the intergenerational transfer of knowledge and "know-how" on an ongoing basis throughout one's life. Mentoring helps make explicit the tacit knowledge of a discipline and its professional culture, which is especially important for underrepresented groups. MentorNet (www.MentorNet.net), the E-Mentoring Network for Women in Engineering and Science, is a nonprofit organization focused on furthering women's progress in scientific and technical fields through the use of a dynamic, technology-supported mentoring program. Since 1998, nearly 10,000 undergraduate and graduate women studying engineering and related sciences at more than 100 colleges and universities across the U.S., and in several other nations, have been matched in structured, one-on-one, email-based mentoring relationships with male and female scientific and technical professionals working in industry and government. This poster will describe the MentorNet program, and provide findings of annual program evaluations related to outcomes for participants with particular focus on women in the planetary and earth sciences. We also address the development of the partnership of approximately 100 organizations currently involved in MentorNet and the value each gains from its affiliation. MentorNet is an ongoing effort which supports the interests of all organizations and individuals working to advance women in engineering and related sciences.
Geopotential research mission, science, engineering and program summary
NASA Technical Reports Server (NTRS)
Keating, T. (Editor); Taylor, P. (Editor); Kahn, W. (Editor); Lerch, F. (Editor)
1986-01-01
This report is based upon the accumulated scientific and engineering studies pertaining to the Geopotential Research Mission (GRM). The scientific need and justification for the measurement of the Earth's gravity and magnetic fields are discussed. Emphasis is placed upon the studies and conclusions of scientific organizations and NASA advisory groups. The engineering design and investigations performed over the last 4 years are described, and a spacecraft design capable of fulfilling all scientific objectives is presented. In addition, critical features of the scientific requirements and state-of-the-art limitations of spacecraft design, mission flight performance, and data processing are discussed.
Exploration Medical Capability System Engineering Introduction and Vision
NASA Technical Reports Server (NTRS)
Mindock, J.; Reilly, J.
2017-01-01
Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.
NASA Technical Reports Server (NTRS)
Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.
2015-01-01
NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.
NASA Technical Reports Server (NTRS)
Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.
2013-01-01
Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.
An overview of Korean astronaut’s space experiments
NASA Astrophysics Data System (ADS)
Lee, J. H.; Kim, Y. K.; Yi, S. Y.; Kim, K. S.; Kang, S. W.; Choi, G. H.; Sim, E. S.
2010-10-01
The paper presents an overview of the scientific space experiments in the Korean Astronaut Program (KAP) that were conducted on the International Space Station (ISS), beginning with launch of the Soyuz TMA-12 spacecraft with the first Korean astronaut and two Russian astronauts on April 8, 2008 and returning to Earth on April 19, 2008. During the 10 days aboard the ISS, the Korean astronaut successfully completed thirteen scientific experiments in biology, life science, material science, earth science, and system engineering, five educational space experiments, and three kinds of international collaboration experiments. These experiments were the first Korean manned space experiments and these missions were the first steps toward the manned space exploration by Korea. In this paper, we briefly discuss the descriptions, conduct, and results of the space experiments and discuss future plans. In addition, the lessons learned with respect to the performing of these manned space experiments on the ISS are presented.
User needs as a basis for advanced technology. [U.S. civil space program
NASA Technical Reports Server (NTRS)
Mankins, John C.; Reck, Gregory M.
1992-01-01
The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.
AGU scientists meet with legislators during Geosciences Congressional Visits Day
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2011-10-01
This year marks the fourth annual Geosciences Congressional Visits Day (Geo-CVD), in which scientists from across the nation join together in Washington, D. C., to meet with their legislators to discuss the importance of funding for Earth and space sciences. AGU partnered with seven other Earth and space science organizations to bring more than 50 scientists, representing 23 states, for 2 days of training and congressional visits on 20-21 September 2011. As budget negotiations envelop Congress, which must find ways to agree on fiscal year (FY) 2012 budgets and reduce the deficit by $1.5 trillion over the next 10 years, Geo-CVD scientists seized the occasion to emphasize the importance of federally funded scientific research as well as science, technology, engineering, and math (STEM) education. Cuts to basic research and STEM education could adversely affect innovation, stifle future economic growth and competitiveness, and jeopardize national security.
Earth Science Education in Sudan
NASA Astrophysics Data System (ADS)
Abdullatif, Osman M.; Farwa, Abdalla G.
1999-05-01
This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.
Earth Science Mining Web Services
NASA Astrophysics Data System (ADS)
Pham, L. B.; Lynnes, C. S.; Hegde, M.; Graves, S.; Ramachandran, R.; Maskey, M.; Keiser, K.
2008-12-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at the GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADaM components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestrates the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to this infusion is the loosely coupled, Web- Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory
NASA Astrophysics Data System (ADS)
Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip
2016-01-01
From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.
Earth Science Mining Web Services
NASA Technical Reports Server (NTRS)
Pham, Long; Lynnes, Christopher; Hegde, Mahabaleshwa; Graves, Sara; Ramachandran, Rahul; Maskey, Manil; Keiser, Ken
2008-01-01
To allow scientists further capabilities in the area of data mining and web services, the Goddard Earth Sciences Data and Information Services Center (GES DISC) and researchers at the University of Alabama in Huntsville (UAH) have developed a system to mine data at the source without the need of network transfers. The system has been constructed by linking together several pre-existing technologies: the Simple Scalable Script-based Science Processor for Measurements (S4PM), a processing engine at he GES DISC; the Algorithm Development and Mining (ADaM) system, a data mining toolkit from UAH that can be configured in a variety of ways to create customized mining processes; ActiveBPEL, a workflow execution engine based on BPEL (Business Process Execution Language); XBaya, a graphical workflow composer; and the EOS Clearinghouse (ECHO). XBaya is used to construct an analysis workflow at UAH using ADam components, which are also installed remotely at the GES DISC, wrapped as Web Services. The S4PM processing engine searches ECHO for data using space-time criteria, staging them to cache, allowing the ActiveBPEL engine to remotely orchestras the processing workflow within S4PM. As mining is completed, the output is placed in an FTP holding area for the end user. The goals are to give users control over the data they want to process, while mining data at the data source using the server's resources rather than transferring the full volume over the internet. These diverse technologies have been infused into a functioning, distributed system with only minor changes to the underlying technologies. The key to the infusion is the loosely coupled, Web-Services based architecture: All of the participating components are accessible (one way or another) through (Simple Object Access Protocol) SOAP-based Web Services.
NASA Astrophysics Data System (ADS)
A report entitled “Our Changing Planet: A U.S. Strategy for Global Change Research,” was released on January 9 with President Reagan's 1990 budget. The report is intended to provide a coordinated foundation for planning the U.S. program to study changes in the Earth system, and it outlines a program of focused research that grows from $133.9 million in FY 89 to $190.5 million in FY 90. These funds are included in the budgets of the National Science Foundation, Department of Energy, Department of the Interior, National Aeronautics and Space Administration, Department of Commerce, Environmental Protection Agency, and U.S. Department of Agriculture.The report was prepared by the Committee on Earth Sciences (CES) of the Federal Coordinating Council for Science, Engineering, and Technology. The CES is chaired by Dallas Peck of the U.S. Geological Survey and has members from the Council on Environmental Quality, Department of State, Office of Management and Budget, Office of Science and Technology Policy, USDA, EPA, NASA, Department of Defense, DOE, DOC, Department of Transportation, and the NSF.
Talkoot Portals: Discover, Tag, Share, and Reuse Collaborative Science Workflows (Invited)
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Ramachandran, R.; Lynnes, C.
2009-12-01
A small but growing number of scientists are beginning to harness Web 2.0 technologies, such as wikis, blogs, and social tagging, as a transformative way of doing science. These technologies provide researchers easy mechanisms to critique, suggest and share ideas, data and algorithms. At the same time, large suites of algorithms for science analysis are being made available as remotely-invokable Web Services, which can be chained together to create analysis workflows. This provides the research community an unprecedented opportunity to collaborate by sharing their workflows with one another, reproducing and analyzing research results, and leveraging colleagues’ expertise to expedite the process of scientific discovery. However, wikis and similar technologies are limited to text, static images and hyperlinks, providing little support for collaborative data analysis. A team of information technology and Earth science researchers from multiple institutions have come together to improve community collaboration in science analysis by developing a customizable “software appliance” to build collaborative portals for Earth Science services and analysis workflows. The critical requirement is that researchers (not just information technologists) be able to build collaborative sites around service workflows within a few hours. We envision online communities coming together, much like Finnish “talkoot” (a barn raising), to build a shared research space. Talkoot extends a freely available, open source content management framework with a series of modules specific to Earth Science for registering, creating, managing, discovering, tagging and sharing Earth Science web services and workflows for science data processing, analysis and visualization. Users will be able to author a “science story” in shareable web notebooks, including plots or animations, backed up by an executable workflow that directly reproduces the science analysis. New services and workflows of interest will be discoverable using tag search, and advertised using “service casts” and “interest casts” (Atom feeds). Multiple science workflow systems will be plugged into the system, with initial support for UAH’s Mining Workflow Composer and the open-source Active BPEL engine, and JPL’s SciFlo engine and the VizFlow visual programming interface. With the ability to share and execute analysis workflows, Talkoot portals can be used to do collaborative science in addition to communicate ideas and results. It will be useful for different science domains, mission teams, research projects and organizations. Thus, it will help to solve the “sociological” problem of bringing together disparate groups of researchers, and the technical problem of advertising, discovering, developing, documenting, and maintaining inter-agency science workflows. The presentation will discuss the goals of and barriers to Science 2.0, the social web technologies employed in the Talkoot software appliance (e.g. CMS, social tagging, personal presence, advertising by feeds, etc.), illustrate the resulting collaborative capabilities, and show early prototypes of the web interfaces (e.g. embedded workflows).
BingEO: Enable Distributed Earth Observation Data for Environmental Research
NASA Astrophysics Data System (ADS)
Wu, H.; Yang, C.; Xu, Y.
2010-12-01
Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.
Earth Observations taken by the Expedition Seven crew
2003-06-27
ISS007-E-08434 (27 June 2003) --- This photo featuring a close-up view of Honolulu on the Hawaiian island of Oahu was taken from the International Space Station (ISS) by astronaut Edward T. Lu, Expedition 7 NASA ISS science officer and flight engineer. Diamond Head Crater and Waikiki Beach are visible at lower right.
Selected Characteristics of Persons in Environmental Science: 1978.
ERIC Educational Resources Information Center
Palumbo, Thomas J.; And Others
1982-01-01
This report is the third of a series of reports based on data collected in the 1978 National Sample of Scientists and Engineers survey. Profiled are the characteristics of 29,775 persons represented in the national sample's field of environmental scientists: 24,615 earth scientists, 3,481 atmospheric scientists, and 1,678 oceanographers.…
Expedition Five crew is ready to leave KSC for Houston
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- The Expedition Five crew are ready to leave KSC for Houston. From left are Science Officer Peggy Whitson, Commander Valery Korzun and Flight Engineer Sergei Treschev. The three returned to Earth on Endeavour Dec. 7, with the STS-113 crew, after six months on the International Space Station.
NASA Astrophysics Data System (ADS)
Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.
2013-12-01
How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of scientists and engineers may alleviate some common stereotypes about these careers. When students engage with the scientists and engineers at APL, they see first-hand that successful science and engineering requires a diverse team with multi-disciplinary backgrounds. Activities throughout the day develop student understanding about science and technology, and address the fundamental concepts that fall under the National Science Education Content Standards. Students are immersed in a hands-on experience designed to facilitate understanding of the History and Nature of Science. Throughout the day students interact with people of diverse backgrounds and interests while hearing about the specific ways various individuals and teams of people contribute to the science and technology of the mission, addressing the concepts which fall under the headings of Science as a Human Endeavor, Nature of Science, and History of Science. Getting students outside the classroom to visit APL is an exclusive opportunity; evaluations have indicated that students became interested in learning more about space science and STEM careers after attending a Space Academy event.
NASA Technical Reports Server (NTRS)
1990-01-01
Selected research and technology activities at Ames Research Center, including the Moffett Field site and the Dryden Flight Research Facility, are summarized. These accomplishments exemplify the Center's varied and highly productive research efforts for 1990. The activities addressed are under the directories of: (1) aerospace systems which contains aircraft technology, full-scale aerodynamics research, information sciences, aerospace human factors research, and flight systems and simulation research divisions; (2) Dryden flight research facility which contains research engineering division; (3) aerophysics which contains aerodynamics, fluid dynamics, and thermosciences divisions; and (4) space research which contains advanced life support, space projects, earth system science, life science, and space science divisions, and search for extraterrestrial intelligence and space life sciences payloads offices.
Photogrammetry - Remote Sensing and Geoinformation
NASA Astrophysics Data System (ADS)
Lazaridou, M. A.; Patmio, E. N.
2012-07-01
Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.
A Geograns update. New experiences to teach earth sciences to students older than 55
NASA Astrophysics Data System (ADS)
Cerdà, A.; Pinazo, S.
2009-04-01
How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the field. Key Words: Teaching, Earth Science, Field work, Earth Science, Environment.
Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations
NASA Astrophysics Data System (ADS)
Margarida Maria, Ana; Pereira, Hélder
2017-04-01
During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.
Underrepresentation of women in the senior levels of Brazilian science
Otta, Emma; Silva, Maria Luisa
2017-01-01
Despite significant progress, there is still a gender gap in science all over the world, especially at senior levels. Some progressive countries are recognizing the need to address barriers to gender equality in order to retain their best scientists and innovators, and ensure research excellence and social and economic returns on the investment made by taxpayers each year on training women scientists. We investigated the gender distribution of: (i) the productivity scholarship (PS) holders of the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, N = 13,625), (ii) the members of the Brazilian Academy of Science (Academia Brasileira de Ciências, ABC, N = 899), and (iii) the amount of funding awarded for top quality research (“Universal” Call of CNPq, N = 3,836), between the years of 2013 and 2014. Our findings show evidence for gender imbalances in all the studied indicators of Brazilian science. We found that female scientists were more often represented among PS holders at the lower levels of the research ranking system (2). By contrast, male scientists were more often found at higher levels (1A and 1B) of PS holders, indicating the top scientific achievement, both in “Engineering, Exact Sciences, Earth Sciences”, and “Life Sciences”. This imbalance was not found in Humanities and Social Sciences. Only 14% of the ABC members were women. Humanities and Applied Social Sciences had a relatively low representation of women in the Academy (3.7%) compared to Engineering, Exact and Earth Sciences: 54.9% and Life Sciences: 41.4%. Finally, female scientists obtained significantly more funding at the lower level of the research ranking system (2), whereas male scientists obtained significantly more funding at the higher levels (1A and 1B). Our results show strong evidence of a gender imbalance in Brazilian science. We hope that our findings will be used to stimulate reforms that will result in greater equality in Brazilian science, and elsewhere. PMID:29302384
MITEE: A Compact Ultralight Nuclear Thermal Propulsion Engine for Planetary Science Missions
NASA Astrophysics Data System (ADS)
Powell, J.; Maise, G.; Paniagua, J.
2001-01-01
A new approach for a near-term compact, ultralight nuclear thermal propulsion engine, termed MITEE (Miniature Reactor Engine) is described. MITEE enables a wide range of new and unique planetary science missions that are not possible with chemical rockets. With U-235 nuclear fuel and hydrogen propellant the baseline MITEE engine achieves a specific impulse of approximately 1000 seconds, a thrust of 28,000 newtons, and a total mass of only 140 kilograms, including reactor, controls, and turbo-pump. Using higher performance nuclear fuels like U-233, engine mass can be reduced to as little as 80 kg. Using MITEE, V additions of 20 km/s for missions to outer planets are possible compared to only 10 km/s for H2/O2 engines. The much greater V with MITEE enables much faster trips to the outer planets, e.g., two years to Jupiter, three years to Saturn, and five years to Pluto, without needing multiple planetary gravity assists. Moreover, MITEE can utilize in-situ resources to further extend mission V. One example of a very attractive, unique mission enabled by MITEE is the exploration of a possible subsurface ocean on Europa and the return of samples to Earth. Using MITEE, a spacecraft would land on Europa after a two-year trip from Earth orbit and deploy a small nuclear heated probe that would melt down through its ice sheet. The probe would then convert to a submersible and travel through the ocean collecting samples. After a few months, the probe would melt its way back up to the MITEE lander, which would have replenished its hydrogen propellant by melting and electrolyzing Europa surface ice. The spacecraft would then return to Earth. Total mission time is only five years, starting from departure from Earth orbit. Other unique missions include Neptune and Pluto orbiter, and even a Pluto sample return. MITEE uses the cermet Tungsten-UO2 fuel developed in the 1960's for the 710 reactor program. The W-UO2 fuel has demonstrated capability to operate in 3000 K hydrogen for many hours - a much longer period than the approximately one hour burn time for MITEE. Using this cermet fuel, and technology available from other nuclear propulsion programs, MITEE could be developed and ready for implementation in a relatively short time, i.e., approximately seven years. An overview description of the MITEE engine and its performance capabilities is provided.
McArthur in Destiny laboratory
2005-10-05
ISS011-E-14120 (5 October 2005) --- Astronaut William S. McArthur, Jr., Expedition 12 commander and NASA science officer, works with Space Station Remote Manipulator System or Canadarm2 controls located in the Destiny lab, while sharing duty time with the Expedition 11 crewmembers on the international space station. The Expedition 11 crew of cosmonaut Sergei K. Krikalev of Russia's Federal Space Agency, commander, and astronaut John L. Phillips, flight engineer and NASA science officer, along with spaceflight participant Greg Olsen, will be returning to Earth early next week.
The extreme ultraviolet explorer mission
NASA Technical Reports Server (NTRS)
Malina, R. F.; Bowyer, S.
1988-01-01
The science design goals and engineering implementation for the Extreme Ultraviolet Explorer (EUVE) science payload are discussed. The primary scientific goal of the EUVE payload is to carry out an all-sky survey in the 100- to 900-A band of the spectrum. Another goal of the mission is to demonstrate the use of a scientific platform in near-earth orbit. EUVE data will be used to study the distribution of EUV stars in the neighborhood of the sun and the emission physics responsible for the EUV mission.
Rabbitt, Mary C.
1979-01-01
This volume, the first of a four-volume study, is concerned with events in the United States before the establishment of the U.S. Geological Survey, during the years in which geology evolved as a science and began to influence economic development and national policy. Subsequent volumes continue the story but focus on the Survey and its role in the events and developments of later years. The method of analysis demonstrates that knowledge of the Earth and its history, processes, and resources has provided a basis for intelligent economic development; also that geologists very soon realized that uncontrolled development of the land and other natural resources could not continue, that some limitations must be made on man's use of the Earth. The Geological Survey was established when public awareness of the need for balance between development and conservation of our resources was becoming evident. That balance is even more necessary now and in the future for the "general welfare" and "common defence" of the Nation. We can be grateful for the wisdom of our Founding Fathers in providing for publicly supported studies in earth science and engineering by well-trained and motivated scientists and engineers. Such studies, undertaken objectively in the search for facts, can continue to be of great value in the formulation and execution of wise policies to protect our environment and to maintain that balance between development and conservation of the natural resources.
NASA Astrophysics Data System (ADS)
Jaworski, Allan
1993-08-01
The Earth Observing System (EOS) Data and Information System (EOSDIS) will serve as a major resource for the earth science community, supporting both command and control of complex instruments onboard the EOS spacecraft and the archiving, distribution, and analysis of data. The scale of EOSDIS and the volume of multidisciplinary research to be conducted using EOSDIS resources will produce unparalleled needs for technology transparency, data integration, and system interoperability. The scale of this effort far outscopes any previous scientific data system in its breadth or operational and performance needs. Modern hardware technology can meet the EOSDIS technical challenge. Multiprocessing speeds of many giga-flops are being realized by modern computers. Online storage disk, optical disk, and videocassette libraries with storage capacities of many terabytes are now commercially available. Radio frequency and fiber optics communications networks with gigabit rates are demonstrable today. It remains, of course, to perform the system engineering to establish the requirements, architectures, and designs that will implement the EOSDIS systems. Software technology, however, has not enjoyed the price/performance advances of hardware. Although we have learned to engineer hardware systems which have several orders of magnitude greater complexity and performance than those built in the 1960's, we have not made comparable progress in dramatically reducing the cost of software development. This lack of progress may significantly reduce our capabilities to achieve economically the types of highly interoperable, responsive, integraded, and productive environments which are needed by the earth science community. This paper describes some of the EOSDIS software requirements and current activities in the software community which are applicable to meeting the EOSDIS challenge. Some of these areas include intelligent user interfaces, software reuse libraries, and domain engineering. Also included are discussions of applicable standards in the areas of operating systems interfaces, user interfaces, communications interfaces, data transport, and science algorithm support, and their role in supporting the software development process.
2018-03-26
iss055e005543 (March 26, 2018) --- Expedition 55 Flight Engineer and astronaut Scott Tingle is pictured conducting the Transparent Alloys experiment inside the Destiny lab module's Microgravity Science Glovebox. The Transparent Alloys study is a set of five experiments that seeks to improve the understanding of melting-solidification processes in plastics without the interference of Earth's gravity environment. Results may impact the development of new light-weight, high-performance structural materials for space applications. Observations may also impact fuel efficiency, consumption and recycling of materials on Earth potentially reducing costs and increasing industrial competitiveness.
The 2017 Total Solar Eclipse: Through the Eyes of NASA
NASA Astrophysics Data System (ADS)
Mayo, Louis; NASA Goddard Heliophysics Education Consortium
2017-10-01
The August 21st, 2017 Total Solar Eclipse Across America provided a unique opportunity to teach event-based science to nationwide audiences. NASA spent over three years planning space and Earth science education programs for informal audiences, undergraduate institutions, and life long learners to bring this celestial event to the public through the eyes of NASA. This talk outlines how NASA used its unique assets including mission scientists and engineers, space based assets, citizen science, educational technology, science visualization, and its wealth of science and technology partners to bring the eclipse to the country through multimedia, cross-discipline science activities, curricula, and media programing. Audience reach, impact, and lessons learned are detailed. Plans for similar events in 2018 and beyond are outlined.
NASA Astrophysics Data System (ADS)
Allred, B. W.; Naugle, D.; Donnelly, P.; Tack, J.; Jones, M. O.
2016-12-01
In 2010, the USDA Natural Resources Conservation Service (NRCS) launched the Sage Grouse Initiative (SGI) to voluntarily reduce threats facing sage-grouse and rangelands on private lands. Over the past five years, SGI has matured into a primary catalyst for rangeland and wildlife conservation across the North American west, focusing on the shared vision of wildlife conservation through sustainable working landscapes and providing win-win solutions for producers, sage grouse, and 350 other sagebrush obligate species. SGI and its partners have invested a total of $750 million into rangeland and wildlife conservation. Moving forward, SGI continues to focus on rangeland conservation. Partnering with Google Earth Engine, SGI has developed outcome monitoring and conservation planning tools at continental scales. The SGI science team is currently developing assessment and monitoring algorithms of key conservation indicators. The SGI web application utilizes Google Earth Engine for user defined analysis and planning, putting the appropriate information directly into the hands of managers and conservationists.
NASA Astrophysics Data System (ADS)
Walker, R. J.; Beebe, R. F.
2017-12-01
One of the basic problems the NASA Science Mission Directorate (SMD) faces when dealing with preservation of scientific data is the variety of the data. This stems from the fact that NASA's involvement in the sciences spans a broad range of disciplines across the Science Mission Directorate: Astrophysics, Earth Sciences, Heliophysics and Planetary Science. As the ability of some missions to produce large data volumes has accelerated, the range of problems associated with providing adequate access to the data has demanded diverse approaches for data access. Although mission types, complexity and duration vary across the disciplines, the data can be characterized by four characteristics: velocity, veracity, volume, and variety. The rate of arrival of the data (velocity) must be addressed at the individual mission level, validation and documentation of the data (veracity), data volume and the wide variety of data products present huge challenges as the science disciplines strive to provide transparent access to their available data. Astrophysics, supports an integrated system of data archives based on frequencies covered (UV, visible, IR, etc.) or subject areas (extrasolar planets, extra galactic, etc.) and is accessed through the Astrophysics Data Center (https://science.nasa.gov/astrophysics/astrophysics-data-centers/). Earth Science supports the Earth Observing System (https://earthdata.nasa.gov/) that manages the earth science satellite data. The discipline supports 12 Distributed Active Archive Centers. Heliophysics provides the Space Physics Data Facility (https://spdf.gsfc.nasa.gov/) that supports the heliophysics community and Solar Data Analysis Center (https://umbra.nascom.nasa.gov/index.html) that allows access to the solar data. The Planetary Data System (https://pds.nasa.gov) is the main archive for planetary science data. It consists of science discipline nodes (Atmospheres, Geosciences, Cartography and Imaging Sciences, Planetary Plasma Interactions, Ring-Moon Systems, and Small Bodies) and supporting nodes (Engineering and the Navigation and Ancillary Information Facility). This presentation will address current efforts by the disciplines to face the demands of providing user access in the era of Big Data.
Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information
NASA Astrophysics Data System (ADS)
Tuxen-Bettman, K.
2016-12-01
Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/
Text Mining to inform construction of Earth and Environmental Science Ontologies
NASA Astrophysics Data System (ADS)
Schildhauer, M.; Adams, B.; Rebich Hespanha, S.
2013-12-01
There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their research, it gives us an alternative bottom-up approach to populating and enriching ontologies, that complements more traditional knowledge modeling endeavors.
Earth Sciences Division Research Summaries 2006-2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
DePaolo, Donald; DePaolo, Donald
2008-07-21
Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energymore » and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.« less
NASA Astrophysics Data System (ADS)
Hayden, T.
2011-12-01
Direct, effective communication with the public is an increasingly important part of the earth scientist's professional toolkit. Earth sciences issues, including climate change, ocean acidification, energy extraction and use and geological hazard assessment, are increasingly relevant to public debates, yet recent, dramatic changes in the media business have led to decreased coverage of science. Earth scientists must increasingly shoulder the burden of informing the broad public themselves, and in collaboration with professional communicators. Fortunately, the tools and venues needed to do so have never been more accessible. This presentation will describe a new model of science communication education, based on bringing together collaborating teams of students with diverse backgrounds in the sciences, engineering and journalism. The project-based approach uses group workshopping and multiple rounds of peer- and instructor-guided revision to leverage diverse expertise and facilitate both primary knowledge gain and comprehensive, effective and meaningful training and experience in audience-focused outreach, media interaction, and journalism. Courses build from fundamental communications theory to the end goal of publication in professional outlets. Course goals are regularly enhanced and reinforced with internships and individual study projects. Using examples from a series of courses and projects developed at Stanford University over the past three years, I will describe the theory and strategies underlying this new approach to science communication education, what it has to offer for scientists and journalists alike, and key points to consider for effective implementation. I will also show how combining the knowledge, expertise and experience of STEM and journalism students can inform a new model of science journalism, based on exploring and communicating the process of science, not just the results, that can avoid many of the common pitfalls of science journalism. I will present a preliminary assessment of outcomes from three courses at Stanford - environmental communications, environmental journalism and multimedia storytelling for earth scientists - including publications, retrospective post assessment of student abilities and attitudes, and ongoing application of course goals in professional and/or educational settings.
International Space Station: Transitional Platform for Moon and Mars
NASA Technical Reports Server (NTRS)
Greeniesen, Michael C.
2006-01-01
Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.
Scientific and Technical Publishing at Goddard Space Flight Center in Fiscal Year 1994
NASA Technical Reports Server (NTRS)
1994-01-01
This publication is a compilation of scientific and technical material that was researched, written, prepared, and disseminated by the Center's scientists and engineers during FY94. It is presented in numerical order of the GSFC author's sponsoring technical directorate; i.e., Code 300 is the Office of Flight Assurance, Code 400 is the Flight Projects Directorate, Code 500 is the Mission Operations and Data Systems Directorate, Code 600 is the Space Sciences Directorate, Code 700 is the Engineering Directorate, Code 800 is the Suborbital Projects and Operations Directorate, and Code 900 is the Earth Sciences Directorate. The publication database contains publication or presentation title, author(s), document type, sponsor, and organizational code. This is the second annual compilation for the Center.
Malenchenko and Lu in Pirs Docking Compartment (DC-1) module
2003-10-20
ISS007-E-17761 (20 October 2003) --- The Expedition 7 crewmembers, cosmonaut Yuri I. Malenchenko, mission commander representing Rosaviakosmos; and astronaut Edward T. Lu, NASA ISS science officer and flight engineer, pose for a photo by a camera triggered for a change by something other than auto-set or remote means. The photographer in this case was one of the newly arrived Expedition 8 crewmembers, astronaut C. Michael Foale, American commander and NASA ISS science officer and cosmonaut Alexander Kaleri, Russian flight engineer and Soyuz commander; or possibly European Space Agency astronaut Pedro Duque, who joined the Expedition 8 crew for the trip "up" and who will return to Earth on Oct. 28 with the Expedition 7 crew.
NASA Astrophysics Data System (ADS)
Fike, Hildee; Barnhart, Paul; Brevik, Corinne E.; Brevik, Eric C.; Burgess, Cynthia; Chen, Jundong; Egli, Shawna; Harris, Billy; Johanson, Paul J.; Johnson, Naomi; Moe, Marie; Olsen, Reba
2016-04-01
One of the major challenges in recruiting students to careers in STEM (science, technology, engineering, and mathematics) fields is to stimulate enthusiasm about these fields in our youth. BEST (Boosting Engineering Science and Technology) Robotics is a national program in the USA that attempts to recruit junior and senior high school students (ages 13-18) into STEM careers by showing youth how exciting these careers can be by using robotics competitions. The competitions have several aspects, including robot design, software engineering, marketing, public outreach, research into the subject area of the year's tasks, and a set of tasks to be physically performed by the robots that each team builds. The tasks to be performed change every year; therefore, even teams that compete over multiple years must build a new robot each year designed to perform the particular tasks charged to them. Dickinson State University is the home to Blue Hawk BEST, one of the hubs that host the first round of competition for teams hoping to move on to regional, and potentially, national level competition. The tasks for 2015 revolved around a mining theme. The robots needed to be able to replace the filter in an air filtration system, fix broken pipes, mine simulated aggregate, coal, magnetite, bauxite, chalcopyrite, and spodumene, and move core samples. Points were awarded for successful progress toward each task based on the difficulty of the task and the market value of the commodities. While several STEM fields are covered in various aspects of the competition, the 2015 competition includes Earth science in that the students are required to research the history and science of the commodities being mined and learn about ways the commodities are important to their lives and the economy of their particular region. Several awards are handed out to the top performing teams in various categories, including spirit and sportsmanship awards. As teams compete for these awards a raucous environment is created during the competition, with team members who are not actively competing at any given moment enthusiastically supporting their team members who are competing. However, it also generates a sense of community among the competing teams, and it is common to see members from one team assisting another team that is having problems with their robot, even though the two teams are also in direct competition with one another. The end result is an overall experience that is great fun for the competing students, but one in which they also learn about a wide range of STEM fields. In 2015, that education included an important aspect of the Earth sciences. Using similar techniques for general teaching of some Earth science topics may have promise both in terms of student learning and student enthusiasm for the subject material.
NASA Astrophysics Data System (ADS)
Smith, Denise A.; Mendez, B.; Shipp, S.; Schwerin, T.; Stockman, S.; Cooper, L. P.; Sharma, M.
2010-01-01
Scientists, engineers, educators, and public outreach professionals have a rich history of creatively using NASA's pioneering scientific discoveries and technology to engage and educate youth and adults nationwide in core science, technology, engineering, and mathematics topics. We introduce four new Science Education and Public Outreach Forums that will work in partnership with the community and NASA's Science Mission Directorate (SMD) to ensure that current and future SMD-funded education and public outreach (E/PO) activities form a seamless whole, with easy entry points for general public, students, K-12 formal and informal science educators, faculty, scientists, engineers, and E/PO professionals alike. The new Science Education and Public Outreach Forums support the astrophysics, heliophysics, planetary and Earth science divisions of NASA SMD in three core areas: 1) E/PO community engagement and development activities will provide clear paths of involvement for scientists and engineers interested - or potentially interested - in participating in SMD-funded E/PO activities. Collaborations with scientists and engineers are vital for infusing current, accurate SMD mission and research findings into educational products and activities. Forum activities will also yield readily accessible information on effective E/PO strategies, resources, and expertise; context for individual E/PO activities; and opportunities for collaboration. 2) A rigorous analysis of SMD-funded K-12 formal, informal, and higher education products and activities will help the community and SMD to understand how the existing collection supports education standards and audience needs, and to strategically identify areas of opportunity for new materials and activities. 3) Finally, a newly convened Coordinating Committee will work across the four SMD science divisions to address systemic issues and integrate related activities. By supporting the NASA E/PO community and facilitating coordination of E/PO activities, the NASA-SEPOF partnerships will lead to more effective, sustainable, and efficient utilization of NASA science discoveries and learning experiences.
NASA Astrophysics Data System (ADS)
Podrasky, A.; Covitt, B. A.; Woessner, W.
2017-12-01
The availability of clean water to support human uses and ecological integrity has become an urgent interest for many scientists, decision makers and citizens. Likewise, as computational capabilities increasingly revolutionize and become integral to the practice of science, technology, engineering and math (STEM) disciplines, the STEM+ Computing (STEM+C) Partnerships program seeks to integrate the use of computational approaches in K-12 STEM teaching and learning. The Comp Hydro project, funded by a STEM+C grant from the National Science Foundation, brings together a diverse team of scientists, educators, professionals and citizens at sites in Arizona, Colorado, Maryland and Montana to foster water literacy, as well as computational science literacy, by integrating authentic, place- and data- based learning using physical, mathematical, computational and conceptual models. This multi-state project is currently engaging four teams of six teachers who work during two academic years with educators and scientists at each site. Teams work to develop instructional units specific to their region that integrate hydrologic science and computational modeling. The units, currently being piloted in high school earth and environmental science classes, provide a classroom context to investigate student understanding of how computation is used in Earth systems science. To develop effective science instruction that is rich in place- and data- based learning, effective collaborations between researchers, educators, scientists, professionals and citizens are crucial. In this poster, we focus on project implementation in Montana, where an instructional unit has been developed and is being tested through collaboration among University scientists, researchers and educators, high school teachers and agency and industry scientists and engineers. In particular, we discuss three characteristics of effective collaborative science education design for developing and implementing place- and data- based science education to support students in developing socio-scientific and computational literacy sufficient for making decisions about real world issues such as groundwater contamination. These characteristics include that science education experiences are real, responsive/accessible and rigorous.
NASA Astrophysics Data System (ADS)
The following AGU members have been elected as members to the National Academy of Sciences. Election to membership in the Academy is considered one of the highest honors that can be accorded a U.S. scientist or engineer.Sallie W. Chisholm is Lee and Geraldine Martin Professor of Environmental Studies, and co-director of the Earth System Initiative at the Massachusetts Institute of Technology, Cambridge.Jody W. Deming is professor of biological oceanography at the University of Washington, Seattle.James H. Dieterich is senior research scientist of the Earthquake Hazards Team at the U. S. Geological Survey, Menlo Park, California.William E. Dietrich is professor in the Department of Earth and Planetary Sciences at the University of California, Berkeley.Lennard A. Fisk is professor and chair in the Department of Atmospheric, Oceanic, and Space Sciences at the University of Michigan, Ann Arbor.Isaac M. Held is senior research scientist and head of the Climate Dynamics Group at the National Oceanic and Atmospheric Administration, Princeton, New Jersey.Judith L. Lean is a research physicist in the Space Science Division at the Naval Research Laboratory, Washington, D.C.Edward L. Miles is Virginia and Prentice Bloedel Professor of Marine and Public Affairs at the University of Washington, Seattle.William H. Schlesinger is James B. Duke Professor of Biogeochemistry and dean of the Nicholas School of the Environment and Earth Sciences at Duke University, Durham, North Carolina.
Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise
NASA Technical Reports Server (NTRS)
Meredith, Barry D.
2000-01-01
Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.
NASA Astrophysics Data System (ADS)
Pacheco-Guffrey, H. A.
2016-12-01
Classroom teachers face many challenges today such as new standards, the moving targets of high stakes tests and teacher evaluations, inconsistent/insufficient access to resources and evolving education policies. Science education in the K-5 context is even more complex. NGSS can be intimidating, especially to K-5 educators with little science background. High stakes science tests are slow to catch up with newly drafted state level science standards, leaving teachers unsure about what to change and when to implement updated standards. Amid all this change, many schools are also piloting new technology programs. Though exciting, tech initiatives can also be overwhelming to teachers who are already overburdened. A practical way to support teachers in science while remaining mindful of these stressors is to design and share resources that leverage other K-5 school initiatives. This is often done by integrating writing or math into science learning to meet Common Core requirements. This presentation will suggest a method for bringing Earth and space science learning into elementary / early childhood classrooms by utilizing the current push for tablet technology. The goal is to make science integration reasonable by linking it to technology programs that are in their early stages. The roles and uses of K-5 Earth and space science apps will be examined in this presentation. These apps will be linked to NGSS standards as well as to the science and engineering practices. To complement the app resources, two support frameworks will also be shared. They are designed to help educators consider new technologies in the context of their own classrooms and lessons. The SAMR Model (Puentadura, 2012) is a conceptual framework that helps teachers think critically about the means and purposes of integrating technology into existing lessons. A practical framework created by the author will also be shared. It is designed to help teachers identify and address the important logistical and curricular decision-making aspects of integrating technology into K-5 classroom science. This method provides clear applications for new technology while also bringing meaningful Earth and space science learning into K-5 classrooms.
NASA Astrophysics Data System (ADS)
Brutsaert, Wilfried
2005-08-01
Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment
Living with a Star (LWS) Space Environment Testbeds (SET), Mission Carrier Overview and Capabilities
NASA Technical Reports Server (NTRS)
Patschke, Robert; Barth, Janet; Label, Ken; Mariano, Carolyn; Pham, Karen; Brewer, Dana; Cuviello, Michael; Kobe, David; Wu, Carl; Jarosz, Donald
2004-01-01
NASA has initiated the Living With a Star (LWS) Program to develop the scientific understanding to address the aspects of the Connected Sun-Earth system that affect life and society. A goal of the program is to bridge the gap between science, engineering, and user application communities. This will enable future science, operational, and commercial objectives in space and atmospheric environments by improving engineering approaches to the accommodation and/or mitigation of the effects of solar variability on technological systems. The three program elements of the LWS Program are Science Missions; Targeted Research and Technology; and Space Environment Testbeds (SETS). SET is an ideal platform for small experiments performing research on space environment effects on technologies and on the mitigation of space weather effects. A short description of the LWS Program will be given, and the SET will be described in detail, giving the mission objectives, available carrier services, and upcoming flight opportunities.
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.
2010-12-01
The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.
NASA Thesaurus. Volumes 1 and 2; Hierarchical Listing with Definitions; Rotated Term Display
NASA Technical Reports Server (NTRS)
2012-01-01
The NASA Thesaurus contains the authorized subject terms by which the documents in the NASA STI Databases are indexed and retrieved. The scope of this controlled vocabulary includes not only aerospace engineering, but all supporting areas of engineering and physics, the natural space sciences (astronomy, astrophysics, planetary science), Earth sciences, and to some extent, the biological sciences. Volume 1 - Hierarchical Listing With Definitions contains over 18,400 subject terms, 4,300 definitions, and more than 4,500 USE cross references. The Hierarchical Listing presents full hierarchical structure for each term along with 'related term' lists, and can serve as an orthographic authority. Volume 2 - Rotated Term Display is a ready-reference tool which provides over 52,700 additional 'access points' to the thesaurus terminology. It contains the postable and nonpostable terms found in the Hierarchical Listing arranged in a KWIC (key-word-in-context) index. This CD-ROM version of the NASA Thesaurus is in PDF format and is updated to the current year of purchase.
Dan Goldin Presentation: Pathway to the Future
NASA Technical Reports Server (NTRS)
1999-01-01
In the "Path to the Future" presentation held at NASA's Langley Center on March 31, 1999, NASA's Administrator Daniel S. Goldin outlined the future direction and strategies of NASA in relation to the general space exploration enterprise. NASA's Vision, Future System Characteristics, Evolutions of Engineering, and Revolutionary Changes are the four main topics of the presentation. In part one, the Administrator talks in detail about NASA's vision in relation to the NASA Strategic Activities that are Space Science, Earth Science, Human Exploration, and Aeronautics & Space Transportation. Topics discussed in this section include: space science for the 21st century, flying in mars atmosphere (mars plane), exploring new worlds, interplanetary internets, earth observation and measurements, distributed information-system-in-the-sky, science enabling understanding and application, space station, microgravity, science and exploration strategies, human mars mission, advance space transportation program, general aviation revitalization, and reusable launch vehicles. In part two, he briefly talks about the future system characteristics. He discusses major system characteristics like resiliencey, self-sufficiency, high distribution, ultra-efficiency, and autonomy and the necessity to overcome any distance, time, and extreme environment barriers. Part three of Mr. Goldin's talk deals with engineering evolution, mainly evolution in the Computer Aided Design (CAD)/Computer Aided Engineering (CAE) systems. These systems include computer aided drafting, computerized solid models, virtual product development (VPD) systems, networked VPD systems, and knowledge enriched networked VPD systems. In part four, the last part, the Administrator talks about the need for revolutionary changes in communication and networking areas of a system. According to the administrator, the four major areas that need cultural changes in the creativity process are human-centered computing, an infrastructure for distributed collaboration, rapid synthesis and simulation tools, and life-cycle integration and validation. Mr. Goldin concludes his presentation with the following maxim "Collaborate, Integrate, Innovate or Stagnate and Evaporate." He also answers some questions after the presentation.
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is completed during the solar array installation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
2003-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. This photograph is a close up of a niobium-coated gyroscope motor and its housing halves. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Don Harley.)
2000-08-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, the completed space vehicle is undergoing thermal vacuum environment testing. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation.)
Heuristics for Relevancy Ranking of Earth Dataset Search Results
NASA Astrophysics Data System (ADS)
Lynnes, C.; Quinn, P.; Norton, J.
2016-12-01
As the Variety of Earth science datasets increases, science researchers find it more challenging to discover and select the datasets that best fit their needs. The most common way of search providers to address this problem is to rank the datasets returned for a query by their likely relevance to the user. Large web page search engines typically use text matching supplemented with reverse link counts, semantic annotations and user intent modeling. However, this produces uneven results when applied to dataset metadata records simply externalized as a web page. Fortunately, data and search provides have decades of experience in serving data user communities, allowing them to form heuristics that leverage the structure in the metadata together with knowledge about the user community. Some of these heuristics include specific ways of matching the user input to the essential measurements in the dataset and determining overlaps of time range and spatial areas. Heuristics based on the novelty of the datasets can prioritize later, better versions of data over similar predecessors. And knowledge of how different user types and communities use data can be brought to bear in cases where characteristics of the user (discipline, expertise) or their intent (applications, research) can be divined. The Earth Observing System Data and Information System has begun implementing some of these heuristics in the relevancy algorithm of its Common Metadata Repository search engine.
Heuristics for Relevancy Ranking of Earth Dataset Search Results
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Quinn, Patrick; Norton, James
2016-01-01
As the Variety of Earth science datasets increases, science researchers find it more challenging to discover and select the datasets that best fit their needs. The most common way of search providers to address this problem is to rank the datasets returned for a query by their likely relevance to the user. Large web page search engines typically use text matching supplemented with reverse link counts, semantic annotations and user intent modeling. However, this produces uneven results when applied to dataset metadata records simply externalized as a web page. Fortunately, data and search provides have decades of experience in serving data user communities, allowing them to form heuristics that leverage the structure in the metadata together with knowledge about the user community. Some of these heuristics include specific ways of matching the user input to the essential measurements in the dataset and determining overlaps of time range and spatial areas. Heuristics based on the novelty of the datasets can prioritize later, better versions of data over similar predecessors. And knowledge of how different user types and communities use data can be brought to bear in cases where characteristics of the user (discipline, expertise) or their intent (applications, research) can be divined. The Earth Observing System Data and Information System has begun implementing some of these heuristics in the relevancy algorithm of its Common Metadata Repository search engine.
Creating a FIESTA (Framework for Integrated Earth Science and Technology Applications) with MagIC
NASA Astrophysics Data System (ADS)
Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.
2017-12-01
The Magnetics Information Consortium (https://earthref.org/MagIC) has recently developed a containerized web application to considerably reduce the friction in contributing, exploring and combining valuable and complex datasets for the paleo-, geo- and rock magnetic scientific community. The data produced in this scientific domain are inherently hierarchical and the communities evolving approaches to this scientific workflow, from sampling to taking measurements to multiple levels of interpretations, require a large and flexible data model to adequately annotate the results and ensure reproducibility. Historically, contributing such detail in a consistent format has been prohibitively time consuming and often resulted in only publishing the highly derived interpretations. The new open-source (https://github.com/earthref/MagIC) application provides a flexible upload tool integrated with the data model to easily create a validated contribution and a powerful search interface for discovering datasets and combining them to enable transformative science. MagIC is hosted at EarthRef.org along with several interdisciplinary geoscience databases. A FIESTA (Framework for Integrated Earth Science and Technology Applications) is being created by generalizing MagIC's web application for reuse in other domains. The application relies on a single configuration document that describes the routing, data model, component settings and external services integrations. The container hosts an isomorphic Meteor JavaScript application, MongoDB database and ElasticSearch search engine. Multiple containers can be configured as microservices to serve portions of the application or rely on externally hosted MongoDB, ElasticSearch, or third-party services to efficiently scale computational demands. FIESTA is particularly well suited for many Earth Science disciplines with its flexible data model, mapping, account management, upload tool to private workspaces, reference metadata, image galleries, full text searches and detailed filters. EarthRef's Seamount Catalog of bathymetry and morphology data, EarthRef's Geochemical Earth Reference Model (GERM) databases, and Oregon State University's Marine and Geology Repository (http://osu-mgr.org) will benefit from custom adaptations of FIESTA.
2014-02-14
ISS038-E-047576 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-14
ISS038-E-047582 (14 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046381 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-12
ISS038-E-046393 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio works with BASS-II
2014-02-18
ISS038-E-053250 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Field Trip to the Moon. Educator's Guide. EG-2007-09-120-MSFC
ERIC Educational Resources Information Center
National Aeronautics and Space Administration (NASA), 2007
2007-01-01
The Field Trip to the Moon program uses an inquiry-based learning approach that fosters team building and introduces students to careers in science and engineering. The program components include a DVD and classroom investigations. The compelling DVD (not included here) provides essential information about Earth and the Moon. The hands-on…
ERIC Educational Resources Information Center
Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.
2014-01-01
A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The…
NASA Technical Reports Server (NTRS)
1988-01-01
Flight projects and mission definition studies for 1988 are briefly described. Technology research is presented in the following areas: sensors and space technology; space communication systems; system and software engineering; user space data systems; and techniques. Studies are presented for the following space and Earth science areas: atmospheres, SN 1987A, astronomy, high energy astrophysics, land and climate, solar systems, and oceans.
ERIC Educational Resources Information Center
Tretter, Thomas R.; Thornburgh, William R.; Duckwall, Mark
2016-01-01
Supporting elementary student understandings of ideas related to Earth's Place in the Universe (ESS1) can be challenging, especially given the large time and distance scales involved with many of the concepts. However, with effective use of crosscutting concepts and science and engineering practices, important concepts within this content domain…
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046387 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
2014-02-12
ISS038-E-046394 (12 Feb. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio works with BASS-II
2014-02-18
ISS038-E-053251 (18 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, works with the Burning and Suppression of Solids (BASS-II) experiment in the Microgravity Science Glovebox (MSG) located in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046391 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, sets up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics
NASA Astrophysics Data System (ADS)
Baumann, P.; Rossi, A. P.
2016-12-01
The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications ACM. [3] Baumann, Peter, et al. (2014) In Proc. 10th ICDM, 194-201. [4] Dumitru, A. et al. (2014) In Proc ACM SIGMOD Workshop on Data Analytics in the Cloud (DanaC'2014), 1-4.
NASA Astrophysics Data System (ADS)
Chambers, L. H.
2017-12-01
Cloud and aerosol feedbacks remain the largest source of uncertainty in understanding and predicting Earth's climate (IPCC, 2013), and are the focus of multiple ongoing research studies. Clouds are a challenge because of their extreme variability and diversity. This is also what makes them interesting to people. Clouds may be the only essential climate variable with an Appreciation Society (https://cloudappreciationsociety.org/). As a result, clouds led me into a multi-decade effort to engage a wider public in observing and understanding our planet. A series of experiences in the mid-1990's led to a meeting with educators that resulted in the creation of the Students' Cloud Observations On-Line Project (S'COOL), which I directed for about 2 decades, and which engaged students around the world in ground truth observation and data analysis for the Clouds and the Earth's Radiant Energy System (CERES) satellite instruments. Beginning around 2003, I developed a contrail observation protocol for the GLOBE Program to serve a similar function for additional audiences. Starting in 2004, I worked with an interdisciplinary team to launch the MY NASA DATA Project, an effort to make the vast trove of NASA Earth Science data actually usable in K-12 classrooms and student projects. Later I gained key experiences around strategic partnerships as I worked from 2008 onward with tri-agency partners at NOAA and NSF to integrate activities around climate change education. Currently I serve as Program Scientist for Education & Communication in the Earth Science Division at NASA, where I have the privilege to oversee and guide these and related activities in education and public engagement around Earth system science. As someone who completed advanced degrees in aerospace engineering without ever taking an Earth science class, this ongoing engagement is very important to me. Understanding Earth processes should be integral to how all people choose to live on our planet. In my experience, the geosciences offer great opportunities for education and public engagement, because of their concrete connections to human experience. A key success factor is partnership of contributors across disciplines (education, science, IT, etc) to create authentic experiences that exploit new technologies to genuinely involve a wider community.
NASA Astrophysics Data System (ADS)
Olds, S. E.; Mooney, M. E.; Dahlman, L. E.
2016-12-01
Recreational drones, also known as unmanned aerial vehicles (UAVs), provide an ideal platform for engaging students in science, technology, engineering, and math (STEM) investigations for science fair projects, after-school clubs, and in-class activities. UAVs are very popular (estimate of >1 million received as gifts this past year), relatively inexpensive (<$100), weigh less than 250g (don't require FAA registration), are modifiable, and can carry small instrument packages. Seeing the world from above can stimulate curiosity and give students a reason to engage in the Next Generation Science Standards (NGSS) process of science and engineering practices by designing and carrying out their own investigations. Using drones to facilitate experiments, students also participate in engineering design: they may choose off-the-shelf sensors or build DIY sensors to carry on their UAVs. Leveraging the learning potential of UAVs, the Federation of Earth Science Information Partners (ESIP) Education Committee has been developing an e-book of learning activities and investigation suggestions for secondary education students. The freely available download incorporates UAV civility and safety through a pre-flight checklist and flying guidelines, suggests science and flight team roles, and advocates robust data and metadata-collection practices. The ESIP team also worked with an engineer to build a 33-gram prototype environmental logger called SABEL (Shelley (Olds) and Bob's Environmental Logger). SABEL collects temperature, humidity, and GPS position assembled on an Arduino board. This presentation will elaborate upon the year-long process of working with educators via webinars and a 1-day workshop at the 2016 ESIP summer meeting and beyond. It will also provide examples of student-led investigations, instructions for building the SABEL sensor package, insights gleaned from workshop feedback - and - the status of the new e-book compilation of student-focused activities using recreational drones to pursue STEM investigations!
NASA Astrophysics Data System (ADS)
Corvo, Arthur Francis
Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.
Flight Hardware Fabricated for Combustion Science in Space
NASA Technical Reports Server (NTRS)
OMalley, Terence F.; Weiland, Karen J.
2005-01-01
NASA Glenn Research Center s Telescience Support Center (TSC) allows researchers on Earth to operate experiments onboard the International Space Station (ISS) and the space shuttles. NASA s continuing investment in the required software, systems, and networks provides distributed ISS ground operations that enable payload developers and scientists to monitor and control their experiments from the Glenn TSC. The quality of scientific and engineering data is enhanced while the long-term operational costs of experiments are reduced because principal investigators and engineering teams can operate their payloads from their home institutions.
Applications of spaceborne laser ranger on EOS
NASA Technical Reports Server (NTRS)
Degnan, John J.; Cohen, Steven C.
1988-01-01
An account is given of the design concept and potential applications in science and engineering of the spaceborne laser ranging and altimeter apparatus employed by the Geodynamics Laser Ranging System; this is scheduled for 1997 launch as part of the multiple-satellite Earth Observing System. In the retrograding mode for geodynamics, the system will use a Nd:YAG laser's green and UV output for distance determination to ground retroreflectors. Engineering applications encompass land management and long-term ground stability studies relevant to nuclear power plant, pipeline, and aqueduct locations.
2004-10-04
Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Finley, T.; Griffin, R.; Klug, T.; Harbour, S.; Au, B.; Graves, S. J.
2016-12-01
Sally Ride EarthKAM @ Space Camp is a digital camera payload on board the International Space Station (ISS) that allows students from around the globe to request photos of the Earth from space. Since its launch to the ISS in 2001, approximately 110,000 images have been requested by students from over 90 countries. EarthKAM provides the ultimate platform for STEM engagement in both formal and informal educational settings, as it is currently the only earth observation science payload on station completely controlled by students. Images are requested and accessed through a web portal and can be used by educators in a multitude of ways to promote interest in geosciences, math, physics, and numerous other fields. EarthKAM is currently operated out of the US Space and Rocket Center in Huntsville, Alabama and is incorporated into many Space Camp programs. Space Camp hosts nearly 25,000 students and 500 educators each year, vastly improving EarthKAM exposure. Future concepts currently in development include the ability to collect new data products such as night-time and near-infrared imagery, additional science curricula in the form of focused lesson plans and image applications, and a redesigned graphical user interface for requesting photos. The EarthKAM project, a NASA educational outreach program, is currently managed by the US Space and Rocket Center, the University of Alabama in Huntsville, and Teledyne Brown Engineering, Inc.
ROADNET: A Real-time Data Aware System for Earth, Oceanographic, and Environmental Applications
NASA Astrophysics Data System (ADS)
Vernon, F.; Hansen, T.; Lindquist, K.; Ludascher, B.; Orcutt, J.; Rajasekar, A.
2003-12-01
The Real-time Observatories, Application, and Data management Network (ROADNet) Program aims to develop an integrated, seamless, and transparent environmental information network that will deliver geophysical, oceanographic, hydrological, ecological, and physical data to a variety of users in real-time. ROADNet is a multidisciplinary, multinational partnership of researchers, policymakers, natural resource managers, educators, and students who aim to use the data to advance our understanding and management of coastal, ocean, riparian, and terrestrial Earth systems in Southern California, Mexico, and well off shore. To date, project activity and funding have focused on the design and deployment of network linkages and on the exploratory development of the real-time data management system. We are currently adapting powerful "Data Grid" technologies to the unique challenges associated with the management and manipulation of real-time data. Current "Grid" projects deal with static data files, and significant technical innovation is required to address fundamental problems of real-time data processing, integration, and distribution. The technologies developed through this research will create a system that dynamically adapt downstream processing, cataloging, and data access interfaces when sensors are added or removed from the system; provide for real-time processing and monitoring of data streams--detecting events, and triggering computations, sensor and logger modifications, and other actions; integrate heterogeneous data from multiple (signal) domains; and provide for large-scale archival and querying of "consolidated" data. The software tools which must be developed do not exist, although limited prototype systems are available. This research has implications for the success of large-scale NSF initiatives in the Earth sciences (EarthScope), ocean sciences (OOI- Ocean Observatories Initiative), biological sciences (NEON - National Ecological Observatory Network) and civil engineering (NEES - Network for Earthquake Engineering Simulation). Each of these large scale initiatives aims to collect real-time data from thousands of sensors, and each will require new technologies to process, manage, and communicate real-time multidisciplinary environmental data on regional, national, and global scales.
NASA Astrophysics Data System (ADS)
Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.
2008-12-01
One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data analysis and visualization tools is also available within Giovanni. The GES DISC is currently developing a systematic series of training modules for Earth science satellite data, associated with our development of additional datasets and data visualization tools for Giovanni. Training sessions will include an overview of the Earth science datasets archived at Goddard, an overview of terms and techniques associated with satellite remote sensing, dataset-specific issues, an overview of Giovanni functionality, and a series of examples of how data can be readily accessed and visualized.
NASA Astrophysics Data System (ADS)
Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.
2005-05-01
NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of ASDC data for other client applications such as MATLAB, GrADS, and IDV. OPeNDAP has become a very popular alternative for data access especially at the university research level with over 375 OPeNDAP-accessible data sets registered nationally. Teacher workshops will be held each summer for five years to help teachers learn about incorporating NASA microsets in their curriculum. The next MY NASA DATA teacher workshop will be held at Langley Research Center July 25-29, 2005. Workshop participants will create microsets and lesson plans that they believe will help their students understand Earth system concepts. These lesson plans will be reviewed and shared online as user-contributed content.
INSPIRE: Initiating New Science Partnerships in Rural Education
NASA Astrophysics Data System (ADS)
Pierce, Donna M.; McNeal, K. S.; Bruce, L. M.; Harpole, S. H.; Schmitz, D. W.
2010-10-01
INSPIRE, Initiating New Science Partnerships in Rural Education, is a partnership between Mississippi State University and three school districts in Mississippi's Golden Triangle (Starkville, Columbus, West Point). This program recruits ten graduate fellows each year from geosciences, physics, astronomy, and engineering and pairs them with a participating middle school or high school teacher. The graduate fellows provide technology-supported inquiry-based learning in the earth and space sciences by incorporating their research into classroom instruction and using multiple resources such as Google Earth, geographic information systems (GIS), Celestia, and others. In addition to strengthening the communication skills of the graduate fellows, INSPIRE will increase the content knowledge of participating teachers, provide high-quality instruction using multiple technologies, promote higher education to area high-school students, and provide fellows and teachers with international research experience through our partners in Australia, The Bahamas, England, and Poland. INSPIRE is funded by the Graduate STEM Fellows in K-12 Education Program (GK-12; Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.
1998-06-01
STS095-S-001 (June 1998) --- The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The space shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number "7" signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represnted by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the forms of illustrations by the various news media. When and if there is any change in this policy, which is not anticipated, the change will be publicly announced. Photo credit: NASA
Automated protocols for spaceborne sub-meter resolution "Big Data" products for Earth Science
NASA Astrophysics Data System (ADS)
Neigh, C. S. R.; Carroll, M.; Montesano, P.; Slayback, D. A.; Wooten, M.; Lyapustin, A.; Shean, D. E.; Alexandrov, O.; Macander, M. J.; Tucker, C. J.
2017-12-01
The volume of available remotely sensed data has grown exceeding Petabytes per year and the cost for data, storage systems and compute power have both dropped exponentially. This has opened the door for "Big Data" processing systems with high-end computing (HEC) such as the Google Earth Engine, NASA Earth Exchange (NEX), and NASA Center for Climate Simulation (NCCS). At the same time, commercial very high-resolution (VHR) satellites have grown into a constellation with global repeat coverage that can support existing NASA Earth observing missions with stereo and super-spectral capabilities. Through agreements with the National Geospatial-Intelligence Agency NASA-Goddard Space Flight Center is acquiring Petabytes of global sub-meter to 4 meter resolution imagery from WorldView-1,2,3 Quickbird-2, GeoEye-1 and IKONOS-2 satellites. These data are a valuable no-direct cost for the enhancement of Earth observation research that supports US government interests. We are currently developing automated protocols for generating VHR products to support NASA's Earth observing missions. These include two primary foci: 1) on demand VHR 1/2° ortho mosaics - process VHR to surface reflectance, orthorectify and co-register multi-temporal 2 m multispectral imagery compiled as user defined regional mosaics. This will provide an easy access dataset to investigate biodiversity, tree canopy closure, surface water fraction, and cropped area for smallholder agriculture; and 2) on demand VHR digital elevation models (DEMs) - process stereo VHR to extract VHR DEMs with the NASA Ames stereo pipeline. This will benefit Earth surface studies on the cryosphere (glacier mass balance, flow rates and snow depth), hydrology (lake/water body levels, landslides, subsidence) and biosphere (forest structure, canopy height/cover) among others. Recent examples of products used in NASA Earth Science projects will be provided. This HEC API could foster surmounting prior spatial-temporal limitations while providing broad benefits to Earth Science.
Making the Case for GeoSTEM Education
NASA Astrophysics Data System (ADS)
Moore, John
2014-05-01
As the national Science-Technology-Engineering-Mathematics (STEM) education policy makers in the United States work through reports, findings, forums, workshops, etc., there emerges an opportunity to present the strong case of why and how the role of the Geosciences community can and should be at the forefront of these discussions. Currently existing within the Geosciences scientific and educational community are policies, frameworks, guidance, innovative technology, and unique interdisciplinary Earth System data sets that will establish a pathway to the role of the Geosciences in the classroom, in the 21st Century workforce, and in society. The question may be raised, "Why GeoSTEM?" But the real question should be … "Why not?" Over the past several years the Geosciences have dominated the news cycle in the United States. As we face future natural and human generated hazards and disasters such as the Gulf Oil Spill, not to mention issues confronting society such as Climate Change, Sustainability and Energy, the Geosciences have a critical role in the public awareness, safety, and national security of our nation. In the past year we have experienced volcanic eruptions, earth¬quakes, tsunamis, hurricanes, tornadoes, wildfires, severe drought and flooding, outbreaks of severe weather. Planet Earth will be monitored, observed, and studied as an Earth System, in real or near real time. Policy-makers, decision-makers, scientists, teachers, students, and citizens will not only participate in the process, but come to use such information and data routinely in their daily lives. 3-D data visualizations, virtual field trips, and interactive imagery from space all will contribute to the doing of real science in real time. Policy-Makers have linked Science, Technology, Engineering, and Mathematics (STEM) Education to United States' future economy and national security. The GeoSTEM community can deliver added value through leveraging current and future Geoscience-related resources that monitor our planet and protect the life and property of our citizens. The integration of a Geoscience and Remote Sensing Laboratory into an existing Earth Science program or a new Earth Systems Science course allows students to acquire the necessary rigorous laboratory skills as required by colleges or universities, while developing and becoming proficient in technological skills using industry standard analysis tools. With the accessibility of real-time or near real time data, students in a GeoSTEM driven course can engage in inquiry-based laboratory experiences focusing on real life applications, both local and global. Developing pathways between geoscientists, researchers, teachers, and students, will create an exchange of information, data, observations, and measurements that will lead to authentic science investigations through the monitoring of weather, water quality, sea surface temperature, coral reefs, marine wildlife, earthquakes, tsunamis, wildfires, air quality, land cover, and much more. Satellite, remote sensing, and geospatial technologies can introduce students and society to data that can inform policy makers and society both now and in the future.
2004-10-04
The prime and backup crew buses are escorted through the Baikonur Cosmodrome as the crew returns to the Cosmonaut Hotel. Expedition 10 Commander and NASA Science Officer Leroy Chiao, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces Cosmonaut Yuri Shargin donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station, while Shargin will return to Earth October 24 with the Station’s current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: “NASA/Bill Ingalls”
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
International Space Station (ISS)
1998-01-01
This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
NASA Technical Reports Server (NTRS)
Atwell, William; Koontz, Steve; Normand, Eugene
2012-01-01
In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).
NASA's James Webb Space Telescope Science Instruments Begin Final Super Cold Test at Goddard
2017-12-08
At NASA's James Webb Space Telescope's final destination in space, one million miles away from Earth, it will operate at incredibly cold temperatures of -387 degrees Fahrenheit, or 40 degrees Kelvin. This is 260 degrees Fahrenheit colder than any place on the Earth’s surface has ever been. So first, this final super cold test at Goddard will prepare the Integrated Science Instrument Module (ISIM), or the “heart” of the telescope, for space. Read more: go.nasa.gov/1KFPwJG Contamination Control Engineer Alan Abeel conducts final inspections and places contamination foils before the start of the test. Credit: NASA/Goddard/Chris Gunn NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Ross, K. W.; Orne, T. N.; Brumbaugh, E. J.; Childs-Gleason, L. M.; Favors, J. E.; Rogers, L.; Ruiz, M. L.; Allsbrook, K. N.; Bender, M. R.
2014-12-01
The NASA DEVELOP National Program builds capacity to use Earth observations in decision making in both participating individuals and in partnering institutions. In accomplishing this dual capacity building model, NASA DEVELOP invests ownership of project objectives fully in participants working with them to propose, implement and lead ambitious projects with aggressive schedules and a strong emphasis on partner engagement. DEVELOP offers over 350 participant opportunities a year to accomplish between 70 and 80 projects with around 160 partners. In the over 15 years since its inception, DEVELOP has worked with over 2000 participants, immersing them an environment rich in STEM tools, skills and networking. This presentation summarizes a recent survey capturing trends in outcomes and impressions among DEVELOP alumni and follows up with success stories for select individuals who have gone on to careers in Earth science, geoinformation technologies, science and engineering fields more generally and even outside of STEM. The presentation concludes with common themes that can be drawn from both survey measures and participant narratives.
Hyperspectral Systems Increase Imaging Capabilities
NASA Technical Reports Server (NTRS)
2010-01-01
In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.
Mysterious Roving Rocks of Racetrack Playa
2017-12-08
The summer interns with the 2010 Lunar and Planetary Science Academy (LPSA) at NASA's Goddard Space Flight Center came to study the Racetrack Playa rocks. Photo credit: NASA/GSFC/Mindy Krzykowski/LPSA intern To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.
2004-10-04
Expedition 10 Commander and NASA Science Officer Leroy Chiao donned his launch and entry suit and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Palsole, Sunay Vasant
The earth sciences play an important role in engaging students in science and in science, technology, engineering and mathematics (STEM) disciplines, because of the integrative nature of the disciplines. It then becomes important for us to provide an engaging experience for students taking earth science courses, because it serves a dual purpose of possibly increasing new majors in the discipline and helping to create a science literate population. Given that a majority of students in the larger introductory courses are non-majors, it behooves us to explore alternative engagement techniques and measure their efficacy in student engagement, which in turn can help inform instructional design for advanced geoscience courses. This study focused on creating a highly engaging course using inquiry based learning scenarios inter-spread throughout the semester along with heuristic quizzes (a series of questions in a specific sequence that map to a process) with very specific feedback that help students understand the development of the earth processes. Along with the heuristic quizzes, the course was transformed into an active learning based hybrid course, where the didactic content was uploaded and made available to the students using a learning management system and class time was spent working on application exercises that were developed by me. I chose specific scenarios and processes that the students could possibly encounter in the greater El Paso region to provide a local and situational aspect to the exercises. The course and instructional design process followed a period of 18 months with each semester providing data to jigsaw into the final design. Student performance data, both qualitative (self efficacy, self reported engagement ) as well as quantitative scales (performance on assessments, course grades) was collected over the entire development period. Comparative data of the hybrid course and a traditional course indicate improved student performance in the active learning course over the traditional course. The data also indicate that the students had greater content retention 8 week after the course had ended in the hybrid course over the traditional course. The study then presents a nascent model for the design of earth science courses.
Mastracchio during BASS II Setup
2014-02-12
ISS038-E-046385 (12 Feb. 2014) --- NASA astronaut Rick Mastracchio, Expedition 38 flight engineer, uses a computer while setting up the Microgravity Science Glovebox (MSG) for the Burning and Suppression of Solids (BASS-II) experiment in the Destiny laboratory of the International Space Station. BASS-II explores how different substances burn in microgravity with benefits for combustion on Earth and fire safety in space.
Endeavour Grand Opening Ceremony
2012-10-30
A space shuttle main engine (SSME) is on display near the space shuttle Endeavour at the California Science center's Samuel Oschin Space Shuttle Endeavour Display Pavilion, Tuesday, Oct. 30, 2012, in Los Angeles. Endeavour, built as a replacement for space shuttle Challenger, completed 25 missions, spent 299 days in orbit, and orbited Earth 4,671 times while traveling 122,883,151 miles. Photo Credit: (NASA/Bill Ingalls)
Expedition Five crew members wave to onlookers as they leave KSC for Houston
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Expedition Five crew members wave to onlookers as they leave KSC for Houston. From left are Science Officer Peggy Whitson and Commander Valery Korzun. Not seen is Flight Engineer Sergei Treschev. The three returned to Earth Dec. 7 on Endeavour, with the STS-113 crew, after six months on the International Space Station.
NASA Astrophysics Data System (ADS)
Jacobs, B. E.; Bohls-Graham, C. E.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; McIver, H.; Sergent, C.
2015-12-01
The development of the Next Generation Science Standards (NGSS) as a framework around which to guide K-12 science instruction has generated a call for rigorous curricula that meets the demand for developing a workforce with expertise in tackling modern Earth science challenges. The Diversity and Innovation in Geosciences (DIG) Texas Blueprints project addresses this need for quality, aligned curricula with educator-vetted, freely available resources carefully selected and compiled into three week thematic units that have been aligned with the Earth Science Literacy Principles and the NGSS. These units can then be packaged into customized blueprints for a year-long Earth & Space Science course that engages students in the relevant disciplinary core ideas, crosscutting concepts and science and engineering practices. As part of supporting NGSS-congruent instruction, each unit has extensive scaffolding notes for the learning activities selected for that unit. Designed with both the new and veteran teacher in mind, these scaffolding notes yield information regarding advanced teacher preparation, student prerequisite skills, and potential challenges that might arise during classroom implementation. Feedback from Texas high school teachers implementing the DIG Texas Blueprints in the classroom, in addition to that of university secondary education majors in a preparation course utilizing the blueprints, instigated the most recent revisions to these scaffolding notes. The DIG Texas Blueprints Educator Intern Team charged with these revisions then determined which learning activities became candidates for either inclusion in the refined units, retention as an additional resource, or elimination from the blueprints. This presentation will focus on the development of these scaffolding notes and their role in supporting congruence with the NGSS. A review of the second year of implementation of the blueprints and the feedback that generated the final revisions will be shared, as well as the current accessibility status of the DIG Texas Blueprints resources
Earth Sciences Division annual report 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less
NExSS/NAI Joint ExoPAG SAG 16 Report on Remote Biosignatures for Exoplanets
NASA Technical Reports Server (NTRS)
Kiang, Nancy Y.; Parenteau, Mary Nicole; Domagal-Goldman, Shawn
2017-01-01
Future exoplanet observations will soon focus on the search for life beyond the Solar System. Exoplanet biosignatures to be sought are those with global, potentially detectable, impacts on a planet. Biosignatures occur in an environmental context in which geological, atmospheric, and stellar processes and interactions may work to enhance, suppress or mimic these biosignatures. Thus biosignature scienceis inherently interdisciplinary. Its advance is necessary to inform the design of the next flagship missions that will obtain spectra of habitable extrasolar planets. The NExSS NAI Joint Exoplanet Biosignatures Workshop Without Walls brought together the astrobiology, exoplanet, and mission concept communities to review, discuss, debate, and advance the science of remote detection of planetary biosignatures. The multi-meeting workshop began in June 2016, and was a process that engaged a broad range of experts across the interdisciplinary reaches of NASA's Nexus for Exoplanet System Science (NExSS) program, the NASA Astrobiology Institute (NAI), NASAs Exoplanet Exploration Program (ExEP), and international partners, such as the European Astrobiology Network Association (EANA) and Japans Earth Life Science Institute (ELSI). These groups spanned expertise in astronomy, planetary science, Earth sciences, heliophysics, biology, instrument mission development, and engineering.
METERON end-to-end Network for Robotic Experiments: Objectives and first operations at B.USOC.
NASA Astrophysics Data System (ADS)
This, N.; Michel, A.; Litefti, K.; Muller, C.; Moreau, D.
2012-09-01
METERON an international collaboration between ESA, NASA (University of Colorado), Roskosmos and DLR. It intends to use the ISS as a test bed to simulate an orbiter around another heavenly body (for example Mars), under directives from Mission Control on Earth. Astronauts on the orbiter will project their human initiative and instinct, in realtime, onto the surface of the heavenly body (simulated by an analog site on the Earth) through robotic device(s) to perform science or engineering tasks. This type of real-time control is not possible directly from Earth due to the One Way Light Time delay in communications. METERON operations are managed by B.USOC since December 2011 as Facility Reference Centre.
NASA Astrophysics Data System (ADS)
Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.
2011-12-01
Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.
NASA Astrophysics Data System (ADS)
Clifford, Betsey A.
The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.
Experience with Data Science as an Intern with the Jet Propulsion Laboratory
NASA Astrophysics Data System (ADS)
Whittell, J.; Mattmann, C. A.; Whitehall, K. D.; Ramirez, P.; Goodale, C. E.; Boustani, M.; Hart, A. F.; Kim, J.; Waliser, D. E.; Joyce, M. J.
2013-12-01
The Regional Climate Model Evaluation System (RCMES, http://rcmes.jpl.nasa.gov) at NASA's Jet Propulsion Laboratory seeks to improve regional climate model output by comparing past model predictions with Earth-orbiting satellite data (Mattmann et al. 2013). RCMES ingests satellite and RCM data and processes these data into a common format; as needed, the software queries the RCMES database for these datasets, on which it runs a series of statistical metrics including model-satellite comparisons. The development of the RCMES software relies on collaboration between climatologists and computer scientists, as evinced by RCMES longstanding work with CORDEX (Kim et al. 2012). Over a total of 17 weeks in 2011, 2012, and 2013, I worked as an intern at NASA's Jet Propulsion Laboratory in a supportive capacity for RCMES. A high school student, I had no formal background in either Earth science or computer technology, but was immersed in both fields. In 2011, I researched three earth-science data management projects, producing a high-level explanation of these endeavors. The following year, I studied Python, contributing a command-line user interface to the RCMES project code. In 2013, I assisted with data acquisition, wrote a file header information plugin, and the visualization tool GrADS. The experience demonstrated the importance of an interdisciplinary approach to data processing: to streamline data ingestion and processing, scientists must understand, at least on a high-level, any programs they might utilize while to best serve the needs of earth scientists, software engineers must understand the science behind the data they handle.
Modernizing Earth and Space Science Modeling Workflows in the Big Data Era
NASA Astrophysics Data System (ADS)
Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.
2017-12-01
Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and automation in the near term, and longer term investments in virtualized environments for improved scalability, tolerance for lossy data compression, novel data-centric memory and storage technologies, and tools for peer reviewing, preserving and sharing workflows, as well as fundamental statistical and machine learning algorithms.
Integrating Earth System Science Data Into Tribal College and University Curricula
NASA Astrophysics Data System (ADS)
Tilgner, P. J.; Perkey, D. J.
2007-12-01
Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget, surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.
NASA Astrophysics Data System (ADS)
Frankel, Henry
1986-10-01
Wood's The Dark Side of the Earth is another addition to the growing list of books on the recent revolution in the earth sciences. Wood rightly points out that any new book on the topic should break new ground. In the preface, he writes of himself and his book that he has benefited from previous accounts by saving himself research time, and that his book, unlike others, “attempts to tell one complete story of the study of the Earth, geologists, geophysicists, dreamers and all” (p. vi). Wood is ambitious, for his work covers much of 19th-century geology as well as the development, reception, rejection, and eventual acceptance of mobilist ideas. Before discussing the work of the German meteorologist and geophysicist Alfred L. Wegener, American glacial geomorphologist Frank Taylor, and several of their predecessors who proposed “mobilist” ideas, he manages to string together brief descriptions of the contributions of (among others) German mineralogist Abraham Gottlob Werner, British geologists James Hutten and John Playfair, British engineer William Smith, British geologist Charles Lyell, American geologists James Hall and James Dwight Dana, British volcanologist William Lowthian Green, American geologist Grove Karl Gilbert, French geologist Elie de Beaumont, British geologist and mathematician Osmond Fisher, American geologist Clarence Dutton, British mathematician and physicist Lord Kelvin, Austrian geologist Eduard Suess, French geologist Marcel Bertrand, and American geologist Thomas Chrowder Chamberlin. Moreover, Wood offers an interesting thesis about the revolution in the earth sciences. He claims that the real revolution was not the replacement of fixist views with the mobilist ones of sea floor spreading and plate tectonics, but rather the replacement of geology with the new discipline of the earth sciences in which geophysics and geochemistry play the central role.
NASA Technical Reports Server (NTRS)
2000-01-01
The space vehicle Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. In this photograph, engineer Gary Reynolds is inspecting the inside of the probe neck during probe thermal repairs. GP-B is scheduled for launch in April 2004 and managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Gravity Probe B, Stanford University)
Gravity Probe B Number 4 Gyro Inspected
NASA Technical Reports Server (NTRS)
2000-01-01
The Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. In this photograph, Stanford engineer, Chris Gray, is inspecting the number 4 gyro under monochromatic light. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Leese, Stanford University.)
NASA LWS Institute GIC Working Group: GIC science, engineering and applications readiness
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Thomson, A. W. P.; Bernabeu, E.
2016-12-01
In recognition of the rapidly growing interest on the topic, this paper is based on the findings of the very first NASA Living With a Star (LWS) Institute Working Group that was specifically targeting the GIC issue. The new LWS Institutes program element was launched 2014 and the concept is built around small working group style meetings that focus on well defined problems that demand intense, direct interactions between colleagues in neighboring disciplines to facilitate the development of a deeper understanding of the variety of processes that link the solar activity to Earth's environment. The LWS Institute Geomagnetically Induced Currents (GIC) Working Group (WG) led by A. Pulkkinen (NASA GSFC) and co-led by E. Bernabeu (PJM) and A. Thomson (BGS) was selected competitively as the pilot activity for the new LWS element. The GIC WG was tasked to 1) identify, advance, and address the open scientific and engineering questions pertaining to GIC, 2) advance predictive modeling of GIC, 3) advocate and act as a catalyst to identify resources for addressing the multidisciplinary topic of GIC. In this paper, we target the goal 1) of the GIC WG. More specifically, the goal of this paper is to review the current status and future challenges pertaining to science, engineering and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allow improved understanding and physics-based modeling of physical processes behind GIC. Engineering in turn is understood here as the "impact" aspect of GIC. The impact includes any physical effects GIC may have on the performance of the manmade infrastructure. Applications is understood as the models, tools and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government for managing any potential consequences from GIC impact to critical infrastructure. In this sense, applications can be considered as the ultimate goal of our GIC work and thus in assessing the status of the field, we specifically will quantify the readiness of various applications in the GIC effects mitigation context.
Students Across Borders: A Summer Earth Science Workshop for Hispanic High School Students
NASA Astrophysics Data System (ADS)
Butler, R. F.; Kresan, P.; Baez, A.; Sheppard, P.; Forger, G.; Rendon-Coke, G.; Gray, F.
2003-12-01
Southern Arizona has a high school (HS) population that is 28% Hispanic. However this fast-growing minority group represents only 14% of undergraduate students at the University of Arizona and 11% of science and engineering majors. The Students Across Borders Program was designed to assist Hispanic HS students across borders that often separate them from higher education and careers in science. In June 2003, five person student-teacher teams from Tucson, Yuma, and northern Sonora, Mexico lived in dormitories and participated in a weeklong program based on the University of Arizona campus. Activities included: field trips featuring inquiry-based investigations of geology, water quality, and tree rings; tours of engineering and science laboratories; introduction to student support organizations such as the Society of Hispanic Professional Engineers; and counseling by Career Services and Admissions personnel. Technology training included instruction in web design, digital imaging and online communication tools. Web sites developed by the student teams were presented to participants and families at the conclusion of the on-campus program. Web site development is continuing during the academic year to foster continuing communication between the student teams and presentation of results of follow-on projects assisted by graduate and undergraduate CATTS fellows and university faculty.
Geodesy and the UNAVCO Consortium: Three Decades of Innovations
NASA Astrophysics Data System (ADS)
Rowan, L. R.; Miller, M. M.; Meertens, C. M.; Mattioli, G. S.
2015-12-01
UNAVCO, a non-profit, university consortium that supports geoscience research using geodesy, began with the ingenious recognition that the nascent Global Positioning System constellation (GPS) could be used to investigate earth processes. The consortium purchased one of the first commercially available GPS receivers, Texas Instrument's TI-4100 NAVSTAR Navigator, in 1984 to measure plate deformation. This early work was highlighted in a technology magazine, GPSWorld, in 1990. Over a 30-year period, UNAVCO and the community have helped advance instrument design for mobility, flexibility, efficiency and interoperability, so research could proceed with higher precision and under ever challenging conditions. Other innovations have been made in data collection, processing, analysis, management and archiving. These innovations in tools, methods and data have had broader impacts as they have found greater utility beyond research for timing, precise positioning, safety, communication, navigation, surveying, engineering and recreation. Innovations in research have expanded the utility of geodetic tools beyond the solid earth science through creative analysis of the data and the methods. For example, GPS sounding of the atmosphere is now used for atmospheric and space sciences. GPS reflectrometry, another critical advance, supports soil science, snow science and ecological research. Some research advances have had broader impacts for society by driving innovations in hazards risk reduction, hazards response, resource management, land use planning, surveying, engineering and other uses. Furthermore, the geodetic data is vital for the design of space missions, testing and advancing communications, and testing and dealing with interference and GPS jamming. We will discuss three decades (and counting) of advances by the National Science Foundation's premiere geodetic facility, consortium and some of the many geoscience principal investigators that have driven innovations in research, instrumentation, data management, cyberinfrastructure and other applications.
Southern California Earthquake Center (SCEC) Communication, Education and Outreach Program
NASA Astrophysics Data System (ADS)
Benthien, M. L.
2003-12-01
The SCEC Communication, Education, and Outreach Program (CEO) offers student research experiences, web-based education tools, classroom curricula, museum displays, public information brochures, online newsletters, and technical workshops and publications. This year, much progress has been made on the development of the Electronic Encyclopedia of Earthquakes (E3), a collaborative project with CUREE and IRIS. The E3 development system is now fully operational, and 165 entries are in the pipeline. When complete, information and resources for over 500 Earth science and engineering topics will be included, with connections to curricular materials useful for teaching Earth Science, engineering, physics and mathematics. To coordinate activities for the 10-year anniversary of the Northridge Earthquake in 2004 (and beyond), the "Earthquake Country Alliance" is being organized by SCEC CEO to present common messages, to share or promote existing resources, and to develop new activities and products jointly (such as a new version of Putting Down Roots in Earthquake Country). The group includes earthquake science and engineering researchers and practicing professionals, preparedness experts, response and recovery officials, news media representatives, and education specialists. A web portal, http://www.earthquakecountry.info, is being developed established with links to web pages and descriptions of other resources and services that the Alliance members provide. Another ongoing strength of SCEC is the Summer Intern program, which now has a year-round counterpart with students working on IT projects at USC. Since Fall 2002, over 32 students have participated in the program, including 7 students working with scientists throughout SCEC, 17 students involved in the USC "Earthquake Information Technology" intern program, and 7 students involved in CEO projects. These and other activities of the SCEC CEO program will be presented, along with lessons learned during program design and implementation.
Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meehl, Gerald A.; Moss, Richard
Global environmental changes such as climate change result from the interaction of human and natural systems. Research to understand these changes and options for addressing them requires the physical, environmental, and social sciences, as well as engineering and other applied fields. In this essay, we describe how the Aspen Global Change Institute (AGCI) has provided leadership in global change science over the past 25 years—in particular how it has contributed to the integration of the natural and social sciences needed to research the drivers of change, Earth system response, natural and human system impacts, and options for risk management. Wemore » illustrate the ways the history of AGCI has been intertwined with the evolution of global change science as it has become an increasingly interdisciplinary endeavor.« less
Skylab mission report, third visit
NASA Technical Reports Server (NTRS)
1974-01-01
An evaluation is presented of the operational and engineering aspects of the third Skylab visit, including information on the performance of the command and service module and the experiment hardware, the crew's evaluation of the visit, and other visit-related areas of interest such as biomedical observations. The specific areas discussed are contained in the following: (1) solar physics and astrophysics investigations; (2) Comet Kohoutek experiments; (3) medical experiments; (4) earth observations, including data for the multispectral photographic facility, the earth terrain camera, and the microwave radiometer/scattermometer and altimeter; (5) engineering and technology experiments; (6) food and medical operational equipment; (7) hardware and experiment anomalies; and (8) mission support, mission objectives, flight planning, and launch phase summary. Conclusions discussed as a result of the third visit to Skylab involve the advancement of the sciences, practical applications, the durability of man and systems in space, and spaceflight effectiveness and economy.
Horizon: A Proposal for Large Aperture, Active Optics in Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Jenstrom, Del
2000-01-01
In 1999, NASA's New Millennium Program called for proposals to validate new technology in high-earth orbit for the Earth Observing-3 (NMP EO3) mission to fly in 2003. In response, we proposed to test a large aperture, active optics telescope in geosynchronous orbit. This would flight-qualify new technologies for both Earth and Space science: 1) a future instrument with LANDSAT image resolution and radiometric quality watching continuously from geosynchronous station, and 2) the Next Generation Space Telescope (NGST) for deep space imaging. Six enabling technologies were to be flight-qualified: 1) a 3-meter, lightweight segmented primary mirror, 2) mirror actuators and mechanisms, 3) a deformable mirror, 4) coarse phasing techniques, 5) phase retrieval for wavefront control during stellar viewing, and 6) phase diversity for wavefront control during Earth viewing. Three enhancing technologies were to be flight- validated: 1) mirror deployment and latching mechanisms, 2) an advanced microcontroller, and 3) GPS at GEO. In particular, two wavefront sensing algorithms, phase retrieval by JPL and phase diversity by ERIM International, were to sense optical system alignment and focus errors, and to correct them using high-precision mirror mechanisms. Active corrections based on Earth scenes are challenging because phase diversity images must be collected from extended, dynamically changing scenes. In addition, an Earth-facing telescope in GEO orbit is subject to a powerful diurnal thermal and radiometric cycle not experienced by deep-space astronomy. The Horizon proposal was a bare-bones design for a lightweight large-aperture, active optical system that is a practical blend of science requirements, emerging technologies, budget constraints, launch vehicle considerations, orbital mechanics, optical hardware, phase-determination algorithms, communication strategy, computational burdens, and first-rate cooperation among earth and space scientists, engineers and managers. This manuscript presents excerpts from the Horizon proposal's sections that describe the Earth science requirements, the structural -thermal-optical design, the wavefront sensing and control, and the on-orbit validation.
Making the Earth to Life Connection Using Climate Change
NASA Astrophysics Data System (ADS)
Haine, D. B.; Berbeco, M.
2016-12-01
From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.
2001-08-01
The Gravity Probe B (GP-B) payload was hoisted by crane to the transportation truck in the W.W. Hansen Experimental Physics Laboratory in Stanford, California for shipment to the launch site at Vandenburg Air Force Base. GP-B is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004, the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University, along with major subcontractor Lockheed Martin Corporation. (Photo Credit: Stanford University)
2000-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being assembled at the Sunnyvale, California location of the Lockheed Martin Corporation. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
2004-01-01
In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).
NASA Technical Reports Server (NTRS)
Edwards, Charles D., Jr.; Barbieri, A.; Brower, E.; Estabrook, P.; Gibbs, R.; Horttor, R.; Ludwinski, J.; Mase, R.; McCarthy, C.; Schmidt, R.;
2004-01-01
NASA and ESA have established an international network of Mars orbiters, outfitted with relay communications payloads, to support robotic exploration of the red planet. Starting in January, 2004, this network has provided the Mars Exploration Rovers with telecommunications relay services, significantly increasing rover engineering and science data return while enhancing mission robustness and operability. Augmenting the data return capabilities of their X-band direct-to-Earth links, the rovers are equipped with UHF transceivers allowing data to be relayed at high rate to the Mars Global Surveyor (MGS), Mars Odyssey, and Mars Express orbiters. As of 21 July, 2004, over 50 Gbits of MER data have been obtained, with nearly 95% of that data returned via the MGS and Odyssey UHF relay paths, allowing a large increase in science return from the Martian surface relative to the X-band direct-to-Earth link. The MGS spacecraft also supported high-rate UHF communications of MER engineering telemetry during the critical period of entry, descent, and landing (EDL), augmenting the very low-rate EDL data collected on the X-band direct-to-Earth link. Through adoption of the new CCSDS Proximity-1 Link Protocol, NASA and ESA have achieved interoperability among these Mars assets, as validated by a successful relay demonstration between Spirit and Mars Express, enabling future interagency cross-support and establishing a truly international relay network at Mars.
Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems
NASA Astrophysics Data System (ADS)
Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.
2013-04-01
Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.
NASA Astrophysics Data System (ADS)
Kinzler, R. J.; Short, J.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Kravitz, D.; Randle, D.; Trowbridge, C.
2014-12-01
Leveraging the Rose Center for Earth and Space and active research departments in Earth and Planetary Science, Astrophysics, and Paleontology, the Education Department at the American Museum of Natural History (AMNH) offers an MAT program to prepare new Earth Science teachers (~100 new teachers by 2018) as well as a range of professional development (PD) opportunities for over 3,000 K-12 teachers annually, providing opportunities to learn with scientists; inquiry-based experiences; and standards-aligned resources. The AMNH produces innovative geoscience and other STEM resources supporting teacher and student science investigations with data visualizations and analysis tools, teaching case materials and other resources that provide rich nonfiction reading and writing opportunities for use in Earth and space science curricula that are integrated in the MAT and PD programs. Museum resources and the MAT and PD programs are aligned to support the recently released Next Generation Science Standards (NGSS) and the Common Core State Standards. The NGSS is a set of science and engineering practices, crosscutting concepts and disciplinary core ideas to help cultivate teachers' and K-12 students' scientific habits of mind, develop their knowledge and abilities to engage in scientific investigations, and teach them how to reason in context; goals that closely align with those of the AMNH's teacher preparation and professional development programs. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) is a required text for the MAT program, and this text as well as the NGSS Performance Expectations guide the PD programs as well. Researchers working with Museum scientists and educators find it is not enough for programs for pre- and in-service teachers to provide access to resources. Research suggests that these programs need to engage pre- and in-service teachers in using and reflecting on these types of resources, as well as take into account school environments and support for pre- and in-service teachers with different levels of knowledge and teaching expertise. Evaluation findings from AMNH programs indicate pre- and in-service teachers deepen their science content knowledge and develop new ways of supporting inquiry-based learning and teaching.
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori of Italy blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips is seen during a press conference, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Phillips, Expedition 11 Commander Sergei Krikalev and, European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips speaks to the press, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Phillips, Expedition 11 Commander Sergei Krikalev and European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2005-04-13
The Soyuz TMA-6 sits on the pad ready for launch, Thursday, April 14, 2005, at the Baikonur Cosmodrome in Kazakhstan. Expedition 11 crew Commander Sergei Krikalev along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, will launch April 15, 2005. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
2005-04-15
Expedition 11 Commander Sergei Krikalev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori, of Italy, blast off aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan, Friday, April 15, 2005, for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Expedition 11 Press Conference
2005-04-13
Expedition 11 Commander Sergei Krikalev speaks to the press, Thursday, April 14, 2005, in Baikonur, Kazakhstan. Kiralev, Flight Engineer and NASA Science Officer John Phillips and European Space Agency astronaut Roberto Vittori, of Italy, are scheduled to launch aboard a Soyuz TMA-6 spacecraft April 15. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
Grand challenges in space synthetic biology
Montague, Michael G.; Cumbers, John; Hogan, John A.
2015-01-01
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337
2004-10-04
Russian Space Forces cosmonaut Yuri Shargin, center, and Expedition 10 Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard the Soyuz TMA-5 spacecraft Friday, October 5, 2004 at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Larson, Ray R.
1996-01-01
Examines the bibliometrics of the World Wide Web based on analysis of Web pages collected by the Inktomi "Web Crawler" and on the use of the DEC AltaVista search engine for cocitation analysis of a set of Earth Science related Web sites. Looks at the statistical characteristics of Web documents and their hypertext links, and the…
Opening the archive: how free data has enabled the science and monitoring promise of Landsat
Michael A. Wulder; Jeffrey G. Masek; Warren B. Cohen; Thomas R. Loveland; Curtis E. Woodcock
2012-01-01
Landsat occupies a unique position in the constellation of civilian earth observation satellites, with a long and rich scientific and applications heritage. With nearly 40 years of continuous observationâsince launch of the first satellite in 1972âthe Landsat program has benefited from insightful technical specification, robust engineering, and the necessary...
Wiseman during BASS experiment
2014-07-02
ISS040-E-031397 (2 July 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, works with a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
NASA Technical Reports Server (NTRS)
Robertson, Glen A.
2013-01-01
NASA currently has a program called the Space Synthetic Biology Project. Synthetic Biology or SynBio is the design and construction of new biological functions and systems not found in nature. Four NASA field centers, along with experts from industry and academia, have been partnering on the Space Synthetic Biology Project and are working on new breakthroughs in this increasingly useful pursuit, which is part a science discipline and part engineering. Led by researchers at NASA s Ames Research Center, the team is studying how this powerful new tool can help NASA now and in the future. The project was created to harness biology in reliable, robust, engineered systems to support the agency s exploration and science missions, to improve life on Earth and to help shape NASA's future. The program also is intended to contribute foundational tools to the synthetic biology research community.
STS-114 Crew Interview: Soichi Noguchi
NASA Technical Reports Server (NTRS)
2003-01-01
Soichi Noguchi, Mission Specialist 1 (MS1) representing Japan's National Space Development Agency (NASDA) is seen during a prelaunch interview. He discusses the main goals of this flight which are to take expedition 7 to the International Space Station and bring back expedition 6 to the Earth. He is also responsible for all Extravehicular (EVA) work on this mission. Expedition seven includes: Mission Specialist and Commander Yuri Malenchenko; NASA ISS Science Officer Edward Lu; and Flight Engineer Alexander Kaleri. Expedition Six includes: Commander Kenneth Bowersox; NASA ISS Science Officer Donald Petit; and Flight Engineer Nikolai Budarin. Noguchi explains the Utilization and Logistics Flight 1 (ULF1) Mission which entails the exchange of crewmembers, various supplies and experiments and the replacement of a control component on the International Space Station. This is also will be Soichi Noguchi's first spacewalk.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
Terraforming the Planets and Climate Change Mitigation on Earth
NASA Astrophysics Data System (ADS)
Toon, O. B.
2008-12-01
Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive creatures hidden somewhere, does that change the ethics? Or perhaps, if left alone, the planet would later evolve to have life, is it ethical to alter that path? Many of these questions have parallels to things we need to consider when we talk about geo-engineering Earth. I will touch upon some of these subjects in this talk.
Investigating the Connections between Oil and Gas Industry Affiliation and Climate Change Concerns
NASA Astrophysics Data System (ADS)
Schrader, S. M.; Bunnell, D.; Danielson, C.; Borglum, S.
2012-12-01
In addition to the research on scientific aspects of climate change, significant work has also been done on the perception of climate change among various sectors of the population. This is an important area of research as in many cases the science policy of a country is a function of the popular sentiment. One area of interest is the relationship between education, specifically in related areas such as earth sciences and engineering, to one's views on climate change. While research has shown that there is a correlation between higher education and an acceptance of human caused climate change, this work looks into the question more specifically. The question asked here is: given a group of people with education and experience in the earth sciences, does the area of employment affect how they view the issue? In other words, does an engineer or geoscientist working in the oil and gas industry look at the data relating to climate change in the same way an equivalently educated engineer or geoscientist working in another field does? An understanding of whether or not employment in the oil and gas industry has a similar effect on views of climate change as political or religious ideologies may help in fostering communication between disciplines and working together for solutions. In order to look at this question, a survey is being conducted of members in the petroleum engineering community. The survey is designed along the lines of similar surveys to measure the respondents understanding of, concern with, and beliefs about climate change. It also includes other correlating factors such as political and religious views. A second group of engineers in fields that typically place them outside of the oil and gas industry are being surveyed as a control group. The results will determine whether individuals with similar educational backgrounds look at the data connected with climate change differently based on the field in which they work, and if so, are there other confounding issues related to political and religious background and ideology.
Raising Climate Literacy of K-12 Teachers with Datastreme Earth's Climate System
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I.; Weinbeck, R. S.; Mills, E. W.; Nugnes, K. A.
2014-12-01
The American Meteorological Society (AMS) DataStreme Project is a free professional development program for in-service K-12 teachers, in which they gain considerable subject matter content and confidence in Earth science instruction. DataStreme Atmosphere, Ocean, and Earth's Climate System (ECS) are offered each fall and spring semester by Local Implementation Teams (LITs) across the country in coordination with a team of AMS Education Program scientists and educators who develop instructional materials, provide logistical support to the LITs, and administer the project. The 3-member LITs mentor about 8 teachers and in some instances an emergency manager, per semester through a given DataStreme course. Teachers may receive 3 tuition-free graduate credits through State University of New York's The College at Brockport upon completion of each DataStreme course. DataStreme is in close alignment with A Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). Investigating the scientific basis of the workings of Earth's atmosphere, ocean, and climate system follows the cross-cutting theme of the Framework and the NGSS and is the cornerstone of the DataStreme courses. In particular, DataStreme ECS explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's teachers and students. The course utilizes resources from respected organizations, such as the IPCC and U.S. Global Change Research Program. Key to the NGSS is that students learn disciplinary core ideas in the context of science and engineering practices. In order for the students to learn in this way, the AMS believes that it is important to train the teachers in this context. DataStreme ECS emphasizes investigation of real-word and current NASA and NOAA data. Participants also are made aware of NASA's EdGCM, a research-grade Global Climate Model where they can explore various future climate scenarios in the same way that actual research scientists do. The AMS DataStreme Project has received support from the National Science Foundation, NASA, and NOAA. Since 1996, more than 18,000 teachers have completed a DataStreme course, directly impacting hundreds of thousands of additional teachers and more than 1 million students.
NASA Astrophysics Data System (ADS)
Wyborn, L. A.; Evans, B. J. K.; Pugh, T.; Lescinsky, D. T.; Foster, C.; Uhlherr, A.
2014-12-01
The National Computational Infrastructure (NCI) at the Australian National University (ANU) is a partnership between CSIRO, ANU, Bureau of Meteorology (BoM) and Geoscience Australia. Recent investments in a 1.2 PFlop Supercomputer (Raijin), ~ 20 PB data storage using Lustre filesystems and a 3000 core high performance cloud have created a hybrid platform for higher performance computing and data-intensive science to enable large scale earth and climate systems modelling and analysis. There are > 3000 users actively logging in and > 600 projects on the NCI system. Efficiently scaling and adapting data and software systems to petascale infrastructures requires the collaborative development of an architecture that is designed, programmed and operated to enable users to interactively invoke different forms of in-situ computation over complex and large scale data collections. NCI makes available major and long tail data collections from both the government and research sectors based on six themes: 1) weather, climate and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology and 6) astronomy, bio and social. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. Collections are the operational form for data management and access. Similar data types from individual custodians are managed cohesively. Use of international standards for discovery and interoperability allow complex interactions within and between the collections. This design facilitates a transdisciplinary approach to research and enables a shift from small scale, 'stove-piped' science efforts to large scale, collaborative systems science. This new and complex infrastructure requires a move to shared, globally trusted software frameworks that can be maintained and updated. Workflow engines become essential and need to integrate provenance, versioning, traceability, repeatability and publication. There are also human resource challenges as highly skilled HPC/HPD specialists, specialist programmers, and data scientists are required whose skills can support scaling to the new paradigm of effective and efficient data-intensive earth science analytics on petascale, and soon to be exascale systems.
Science on Stage: Engaging and teaching scientific content through performance art
NASA Astrophysics Data System (ADS)
Posner, Esther
2016-04-01
Engaging teaching material through performance art and music can improve the long-term retention of scientific content. Additionally, the development of effective performance skills are a powerful tool to communicate scientific concepts and information to a broader audience that can have many positive benefits in terms of career development and the delivery of professional presentations. While arts integration has been shown to increase student engagement and achievement, relevant artistic materials are still required for use as supplemental activities in STEM (science, technology, engineering, mathematics) courses. I will present an original performance poem, "Tectonic Petrameter: A Journey Through Earth History," with instructions for its implementation as a play in pre-university and undergraduate geoscience classrooms. "Tectonic Petrameter" uses a dynamic combination of rhythm and rhyme to teach the geological time scale, fundamental concepts in geology and important events in Earth history. I propose that using performance arts, such as "Tectonic Petrameter" and other creative art forms, may be an avenue for breaking down barriers related to teaching students and the broader non-scientific community about Earth's long and complex history.
NASA Astrophysics Data System (ADS)
Menzel, Paul
Verner Edward Suomi passed away in Madison, Wisconsin, on Sunday, July 30, after a long battle with heart disease. Internationally recognized as the father of satellite meteorology, Suomi invented many satellite instruments that led to a better understanding of the Earth and its atmosphere. He succeeded in conducting the first American meteorological experiment ever from a satellite platform in 1959, in which he measured the Earth radiation budget with white and black heat sensing radiometers. This was followed by planetary investigations with similar instruments for Venus and Jupiter space probes. Suomi's most influential invention was the spin-scan camera, which enabled geostationary weather observations. This technology is still used worldwide today. He also founded the Space Science and Engineering Center, where many of his inventions were created and systems were established to process the data into information. In a eulogy, University of Wisconsin Provost John Wiley commented, “Verner Suomi was a giant of modern science. His inventions were simple and elegant, and their consequences are ubiquitous. Anyone looking at a satellite image of Earth on the evening weather is looking at the product of a rare mind.”
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Xing, Z.
2007-12-01
The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of Web Services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-stratosphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we have developed a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo leverages remote Web Services, called via Simple Object Access Protocol (SOAP) or REST (one-line) URLs, and the Grid Computing standards (WS-* & Globus Alliance toolkits), and enables scientists to do multi- instrument Earth Science by assembling reusable Web Services and native executables into a distributed computing flow (tree of operators). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. In particular, SciFlo exploits the wealth of datasets accessible by OpenGIS Consortium (OGC) Web Mapping Servers & Web Coverage Servers (WMS/WCS), and by Open Data Access Protocol (OpenDAP) servers. SciFlo also publishes its own SOAP services for space/time query and subsetting of Earth Science datasets, and automated access to large datasets via lists of (FTP, HTTP, or DAP) URLs which point to on-line HDF or netCDF files. Typical distributed workflows obtain datasets by calling standard WMS/WCS servers or discovering and fetching data granules from ftp sites; invoke remote analysis operators available as SOAP services (interface described by a WSDL document); and merge results into binary containers (netCDF or HDF files) for further analysis using local executable operators. Naming conventions (HDFEOS and CF-1.0 for netCDF) are exploited to automatically understand and read on-line datasets. More interoperable conventions, and broader adoption of existing converntions, are vital if we are to "scale up" automated choreography of Web Services beyond toy applications. Recently, the ESIP Federation sponsored a collaborative activity in which several ESIP members developed some collaborative science scenarios for atmospheric and aerosol science, and then choreographed services from multiple groups into demonstration workflows using the SciFlo engine and a Business Process Execution Language (BPEL) workflow engine. We will discuss the lessons learned from this activity, the need for standardized interfaces (like WMS/WCS), the difficulty in agreeing on even simple XML formats and interfaces, the benefits of doing collaborative science analysis at the "touch of a button" once services are connected, and further collaborations that are being pursued.
Joint Interdisciplinary Earth Science Information Center
NASA Technical Reports Server (NTRS)
Kafatos, Menas
2004-01-01
The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.
The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science
NASA Astrophysics Data System (ADS)
Wilson, A.
2016-12-01
Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.
International Space University variable gravity research facility design
NASA Astrophysics Data System (ADS)
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1994-03-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness, and loss of bone calcium. A variable gravity research facility (VGRF) that will be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. This report describes the VGRF design that was developed by international participants specializing in the following areas: the politics of international cooperation; engineering, architecture; in-space physiological, materials, and life science experimentation; data communications; and business and management.
The International Space University's variable gravity research facility design
NASA Astrophysics Data System (ADS)
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1991-09-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.
Virtual Presence: One Step Beyond Reality
NASA Technical Reports Server (NTRS)
Budden, Nancy Ann
1997-01-01
Our primary objective was to team up a group consisting of scientists and engineers from two different NASA cultures, and simulate an interactive teleoperated robot conducting geologic field work on the Moon or Mars. The information derived from the experiment will benefit both the robotics team and the planetary exploration team in the areas of robot design and development, and mission planning and analysis. The Earth Sciences and Space and Life Sciences Division combines the past with the future contributing experience from Apollo crews exploring the lunar surface, knowledge of reduced gravity environments, the performance limits of EVA suits, and future goals for human exploration beyond low Earth orbit. The Automation, Robotics. and Simulation Division brings to the table the technical expertise of robotic systems, the future goals of highly interactive robotic capabilities, treading on the edge of technology by joining for the first time a unique combination of telepresence with virtual reality.
The International Space University's variable gravity research facility design
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.
1991-01-01
A manned mission to Mars will require long travel times between Earth and Mars. However, exposure to long-duration zero gravity is known to be harmful to the human body. Some of the harmful effects are loss of heart and lung capacity, inability to stand upright, muscular weakness and loss of bone calcium. A variable gravity research facility (VGRF) that would be placed in low Earth orbit (LEO) was designed by students of the International Space University 1989 Summer Session held in Strasbourg, France, to provide a testbed for conducting experiments in the life and physical sciences in preparation for a mission to Mars. This design exercise was unique because it addressed all aspects concerning a large space project. The VGRF design was described which was developed by international participants specializing in the following areas: the politics of international cooperation, engineering, architecture, in-space physiology, material and life science experimentation, data communications, business, and management.
International Space Station (ISS)
1998-01-01
This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.
The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.
ERIC Educational Resources Information Center
Janke, Delmar Lester
This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…
Engaging Scientists in Meaningful E/PO: NASA Science4Girls and Their Families
NASA Astrophysics Data System (ADS)
Meinke, B. K.; Smith, D. A.; Bleacher, L.; Hauck, K.; Soeffing, C.
2014-12-01
The NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forums coordinate the participation of SMD education and public outreach (EPO) programs in Women's History Month through the NASA Science4Girls and Their Families initiative. The initiative partners NASA science education programs with public libraries to provide NASA-themed hands-on education activities for girls and their families. These NASA science education programs are mission- and grant-based E/PO programs are uniquely poised to foster collaboration between scientists with content expertise and educators with pedagogy expertise. As such, the initiative engages girls in all four NASA science discipline areas (Astrophysics, Earth Science, Planetary Science, and Heliophysics), which enables audiences to experience the full range of NASA science topics and the different career skills each requires. The events focus on engaging underserved and underrepresented audiences in Science, Technology, Engineering, and Mathematics (STEM) via use of research-based best practices, collaborations with libraries, partnerships with local and national organizations, and remote engagement of audiences.
NASA Astrophysics Data System (ADS)
Vaughan, R. G.; Meyer, N.; Anderson, R. B.; Sokol, K.; Nolan, B.; Edgar, L. A.; Gaither, T. A.; Milazzo, M. P.; Clark, J.
2017-12-01
"In Good Hands: Engineering Space Gloves" is a new Engineering Adventures® curriculum unit created for students in grades 3-5 in out-of-school time programs. It was designed and created by the Engineering is Elementary® team at the Museum of Science in Boston, MA, in collaboration with subject matter experts at the USGS Astrogeology Science Center and teacher professional development experts at Northern Arizona University's Center for Science Teaching and Learning. As part of the NASA-funded PLANETS (Planetary Learning that Advances the Nexus of Engineering, Technology, and Science) project, the goals for this unit are to introduce students to some of the potential hazards that would be faced by astronauts exploring planetary bodies in the solar system, and to engage students in thinking about how to engineer solutions to these challenges. Potential human health hazards in planetary exploration include: little to no breathable oxygen, exposure to extreme temperatures and pressures, radiation, dusty or toxic environments, and/or high velocity debris. First, students experiment with gloves made of different materials to accomplish tasks like picking up paper clips, entering numbers on a calculator, and using simple tools, while also testing for insulating properties, protection from crushing forces, and resistance to dust contamination. Students explore the trade-offs between form and multiple desired functions, and gain an introduction to materials engineering. Students are then presented with three different missions. Mission 1 is to collect and return a sample from Saturn's moon, Titan; Mission 2 is mining asteroids for useful minerals; and Mission 3 is to build a radio tower on the far side of Earth's moon. Each of these missions exhibits different potential hazards. Based on their previous experiments with different types of glove materials, students develop and test glove designs that will protect astronauts from mission-specific hazards, while still retaining basic dexterity and functionality. Educators are given background information and links to in-depth descriptions of the science content, and students are guided through the engineering design process as well as given scientific background on hazards in the solar system in a fun and engaging series of activities.
Remote Sensing Data Analytics for Planetary Science with PlanetServer/EarthServer
NASA Astrophysics Data System (ADS)
Rossi, Angelo Pio; Figuera, Ramiro Marco; Flahaut, Jessica; Martinot, Melissa; Misev, Dimitar; Baumann, Peter; Pham Huu, Bang; Besse, Sebastien
2016-04-01
Planetary Science datasets, beyond the change in the last two decades from physical volumes to internet-accessible archives, still face the problem of large-scale processing and analytics (e.g. Rossi et al., 2014, Gaddis and Hare, 2015). PlanetServer, the Planetary Science Data Service of the EC-funded EarthServer-2 project (#654367) tackles the planetary Big Data analytics problem with an array database approach (Baumann et al., 2014). It is developed to serve a large amount of calibrated, map-projected planetary data online, mainly through Open Geospatial Consortium (OGC) Web Coverage Processing Service (WCPS) (e.g. Rossi et al., 2014; Oosthoek et al., 2013; Cantini et al., 2014). The focus of the H2020 evolution of PlanetServer is still on complex multidimensional data, particularly hyperspectral imaging and topographic cubes and imagery. In addition to hyperspectral and topographic from Mars (Rossi et al., 2014), the use of WCPS is applied to diverse datasets on the Moon, as well as Mercury. Other Solar System Bodies are going to be progressively available. Derived parameters such as summary products and indices can be produced through WCPS queries, as well as derived imagery colour combination products, dynamically generated and accessed also through OGC Web Coverage Service (WCS). Scientific questions translated into queries can be posed to a large number of individual coverages (data products), locally, regionally or globally. The new PlanetServer system uses the the Open Source Nasa WorldWind (e.g. Hogan, 2011) virtual globe as visualisation engine, and the array database Rasdaman Community Edition as core server component. Analytical tools and client components of relevance for multiple communities and disciplines are shared across service such as the Earth Observation and Marine Data Services of EarthServer. The Planetary Science Data Service of EarthServer is accessible on http://planetserver.eu. All its code base is going to be available on GitHub, on https://github.com/planetserver References: Baumann, P., et al. (2015) Big Data Analytics for Earth Sciences: the EarthServer approach, International Journal of Digital Earth, doi: 10.1080/17538947.2014.1003106. Cantini, F. et al. (2014) Geophys. Res. Abs., Vol. 16, #EGU2014-3784. Gaddis, L., and T. Hare (2015), Status of tools and data for planetary research, Eos, 96, dos: 10.1029/2015EO041125. Hogan, P., 2011. NASA World Wind: Infrastructure for Spatial Data. Technical report. Proceedings of the 2nd International Conference on Computing for Geospatial Research & Applications ACM. Oosthoek, J.H.P, et al. (2013) Advances in Space Research. doi: 10.1016/j.asr.2013.07.002. Rossi, A. P., et al. (2014) PlanetServer/EarthServer: Big Data analytics in Planetary Science. Geophysical Research Abstracts, Vol. 16, #EGU2014-5149.
Earth Sciences Division Research Summaries 2002-2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2003-11-01
Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.« less
Rising Above the Storm: DIG TEXAS
NASA Astrophysics Data System (ADS)
Ellins, K. K.; Miller, K. C.; Bednarz, S. W.; Mosher, S.
2011-12-01
For a decade Texas educators, scientists and citizens have shown a commitment to earth science education through planning at the national and state levels, involvement in earth science curriculum and teacher professional development projects, and the creation of a model senior level capstone Earth and Space Science course first offered in 2010 - 2011. The Texas state standards for Earth and Space Science demonstrate a shift to rigorous content, career relevant skills and use of 21st century technology. Earth and Space Science standards also align with the Earth Science, Climate and Ocean Literacy framework documents. In spite of a decade of progress K-12 earth science education in Texas is in crisis. Many school districts do not offer Earth and Space Science, or are using the course as a contingency for students who fail core science subjects. The State Board for Educator Certification eliminated Texas' secondary earth science teacher certification in 2009, following the adoption of the new Earth and Space Science standards. This makes teachers with a composite teacher certification (biology, physics and chemistry) eligible to teach Earth and Space Science, as well other earth science courses (e.g., Aquatic Science, Environmental Systems/Science) even if they lack earth science content knowledge. Teaching materials recently adopted by the State Board of Education do not include Earth and Space Science resources. In July 2011 following significant budget cuts at the 20 Education Service Centers across Texas, the Texas Education Agency eliminated key staff positions in its curriculum division, including science. This "perfect storm" has created a unique opportunity for a university-based approach to confront the crisis in earth science education in Texas which the Diversity and Innovation in the Geosciences (DIG) TEXAS alliance aims to fulfill. Led by the Texas A&M University College of Geosciences and The University of Texas Jackson School of Geosciences, with initial assistance of the American Geophysical Union, the alliance comprises earth scientists and educators at higher education institutions across the state, and science teachers, united to improve earth science literacy (geoscience-earth, ocean, atmospheric, planetary, and geography) among Texas science teachers in order to attract individuals from groups underrepresented in STEM fields to pursue earth science as a career. Members of the alliance are affiliated with one of eight regional DIG TEXAS hub institutions. With an NSF planning grant, DIG TEXAS leaders created the DIG TEXAS brand, developed a project website, organized and held the first community meeting in March, 2011 at Exxon Mobil's Training Center in Houston. DIG TEXAS members have also delivered testimony to the State Board for Educator Certification in support of a new earth science teacher certification and collaborated on proposals that seek funding to support recommendations formulated at the community meeting.
NASA Astrophysics Data System (ADS)
Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.
2005-05-01
The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system astronomy or robotics or as a multi-disciplinary unit for a gifted and talented program. A written report on the science objectives and design features of the Rover is required. The program includes specific learning objectives in research skills, language arts (reading scientific literature, preparing a verbal presentation and writing a report), mathematics, science and engineering.The model will be mostly a mock-up, constructed at a minimal cost (estimated cost of less than 10-25) of mostly found objects and simple art supplies.
NASA Astrophysics Data System (ADS)
Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes
2011-06-01
This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
Artist's Concept of Gravity Probe-B
NASA Technical Reports Server (NTRS)
2002-01-01
Gravity Probe-B (GP-B) is the relativity experiment being developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Scheduled for launch in 2003 and managed for NASA by the Marshall Space Flight Center, development of GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation.
NASA Astrophysics Data System (ADS)
2013-01-01
U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.
Science Meets Literacy and Art at the Library
NASA Astrophysics Data System (ADS)
LaConte, K. M.; Shipp, S. S.; Halligan, E.
2011-12-01
The Lunar and Planetary Institute's Explore! program is designed to engage and inspire children in Earth and space science in the library and other informal learning environments. Eight online thematic Explore! modules make up-to-date science accessible to rural communities - often where the library is the closest center of public learning - and other underserved audiences. The program prepares librarians to engage their communities in science through experiences with the modules, interactions with scientists, exploration of the resources available within the library learning environment, and development of local partnerships. Through hands-on science activities, art, and reading, Explore! reaches library patrons between the ages of 8 and 13 through librarian-led, locally facilitated programs across the nation. For example, NASA Lunar Science Institute research into lunar formation, evolution, and orbital dynamics are woven into a comic book that serves as a journal and art piece for participants in Marvel Moon programs (http://www.lpi.usra.edu/explore/marvelMoon). In another example, children compare cloud types and atmospheric structure on Earth and Jupiter, and then they consider artwork of Jupiter's clouds and the future discoveries of NASA's upcoming Juno mission as they write "Jovian Poetry" (http://www.lpi.usra.edu/explore/solar_system/activities/weatherStations). Explore! program facilitators are provided resources for making use of children's science books and local professional scientists and engineers.
NASA Astrophysics Data System (ADS)
Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.
2015-12-01
"Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.
NASA Technical Reports Server (NTRS)
Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.
1994-01-01
The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.
Diversity of Approaches to Structuring University-Based Earth System Science Education
NASA Astrophysics Data System (ADS)
Aron, J.; Ruzek, M.; Johnson, D. R.
2004-12-01
Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?
Science and Technology Review June 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radousky, H
2006-04-20
This month's issue has the following articles: (1) Maintaining Excellence through Intellectual Vitality--Commentary by Cherry A. Murray; (2) Next-Generation Scientists and Engineers Tap Lab's Resources--University of California Ph.D. candidates work with Livermore scientists and engineers to conduct fundamental research as part of their theses; (3) Adaptive Optics Provide a Clearer View--The Center for Adaptive Optics is sharpening the view of celestial objects and retinal cells; (4) Wired on the Nanoscale--A Lawrence Fellow at Livermore is using genetically engineered viruses to create nanostructures such as tiny gold wires; and (5) Too Hot to Handle--Livermore scientists couple carbon-cycle and climate models tomore » predict the global effects of depleting Earth's fossil-fuel supply.« less
Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"
NASA Astrophysics Data System (ADS)
Ludden, John
2015-04-01
In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"
"Here, There, and Everywhere": Connecting Science Across The Universe
NASA Astrophysics Data System (ADS)
Watzke, Megan; Slane, P. O.; Arcand, K. K.; Lestition, K.; Edmonds, P.; Tucker, W. H.
2013-04-01
"Here, There, and Everywhere" (HTE) is a program -- conceived and developed by the Chandra Education and Public Outreach group -- that consists of a series of exhibitions, posters, and supporting hands-on activities that utilize analogies in the teaching of science, engineering, and technology to provide multi-generational and family-friendly content in English and Spanish to small community centers, libraries, under-resourced small science centers. The purpose of the program is to connect crosscutting science content (in Earth, atmospheric and planetary sciences and astrophysics) with everyday phenomena, helping to demonstrate the universality of physical laws and the connection between our everyday world and the universe as a whole to members of the public who may not identify strongly with science. The program utilizes multimodal content delivery (physical exhibits and handouts, interpretive stations, facilitated activities for educators as well as online materials) hosted by under-served locations as identified by previous partnerships as well as through advertisement of opportunities.
The Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, M.
2009-01-01
Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.
NASA Astrophysics Data System (ADS)
Ostrom, T.
2017-12-01
This presentation will include a series of visuals that discuss how hands-on learning activities and field investigations from the the Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program deliver climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers. The GME program poster presentation will also show how teachers strengthen student preparation for Science, Technology, Engineering, Art and Mathematics (STEAM)-related careers while promoting diversity in the future STEM workforce. In addition to engaging students in scientific inquiry, the GME program poster will show how career exploration and preparation experiences is accomplished through direct connection to scientists and real science practices. The poster will show which hands-on learning activities that are being implemented in more than 30,000 schools worldwide, with over a million students, teachers, and scientists collecting environmental measurements using the GLOBE scientific protocols. This poster will also include how Next Generation Science Standards connect to GME learning progressions by grade strands. The poster will present the first year of results from the implementation of the GME program. Data is currently being agrigated by the east, midwest and westen regional operations.
In Brief: Trieste Prize nominations
NASA Astrophysics Data System (ADS)
Showstack, Randy
2007-12-01
Nominations for the 2008 Trieste Science Prize in Earth, space, ocean, and atmospheric sciences and in engineering sciences are being accepted through 31 January 2008. The prize has been established to give international recognition and visibility to outstanding scientific achievements made by scientists from developing countries. Candidates must be nationals of developing countries, and the prizes will only be awarded to individuals for scientific research of outstanding international merit carried out at institutions in developing countries. The prizes, each of which carries a US$50,000 monetary award, are administered by the Academy of Sciences for the Developing World (TWAS) and funded by Illycaffè in collaboration with the Trieste (Italy) Town Council and the Trieste International Foundation for Scientific Progress and Freedom. For more information, contact the TWAS Secretariat at prizes@twas.org.
2014-06-17
ISS040-E-012309 (16 June 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, conducts two flame tests for a combustion experiment known as the Burning and Suppression of Solids (BASS) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083576 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Gerst during BASS-II experiment
2014-07-30
ISS040-E-083578 (30 July 2014) --- European Space Agency astronaut Alexander Gerst, Expedition 40 flight engineer, performs two tests with a combustion experiment known as the Burning and Suppression of Solids (BASS-II) in the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station. The experiment seeks to provide insight on how flames burn in space compared to Earth which may provide fire safety benefits aboard future spacecraft.
Earth observations taken by the Expedition Seven crew
2003-07-29
ISS007-E-11256 (29 July 2003) --- This view of the capital city of Austin, Texas was taken by one of the Expedition 7 crewmembers onboard the International Space Station (ISS). Austin is located in the Texas hill country along the banks of the Colorado River (lower left). Onboard are cosmonaut Yuri I. Malenchenko, mission commander, and astronaut Edward T. Lu, NASA ISS science officer and flight engineer.
1989-01-27
SUPPLEMENTARY NOTATION Student thesis submitted to the Dept. of Aeronautical and Astronautical Engineering in partial fulfillment of Master of Science...listed below’: 1) 117 - 118 MHz: Aeronautical Radionavigation 2) 118 - 136 MHz: Aeronautical Mobile 3) 136 - 137 MHz: Aeronautical 4) 137 - 138 MHz...Space Operation, Space Research Service, Meteorological - Satellite Service (all Space to Earth) 5) 138 - 143 MHz: Aeronautical Mobile 6) 143 - 144 MHz
Advanced Colloids Experiment-1 (ACE-1)
2013-07-22
ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
A Collection of Papers in the Aerospace Sciences
1982-06-01
An example is the case of a vehicle entering the earth’s atmosphere . In order to relate frustum transition location with tip bluntness phenomena some...results are shown in Fig. 14 for the inviscid flr.,w during the intake stroke of a conventional size engine operating at atmosphere conditions...theoretical and experimental efforts have been presented concerning the propagation of laser beams through natural atmospheric turbulence; however, in th
Flight Testing of the TWiLiTE Airborne Molecular Doppler Lidar
NASA Technical Reports Server (NTRS)
Gentry, Bruce; McGill, Matthew; Machan, Roman; Reed, Daniel; Cargo, Ryan; Wilkens, David J.; Hart, William; Yorks, John; Scott, Stan; Wake, Shane;
2010-01-01
In September, 2009 the TWiLiTE (Tropospheric Wind Lidar Technology Experiment) direct detection Doppler lidar was integrated for engineering flight testing on the NASA ER-2 high altitude aircraft. The TWiI,iTE Doppler lidar measures vertical profiles of wind by transmitting a short ultraviolet (355 nm) laser pulse into the atmosphere, collecting the laser light scattered back to the lidar by air molecules and measuring the Doppler shifted frequency of that light. The magnitude of the Doppler shift is proportional to the wind speed of the air in the parcel scattering the laser light. TWiLiTE was developed with funding from the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (11P). The primary objectives of the TWiLiTE program are twofold: 1) to advance the development of key technologies and subsystems critical for a future space based Global 3-1) Wind Mission, as recommended by the National Research Council in the recent Decadal Survey for Earth Science [1] and 2) to develop, for the first time, a fully autonomous airborne Doppler lidar and to demonstrate tropospheric wind profile measurements from a high altitude downward looking, moving platform to simulate spaceborne measurements. In this paper we will briefly describe the instrument followed by a discussion of the results from the 2009 engineering test flights
An ISU study of asteroid mining
NASA Technical Reports Server (NTRS)
Burke, J. D.
1991-01-01
During the 1990 summer session of the International Space University, 59 graduate students from 16 countries carried out a design project on using the resources of near-earth asteroids. The results of the project, whose full report is now available from ISU, are summarized. The student team included people in these fields: architecture, business and management, engineering, life sciences, physical sciences, policy and law, resources and manufacturing, and satellite applications. They designed a project for transporting equipment and personnel to a near-earth asteroid, setting up a mining base there, and hauling products back for use in cislunar space. In addition, they outlined the needed precursor steps, beginning with expansion of present ground-based programs for finding and characterizing near-earth asteroids and continuing with automated flight missions to candidate bodies. (To limit the summer project's scope the actual design of these flight-mission precursors was excluded.) The main conclusions were that asteroid mining may provide an important complement to the future use of lunar resources, with the potential to provide large amounts of water and carbonaceous materials for use off earth. However, the recovery of such materials from presently known asteroids did not show an economic gain under the study assumptions; therefore, asteroid mining cannot yet be considered a prospective business.
Educating the next generation of explorers at an historically Black University
NASA Astrophysics Data System (ADS)
Chaudhury, S.; Rodriguez, W. J.
2003-04-01
This paper describes the development of an innovative undergraduate research training model based at an Historically Black University in the USA that involves students with majors in diverse scientific disciplines in authentic Earth Systems Science research. Educating those who will be the next generation of explorers of earth and space poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. Over a 5-year span, Norfolk State University has been developing a program that has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through partnerships with local K-12 school teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment). The successes and challenges of this program along with some innovative uses of technology to promote inquiry learning will be presented in this paper.
Environmental aspects of engineering geological mapping in the United States
Radbruch-Hall, Dorothy H.
1979-01-01
Many engineering geological maps at different scales have been prepared for various engineering and environmental purposes in regions of diverse geological conditions in the United States. They include maps of individual geological hazards and maps showing the effect of land development on the environment. An approach to assessing the environmental impact of land development that is used increasingly in the United States is the study of a single area by scientists from several disciplines, including geology. A study of this type has been made for the National Petroleum Reserve in northern Alaska. In the San Francisco Bay area, a technique has been worked out for evaluating the cost of different types of construction and land development in terms of the cost of a number of kinds of earth science factors. ?? 1979 International Association of Engineering Geology.
NASA Astrophysics Data System (ADS)
Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.
2012-12-01
Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong backgrounds in fields including geology, meteorology, and environmental science and engineering. Program faculty includes curators and post-doctoral fellows specializing in geology, astrophysics, and paleontology, and doctoral-level Education faculty, who work side by side across disciplines to develop and co-teach courses. With the first cohort of teaching candidates having entered the program in June of 2012, the MAT program is still in the early stages. Current teacher candidates have a wide variety of scientific expertise, come from diverse geographic localities, range from recent bachelors graduates to career changers, and thus far have provided much positive feedback about their experiences with the MAT curriculum. Here we report on the first 6 months of the program.
Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology
ERIC Educational Resources Information Center
Thomas, Julie; Ivey, Toni; Puckette, Jim
2013-01-01
The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…
It's Time to Stand up for Earth Science
ERIC Educational Resources Information Center
Schaffer, Dane L.
2012-01-01
This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…
The ongoing educational anomaly of earth science placement
Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.
2003-01-01
The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.
Educational NASA Computational and Scientific Studies (enCOMPASS)
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2013-01-01
Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.
ERIC Educational Resources Information Center
Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.
2013-01-01
The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…
75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...
Publications of LASL research, 1972--1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, L.
1977-04-01
This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less
Partnership of Environmental Education and Research-A compilation of student research, 1999-2008
Bradley, Michael W.; Armstrong, Patrice; Byl, Thomas D.
2011-01-01
The U.S. Geological Survey (USGS) Tennessee Water Science Center and the College of Engineering and Technology at Tennessee State University developed a Partnership in Environmental Education and Research (PEER) to support environmental research at TSU and to expand the environmental research capabilities of the USGS in Tennessee. The PEER program is driven by the research needs to better define the occurrence, fate, and transport of contaminants in groundwater and surface water. Research in the PEER program has primarily focused on the transport and remediation of organic contamination in karst settings. Research conducted through the program has also expanded to a variety of media and settings. Research areas include contaminant occurrence and transport, natural and enhanced bioremediation, geochemical conditions in karst aquifers, mathematical modeling for contaminant transport and degradation, new methods to evaluate groundwater contamination, the resuspension of bacteria from sediment in streams, the use of bioluminescence and chemiluminescence to identify the presence of contaminants, and contaminant remediation in wetlands. The PEER program has increased research and education opportunities for students in the College of Engineering, Technology, and Computer Science and has provided students with experience in presenting the results of their research. Students in the program have participated in state, regional, national and international conferences with more than 140 presentations since 1998 and more than 40 student awards. The PEER program also supports TSU outreach activities and efforts to increase minority participation in environmental and earth science programs at the undergraduate and graduate levels. TSU students and USGS staff participate in the TSU summer programs for elementary and high school students to promote earth sciences. The 2007 summer camps included more than 130 students from 20 different States and Washington DC.
Earth system science: A program for global change
NASA Technical Reports Server (NTRS)
1989-01-01
The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.
2001-01-01
Gravity Probe B (GP-B) is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein’s general theory of relativity. This photograph is of the Gravity Probe B flight dewar, a metal container made like a vacuum bottle that is used especially for storing liquefied gases, that will maintain the experiment at a temperature just above absolute zero, staying cold for two years. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth’s rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies -- technologies that are already enlivening other branches of science and engineering. Launched in 2004 and managed for NASA by the Marshall Space Flight Center, development of the GP-B is the responsibility of Stanford University, with major subcontractor Lockheed Martin Corporation. (Photo Credit: Lockheed Martin Corporation/R. Underwood)
NASA Astrophysics Data System (ADS)
Adams, P. E.
2009-12-01
Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.
A crisis in the NASA space and earth sciences programme
NASA Technical Reports Server (NTRS)
Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.
1987-01-01
Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.
ERIC Educational Resources Information Center
Mao, Song-Ling; Chang, Chun-Yen
This paper summarizes two companion studies that were designed to investigate the impacts of an inquiry teaching method on Earth science students' achievement and attitudes towards Earth science in secondary schools. Subjects were 557 students (9th grade) enrolled in 14 Earth science classes. Two Earth science units, including topics of astronomy…
Expedition 11 Press Conference
2005-04-13
Expedition 11 Flight Engineer and NASA Science Officer John Phillips, left, crew Commander Sergei Krikalev and European Space Agency Astronaut Roberto Vittori, of Italy, join together at a press conference, Thursday, April 14, 2005, prior to their April 15 launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)
NASA Program of Airborne Optical Observations.
Bader, M; Wagoner, C B
1970-02-01
NASA's Ames Research Center currently operates a Convair 990 four-engine jet transport as a National Facility for airborne scientific research (astronomy, aurora, airglow, meteorology, earth resources). This aircraft can carry about twelve experiments to 12 km for several hours. A second aircraft, a twin-engine Lear Jet, has been used on a limited basis for airborne science and can carry one experiment to 15 km for 1 h. Mobility and altitude are the principal advantages over ground sites, while large payload and personnel carrying capabilities, combined with ease of operations and relatively low cost, are the main advantages compared to balloons, rockets, or satellites. Typical airborne instrumentation and scientific results are presented.
Aeroshell for Mars Science Laboratory
NASA Technical Reports Server (NTRS)
2008-01-01
This image from July 2008 shows the aeroshell for NASA's Mars Science Laboratory while it was being worked on by spacecraft technicians at Lockheed Martin Space Systems Company near Denver. This hardware was delivered in early fall of 2008 to NASA's Jet Propulsion Laboratory, Pasadena, Calif., where the Mars Science Laboratory spacecraft is being assembled and tested. The aeroshell encapsulates the mission's rover and descent stage during the journey from Earth to Mars and shields them from the intense heat of friction with that upper atmosphere during the initial portion of descent. The aeroshell has two main parts: the backshell, which is on top in this image and during the descent, and the heat shield, on the bottom. The heat shield in this image is an engineering unit for testing. The heat shield to be used in flight will be substituted later. The heat shield has a diameter of about 15 feet. For comparison, the heat shields for NASA's Mars Exploraton Rovers Spirit and Opportunity were 8.5 feet and the heat shields for the Apollo capsules that protected astronauts returning to Earth from the moon were just under 13 feet. In addition to protecting the Mars Science Laboratory rover, the backshell provides structural support for the descent stage's parachute and sky crane, a system that will lower the rover to a soft landing on the surface of Mars. The backshell for the Mars Science Laboratory is made of an aluminum honeycomb structure sandwiched between graphite-epoxy face sheets. It is covered with a thermal protection system composed of a cork/silicone super light ablator material that originated with the Viking landers of the 1970s. This ablator material has been used on the heat shields of all NASA Mars landers in the past, but this mission is the first Mars mission using it on the backshell. The heat shield for Mars Science Laboratory's flight will use tiles made of phenolic impregnated carbon ablator. The engineering unit in this image does not have the tiles. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.NASA Astrophysics Data System (ADS)
Llerandi Roman, Pablo Antonio
The geographic and geologic settings of Puerto Rico served as the context to develop a mixed methods investigation on: (1) the effects of a five-day long constructivist and field-based earth science education professional development institute upon 26 secondary school science teachers' earth science conceptual knowledge, perceptions of fieldwork, and beliefs about teaching earth science; and (2) the implementation of participants' newly acquired knowledge and experience in their science lessons at school. Qualitative data included questionnaires, semi-structured interviews, reflective journals, pre-post concept maps, and pre-post lesson plans. The Geoscience Concept Inventory and the Science Outdoor Learning Environment Inventory were translated into Spanish and culturally validated to collect quantitative data. Data was analyzed through a constructivist grounded theory methodology, descriptive statistics, and non-parametric methods. Participants came to the institute with serious deficiencies in earth science conceptual understanding, negative earth science teaching perspectives, and inadequate earth science teaching methodologies. The institute helped participants to improve their understanding of earth science concepts, content, and processes mostly related to the study of rocks, the Earth's structure, plate tectonics, maps, and the geology of Puerto Rico. Participants also improved their earth science teaching beliefs, perceptions on field-based education, and reflected on their environmental awareness and social responsibility. Participants greatly benefited from the field-based learning environment, inquiry-based teaching approaches modeled, the attention given to their affective domain, and reflections on their teaching practice as part of the institute's activities. The constructivist learning environment and the institute's contextualized and meaningful learning conceptual model were effective in generating interest and confidence in earth science teaching. Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.