Sample records for earth sciences program

  1. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  2. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  3. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  4. The Transforming Earth System Science Education (TESSE) program

    NASA Astrophysics Data System (ADS)

    Graham, K. J.; Bryce, J. G.; Brown, D.; Darwish, A.; Finkel, L.; Froburg, E.; Furman, T.; Guertin, L.; Hale, S. R.; Johnson, J.; Porter, W.; Smith, M.; Varner, R.; von Damm, K.

    2007-12-01

    A partnership between the University of New Hampshire (UNH), Dillard University, Elizabeth City State University, and Pennsylvania State University has been established to prepare middle and high school teachers to teach Earth and environmental sciences from a processes and systems approach. Specific project goals include: providing Earth system science content instruction; assisting teachers in implementing Earth system science in their own classrooms; and creating opportunities for pre-service teachers to experience authentic research with Earth scientists. TESSE programmatic components comprise (1) a two-week intensive summer institutes for current and future teachers; (2) eight-week research immersion experiences that match preservice teachers with Earth science faculty mentors; and (3) a science liaison program involving the pairing of inservice teachers with graduate students or future teachers. The first year of the program supported a total of 49 participants (42 inservice and preservice teachers, as well as 7 graduate fellows). All participants in the program attended an intensive two-week summer workshop at UNH, and the academic-year science liaison program is underway. In future summers, all partnering institutions will hold similar two-week summer institutes. UNH will offer a more advanced course geared towards "hot topics" and research techniques in the Earth and environmental sciences.

  5. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  6. A new program in earth system science education

    NASA Technical Reports Server (NTRS)

    Huntress, Wesley; Kalb, Michael W.; Johnson, Donald R.

    1990-01-01

    A program aimed at accelerating the development of earth system science curricula at the undergraduate level and at seeding the establishment of university-based mechanisms for cooperative research and education among universities and NASA has been initiated by the Universities Space Research Association (USRA) in conjunction with NASA. Proposals were submitted by 100 U.S. research universities which were selected as candidates to participate in a three-year pilot program to develop undergraduate curricula in earth system science. Universities were then selected based upon peer review and considerations of overall scientific balance among proposed programs. The program will also aim to integrate a number of universities with evolving earth system programs, linking them with a cooperative curriculum, shared faculty, and NASA scientists in order to establish a stronger base for earth systems related education and interdisciplinary research collaboration.

  7. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  8. Lessons from NASA Applied Sciences Program: Success Factors in Applying Earth Science in Decision Making

    NASA Astrophysics Data System (ADS)

    Friedl, L. A.; Cox, L.

    2008-12-01

    The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.

  9. New Millenium Program Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk

    1999-01-01

    A cross-Enterprise program is to identify and validate flight breakthrough technologies that will significantly benefit future space science and earth science missions. The breakthrough technologies are: enable new capabilities to meet earth and space science needs and reducing costs of future missions. The flight validation are: mitigates risks to first users and enables rapid technology infusion into future missions.

  10. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances

  11. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  12. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  13. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  14. Exemplary Programs in Physics, Chemistry, Biology, and Earth Science.

    ERIC Educational Resources Information Center

    Yager, Robert E., Ed.

    The 1982 Search for Excellence in Science Education project has identified 50 exemplary programs in physics, chemistry, biology, and earth science. Descriptions of four of these programs and the criteria used in their selection are presented. The first section reviews the direction established by Project Synthesis in searching for exemplary…

  15. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  16. Educational and public outreach programs using four-dimensional presentation of the earth and planetary science data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.

    2011-12-01

    We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.

  17. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  18. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  19. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  20. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  1. Dartmouth College Earth Sciences Mobile Field Program

    NASA Astrophysics Data System (ADS)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  2. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  3. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  4. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  5. Airborne Science Program: Observing Platforms for Earth Science Investigations

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.

    2009-01-01

    This slide presentation reviews the Airborne Science Program and the platforms used for conducting investigations for the Earth System Science. Included is a chart that shows some of the aircraft and the operational altitude and the endurance of the aircraft, views of the Dryden Aircraft Operation Facility, and some of the current aircraft that the facility operates, and the varieties of missions that are flown and the type of instrumentation. Also included is a chart showing the attributes of the various aircraft (i.e., duration, weight for a payload, maximum altitude, airspeed and range) for comparison

  6. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space

  7. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Michael Gao presents his project on Southeast Asian disasters during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  8. A Primary Grade (K-3) Earth Science Program

    ERIC Educational Resources Information Center

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  9. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  10. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden poses for a selfie after a quick rap performance by some young professionals during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  11. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden speaks with young professionals about their project on New England water resources during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  12. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    Lisa Waldron and Justin Roberts-Pierel present their project on Texas health and air quality during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  13. Earth Science Applications Showcase

    NASA Image and Video Library

    2014-08-05

    NASA Administrator Charles Bolden asks young professionals about their projects after posing for a group photo during the annual DEVELOP Earth Science Application Showcase at NASA headquarters Tuesday, August 5, 2014. The Earth Science Applications Showcase highlights the work of over 150 participants in the 10-week DEVELOP program that started in June. The DEVELOP Program bridges the gap between NASA Earth science and society, building capacity in both its participants and partner organizations, to better prepare them to handle the challenges that face our society and future generations. Photo Credit: (NASA/Aubrey Gemignani)

  14. Earth Science: Then and Now

    ERIC Educational Resources Information Center

    Orgren, James R.

    1969-01-01

    Reviews history of earth science in secondary schools. From early nineteenth century to the present, earth science (and its antecedents, geology, physical geography, and astronomy) has had an erratic history for several reasons, but particularly because of lack of earth science teacher-training programs. (BR)

  15. Future Earth, Global Science and Regional Programs: Building regional integrated science capacities in a global science organization

    NASA Astrophysics Data System (ADS)

    Tewksbury, J.

    2016-12-01

    Future Earth has emerged from the more than 30-year history of Global Change Research Programs, including IGBP, DIVERSITAS and IHDP. These programs supported interdisciplinary science in service of societies around the world. Now, their focus on building a greater understanding of changing Earth systems and their couplings with society has passed to Future Earth - with an important addition: Future Earth was also established to focus global change efforts around key societal challenges. The implications for the structure of Future Earth are large. Many challenges within topics, such as the water, energy, food nexus or the future of cities, are manifested within local, national, and regional contexts. How should we organize globally to most effectively confront these multi-scale challenges? The solution proposed in the framing of Future Earth was the formation of regional as well as national committees, as well as the formation of regional centers and offices. Regional Committees serve to both advocate for Future Earth in their regions and to advocate for regional interests in the global Future Earth platform, while regional Centers and offices are built into the Future Earth secretariat to perform a parallel regional implementation function. Implementation has not been easy, and the process has placed regionally-focused projects in an awkward place. Programs such as the Monsoon Asia Integrated Regional Study (MAIRS), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the South/Southeast Asia Research Initiative (SARI) represent some of the best global change communities in the world, but by design, their focus is regional. The effective integration of these communities into the Future Earth architecture will be critical, and this integration will require the formation of strong regional committees and regional centers.

  16. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    Progress reports of the Visiting Scientist Program covering the period from 1 Jul. - 30 Sep. 1992 are included. Topics covered include space science and earth science. Other topics covered include cosmic rays, magnetic clouds, solar wind, satellite data, high resolution radiometer, and microwave scattering.

  17. Engaging Underserved and Underrepresented Students in the Earth Sciences through a Summer Outreach Program

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Olgin, J. G.; Pennington, D. D.

    2016-12-01

    The EarthTech outreach program at the University of Texas at El Paso (UTEP) seeks to expand the inclusion of underserved and under-represented high-school students into the geoscience pipeline. A successful partnership with the federally funded, year round college preparatory program for high school students Upward Bound (UB) program at UTEP was decisive for the success and execution of the program. Program activities aimed to engage students and expand their knowledge of the Earth Sciences through participation in STEM hands-on activities, incorporating technology and field experiences. For its second year, the program chose to address the intersection of science and societal issues by selecting an overall topic for the weeklong program that students could relate and understand from personal experiences, facilitating participation. The exposure to outdoor on-site learning experiences via field trips proved a critical component based on student feedback, by allowing the students to engage with their surroundings and relate to basic Earth Science knowledge and principles. Qualitative feedback and discussion of the program and its activities are presented here.

  18. NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  19. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    NASA Technical Reports Server (NTRS)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  20. Using the Earth as an Effective Model for Integrating Space Science Into Education Outreach Programs

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Allen, J.; Galindo, C.; McKay, G.; Obot, V.; Reiff, P.

    2005-05-01

    Our methods of teaching Earth and space science as two disciplines do not represent the spirit of earlier scientists such as Aristotle, da Vinci, and Galileo. We need to re-evaluate these methods and take advantage of the excitement created in the general public over the recent space science exploration programs. The information that we are obtaining from both the Mars missions and Cassini-Huygens focuses on interpreting geomorphology, mineral compositions and gas identification based on Earth as a baseline for data evaluation. This type of evaluation is an extension of Hutton's 18th century principle of Uniformitarianism, the present is the key to the past, or Earth is the key for understanding extraterrestrial bodies. Geomorphological examples are volcanic activity, meteoritic impacts, and evidence of water altering surface features. The Hawaiian, or shield, type volcanoes are analogues for Olympus Mons and the other volcanoes on Mars. Other examples include comparing sand dunes on Earth with possible Martian dunes, known stream patterns on Earth with potential stream patterns on Mars, and even comparing meteoritic impact features on Mars, the Earth, Moon and Mercury. All of these comparisons have been developed into inquiry-based activities and are available through NASA publications. Each of these activities is easily adapted to emphasize either Earth science or space science or both. Beyond geomorphology, solar storms are an excellent topic for integrating Earth and space science. Solar storms are traditionally part of space science studies, but most students do not understand their effect on Earth or the intense effects they could have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include Earth's magnetosphere, which in turn, affect radio transmission and potentially climate. Like geomorphology courses, there are extensive NASA

  1. Evaluation of an Inservice Program for Earth Science Teachers

    ERIC Educational Resources Information Center

    Mayer, Victor J.; And Others

    1975-01-01

    Reports on the evaluation of an earth science inservice program designed to (1) improve teachers' understandings of principles and concepts, (2) assist teachers in the use of investigatory techniques for teaching, (3) assist teachers in developing and implementing laboratory-oriented courses and (4) instruct teachers in techniques of self…

  2. Alien Earths: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2004-05-01

    Where did we come from? Are we alone? These age-old questions form the basis of NASA's Origins Program, a series of missions spanning the next twenty years that will use a host of space- and ground-based observatories to understand the origin and development of galaxies, stars, planets, and the conditions necessary to support life. The Space Science Institute in Boulder, CO, is developing a 3,000 square-foot traveling exhibition, called Alien Earths, which will bring origins-related research and discoveries to students and the American public. Alien Earths will have four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. The exhibit's size will permit it to visit medium sized museums in all regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005 at the Lawrence Hall of Science in Berkeley, California. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. In addition to the exhibit, the project includes workshops for educators and docents at host sites, as well as a public website that will use exhibit content to delve deeper into origins research. Current partners in the Alien Earths project include ASTC, Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (Navigator, SIRTF, and Kepler), the SETI Institute, and the Space Telescope Science Institute

  3. Earth Science Enterprise Technology Strategy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  4. NASA Earth Science Update with Information Science Technology

    NASA Technical Reports Server (NTRS)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  5. NASA Applied Sciences Program. Overview Presentation; Discovering and Demonstrating Innovative and Practical Applications of Earth Science

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel

    2010-01-01

    Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning

  6. NASA's Earth Science Flight Program overview

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  7. Windows to the Universe: Earth Science Enterprise Education Program

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Over the past year, Windows to the Universe has continued a multifaceted program of support to the Earth Science Enterprise Education program. Areas of activity include continued maintenance of the W2U website and user traffic analysis, development of new and revised content and activities on the website, implementation of new tools to facilitate website development and maintenance, response to users questions and comments, professional development for educators through workshops at the National Science Teachers Association meetings and at NCAR, and dissemination of information about the project through materials distribution at NSTAs, AGUs, AMS and other venues. This report provides some background on the project and summarizes progress for the third and final year of the project.

  8. Developing Earth System Science Courses and Programs at Minority Serving Institutions

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Jackson, C.; Ruzek, M.

    2004-12-01

    In the current NASA/USRA ESSE21 Program, emphasis is placed on the development of Earth System Science courses and degree offerings in Minority Serving Institutions (MSIs). Of the 18 colleges/universities being supported by NASA through USRA, 10 colleges/universities are MSIs. While there is recognition of the need for Earth system science courses, minors and degree programs by NASA and other agencies, within MSIs, a central challenge is how to provide a vision of the future opportunities in ESS and STEM disciplines that attracts and motivates students to these studies. Students need career guidance, role models and mentoring to encourage entry into STEM in general, and Earth system science in particular. Then there is the question of how to bring interested faculty together in institutions to form a critical mass that would forego the breadth and depth of disciplinary interests to undertake the development of multi/cross and interdisciplinary courses, minors and degree programs in ESS. Within the ESSE21 Diversity Working Group, the question has been raised as to how will MSIs ever be mainstream participants in ESS without teaching and engaging in research in remote sensing, modeling of the Earth's climate system and other like endeavors. Two other related questions raised within the Working Group are what are the long-term objectives of MSI adoption of ESS and what course corrections are needed to make ESS viable at MSIs. Within these considerations there are unresolved questions concerning the need and availability of resources from NASA, other agencies and local institutions. Apart from these larger considerations, efforts are underway within the ESSE21 Program that provide for sharing of resources among participants, organization of and access to materials that already exist, online resources, course outlines and successful listings for online resources by topics for particular courses and subject areas. The Lesson Learned Working Group, as well as the program

  9. Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Law, Richard C.; Wells, James E.

    2014-01-01

    NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.

  10. The Ridge 2000 Program: Promoting Earth Systems Science Literacy Through Science Education Partnerships

    NASA Astrophysics Data System (ADS)

    Simms, E.; Goehring, E.; Larsen, J.; Kusek, K.

    2007-12-01

    Sponsored by the National Science Foundation, Ridge 2000 (R2K) is a mid-ocean ridge and hydrothermal vent research program with a history of successful education and public outreach (EPO) programs and products. This presentation will share general science and education partnership strategies and best practices employed by the R2K program, with a particular emphasis on the innovative R2K project From Local to EXtreme Environments (FLEXE). As a new project of the international NSF and NASA sponsored GLOBE earth science education program, FLEXE involves middle and high school students in structured, guided analyses and comparisons of real environmental data. The science and education partnership model employed by FLEXE relies on experienced education coordinators within the R2K and international InterRidge and ChEss science research programs, who directly solicit and facilitate the involvement of an interdisciplinary community of scientists in the project based on their needs and interests. Concurrently, the model also relies on the GLOBE program to facilitate awareness and access to a large, established network of international educators who are interested in the process of science and interacting with the scientific community. The predominantly web-based interfaces that serve to effectively link together the FLEXE science and education communities have been developed by the Center for Science and the Schools at Penn State University, and are based on researched educational pedagogy, tools and techniques. The FLEXE partnership model will be discussed in the context of both broad and specific considerations of audience needs, scientist and educator recruitment, and the costs and benefits for those involved in the project.

  11. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  12. Solid earth science in the 1990s. Volume 1: Program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.

  13. Discover Earth: An earth system science program for libraries and their communities

    NASA Astrophysics Data System (ADS)

    Curtis, L.; Dusenbery, P.

    2010-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public’s understanding of Earth’s physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. In spite of this relevance, there are many obstacles to achieving broad public understanding of key earth system science (ESS) concepts. Strategies for addressing climate change can only succeed with the full engagement of the general public. As reported by U.S. News and World Report in 2010, small towns in rural America are emerging as the front line in the climate change debate in the country. The Space Science Institute’s National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. There are two distinct components of STAR-Net: Discover Earth and Discover Tech. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The overarching goal of the project is to reach underserved youth and their families with informal STEM learning experiences. The Discover Earth part of STAR_Net will produce ESS

  14. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, students from all over the country gathered and discussed their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center in Huntsville, Alabama. These students who are just 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student, and any teacher, even those without technical backgrounds. Student in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Ternessee, Virginia, and Washington, are taking part in MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. One of the students' teachers, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Justin O'Connor and Jeff Alden, students of Lane Middle School in Portland, Oregon, participated in the ETO program and said being involved in a real engineering project has made them realize that 'science is cool.'

  15. A crisis in the NASA space and earth sciences programme

    NASA Technical Reports Server (NTRS)

    Lanzerotti, Louis, J.; Rosendhal, Jeffrey D.; Black, David C.; Baker, D. James; Banks, Peter M.; Bretherton, Francis; Brown, Robert A.; Burke, Kevin C.; Burns, Joseph A.; Canizares, Claude R.

    1987-01-01

    Problems in the space and earth science programs are examined. Changes in the research environment and requirements for the space and earth sciences, for example from small Explorer missions to multispacecraft missions, have been observed. The need to expand the computational capabilities for space and earth sciences is discussed. The effects of fluctuations in funding, program delays, the limited number of space flights, and the development of the Space Station on research in the areas of astronomy and astrophysics, planetary exploration, solar and space physics, and earth science are analyzed. The recommendations of the Space and Earth Science Advisory Committee on the development and maintenance of effective space and earth sciences programs are described.

  16. Earth-to-Orbit Education Program 'Makes Science Cool'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this photograph, Jeff Alden (left) and Justin O'Cornor, two middle school students at Lane Middle School in Portland, Oregon are demonstrating their Earth-to-Orbit (ETO) Design Challenge project at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. Jeff and Justin, who are just a couple of 'typical teens,' have been spending their time tackling some of the same challenges NASA engineers face when designing propulsion systems at MSFC. The ETO Design Challenge is a hands-on educational program, targeted to middle school students, in which students are assigned a project engaging in related design challenges in their classrooms under the supervision of their teachers. The project is valuable because it can be used by any student and any teacher, even those without technical backgrounds. Students in 12 states: Alabama, Arkansas, California, Colorado, Illinois, Missouri, Montana, New York, Ohio, Tennessee, Virginia, and Washington, are taking part in the MSFC's Earth-to-Orbit program. NASA uses such programs to support educational excellence while participating in educational outreach programs through centers around the country. The Oregon students' teacher, Joanne Fluvog, commented, 'the biggest change I've seen is in the students' motivation and their belief in their ability to think.' Both Justin and Jeff said being involved in a real engineering project has made them realize that 'science is cool.'

  17. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    NASA Astrophysics Data System (ADS)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  18. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    NASA Astrophysics Data System (ADS)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  19. ACCESS Earth: Promoting Accessibility to Earth System Science for Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Locke, S. M.; Cohen, L.; Lightbody, N.

    2001-05-01

    ACCESS Earth is an intensive summer institute for high school students with disabilities and their teachers that is designed to encourage students with disabilities to consider careers in earth system science. Participants study earth system science concepts at a Maine coastal estuary, using Geographic Information Systems, remote sensing, and field observations to evaluate the impacts of climate change, sea level rise, and development on coastal systems. Teachers, students, and scientists work together to adapt field and laboratory activities for persons with disabilities, including those with mobility and visual impairments. Other sessions include demonstrations of assistive technology, career discussions, and opportunities for students to meet with successful scientists with disabilities from throughout the U.S. The summer institute is one of several programs in development at the University of Southern Maine to address the problem of underrepresentation of people with disabilities in the earth sciences. Other projects include a mentoring program for high school students, a web-based clearinghouse of resources for teaching earth sciences to students with disabilities, and guidebooks for adaptation of popular published earth system science curricula for disabled learners.

  20. A multidisciplinary Earth science research program in China

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Li, Tingdong; Gao, Rui; Hou, Hesheng; Li, Yingkang; Zhang, Shihong; Keller, G. Randy; Liu, Mian

    2011-09-01

    Because China occupies a large and geologically complex region of central and eastern Asia, the country may hold the keys to resolving many basic problems in the Earth sciences, such as how continental collision with India produced China's interconnected array of large intraplate structures, and what links exist between these structures and natural resources. To learn more, the Chinese government has launched SinoProbe, a major research initiative focusing on multidisciplinary imaging of the three-dimensional (3-D) structure and composition of the Chinese continental lithosphere and its evolution through geologic history. This effort is also motivated by China's need for a comprehensive and systematic evaluation of its natural resources and a better understanding of potential geohazards. SinoProbe is funded by the Chinese Ministry of Finance, managed by the Chinese Ministry of Land and Resources, and organized by the Chinese Academy of Geological Sciences. More than 960 investigators and engineers are currently involved with the program, not counting international collaborators. Most of them are affiliated with the Chinese Academy of Geological Sciences, the Chinese Academy of Sciences, the Ministry of Education (i.e., universities), and the China Earthquake Administration. The initial phase of the program (2008-2012), with funding equivalent to about US$164 million, is testing the feasibility of new technologies in geophysical and geochemical exploration and deep continental drilling by focusing on a series of profiles (Figure 1).

  1. Earth Science Resource Teachers: A Mentor Program for NASA's Explorer Schools

    NASA Astrophysics Data System (ADS)

    Ireton, F.; Owens, A.; Steffen, P. L.

    2004-12-01

    Each year, the NASA Explorer Schools (NES) program establishes a three-year partnership between NASA and 50 school teams, consisting of teachers and education administrators from diverse communities across the country. While partnered with NASA, NES teams acquire and use new teaching resources and technology tools for grades 4 - 9 using NASA's unique content, experts and other resources. Schools in the program are eligible to receive funding (pending budget approval) over the three-year period to purchase technology tools that support science and mathematics instruction. Explorer School teams attend a one-week summer institute at one of NASA's field centers each summer. The weeklong institutes are designed to introduce the teachers and administrators to the wealth of NASA information and resources available and to provide them with content background on NASA's exploration programs. During the 2004 summer institutes at Goddard Space Flight Center (GSFC) the National Earth Science Teachers Association (NESTA) entered into a pilot program with NES to test the feasibility of master teachers serving as mentors for the NES teams. Five master teachers were selected as Earth Science Resource Teachers (ESRT) from an application pool and attended the NES workshop at GSFC. During the workshop they participated in the program along side the NES teams which provided the opportunity for them to meet the teams and develop a rapport. Over the next year the ESRT will be in communication with the NES teams to offer suggestions on classroom management, content issues, classroom resources, and will be able to assist them in meeting the goals of NES. This paper will discuss the planning, selection, participation, outcomes, costs, and suggestions for future ESRT mentorship programs.

  2. Increasing Diversity in the Earth Sciences - Impact of the IDES Program in Oregon

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Guerrero, E. F.; Duncan, R. A.; de Silva, L. L.; Eriksson, S. C.

    2014-12-01

    The NSF-OEDG funded Increasing Diversity in the Earth Sciences (IDES) program hosted at Oregon State University targets undergraduate students from diverse backgrounds and diverse ethnicity to engage in research. Partnering with local community colleges, non-traditional students are the hallmark of this program. The IDES program has several components to support the students in the transition from community college to the four-year universities of Oregon State University and Portland State University. Over the four years, the program has adapted while adhering to its primary goals: (1) to increase the number of students from underrepresented groups who prepare for and pursue careers in Earth Science research and education, and (2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Now in its final year under an extension, 53 participants have participated in the program. An ongoing external evaluation of the program reveals that the various stakeholders consider IDES very successful. Participant surveys and interviews document several impacts: expanded opportunities, making professional contacts, building self-confidence, enhanced ability to be employable, and personal acknowledgement. Research mentors and administrators from partner institutions see positive impacts on the students and on their organizations. Challenges include better communication between the IDES program, mentors, and students. IDES is poised to move forward with its current experiences and successes as a foundation for further funding. IDES-like activities can be funded from private sources and it is a good fit for funding from Research Experiences for Undergraduates at NSF. The new emphasis on education and research at community colleges is an exciting opportunity and Oregon State University has already used aspects of the IDES program in current grant proposals to obtain funds for more undergraduate research.

  3. 75 FR 81315 - Earth Sciences Proposal Review Panel; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... NATIONAL SCIENCE FOUNDATION Earth Sciences Proposal Review Panel; Notice of Meeting In accordance... announces the following meeting. Name: Proposal Review Panel in Earth Sciences (1569). Date and Time... Kelz, Program Director, Instrumentation & Facilities Program, Division of Earth Sciences, Room 785...

  4. Pilot Program for Teaching Earth Science in New York

    NASA Astrophysics Data System (ADS)

    Nadeau, Patricia A.; Flores, Kennet E.; Ustunisik, Gokce; Zirakparvar, Nasser A.; Grcevich, Jana; Pagnotta, Ashley; Sessa, Jocelyn A.; Kinzler, Rosamond J.; Macdonald, Maritza; Mathez, Edmond; Mac Low, Mordecai-Mark

    2013-06-01

    During the 2009-2010 school year, 40% of New York City (NYC) Earth science teachers were not certified to teach Earth science [New York State Education Department (NYSED), 2011]. This highlights a longstanding shortage of certified teachers, which persists today and prevents many schools from offering courses on the subject, thus diminishing student opportunities to study or embark on careers in Earth science. More generally, the paucity of qualified, effective science teachers hinders student achievement in science, technology, engineering, and mathematics (STEM), and research has consistently shown that improving the quality of teaching substantially increases achievement in STEM-related fields [National Science Board, 2007]. With only 36% of NYC 8th graders scoring at or above the basic level of proficiency in science and with even lower scores for African-American and Hispanic students [Livingston and Wirt, 2005], the need for more qualified science teachers is clear.

  5. Online learning tools in an M.Ed. in Earth Sciences program

    NASA Astrophysics Data System (ADS)

    Richardson, E.

    2011-12-01

    Penn State's Master of Education in Earth Sciences program is a fully online 30-credit degree program serving mid-career secondary science teachers. Teachers in the program have a diverse background in science and math, are usually many years removed from their most recent degree, and are often deficient in the same geoscience skills as are beginning undergraduates. For example, they habitually assign incorrect causal relationships to concepts that are taught at the same time (such as sea-floor spreading and magnetic field reversals), and they have trouble with both object and spatial visualization. Program faculty also observe anecdotally that many teachers enter the program lacking the ability to describe their mental model of a given Earth science process, making it difficult to identify teachers' knowledge gaps. We have implemented many technical strategies to enhance program content delivery while trying to minimize the inherent barriers to completing quantitative assignments online and at a distance. These barriers include competence with and access to sophisticated data analysis and plotting programs commonly used by scientists. Here, I demonstrate two technical tools I use frequently to strengthen online content delivery and assessment. The first, Jing, is commercially-available, free, and platform-independent. Jing allows the user to make screencasts with narration and embed them into a web page as a flash movie or as an external link. The second is a set of simple sketching tools I have created using the programming language Processing, which is a free, open source, platform-independent language built on Java. The integration of easy-to-use drawing tools into problem sets and other assessments has enabled faculty to appraise a learner's grasp of the material without the steep technical learning curve and expense inherent in most computer graphics packages. A serendipitous benefit of teaching with these tools is that they are easy to learn and freely

  6. Earthquake!: An Event-Based Science Module. Teacher's Guide. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school earth science teachers to help their students learn about earthquakes and scientific literacy through event-based science. Unlike traditional curricula, the event- based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork,…

  7. Earth Science

    NASA Image and Video Library

    1996-01-31

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft embarks on a journey that will culminate in a close encounter with an asteroid. The launch of NEAR inaugurates NASA's irnovative Discovery program of small-scale planetary missions with rapid, lower-cost development cycles and focused science objectives. NEAR will rendezvous in 1999 with the asteroid 433 Eros to begin the first long-term, close-up look at an asteroid's surface composition and physical properties. NEAR's science payload includes an x-ray/gamma ray spectrometer, an near-infrared spectrograph, a laser rangefinder, a magnetometer, a radio science experiment and a multi-spectral imager.

  8. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  9. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The goals of the Earth Science Enterprise (ESE) are to expand the scientific knowledge of the Earth system; to widely disseminate the results of the expanded knowledge; and to enable the productive use of this knowledge. This catalog provides information about the Earth Science education programs and the resources available for elementary through university levels.

  10. SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)

    NASA Astrophysics Data System (ADS)

    Dong, S.; Li, T.

    2010-12-01

    China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in

  11. NGSS aligned Earth science resources and professional development programs from the Exploratorium.

    NASA Astrophysics Data System (ADS)

    Muller, E.

    2016-12-01

    The Exploratorium is a museum of science, art and human perception located in San Francisco, CA. The Exploratorium has been offering resources and professional development to primary and secondary teachers since 1972. We focus on inquiry based, hands-on learning, with an emphasis on Next Generation Science Standards (NGSS) implementation. This brief, invited presentation will feature the programs and online resources developed by the Exploratorium's "Institute for Inquiry" and "Teacher Institute" that may help formal and informal educators engage, implement and promote three dimensional learning in the Earth Sciences.

  12. Broadening the Participation of Native Americans in Earth Science

    NASA Astrophysics Data System (ADS)

    Bueno Watts, Nievita

    Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists

  13. NASA Earth Science Research and Applications Using UAVs

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.

    2003-01-01

    The NASA Earth Science Enterprise sponsored the UAV Science Demonstration Project, which funded two projects: the Altus Cumulus Electrification Study (ACES) and the UAV Coffee Harvest Optimization experiment. These projects were intended to begin a process of integrating UAVs into the mainstream of NASA s airborne Earth Science Research and Applications programs. The Earth Science Enterprise is moving forward given the positive science results of these demonstration projects to incorporate more platforms with additional scientific utility into the program and to look toward a horizon where the current piloted aircraft may not be able to carry out the science objectives of a mission. Longer duration, extended range, slower aircraft speed, etc. all have scientific advantages in many of the disciplines within Earth Science. The challenge we now face are identifying those capabilities that exist and exploiting them while identifying the gaps. This challenge has two facets: the engineering aspects of redesigning or modifying sensors and a paradigm shift by the scientists.

  14. Universities Earth System Scientists Program

    NASA Technical Reports Server (NTRS)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  15. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    NASA Astrophysics Data System (ADS)

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  16. Board on Earth Sciences and Resources and its activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    The Board on Earth Sciences and Resources (BESR) coordinates, the National Research Council`s advice to the federal government on solid-earth science issues. The board identifies opportunities for advancing basic research and understanding, reports on applications of earth sciences in such areas as disaster mitigation and resource utilization, and analyzes the scientific underpinnings and credibility of earth science information for resource, environmental and other applications and policy decision. Committees operating under the guidance of the Board conducts studies addressing specific issues within the earth sciences. The current committees are as follows: Committee on Geophysical and Environmental Data; Mapping Sciences Committee; Committeemore » on Seismology; Committee on Geodesy; Rediscovering Geography Committee; Committee on Research Programs of the US Bureau of Mines. The following recent reports are briefly described: research programs of the US Bureau of Mines, first assessment 1994; Mount Rainier, active cascade volcano; the national geomagnetic initiative; reservoir class field demonstration program; solid-earth sciences and society; data foundation for the national spatial infrastructure; promoting the national spatial data infrastructure through partnerships; toward a coordinated spatial data infrastructure for the nation; and charting a course into the digital era; guidance to the NOAA`s nautical charting mission.« less

  17. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  18. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    NASA Astrophysics Data System (ADS)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  19. NASA Citizen Science for Earth Systems Program: fusing public participation and remote sensing to improve our understanding of the planet

    NASA Astrophysics Data System (ADS)

    Whitehurst, A.; Murphy, K. J.

    2017-12-01

    The objectives of the NASA Citizen Science for Earth Systems Program (CSESP) include both the evaluation of using citizen science data in NASA Earth science related research and engaging the public in Earth systems science. Announced in 2016, 16 projects were funded for a one year prototype phase, with the possibility of renewal for 3 years pending a competitive evaluation. The current projects fall into the categories of atmospheric composition (5), biodiversity and conservation (5), and surface hydrology/water and energy cycle (6). Out of the 16, 8 of the projects include the development and/or implementation of low cost sensors to facilitate data collection. This presentation provides an overview of the NASA CSESP program to both highlight the diversity of innovative projects being funded and to share information with future program applicants.

  20. A Balancing Act in the Third Space: Graduate-Level Earth Science in an Urban Teacher-Residency Program

    ERIC Educational Resources Information Center

    Zirakparvar, N. Alex

    2015-01-01

    This article describes a museum-based urban teacher-residency (UTR) program's approach to building subject-specific content knowledge and research experience in Earth Science teacher candidates. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth…

  1. Earth Science Education Plan: Inspire the Next Generation of Earth Explorers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Education Enterprise Strategy, the expanding knowledge of how people learn, and the community-wide interest in revolutionizing Earth and space science education have guided us in developing this plan for Earth science education. This document builds on the success of the first plan for Earth science education published in 1996; it aligns with the new framework set forth in the NASA Education Enterprise Strategy; it recognizes the new educational opportunities resulting from research programs and flight missions; and it builds on the accomplishments th'at the Earth Science Enterprise has made over the last decade in studying Earth as a system. This document embodies comprehensive, practicable plans for inspiring our children; providing educators with the tools they need to teach science, technology, engineering, and mathematics (STEM); and improving our citizens' scientific literacy. This plan describes an approach to systematically sharing knowledge; developing the most effective mechanisms to achieve tangible, lasting results; and working collaboratively to catalyze action at a scale great enough to ensure impact nationally and internationally. This document will evolve and be periodically reviewed in partnership with the Earth science education community.

  2. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    NASA Astrophysics Data System (ADS)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  3. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  4. NASA Applied Sciences' DEVELOP Program Fosters the Next Generation of Earth Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren M.; Brozen, Madeline W.; Gleason, Jonathan L.; Silcox, Tracey L.; Rea, Mimi; Holley, Sharon D.; Renneboog, Nathan; Underwood, Lauren W.; Ross, Kenton W.

    2009-01-01

    Satellite remote sensing technology and the science associated with the evaluation of the resulting data are constantly evolving. To meet the growing needs related to this industry, a team of personnel that understands the fundamental science as well as the scientific applications related to remote sensing is essential. Therefore, the workforce that will excel in this field requires individuals who not only have a strong academic background, but who also have practical hands-on experience with remotely sensed data, and have developed knowledge of its real-world applications. NASA's DEVELOP Program has played an integral role in fulfilling this need. DEVELOP is a NASA Science Mission Directorate Applied Sciences training and development program that extends the benefits of NASA Earth science research and technology to society.

  5. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    ERIC Educational Resources Information Center

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  6. Sun-Earth Day: Exposing the Public to Sun-Earth Connection Science

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Lewis, E.; Cline, T.

    2001-12-01

    The year 2001 marked the first observance of Sun-Earth Day as an event to celebrate the strong interconnection of the life we have on Earth and the dependence of it on the dynamic influence of the Sun. The science of the Sun-Earth Connection has grown dramatically with new satellite and ground-based studies of the Sun and the Sun's extended "atmosphere" in which we live. Space weather is becoming a more common concept that people know can affect their lives. An understanding of the importance of the Sun's dynamic behavior and how this shapes the solar system and especially the Earth is the aim of Sun-Earth Day. The first Sun-Earth event actually took place over two days, April 27 and 28, 2001, in order to accommodate all the events which were planned both in the classroom on Friday the 27th and in more informal settings on Saturday the 28th. The Sun-Earth Connection Education Forum (SECEF) organized the creation of ten thousand packets of educational materials about Sun-Earth Day and distributed them mostly to teachers who were trained to use them in the classroom. Many packets, however, went to science centers, museums, and planetariums as resource materials for programs associated with Sun-Earth Day. Over a hundred scientists used the event as an opportunity to communicate their love of science to audiences in these informal settings. Sun-Earth Day was also greatly assisted by the Amateur Astronomical Society which used the event as a theme for their annual promotion of astronomy in programs given around the country. The Solar and Heliospheric Observatory (SOHO), a satellite mission jointly sponsored by NASA and the European Space Agency (ESA), used Sun-Earth Day in conjunction with the fifth anniversary celebration of SOHO as a basis for many programs and events, especially a large number of happenings in Europe. These included observing parties, art exhibits, demonstrations, etc. Examples of some of the innovative ways that Sun-Earth Day was brought into people

  7. Using Earth System Science as Basis for Sustainability Education in an Undergraduate Environmental Science Program

    NASA Astrophysics Data System (ADS)

    Sinton, C. W.

    2012-12-01

    Undergraduate programs in Environmental Science (ES) have progressively grown over the past decades. One of the many challenges of providing an effective curriculum is deciding what content and which skills are included in such a wide ranging field. Certainly geoscience needs to be included as part of the content but how is this best executed? More precisely, what should ES majors know about how the earth, oceans, and atmosphere work? One possible approach is to include existing undergraduate geology or atmospheric science courses as part of the required core, but this has potential pitfalls. For example, courses may be geared toward general education requirements or may be designed more for geology majors. A better solution is to offer a course or set of courses that are specifically tailored for ES majors. I propose that Earth System Science (ESS) is an excellent approach as it incorporates the earth as a whole system and can be taught within the context of environmental sustainability. My approach to ESS is to focus on the movement/cycles of matter (e.g., carbon, calcium, nitrogen) and energy. By referring back to this focus throughout the semester, students are provided with a structure to begin to make sense of a complex problem. In support of this, lab exercises provide practice in collecting and analyzing data using a variety resources.

  8. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  9. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  10. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  11. Connecting Teachers and Students with Science Experts: NASA's Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Mailhot, M.; Lindgren, C. F.

    2010-12-01

    Classroom teachers are challenged with engaging and preparing today’s students for the future. Activities are driven by state required skills, education standards, and high stakes testing. How can educators teach required standards and motivate students to not only learn essential skills, but also acquire a sense of intrigue to want to learn more? One way is to allow students to take charge of their learning and conduct student-driven research. NASA’s Expedition Earth and Beyond program, based at the NASA Johnson Space Center, is designed to do just that. The program, developed by both educators and scientists, promotes inquiry-based investigations in classrooms (grades 5-14) by using current NASA data. By combining the expertise of teachers, who understand the everyday challenges of working with students, and scientists, who work with the process of science as they conduct their own research, the result is a realistic and useable means in which to promote authentic research in classrooms. NASA’s Expedition Earth and Beyond Program was created with the understanding that there are three important aspects that enable teachers to implement authentic research experiences in the classroom. These aspects are: 1) Standards-aligned, inquiry based curricular resources and an implementation structure to support student-driven research; 2) Professional development opportunities to learn techniques and strategies to ensure seamless implementation of resources; and 3) Ongoing support. Expedition Earth and Beyond provides all three of these aspects and adds two additional and inspiring motivators. One is the opportunity for student research teams to request new data. Data requested and approved would be acquired by astronauts orbiting Earth on the International Space Station. This aspect is part of the process of science structure and provides a powerful way to excite students. The second, and perhaps more significant motivator, is the creation of connections between

  12. Why Study Geoscience? Identifying Effective Recruitment and Retention Strategies for an Undergraduate Earth & Environmental Sciences Program

    NASA Astrophysics Data System (ADS)

    Vajoczki, S.; Eyles, C. H.; Stewart, J.; Dasilva, L.

    2005-12-01

    McMaster University is a `research intensive' university with 17,000+ full time undergraduate students. The School of Geography and Earth Sciences (SGES) is located within the Faculty of Science, offers B.Sc., B.A., M.Sc., M.A. and PhD degree programs and teaches more than 70 undergraduate courses on an annual basis. The Honours B.Sc program in Earth and Environmental Sciences (EES) graduates approximately 25 students per year. Students enroll in undergraduate SGES programs in their second year, after completion of an introductory first year in the Faculty of Science in which they take compulsory science courses including math, physics, chemistry, and biology. First year students, as well as those in upper years, may also elect to take one or more of three introductory courses offered by SGES (Earth & the Environment, The Living Environment, Atmosphere & Hydrosphere) to complete their science requirements. Most students entering the Faculty of Science know little about geoscience as it does not form an important part of the Ontario secondary school curriculum. Hence, recruitment into the EES program is primarily via the first year courses. In order to establish reasons why students elected to take the introductory courses offered by SGES, and their reasons for considering subsequent entry to the B.Sc program, a survey of students taking one of the courses was conducted in the fall of 2003. Results from the survey indicate that students enroll in the course, and subsequently the EES program, for a variety of reasons including: general interest in how the planet works, concern for the environment, interesting title of the course and reputation of the instructor. Student concern over lack of potential jobs is cited as the main reason for not pursuing a degree in geoscience. This survey has helped to direct the multifaceted recruitment strategies used by SGES to continue to develop its undergraduate program through delivery of high quality first year courses

  13. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    NASA Technical Reports Server (NTRS)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  14. Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program

    NASA Technical Reports Server (NTRS)

    Peri, Frank; Volz, Stephen

    2013-01-01

    NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.

  15. Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate

    NASA Technical Reports Server (NTRS)

    Kerr, Frank

    1992-01-01

    A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.

  16. NASA Earth Science Disasters Program Response Activities During Hurricanes Harvey, Irma, and Maria in 2017

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Schultz, L. A.; Molthan, A.; Kirschbaum, D.; Roman, M.; Yun, S. H.; Meyer, F. J.; Hogenson, K.; Gens, R.; Goodman, H. M.; Owen, S. E.; Lou, Y.; Amini, R.; Glasscoe, M. T.; Brentzel, K. W.; Stefanov, W. L.; Green, D. S.; Murray, J. J.; Seepersad, J.; Struve, J. C.; Thompson, V.

    2017-12-01

    The 2017 Atlantic hurricane season included a series of storms that impacted the United States, and the Caribbean breaking a 12-year drought of landfalls in the mainland United States (Harvey and Irma), with additional impacts from the combination of Irma and Maria felt in the Caribbean. These storms caused widespread devastation resulting in a significant need to support federal partners in response to these destructive weather events. The NASA Earth Science Disasters Program provided support to federal partners including the Federal Emergency Management Agency (FEMA) and the National Guard Bureau (NGB) by leveraging remote sensing and other expertise through NASA Centers and partners in academia throughout the country. The NASA Earth Science Disasters Program leveraged NASA mission products from the GPM mission to monitor cyclone intensity, assist with cyclone center tracking, and quantifying precipitation. Multispectral imagery from the NASA-NOAA Suomi-NPP mission and the VIIRS Day-Night Band proved useful for monitoring power outages and recovery. Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1 satellites operated by the European Space Agency were used to create flood inundation and damage assessment maps that were useful for damage density mapping. Using additional datasets made available through the USGS Hazards Data Distribution System and the activation of the International Charter: Space and Major Disasters, the NASA Earth Science Disasters Program created additional flood products from optical and radar remote sensing platforms, along with PI-led efforts to derive products from other international partner assets such as the COSMO-SkyMed system. Given the significant flooding impacts from Harvey in the Houston area, NASA provided airborne L-band SAR collections from the UAVSAR system which captured the daily evolution of record flooding, helping to guide response and mitigation decisions for critical infrastructure and public safety. We

  17. MS PHD'S PDP: Vision, Design, Implementation, and Outcomes of a Minority-Focused Earth System Sciences Program

    NASA Astrophysics Data System (ADS)

    Habtes, S. Y.; Mayo, M.; Ithier-Guzman, W.; Pyrtle, A. J.; Williamson Whitney, V.

    2007-05-01

    As minorities are predicted to comprise at least 33% of the US population by the year 2010, their representation in the STEM fields, including the ocean sciences, is still poorly established. In order to advance the goal of better decision making, the Ocean Sciences community must achieve greater levels of diversity in membership. To achieve this objective of greater diversity in the sciences, the Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science® Professional Development Program (MS PHD'S PDP), which was launched in 2003, is supported via grants from NASA's Office of Earth Science, and NSF's Directorate for Geosciences. The MS PHD'S PDP is designed to provide professional and mentoring experiences that facilitate the advancement of minorities committed to achieving outstanding Earth System Science careers. The MS PHD'S PDP is structured in three phases, connected by engagement in a virtual community, continuous peer and mentor to mentee interactions, and the professional support necessary for ensuring the educational success of the student participants. Since the pilot program in 2003, the MSPHD'S PDP, housed at the University of South Florida's College of Marine Science, has produced 4 cohorts of students. Seventy-five have completed the program; of those 6 have earned their doctoral degrees. Of the 45 current participants 10 are graduate students in Marine Science and 15 are still undergraduates, the remaining 10 participants are graduate students in other STEM fields. Since the implementation of the MSPHD'S PDP a total of 87 students and 33 scientist mentors have become part of the MSPHD'S virtual community, helping to improve the learning environment for current and future participants as well as build a community of minority students that encourages each other to pursue their academic degrees.

  18. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  19. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  20. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    NASA Astrophysics Data System (ADS)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  1. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  2. [Activities of Goddard Earth Sciences and Technology Center, Maryland University

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Goddard Space Flight Center (GSFC) is recognized as a world leader in the application of remote sensing and modeling aimed at improving knowledge of the Earth system. The Goddard Earth Sciences Directorate plays a central role in NASA's Earth Observing System and the U.S. Global Change Research Program. Goddard Earth Sciences and Technology (GEST) is organized as a cooperative agreement with the GSFC to promote excellence in the Earth sciences, and is a consortium of universities and corporations (University of Maryland Baltimore County, Howard University, Hampton University, Caelum Research Corporation and Northrop Grumman Corporation). The aim of this new program is to attract and introduce promising students in their first or second year of graduate studies to Oceanography and Earth system science career options through hands-on instrumentation research experiences on coastal processes at NASA's Wallops Flight Facility on the Eastern Shore of Virginia.

  3. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  4. Increasing Expertise in Earth Science Education through Master's Education

    ERIC Educational Resources Information Center

    Huntoon, Jackie; Baltensperger, Brad

    2012-01-01

    The processes of developing and the results of testing a master's degree program designed to increase the number and quality of secondary-level earth science teachers are described in this paper. The master's program is intended to serve practicing secondary-level science and math teachers who lack subject-area endorsement in earth science. There…

  5. Increasing Participation in the Earth Sciences A 35 year Journey

    NASA Astrophysics Data System (ADS)

    Blueford, J. R.

    2006-12-01

    In the 1970's the fact that woman and ethnic minorities men made up approximately10% of the workforce in the geosciences created concern. Determining ways to increase the participation became a topic of discussion amongst many of the geosciences agencies in the United States. Many created scholarships and work opportunities for students. One of the most successful projects was the MPES (Minority Participation in the Earth Science) Program implemented by the U.S. Geological Survey. A key factor in its success was its outreach programs which used employees to work in elementary schools to get children excited about earth sciences. Successive years added teacher workshops and developing career day presentations to help school districts increase the awareness of the earth sciences. However, cutbacks prevented the continuation of these programs, but from the ashes a new non-profit organization of scientists, the Math Science Nucleus, developed curriculum and implementation strategies that used Earth Sciences as a core content area. Using the power of the internet, it provided teachers and parents around the world content driven curriculum. The Integrating Science, Math, and Technology Reference Curriculum is used around the world to help teachers understand how children learn science content.

  6. Resources Available for Earth Science Education. Final Report.

    ERIC Educational Resources Information Center

    Clausen, Eric

    A study of schools was conducted to determine needs of earth science programs, and what, if any, services could effectively be provided by an earth science resource center. Contacts were made with approximately one-half the schools in the Minot State College service region. Discussions were held with administrators and teachers, and facilities at…

  7. Norfolk State University Research Experience in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  8. Ensuring Credibility of NASA's Earth Science Data (Invited)

    NASA Astrophysics Data System (ADS)

    Maiden, M. E.; Ramapriyan, H. K.; Mitchell, A. E.; Berrick, S. W.; Walter, J.; Murphy, K. J.

    2013-12-01

    The summary description of the Fall 2013 AGU session on 'Data Curation, Credibility, Preservation Implementation, and Data Rescue to Enable Multi-Source Science' identifies four attributes needed to ensure credibility in Earth science data records. NASA's Earth Science Data Systems Program has been working on all four of these attributes: transparency, completeness, permanence, and ease of access and use, by focusing on them and upon improving our practices of them, over many years. As far as transparency or openness, NASA was in the forefront of free and open sharing of data and associated information for Earth observations. The US data policy requires such openness, but allows for the recoup of the marginal cost of distribution of government data and information - but making the data available with no such charge greatly increases their usage in scientific studies and the resultant analyses hasten our collective understanding of the Earth system. NASA's currently available Earth observations comprise primarily those obtained from satellite-borne instruments, suborbital campaigns, and field investigations. These data are complex and must be accompanied by rich metadata and documentation to be understandable. To enable completeness, NASA utilizes standards for data format, metadata content, and required documentation for any data that are ingested into our distributed Earth Observing System Data and Information System, or EOSDIS. NASA is moving to a new metadata paradigm, primarily to enable a fuller description of data quality and fit-for-purpose attributes. This paradigm offers structured approaches for storing quality measures in metadata that include elements such as Positional Accuracy, Lineage and Cloud Cover. NASA exercises validation processes for the Earth Science Data Systems Program to ensure users of EOSDIS have a predictable level of confidence in data as well as assessing the data viability for usage and application. The Earth Science Data Systems

  9. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    NASA Astrophysics Data System (ADS)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  10. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  11. Summer of Seasons Workshop Program for Emerging Educators in Earth System Science

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj

    2002-01-01

    Norfolk State University BEST Lab successfully hosted three Summer of Seasons programs from 1998-2001. The Summer of Seasons program combined activities during the summer with additional seminars and workshops to provide broad outreach in the number of students and teachers who participated. Lessons learned from the each of the first two years of this project were incorporated into the design of the final year's activities. The "Summer of Seasons" workshop program provided emerging educators with the familiarity and knowledge to utilize in the classroom curriculum materials developed through NASA sponsorship on Earth System Science. A special emphasis was placed on the use of advanced technologies to dispel the commonly held misconceptions regarding seasonal, climactic and global change phenomena.

  12. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    NASA Astrophysics Data System (ADS)

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  13. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  14. Collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Flores, K.; Nadeau, P. A.; Sessa, J.; Ustunisik, G.; Zirakparvar, N.; Ebel, D.; Harlow, G.; Webster, J. D.; Kinzler, R.; MacDonald, M. B.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Zachowski, M.

    2014-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The lack of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and a teaching residency in local urban classrooms. The MAT program targets high-needs schools with diverse student populations and therefore has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of candidates entered the MAT program in June of 2012 and finished in August of 2013. Nineteen new Regents-qualified Earth Science teachers are now in full-time teaching positions at high-needs schools in New York State. We report on the experience of the first cohort as well as the continuation of the program for current and future cohorts of teacher candidates.

  15. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  16. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  17. New Millennium Program: Servicing Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, F.

    1999-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints.

  18. NASA Earth Science Education Collaborative

    NASA Astrophysics Data System (ADS)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  19. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  20. College and University Earth System Science Education for the 21st Century (ESSE 21)

    NASA Astrophysics Data System (ADS)

    Johnson, D. R.; Ruzek, M.; Schweizer, D.

    2002-12-01

    The NASA/USRA Cooperative University-based Program in Earth System Science Education (ESSE), initiated over a decade ago through NASA support, has led in the creation of a nationwide collaborative effort to bring Earth system science into the undergraduate classroom. Forty-five ESSE institutions now offer over 120 Earth system courses each year, reaching thousands of students annually with interdisciplinary content. Through the course offerings by faculty from different disciplines and the organizational infrastructure of colleges and universities emphasizing cross disciplinary curricula, programs, degrees and departments, the ESSE Program has led in systemic change in the offering of a holistic view of Earth system science in the classroom. Building on this successful experience and collaborative infrastructure within and among colleges, universities and NASA partners, an expanded program called ESSE 21 is being supported by NASA to extend the legacy established during the last decade. Through its expanded focus including partnerships with under represented colleges and universities, the Program seeks to further develop broadly based educational resources, including shared courses, electronic learning materials and degree programs that will extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. Overall the thrust within the classrooms of colleges and universities is critical to extending and solidifying courses of study in Earth system and global change science. ESSE 21 solicits proposals from undergraduate institutions to create or adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. The goal for all is to effect systemic change through developing Earth system science learning materials

  1. Earthquake!: An Event-Based Science Module. Student Edition. Earth Science Module.

    ERIC Educational Resources Information Center

    Wright, Russell G.

    This book is designed for middle school students to learn scientific literacy through event-based science. Unlike traditional curricula, the event-based earth science module is a student-centered, interdisciplinary, inquiry-oriented program that emphasizes cooperative learning, teamwork, independent research, hands-on investigations, and…

  2. Communicating Earth Science Applications through Virtual Poster Sessions

    NASA Astrophysics Data System (ADS)

    Favors, J. E.; Childs-Gleason, L. M.; Ross, K. W.; Ruiz, M. L.; Rogers, L.

    2013-12-01

    The DEVELOP National Program addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. Part of NASA's Applied Sciences' Capacity Building Program, DEVELOP bridges the gap between NASA Earth Science and society, building capacity in both participants and partner organizations to better prepare them to handle the challenges that face our society and future generations. Teams of DEVELOP participants partner with decision makers to conduct rapid feasibility projects that highlight fresh applications of NASA's suite of Earth observing sensors, cultivate advanced skills, and increase understanding of NASA Earth Science data and technology. Part of this process involves the creation of short introductory videos that demonstrate the environmental concerns, project methodologies and results, and an overview of how this work will impact decision makers. These videos are presented to the public three times a year in 'virtual poster sessions' (VPS) that provide an interactive way for individuals from around the globe to access the research, understand the capabilities and applications of NASA's Earth science datasets, and interact with the participants through blogging and dialogue sessions. Virtual poster sessions have allowed DEVELOP to introduce NASA's Earth science assets to thousands of viewers around the world. For instance, one fall VPS had over 5,000 visitors from 89 different countries during the two week session. This presentation will discuss lessons learned and statistics related to the series of nine virtual poster sessions that DEVELOP has conducted 2011-2013.

  3. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  4. The early Earth Observing System reference handbook: Earth Science and Applications Division missions, 1990-1997

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Prior to the launch of the Earth Observing System (EOS) series, NASA will launch and operate a wide variety of new earth science satellites and instruments, as well as undertake several efforts collecting and using the data from existing and planned satellites from other agencies and nations. These initiatives will augment the knowledge base gained from ongoing Earth Science and Applications Division (ESAD) programs. This volume describes three sets of ESAD activities -- ongoing exploitation of operational satellite data, research missions with upcoming launches between now and the first launch of EOS, and candidate earth probes.

  5. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  6. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  7. Earth Science Information Center

    USGS Publications Warehouse

    ,

    1991-01-01

    An ESIC? An Earth Science Information Center. Don't spell it. Say it. ESIC. It rhymes with seasick. You can find information in an information center, of course, and you'll find earth science information in an ESIC. That means information about the land that is the Earth, the land that is below the Earth, and in some instances, the space surrounding the Earth. The U.S. Geological Survey (USGS) operates a network of Earth Science Information Centers that sell earth science products and data. There are more than 75 ESIC's. Some are operated by the USGS, but most are in other State or Federal agencies. Each ESIC responds to requests for information received by telephone, letter, or personal visit. Your personal visit.

  8. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  9. Establishing Esri ArcGIS Enterprise Platform Capabilities to Support Response Activities of the NASA Earth Science Disasters Program

    NASA Astrophysics Data System (ADS)

    Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.

    2017-12-01

    NASA's Earth Science Disasters Program promotes the use of Earth observations to improve the prediction of, preparation for, response to, and recovery from natural and technological disasters. NASA Earth observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, response, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and response efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster response products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA Earth Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The Earth Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of

  10. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  11. NASA'S Earth Science Data Stewardship Activities

    NASA Technical Reports Server (NTRS)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  12. Earth Science Syllabus, 1970 Edition.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This syllabus outlines a year earth science program designed to be activity oriented, investigatory in approach, and interdisciplinary in content. Each topic section contains a topic abstract and topic outline, major understandings, and information to teachers. The topic abstract lists behavioral objectives and general information about the topic…

  13. Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development

    NASA Technical Reports Server (NTRS)

    Dickinson, William B.

    1995-01-01

    An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.

  14. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  15. Nevada Underserved Science Education Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  16. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  17. The 2009 Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Budd, D. A.; Campbell, K. M.; Conklin, M. H.; Kappel, E. S.; Ladue, N.; Lewis, G.; Raynolds, R.; Ridky, R. W.; Ross, R. M.; Taber, J.; Tewksbury, B. J.; Tuddenham, P.

    2009-12-01

    In 2009, the NSF-funded Earth Science Literacy Initiative (ESLI) completed and published a document representing a community consensus about what all Americans should understand about Earth sciences. These Earth Science Literacy Principles, presented as a printed brochure and on the Internet at www.earthscienceliteracy.org, were created through the work of nearly 1000 geoscientists and geoeducators who helped identify nine “big ideas” and seventy-five “supporting concepts” fundamental to terrestrial geosciences. The content scope involved the geosphere and land-based hydrosphere as addressed by the NSF-EAR program, including the fields of geobiology and low-temperature geochemistry, geomorphology and land-use dynamics, geophysics, hydrologic sciences, petrology and geochemistry, sedimentary geology and paleobiology, and tectonics. The ESLI Principles were designed to complement similar documents from the ocean, atmosphere, and climate research communities, with the long-term goal of combining these separate literacy documents into a single Earth System Science literacy framework. The aim of these principles is to educate the public, shape the future of geoscience education, and help guide the development of government policy related to Earth science. For example, K-12 textbooks are currently being written and museum exhibits constructed with these Principles in hand. NPR-funded educational videos are in the process of being made in alignment with the ESLP Principles. US House and Senate representatives on science and education committees have been made aware that the major geoscience organizations have endorsed such a document generated and supported by the community. Given the importance of Earth science in so many societally relevant topics such as climate change, energy and mineral resources, water availability, natural hazards, agriculture, and human impacts on the biosphere, efforts should be taken to ensure that this document is in a position to

  18. Common Earth Science Misconceptions in Science Teaching

    ERIC Educational Resources Information Center

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  19. Teaching programming and modelling skills to first-year earth & environmental science undergraduates: outcomes and lessons learned from a pilot project

    NASA Astrophysics Data System (ADS)

    Fisher, J. A.; Brewer, C.; O'Brien, G.

    2017-12-01

    Computing and programming are rapidly becoming necessary skills for earth and environmental scientists. Scientists in both academia and industry must be able to manipulate increasingly large datasets, create plots and 3-D visualisations of observations, and interpret outputs from complex numerical models, among other tasks. However, these skills are rarely taught as a compulsory part of undergraduate earth science curricula. In 2016, the School of Earth & Environmental Sciences at the University of Wollongong began a pilot program to integrate introductory programming and modelling skills into the required first-year core curriculum for all undergraduates majoring in earth and environmental science fields. Using Python, a popular teaching language also widely used by professionals, a set of guided exercises were developed. These exercises use interactive Jupyter Notebooks to introduce students to programming fundamentals and simple modelling problems relevant to the earth system, such as carbon cycling and population growth. The exercises are paired with peer review activities to expose students to the multitude of "correct" ways to solve computing problems. In the last weeks of the semester, students work in groups to creatively adapt their new-found skills to selected problems in earth system science. In this presentation, I will report on outcomes from delivering the new curriculum to the first two cohorts of 120-150 students, including details of the implementation and the impacts on both student aptitude and attitudes towards computing. While the first cohort clearly developed competency, survey results suggested a drop in student confidence over the course of the semester. To address this confidence gap for the second cohort, the in-class activities are now being supplemented with low-stakes open-book review quizzes that provide further practice with no time pressure. Research into the effectiveness of these review quizzes is ongoing and preliminary findings

  20. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  1. PREFACE: 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The 2013 International Conferences on Geological, Geographical, Aerospace and Earth Sciences (AeroEarth 2013), was held at the Swiss Bell Mangga Besar, Jakarta, Indonesia, on 23 December 2013. The AeroEarth conference aims to bring together researchers, engineers and scientists in the domain of interest from around the world. AeroEarth 2013 promotes interaction between the theoretical, experimental, and applied communities, so that high-level exchange is achieved in new and emerging areas within Earth Science. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 91 papers and after rigorous review, 17 papers were accepted. The participants come from 8 countries. There are 3 (three) Plenary Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contribution. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of AeroEarth 2013. The AeroEarth 2013 Proceedings Editors Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. Amit Desai Further information on the invited plenary speakers and photographs from the conference can be found in the pdf.

  2. Museum-Based Teacher Professional Development: Peabody Fellows in Earth Science

    ERIC Educational Resources Information Center

    Pickering, Jane; Ague, Jay J.; Rath, Kenneth A.; Heiser, David M.; Sirch, James N.

    2012-01-01

    The Peabody Fellows in Earth Science program was a professional development opportunity for middle and high school teachers to enhance their knowledge of, and teaching skills in, the Earth sciences. It combined a summer institute and academic year workshops with the production of new curricular resources on the interpretation of landforms in…

  3. Earth Science Outreach: A Move in the Right Direction

    NASA Astrophysics Data System (ADS)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    There is concern within the Geoscience Community about the public's limited understanding of Earth Science and its fundamental contribution to society. Earth Science plays only a minor role in public school education in Ontario leaving many students to stumble upon this field of study in post-secondary institutions. As the Earth Sciences offer relevant advice for political decisions and provide excellent career opportunities, outreach is an increasingly important component of our work. Recruitment of post-secondary students after they have chosen their discipline cannot remain the sole opportunity. Outreach must be directed to potential students at an early stage of their education. High school teachers are influential, directing students towards professional careers. Therefore we are first committed to reach these teachers. We provide professional development, resources and continued support, building an enthusiastic community of educators. Specific initiatives include: a three day workshop supported by a grant from EdGEO introducing earth science exercises and local field destinations; a resource kit with minerals, rocks, fossils, mineral identification tools and manuals; a CD with prepared classroom exercises; and in-class demonstrations and field trip guiding on request. Maintaining a growing network with teachers has proven highly effective. Direct public school student engagement is also given priority. We inspire students through interaction with researchers and graduate students, hand-on exercises, and by providing opportunities to visit our department and work with our collections. Successful projects include our week-long course "School of Rock" for the Enrichment Mini-Course Program, classroom visits and presentations on the exciting and rewarding career paths in geology during Carleton University open houses. Outreach to the general public allows us to educate the wider community about the Geoheritage of our region, and initiate discussions about

  4. Earth System Science Education Alliance (ESSEA) IPY Modules

    NASA Astrophysics Data System (ADS)

    Blaney, L. S.; Myers, R. J.; Schwerin, T.

    2008-12-01

    The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. With additional support from NASA, the ESSEA program is being enhanced to reflect emphasis on the International Polar Year. From 1999-2005 the ESSEA program was based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. With NASA support, the K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. Additional modules examining the changes in black carbon, ice sheets and permafrost have been added for middle and high school levels. The new modules incorporate geoscience data and analysis tools into classroom instruction. By exploring IPY related topics and data, participating teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The ESSEA IPY modules will help teachers inform rather than frighten their students as they learn

  5. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design

  6. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    NASA Astrophysics Data System (ADS)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  7. An Analysis of Earth Science Data Analytics Use Cases

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Kempler, Steve

    2014-01-01

    The increase in the number and volume, and sources, of globally available Earth science data measurements and datasets have afforded Earth scientists and applications researchers unprecedented opportunities to study our Earth in ever more sophisticated ways. In fact, the NASA Earth Observing System Data Information System (EOSDIS) archives have doubled from 2007 to 2014, to 9.1 PB (Ramapriyan, 2009; and https:earthdata.nasa.govaboutsystem-- performance). In addition, other US agency, international programs, field experiments, ground stations, and citizen scientists provide a plethora of additional sources for studying Earth. Co--analyzing huge amounts of heterogeneous data to glean out unobvious information is a daunting task. Earth science data analytics (ESDA) is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. It can include Data Preparation, Data Reduction, and Data Analysis. Through work associated with the Earth Science Information Partners (ESIP) Federation, a collection of Earth science data analytics use cases have been collected and analyzed for the purpose of extracting the types of Earth science data analytics employed, and requirements for data analytics tools and techniques yet to be implemented, based on use case needs. ESIP generated use case template, ESDA use cases, use case types, and preliminary use case analysis (this is a work in progress) will be presented.

  8. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  9. Unique collaboration between research scientists and educators to prepare new Earth Science teachers

    NASA Astrophysics Data System (ADS)

    Pagnotta, Ashley; Grcevich, J.; Shara, M.; Mac Low, M.; Lepine, S.; Nadeau, P.; Flores, K.; Sessa, J.; Zirakparvar, N.; Ustunisik, G.; Kinzler, R.; Macdonald, M.; Contino, J.; Cooke-Nieves, N.; Zachowski, M.

    2013-01-01

    Abstract: The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a first-of-its-kind program designed to prepare participants to be world-class Earth Science teachers. The dearth of Earth Science teachers in New York State has resulted in fewer students taking the statewide Earth Science Regents Exam, which negatively affects graduation rates and reduces the number of students who pursue related college degrees. The MAT program was designed to address this problem, and is the result of a collaboration between research scientists and educators at the Museum, with faculty comprised of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level Education faculty. The full-time, 15-month program combines courses and field work in astrophysics, geology, earth science, and paleontology at the Museum with pedagogical coursework and real-world teaching experience in local urban classrooms. The program is part of New York State’s Race to the Top initiative and particularly targets high-needs schools with diverse student populations. Because of this, the MAT program has the potential to stimulate interest and achievement in a variety of STEM fields among thousands of students from traditionally underrepresented backgrounds. The first cohort of teacher candidates entered the MAT program in June of 2012. They represent diverse scientific expertise levels, geographic backgrounds, and career stages. We report on the first six months of this pilot program as well as the future plans and opportunities for prospective teacher candidates.

  10. In Brief: Revitalizing Earth science education

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    A 5-year, $3.9-million U.S. National Science Foundation Math Science Partnership grant to Michigan Technological University (MTU), in Houghton, aims to improve instruction in middle-school Earth and space science courses. The program will enable geoscience and education researchers to work with middle-school science teachers to test strategies designed to reform science, technology, engineering, and math (STEM) education. Project lead researcher Bill Rose said the project could be a template for improvement in STEM throughout the United States. Rose, one of seven MTU faculty members involved with the Michigan Institute for Teaching Excellence Program (MITEP), said the project is ``trying to do something constructive to attract more talented young people to advanced science, math, and technology.'' The project includes data collection and analysis overseen by an evaluation team from the Colorado School of Mines. Also participating in the project are scientists from Grand Valley State University, Allendale, Mich.; the Grand Rapids (Mich.) Area Pre-College Engineering Program; the American Geological Institute; and the U.S. National Park Service.

  11. Goddard Earth Sciences and Technology Center (GEST)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  12. Thematic Mapper research in the earth sciences

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.; Stuart, Locke

    1989-01-01

    This paper's studies were initiated under the NASA program for the purpose of conducting the earth sciences research using the Landsat Thematic Mapper. The goals of the program include studies of the factors influencing the growth, health, condition, and distribution of vegetation on the earth; the processes controlling the evolution of the earth's crust; the earth's water budget and the hydrologic processes that operate at local, regional, and global scales; the physical and chemical interaction between different types of surficial materials; and the interaction between the earth's surface and its atmosphere. Twenty-seven domestic and five foreign investigations were initiated in 1985, with the results from most of them already published (one study was terminated due to the delay in the TDRSS). Twelve of the studies addressed hydrology, snow and ice, coastal processes, and near-shore oceanographic phenomena; seven addressed vegetation, soils, or animal habitat; and twelve addressed geologic subjects.

  13. The Time-Sharing Computer In Introductory Earth Science.

    ERIC Educational Resources Information Center

    MacDonald, William D.; MacDonald, Geraldine E.

    Time-sharing computer-assisted instructional (CAI) programs employing the APL language are being used in support of introductory earth science laboratory exercises at the State University of New York at Binghamton. Three examples are sufficient to illustrate the variety of applications to which these programs are put. The BRACH program is used in…

  14. Joint Interdisciplinary Earth Science Information Center

    NASA Technical Reports Server (NTRS)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  15. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    NASA Technical Reports Server (NTRS)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  16. NASA's Earth Science Research and Environmental Predictions

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.

    2004-01-01

    NASA Earth Science program began in the 1960s with cloud imaging satellites used for weather observations. A fleet of satellites are now in orbit to investigate the Earth Science System to uncover the connections between land, Oceans and the atmosphere. Satellite systems using an array of active and passive remote sensors are used to search for answers on how is the Earth changing and what are the consequences for life on Earth? The answer to these questions can be used for applications to serve societal needs and contribute to decision support systems for weather, hazard, and air quality predictions and mitigation of adverse effects. Partnerships with operational agencies using NASA's observational capabilities are now being explored. The system of the future will require new technology, data assimilation systems which includes data and models that will be used for forecasts that respond to user needs.

  17. In Brief: European Earth science network for postdocs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  18. Advanced Information Technology Investments at the NASA Earth Science Technology Office

    NASA Astrophysics Data System (ADS)

    Clune, T.; Seablom, M. S.; Moe, K.

    2012-12-01

    The NASA Earth Science Technology Office (ESTO) regularly makes investments for nurturing advanced concepts in information technology to enable rapid, low-cost acquisition, processing and visualization of Earth science data in support of future NASA missions and climate change research. In 2012, the National Research Council published a mid-term assessment of the 2007 decadal survey for future spacemissions supporting Earth science and applications [1]. The report stated, "Earth sciences have advanced significantly because of existing observational capabilities and the fruit of past investments, along with advances in data and information systems, computer science, and enabling technologies." The report found that NASA had responded favorably and aggressively to the decadal survey and noted the role of the recent ESTO solicitation for information systems technologies that partnered with the NASA Applied Sciences Program to support the transition into operations. NASA's future missions are key stakeholders for the ESTO technology investments. Also driving these investments is the need for the Agency to properly address questions regarding the prediction, adaptation, and eventual mitigation of climate change. The Earth Science Division has championed interdisciplinary research, recognizing that the Earth must be studied as a complete system in order toaddress key science questions [2]. Information technology investments in the low-mid technology readiness level (TRL) range play a key role in meeting these challenges. ESTO's Advanced Information Systems Technology (AIST) program invests in higher risk / higher reward technologies that solve the most challenging problems of the information processing chain. This includes the space segment, where the information pipeline begins, to the end user, where knowledge is ultimatelyadvanced. The objectives of the program are to reduce the risk, cost, size, and development time of Earth Science space-based and ground

  19. Earth Science Research as IPY Priority

    NASA Astrophysics Data System (ADS)

    Kotlyakov, V.; Leonov, Y.; Coakley, B.; Grikurov, G.; Johnson, L.; Kaminsky, V.; Kristoffersen, Y.; Leitchenkov, G.; Pavlenko, V.

    2004-05-01

    The preparations for IPY 2007/2008 are evolving from conceptual to implementation planning. Many earth scientists are concerned that the emerging plans for IPY are too narrowly focused on environmental processes and therefore appear discriminatory with respect to other fundamental sciences. National/international efforts such as USGCRP (U.S. Global Change Research program) and IPCC (Intergovernmental Panel on Climate Change) are also involved in the multitude of climate change issues, and just how the proposed IPY program could augment and complement these ongoing activities without reproducing them requires careful analysis and coordination. In particular, the polar research is unthinkable without study of the geological history of the Arctic and the Southern Oceans as a clue to tectonic evolution of the entire planet and test of the current geodynamic paradigm. In addition to these fundamental objectives, the circum-polar continental margins of the Arctic and Antarctica are likely to become the scenes of geopolitical intrigue provoked by implementation of the provisions of the Law of the Sea that require acquisition of specific earth science knowledge at internationally recognized levels of credibility. Interdisciplinary international programs (e. g. JEODI), based on geophysical data acquisition and analysis that would lead, where appropriate, to scientific drilling, had independently been proposed for studying the coupled tectonic and oceanographic history of the polar regions. Admitting the importance of identifying fundamental constraints for paleooceanography and climatic history of the high latitudes, and acknowledging the progress achieved so far in promoting IPY activities, the international earth science community has suggested developing the proposed approach into a major IPY endeavor - to examine the Polar Ocean Gateway Evolution (POGE). Such study would enable linking the geological history of the Polar Regions during the last 100 Ma and related

  20. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  1. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (4-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 4-year-olds is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  2. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Pelletier, P.; Dorsen, J.; Douglas, E. M.; Pringle, M. S.; Karp, J.

    2009-12-01

    Inquiry-based, hands-on, graduate content courses have been developed specifically for Boston Public School middle school teachers of Earth Science. Earth Science I: Weather and Water and Earth Science II: The Solid Earth--Earth History and Planetary Systems have been taught a total of seven times to over 120 teachers. Several key attributes to these successful courses have been identified, including co-instruction by a university professor and a high school and a middle school teacher that are familiar with the Boston curriculum, use of hands-on activities that are closed related to those used in the Boston curriculum, pre- and post-course local field trips, and identification of key learning objectives for each day. This model of professional development was developed over several years in all disciplines (Earth Science, Physics, Biology, Chemistry) by the Boston Science Partnership (BSP), an NSF-funded Math Science Partnership program. One of the core strategies of the BSP is these Contextualized Content Courses (CCC), graduate level, lab-based courses taught at either UMass Boston or Northeastern University during summer intensive or semester formats. Two of the eleven courses developed under the grant are Earth Science I & II. This presentation shares the model of the CCC, the impact on teacher participants, the value of these courses for the professor, and lessons learned for successful professional development. Findings about the courses’ impact and effectiveness come from our external evaluation by the Program Evaluation Research Group (PERG). The combination of content and modeling good instructional practices have many positive outcomes for teachers, including increased self-efficacy in science understanding and teaching, positive impacts on student achievement, and teacher shifts from more traditional, more lecture-based instructional models to more inquiry approaches. STEM faculty members become involved in science education and learn and practice new

  3. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    NASA Astrophysics Data System (ADS)

    Pottinger, James E.

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space science courses are different than typical online courses in that they need to incorporate an inquiry-based component to ensure students fully understand the course concepts and science principles in the Earth and Space sciences. Studies have addressed the barriers in other inquiry-based online science courses, including biology, physics, and chemistry. This holistic, multiple-case qualitative study investigated perceived barriers and strategies to effective online Earth and Space science instruction through in-depth interviews with six experienced post-secondary online science instructors. Data from this study was analyzed using a thematic analysis approach and revealed four common themes when teaching online Earth and Space science. A positive perception and philosophy of online teaching is essential, the instructor-student interaction is dynamic, course structure and design modification will occur, and online lab activities must make science operational and relevant. The findings in this study demonstrated that online Earth and Space science instructors need institutional support in the form of a strong faculty development program and support staff in order to be as effective as possible. From this study, instructors realize that the instructor-student relationship and course structure is paramount, especially when teaching online science with labs. A final understanding from this study was that online Earth and Space science lab activities must incorporate the use and application of scientific skills and knowledge. Recommendations for future research include (a) qualitative research conducted in specific areas within the

  4. General Education Engagement in Earth and Planetary Science through an Earth-Mars Analog Curriculum

    NASA Astrophysics Data System (ADS)

    Chan, M. A.; Kahmann-Robinson, J. A.

    2012-12-01

    The successes of NASA rovers on Mars and new remote sensing imagery at unprecedented resolution can awaken students to the valuable application of Earth analogs to understand Mars processes and the possibilities of extraterrestrial life. Mars For Earthlings (MFE) modules and curriculum are designed as general science content introducing a pedagogical approach of integrating Earth science principles and Mars imagery. The content can be easily imported into existing or new general education courses. MFE learning modules introduce students to Google Mars and JMARS software packages and encourage Mars imagery analysis to predict habitable environments on Mars drawing on our knowledge of extreme environments on Earth. "Mars Mission" projects help students develop teamwork and presentation skills. Topic-oriented module examples include: Remote Sensing Mars, Olympus Mons and Igneous Rocks, Surface Sculpting Forces, and Extremophiles. The learning modules package imagery, video, lab, and in-class activities for each topic and are available online for faculty to adapt or adopt in courses either individually or collectively. A piloted MFE course attracted a wide range of non-majors to non-degree seeking senior citizens. Measurable outcomes of the piloted MFE curriculum were: heightened enthusiasm for science, awareness of NASA programs, application of Earth science principles, and increased science literacy to help students develop opinions of current issues (e.g., astrobiology or related government-funded research). Earth and Mars analog examples can attract and engage future STEM students as the next generation of earth, planetary, and astrobiology scientists.

  5. Canadian Geoscience Education Network (CGEN): Fostering Excellence in Earth Science Education and Outreach

    NASA Astrophysics Data System (ADS)

    Haidl, F. M.; Vodden, C.; Bates, J. L.; Morgan, A. V.

    2009-05-01

    CGEN, the outreach arm of the Canadian Federation of Earth Sciences, is a network of more than 270 individuals from all over Canada who work to promote geoscience education and public awareness of science. CGEN's priorities are threefold: to improve the quality of Earth science education delivered in our primary and secondary schools; to raise public awareness about the Earth sciences and their impact on everyday life; and to encourage student interest in the Earth sciences as a career option. These priorities are supported by CGEN's six core programs: 1) The national EdGEO program (www.edgeo.org), initiated in the 1970s, supports Earth science workshops for teachers. These workshops, organized by teams of local educators and geoscientists, provide teachers with "enhanced knowledge, classroom resources and increased confidence" to more effectively teach Earth science. In 2008, a record 521 teachers attended 14 EdGEO workshops. 2) EarthNet (www.earthnet-geonet.ca) is a virtual resource centre that provides support for teachers and for geoscientists involved in education and outreach. In 2008, EarthNet received a $11,500 grant from Encana Corporation to develop energy-related content. 3) The new Careers in Earth Science website (www.earthsciencescanada.com/careers), launched in October 2008, enhances CGEN's capacity to encourage students to pursue a career in the Earth sciences. This project exemplifies the value of collaboration with other organizations. Seven groups provided financial support for the project and many other organizations and individuals contributed in-kind support. 4) Geoscape Canada and Waterscape Canada, programs led by the Geological Survey of Canada, communicate practical Earth science information to teachers, students, and other members of communities across Canada through a series of electronic and hard-copy posters and other resources. Many of the resources created from 1998 to 2007 are available online (www.geoscape.nrcan.gc.ca). A northern

  6. Wisconsin Earth and Space Science Education

    NASA Technical Reports Server (NTRS)

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  7. Earth Science. Developing an Early Interest in Science: A Preschool Science Curriculum. (3-Year-Olds).

    ERIC Educational Resources Information Center

    Summer, Gail L.; Giovannini, Kathleen

    This teaching guide on earth sciences for 3-year-old children is based on a modification of the "Plan, Do, Review" approach to education devised by High Scope in Ypsilanti, Michigan. First implemented as an outreach early childhood program in North Carolina, the science activities described in this guide can be adapted to various early childhood…

  8. The TXESS Revolution: A Partnership to Advance Earth and Space Science in Texas

    NASA Astrophysics Data System (ADS)

    Ellins, K. K.; Olson, H. C.; Willis, M.

    2007-12-01

    The Texas State Board of Education voted in 2006 to require a fourth year of science for graduation from high school and to authorize the creation of a new senior level Earth Systems and Space Science course as an option to fulfill that requirement. The new Earth Systems and Space Science course will be a capstone course for which three required science courses(biology, chemistry and physics)are prerequisites. Here, we summarize the collective efforts of business leaders, scientists and educators who worked collaboratively for almost a decade to successfully reinstate Earth science as part of Texas' standard high school curriculum and describe a new project, the Texas Earth and Space Science (TXESS) Revolution, a 5-year professional development program for 8th -12th grade minority and minority-serving science teachers and teacher mentors in Texas to help prepare them to teach the new capstone course. At the heart of TXESS Revolution is an extraordinary partnership, involving (1) two UT-Austin academic units, the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering; (2) TERC, a not-for-profit educational enterprise in Massachusetts with 30 years experience in designing science curriculum; (3) the University of South Florida; and (4) the Texas Regional Collaboratives for Excellence in Science and Mathematics Teaching, a statewide network of teacher mentors and science teachers. With guidance from the Texas Education Agency, the state agency charged with overseeing education, the TXESS Revolution project will provide teachers with access to high quality materials and instruction aligned with the Texas educational standards for the new capstone course through: a program of eight different 3-day professional development academies offered to both teachers and teachers mentors; immersive summer institutes, field experiences, and a Petroleum Science and Technology Institute; training on how to implement Earth Science by Design, a teacher

  9. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  10. Nebraska Earth Science Education Network: Enhancing the NASA, University, and Pre-College Science Teacher Connection with Electronic Communication

    NASA Technical Reports Server (NTRS)

    Gosselin, David C.

    1997-01-01

    The primary goals of this project were to: 1. Promote and enhance K-12 earth science education; and enhance the access to and exchange of information through the use of digital networks in K-12 institutions. We have achieved these two goals. Through the efforts of many individuals at the University of Nebraska-Lincoln (UNL), Nebraska Earth Science Education Network (NESEN) has become a viable and beneficial interdisciplinary outreach program for K-12 educators in Nebraska. Over the last three years, the NASA grant has provided personnel and equipment to maintain, expand and develop NESEN into a program that is recognized by its membership as a valuable source of information and expertise in earth systems science. Because NASA funding provided a framework upon which to build, other external sources of funding have become available to support NESEN programs.

  11. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  12. Earth System Science Project

    ERIC Educational Resources Information Center

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  13. Earth Sciences annual report, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  14. Educational program using four-dimensional presentation of space data and space-borne data with Dagik Earth

    NASA Astrophysics Data System (ADS)

    Saito, Akinori; Yoshida, Daiki; Odagi, Yoko; Takahashi, Midori; Tsugawa, Takuya; Kumano, Yoshisuke

    We developed an educational program of space science data and science data observed from the space using a digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system. The educational program using Dagik Earth has been carried out in classrooms of schools, science museums, and research institutes to show the scientific data of the earth and planets in an intuitive way. We are developing the hardware system, data contents, and education manuals in cooperation with teachers, museum staffs and scientists. The size of the globe used in this system is from 15cm to 2m in diameter. It is selected according to the environment of the presentation. The contents cover the space science, such as aurora and geomagnetic field, the earth science, such as global clouds and earthquakes, and planetary science. Several model class plans are ready to be used in high school and junior high school. In public outreach programs of universities, research institutes, and scientific meetings, special programs have been carried out. We are establishing a community to use and develop this program for the space science education.

  15. Geology, Geochronology, and EarthScope: The EarthScope AGeS Program and a new idea for a 4D Earth Initiative

    NASA Astrophysics Data System (ADS)

    Flowers, R. M.; Arrowsmith, R.; Metcalf, J. R.; Rittenour, T. M.; Schoene, B.; Hole, J. A.; Pavlis, T. L.; Wagner, L. S.; Whitmeyer, S. J.; Williams, M. L.

    2015-12-01

    The EarthScope AGeS (Awards for Geochronology Student Research) program is a multi-year educational initiative aimed at enhancing interdisciplinary, innovative, and high-impact science by promoting training and new interactions between students, scientists, and geochronology labs at different institutions. The program offers support of up to $10,000 for graduate students to collect and interpret geochronology data that contribute to EarthScope science targets through visits to participating geochronology labs (www.earthscope.org/geochronology). The program was launched by a 2-day short course held before the 2014 National GSA meeting in Vancouver, at which 16 geochronology experts introduced 43 participants to the basic theory and applications of geochronology methods. By the first proposal submission deadline in spring 2015, 33 labs representing a broad range of techniques had joined the program by submitting lab plans that were posted on the EarthScope website. The lab plans provide information about preparation, realistic time frames for visits, and analytical costs. In the first year of the program, students submitted 47 proposals from 32 different institutions. Proposals were ranked by an independent panel, 10 were funded, and research associated with these projects is currently underway. The next proposal deadline will be held in spring 2016. The 4D-Earth initiative is an idea for a natural successor to the EarthScope program aimed at expanding the primarily 3D geophysical focus that captured a snapshot of present day North America into the 4th dimension of time (hence the connection to the prototypical AGeS program), and illuminating the crustal component that was below the resolution of much of the USArray image. Like EarthScope, the notion is that this initiative would integrate new infrastructure and usher in a new way of doing science. The overarching scientific motivation is to develop a Community Geologic Model for the 4-D Evolution of the North

  16. Increasing participation in the Earth sciences through engagement of K-12 educators in Earth system science analysis, inquiry and problem- based learning and teaching

    NASA Astrophysics Data System (ADS)

    Burrell, S.

    2012-12-01

    Given low course enrollment in geoscience courses, retention in undergraduate geoscience courses, and granting of BA and advanced degrees in the Earth sciences an effective strategy to increase participation in this field is necessary. In response, as K-12 education is a conduit to college education and the future workforce, Earth science education at the K-12 level was targeted with the development of teacher professional development around Earth system science, inquiry and problem-based learning. An NSF, NOAA and NASA funded effort through the Institute for Global Environmental Strategies led to the development of the Earth System Science Educational Alliance (ESSEA) and dissemination of interdisciplinary Earth science content modules accessible to the public and educators. These modules formed the basis for two teacher workshops, two graduate level courses for in-service teachers and two university course for undergraduate teacher candidates. Data from all three models will be presented with emphasis on the teacher workshop. Essential components of the workshop model include: teaching and modeling Earth system science analysis; teacher development of interdisciplinary, problem-based academic units for implementation in the classroom; teacher collaboration; daily workshop evaluations; classroom observations; follow-up collaborative meetings/think tanks; and the building of an on-line professional community for continued communication and exchange of best practices. Preliminary data indicate increased understanding of Earth system science, proficiency with Earth system science analysis, and renewed interest in innovative delivery of content amongst teachers. Teacher-participants reported increased student engagement in learning with the implementation of problem-based investigations in Earth science and Earth system science thinking in the classroom, however, increased enthusiasm of the teacher acted as a contributing factor. Teacher feedback on open

  17. Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.

  18. Lidar Past, Present, and Future in NASA's Earth and Space Science Programs

    NASA Technical Reports Server (NTRS)

    Einaudi, Franco; Schwemmer, Geary K.; Gentry, Bruce M.; Abshire, James B.

    2004-01-01

    Lidar is firmly entrenched in the family of remote sensing technologies that NASA is developing and using. Still a relatively new technology, lidar should continue to experience significant advances and progress. Lidar is used in each one of the major research themes, including planetary exploration, in the Earth Sciences Directorate at Goddard Space Flight Center. NASA has and will continue to generate new lidar applications from ground, air and space for both Earth science and planetary exploration.

  19. Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette

    2013-01-01

    The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.

  20. NASA's Earth Science Enterprise: 1998 Education Catalog

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This catalog presents a reference guide to NASA Earth science education programs and products. The topics include: 1) Student Support (Elementary and Secondary, Undergraduate and Graduate, Postgraduate, and Postdoctorate); 2) Teacher/Faculty Preparation and Enhancement; 3) Systemic Change; 4) Curriculum Support; and 5) Resources.

  1. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  2. Supporting Inquiry-based Earth System Science Instruction with Middle and High School Earth Science Teachers

    NASA Astrophysics Data System (ADS)

    Finkel, L.; Varner, R.; Froburg, E.; Smith, M.; Graham, K.; Hale, S.; Laura, G.; Brown, D.; Bryce, J.; Darwish, A.; Furman, T.; Johnson, J.; Porter, W.; von Damm, K.

    2007-12-01

    The Transforming Earth System Science Education (TESSE) project, a partnership between faculty at the University of New Hampshire, Pennsylvania State University, Elizabeth City State University and Dillard University, is designed to enrich the professional development of in-service and pre-service Earth science teachers. One goal of this effort is to help teachers use an inquiry-based approach to teaching Earth system science in their classrooms. As a part of the TESSE project, 42 pre-service and in-service teachers participated in an intensive two-week summer institute at UNH taught by Earth scientists and science educators from TESSE partnership institutions. The institute included instruction about a range of Earth science system topics as well as an introduction to teaching Earth science using an inquiry-based approach. In addition to providing teachers with information about inquiry-based science teaching in the form of sample lesson plans and opportunities to revise traditional lessons and laboratory exercises to make them more inquiry-based, TESSE instructors modeled an inquiry- based approach in their own teaching as much as possible. By the end of the Institute participants had developed lesson plans, units, or year-long course overviews in which they were expected to explain the ways in which they would include an inquiry-based approach in their Earth science teaching over the course of the school year. As a part of the project, graduate fellows (graduate students in the earth sciences) will work with classroom teachers during the academic year to support their implementation of these plans as well as to assist them in developing a more comprehensive inquiry-based approach in the classroom.

  3. Contributions to Public Understanding of Science by the Lamont-Doherty Earth Observatory (I): Programs and Workshops

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Turrin, M.; Kenna, T. C.; Newton, R.; Buckley, B.

    2009-12-01

    The Lamont-Doherty Earth Observatory of Columbia University (LDEO) continues its long history of contributions to public understanding of Science through “live” and web-based programs that provide teachers, students, and the other access to new discoveries and updates on key issues. We highlight current activities in paired posters. Part 1 focuses on events held at the Palisades, NY, campus. "Earth2Class (E2C)" is a unique program integrating science content with increased understanding about classroom learning and technology. Monthly workshops allow K-14 participants to combine talks by researchers about cutting-edge investigations with acquisition of background knowledge and classroom-ready applications. E2C has sponsored 100 workshops by more than 60 LDEO scientists for hundreds of teachers. A vast array of resources on earth2class.org> includes archived versions of workshops, comprehensive sets of curriculum units, and professional development opportunities. It has been well received by both workshop participants and others who have only accessed the web site. "Hudson River Snapshot Day" celebrates the Hudson River Estuary and educates participants on the uniqueness of our nearby estuary as part of the annual National Estuaries Week. The New York State Department of Environmental Conservation Hudson River Estuary Program and Hudson Basin River Watch coordinate the event. LDEO scientists help coordinate annual data collection by school classes to create a day-in-the-life picture all along the river. LDEO researchers also participate in "River Summer," bringing together participants from a variety of perspectives to look at the Hudson River and foster better understanding of how the same features can appear very differently to artists, writers, political scientists, economists, or scientists. These perspectives aid in recognizing the Hudson’s unique characteristics and history by identifying cross-disciplinary relationships and fostering new

  4. Earth Science Curriculum Enrichment Through Matlab!

    NASA Astrophysics Data System (ADS)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The use of Matlab in Earth Science undergraduate courses in the Department of Geography at Hunter College began as a pilot project in Fall 2008 and has evolved and advanced to being a significant component of an Advanced Oceanography course, the selected tool for data analysis in other courses and the main focus of a graduate course for doctoral students at The city University of New York (CUNY) working on research related to geophysical, oceanic and atmospheric dynamics. The primary objectives of these efforts were to enhance the Earth Science curriculum through course specific applications, to increase undergraduate programming and data analysis skills, and to develop a Matlab users network within the Department and the broader Hunter College and CUNY community. Students have had the opportunity to learn Matlab as a stand-alone course, within an independent study group, or as a laboratory component within related STEM classes. All of these instructional efforts incorporated the use of prepackaged Matlab exercises and a research project. Initial exercises were designed to cover basic scripting and data visualization techniques. Students were provided data and a skeleton script to modify and improve upon based on the laboratory instructions. As student's programming skills increased throughout the semester more advanced scripting, data mining and data analysis were assigned. In order to illustrate the range of applications within the Earth Sciences, laboratory exercises were constructed around topics selected from the disciplines of Geology, Physics, Oceanography, Meteorology and Climatology. In addition the structure of the research component of the courses included both individual and team projects.

  5. PREFACE: 3rd International Conference on Geological, Geographical, Aerospace and Earth Science 2015 (AeroEarth 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2016-02-01

    The 3rd International Conferences on Geological, Geographical, Aerospaces and Earth Sciences 2015 (AeroEarth 2015), was held at The DoubleTree Hilton, Jakarta, Indonesia during 26 - 27 September 2015. The 1st AeoroEarth was held succefully in Jakarta in 2013. The success continued to The 2nd AeroEarth 2014 that was held in Kuta Bali, Indonesia. The publications were published by EES IOP in http://iopscience.iop.org/1755-1315/19/1 and http://iopscience.iop.org/1755-1315/23/1 respectively. The AeroEarth 2015 conference aims to bring together researchers, engineers and scientists from around the world. Through research and development, Earth's scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. The theme of AeroEarth 2015 is ''Earth and Aerospace Sciences : Challenges and Opportunities'' Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 78 papers and after rigorous review, 18 papers were accepted. The participants

  6. Science 20-30: Program of Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Curriculum Branch.

    Presented in both English and French, Science 20-30 is an integrated academic program in Alberta, Canada that helps students better understand and apply fundamental concepts and skills common to biology, chemistry, physics, and the Earth sciences. The major goals of the program are: (1) to develop in students an understanding of the…

  7. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    NASA Astrophysics Data System (ADS)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  8. Earth Sciences Division Research Summaries 2002-2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climatemore » change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  9. Building A Collaborative And Distributed E&O Program For EarthScope

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  10. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  11. Earth Radiation Measurement Science

    NASA Technical Reports Server (NTRS)

    Smith, G. Louis

    2000-01-01

    This document is the final report for NASA Grant NAG1-1959, 'Earth Radiation Measurement Science'. The purpose of this grant was to perform research in this area for the needs of the Clouds and Earth Radiant Energy System (CERES) project and for the Earth Radiation Budget Experiment (ERBE), which are bing conducted by the Radiation and Aerosols Branch of the Atmospheric Sciences Division of Langley Research Center. Earth Radiation Measurement Science investigates the processes by which measurements are converted into data products. Under this grant, research was to be conducted for five tasks: (1) Point Response Function Measurements; (2) Temporal Sampling of Outgoing Longwave Radiation; (3) Spatial Averaging of Radiation Budget Data; (4) CERES Data Validation and Applications; and (5) ScaRaB Data Validation and Application.

  12. Earth Stewardship Science: International Research Networks based in Africa (Invited)

    NASA Astrophysics Data System (ADS)

    Gaines, S. M.

    2010-12-01

    The role of networking in student and early career years is critical in the development of international interdisciplinary earth system science. These networks - both peer and mentor-based - can build community, foster enthusiasm and further research applications in addition to the traditional goal of identifying and obtaining work. UNESCO has nearly 40 years of experience in building international research teams through the International Geoscience Program (IGCP) and has recently focused their attention on the status of the earth sciences in Africa. UNESCO’s Earth Science Education Initiative in Africa ran a series of regional scoping workshops around the continent in order to develop an integrated status report on the earth sciences in Africa. The results, which are globally relevant, indicate that the field is limited by the level of basic science education of incoming students and restricted laboratory facilities, but also by a lack of connectedness. This isolation relates both to the interaction between researchers within countries and around the world but also the divide between Universities and Industry and the failure of the field to communicate its relevance to the public. In a context where livelihood opportunities are the driver of study and the earth sciences provide a major source of income, practical academic ties to industry are an essential element of the attractiveness of the field to students. Actions and ideas for addressing this situation will be presented to reinforce the role of the earth sciences in improving human and environmental well-being.

  13. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    ERIC Educational Resources Information Center

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  14. Earth Sciences Division Research Summaries 2006-2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we

  15. Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.

  16. Strategies for Growth in a Young Earth Sciences Department

    NASA Astrophysics Data System (ADS)

    Clement, B. M.; Hickey-Vargas, R.; Draper, G.

    2005-12-01

    The Department of Earth Sciences at Florida International University (FIU) has been fortunate to be part of a rapidly growing university. FIU began offering classes in 1972 with an initial enrollment of 5600 students, and today enrollment exceeds 35,000 students. During this time the Department of Earth Sciences has grown to a faculty of 14 and offers the BA, BS, MS and PhD degrees. Our department, however, has faced the same challenges meeting many Earth Science departments in that our number of undergraduate majors has not grown at the same pace as the university enrollment (or at the same pace as enrollment in our graduate program). Two strategies have proven effective and have helped the department build its program in spite of this challenge. The first strategy was to create tenure-track positions with a 50% assignment in the Earth Sciences Department and 50% in a research center on campus. We currently have two faculty who have half-time appointments in the Southeast Environmental Research Center, and we have a new faculty member joining in the Spring who will have a joint appointment with the International Hurricane Research Center. This strategy has made it possible to gain expertise in, and to offer courses in, critical areas (such as hydrogeology and meteorology) that we otherwise would not be able to offer. The second strategy is to develop strong courses for non-majors that satisfy FIU's University Common Curriculum requirements. A particularly successful example is a new course titled "The History of Life". This course was designed to take advantage of our existing expertise in paleobiology, and offer a class that satisfies the University Common Curriculum requirement that every student take a laboratory course in the life sciences. This class now fills to capacity each semester with more than 200 students. This course not only boosts our department's productivity, but it lets us reach 200 new students each semester with many potential new Earth

  17. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  18. Overview of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    McDonald, Kenneth

    2004-01-01

    For over the last 15 years, NASA's Earth Science Enterprise (ESE) has devoted a tremendous effort to design and build the Earth Observing System (EOS) Data and Information System (EOSDIS) to acquire, process, archive and distribute the data of the EOS series of satellites and other ESE missions and field programs. The development of EOSDIS began with an early prototype to support NASA data from heritage missions and progressed through a formal development process to today's system that supports the data from multiple missions including Landsat 7, Terra, Aqua, SORCE and ICESat. The system is deployed at multiple Distributed Active Archive Centers (DAACs) and its current holdings are approximately 4.5 petabytes. The current set of unique users requesting EOS data and information products exceeds 2 million. While EOSDIS has been the centerpiece of NASA's Earth Science Data Systems, other initiatives have augmented the services of EOSDIS and have impacted its evolution and the future directions of data systems within the ESE. ESDIS had an active prototyping effort and has continued to be involved in the activities of the Earth Science Technology Office (ESTO). In response to concerns from the science community that EOSDIS was too large and monolithic, the ESE initiated the Earth Science Information Partners (ESP) Federation Experiment that funded a series of projects to develop specialized products and services to support Earth science research and applications. Last year, the enterprise made 41 awards to successful proposals to the Research, Education and Applications Solutions Network (REASON) Cooperative Agreement Notice to continue and extend the ESP activity. The ESE has also sponsored a formulation activity called the Strategy for the Evolution of ESE Data Systems (SEEDS) to develop approaches and decision support processes for the management of the collection of data system and service providers of the enterprise. Throughout the development of its earth science

  19. EarthScope National Office Education and Outreach Program: 2013 Update on Activities and Outcomes

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Robinson, S.; Bohon, W.; Schwab, P.; Arrowsmith, R.; Garnero, E. J.; Fouch, M. J.; Pettis, L.; Baumback, D.; Dick, C.

    2013-12-01

    The EarthScope Program (www.earthscope.org) funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. Data and findings from EarthScope continue to transform geoscientific studies throughout the Earth, enhance understanding and mitigation of hazards, and inform applications of geoscience toward environmental sustainability. The EarthScope Program also marshals significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including the EarthScope Steering Committee, researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and web-hosted resources, newsletters and published articles, E&O workshops for informal educators (interpreters), assistance to grassroots K-12 STEM teacher professional development projects (typically led by EarthScope researchers), continuing education for researchers, collaborations with other Earth-science E&O providers, and biannual national conferences. The EarthScope E&O program at ESNO leads and supports wide dissemination of the data, findings, and legacy of EarthScope. Notable activities in 2013 include expansion of social-media and web-based content, two Interpretive Workshops in the eastern United States, the Great ShakeOut, the EarthScope National Meeting in Raleigh, and continuing partnerships with affiliated E&O providers. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

  20. The DEVELOP National Program: Building Dual Capacity in Decision Makers and Young Professionals Through NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Childs, L. M.; Rogers, L.; Favors, J.; Ruiz, M.

    2012-12-01

    Through the years, NASA has played a distinct/important/vital role in advancing Earth System Science to meet the challenges of environmental management and policy decision making. Within NASA's Earth Science Division's Applied Sciences' Program, the DEVELOP National Program seeks to extend NASA Earth Science for societal benefit. DEVELOP is a capacity building program providing young professionals and students the opportunity to utilize NASA Earth observations and model output to demonstrate practical applications of those resources to society. Under the guidance of science advisors, DEVELOP teams work in alignment with local, regional, national and international partner organizations to identify the widest array of practical uses for NASA data to enhance related management decisions. The program's structure facilitates a two-fold approach to capacity building by fostering an environment of scientific and professional development opportunities for young professionals and students, while also providing end-user organizations enhanced management and decision making tools for issues impacting their communities. With the competitive nature and growing societal role of science and technology in today's global workplace, DEVELOP is building capacity in the next generation of scientists and leaders by fostering a learning and growing environment where young professionals possess an increased understanding of teamwork, personal development, and scientific/professional development and NASA's Earth Observation System. DEVELOP young professionals are partnered with end user organizations to conduct 10 week feasibility studies that demonstrate the use of NASA Earth science data for enhanced decision making. As a result of the partnership, end user organizations are introduced to NASA Earth Science technologies and capabilities, new methods to augment current practices, hands-on training with practical applications of remote sensing and NASA Earth science, improved remote

  1. EarthTrek - helping scientists to get citizens involved in real science. (Invited)

    NASA Astrophysics Data System (ADS)

    Lewis, G.

    2010-12-01

    Citizen science programs are not new and many scientists can report good success at engaging the public in their research. However, many scientists who could really benefit from the collective pool of eager volunteers do not have the time or patience to develop system to track and manage the collective “enthusiasm”. EarthTrek takes on that role and provides scientists with the support for their venture into a citizen science program. EarthTrek manages the people, rewards them for their involvement and provides avenues for scientists to communicate with the participants. Scientists concentrate on developing sounds collection protocols (with EarthTrek’s help if needed) and then provide feedback once the data stars to come in. EarthTrek is about linking people with real research. EarthTrek will work with scientists from every field as long as projects are collecting data for research, are time constrained and the lead scientists agree to a communication schedule for results back to participants. Examples of active science projects include weathering rates on gravestones, invasive plant species and phenology. EarthTrek is a project of the Geological Society of America and partners around the globe. EarthTrekker collecting data for the Gravestone Project

  2. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    NASA Astrophysics Data System (ADS)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student

  3. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  4. Teaching "Digital Earth" technologies in Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Griffiths, J. A.

    2014-04-01

    As part of a review process for a module entitled "Digital Earth" which is currently taught as part of a BSc in Environmental Sciences program, research into the current provision of Geographical Information Science and Technology (GIS&T) related modules on UKbased Environmental Science degrees is made. The result of this search is used with DiBiase et al. (2006) "Body of Knowledge of GIS&T" to develop a foundation level module for Environmental Sciences. Reference is also made to the current provision geospatial analysis techniques in secondary and tertiary education in the UK, US and China, and the optimal use of IT and multimedia in geo-education.

  5. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  6. Earth Sciences' Capacity Building In Developing Countries through International Programmes

    NASA Astrophysics Data System (ADS)

    Eder, W.

    2007-12-01

    Within the framework of "traditional" programmes, like the joint UNESCO-IUGS "International Geoscience Programme" (IGCP), the "International Continental Scientific Drilling Program" (ICDP), the "Integrated Ocean Drilling Program" (IODP) or the "International Lithosphere Programme" (ILP) numerous opportunities are provided to strengthen postgraduate geo-scientific education of representatives from developing countries. Recently established new initiatives, such as the "International Year of Planet Earth" (IYPE) or UNESCO's Global Network of Geoparks complement these in addition as important components to UNESCO's 'Education for All' programme, notably the youth, as well as to the United Nations Decade of Education for Sustainable Development (2005 - 2014). The "International Year of Planet Earth" is a joint initiative of the International Union of Geological Sciences (IUGS) and UNESCO. The central aims and ambitions of the Year, proclaimed for 2008 by the UN General Assembly, are to demonstrate the great potential of the Earth sciences in building a safer, healthier and wealthier society, and to encourage more widespread and effective application of this potential by targeting politicians and other decision-makers, educational systems, and the general public. Promotion of international collaboration, as well as capacity building and training of students of developing countries in all fields of Earth Sciences seem to be the most appropriate way to meet also the challenges of the IYPE. Another opportunity to improve the international recognition of Earth Scinces, also in developing countries, is the use of Geoparks as a promotional tool for education and popularization of Earth Sciences. Geoparks, notably those included in the European and/or Global Geoparks Networks, provide an international platform of cooperation and exchange between experts and practitioners in geological heritage matters, and are as such excellent instruments in highlighting Earth sciences. The

  7. Opportunities in Education and Public Outreach for Scientists at the School of Ocean and Earth Sciences and Technology

    NASA Astrophysics Data System (ADS)

    Hicks, T.

    2004-12-01

    The School of Ocean and Earth Sciences and Technology (SOEST) at the University of Hawaii at Manoa is home to twelve diverse research institutes, programs and academic departments that focus on a wide range of earth and planetary sciences. SOEST's main outreach goals at the K-12 level are to increase the awareness of Hawaii's schoolchildren regarding earth, ocean, and space science, and to inspire them to consider a career in science. Education and public outreach efforts in SOEST include a variety of programs that engage students and the public in formal as well as informal educational settings, such as our biennial Open House, expedition web sites, Hawaii Ocean Science Bowl, museum exhibits, and programs with local schools. Some of the projects that allow for scientist involvement in E/PO include visiting local classrooms, volunteering in our outreach programs, submitting lessons and media files to our educational database of outreach materials relating to earth and space science research in Hawaii, developing E/PO materials to supplement research grants, and working with local museum staff as science experts.

  8. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    ERIC Educational Resources Information Center

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  9. DISCUS Ninth Grade, Earth Science, Part Two.

    ERIC Educational Resources Information Center

    Duval County School Board, Jacksonville, FL. Project DISCUS.

    Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the second volume of a two volume, one year program in earth science, and contains these five units and activities: Rock Cycle, 12 activities; Minerals and Crystals, 6 activities; Weathering…

  10. Earth Science (A Process Approach), Section 1: The Water Cycle.

    ERIC Educational Resources Information Center

    Campbell, K. C.; And Others

    Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…

  11. Center for Space and Earth Science

    Science.gov Websites

    Search Site submit Los Alamos National LaboratoryCenter for Space and Earth Science Part of the Partnerships NSEC » CSES Center for Space and Earth Science High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and Earth systems Contact Director Reiner Friedel (505

  12. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  13. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1999-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  14. Earth Observing System: Science Objectives and Challenges

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1998-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.

  15. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  16. Investigating Pathways from the Earth Science Knowledge Base to Candidate Solutions

    NASA Astrophysics Data System (ADS)

    Anderson, D. J.; Johnson, E.; Mita, D.; Dabbiru, L.; Katragadda, S.; Lewis, D.; O'Hara, C.

    2007-12-01

    A principle objective of the NASA Applied Sciences Program is to support the transition of scientific research results into decisions which benefit society. One of the Solutions Network activities supporting this goal is the generation of Candidate Solutions derived from NASA Earth Science research results that have the potential to enhance future operational systems for societal benefit. In short, the program seeks to fill gaps between Earth Science results and operational needs. The Earth Science Knowledge Base (ESKB) is being developed to provide connectivity and deliver content for the research information needs of the NASA Applied Science Program and related scientific communities of practice. Data has been collected which will permit users to identify and analyze the current network of interactions between organizations within the community of practice, harvest research results fixed to those interactions, examine the individual components of that research, and assist in developing strategies for furthering research. The ESKB will include information about organizations that conduct NASA-funded Earth Science research, NASA research solicitations, principal investigators, research publications and other project reports, publication authors, inter-agency agreements like memoranda-of-understanding, and NASA assets, models, decision support tools, and data products employed in the course of or developed as a part of the research. The generation of candidate solutions is the first step in developing rigorously tested applications for operational use from the normal yet chaotic process of natural discovery. While the process of 'idea generation' cannot be mechanized, the ESKB serves to provide a resource for testing theories about advancing research streams into the operational realm. Formulation Reports are the documents which outline a Candidate Solution. The reports outline the essential elements, most of which are detailed in the ESKB, which must be analyzed

  17. Earth Science in the Classroom

    ERIC Educational Resources Information Center

    Whitburn, Niki

    2007-01-01

    An area that teachers often find difficult to make interesting is the earth science component of the science curriculum. This may be for a variety of reasons, such as lack of knowledge, lack of ideas or lack of resources. This article outlines ideas and activities that have been developed by the Earth Science Teachers' Association (ESTA) primary…

  18. A program wide framework for evaluating data driven teaching and learning - earth analytics approaches, results and lessons learned

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Gold, A. U.

    2017-12-01

    There is a deluge of earth systems data available to address cutting edge science problems yet specific skills are required to work with these data. The Earth analytics education program, a core component of Earth Lab at the University of Colorado - Boulder - is building a data intensive program that provides training in realms including 1) interdisciplinary communication and collaboration 2) earth science domain knowledge including geospatial science and remote sensing and 3) reproducible, open science workflows ("earth analytics"). The earth analytics program includes an undergraduate internship, undergraduate and graduate level courses and a professional certificate / degree program. All programs share the goals of preparing a STEM workforce for successful earth analytics driven careers. We are developing an program-wide evaluation framework that assesses the effectiveness of data intensive instruction combined with domain science learning to better understand and improve data-intensive teaching approaches using blends of online, in situ, asynchronous and synchronous learning. We are using targeted online search engine optimization (SEO) to increase visibility and in turn program reach. Finally our design targets longitudinal program impacts on participant career tracts over time.. Here we present results from evaluation of both an interdisciplinary undergrad / graduate level earth analytics course and and undergraduate internship. Early results suggest that a blended approach to learning and teaching that includes both synchronous in-person teaching and active classroom hands-on learning combined with asynchronous learning in the form of online materials lead to student success. Further we will present our model for longitudinal tracking of participant's career focus overtime to better understand long-term program impacts. We also demonstrate the impact of SEO optimization on online content reach and program visibility.

  19. The ICTJA-CSIC Science Week 2016: an open door to Earth Sciences for secondary education students

    NASA Astrophysics Data System (ADS)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis; Garcia-Castellanos, Daniel; Geyer, Adelina; Jurado, Maria-Jose; Montoya, Encarni; Rejas Alejos, Marta; Sánchez-Pastor, Pilar; Valverde-Perez, Angel

    2017-04-01

    The Science Week is one of the main scientific outreach events every year in Spain. The Institute of Earth Sciences Jaume Almera of CSIC (ICTJA-CSIC) participates in it since many years ago, opening its doors and proposing several activities in which it is shown what kind of multidisciplinary research is being developed at the Institute and in Geosciences. The activities,developed as workshops, are designed and conducted by scientific and technical personnel of the centre, who participates in the Science Week voluntarily. The activities proposed by the ICTJA-CSIC staff are designed for a target audience composed by secondary school students (12-18 years). The ICTJA-CSIC joined Science Week 2016 in the framework of the activity entitled "What we investigate in Earth Sciences?". The aim is to show to the society what is being investigated in the ICTJA-CSIC. In addition, it is intended, with the contact and interaction between the public and the institute researchers, to increase the interest in scientific activity and, if possible, to generate new vocations in the field of the Earth Sciences among secondary school pupils. We show in this communication the experience of the Science Week 2016 at the ICTJA-CSIC, carried out with the effort and commitment of the of the Institute's personnel with the outreach of Earth Sciences research. Between November 14th and 19th 2016, more than 100 students from four secondary schools from Barcelona area visited the Institute and took part in the Science Week. A total of six interactive workshops were prepared showing different features of seismology, geophysical borehole logging, analog and digital modelling, paleoecology, volcanology and geochemistry. As a novelty, this year a new workshop based on an augmented reality sandbox was offered to show and to simulate the processes of creation and evolution of the topographic relief. In addition, within the workshop dedicated to geophysical borehole logging, six exact replicates of

  20. Senior High School Earth Sciences and Marine Sciences.

    ERIC Educational Resources Information Center

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  1. Embracing Open Source for NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Baynes, Katie; Pilone, Dan; Boller, Ryan; Meyer, David; Murphy, Kevin

    2017-01-01

    The overarching purpose of NASAs Earth Science program is to develop a scientific understanding of Earth as a system. Scientific knowledge is most robust and actionable when resulting from transparent, traceable, and reproducible methods. Reproducibility includes open access to the data as well as the software used to arrive at results. Additionally, software that is custom-developed for NASA should be open to the greatest degree possible, to enable re-use across Federal agencies, reduce overall costs to the government, remove barriers to innovation, and promote consistency through the use of uniform standards. Finally, Open Source Software (OSS) practices facilitate collaboration between agencies and the private sector. To best meet these ends, NASAs Earth Science Division promotes the full and open sharing of not only all data, metadata, products, information, documentation, models, images, and research results but also the source code used to generate, manipulate and analyze them. This talk focuses on the challenges to open sourcing NASA developed software within ESD and the growing pains associated with establishing policies running the gamut of tracking issues, properly documenting build processes, engaging the open source community, maintaining internal compliance, and accepting contributions from external sources. This talk also covers the adoption of existing open source technologies and standards to enhance our custom solutions and our contributions back to the community. Finally, we will be introducing the most recent OSS contributions from NASA Earth Science program and promoting these projects for wider community review and adoption.

  2. Experiences in Bridging the Gap Between Science and Decision Making at NASAs GSFC Earth Sciences Data and Information Services Center (GES DISC)

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Teng, W.; Friedl, L.; Lynnes, C.

    2008-12-01

    In recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA has implemented the 'Decision Support Through Earth Science Research Results' program to solicit "proposals that develop and demonstrate innovative and practicable applications of NASA Earth science observations and research"that focus on improving decision making activities", as stated in the NASA ROSES-2008, A.18 solicitation. This very successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations in the areas of agriculture, air quality, disaster management, ecosystems, public health, water resources, and aviation weather. The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. Coupling this experience with the GES DISC's total understanding and vast experience regarding Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, the GES DISC is in the unique position to more readily identify challenges that come with bringing science data to decision makers. These challenges consist of those that can be met within typical science data usage frameworks, as well as those challenges that arise when utilizing science data for previously unplanned applications, such as decision support systems. The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding how

  3. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  4. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  5. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. GLOBE: A Science/Education Partnership Program.

    ERIC Educational Resources Information Center

    Murphy, Anthony P.; Coppola, Ralph K.

    This paper reviews the history of the GLOBE (Global Learning and Observations to Benefit the Environment) Program, an international environmental science education program. The goals of the program are to: enhance the environmental awareness of individuals around the world; contribute to the scientific understanding of the earth; and to help all…

  8. Satellite and earth science data management activities at the U.S. geological survey's EROS data center

    USGS Publications Warehouse

    Carneggie, David M.; Metz, Gary G.; Draeger, William C.; Thompson, Ralph J.

    1991-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center, the national archive for Landsat data, has 20 years of experience in acquiring, archiving, processing, and distributing Landsat and earth science data. The Center is expanding its satellite and earth science data management activities to support the U.S. Global Change Research Program and the National Aeronautics and Space Administration (NASA) Earth Observing System Program. The Center's current and future data management activities focus on land data and include: satellite and earth science data set acquisition, development and archiving; data set preservation, maintenance and conversion to more durable and accessible archive medium; development of an advanced Land Data Information System; development of enhanced data packaging and distribution mechanisms; and data processing, reprocessing, and product generation systems.

  9. Integrating Intelligent Systems Domain Knowledge Into the Earth Science Curricula

    NASA Astrophysics Data System (ADS)

    Güereque, M.; Pennington, D. D.; Pierce, S. A.

    2017-12-01

    High-volume heterogeneous datasets are becoming ubiquitous, migrating to center stage over the last ten years and transcending the boundaries of computationally intensive disciplines into the mainstream, becoming a fundamental part of every science discipline. Despite the fact that large datasets are now pervasive across industries and academic disciplines, the array of skills is generally absent from earth science programs. This has left the bulk of the student population without access to curricula that systematically teach appropriate intelligent-systems skills, creating a void for skill sets that should be universal given their need and marketability. While some guidance regarding appropriate computational thinking and pedagogy is appearing, there exist few examples where these have been specifically designed and tested within the earth science domain. Furthermore, best practices from learning science have not yet been widely tested for developing intelligent systems-thinking skills. This research developed and tested evidence based computational skill modules that target this deficit with the intention of informing the earth science community as it continues to incorporate intelligent systems techniques and reasoning into its research and classrooms.

  10. STOP for Science! A School-Wide Science Enrichment Program

    NASA Astrophysics Data System (ADS)

    Slane, P.; Slane, R.; Arcand, K. K.; Lestition, K.; Watzke, M.

    2012-08-01

    Young students are often natural scientists. They love to poke and prod, and they live to compare and contrast. What is the fastest animal? Where is the tallest mountain on Earth (or in the Solar System)? Where do the colors in a rainbow come from? And why do baseball players choke up on their bats? Educators work hard to harness this energy and enthusiasm in the classroom but, particularly at an early age, science enrichment - exposure outside the formal classroom - is crucial to help expand science awareness and hone science skills. Developed under a grant from NASA's Chandra X-ray Center, "STOP for Science!" is a simple but effective (and extensible) school-wide science enrichment program aimed at raising questions about science topics chosen to capture student interest. Created through the combined efforts of an astrophysicist and an elementary school principal, and strongly recommended by NASA's Earth & Space Science product review, "STOP for Science" combines aesthetic displays of science topics accompanied by level-selected questions and extensive facilitator resources to provide broad exposure to familiar, yet intriguing, science themes.

  11. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. EOS ART: Six Artistic Projects Inspired by Earth Science

    NASA Astrophysics Data System (ADS)

    Kerlow, Isaac

    2015-04-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. EOS ART was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects. The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia. The paper provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand).

  13. Earth physics and phase transformations program: A concept and proposal

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Tanaka, T.

    1971-01-01

    A program to study the geophysical characteristics of the earth is presented as an integration of the different disciplines that constitute the earth sciences, through the foundation of a generalized geodynamic theory of earth physics. A program is considered for defining the physical constants of the earth's material which parametrize the hydrodynamic equation in the microscopic solid state behavior of the crystals of the lithosphere. In addition, in order to lay the foundation for a generalized theory in earth physics, specific research areas are considered, such as the nature of the kinetics of the phase transitions in mineral assemblages, the equilibrium thermodynamic properties of crystals which are major constituents of mineral assemblages, and the transport properties of pure crystals which are major constituents of mineral assemblages.

  14. The EarthServer project: Exploiting Identity Federations, Science Gateways and Social and Mobile Clients for Big Earth Data Analysis

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Messina, Antonio; Pappalardo, Marco; Passaro, Gianluca

    2013-04-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. Six Lighthouse Applications are being established in EarthServer, each of which poses distinct challenges on Earth Data Analytics: Cryospheric Science, Airborne Science, Atmospheric Science, Geology, Oceanography, and Planetary Science. Altogether, they cover all Earth Science domains; the Planetary Science use case has been added to challenge concepts and standards in non-standard environments. In addition, EarthLook (maintained by Jacobs University) showcases use of OGC standards in 1D through 5D use cases. In this contribution we will report on the first applications integrated in the EarthServer Science Gateway and on the clients for mobile appliances developed to access them. We will also show how federated and social identity services can allow Big Earth Data Providers to expose their data in a distributed environment keeping a strict and fine-grained control on user authentication and authorisation. The degree of fulfilment of the EarthServer implementation with the recommendations made in the recent TERENA Study on

  15. Three-dimensional presentation of the earth and planets in classrooms and science centers with a spherical screen

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.; Odagi, Y.; Nishi, N.; Miyazaki, S.; Ichikawa, H.

    2012-12-01

    Educational programs have been developed for the earth and planetary science using a three-dimensional presentation system of the Earth and planets with a spherical screen. They have been used in classrooms of universities, high schools, elementary schools, and science centers. Two-dimensional map is a standard tool to present the data of the Earth and planets. However the distortion of the shape is inevitable especially for the map of wide areas. Three-dimensional presentation of the Earth, such as globes, is an only way to avoid this distortion. There are several projects to present the earth and planetary science results in three-dimension digitally, such as Science on a sphere (SOS) by NOAA, and Geo-cosmos by the National Museum of Emerging Science and Innovation (Miraikan), Japan. These projects are relatively large-scale in instruments and cost, and difficult to use in classrooms and small-scale science centers. Therefore we developed a portable, scalable and affordable system of the three-dimensional presentation of the Earth and planets, Dagik Earth. This system uses a spherical screen and a PC projector. Several educational programs have been developed using Dagik Earth under collaboration of the researchers of the earth and planetary science and science education, school teachers, and curators of science centers, and used in schools and museums in Japan, Taiwan and other countries. It helps learners to achieve the proper cognition of the shape and size of the phenomena on the Earth and planets. Current status and future development of the project will be introduced in the presentation.

  16. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  17. The EarthLabs Approach to Curriculum and Professional Development: Earth Science Education in the 21st Century

    NASA Astrophysics Data System (ADS)

    Mote, A. S.; Ellins, K. K.; Haddad, N.

    2011-12-01

    Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions

  18. MOBI: a marine and earth science interpretation and qualification program for out-of-school environment and natural heritage interpreters and other science communicators in Germany

    NASA Astrophysics Data System (ADS)

    Schneider, S.; Ellger, C.

    2017-12-01

    As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.

  19. Earth Sciences at Boston University: Reorientation and Renewal

    NASA Astrophysics Data System (ADS)

    Murray, R. W.; Simpson, C.

    2003-12-01

    Beginning in 1994 with the renaming of its Department of Geology as the Department of Earth Sciences, Boston University has invested much effort into developing a modern, energetic department that excels in its dual research and teaching mission. These changes required strong leadership at the departmental and senior administrative level, but they have resulted in a moderately sized program (9.5 full time faculty) that is competing with "Top Ten" institutions for graduate students and faculty, and which is also placing its undergraduates in the leading graduate programs. Most of the revitalization was achieved over a 5-year period in which across the board changes occurred in our undergraduate curriculum and during which we recruited junior and mid-level faculty on the basis of their scholarly abilities and for their belief in the culture of our new mission and program. The undergraduate curriculum, which had been oriented towards traditional geologic offerings, was greatly increased in rigor (requiring a full year each of calculus, physics, and chemistry) and redesigned to expand flexibility in the broad field of earth sciences. During the evolution of the curriculum, it was extremely important not to confuse "tradition" with "rigor". Undergraduates became more critically involved with our research mission through senior theses, a formal Undergraduate Research Opportunities program, and by work-study participation in the laboratories. By making the program more challenging, over the period of 3 years we doubled the number of majors and minors and increased the average GPA by 0.5 units. Now, after 8 years, we have nearly tripled our overall number of students, with further improvements in quality and intellectual diversity. The opportunity to replace departing senior faculty was achieved through effectively arguing to the central administration that modern earth sciences are an essential component of any leading institution of higher education. By persuading the

  20. The role of the space station in earth science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less

  1. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  2. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2013-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  3. 77 FR 55863 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-072)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics... the Applied Science Advisory Group. This Subcommittee reports to the Earth Science Subcommittee...

  4. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  5. Forget the hype or reality. Big data presents new opportunities in Earth Science.

    NASA Astrophysics Data System (ADS)

    Lee, T. J.

    2015-12-01

    Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.

  6. Science Syllabus for Middle and Junior High Schools. Block D, The Earth's Changing Surface.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of General Education Curriculum Development.

    This syllabus begins with a list of program objectives and performance criteria for the study of three general topic areas in earth science and a list of 22 science processes. Following this information is a listing of concepts and understandings for subtopics within the general topic areas: (1) the earth's surface--surface features, rock…

  7. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R.; Botti, J.

    2002-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  8. Problem-Based Learning and Earth System Science - The ESSEA High School Earth System Science Online Course

    NASA Astrophysics Data System (ADS)

    Myers, R. J.; Botti, J. A.

    2001-12-01

    The high school Earth system science course is web based and designed to meet the professional development needs of science teachers in grades 9-12. Three themes predominate this course: Earth system science (ESS) content, collaborative investigations, and problem-based learning (PBL) methodology. PBL uses real-world contexts for in-depth investigations of a subject matter. Participants predict the potential impacts of the selected event on Earth's spheres and the subsequent feedback and potential interactions that might result. PBL activities start with an ill-structured problem that serves as a springboard to team engagement. These PBL scenarios contain real-world situations. Teams of learners conduct an Earth system science analysis of the event and make recommendations or offer solutions regarding the problem. The course design provides an electronic forum for conversations, debate, development, and application of ideas. Samples of threaded discussions built around ESS thinking in science and PBL pedagogy will be presented.

  9. The ongoing educational anomaly of earth science placement

    USGS Publications Warehouse

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  10. 75 FR 60484 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-115)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Applied Sciences Advisory Group Meeting AGENCY: National Aeronautics...) announces a meeting of the Applied Science Advisory Group. This Subcommittee reports to the Earth Science...

  11. Providing Authentic Research Experiences for Pre-Service Teachers through UNH's Transforming Earth System Science Education (TESSE) Program

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Furman, T.; Porter, W.; Darwish, A.; Graham, K.; Bryce, J.; Brown, D.; Finkel, L.; Froburg, E.; Guertin, L.; Hale, S. R.; Johnson, J.; von Damm, K.

    2007-12-01

    The University of New Hampshire's Transforming Earth System Science Education (UNH TESSE) project is designed to enrich the education and professional development of in-service and pre-service teachers, who teach or will teach Earth science curricula. As part of this program, pre-service teachers participated in an eight- week summer Research Immersion Experience (RIE). The main goal of the RIE is to provide authentic research experiences in Earth system science for teachers early in their careers in an effort to increase future teachers` comfort and confidence in bringing research endeavors to their students. Moreover, authentic research experiences for teachers will complement teachers` efforts to enhance inquiry-based instruction in their own classrooms. Eighteen pre-service teachers associated with our four participating institutions - Dillard University (4), Elizabeth City State University (4), Pennsylvania State University (5), and University of New Hampshire (UNH) (5) participated in the research immersion experience. Pre-service teachers were matched with a faculty mentor who advised their independent research activities. Each pre-service teacher was expected to collect and analyze his or her own data to address their research question. Some example topics researched by participants included: processes governing barrier island formation, comparison of formation and track of hurricanes Hugo and Katrina, environmental consequences of Katrina, numerical models of meander formation, climatic impacts on the growth of wetland plants, and the visual estimation of hydrothermal vent properties. Participants culminated their research experience with a public presentation to an audience of scientists and inservice teachers.

  12. The Concept Currency of K-12 Science Textbooks Relative to Earth Science Concepts.

    ERIC Educational Resources Information Center

    Janke, Delmar Lester

    This study was undertaken to determine the degree of agreement between science textbooks and scholars in earth science relative to earth science concepts to be included in the K-12 science curriculum. The study consisted of two phases: (1) the identification of a sample of earth science concepts rated by earth scientists as important for inclusion…

  13. Attrition among Women and Minorities in Earth and Space Science (ESS) Graduate Programs

    NASA Astrophysics Data System (ADS)

    Alexander, C. J.; Hawthorne, C.; Allen, W. R.; Alvarez, R.; Geisler, J.

    2001-05-01

    Recent data collected by the American Geological Institute (AGI) indicates that the rate of enrollment of ethnic minorities in the geosciences has steadily declined since the 1980's, and in that time the number of geoscience degrees awarded to ethnic minorities has been fairly steady at less than 1%. Data from the National Science Foundation suggests that only 43 of 186 Universities offering an ESS program have ever graduated an ethnic minority in the history of their program. Factors contributing to these abysmal figures differ for different ethnic-minority groups. We will address institutional obstacles to graduate learning which result in above-normal attrition of ethnic-minorities in ESS graduate programs. The recent studies show an attrition rate of 70% among African American males in ESS graduate programs, while among Hispanic females the attrition rate is only 3%. Studies by sociologists have recently shown that some law schools and medical schools have traits in common with these geoscience departments in the rates at which degrees are awarded to ethnic minorities. Institutional barriers encountered by ethnic minorities in graduate schools may take many forms, but can also be as simple as a lack of community support. In the 1990's the California Institute of Technology (Caltech) made a commitment to the retention of women in their graduate and undergraduate schools. Their program included mentoring, focussed tutoring, self-esteem support groups, and other retention efforts. Under this program, the attrition rate of women has dramatically slowed. In this paper, we will discuss the AGI data, the program instituted by Caltech, possible causes of attrition among populations of Hispanic, and African American males and females, as well as potential programs to address these problems. We will also present, from the nationwide study, data on geoscience departments which have been relatively successful at retaining and graduating ethnic minorities in Earth and Space

  14. Resources and References for Earth Science Teachers

    ERIC Educational Resources Information Center

    Wall, Charles A.; Wall, Janet E.

    1976-01-01

    Listed are resources and references for earth science teachers including doctoral research, new textbooks, and professional literature in astronomy, space science, earth science, geology, meteorology, and oceanography. (SL)

  15. Earth Science Missions Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Marius, Julio L.

    2009-01-01

    This presentation gives a general overlook of the engineering efforts that are necessary to meet science mission requirement especially for Earth Science missions. It provides brief overlook of NASA's current missions and future Earth Science missions and the engineering challenges to meet some of the specific science objectives. It also provides, if time permits, a brief summary of two significant weather and climate phenomena in the Southern Hemisphere: El Nino and La Nina, as well as the Ozone depletion over Antarctica that will be of interest to IEEE intercom 2009 conference audience.

  16. Sensor Webs as Virtual Data Systems for Earth Science

    NASA Astrophysics Data System (ADS)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  17. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  18. Earth Systems Science: An Analytic Framework

    ERIC Educational Resources Information Center

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  19. Presenting the 'Big Ideas' of Science: Earth Science Examples.

    ERIC Educational Resources Information Center

    King, Chris

    2001-01-01

    Details an 'explanatory Earth story' on plate tectonics to show how such a 'story' can be developed in an earth science context. Presents five other stories in outline form. Explains the use of these stories as vehicles to present the big ideas of science. (DDR)

  20. NASA's Space Science Programming Possibilities for Planetaria

    NASA Technical Reports Server (NTRS)

    Adams, M. L.

    2003-01-01

    The relationship between NASA and the planetarium community is an important one. Indeed, NASA's Office of Space Science has invested in a study of the Space Science Media Needs of Science Center Professionals. Some of the findings indicate a need for exposure to space science researchers, workshops for museum educators, 'canned' programs, and access to a speakers bureau. We will discuss some of the programs of NASA's Sun-Earth Connection Education Forum, distribute sample multimedia products, explain the role of NASA's Educator Resource Center, and review our contributions to NASA's Education and Public Outreach effort.

  1. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    NASA Technical Reports Server (NTRS)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  2. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  3. NASA Applied Sciences' DEVELOP National Program: Training the Next Generation of Remote Sensing Scientists

    NASA Technical Reports Server (NTRS)

    Childs, Lauren; Brozen, Madeline; Hillyer, Nelson

    2010-01-01

    Since its inception over a decade ago, the DEVELOP National Program has provided students with experience in utilizing and integrating satellite remote sensing data into real world-applications. In 1998, DEVELOP began with three students and has evolved into a nationwide internship program with over 200 students participating each year. DEVELOP is a NASA Applied Sciences training and development program extending NASA Earth science research and technology to society. Part of the NASA Science Mission Directorate s Earth Science Division, the Applied Sciences Program focuses on bridging the gap between NASA technology and the public by conducting projects that innovatively use NASA Earth science resources to research environmental issues. Project outcomes focus on assisting communities to better understand environmental change over time. This is accomplished through research with global, national, and regional partners to identify the widest array of practical uses of NASA data. DEVELOP students conduct research in areas that examine how NASA science can better serve society. Projects focus on practical applications of NASA s Earth science research results. Each project is designed to address at least one of the Applied Sciences focus areas, use NASA s Earth observation sources and meet partners needs. DEVELOP research teams partner with end-users and organizations who use project results for policy analysis and decision support, thereby extending the benefits of NASA science and technology to the public.

  4. Bringing cutting-edge Earth and ocean sciences to under-served and rural audiences through informal science education

    NASA Astrophysics Data System (ADS)

    Cooper, S. K.; Petronotis, K. E.; Ferraro, C.; Johnson, K. T. M.; Yarincik, K.

    2017-12-01

    The International Ocean Discovery Program (IODP) is an international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor subseafloor environments. The JOIDES Resolution is the flagship vessel of IODP and is operated by the National Science Foundation. It is an inspirational hook for STEM Earth and ocean topics for children and the general public of all ages, but is not easily accessible due to its international travels and infrequent U.S. port calls. In response, a consortium of partners has created the Pop-Up/Drill Down Science project. The multi-year project, funded by NSF's Advancing Informal Science Learning program, aims to bring the JR and its science to under-served and rural populations throughout the country. Consisting of an inflatable walk-through ship, a multi-media experience, a giant interactive seafloor map and a series of interactive exhibit kiosks, the exhibit, entitled, In Search of Earth's Secrets: A Pop-Up Science Encounter, will travel to 12 communities throughout the next four years. In each community, the project will partner with local institutions like public libraries and small museums as hosts and to train local Girl Scouts to serve as exhibit facilitators. By working with local communities to select events and venues for pop-up events, the project hopes to bring cutting edge Earth and ocean science in creative new ways to underserved populations and inspire diverse audiences to explore further. This presentation will provide details of the project's goals, objectives and development and provide avenues to become involved.

  5. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  6. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  7. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  8. Depending on Partnerships to Manage NASA's Earth Science Data

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.

    2015-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's.The data collected by NASA's remote sensing instruments represent a significant public investment in research, providing access to a world-wide public research community. From the beginning, NASA employed a free, open and non-discriminatory data policy to maximize the global utilization of the products derived from NASA's observational data and related analyses. EOSDIS is designed to ingest, process, archive, and distribute data in a multi-mission environment. The system supports a wide variety of Earth science disciplines, including cryosphere, land cover change, radiation budget, atmosphere dynamics and composition, as well as inter-disciplinary research, including global climate change. To this end, EOSDIS has collocated NASA Earth science data and processing with centers of science discipline expertise located at universities, other government agencies and NASA centers. Commercial industry is also part of this partnership as it focuses on developing the EOSDIS cross-element infrastructure. The partnership to develop and operate EOSDIS has made for a robust, flexible system that evolves continuously to take advantage of technological opportunities. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple instruments. Today's EOSDIS is a loosely coupled, yet heterogeneous system designed to meet the requirements of both a diverse user community and a growing collection of data to be archived and distributed. The system was scaled to expand to meet the ever-growing volume of data (currently ~10 petabytes), and the exponential

  9. Cross-Cultural Collaboration in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.

    2006-12-01

    Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.

  10. Earth System Science Education Modules

    NASA Astrophysics Data System (ADS)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    The College of Charleston is developing several new geoscience-based education modules for integration into the Earth System Science Education Alliance (ESSEA). These three new modules provide opportunities for science and pre-service education students to participate in inquiry-based, data-driven experiences. The three new modules will be discussed in this session. Coastal Crisis is a module that analyzes rapidly changing coastlines and uses technology - remotely sensed data and geographic information systems (GIS) to delineate, understand and monitor changes in coastal environments. The beaches near Charleston, SC are undergoing erosion and therefore are used as examples of rapidly changing coastlines. Students will use real data from NASA, NOAA and other federal agencies in the classroom to study coastal change. Through this case study, learners will acquire remotely sensed images and GIS data sets from online sources, utilize those data sets within Google Earth or other visualization programs, and understand what the data is telling them. Analyzing the data will allow learners to contemplate and make predictions on the impact associated with changing environmental conditions, within the context of a coastal setting. To Drill or Not To Drill is a multidisciplinary problem based module to increase students’ knowledge of problems associated with nonrenewable resource extraction. The controversial topic of drilling in the Arctic National Wildlife Refuge (ANWR) examines whether the economic benefit of the oil extracted from ANWR is worth the social cost of the environmental damage that such extraction may inflict. By attempting to answer this question, learners must balance the interests of preservation with the economic need for oil. The learners are exposed to the difficulties associated with a real world problem that requires trade-off between environmental trust and economic well-being. The Citizen Science module challenges students to translate scientific

  11. Earth Observing System. Science and Mission Requirements, Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Earth Observing System (EOS) is a planned NASA program, which will carry the multidisciplinary Earth science studies employing a variety of remote sensing techniques in the 1990's, as a prime mission, using the Space Station polar platform. The scientific rationale, recommended observational needs, the broad system configuration and a recommended implementation strategy to achieve the stated mission goals are provided.

  12. Teaching Inquiry using NASA Earth-System Science: Lessons Learned for Blended, Scaffolded Professional Development

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; TeBockhorst, D.

    2013-12-01

    Teaching Inquiry using NASA Earth-System Science (TINES) is a NASA EPOESS funded program exploring blended professional development for pre- and in-service educators to learn how to conduct meaningful inquiry lessons and projects in the K-12 classroom. This project combines trainings in GLOBE observational protocols and training in the use of NASA Earth Science mission data in a backward-faded scaffolding approach to teaching and learning about scientific inquiry. It also features a unique partnership with the National Science Teachers Association Learning Center to promote cohort building and blended professional development with access to NSTA's collection of resources. In this presentation, we will discuss lessons learned in year one and two of this program and how we plan to further develop this program over the next two years.

  13. Sun-Earth Day: Growth and Impact of NASA E/PO Program

    NASA Astrophysics Data System (ADS)

    Hawkins, I.; Thieman, J.

    2004-12-01

    Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.

  14. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  15. Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory

    NASA Astrophysics Data System (ADS)

    Roggenthen, W.; Wang, J.

    2004-12-01

    The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the

  16. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  17. The Internet of Samples in the Earth Sciences (iSamples)

    NASA Astrophysics Data System (ADS)

    Carter, M. R.; Lehnert, K. A.

    2015-12-01

    Across most Earth Science disciplines, research depends on the availability of samples collected above, at, and beneath Earth's surface, on the moon and in space, or generated in experiments. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). The Internet of Samples in the Earth Sciences (iSamples) is an initiative funded as a Research Coordination Network (RCN) within the EarthCube program to address this need. iSamples aims to advance the use of innovative cyberinfrastructure to connect physical samples and sample collections across the Earth Sciences with digital data infrastructures to revolutionize their utility for science. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture of a shared cyberinfrastructure for collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical

  18. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    ERIC Educational Resources Information Center

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  19. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    ERIC Educational Resources Information Center

    Pottinger, James E.

    2012-01-01

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space…

  20. CAWSES (Climate and Weather of the Sun-Earth System) Science: Progress thus far and the next steps

    NASA Astrophysics Data System (ADS)

    Pallamraju, D.; Kozyra, J.; Basu, S.

    Climate and Weather of the Sun Earth System CAWSES is the current program of Scientific Committee for Solar Terrestrial Physics SCOSTEP for 2004 - 2008 The main aim of CAWSES is to bring together scientists from various nations to address the coupled and global nature of the Sun-Earth System phenomena Towards that end CAWSES provides a platform for international cooperation in observations data analysis theory and modeling There has been active international participation thus far with endorsement of the national CAWSES programs in some countries and many scientists around the globe actively volunteering their time in this effort The CAWSES Science Steering Group has organized the CAWSES program into five Themes for better execution of its science Solar Influence on Climate Space Weather Science and Applications Atmospheric Coupling Processes Space Climatology and Capacity Building and Education CAWSES will cooperate with International programs that focus on the Sun-Earth system science and at the same time compliment the work of programs whose scope is beyond the realm of CAWSES This talk will briefly review the science goals of CAWSES provide salient results from different Themes with emphasis on those from the Space Weather Theme This talk will also indicate the next steps that are being planned in this program and solicit inputs from the community for the science efforts to be carried out in the future

  1. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-05-01

    The Earth Science Data Grid System (ESDGS) is a software system in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We also develop the earth science application metadata; geospatial, temporal, and content-based indexing; and some other tools. In this paper, we will describe software architecture and components of the data grid system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  2. Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Projects Data and Services at the GES DISC

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.

    2011-01-01

    NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  3. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    NASA Astrophysics Data System (ADS)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  4. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    NASA Astrophysics Data System (ADS)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  5. The application of Legacy Cycles in the development of Earth Science curriculum

    NASA Astrophysics Data System (ADS)

    Ellins, K.; Abernathy, E.; Negrito, K.; McCall, L.

    2009-04-01

    The Institute for Geophysics in the Jackson School of Geosciences at The University of Texas at Austin actively contributes to K-12 education, including the development of rigorous Earth and Space Science curriculum designed for secondary school learning environments. Here we report on our efforts to apply an innovative new pedagogical approach, the Legacy Cycle, to scientific ocean drilling paleoclimate data from fossil corals collected offshore Barbados in 2006 and to the creation of a high school water resources education program for Texas high school students supported by a grant from the Texas Water Development Board. The Legacy Cycle makes use of the Internet and computer technology to engage students in extended inquiry learning. A series of inquiry activities are organized around a set of three driving questions, or challenges. Students mimic the work of scientists by generating ideas to address a given challenge, listening to multiple perspectives from experts on the topic, researching a set of sub-questions and revising their original ideas, testing their mettle with labs and quizzes, and finally composing a project or paper that answers the original challenge. The technology makes it easy for students to move through the challenges and the organizational framework since there are hyperlinks to each of the sections (and to reach the other challenges) at the bottom of each webpage. Students' final work is posted to the Internet for others to see, and in this way they leave behind their legacy. Our Legacy Cycle activities use authentic hydrologic, water quality, geochemical, geophysical data, as well as remotely sensed data such as is collected by satellites. They are aligned with the U.S. National Science Education Standards, the new Ocean, Climate and Earth Science Literacy Principles (in development), and the Texas Essential Knowledge and Skills for Earth and Space Science. The work represents a collaboration involving teachers from The University of

  6. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  7. NASA Earth Science Partnerships - A Multi-Level Approach to Effectively Collaborating with Communities and Organizations to Utilize Earth Science Data for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Favors, J.

    2016-12-01

    NASA's Earth Science Division (ESD) seeks to develop a scientific understanding of the Earth as a dynamic, integrated system of diverse components that interact in complex ways - analogous to the human body. The Division approaches this goal through a coordinated series of satellite and airborne missions, sponsored basic and applied research, technology development, and science education. Integral to this approach are strong collaborations and partnerships with a spectrum of organizations that produce substantive benefit to communities - both locally and globally. This presentation will showcase various ways ESD approaches partnering and will highlight best practices, challenges, and provide case studies related to rapid partnerships, co-location of scientists and end-user communities, capacity building, and ESD's new Partnerships Program which is built around taking an innovative approach to partnering that fosters interdisplinary teaming & co-production of knowledge to broaden the applicability of Earth observations and answer new, big questions for partners and NASA, alike.

  8. A Sky-High Classroom Provides a New Perspective for Earth Science Students

    ERIC Educational Resources Information Center

    Kolb, Albert C.

    1969-01-01

    Describes an earth science program conducted from an airplane for 8th grade students of Carmel Middle School, Carmel, California. The steps involved in getting the program started, the classroom work and the preparatory field trips, as well as the airborne lesson itself, are described. (LC)

  9. THE EOS ART Projects: Six Art Projects Inspired by Earth Science

    NASA Astrophysics Data System (ADS)

    Kerlow, I.

    2015-12-01

    The six projects produced under the artists' residencies at the Earth Observatory of Singapore (EOS) were inspired by Earth science and by the human experience in naturally hazardous regions. These contemporary artworks were created within an interdisciplinary framework that fostered collaborations between artists and scientists. The EOS ART 2010-2013 was a pilot program that also facilitated the active engagement of regional artists with issues related to Earth science, sustainable societies, and innovative methods for science outreach. An interdisciplinary jury of art critics, curators and Earth scientists selected art projects proposed by regional artists, and funds were awarded to develop and realize the projects.The artworks-including installations, photographs, and video art-were showcased in the "Unearthed" public exhibit at the Singapore Art Museum from March to July of 2014. A 92-page catalog accompanied the show and public seminars about interdisciplinary connections complemented the event. This was a unique example of collaboration between scientific and artistic institutions in Southeast Asia.The presentation provides an overview of the motivations, process and accomplished results. The art projects include "Coastline" by Zhang Xiao (China), "Lupang" by Clara Balaguer and Carlos Casas (Philippines and Spain), "Sound of the Earth" by Chen Sai Hua Kuan (Singapore), "Sudden Nature" by Isaac Kerlow (Mexico/USA), "The Possibility of Knowing" by Robert Zhao Renhui (Singapore), and "When Need Moves the Earth" by Sutthirat Supaparinya (Thailand). http://art-science-media.com/the-eos-art-projects/

  10. Earth System Science Education for the 21st Century: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  11. Story-telling, Earth-Sciences and Geoethics

    NASA Astrophysics Data System (ADS)

    Bohle, Martin; Sibilla, Anna; Graells, Robert Casals i.

    2015-04-01

    People are engineers, even the artist. People like stories, even the engineers. Engineering shapes the intersections of humans and their environments including with the geosphere. Geoethics considers values upon which to base practices how to intersect the geosphere. Story-telling is a skilful human practice to describe perception of values in different contexts to influence their application. Traditional earth-centric narrations of rural communities have been lost in the global urbanisation process. These former-time narrations related to the "sacrum" - matters not possible to be explained with reasoning. Science and technology, industrialisation and global urbanisation require an other kind of earth-centric story-telling. Now at the fringe of the Anthropocene, humans can base their earth-centricity on knowledge and scientific thinking. We argue that modern story-telling about the functioning of Earth's systems and the impact of humankind's activities on these systems is needed, also in particular because citizens rarely can notice how the geosphere intersects with their daily dealings; putting weather and disasters aside. Modern earth-centric story-telling would offer citizens opportunities to develop informed position towards humankind's place within earth-systems. We argue that such "earth-science story-lines" should be part of the public discourse to engage citizens who have more or less "expert-knowledge". Understanding the functioning of the Earth is needed for economy and values suitable for an anthropophil society. Multi-faceted discussion of anthropogenic global change and geoengineering took off recently; emerging from discussions about weather and hazard mitigation. Going beyond that example; we illustrate opportunities for rich story-telling on intersections of humans' activities and the geosphere. These 'modern narrations' can weave science, demographics, linguistics and cultural histories into earth-centric stories around daily dealings of citizens

  12. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    NASA Astrophysics Data System (ADS)

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  13. Earth System Science: Problem-based Learning Courses for Teachers Through ESSEA

    NASA Astrophysics Data System (ADS)

    Close, E.; Witiw, M. R.

    2007-12-01

    One method that has proven effective in the study of Earth system science is to use a problem-based and event- centered course organization. In such a course, different events that occur in the Earth system are examined and how each event influences subsequent events in each of Earth's spheres (the atmosphere, hydrosphere, biosphere and lithosphere) is studied. A course is composed of several problem-based modules, where each module is centered about a particular event or issue that is important to the Earth system. The Institute for Global Environmental Strategies (IGES) was recently awarded a grant by the National Science Foundation's Geo-Teach program to develop and implement courses for teachers in Earth system science. Through the Earth System Science Education Alliance (ESSEA), IGES subsequently made awards to a group of 24 universities. Under the ESSEA program, problem-based modules are being developed for courses for middle school and high school teachers. In a typical university schedule, each module is designed to last three weeks and includes both group work and individual assignments. In the first week ("Teacher as Problem Solver"), participants explore their own ideas concerning the event and exchange their ideas with other members of their group. In the second week ("Teacher as Scholar"), participants research the issue and become more familiar with the event and the sphere-to-sphere interactions that occur. In the last week ("Teacher as Designer"), each participant develops a lesson plan for his or her own classroom. Current ESSEA modules cover topics such as volcanoes, Brazilian deforestation, Antarctic ice sheets, coral reefs, and stratospheric ozone depletion. Many new modules are under development with topics that range from plate tectonics and tsunamis to agriculture and sustainable water systems. Seattle Pacific University, in cooperation with Seattle Public Schools, was recently awarded a three-year grant by IGES to provide Earth system

  14. Using the earth system for integrating the science curriculum

    NASA Astrophysics Data System (ADS)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  15. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  16. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    NASA Astrophysics Data System (ADS)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  17. Utah's Mobile Earth Science Outreach Vehicle

    NASA Astrophysics Data System (ADS)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.

  18. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  19. Ivestigating Earth Science in Urban Schoolyards

    ERIC Educational Resources Information Center

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  20. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    ERIC Educational Resources Information Center

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  1. The University of Alabama's Integrated Science Program.

    ERIC Educational Resources Information Center

    Rainey, Larry; Mitrook, Kim

    This program, supported by the Center for Communication and Educational Technology at the University of Alabama, incorporates the perspectives of biology, earth/space science, chemistry, and physics into an innovative science curriculum for the middle grades. Students are engaged for 20 minutes 3 times a week by an on-air instructor who is doing…

  2. Dagik Earth: An affordable three-dimensional presentation of global geoscience data in classrooms and science museums

    NASA Astrophysics Data System (ADS)

    Saito, A.; Takahashi, M.; Tsugawa, T.; Nishi, N.; Odagi, Y.; Yoshida, D.

    2009-12-01

    Three-dimensional display of the Earth is a most effective way to impress audiences how the Earth looks and make them understand the Earth is one system. There are several projects to display global data on 3D globes, such as Science on a Sphere by NOAA and Geo Cosmos by Miraikan, Japan. They have made great successes to provide audiences opportunities to learn the geoscience outputs through feeling that they are standing in front of the "real" Earth. However, those systems are too large, complicated, and expensive to be used in classrooms and local science museums. We developed an easy method to display global geoscience data in three dimensions without any complex and expensive systems. The method uses a normal PC projector, a PC and a hemispheric screen. To display the geoscience data, virtual globe software, such as Google Earth and NASA World Wind, are used. The virtual globe software makes geometry conversion. That is, the fringe areas are shrunken as it is looked from the space. Thus, when the image made by the virtual globe is projected on the hemispheric screen, it is reversely converted to its original shape on the Earth. This method does not require any specific software, projectors and polarizing glasses to make 3D presentation of the Earth. Only a hemispheric screen that can be purchased with $50 for 60cm diameter is necessary. Dagik Earth is the project that develops and demonstrates the educational programs of geoscience in classrooms and science museums using this 3D Earth presentation method. We have developed a few programs on aurora and weather system, and demonstrated them in under-graduate level classes and science museums, such as National Museum of Nature and Science,Tokyo, Shizuoka Science Center and Kyoto University Museum, since 2007. Package of hardware, geoscience data plot, and textbook have been developed to be used as short-term rental to schools and science museums. Portability, low cost and easiness of development new contents are

  3. Earth Science Microwave Remote Sensing at NASA's Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center (GSFC) was established as NASA's first space flight center in 1959. Its 12,000 personnel are active in the Earth and space sciences, astronomy, space physics, tracking and communications. GSFC's mission is to expand our knowledge of the Earth and its environment, the solar system, and the universe through observations from space. The main Goddard campus is located in Greenbelt, Maryland, USA, just north of Washington, D.C. The Wallops Flight Facility (operational since 1945), located on the Atlantic coast of Virginia was consolidated with the Goddard Space Flight Center in 1982. Wallops is now NASA's principal facility for management and implementation of suborbital research programs, and supports a wide variety of airborne science missions as well. As the lead Center for NASA's Earth Science Enterprise (ESE)--a long-term, coordinated research effort to study the Earth as a global environmental system--GSFC scientists and engineers are involved in a wide range of Earth Science remote sensing activities. Their activities range from basic geoscience research to the development of instruments and technology for space missions, as well as the associated Calibration/Validation (Cal/Val) work. The shear breadth of work in these areas precludes an exhaustive description here. Rather, this article presents selected brief overviews of microwave-related Earth Science applications and the ground-based, airborne, and space instruments that are in service, under development, or otherwise significantly involving GSFC. Likewise, contributing authors are acknowledged for each section, but the results and projects they describe represent the cumulative efforts of many persons at GSFC as well as at collaborating institutions. For further information, readers are encouraged to consult the listed websites and references.

  4. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  5. Earth Sciences Requirements for the Information Sciences Experiment System

    NASA Technical Reports Server (NTRS)

    Bowker, David E. (Editor); Katzberg, Steve J. (Editor); Wilson, R. Gale (Editor)

    1990-01-01

    The purpose of the workshop was to further explore and define the earth sciences requirements for the Information Sciences Experiment System (ISES), a proposed onboard data processor with real-time communications capability intended to support the Earth Observing System (Eos). A review of representative Eos instrument types is given and a preliminary set of real-time data needs has been established. An executive summary is included.

  6. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  7. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    NASA Astrophysics Data System (ADS)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  8. Earth Science Data Grid System

    NASA Astrophysics Data System (ADS)

    Chi, Y.; Yang, R.; Kafatos, M.

    2004-12-01

    The Earth Science Data Grid System (ESDGS) is a software in support of earth science data storage and access. It is built upon the Storage Resource Broker (SRB) data grid technology. We have developed a complete data grid system consistent of SRB server providing users uniform access to diverse storage resources in a heterogeneous computing environment and metadata catalog server (MCAT) managing the metadata associated with data set, users, and resources. We are also developing additional services of 1) metadata management, 2) geospatial, temporal, and content-based indexing, and 3) near/on site data processing, in response to the unique needs of Earth science applications. In this paper, we will describe the software architecture and components of the system, and use a practical example in support of storage and access of rainfall data from the Tropical Rainfall Measuring Mission (TRMM) to illustrate its functionality and features.

  9. 76 FR 21073 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (11-040)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  10. 75 FR 65673 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-141)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  11. 77 FR 27253 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (12-033)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  12. 77 FR 58412 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-075] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  13. 78 FR 52216 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13- 099] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  14. 78 FR 18373 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-031] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  15. 76 FR 49508 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-073] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  16. 75 FR 41899 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-082)] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  17. 77 FR 12086 - NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 12-018] NASA Advisory Council; Science Committee; Earth Science Subcommittee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... amended, the National Aeronautics and Space Administration (NASA) announces a meeting of the Earth Science...

  18. Storytelling in Earth sciences: The eight basic plots

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  19. Toward a Climate OSSE for NASA Earth Sciences

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.

    2016-12-01

    In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth

  20. Charting a Course to Earth System Science Literacy

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  1. ESSEA as an Enhancement to K-12 Earth Systems Science Efforts at San José State University

    NASA Astrophysics Data System (ADS)

    Messina, P.; Metzger, E. P.; Sedlock, R. L.

    2002-12-01

    San José State University's Geology Department has implemented and maintained a two-fold approach to teacher education efforts. Both pre-service and in-service populations have been participants in a wide variety of content-area enrichment, training, and professional development endeavors. Spearheading these initiatives is the Bay Area Earth Science Institute (BAESI); organized in 1990, this program has served more than 1,000 teachers in weekend- and summer-workshops, and field trips. It sustains a network of Bay Area teachers via its Website (http://www.baesi.org), newsletter, and allows teachers to borrow classroom-pertinent materials through the Earth Science Resource Center. The Department has developed a course offering in Earth Systems Science (Geology 103), which targets pre-service teachers within SJSU's multiple-subject credential program. The curriculum satisfies California subject matter competency requirements in the geosciences, and infuses pedagogy into the syllabus. Course activities are intended for pre-service and in-service teachers' adaptation in their own classrooms. The course has been enhanced by two SJSU-NASA collaborations (Project ALERT and the Sun-Earth Connection Education Forum), which have facilitated incorporation of NASA data, imagery, and curricular materials. SJSU's M.A. in Natural Science, a combined effort of the Departments of Geology, Biology, and Program in Science Education, is designed to meet the multi-disciplinary needs of single-subject credential science teachers by providing a flexible, individually-tailored curriculum that combines science course work with a science education project. Several BAESI teachers have extended their Earth science knowledge and teaching skills through such projects as field guides to local sites of geological interest; lab-based modules for teaching about earthquakes, rocks and minerals, water quality, and weather; and interactive online materials for students and teachers of science. In

  2. Successful Heliophysical Programs Emphasizing the Relation of Earth and the Sun

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Reiff, P.; Sumners, C.; McKay, G. A.

    2007-05-01

    Heliophysical is defined as the interconnectedness of the entire solar-heliospheric-planetary system. Our goals are to introduce easily accessible programs that introduce the Sun and other solar system processes to the public. The programs emphasize the impact of these processes on Earth and its inhabitants over geological time. These types of programs are important as these topics as generally taught as a secondary concept rather than an integrated approach. Space Weather is an excellent mechanism for integrating Earth and space science. Heliophysics, which includes Space Weather, is traditionally part of space science studies, but most students do not understand the effect of the Sun's atmosphere on Earth or the intense effects energetic particles can have on humans, whether traveling through space or exploring the surfaces of the Moon or Mars. Effects are not only limited to space travel and other planetary surfaces but also include effects on Earth's magnetosphere which, in turn, affect radio transmission, GPS accuracy, and on occasion spacecraft loss and terrestrial power outages. Meteoritic impacts are another topic. Impacts on planetary bodies without strong plate tectonic activities provide ample evidence of their occurrence over geological time. As an analog, impacts have also had an extensive record on Earth, but plate tectonics have been responsible for obliterating most of the evidence. We have developed effective and engaging venues for teaching heliophysics, via the internet, CD-Rom's, museum kiosks, and planetarium shows. We have organized workshops for teachers; "NASA Days" and "Sally Ride Festivals" for students, and "Sun-Earth Day" events for the public. Our goals are both to increase k-16 and public literacy on heliophysical processes and to inspire the next generation to enhance the workforce. We will be offering examples of these programs, as well as distributing CD's and DVD's of some of the creative works.

  3. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  4. Earth Science Misconceptions.

    ERIC Educational Resources Information Center

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  5. Innovations in making EarthScope science and data accessible (Invited)

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, B. A.; Butler, R. F.; Whitman, J. M.; Granshaw, F. D.; Lillie, R. J.; Hunter, N.; Cronin, V. S.; Resor, P. G.; Olds, S. E.; Miller, M. S.; Walker, R.; Douglas, B. B.

    2013-12-01

    EarthScope is a highly complex technical and scientific endeavor. Making results from EarthScope accessible to the general public, educators, all levels of students, and even geoscience professionals from other disciplines is a very real challenge that must be overcome to realize EarthScope's intended broader impacts of contributing 'to the mitigation of risks from geological hazards ... and the public's understanding of the dynamic Earth.' Here we provided several case examples of how EarthScope science can be effectively communicated and then scaled to reach different or larger audiences. One approach features providing professional development regarding EarthScope and geohazard science to non-university educators who then scale up the impact by communicating to hundreds or even thousands of students and general public members each. EarthScope-funded Teachers on the Leading Edge (TOTLE) ran workshops 2008-2010 for 120 Pacific Northwest teachers and community college educators who subsequently communicated EarthScope and geohazards science to >30,000 students and >1500 other adults. Simultaneously EarthScope's National Office at Oregon State University was running workshops for park interpreters who have since reached >>100,000 park visitors. These earlier projects have served as the foundation for the new Cascadia EarthScope Earthquake and Tsunami Education Program (CEETEP), which is currently running joint workshops for coastal Oregon and Washington teachers, interpreters, and emergency management educators. The other approach featured here is UNAVCO's scaled efforts to make Plate Boundary Observatory (PBO) and other geodetic data more accessible to introductory and majors-level geoscience students and faculty. Initial projects included development of a Teaching Geodesy website on the Science Education Research Center (SERC) and development of teaching modules and activities that use PBO data. Infinitesimal strain analysis using GPS data is a 1-2 week module for

  6. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  7. Exploring the Possibilities: Earth and Space Science Missions in the Context of Exploration

    NASA Technical Reports Server (NTRS)

    Pfarr, Barbara; Calabrese, Michael; Kirkpatrick, James; Malay, Jonathan T.

    2006-01-01

    According to Dr. Edward J. Weiler, Director of the Goddard Space Flight Center, "Exploration without science is tourism". At the American Astronautical Society's 43rd Annual Robert H. Goddard Memorial Symposium it was quite apparent to all that NASA's current Exploration Initiative is tightly coupled to multiple scientific initiatives: exploration will enable new science and science will enable exploration. NASA's Science Mission Directorate plans to develop priority science missions that deliver science that is vital, compelling and urgent. This paper will discuss the theme of the Goddard Memorial Symposium that science plays a key role in exploration. It will summarize the key scientific questions and some of the space and Earth science missions proposed to answer them, including the Mars and Lunar Exploration Programs, the Beyond Einstein and Navigator Programs, and the Earth-Sun System missions. It will also discuss some of the key technologies that will enable these missions, including the latest in instruments and sensors, large space optical system technologies and optical communications, and briefly discuss developments and achievements since the Symposium. Throughout history, humans have made the biggest scientific discoveries by visiting unknown territories; by going to the Moon and other planets and by seeking out habitable words, NASA is continuing humanity's quest for scientific knowledge.

  8. It's Time to Stand up for Earth Science

    ERIC Educational Resources Information Center

    Schaffer, Dane L.

    2012-01-01

    This commentary paper focuses upon the loss of respect for Earth Sciences on the part of many school districts across the United States. Too many Earth Science teachers are uncertified to teach Earth Science, or hold certificates to teach the subject merely because they took a test. The Earth Sciences have faced this problem for many years…

  9. The role of Facilities in Engaging and Informing the Public of EarthScope Science

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Taber, J. J.; Berg, M.; Dorr, P. M.; McQuillan, P.; Olds, S. E.

    2013-12-01

    The IRIS and UNAVCO facilities play an important role in support of EarthScope through joint and independent education and outreach activities. These activities are focused on providing data and data products to a wide range of audiences, disseminating EarthScope science results through formal and informal venues, and informing the public of the broader impacts of EarthScope. The facilities are particularly well-suited for sustained engagement of multiple audiences over the decade-long course of EarthScope. One such example of a long-term effort was the Transportable Array student siting program, where over an 8 year period, students from about 55 institutions across the US and Canada conducted site reconnaissance and talked to landowners about EarthScope. Another activity focused on students was the development of a student intern program to support field engineering efforts during the construction of the Plate Boundary Observatory. Other ongoing activities include developing and maintaining relationships with media representatives and annual training of National Parks staff throughout the western U.S. The UNAVCO-IRIS partnership has been particularly valuable for EarthScope-related activities, where UNAVCO and IRIS work closely with the EarthScope National Office (ESNO) to bring EarthScope science to national, regional and local audiences within the EarthScope footprint. Collaborations have ranged across each group's products and services, including: EarthScope-focused teacher workshops, participation in EarthScope interpretive workshops for informal educators (led by ESNO), development of content for the IRIS Active Earth Monitor, preparing PBO-, USArray- and EarthScope-focused materials on topics such as Episodic Tremor and Slip for wider distribution through print, web, and mobile information technologies, and organizing research experiences for undergraduates on EarthScope-related topics. Other collaborations have focused on social media, and the development

  10. Supplementary Activities for Enriching the Teaching of Earth Science: Astronomy, Geology, Meteorology, Oceanography.

    ERIC Educational Resources Information Center

    Exline, Joseph D., Ed.

    This publication is intended to be an aid for secondary school science teachers in providing some additional student-oriented activities to enrich the earth science program. These activities have been classroom tested by teachers and have been considered by these teachers to be educationally successful. This publication is a product of the Earth…

  11. Testing the Efficacy of Student Explorations of Earth Science Museum Exhibits

    NASA Astrophysics Data System (ADS)

    Kirkby, K.; Phipps, M.; Tzenis, C.; Morin, P. J.; Hamilton, P.

    2009-12-01

    With their rock and mineral displays, fossil exhibits and hands-on nature, museum exhibits are a proven resource for elementary and secondary earth science education. However, due to a number of obstacles this success has not been emulated at the undergraduate level. Self-guided student explorations of science museum exhibits appear to be an effective way to circumvent these obstacles and easily expand earth science programs to include museum resources and tap their potential. Preliminary testing of this concept as an extra credit option by the University of Minnesota and the Science Museum of Minnesota not only showed that students enthusiastically respond to such explorations, but that explorations can be remarkably effective in changing student understanding of science concepts. Previously, a number of factors discouraged the integration of museum resources into undergraduate programs. Museum displays geared towards the general public often lack the level of detailed information necessary to integrate them into undergraduate science curriculum. Consequently, without an experienced guide (such as the course instructor), exhibits are of limited use. The logistics of arranging class visits can be daunting and given the limited opportunities for class trips, earth science instructors justifiably tend to choose field over museum experiences. However, well-designed explorations of the exhibits allow students to guide themselves through the exhibits, on their own or with friends and family, greatly expanding the range of course experiences with minimal cost to the program infrastructure. Student response to the preliminary testing of an exploration of dinosaur and pterosaur displays was very encouraging. Nearly half the class, 84 out of 176 students, volunteered to travel the eight miles to the museum to complete an exploration of the fossil gallery. When asked their likeliness of recommending the experience to others on a scale of 1-10 with 1 being “I would not

  12. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  13. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    NASA Astrophysics Data System (ADS)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  14. Using self-paced, `flipped' teaching to promote deep learning in an Earth Sciences programming course

    NASA Astrophysics Data System (ADS)

    Kalnins, L. M.

    2015-12-01

    Over the last year we implemented a complete restructuring of a second year Matlab-based course on numerical modelling of Earth processes, with changes aimed at 1) strengthening students' independence as programmers, 2) addressing student concerns about support in developing coding skills, and 3) improving key modelling skills such as choosing boundary conditions. To address this, we designed a mastery-based approach where students progress through a series of small programming projects at their own pace. As part of this, all lectures are `flipped' into short videos, allowing all contact hours to be spent on programming. The projects themselves are structured based on a `bottlenecks to learning' approach, explicitly separating out the steps of learning new commands and code structures, creating a conceptual and mathematical model of the problem, and development of more generic programmings skills such as debugging before asking the students to combine all of the above to build a numerical model of an Earth Sciences problem. Compared with the previous, traditionally taught cohort, student questionnaires show a strong improvement in overall satisfaction. Free text responses show a focus on learning for understanding, and that students particularly valued the encouragement to slow down and work towards understanding when they encountered a difficult topic, rather than being pressured by a set timetable to move on. Quantitatively, exam performance improved on key conceptual questions, such as boundary conditions and discretisation, and overall achievement also rose, with 25% of students achieving an `A+' standard of work. Many of the final projects also demonstrated programming and modelling skills that had not been directly taught, ranging from use of new commands to extension of techniques taught in 1D to the 2D case: strong confirmation of the independent skills we aimed to foster with this new approach.

  15. Assessing Teachers' Comprehension of What Matters in Earth Science

    NASA Astrophysics Data System (ADS)

    Penuel, W. R.; Kreikemeier, P.; Venezky, D.; Blank, J. G.; Davatzes, A.; Davatzes, N.

    2006-12-01

    Curricular standards developed for individual U.S. States tell teachers what they should teach. Most sets of standards are too numerous to be taught in a single year, forcing teachers to make decisions about what to emphasize in their curriculum. Ideally, such decisions would be based on what matters most in Earth science, namely, the big ideas that anchor scientific inquiry in the field. A measure of teachers' ability to associate curriculum standards with fundamental concepts in Earth science would help K-12 program and curriculum developers to bridge gaps in teachers' knowledge in order to help teachers make better decisions about what is most important to teach and communicate big ideas to students. This paper presents preliminary results of an attempt to create and validate a measure of teachers' comprehension of what matters in three sub-disciplines of Earth science. This measure was created as part of an experimental study of teacher professional development in Earth science. It is a task that requires teachers to take their state's curriculum standards and identify which standards are necessary or supplemental to developing students' understanding of fundamental concepts in the target sub-disciplines. To develop the task, a team of assessment experts and educational researchers asked a panel of four Earth scientists to identify key concepts embedded within middle school standards for the state of Florida. The Earth science panel reached a consensus on which standards needed to be taught in order to develop understanding of those concepts; this was used as a basis for comparison with teacher responses. Preliminary analysis of the responses of 44 teachers who participated in a pilot validation study identified differences between teachers' and scientists' maps of standards to big ideas in the sub-disciplines. On average, teachers identified just under one-third of the connections seen by expert Earth scientists between the concepts and their state standards

  16. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites

  17. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    NASA Astrophysics Data System (ADS)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  18. Cultural Earth Science in Hawai`i: Hands-on Place-Based Investigations that Merge Traditional Knowledge with Earth Science Inquiry

    NASA Astrophysics Data System (ADS)

    Moxey, L.; Dias, R. K.; Legaspi, E.

    2011-12-01

    During the summer of 2011, the Mālama Ke Ahupua`a (to care of our watershed) GEARUP summer program provided 25 under-served and under-represented minority public high school students (Hawaiian, part-Hawaiian, Filipino, Pacific Islanders) from Farrington High School (Kalihi, Honolulu) with a hands-on place-based multidiscipline course located within Manoa Valley (Ahupua`a O Kona) with the objective of engaging participants in scientific environmental investigations while exploring Hawaii's linkages between traditional knowledge, culture and science. The 4-week field program enabled students to collect samples along the perennial Manoa Stream and conduct water quality assessments throughout the Manoa watershed. Students collected science quality data from eight different sampling stations by means of field- and laboratory-based quantitative water quality testing equipment and GPS/GIS technology. While earning Hawaii DOE academic credits, students were able to document changes along the stream as related to pollution and urbanization. While conducting the various scientific investigations, students also participated in cultural fieldtrips and activities that highlighted the linkages between historical sustainable watershed uses by native Hawaiian communities, and their connections with natural earth processes. Additionally, students also participated in environmental service-learning projects that highlight the Hawaiian values of laulima (teamwork), mālama (to care for), and imi `ike (to seek knowledge). By contextualizing and merging hands-on place-based earth science inquiry with native Hawaiian traditional knowledge, students experienced the natural-cultural significance of their ahupua`a (watershed). This highlighted the advantages for promoting environmental literacy and geoscience education to under-served and under-represented minority populations in Hawaii from a rich native Hawaiian cultural framework.

  19. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    NASA Technical Reports Server (NTRS)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  20. Earth and Space Sciences: The Need for Diversity in Global Science

    NASA Astrophysics Data System (ADS)

    Hall, F. R.; Johnson, R.; Alexander, C.

    2004-12-01

    The Earth and Space sciences are truly global in nature and encompass the most diverse subject areas in science. Yet, the practitioners of these fields do not reflect the diversity of the populations that are impacted by the outcomes of the research in these fields of study. The global marketplace, migration, the search for economic and renewable resources, Earth Systems research, and understanding our place in the universe compels us to be more inclusive of the populations and cultures that inhabit our planet. In this talk, we discuss the relevancy of these issues on scientific endeavors in the 21st century and the need for the Earth and Space sciences to be the leaders within the broad scientific community of ensuring that science remains an inclusive enterprise.

  1. Global Cooperation in the Science of Sun-Earth Connection

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Davila, Joseph

    2011-01-01

    The international space science community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the International Space Weather Initiative (ISWI), the Climate and Weather of the Sun Earth System (CAWSES) by SCOSTEP and the International Living with a Star (ILWS) program. These programs have brought scientists together to tackle the scientific issues related to short and long term variability of the Sun and the consequences in the heliosphere. The ISWI program is a continuation of the successful International Heliophysical Year (IHY) 2007 program in focusing on science, observatory deployment, and outreach. The IHY/ISWI observatory deployment has not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. The ISWI schools and UN workshops are the primary venues for interaction and information exchange among scientists from developing and developed countries that lead to collaborative efforts in space weather. This paper presents a summary of ISWI activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  2. Bridging the gap with a duel-credit Earth Science course

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    College-bound high school students rarely have any exposure to the Earth Sciences. Earth Science may be offered to Middle School students. What is offered in High School, however, is usually a watered-down course offered to the weakest students. Meanwhile, our best and brightest students are steered towards biology, chemistry, and physics, what most schools consider the "real sciences". As a direct result, our population is not literate in the Earth Sciences and few students choose to study the Earth Science in college. One way to counteract this trend is to offer a rigorous capstone Earth Science course to High School Juniors and Seniors. Offering a course does not guarantee enrollment, however. Top science students are too busy taking Advanced Placement courses to consider a non-AP course. For that reason, the best way to lure top students into studying Earth Science is to create a duel-credit course, for which students receive both high school and college credit. A collaboration between high school teachers and college professors can result in a quality Earth Science course that bridges the huge gap that now exists between middle school science and college Earth Science. Harvard-Westlake School has successfully offered a duel-credit course with UCLA, and has created a model that can be used by other schools.

  3. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data

    NASA Technical Reports Server (NTRS)

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan

    1995-01-01

    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.

  4. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  5. Programs Visualize Earth and Space for Interactive Education

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.

  6. U.S. Earth Observation Programs May Still Be at Risk

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2005-10-01

    A recent interim report from a committee of the National Research Council (NRC) of the U.S. National Academies warned that the U.S. system of environmental satellites was ``at risk of collapse'' (see Eos, 10 May 2005, p. 186). Nearly six months later, despite assurances from NASA that the agency would work to address in its fiscal year (FY) 2007 budget some of the imbalances that have led to mission delays and cancellations, these satellite programs may still be at risk. NASA funding for Earth science has suffered in recent years due to several pressures on the budget: deficit reduction, efforts to restore the space shuttle program, and plans for missions to the Moon and Mars. The NRC report, which was released as a draft in April and in its final form on 8 September, noted that six planned missions with implications for Earth science research were delayed, descoped, or canceled in the proposed FY2006 NASA budget.

  7. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  8. Fostering Environmental Literacy For A Changing Earth: Interactive and Participatory Outreach Programs at Biosphere 2

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.; Huxman, T.; Morehouse, B.

    2008-12-01

    Earth system and ecological sustainability problems are complex outcomes of biological, physical, social, and economic interactions. A common goal of outreach and education programs is to foster a scientifically literate community that possesses the knowledge to contribute to environmental policies and decision making. Uncertainty and variability that is both inherent in Earth system and ecological sciences can confound such goals of improved ecological literacy. Public programs provide an opportunity to engage lay-persons in the scientific method, allowing them to experience science in action and confront these uncertainties face-on. We begin with a definition of scientific literacy that expands its conceptualization of science beyond just a collection of facts and concepts to one that views science as a process to aid understanding of natural phenomena. A process-based scientific literacy allows the public, teachers, and students to assimilate new information, evaluate climate research, and to ultimately make decisions that are informed by science. The Biosphere 2 facility (B2) is uniquely suited for such outreach programs because it allows linking Earth system and ecological science research activities in a large scale controlled environment setting with outreach and education opportunities. A primary outreach goal is to demonstrate science in action to an audience that ranges from K-12 groups to retired citizens. Here we discuss approaches to outreach programs that focus on soil-water-atmosphere-plant interactions and their roles in the impacts and causes of global environmental change. We describe a suite of programs designed to vary the amount of participation a visitor has with the science process (from passive learning to data collection to helping design experiments) to test the hypothesis that active learning fosters increased scientific literacy and the creation of science advocates. We argue that a revised framing of the scientific method with a more

  9. From Soup to Nuts: How Terra has enabled the growth of NASA Earth science communication

    NASA Astrophysics Data System (ADS)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.

    2014-12-01

    The birth of NASA's Earth Observatory website in 1999 closely mirrored the launch of Terra and over the years its growth has paralleled that of the Earth Observing System (EOS) program. With the launch of Terra, NASA gained an extraordinary platform that not only promised new science capabilities but gave us the data and imagery for telling the stories behind the science. The Earth Observatory Group was founded to communicate these stories to the public. We will present how we have used the capabilities of all the Terra instruments over the past 15 years to expand the public's knowledge of NASA Earth science. The ever-increasing quantity and quality of Terra data, combined with technological improvements to data availability and services has allowed the Earth Observatory and, as a result, the greater science-aware media, to greatly expand the visibility of NASA data and imagery. We will offer thoughts on best practices in using these multi-faceted instruments for public communication and we will share how we have worked with Terra science teams and affiliated systems to see the potential stories in their data and the value of providing the data in a timely fashion. Terra has allowed us to tell the stories of our Earth today like never before.

  10. New Earth Science Data and Access Methods

    NASA Technical Reports Server (NTRS)

    Moses, John F.; Weinstein, Beth E.; Farnham, Jennifer

    2004-01-01

    NASA's Earth Science Enterprise, working with its domestic and international partners, provides scientific data and analysis to improve life here on Earth. NASA provides science data products that cover a wide range of physical, geophysical, biochemical and other parameters, as well as services for interdisciplinary Earth science studies. Management and distribution of these products is administered through the Earth Observing System Data and Information System (EOSDIS) Distributed Active Archive Centers (DAACs), which all hold data within a different Earth science discipline. This paper will highlight selected EOS datasets and will focus on how these observations contribute to the improvement of essential services such as weather forecasting, climate prediction, air quality, and agricultural efficiency. Emphasis will be placed on new data products derived from instruments on board Terra, Aqua and ICESat as well as new regional data products and field campaigns. A variety of data tools and services are available to the user community. This paper will introduce primary and specialized DAAC-specific methods for finding, ordering and using these data products. Special sections will focus on orienting users unfamiliar with DAAC resources, HDF-EOS formatted data and the use of desktop research and application tools.

  11. Taming Typhon: Advancing Climate Literacy by Coordinating Federal Earth System Science Education Investments Through the U.S. Climate Change Science Program

    NASA Astrophysics Data System (ADS)

    Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.

    2008-12-01

    consensus framework to define climate literacy; (2) a protocol and process for vetting, reviewing, and assuring scientific quality of educational materials related to climate change; (3) a Federal network of professionals who can share, access, and identify complementary educational materials; (4) a suite of evaluation tools to gauge effectiveness of interagency programs related to climate change education; (5) a clearinghouse or central repository of climate change education resources and expertise; and (6) professional development resources for educators seeking to improve their understanding of climate change and related Earth system science principles.

  12. Alignment of Learning Goals, Assessments and Curricula in an Earth Sciences Program to Prepare the Geoscience Workforce for the 21st Century

    NASA Astrophysics Data System (ADS)

    Mogk, D. W.; Schmitt, J.

    2013-12-01

    The Dept. of Earth Sciences, Montana State University, recently completed a comprehensive revision of its undergraduate curriculum to meet challenges and opportunities in training the next generation geoscience workforce. The department has 280 undergraduate majors in degree options that include: geology, geography (physical and human), snow science, paleontology and GIS/planning. We used a 'backward design' approach by first considering the profile of a student leaving our program: what should they know and be able to do, in anticipation of professional development for traditional (exploration, environmental, regulatory agencies) and non-traditional (planning, policy, law, business, teaching) jobs or for further training in graduate school. We adopted an Earth system approach to be better aligned with contemporary approaches to Earth science and to demonstrate the connections between sub-disciplines across the curriculum. Learning sequences were designed according to Bloom's Taxonomy to develop higher level thinking skills (starting from observations and progressing to descriptions, interpretations, applications, integration of multiple lines of evidence, synthetic and analytical thinking and evaluation). Central themes are reinforced in multiple classes: history and evolution of the Earth system, composition and architecture of Earth, surface of Earth and the 'critical zone' and human dimensions. The cornerstones of the curriculum are strong background in cognate sciences, geologic 'habits of mind', an emphasis on geologic processes and field instruction. Ancillary learning goals include development of quantitative, communication, and interpersonal skills; use of Earth data and modeling; systems thinking; research and research-like experiences; and applications to societal issues. The first year course of study includes a slate of courses to explore the Earth system, primarily to engage and recruit students to the major. Second year studies are foundational for

  13. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    NASA Astrophysics Data System (ADS)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  14. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    ERIC Educational Resources Information Center

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  15. The Not-So-Rocky Road to Earth Science: Some Geologists Show the Way.

    ERIC Educational Resources Information Center

    Blueford, Joyce R.; Gordon, Leslie C.

    1984-01-01

    Discusses summer workshops designed to help elementary teachers develop an earth science program for their schools. Includes descriptions of three lessons and related instructional strategies on rocks and minerals, topographic maps, and fossils. (BC)

  16. Reforming Earth science education in developing countries

    NASA Astrophysics Data System (ADS)

    Aswathanarayana, U.

    Improving the employability of Earth science graduates by reforming Earth science instruction is a matter of concern to universities worldwide. It should, however, be self-evident that the developing countries cannot follow the same blueprint for change as the industrialized countries due to constraints of affordability and relevance. Peanuts are every bit as nutritious as almonds; if one with limited means has to choose between a fistful of peanuts and just one almond, it is wise to choose the peanuts. A paradigm proposed here would allow institutions in developing countries to impart good quality relevant Earth science instruction that would be affordable and lead to employment.

  17. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  18. Teaching earth science

    USGS Publications Warehouse

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  19. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  20. New Directions in Native American Earth Science Education in San Diego County

    NASA Astrophysics Data System (ADS)

    Riggs, E. M.

    2001-05-01

    Founded in 1998, the Indigenous Earth Sciences Project (IESP) of San Diego State University aims to increase the access of local Native American tribal communities to geoscience education and to geoscience information, and to attract more Indian students into earth science careers. As tribes encounter earth and environmental science-related issues, it is important to increase 1) on-reservation geoscience expertise, 2) the quality and cultural accessibility of geoscience curricula for Native K-12 students, and 3) geoscience literacy in Native communities at large. We have established partnerships with local reservation learning centers and education councils with the goal of building programs for K-12 students, college students, adult learners and on-reservation field programs for the whole community which both enrich the resident scientific understanding of reservation settings and find ways to include the rich intellectual tradition of indigenous knowledge of earth processes in the San Diego region. This work has been greatly assisted by the construction of HPWREN, a wireless Internet backbone connection built by UCSD, which now delivers broadband Internet service to the reservation communities of Pala, Rincon, and La Jolla as well as providing high-speed access to a variety of locally-collected geoscience data. This new networking venture has allowed us to explore virtual classroom, tutoring, and interactive data analysis activities with the learning centers located on these reservations. Plans and funding are also in place to expand these connections to all of the 18 reservation communities within San Diego county. We are also actively working to establish earth science components to existing bridging programs to Palomar College, a community college with deep connections to the northern San Diego county American Indian communities. These students will be assisted in their transfer to SDSU and will also be connected with geoscience research opportunities at the

  1. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  2. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    NASA Astrophysics Data System (ADS)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  3. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  4. Earth System Science Education Interdisciplinary Partnerships

    NASA Astrophysics Data System (ADS)

    Ruzek, M.; Johnson, D. R.

    2002-05-01

    Earth system science in the classroom is the fertile crucible linking science with societal needs for local, national and global sustainability. The interdisciplinary dimension requires fruitful cooperation among departments, schools and colleges within universities and among the universities and the nation's laboratories and agencies. Teaching and learning requires content which brings together the basic and applied sciences with mathematics and technology in addressing societal challenges of the coming decades. Over the past decade remarkable advances have emerged in information technology, from high bandwidth Internet connectivity to raw computing and visualization power. These advances which have wrought revolutionary capabilities and resources are transforming teaching and learning in the classroom. With the launching of NASA's Earth Observing System (EOS) the amount and type of geophysical data to monitor the Earth and its climate are increasing dramatically. The challenge remains, however, for skilled scientists and educators to interpret this information based upon sound scientific perspectives and utilize it in the classroom. With an increasing emphasis on the application of data gathered, and the use of the new technologies for practical benefit in the lives of ordinary citizens, there comes the even more basic need for understanding the fundamental state, dynamics, and complex interdependencies of the Earth system in mapping valid and relevant paths to sustainability. Technology and data in combination with the need to understand Earth system processes and phenomena offer opportunities for new and productive partnerships between researchers and educators to advance the fundamental science of the Earth system and in turn through discovery excite students at all levels in the classroom. This presentation will discuss interdisciplinary partnership opportunities for educators and researchers at the undergraduate and graduate levels.

  5. An Analysis of Misconceptions in Science Textbooks: Earth Science in England and Wales

    ERIC Educational Resources Information Center

    King, Chris John Henry

    2010-01-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one…

  6. Elementary Children's Retrodictive Reasoning about Earth Science

    ERIC Educational Resources Information Center

    Libarkin, Julie C.; Schneps, Matthew H.

    2012-01-01

    We report on interviews conducted with twenty-one elementary school children (grades 1-5) about a number of Earth science concepts. These interviews were undertaken as part of a teacher training video series designed specifically to assist elementary teachers in learning essential ideas in Earth science. As such, children were interviewed about a…

  7. Building a better search engine for earth science data

    NASA Astrophysics Data System (ADS)

    Armstrong, E. M.; Yang, C. P.; Moroni, D. F.; McGibbney, L. J.; Jiang, Y.; Huang, T.; Greguska, F. R., III; Li, Y.; Finch, C. J.

    2017-12-01

    Free text data searching of earth science datasets has been implemented with varying degrees of success and completeness across the spectrum of the 12 NASA earth sciences data centers. At the JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) the search engine has been developed around the Solr/Lucene platform. Others have chosen other popular enterprise search platforms like Elasticsearch. Regardless, the default implementations of these search engines leveraging factors such as dataset popularity, term frequency and inverse document term frequency do not fully meet the needs of precise relevancy and ranking of earth science search results. For the PO.DAAC, this shortcoming has been identified for several years by its external User Working Group that has assigned several recommendations to improve the relevancy and discoverability of datasets related to remotely sensed sea surface temperature, ocean wind, waves, salinity, height and gravity that comprise a total count of over 500 public availability datasets. Recently, the PO.DAAC has teamed with an effort led by George Mason University to improve the improve the search and relevancy ranking of oceanographic data via a simple search interface and powerful backend services called MUDROD (Mining and Utilizing Dataset Relevancy from Oceanographic Datasets to Improve Data Discovery) funded by the NASA AIST program. MUDROD has mined and utilized the combination of PO.DAAC earth science dataset metadata, usage metrics, and user feedback and search history to objectively extract relevance for improved data discovery and access. In addition to improved dataset relevance and ranking, the MUDROD search engine also returns recommendations to related datasets and related user queries. This presentation will report on use cases that drove the architecture and development, and the success metrics and improvements on search precision and recall that MUDROD has demonstrated over the existing PO.DAAC search

  8. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  9. Connecting Science and Literacy in the Classroom: Using Space and Earth Science to Support Language Arts

    NASA Astrophysics Data System (ADS)

    Wessen, A. S.; Cobabe-Ammann, E. A.

    2009-12-01

    The connections between science and literacy in the classroom have received increasing attention over the last two decades, as more and more evidence demonstrates that science provides an exciting vehicle in which to engage students on the path to literacy improvement. Combining literacy with science allows students to creatively explore the world or universe, and it. Combining science and literacy improves both reading and science scores, and increases students’ interest in science. At a time when over 40% of students beyond the 5th grade are reading two or more levels below grade level and are struggling with their current materials, finding ways to excite and engage them in the reading process is key. Literacy programs incorporating unique space science content can help prepare children for standardized language arts tests. It also engages our nation’s youngest learners and their teachers with the science, math, and technology of exploration in a language arts format. This session focuses on programs and products that bring the excitement of earth and space science into the literacy classroom, with a focus on research-based approached to combining science and language arts. Reading, Writing and Rings! Grades 1-2

  10. The Heritage of Earth Science Applications in Policy, Business, and Management of Natural Resources

    NASA Astrophysics Data System (ADS)

    Macauley, M.

    2012-12-01

    Baltimore-Washington metropolitan regions. The earliest direct application of Earth science information to actual decisionmaking began with the use of Landsat data in large-scale government demonstration programs and later, in smaller state and local agency projects. Many of these applications served as experiments to show how to use the data and to test their limitations. These activities served as precursors to more recent applications. Among the newest applications are the use of data to provide essential information to underpin monetary estimates of ecosystem services and the development of "credit" programs for these services. Another example is participatory (citizen science) resource management. This project also identifies the heritage of adoption factors - that is, determinants of the decision to use Earth science data. These factors include previous experience with Earth science data, reliable and transparent validation and verification techniques for new data, the availability and thoroughness of metadata, the ease of access and use of the data products, and technological innovation in computing and software (factors largely outside of the Earth science enterprise but influential in ease of direct use of Earth science data).

  11. The TRUST Project: A Formal-Informal Teacher Education Partnership for the Promotion of Earth Science Teacher Certification

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Miele, E.; Powell, W.; MacDonald, M.

    2004-12-01

    The American Museum of Natural History (AMNH) in partnership with Lehman and Brooklyn Colleges of the City University of New York (CUNY) has initiated The Teacher Renewal for Urban Science Teaching (TRUST) project. TRUST combines informal and formal teacher education in a four-year initiative to enhance professional development and masters of science education programs, grades K-8 at Brooklyn College and 7-12 at Lehman College. This NSF-funded partnership brings together the resources of AMNH, CUNY, New York City school districts, New York City Department of Education-Museum Partnerships, and the expertise of scientists and teachers with research experiences. Following an initial planning year, TRUST will recruit and sustain 90 teachers over a period of 3 years as well as engage 30 school administrators in support of Earth science instruction. Program components include two new formal Earth systems science courses, intensive informal summer institutes, and a lecture and workshop series during which participants gain new Earth science content knowledge, develop action plans, and present their work on the local and national level. In addition, participants have access to ongoing resource and material support to enhance their learning and instruction. Continuous documentation and data collection by project investigators are being used to address questions regarding the impact various aspects of the TRUST participant experience on classroom instruction and learning, the acquisition of scientific knowledge in the new courses and institutes, and to examine the nature of the Museum experience in meeting certification goals. External formative and summative evaluation of the project is addressing issues surrounding the value of the program as a model for formal-informal partnership in urban Earth science teacher education and certification, analysis of policies that facilitate partnership arrangements, and how socialization of novices with experts affects retention and

  12. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  13. The Denali Earth Science Education Project

    NASA Astrophysics Data System (ADS)

    Hansen, R. A.; Stachnik, J. C.; Roush, J. J.; Siemann, K.; Nixon, I.

    2004-12-01

    In partnership with Denali National Park and Preserve and the Denali Institute, the Alaska Earthquake Information Center (AEIC) will capitalize upon an extraordinary opportunity to raise public interest in the earth sciences. A coincidence of events has made this an ideal time for outreach to raise awareness of the solid earth processes that affect all of our lives. On November 3, 2002, a M 7.9 earthquake occurred on the Denali Fault in central Alaska, raising public consciousness of seismic activity in this state to a level unmatched since the M 9.2 "Good Friday" earthquake of 1964. Shortly after the M 7.9 event, a new public facility for scientific research and education in Alaska's national parks, the Murie Science and Learning Center, was constructed at the entrance to Denali National Park and Preserve only 43 miles from the epicenter of the Denali Fault Earthquake. The AEIC and its partners believe that these events can be combined to form a synergy for the creation of unprecedented opportunities for learning about solid earth geophysics among all segments of the public. This cooperative project will undertake the planning and development of education outreach mechanisms and products for the Murie Science and Learning Center that will serve to educate Alaska's residents and visitors about seismology, tectonics, crustal deformation, and volcanism. Through partnerships with Denali National Park and Preserve, this cooperative project will include the Denali Institute (a non-profit organization that assists the National Park Service in operating the Murie Science and Learning Center) and Alaska's Denali Borough Public School District. The AEIC will also draw upon the resources of long standing state partners; the Alaska Division of Geological & Geophysical Surveys and the Alaska Division of Homeland Security and Emergency Services. The objectives of this project are to increase public awareness and understanding of the solid earth processes that affect life in

  14. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  15. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  16. Evolving Metadata in NASA Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, A.; Cechini, M. F.; Walter, J.

    2011-12-01

    NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 3500 data products ranging from various types of science disciplines. EOSDIS is currently comprised of 12 discipline specific data centers that are collocated with centers of science discipline expertise. Metadata is used in all aspects of NASA's Earth Science data lifecycle from the initial measurement gathering to the accessing of data products. Missions use metadata in their science data products when describing information such as the instrument/sensor, operational plan, and geographically region. Acting as the curator of the data products, data centers employ metadata for preservation, access and manipulation of data. EOSDIS provides a centralized metadata repository called the Earth Observing System (EOS) ClearingHouse (ECHO) for data discovery and access via a service-oriented-architecture (SOA) between data centers and science data users. ECHO receives inventory metadata from data centers who generate metadata files that complies with the ECHO Metadata Model. NASA's Earth Science Data and Information System (ESDIS) Project established a Tiger Team to study and make recommendations regarding the adoption of the international metadata standard ISO 19115 in EOSDIS. The result was a technical report recommending an evolution of NASA data systems towards a consistent application of ISO 19115 and related standards including the creation of a NASA-specific convention for core ISO 19115 elements. Part of

  17. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  18. Summary of the Geocarto International Special Issue on "NASA Earth Science Satellite Data for Applications to Public Health" to be Published in Early 2014

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2013-01-01

    At the 2011 Applied Science Public Health review held in Santa Fe, NM, it was announced that Dr. Dale Quattrochi from the NASA Marshall Space Flight Center, John Haynes, Program Manager for the Applied Sciences Public Health program at NASA Headquarters, and Sue Estes, Deputy Program Manager for the NASA Applied Sciences Public Health Program located at the Universities Space Research Association (USRA) at the National Space Science and Technology Center (NSSTC) in Huntsville, AL, would edit a special issue of the journal Geocarto International on "NASA Earth Science Satellite Data for Applications to Public Health". This issue would be focused on compiling research papers that use NASA Earth Science satellite data for applications to public health. NASA's Public Health Program concentrates on advancing the realization of societal and economic benefits from NASA Earth Science in the areas of infectious disease, emergency preparedness and response, and environmental health (e.g., air quality). This application area as a focus of the NASA Applied Sciences program, has engaged public health institutions and officials with research scientists in exploring new applications of Earth Science satellite data as an integral part of public health decision- and policy-making at the local, state and federal levels. Of interest to this special issue are papers submitted on are topics such as epidemiologic surveillance in the areas of infectious disease, environmental health, and emergency response and preparedness, national and international activities to improve skills, share data and applications, and broaden the range of users who apply Earth Science satellite data in public health decisions, or related focus areas.. This special issue has now been completed and will be published n early 2014. This talk will present an overview of the papers that will be published in this special Geocarto International issue.

  19. Visualizing global change: earth and biodiversity sciences for museum settings using HDTV

    NASA Astrophysics Data System (ADS)

    Duba, A.; Gardiner, N.; Kinzler, R.; Trakinski, V.

    2006-12-01

    Science Bulletins, a production group at the American Museum of Natural History (New York, USA), brings biological and Earth system science data and concepts to over 10 million visitors per year at 27 institutions around the U.S.A. Our target audience is diverse, from novice to expert. News stories and visualizations use the capabilities of satellite imagery to focus public attention on four general themes: human influences on species and ecosystems across all observable spatial extents; biotic feedbacks with the Earth's physical system; characterizing species and ecosystems; and recent events such as natural changes to ecosystems, major findings and publications, or recent syntheses. For Earth science, we use recent natural events to explain the broad scientific concepts of tectonic activity and the processes that underlie climate and weather events. Visualizations show the global, dynamic distribution of atmospheric constituents, ocean temperature and temperature anomaly, and sea ice. Long-term changes are set in contrast to seasonal and longer-term cycles so that viewers appreciate the variety of forces that affect Earth's physical system. We illustrate concepts at a level appropriate for a broad audience to learn more about the dynamic nature of Earth's biota and physical processes. Programming also includes feature stories that explain global change phenomena from the perspectives of eminent scientists and managers charged with implementing public policy based on the best available science. Over the past two and one-half years, biological science stories have highlighted applied research addressing lemur conservation in Madagascar, marine protected areas in the Bahamas, effects of urban sprawl on wood turtles in New England, and taxonomic surveys of marine jellies in Monterey Bay. Earth science stories have addressed the volcanic history of present-day Yellowstone National Park, tsunamis, the disappearance of tropical mountain glaciers, the North Atlantic

  20. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  1. Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  2. Virtual Collections: An Earth Science Data Curation Service

    NASA Astrophysics Data System (ADS)

    Bugbee, K.; Ramachandran, R.; Maskey, M.; Gatlin, P. N.

    2016-12-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  3. Virtual Collections: An Earth Science Data Curation Service

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick

    2016-01-01

    The role of Earth science data centers has traditionally been to maintain central archives that serve openly available Earth observation data. However, in order to ensure data are as useful as possible to a diverse user community, Earth science data centers must move beyond simply serving as an archive to offering innovative data services to user communities. A virtual collection, the end product of a curation activity that searches, selects, and synthesizes diffuse data and information resources around a specific topic or event, is a data curation service that improves the discoverability, accessibility, and usability of Earth science data and also supports the needs of unanticipated users. Virtual collections minimize the amount of the time and effort needed to begin research by maximizing certainty of reward and by providing a trustworthy source of data for unanticipated users. This presentation will define a virtual collection in the context of an Earth science data center and will highlight a virtual collection case study created at the Global Hydrology Resource Center data center.

  4. Revolutions in the earth sciences

    PubMed Central

    Allègre, C.

    1999-01-01

    The 20th century has been a century of scientific revolutions for many disciplines: quantum mechanics in physics, the atomic approach in chemistry, the nonlinear revolution in mathematics, the introduction of statistical physics. The major breakthroughs in these disciplines had all occurred by about 1930. In contrast, the revolutions in the so-called natural sciences, that is in the earth sciences and in biology, waited until the last half of the century. These revolutions were indeed late, but they were no less deep and drastic, and they occurred quite suddenly. Actually, one can say that not one but three revolutions occurred in the earth sciences: in plate tectonics, planetology and the environment. They occurred essentially independently from each other, but as time passed, their effects developed, amplified and started interacting. These effects continue strongly to this day.

  5. Dagik Earth: A Digital Globe Project for Classrooms, Science Museums, and Research Institutes

    NASA Astrophysics Data System (ADS)

    Saito, A.; Tsugawa, T.

    2017-12-01

    Digital globe system is a powerful tool to make the audiences understand phenomena on the Earth and planets in intuitive way. Geo-cosmos of Miraikan, Japan uses 6-m spherical LED, and is one of the largest systems of digital globe. Science on a Sphere (SOS) by NOAA is a digital globe system that is most widely used in science museums around the world. These systems are so expensive that the usage of the digital globes is mainly limited to large-scale science museums. Dagik Earth is a digital globe project that promotes educational programs using digital globe with low cost. It aims to be used especially in classrooms. The cost for the digital globe of Dagik Earth is from several US dollars if PC and PC projector are available. It uses white spheres, such as balloons and balance balls, as the screen. The software is provided by the project with free of charge for the educational usage. The software runs on devices of Windows, Mac and iOS. There are English and Chinese language versions of the PC software besides Japanese version. The number of the registered users of Dagik Earth is about 1,400 in Japan. About 60% of them belongs to schools, 30% to universities and research institutes, and 8% to science museums. In schools, it is used in classes by teachers, and science activities by students. Several teachers have used the system for five years and more. In a students' activity, Dagik Earth contents on the typhoon, solar eclipse, and satellite launch were created and presented in a school festival. This is a good example of the usage of Dagik Earth for STEM education. In the presentation, the system and activity of Dagik Earth will be presented, and the future expansion of the project will be discussed.

  6. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  7. Grand Research Questions in the Solid-Earth Sciences Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linn, Anne M.

    2008-12-03

    Over the past three decades, Earth scientists have made great strides in understanding our planet’s workings and history. Yet this progress has served principally to lay bare more fundamental questions about the Earth. Expanding knowledge is generating new questions, while innovative technologies and new partnerships with other sciences provide new paths toward answers. A National Academies committee was established to frame some of the great intellectual challenges inherent in the study of the Earth and planets. The goal was to focus on science, not implementation issues, such as facilities or recommendations aimed at specific agencies. The committee canvassed the geologicalmore » community and deliberated at length to arrive at 10 questions: 1. How did Earth and other planets form? 2. What happened during Earth’s “dark age” (the first 500 million years)? 3. How did life begin? 4. How does Earth’s interior work, and how does it affect the surface? 5. Why does Earth have plate tectonics and continents? 6. How are Earth processes controlled by material properties? 7. What causes climate to change—and how much can it change? 8. How has life shaped Earth—and how has Earth shaped life? 9. Can earthquakes, volcanic eruptions, and their consequences be predicted? 10. How do fluid flow and transport affect the human environment? Written for graduate students, colleagues in sister disciplines, and program managers funding Earth and planetary science research, the report describes where the field stands, how it got there, and where it might be headed. Our hope is that the report will spark new interest in and support for the field by showing how Earth science can contribute to a wide range of issues—including some not always associated with the solid Earth—from the formation of the solar system to climate change to the origin of life. Its reach goes beyond the United States; the report is being translated into Chinese and distributed in China.« less

  8. Let's Talk About Water: Film as a Resource to Engage Audiences Around Earth Science Issues

    NASA Astrophysics Data System (ADS)

    Clark, E.; Hooper, R. P.; Lilienfeld, L.

    2017-12-01

    Connecting a diverse audience to science can be challenging. Scientists generally publish their findings in ways that are not easily accessible to audiences outside of the science community and translating findings for wider consumption requires a mindful balance of generalization and accuracy. In response to these communication challenges, the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) developed the Let's Talk About Water (LTAW) program as a formula for hosting successful events for Earth Science education. The program uses film as a bridge to open a discussion between scientists and the audience. In this setting, films are powerful educational tools because they use storytelling to engage audiences emotionally, which creates relatable, teachable moments. Originally designed to bring awareness to water issues, the formula can easily be applied to increase literacy on climate change and other critical Earth Science issues facing society. This presentation will discuss the LTAW event formula and the resources that CUAHSI has available to support event organizers in the development of their own LTAW events.

  9. GLOBE Earth Science Education and Public Outreach in Developing Countries GLOBE Earth Science Education and Public Outreach in Developing Countries

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Boger, R. A.

    2005-12-01

    GLOBE is an international hands-on earth science education program that involves scientists, teachers and students in more than 16,000 primary and secondary schools. GLOBE is funded by the National Aeronautics Administration (NASA), the National Science Foundation (NSF) and the U.S. Department of State. GLOBE works with schools (teachers and students) through more than 100 U.S. GLOBE partnerships with universities, state and local school systems, and non-government organizations. Internationally, GLOBE is partnered with 109 countries that include many developing nations throughout the world. In addition to the GLOBE's different areas of investigation e.g. Atmosphere/ Weather, Hydrology, Soils, Land Cover Biology and Phenology ( plant and animal), there are special projects such as the GLOBE Urban Phenology Year Project (GUPY) that engages developing and developed countries ( Finland, United States, Japan, Philippines, Thailand, Jordan, Kyrgystan, Senegal, Poland, Estonia, and the Dominican Republic) in studying the effects of urbanization on vegetation phenology, a sensitive indicator of climate change. Vegetation phenology integrates different components of the Earth system i.e. carbon and geochemical cycling, water cycling and energy cycling and is an excellent way to engage students in collaborative projects. This presentation will highlight the GUPY project and provide additional examples of local initiatives and collaborations with indigenous communities that use GLOBE and an inquiry approach to revise science education in developing countries .

  10. Implications of the Next Generation Science Standards for Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  11. UNESCO’s New Earth Science Education Initiative for Africa

    NASA Astrophysics Data System (ADS)

    Missotten, R.; Gaines, S. M.; de Mulder, E. F.

    2009-12-01

    The United Nations Education Science Culture and Communication Organization (UNESCO) has recently launched a new Earth Science Education Initiative in Africa. The overall intention of this Initiative is to support the development of the next generation of earth scientists in Africa who are equipped with the necessary tools, networks and perspectives to apply sound science to solving and benefiting from the challenges and opportunities of sustainable development. The opportunities in the earth sciences are great, starting with traditional mineral extraction and extending into environmental management such as climate change adaptation, prevention of natural hazards, and ensuring access to drinking water. The Earth Science Education Initiative has received strong support from many different types of partners. Potential partners have indicated an interest to participate as organizational partners, content providers, relevant academic institutes, and funders. Organizational partners now include the Geological Society of Africa (GSAf), International Center for Training and Exchanges in the Geosciences (CIFEG), Association of African Women Geoscientists (AAWG), International Year of Planet Earth (IYPE), and International Union of Geological Sciences (IUGS). The activities and focus of the Initiative within the overall intention is being developed in a participatory manner through a series of five regional workshops in Africa. The objective of these workshops is to assess regional capacities and needs in earth science education, research and industry underlining existing centers of excellence through conversation with relevant regional and international experts and plotting the way ahead for earth science education. This talk will provide an update on the outcomes of the first three workshops which have taken place in Luanda, Angola; Assiut, Egypt; and Cape Town; South Africa.

  12. EarthScope National Office (ESNO) Education and Outreach Program and its Broader Impacts: 2015 Update and Handoff to the Next ESNO

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Robinson, S.; Bohon, W.; Arrowsmith, R.; Garnero, E.; Baumback, D.; Boot, K. E.; Dick, C.

    2015-12-01

    The EarthScope Program (www.earthscope.org), funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of geodesy, seismology, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. Data and scientific findings from EarthScope are impacting and revolutionizing wide areas of geoscientific research, the understanding and mitigation of geologic hazards, and applications of geoscience to environmental sustainability. The EarthScope Program also produces and disseminates resources and programs for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO), operated by Arizona State University from 2011 to 2015, serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and the web, inSights newsletters and published articles, E&O workshops for informal educators (interpreters), an annual Speaker Series, assistance to K-12 STEM teacher professional development projects led by EarthScope researchers, continuing education for researchers, collaborations with other Earth-science E&O providers, and a biennial National Meeting. Significant activities during the final year of ESNO at ASU included the EarthScope National Meeting in Vermont; Native Science professional-development workshops for Native American teachers in Arizona and Minnesota; a sustained E&O presence online; and preparation for the transition of ESNO from ASU to the next host institution. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  13. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  14. A Service Oriented Infrastructure for Earth Science exchange

    NASA Astrophysics Data System (ADS)

    Burnett, M.; Mitchell, A.

    2008-12-01

    NASA's Earth Science Distributed Information System (ESDIS) program has developed an infrastructure for the exchange of Earth Observation related resources. Fundamentally a platform for Service Oriented Architectures, ECHO provides standards-based interfaces based on the basic interactions for a SOA pattern: Publish, Find and Bind. This infrastructure enables the realization of the benefits of Service Oriented Architectures, namely the reduction of stove-piped systems, the opportunity for reuse and flexibility to meet dynamic business needs, on a global scale. ECHO is the result of the infusion of IT technologies, including those standards of Web Services and Service Oriented Architecture technologies. The infrastructure is based on standards and leverages registries for data, services, clients and applications. As an operational system, ECHO currently representing over 110 million Earth Observation resources from a wide number of provider organizations. These partner organizations each have a primary mission - serving a particular facet of the Earth Observation community. Through ECHO, those partners can serve the needs of not only their target portion of the community, but also enable a wider range of users to discover and leverage their data resources, thereby increasing the value of their offerings. The Earth Observation community benefits from this infrastructure because it provides a set of common mechanisms for the discovery and access to resources from a much wider range of data and service providers. ECHO enables innovative clients to be built for targeted user types and missions. There several examples of those clients already in process. Applications built on this infrastructure can include User-driven, GUI-clients (web-based or thick clients), analysis programs (as intermediate components of larger systems), models or decision support systems. This paper will provide insight into the development of ECHO, as technologies were evaluated for infusion, and

  15. NASA's Earth Science Data Systems Standards Process Experiences

    NASA Technical Reports Server (NTRS)

    Ullman, Richard E.; Enloe, Yonsook

    2007-01-01

    NASA has impaneled several internal working groups to provide recommendations to NASA management on ways to evolve and improve Earth Science Data Systems. One of these working groups is the Standards Process Group (SPC). The SPG is drawn from NASA-funded Earth Science Data Systems stakeholders, and it directs a process of community review and evaluation of proposed NASA standards. The working group's goal is to promote interoperability and interuse of NASA Earth Science data through broader use of standards that have proven implementation and operational benefit to NASA Earth science by facilitating the NASA management endorsement of proposed standards. The SPC now has two years of experience with this approach to identification of standards. We will discuss real examples of the different types of candidate standards that have been proposed to NASA's Standards Process Group such as OPeNDAP's Data Access Protocol, the Hierarchical Data Format, and Open Geospatial Consortium's Web Map Server. Each of the three types of proposals requires a different sort of criteria for understanding the broad concepts of "proven implementation" and "operational benefit" in the context of NASA Earth Science data systems. We will discuss how our Standards Process has evolved with our experiences with the three candidate standards.

  16. Earth-Science Research for Addressing the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Healy, R. W.; Alley, W. M.; Engle, M.; McMahon, P. B.; Bales, J. D.

    2013-12-01

    In the coming decades, the United States will face two significant and sometimes competing challenges: preserving sustainable supplies of fresh water for humans and ecosystems, and ensuring available sources of energy. This presentation provides an overview of the earth-science data collection and research needed to address these challenges. Uncertainty limits our understanding of many aspects of the water-energy nexus. These aspects include availability of water, water requirements for energy development, energy requirements for treating and delivering fresh water, effects of emerging energy development technologies on water quality and quantity, and effects of future climates and land use on water and energy needs. Uncertainties can be reduced with an integrated approach that includes assessments of water availability and energy resources; monitoring of surface water and groundwater quantity and quality, water use, and energy use; research on impacts of energy waste streams, hydraulic fracturing, and other fuel-extraction processes on water quality; and research on the viability and environmental footprint of new technologies such as carbon capture and sequestration and conversion of cellulosic material to ethanol. Planning for water and energy development requires consideration of factors such as economics, population trends, human health, and societal values; however, sound resource management must be grounded on a clear understanding of the earth-science aspects of the water-energy nexus. Information gained from an earth-science data-collection and research program can improve our understanding of water and energy issues and lay the ground work for informed resource management.

  17. Earth Science in 1970

    ERIC Educational Resources Information Center

    Geotimes, 1971

    1971-01-01

    Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)

  18. Connecting NASA science and engineering with earth science applications

    USDA-ARS?s Scientific Manuscript database

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  19. Earth Science Education in Sudan

    NASA Astrophysics Data System (ADS)

    Abdullatif, Osman M.; Farwa, Abdalla G.

    1999-05-01

    This paper describes Earth Science Education in Sudan, with particular emphasis on the University of Khartoum. The first geological department in Sudan was founded in 1958 in the University of Khartoum. In the 1980s, six more geological departments have been added in the newer universities. The types of courses offered include Diploma, B.Sc. (General), B.Sc. (Honours), M.Sc. and Ph.D. The Geology programmes are strongly supported by field work training and mapping. Final-year students follow specialised training in one of the following topics: hydrogeology, geophysics, economic geology, sedimentology and engineering geology. A graduation report, written in the final year, represents 30-40% of the total marks. The final assessment and grading are decided with the help of internal and external examiners. Entry into the Geology programmes is based on merit and performance. The number of students who graduate with Honours and become geologists is between 20% to 40% of the initial intake at the beginning of the second year. Employment opportunities are limited and are found mainly in the Government's geological offices, the universities and research centres, and private companies. The Department of Geology at the University of Khartoum has long-standing internal and external links with outside partners. This has been manifested in the training of staff members, the donation of teaching materials and laboratory facilities. The chief problems currently facing Earth Science Education in Sudan are underfunding, poor equipment, laboratory facilities and logistics. Other problems include a shortage of staff, absence of research, lack of supervision and emigration of staff members. Urgent measures are needed to assess and evaluate the status of Earth Science Education in terms of objectives, needs and difficulties encountered. Earth Science Education is expected to contribute significantly to the exploitation of mineral resources and socio-economic development in the Sudan.

  20. Be a Citizen Scientist!: Celebrate Earth Science Week 2006

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2006-01-01

    During Earth Science Week (October 8-14, 2006), millions of citizen scientists worldwide will be sampling groundwater, monitoring weather, touring quarries, exploring caves, preparing competition projects, and visiting museums and science centers to learn about Earth science. The American Geological Institute organizes this annual event to…

  1. NASA's Earth Science Data Systems - Lessons Learned and Future Directions

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.

    2010-01-01

    In order to meet the increasing demand for Earth Science data, NASA has significantly improved the Earth Science Data Systems over the last two decades. This improvement is reviewed in this slide presentation. Many Earth Science disciplines have been able to access the data that is held in the Earth Observing System (EOS) Data and Information System (EOSDIS) at the Distributed Active Archive Centers (DAACs) that forms the core of the data system.

  2. Climate Science Program at California State University, Northridge

    NASA Astrophysics Data System (ADS)

    Steele Cox, H.; Klein, D.; Cadavid, A. C.; Foley, B.

    2012-12-01

    Due to its interdisciplinary nature, climate science poses wide-ranging challenges for science and mathematics students seeking careers in this field. There is a compelling need for universities to provide coherent programs in climate science in order to train future climate scientists. With funding from NASA Innovations in Climate Education (NICE), California State University, Northridge (CSUN), is creating the CSUN Climate Science Program. An interdisciplinary team of faculty members is working in collaboration with UCLA, Santa Monica College and NASA/JPL partners to create a new curriculum in climate science. The resulting sequence of climate science courses, or Pathway for studying the Mathematics of Climate Change (PMCC), is integrated into a Bachelor of Science degree program in the Applied Mathematical Sciences offered by the Mathematics Department at CSUN. The PMCC consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for Ph.D. programs in technical fields relevant to global climate change and related careers. The students who choose to follow this program will be guided to enroll in the following sequence of courses for their 12 units of upper division electives: 1) A newly created course junior level course, Math 396CL, in applied mathematics which will introduce students to applications of vector calculus and differential equations to the study of thermodynamics and atmospheric dynamics. 2) An already existing course, Math 483, with new content on mathematical modeling specialized for this program; 3) An improved version of Phys 595CL on the mathematics and physics of climate change with emphasis on Radiative Transfer; 4) A choice of Geog 407 on Remote Sensing or Geog 416 on Climate Change with updated content to train the students in the analysis of satellite data obtained with the NASA Earth Observing System and instruction in the analysis of data obtained within a Geographical

  3. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  4. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robeck, Edward C.

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  5. Booklets for children related with Earth Sciences published in Mexico

    NASA Astrophysics Data System (ADS)

    Alaniz, S. A.; Nieto-Samaniego, A. F.

    2009-04-01

    The Centro de Geociencias, at the Universidad Nacional Autonoma de Mexico, has published a series of booklets for children, entitled "Simple experiments to understand a complex Earth". It is part of the activities of the Mexican committee of the International Year of the Planet Earth. Each booklet contains experiments related with an Earth Sciences topic and includes the procedure to do one of the "Ten most beautiful experiments in physics" (Crease, P., Physics World May 2002 p17 and September 2002 pp19-20). In Mexico, as in other developing countries, there is very little information about Science in general and Earth Sciences in particular, in the basic education programs. Also, there is poor bibliography in Spanish about science experiments. For this reason, we try to fill the vacuum by distributing free the booklets in Science Museums and rural basic schools in paper, and by Internet in the Centro de Geociencias web site (http://www.geociencias.unam.mx/geociencias/difusion/indice.html). At present, we have been distributed 100,000 copies of 5 issues: 1."Atmospheric pressure and the falling bodies", it deals with the Galileo experiment of falling bodies, he proposed that all the bodies fall down at the same velocity. We discuss the properties of the atmosphere air (temperature, pressure and volume) and concluded that Galileo is right but when the bodies are very light. 2. "The light and the colors" is based in the Newton's decomposition of sunlight with a prism experiment. This booklet contains nine experiments to explain the colors that we find in Earth like the blue of the sky, the orange of the sunset, the rainbow and the mirage. 3. "¿Eureka! oceans and continents float". This booklet presents seven experiments related with density and buoyancy to explain the principles of the Plate tectonics theory. 4. "Climate hanging by a thread", Foucault pendulum demonstrates the rotation of Earth without seeing the stars, in this booklet, we explain, through 9

  6. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  7. An Overview of Rare Earth Science and Technology

    NASA Astrophysics Data System (ADS)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  8. NASA/MSFC FY92 Earth Science and Applications Program Research Review

    NASA Technical Reports Server (NTRS)

    Arnold, James E. (Editor); Leslie, Fred W. (Editor)

    1993-01-01

    A large amount of attention has recently been given to global issues such as the ozone hole, tropospheric temperature variability, etc. A scientific challenge is to better understand atmospheric processes on a variety of spatial and temporal scales in order to predict environmental changes. Measurement of geophysical parameters such as wind, temperature, and moisture are needed to validate theories, provide analyzed data sets, and initialize or constrain numerical models. One of NASA's initiatives is the Mission to Planet Earth Program comprised of an Earth Observation System (EOS) and the scientific strategy to analyze these data. This work describes these efforts in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  9. Enhancing the earth-science content and inquiry basis of physical geography education in Singapore schools

    NASA Astrophysics Data System (ADS)

    McCaughey, J.; Chong, E.

    2011-12-01

    Singapore has a long tradition of geography education at the secondary and Junior College levels (ages 12-18). Although most geography teachers teach both human and physical geography, many of them have received more extensive university training in human geography. The Earth Obervatory of Singapore (EOS), a newly established research institute at Nanyang Technological University (NTU), is building an education and outreach program to integrate its research across formal and informal education. We are collaborating with the Singapore Ministry of Education to enhance the earth-science content and inquiry basis of physical geography education in Singapore classrooms. EOS is providing input to national curriculum, textbook materials, and teaching resources, as well as providing inquiry-based field seminars and workshops for inservice teachers. An upcoming 5-year "Our Dynamic Earth" exhibit at the Science Centre Singapore will be a centerpoint of outreach to younger students, their teachers and parents, and to the community at large. On a longer time scale, the upcoming undergraduate program in earth science at NTU, the first of its kind in Singapore, will provide a stream of earth scientists into the geography teaching workforce. Developing ties between EOS and the National Institute of Education will further enhance teacher training. With a highly centralized curriculum, small land area, high-performing student population, and key stakeholders eager to collaborate with EOS, Singapore presents an unusual opportunity to impact classrooms on a national scale.

  10. Tested Tools You Can Use: Evaluating Earth System Science Courses

    NASA Astrophysics Data System (ADS)

    Lee, S. P.; Prakash, A.; Reider, D.; Baker, D.

    2006-12-01

    Earth System Science Education for the 21st Century (ESSE 21) has created a public access on-line evaluation resource available at http://esse21.usra.edu/evaltoolkit in collaboration with the ESSE 21 institutions, PIs, and evaluators. The purpose of the ESSE toolkit is to offer examples of how evaluation and assessment are/have been used in Earth System Science courses and programs. Our goal is to help instructors recognize different types of assessment and evaluation tools and uses that have proved useful in these courses and provide models for designing assessments in new courses. We have included actual examples of evaluations used by ESSE institution faculty in their own courses. This is not a comprehensive toolkit on educational evaluation and assessment, but it does provide several examples of evaluations that have been used successfully in Earth System Science courses and links to many good web resources on course evaluation. We have provided examples of assessments that are designed to collect information from students before, during and after courses. Some, presented in different formats, are designed to assess what students learn, others are designed to provide course instructors with information they can use to revise their courses. These assessments range from content tests to portfolios, from feedback forms to interviews, and from concept maps to attitude surveys.

  11. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April '98 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; and others will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach. Many of these visualizations have been widely disseminated through the world wide web pages of the HPCC/LTP/RSD program which can be found at http://rsd.gsfc.nasa.gov/rsd The one min interval animations of Hurricane Luis on ABC Nightline and the color perspective rendering of Hurricane Fran published by TIME, LIFE, Newsweek, Popular Science, National Geographic, Scientific American, and the "Weekly Reader" are some of the examples which will be shown.

  12. MS PHD'S: A Synergistic Model for Diversifying the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Braxton, L.; Johnson, A.

    2013-05-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) program focuses on increasing the number of underrepresented minorities (URM) receiving advanced degrees in Earth system sciences (ESS). Subscribing to Aristotle's philosophy that the "whole is greater than the sum of its parts", MS PHD'S uses a synergistic model of tiered mentoring practices, successful minority scientist role models, peer-to-peer community building activities, professional development training techniques, networking opportunities, and state of the art virtual communication tools to facilitate the retention and advancement of underrepresented ESS scientists. Using a three-phase program structure supported by a virtual community, URM students in ESS are afforded opportunities to establish mentoring relationships with successful scientists, build meaningful ties with URM peers and future colleagues, strengthen oral and written communication skills, engage in networking opportunities within premier scientific venues, and maintain continuity of networks formed through program participation. Established in 2003, MS PHD'S is now in its ninth cohort. From the original cohort of 24 participants, the program has grown to support 213 participants. Of these 213 participants, 42 have obtained the doctorate and are employed within the ESS workforce. Another 71 are enrolled in doctoral programs. Looking to the future with the purpose of continually furthering its synergistic philosophy, MS PHD'S has developed a new initiative, Beyond the PhD, designed to support and advance the representation of URM scientists within a global workforce.

  13. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    USGS Publications Warehouse

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  14. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  15. GLOBE Observer: Earth Science in the Palm of Your Hand

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.; Riebeek Kohl, H.

    2017-12-01

    You can get involved in doing Earth system science research tied to NASA research and data. This demo will introduce GLOBE and GLOBE Observer, a student and citizen science program designed to collect observations of the environment. The GLOBE Observer app, released in September 2016, harnesses smart phone technology to simplify select GLOBE observations to open the program to new audiences and to increase data volume. The end goal is to facilitate new student and scientific research. The demo will provide an overview of the app and show you how to access GLOBE Observer environmental data. The app includes a protocol for observing clouds and sky color (air quality proxy), mosquito habitats, and land cover/land use. The GLOBE Observer observations may be matched to NASA satellite data for a more in-depth analysis.

  16. Board on Earth Sciences and Resources and its Activities

    NASA Technical Reports Server (NTRS)

    Schiffries, Craig M.

    1997-01-01

    The Board will provide oversight of the earth science and resource activities within the National Research Council, provide a review of research and public activities in the solid-earth sciences, and provide analyses and recommendations relevant to the supply, delivery, and associated impacts of and issues related to hydrocarbon, metallic, and non-metallic mineral resources. The Board will monitor the status of the earth sciences, assess the health of the disciplines, and identify research opportunities, and will respond to specific agency requests.

  17. Global Issues in an Introductory Earth Science Course.

    ERIC Educational Resources Information Center

    Pierce, James P.

    Information is provided explaining the incorporation of global issues units into an introductory earth science course at Skagit Valley Community College (Mount Vernon, Washington). First, a short description is provided of the original format of the earth science course, which was designed as an introductory level survey course covering topics in…

  18. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  19. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    NASA Astrophysics Data System (ADS)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  20. Looking at Earth from Space: Teacher's Guide with Activities for Earth and Space Science.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The Maryland Pilot Earth Science and Technology Education Network (MAPS-NET) project was sponsored by the National Aeronautics and Space Administration (NASA) to enrich teacher preparation and classroom learning in the area of Earth system science. This publication includes a teacher's guide that replicates material taught during a graduate-level…

  1. Ground Water Studies. Earth Science Module for Grades 7-9.

    ERIC Educational Resources Information Center

    Baldwin, Roland L.; And Others

    Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…

  2. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    ERIC Educational Resources Information Center

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  3. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  4. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  5. NASA's Future Active Remote Sensing Missing for Earth Science

    NASA Technical Reports Server (NTRS)

    Hartley, Jonathan B.

    2000-01-01

    Since the beginning of space remote sensing of the earth, there has been a natural progression widening the range of electromagnetic radiation used to sense the earth, and slowly, steadily increasing the spatial, spectral, and radiometric resolution of the measurements. There has also been a somewhat slower trend toward active measurements across the electromagnetic spectrum, motivated in part by increased resolution, but also by the ability to make new measurements. Active microwave instruments have been used to measure ocean topography, to study the land surface. and to study rainfall from space. Future NASA active microwave missions may add detail to the topographical studies, sense soil moisture, and better characterize the cryosphere. Only recently have active optical instruments been flown in space by NASA; however, there are currently several missions in development which will sense the earth with lasers and many more conceptual active optical missions which address the priorities of NASA's earth science program. Missions are under development to investigate the structure of the terrestrial vegetation canopy, to characterize the earth's ice caps, and to study clouds and aerosols. Future NASA missions may measure tropospheric vector winds and make vastly improved measurements of the chemical components of the earth's atmosphere.

  6. NAGT: Partnering to Expand and Improve the Teaching of Earth Sciences at all Levels of Instruction while Increasing Earth Literacy to the General Public

    NASA Astrophysics Data System (ADS)

    Herbstrith, K. G.

    2016-12-01

    Now more than ever, we need an Earth literate public and a workforce that can develop and be engaged in viable solutions to current and future environmental and resource challenges. The National Association of Geoscience Teachers (NAGT) is a member driven organization dedicated to fostering improvement in the teaching of the Earth Sciences at all levels of formal and informal instruction, to emphasizing the cultural significance of the Earth sciences and to disseminating knowledge in this field to the general public. NAGT offers a number of ways to partner and collaborate including our sponsored sessions, events and programs; two publications; workshop programming; three topical focused divisions; educational advocacy; and website offerings hosted through the Science Education Resource Center (SERC). A growing number of associations, institutions, projects, and individual educators are strengthening their professional networks by partnering with NAGT. Locating and connecting members of the Earth education community with shared values and interest is an important part of collaborating and NAGT's topical divisions assist community members who wish to work on the topics of 2-year college faculty, geoscience education research, and teacher preparation. The NAGT website and the linked websites of its collaborating partners provides a peer reviewed venue for educators to showcase their pedagogy and to learn best practices of others. The annual Earth Educators' Rendezvous is an opportunity to network face-to-face with the Earth education community, strengthening our relationships while working with those who share our interests and challenges while also learning from those who have divergent experiences. NAGT is a non-profit organization that advocates for the advancement of the geosciences and supports the work of Earth educators and geoscience education researchers. For more information about NAGT, visit our website at www.nagt.org

  7. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  8. The Significance of Ongoing Teacher Support in Earth Science Education Programs: Evidence from the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Penuel, B.; Korbak, C.; Shear, L.

    2003-12-01

    The GLOBE program provides a rich context for examining issues concerning implementation of inquiry-oriented, scientist-driven educational programs, because the program has both a history of collecting evaluation data on implementation and mechanisms for capturing program activity as it occurs. In this paper, researchers from SRI International's evaluation team explore the different roles that regional partners play in preparing and supporting teachers to implement the GLOBE Program, an international inquiry-based Earth science education initiative that has trained over 14,000 teachers worldwide. GLOBE program evaluation results show the program can be effective in increasing students' inquiry skills, but that the program is also hard for teachers to implement (Means et al., 2001; Penuel et al., 2002). An analysis of GLOBE's regional partner organizations, which are tasked with preparing teachers to implement its data collection and reporting protocols with students, shows that some partners are more successful than others. This paper reports findings from a quantitative analysis of the relationship between data reporting and partner support activities and from case studies of two such regional partners focused on analyzing what makes them successful. The first analysis examined associations between partner training and support activities and data reporting. For this analysis, we used data from the GLOBE Student Data Archive matched with survey data collected from a large sample of GLOBE teachers as part of SRI's Year 5 evaluation of GLOBE. Our analyses point to the central importance of mentoring and material support to teachers. We found that incentives, mentoring, and other on-site support to teachers have a statistically significant association with higher data reporting levels. We also found that at present, teachers access these supports less often than they access listservs and e-mail communication with teachers after GLOBE training. As a follow-up to this

  9. The inclusion of Science Technology Society topics in junior high school earth science textbooks

    NASA Astrophysics Data System (ADS)

    Fadhli, Fathi Ali

    2000-10-01

    The Science Technology Society (STS) approach is a major science education reform through which a scientifically literate citizen could be produced. The teaching of science through STS approach is centered on science and technology related issues and problems. The purpose of this study was to analyze five earth science textbooks published in the 1990's for their inclusion of twelve sciences and technology related issues and problems and for their inclusion of activities focused on STS. The selected earth science textbooks were; Scott Foresman, Heath, Holt, Merrill and Prentice-Hall. The targeted twelve issues and problems were identified by Bybee (1987), as the most important global science and technology related issues and problems. The numbers of full text pages devoted to each topic were determined by classifying each segment to one of the targeted topics. In addition, the numbers of STS activities were also determined by using criteria developed for this study. ANOVA statistical analyses and t-tests showed that the analyzed earth science textbooks treated the studied STS issues and problems and treated the STS activities differently. It was found that six of the studied issues and problems were constantly receiving more attention in all the analyzed earth science textbooks than the rest of the topics. These topics were; Air Quality and Atmosphere, Energy Shortages, Water Resources, Land Use, Hazardous Substances, and Mineral Resources. The overall results revealed that only an average of 8.82% of the text pages in all the analyzed earth science textbooks were devoted to STS topics and 5.49% of the activities in all the analyzed earth science textbooks were focused on STS topics. However, none of the activities focused on STS topics were presented in STS approach as defined by NSTA. The percentage of STS topics inclusion and the percentage of activities focused on STS topics were considered to be very low. Accordingly, the objectives and goals of STS approach

  10. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  11. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    ERIC Educational Resources Information Center

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  12. Science at the ends of the Earth: astrobiology field expeditions as outreach tools

    NASA Astrophysics Data System (ADS)

    Billings, Linda

    INTRODUCTION This paper will report on and evaluate communication, education, and outreach initiatives conducted in conjunction with NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) field campaigns, addressing the costs and benefits of linking students, teachers, and other interested citizens with researchers in the field. This paper will highlight success stories, lessons learned, and promising practices regarding educational programs in scientific research environments. The Astrobiology Program in the U.S. National Aeronautics and Space Administration's (NASA's) Science Mission Directorate studies the origin, evolution, distribution, and future of life in the universe. Public interest in astrobiology is great, and advances in the field are rapid. Hence, the Astrobiology Program supports the widest possible dissemination of timely and useful information about scientific discoveries, technology development, new knowledge, and greater understanding produced by its investigators, employing an approach described as strategic communication planning. That is, the Astrobiology Program aims to integrate communication, education, and outreach into all aspects of program planning and execution. The Program encourages all of its investigators to contribute to the ongoing endeavor of informing public audiences about Astrobiology. The ASTEP element of the Astrobiology Program sponsors terrestrial field campaigns to further scientific research and technology development relevant to future solar system exploration missions. ASTEP science investigations are designed to further biological research in terrestrial environments analogous to those found on other planets, past or present. ASTEP sponsors the development of technologies to enable remote searches for, and identification of, life in extreme environments. ASTEP supports systems-level field campaigns designed to demonstrate and validate the science and technology in extreme environments on Earth. This

  13. What to do when the Universities reject High School Earth Science

    NASA Astrophysics Data System (ADS)

    Van Norden, W.

    2011-12-01

    It is hard to imagine a state of the union more affected by Earth processes than the state of California. However, the University of California actively discourages High School students from taking Earth Science courses. For admission into the University of California students are required to take at least 2 years of courses that offer a fundamental knowledge in at least two of these three foundational subjects: biology, chemistry, and physics. Earth Science courses simply don't qualify as laboratory science courses. The UC Admissions will sometimes make an exception for an Earth Science course only if it is shown to contain a large component of biology, chemistry and physics topics. Since students don't get credit for admission for taking Earth Science, High Schools are quick to drop Earth Science courses for their college-bound students. A group of teachers and University professors have been working to reverse this policy by creating a rigorous capstone Earth Science course that clearly merits laboratory status. Getting this course accepted by the University of California is well on its way, but getting the course into the High Schools will take a lot of work and probably some extra funding.

  14. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  15. TRUST: A Successful Formal-Informal Teacher Education Partnership Designed to Improve and Promote Urban Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sloan, H.; Drantch, K.; Steenhuis, J.

    2006-12-01

    We present an NSF-funded collaborative formal-informal partnership for urban Earth science teacher preparation and professional development. This model brings together The American Museum of Natural History (AMNH) and Brooklyn and Lehman College of the City University of New York (CUNY) to address science-impoverished classrooms that lack highly qualified teachers by focusing on Earth science teacher certification. Project design was based on identified needs in the local communities and schools, careful analysis of content knowledge mastery required for Earth science teacher certification, and existing impediments to certification. The problem-based approach required partners to push policy envelopes and to invent new ways of articulating content and pedagogy at both intra- and inter-institutional levels. One key element of the project is involvement of the local board of education, teachers, and administrators in initial design and ongoing assessment. Project components include formal Earth systems science courses, a summer institute primarily led and delivered by AMNH scientists through an informal series of lectures coupled to workshops led by AMNH educators, a mechanism for assigning course credit for informal experiences, development of new teaching approaches that include teacher action plans and an external program of evaluation. The principal research strand of this project focuses on the resulting model for formal-informal teacher education partnership, the project's impact on participating teachers, policy issues surrounding the model and the changes required for its development and implementation, and its potential for Earth science education reform. As the grant funded portion of the project draws to a close we begin to analyze data collected over the past 3 years. Third-year findings of the project's external evaluation indicate that the problem-based approach has been highly successful, particularly its impact on participating teachers. In addition

  16. Combined Industry, Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Kiely, Aaron B. (Editor); Renner, Robert L. (Editor)

    1996-01-01

    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems.

  17. Exploring the Sky: An Exploratory Study on the Effectiveness of Discourse in an Atmospheric Science Outreach Program

    NASA Astrophysics Data System (ADS)

    Boyd, K.; Balgopal, M.; Birner, T.

    2015-12-01

    Educational outreach programs led by scientists or scientific organizations can introduce participants to science content, increase their interest in science, and help them understand the nature of science (NOS). Much of atmospheric science (AS) educational outreach to date has concentrated on teacher professional development programs, but there is still a need to study how students react to classroom programs led by scientists. The purpose of this research project is to examine student engagement with AS and NOS content when presented by a university atmospheric scientist or an Earth system science teacher. The guiding research question was: how do students interact with science experts in their classrooms compared to their teachers when learning about Earth science and NOS? The outreach program was developed by an AS faculty member and was implemented in a local 10th grade Earth Science class. The presenter used historical stories of discoveries to introduce concepts about the middle atmosphere and climate circulations, reinforcing the NOS in his interactive presentations. On a separate day the teacher implemented a lesson on plate tectonics grounded in NOS. A case study analysis is being conducted using videotaped presentations on Earth science and NOS by the teacher and the scientist, pre- and post- questionnaires, and teacher and scientist interviews in order to determine patterns in student-presenter discourse, the levels of presenters' inquiry-based questioning, and the depth of student responses around Earth science content and NOS. Preliminary results from video analysis indicate that the scientist used higher inquiry-based questioning strategies compared to the teacher; however the teacher was able to go into more depth on a topic with the lesson. Scientists must consider whether the trade-offs warrant focusing their outreach efforts on content professional development for teachers or content outreach for K-12 students.

  18. Earth Science Education in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin L.

    1999-05-01

    Zimbabwe is a mineral-rich country with a long history of Earth Science Education. The establishment of a University Geology Department in 1960 allowed the country to produce its own earth science graduates. These graduates are readily absorbed by the mining industry and few are without work. Demand for places at the University is high and entry standards reflect this. Students enter the University after GCE A levels in three science subjects and most go on to graduate. Degree programmes include B.Sc. General in Geology (plus another science), B.Sc. Honours in Geology and M.Sc. in Exploration Geology and in Geophysics. The undergraduate curriculum is broad-based and increasingly vocationally orientated. A well-equipped building caters for relatively large student numbers and also houses analytical facilities used for research and teaching. Computers are used in teaching from the first year onwards. Staff are on average poorly qualified compared to other universities, but there is an impressive research element. The Department has good links with many overseas universities and external funding agencies play a strong supporting role. That said, financial constraints remain the greatest barrier to future development, although increasing links with the mining industry may cushion this.

  19. Eighth Grade Earth Science Curriculum Guide. Part 1.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a curriculum guide composed of lessons which can serve as models for the beginning teacher as well as for the teacher who needs activities to broaden the earth science perspective in the classroom. It was designed to supplement the New york State Earth Science Syllabus and encourages students to develop inquiry and problem solving skills.…

  20. An Integrated and Collaborative Approach for NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Murphy, K.; Lowe, D.; Behnke, J.; Ramapriyan, H.; Behnke, J.; Sofinowski, E.

    2012-01-01

    Earth science research requires coordination and collaboration across multiple disparate science domains. Data systems that support this research are often as disparate as the disciplines that they support. These distinctions can create barriers limiting access to measurements, which could otherwise enable cross-discipline Earth science. NASA's Earth Observing System Data and Information System (EOSDIS) is continuing to bridge the gap between discipline-centric data systems with a coherent and transparent system of systems that offers up to date and engaging science related content, creates an active and immersive science user experience, and encourages the use of EOSDIS earth data and services. The new Earthdata Coherent Web (ECW) project encourages cohesiveness by combining existing websites, data and services into a unified website with a common look and feel, common tools and common processes. It includes cross-linking and cross-referencing across the Earthdata site and NASA's Distributed Active Archive Centers (DAAC), and by leveraging existing EOSDIS Cyber-infrastructure and Web Service technologies to foster re-use and to reduce barriers to discovering Earth science data (http://earthdata.nasa.gov).

  1. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    NASA Technical Reports Server (NTRS)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  2. A Solid Earth educational module, co-operatively developed by scientists and high school teachers through the Scripps Classroom Connection GK12 Program

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; van Dusen, D.; Benedict, R.; Chojnacki, P. R.; Peach, C. L.; Staudigel, H.; Constable, C.; Laske, G.

    2010-12-01

    The Scripps Classroom Connection, funded through the NSF GK-12 program, pairs local high school teachers with Scripps Institution of Oceanography (SIO) graduate students in the earth and ocean sciences for their mutual professional development. An integral goal of the program is the collaborative production of quality earth science educational modules that are tested in the classroom and subsequently made freely available online for use by other educators. We present a brief overview of the program structure in place to support this goal and illustrate a module that we have developed on the Solid Earth & Plate Tectonics for a 9th grade Earth Science classroom. The unit includes 1) an exercise in constructing a geomagnetic polarity timescale which exposes students to authentic scientific data; 2) activities, labs, lectures and worksheets that support the scientific content; and 3) use of online resources such as Google Earth and interactive animations that help students better understand the concepts. The educational unit is being implemented in two separate local area high schools for Fall 2010 and we will report on our experiences. The co-operative efforts of teachers and scientists lead to educational materials which expose students to the scientific process and current science research, while teaching basic concepts using an engaging inquiry-based approach. In turn, graduate students involved gain experience communicating their science to non-science audiences.

  3. Grid Technology as a Cyber Infrastructure for Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas H.

    2004-01-01

    This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.

  4. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  5. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  6. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  7. Geospatial Education: Working with the NASA Airborne Science Program

    NASA Astrophysics Data System (ADS)

    Lockwood, C. M.; Handley, L.; Handley, N.

    2010-12-01

    WETMAAP (Wetland Education Through Maps and Aerial Photography) , a program of CNL World, supports the NASA Strategic Goals and Objectives for Education by providing classroom teachers and formal and informal educators with professional development. WETMAAP promotes science by inquiry through the use of a building-block process, comparative analysis, and analytical observations. Through the WETMAAP workshops and website, educators receive the concepts necessary to provide students with a basic understanding of maps, aerial photography, and satellite and airborne imagery that focus on the study of wetlands and wetland change. The program targets educators, Grades 5 - 12, in earth science, environmental science, biology, geography, and mathematics, and emphasizes a comprehensive curriculum approach.

  8. Earth Science: 49 Science Fair Projects Series.

    ERIC Educational Resources Information Center

    Bonnet, Robert L.; Keen, G. Daniel

    This book offers a large collection of Earth science projects and project ideas for students, teachers, and parents. The projects described are complete but can also be used as spring boards to create expanded projects. Overviews, organizational direction, suggested hypotheses, materials, procedures, and controls are provided. The projects…

  9. Reducing the Volume of NASA Earth-Science Data

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Braverman, Amy J.; Guillaume, Alexandre

    2010-01-01

    A computer program reduces data generated by NASA Earth-science missions into representative clusters characterized by centroids and membership information, thereby reducing the large volume of data to a level more amenable to analysis. The program effects an autonomous data-reduction/clustering process to produce a representative distribution and joint relationships of the data, without assuming a specific type of distribution and relationship and without resorting to domain-specific knowledge about the data. The program implements a combination of a data-reduction algorithm known as the entropy-constrained vector quantization (ECVQ) and an optimization algorithm known as the differential evolution (DE). The combination of algorithms generates the Pareto front of clustering solutions that presents the compromise between the quality of the reduced data and the degree of reduction. Similar prior data-reduction computer programs utilize only a clustering algorithm, the parameters of which are tuned manually by users. In the present program, autonomous optimization of the parameters by means of the DE supplants the manual tuning of the parameters. Thus, the program determines the best set of clustering solutions without human intervention.

  10. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    NASA Astrophysics Data System (ADS)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  11. Technology thrusts for future Earth science applications

    NASA Astrophysics Data System (ADS)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  12. Technology Thrust for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  13. Technology Thrusts for Future Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid

    2001-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  14. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  15. An experience of science theatre: Earth Science for children

    NASA Astrophysics Data System (ADS)

    Musacchio, Gemma; Lanza, Tiziana; D'Addezio, Giuliana

    2015-04-01

    The present paper describes an experience of science theatre addressed to children of primary and secondary school, with the main purpose of explaining the Earth interior while raising awareness about natural hazard. We conducted the experience with the help of a theatrical company specialized in shows for children. Several performances have been reiterated in different context, giving us the opportunity of conducting a preliminary survey with public of different ages, even if the show was conceived for children. Results suggest that science theatre while relying on creativity and emotional learning in transmitting knowledge about the Earth and its hazard has the potential to induce in children a positive attitude towards the risks

  16. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    NASA Astrophysics Data System (ADS)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  17. Earth Science Teaching Strategies Used in the International Polar Year

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.

    2009-04-01

    There are many effective methods for teaching earth science education that are being successfully used during the fourth International Polar Year (IPY). Relevance of IPY and the polar regions is better understood using a systems thinking approach used in earth science education. Changes in components of the earth system have a global effect; and changes in the polar regions will affect the rest of the world regions and vice versa. Teaching strategies successfully used for primary, secondary, undergraduate and graduate student earth science education and IPY education outreach include: 1) engaging students in earth science or environmental research relevant to their locale; 2) blending lectures with research expeditions or field studies, 3) connecting students with scientists in person and through audio and video conferencing; 4) combining science and arts in teaching, learning and communicating about earth science and the polar regions, capitalizing on the uniqueness of polar regions and its inhabitants, and its sensitivity to climate change; and 5) integrating different perspectives: western science, indigenous and community knowledge in the content and method of delivery. Use of these strategies are exemplified in IPY projects in the University of the Arctic IPY Higher Education Outreach Project cluster such as the GLOBE Seasons and Biomes project, the Ice Mysteries e-Polar Books: An Innovative Way of Combining Science and Literacy project, the Resilience and Adaptation Integrative Graduate Education and Research Traineeship project, and the Svalbard Research Experience for Undergraduates project.

  18. Alaska's Secondary Science Teachers and Students Receive Earth Systems Science Knowledge, GIS Know How and University Technical Support for Pre- College Research Experiences: The EDGE Project

    NASA Astrophysics Data System (ADS)

    Connor, C. L.; Prakash, A.

    2007-12-01

    Alaska's secondary school teachers are increasingly required to provide Earth systems science (ESS) education that integrates student observations of local natural processes related to rapid climate change with geospatial datasets and satellite imagery using Geographic Information Systems (GIS) technology. Such skills are also valued in various employment sectors of the state where job opportunities requiring Earth science and GIS training are increasing. University of Alaska's EDGE (Experiential Discoveries in Geoscience Education) program has provided training and classroom resources for 3 cohorts of inservice Alaska science and math teachers in GIS and Earth Systems Science (2005-2007). Summer workshops include geologic field experiences, GIS instruction, computer equipment and technical support for groups of Alaska high school (HS) and middle school (MS) science teachers each June and their students in August. Since 2005, EDGE has increased Alaska science and math teachers' Earth science content knowledge and developed their GIS and computer skills. In addition, EDGE has guided teachers using a follow-up, fall online course that provided more extensive ESS knowledge linked with classroom standards and provided course content that was directly transferable into their MS and HS science classrooms. EDGE teachers were mentored by University faculty and technical staff as they guided their own students through semester-scale, science fair style projects using geospatial data that was student- collected. EDGE program assessment indicates that all teachers have improved their ESS knowledge, GIS knowledge, and the use of technology in their classrooms. More than 230 middle school students have learned GIS, from EDGE teachers and 50 EDGE secondary students have conducted original research related to landscape change and its impacts on their own communities. Longer-term EDGE goals include improving student performance on the newly implemented (spring 2008) 10th grade

  19. ArXives of Earth science

    NASA Astrophysics Data System (ADS)

    2018-03-01

    Preprint servers afford a platform for sharing research before peer review. We are pleased that two dedicated preprint servers have opened for the Earth sciences and welcome submissions that have been posted there first.

  20. A decade of Earth science

    NASA Astrophysics Data System (ADS)

    2018-01-01

    Great Earth science has been published over the ten years since the launch of Nature Geoscience. The field has also become more interdisciplinary and accountable, as well as more central to society and sustainability.

  1. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  2. Using Food to Demonstrate Earth Science Concepts

    NASA Astrophysics Data System (ADS)

    Walter, J.; Francek, M.

    2001-12-01

    One way to better engage K-16 students with the earth sciences is through classroom demonstrations with food. We summarize references from journals and the world wide web that use food to illustrate earth science concepts. Examples of how edible substances have been used include using candy bars to demonstrate weathering concepts, ice cream to mimic glaciers, and grapes to demonstrate evaporation. We also categorize these demonstrations into geology, weather, space science, and oceanography categories. We further categorize the topics by grade level, web versus traditional print format, amount of time necessary to prepare a lesson plan, and whether the activity is better used as a demonstration or hands on activity.

  3. Residential learning communities as a tool for increasing interest in the Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Burmeister, K. C.; Colafrancesco, K.; Brodie, C.; Jacobson, S.

    2009-12-01

    The Residence for Earth and Environmental Living and Learning (REELL), a residential learning community (RLCs) established at the University of the Pacific in 2008-2009, has proven to be an effective tool for increasing interest in the Earth and environmental sciences. RLCs bring together students that share a theme-based interest and are given an opportunity to live together in a common space within a campus residence hall. The 2008-2009 REELL group comprised representatives from a wide range of degree programs, and included 16 freshmen, a junior peer advisor, and a senior residential advisor. Student participants in the REELL community work closely with their peers, faculty, and staff on academic, social, and outreach programs designed to increase interest and awareness in the Earth & environment. REELL activities include regular meetings, sponsored movies, guest speakers, field trips, campus exchange events, and outreach activities. These activities are arranged around a yearlong research project that is designed and implemented by the student participants. Preliminary results suggest that activity- and project-related interactions during the 2008-2009 REELL program year are an effective way to establish connections between among students, faculty, and administration and have increased interest and participation in Earth and Environmental Science courses and programs. Studies of RLCs implemented in a wide variety of colleges and university settings demonstrate that these programs successfully foster the development of leadership, social, and academic skills in student participants. The REELL community at the University of the Pacific is based upon the successful the Honors RLC. The well-established Honors RLC is a perfect example of how such programs can increase social and academic development. Like the REELL program, the Honors RLC brings together first and second year honors students in a single residence hall. Their participation in the Honors RLC provides

  4. Space Science in Action: Earth [Videotape].

    ERIC Educational Resources Information Center

    1999

    This videotape recording explains the factors that allow life to flourish on Earth, including our position within the solar system, the water cycle, and the composition of the planet. A hands-on activity demonstrates the earth's water cycle. Contents include a teacher's guide designed to help science teachers in grades 5-8 by providing a brief…

  5. Laboratory Earth Under the Lens: Diachronic Evaluation of an Integrated Graduate-Level On-Line Earth System Science Course Series for K-12 Educators

    NASA Astrophysics Data System (ADS)

    Low, R.; Gosselin, D. C.; Haney, C.; Larson-Miller, C.; Bonnstetter, R.; Mandryk, C.

    2012-12-01

    Educational research strives to identify the pedagogies that promote student learning. However, the body of research identifying the characteristics of effective teacher preparation is "least strong for science," and is largely based on studies of the effectiveness of individual courses or workshops (NRC 2010). The National Research Council's "Preparing Teachers: Building Evidence for Strong Policy," (2010) provides a mandate for teacher education providers to conduct research on program-scale effectiveness. The high priority research agenda identified by the NRC is expected to elicit understanding of the aspects of teacher preparation that critically impact classroom student learning outcomes. The Laboratory Lens project is designed to identify effective practices in a teacher education program, with specific reference to the content domain of Earth science. Now in its fifth year, the Masters of Applied Science (MAS) program at UNL offers a variety of science courses, ranging from entomology to food science. The six-course Lab Earth series serves as the backbone of the Specialization for Science Educators within the MAS program, and provides comprehensive content coverage of all Earth science topics identified in the AAAS Benchmarks. "How People Learn," (NRC 2009) emphasizes that expert knowledge includes not only factual knowledge, but also the well-developed conceptual framework critical to the ability to, "remember, reason, and solve problems." A focus of our research is to document the process by which the transition from novice to expert takes place in Lab Earth's on-line teacher participants. A feature of our research design is the standardization of evaluation instruments across the six courses. We have used data derived from implementation of the Community of Inquiry Survey (COI) in pilot offerings to ensure that the course sequence is effective in developing a community of learners, while developing their content knowledge. A pre- and post- course

  6. Evaluation of a Potential for Enhancing the Decision Support System of the Interagency Modeling and Atmospheric Assessment Center with NASA Earth Science Research Results

    NASA Technical Reports Server (NTRS)

    Blonski, Slawomir; Berglund, Judith; Spruce, Joseph P.; McKellip, Rodney; Jasinski, Michael; Borak, Jordan; Lundquist, Julie

    2007-01-01

    NASA's objective for the Applied Sciences Program of the Science Mission Directorate is to expand and accelerate the realization of economic and societal benefits from Earth science, information, and technology. This objective is accomplished by using a systems approach to facilitate the incorporation of Earth observations and predictions into the decision-support tools used by partner organizations to provide essential services to society. The services include management of forest fires, coastal zones, agriculture, weather prediction, hazard mitigation, aviation safety, and homeland security. In this way, NASA's long-term research programs yield near-term, practical benefits to society. The Applied Sciences Program relies heavily on forging partnerships with other Federal agencies to accomplish its objectives. NASA chooses to partner with agencies that have existing connections with end-users, information infrastructure already in place, and decision support systems that can be enhanced by the Earth science information that NASA is uniquely poised to provide (NASA, 2004).

  7. Northern Eurasia Earth Science Partnership Initiative in 2013: An Update

    NASA Astrophysics Data System (ADS)

    Groisman, P. Y.

    2013-12-01

    Eight years ago Northern Eurasia Earth Science Partnership Initiative (NEESPI) was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Throughout its duration, NEESPI served and is serving as an umbrella for more than 160 individual international research projects. Currently, the Initiative is in full swing. The total number of the ongoing NEESPI projects (as on July 2013) is 50 and has changed but slightly compared to its peak (87 in 2008). The past one and one-half years (2012-through mid-2013) were extremely productive in the NEESPI outreach. We organized five Open Science Sessions at the three major Geoscience Unions/Assembly Meetings (AGU, EGU, and JpGU) and four International NEESPI Workshops. The programs of two of these Workshops (in Irkutsk and Petrozavodsk, Russia) included Summer Schools for early career scientists. The list of publications of NEESPI scientists was still incomplete at the time of preparation of this abstract. A large suite of NEESPI articles (59) is currently at different stages of review process for the Forth Special NEESPI Issue of "Environmental Research Letters" (http://iopscience.iop.org/1748-9326/focus/NEESPI4). In the past 12 months, we continued releases of the latest findings in the NEESPI domain in regional monographs with publication of two such monographs devoted to Siberia and Dryland East Asia (Groisman and Gutman eds. 2013 and Chen et al. 2013). Keeping in mind an orderly completion of NEESPI in 2015 and a desire of the NEESPI project leaders and their numerous associates to continue studies of the Northern Eurasia role in the Earth System within the FUTURE EARTH Mega Program, we have begun development of the new set of scientific ideas for regional projects for the post-NEESPI period. The goal is to formulate these ideas (science questions) in such way that they will

  8. Exploiting Untapped Information Resources in Earth Science

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  9. Pairing Essential Climate Science with Sustainable Energy Information: the "EARTH-The Operators' Manual" experiment

    NASA Astrophysics Data System (ADS)

    Akuginow, E.; Alley, R. B.; Haines-Stiles, G.

    2010-12-01

    Social science research on the effective communication of climate science suggests that today's audiences may be effectively engaged by presenting information about Earth's climate in the context of individual and community actions that can be taken to increase energy efficiency and to reduce carbon emissions. "EARTH-The Operators' Manual" (ETOM) is an informal science education and outreach project supported by NSF, comprising three related components: a 3-part broadcast television mini-series; on-site outreach at 5 major science centers and natural history museums strategically located across the USA; and a website with innovative social networking tools. A companion tradebook, written by series presenter and Penn State glaciologist Richard Alley, is to be published by W. W. Norton in spring 2011. Program 1, THE BURNING QUESTION, shows how throughout human history our need for energy has been met by burning wood, whale oil and fossil fuels, but notes that fossil fuels produce carbon dioxide which inevitably change the composition of Earth's atmosphere. The program uses little known stories (such as US Air Force atmospheric research immediately after WW2, looking at the effect of CO2 levels on heat-seeking missiles, and Abraham Lincoln's role in the founding of the National Academy of Sciences and the Academy's role in solving navigation problems during the Civil War) to offer fresh perspectives on essential but sometimes disputed aspects of climate science: that today's levels of CO2 are unprecedented in the last 400,000 and more years; that human burning of fossil fuel is the scientifically-proven source, and that multiple lines of evidence show Earth is warming. Program 2, TEN WAYS TO KEEP TEN BILLION SMILING, offers a list of appealing strategies (such as "Get Rich and Save the World": Texas & wind energy, and "Do More with Less": how glow worms make cool light without waste heat, suggesting a role for organic LEDs) to motivate positive responses to the

  10. Earth Science

    NASA Image and Video Library

    1991-01-01

    In July 1990, the Marshall Space Flight Center, in a joint project with the Department of Defense/Air Force Space Test Program, launched the Combined Release and Radiation Effects Satellite (CRRES) using an Atlas I launch vehicle. The mission was designed to study the effects of artificial ion clouds produced by chemical releases on the Earth's ionosphere and magnetosphere, and to monitor the effects of space radiation environment on sophisticated electronics.

  11. Educating the Public about Deep-Earth Science

    NASA Astrophysics Data System (ADS)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  12. Research Opportunities in Solid Earth Science (RESESS): Broadening Participation in Geology and Geophysics (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Hubenthal, M.

    2009-12-01

    RESESS is a multi-year, paid, summer research internship program designed for students from underrepresented groups. The students receive extensive mentoring in science research and communication and become part of a community that provides ongoing support. This has been possible in the initial 5 years of the program through collaboration with Significant Opportunities in Atmospheric Research and Science (SOARS), where solid earth students have been an integral part of the SOARS cohort, benefiting from social as well as educational interactions. 11 students have taken part in RESESS for at least one year and of these, four students have graduated in geoscience and entered graduate programs in geophysics and one was recently awarded an NSF graduate fellowship. Students have presented over 20 posters at national science meetings, and one has co-authored a peer-reviewed article. 23 scientists have mentored students over the past 5 years and 17 percent of these mentors are from underrepresented groups in science; 19 other scientists and university/science consortia staff have mentored students in written and verbal presentations and supported their integration into the local communities. Mentorship over a period of years is one important hallmark of this program as students have benefited from the support of UNAVCO, IRIS, USGS, and university scientists and staff during the summer, academic year, and at professional meetings such as AGU, GSA, NABGG, and SACNAS as well as consortia and project science workshops (UNAVCO, IRIS, and EarthScope). One goal of the project has been to educate the scientific community on the benefits of mentoring undergraduate students from underrepresented groups in STEM fields. Increasingly, scientists are approaching RESESS to include this program in their implementation of broader impacts. RESESS has been funded by NSF for the next five years with plans to expand the number of students, geographic and scientific diversity, and sources of

  13. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    NASA Astrophysics Data System (ADS)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  14. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  15. NEW Planetarium Programs for Polar Informal Science Education

    NASA Astrophysics Data System (ADS)

    Sumners, C.; Schloss, A. L.; Reiff, P.

    2007-12-01

    The modern planetarium is an immersive full-dome theater that can take audiences to Polar Regions in the past, present, or future and can simulate dynamic polar events. With the goal of public engagement and education, we are producing two programs: Night of the Titanic and Ice Worlds. Night of the Titanic uses a famous tragedy to uncover the science that could have saved the ship and the changing conditions in the North Atlantic over the last century. This program also fosters discussion about how humans evaluate data and make critical decisions related to the changing condition of polar ice. Ice Worlds uses comparative planetology themes to present Earth in the context of all ice worlds in the solar system, thus providing a broader perspective for analysis of changes in Earth's Polar Regions. Both programs rely on themes of high public interest to drive attendance and engagement. Both programs are being developed for the large dome theater or planetarium market and for portable Discovery Domes, which can reach urban and rural audiences throughout the world. This paper focuses on techniques for presentation of rigorous science content in a context that will engage the general public as well as school groups over a wide age range.

  16. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  17. SCIDIP-ES - A science data e-infrastructure for preservation of earth science data

    NASA Astrophysics Data System (ADS)

    Riddick, Andrew; Glaves, Helen; Marelli, Fulvio; Albani, Mirko; Tona, Calogera; Marketakis, Yannis; Tzitzikas, Yannis; Guarino, Raffaele; Giaretta, David; Di Giammatteo, Ugo

    2013-04-01

    The capability for long term preservation of earth science data is a key requirement to support on-going research and collaboration within and between many earth science disciplines. A number of critically important current research directions (e.g. understanding climate change, and ensuring sustainability of natural resources) rely on the preservation of data often collected over several decades in a form in which it can be accessed and used easily. In many branches of the earth sciences the capture of key observational data may be difficult or impossible to repeat. For example, a specific geological exposure or subsurface borehole may be only temporarily available, and deriving earth observation data from a particular satellite mission is clearly often a unique opportunity. At the same time such unrepeatable observations may be a critical input to environmental, economic and political decision making. Another key driver for strategic long term data preservation is that key research challenges (such as those described above) frequently require cross disciplinary research utilising raw and interpreted data from a number of earth science disciplines. Effective data preservation strategies can support this requirement for interoperability, and thereby stimulate scientific innovation. The SCIDIP-ES project (EC FP7 grant agreement no. 283401) seeks to address these and other data preservation challenges by developing a Europe wide e-infrastructure for long term data preservation comprising appropriate software tools and infrastructure services to enable and promote long term preservation of earth science data. Because we define preservation in terms of continued usability of the digitally encoded information, the generic infrastructure services will allow a wide variety of data to be made usable by researchers from many different domains. This approach will enable the cost for long-term usability across disciplines to be shared supporting the creation of strong

  18. The Space and Earth Science Data Compression Workshop

    NASA Technical Reports Server (NTRS)

    Tilton, James C. (Editor)

    1993-01-01

    This document is the proceedings from a Space and Earth Science Data Compression Workshop, which was held on March 27, 1992, at the Snowbird Conference Center in Snowbird, Utah. This workshop was held in conjunction with the 1992 Data Compression Conference (DCC '92), which was held at the same location, March 24-26, 1992. The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The workshop consisted of eleven papers presented in four sessions. These papers describe research that is integrated into, or has the potential of being integrated into, a particular space and/or Earth science data information system. Presenters were encouraged to take into account the scientists's data requirements, and the constraints imposed by the data collection, transmission, distribution, and archival system.

  19. EVEREST: a virtual research environment for the Earth SciencesEVEREST: a virtual research environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Marelli, Fulvio; Glaves, Helen; Albani, Mirko

    2017-04-01

    Advances in technologies and measuring techniques in the Earth science and Earth observation domains have resulted in huge amounts of data about our Planet having been acquired. By making this data readily discoverable and accessible, and providing researchers with the necessary processing power, tools, and technologies to work collaboratively and share the results with their peers, will create new opportunities and innovative approaches for cross-disciplinary research. The EVER-EST project aims to support these advancements in scientific research by developing a generic Virtual Research Environment (VRE) which is tailored to the needs of the Earth Science domain. It will provide scientists with the means to manage, share and preserve the data and methodologies applied in their research, and lead to results that are validated, attributable and can be shared within and beyond their often geographically dispersed communities e.g. in the form of scholarly communications. The EVER-EST VRE is being implemented as a Service Oriented Architecture (SOA) that is based on loosely coupled services which can be differentiated as being either generic or specific to the requirements of the Earth Science domain. Central to the EVEREST approach is the concept of the Research Object (RO) which provides a semantically rich mechanism to aggregate related resources about a scientific investigation so that they can be shared together using a single unique identifier. Although the concept of Research Objects has previously been validated by other experimental disciplines this application in the Earth Sciences represents its first implementation in observational research. The EVER-EST e-infrastructure will be validated by four virtual research communities (VRC) covering different multidisciplinary Earth Science domains: including ocean monitoring, selected natural hazards (flooding, ground instability and extreme weather events), land monitoring and risk management (volcanoes and

  20. From Sky to Earth: Data Science Methodology Transfer

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Crichton, Daniel; Djorgovski, S. G.; Law, Emily; Hughes, John S.

    2017-06-01

    We describe here the parallels in astronomy and earth science datasets, their analyses, and the opportunities for methodology transfer from astroinformatics to geoinformatics. Using example of hydrology, we emphasize how meta-data and ontologies are crucial in such an undertaking. Using the infrastructure being designed for EarthCube - the Virtual Observatory for the earth sciences - we discuss essential steps for better transfer of tools and techniques in the future e.g. domain adaptation. Finally we point out that it is never a one-way process and there is enough for astroinformatics to learn from geoinformatics as well.

  1. Using Innovative Resources and Programs to Prepare Pre- and In-Service Teachers for New Science Standards

    NASA Astrophysics Data System (ADS)

    Kinzler, R. J.; Short, J.; Contino, J.; Cooke-Nieves, N.; Howes, E.; Kravitz, D.; Randle, D.; Trowbridge, C.

    2014-12-01

    Leveraging the Rose Center for Earth and Space and active research departments in Earth and Planetary Science, Astrophysics, and Paleontology, the Education Department at the American Museum of Natural History (AMNH) offers an MAT program to prepare new Earth Science teachers (~100 new teachers by 2018) as well as a range of professional development (PD) opportunities for over 3,000 K-12 teachers annually, providing opportunities to learn with scientists; inquiry-based experiences; and standards-aligned resources. The AMNH produces innovative geoscience and other STEM resources supporting teacher and student science investigations with data visualizations and analysis tools, teaching case materials and other resources that provide rich nonfiction reading and writing opportunities for use in Earth and space science curricula that are integrated in the MAT and PD programs. Museum resources and the MAT and PD programs are aligned to support the recently released Next Generation Science Standards (NGSS) and the Common Core State Standards. The NGSS is a set of science and engineering practices, crosscutting concepts and disciplinary core ideas to help cultivate teachers' and K-12 students' scientific habits of mind, develop their knowledge and abilities to engage in scientific investigations, and teach them how to reason in context; goals that closely align with those of the AMNH's teacher preparation and professional development programs. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) is a required text for the MAT program, and this text as well as the NGSS Performance Expectations guide the PD programs as well. Researchers working with Museum scientists and educators find it is not enough for programs for pre- and in-service teachers to provide access to resources. Research suggests that these programs need to engage pre- and in-service teachers in using and reflecting on these types of resources, as well as take

  2. Information Quality as a Foundation for User Trustworthiness of Earth Science Data.

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Moroni, D. F.; Ramapriyan, H.; Peng, G.

    2017-12-01

    Information quality is multidimensional. Four different aspects of information quality can be defined based on the lifecycle stages of Earth Science data products: science, product, stewardship and services. With increasing requirements on ensuring and improving information quality coming from multiple government agencies and throughout industry, there have been considerable efforts toward improving information quality during the last decade, much of which has not been well vetted in a collective sense until recently. Given this rich background of prior work, the Information Quality Cluster (IQC), established within the Federation of Earth Science Information Partners (ESIP) in 2011, and reactivated in the summer of 2014, has been active with membership from multiple organizations. The IQC's objectives and activities, aimed at ensuring and improving information quality for Earth science data and products, are also considered vital toward improving the trustworthiness of Earth science data to a vast and interdisciplinary community of data users. During 2016, several members of the IQC have led the development and assessment of four use cases. This was followed up in 2017 with multiple panel sessions at the 2017 Winter and Summer ESIP Meetings to survey the challenges posed in the various aspects of information quality. What was discovered to be most lacking is the transparency of data lineage (i.e., provenance and maturity), uniform methods for uncertainty characterization, and uniform quality assurance data and metadata. While solutions to these types of issues exist, most data producers have little time to investigate and collaborate to arrive at and conform to a consensus approach. The IQC has positioned itself as a community platform to bring together all relevant stakeholders from data producers, repositories, program managers, and the end users. A combination of both well-vetted and "trailblazing" solutions are presented to address how data trustworthiness can

  3. Evaluating the Potential of NASA's Earth Science Research Results for Improving Future Operational Systems

    NASA Astrophysics Data System (ADS)

    Frederick, M. E.; Cox, E. L.; Friedl, L. A.

    2006-12-01

    NASA's Earth Science Theme is charged with implementing NASA Strategic Goal 3A to "study Earth from space to advance scientific understanding and meet societal needs." In the course of meeting this objective, NASA produces research results, such as scientific observatories, research models, advanced sensor and space system technology, data active archives and interoperability technology, high performance computing systems, and knowledge products. These research results have the potential to serve society beyond their intended purpose of answering pressing Earth system science questions. NASA's Applied Sciences Program systematically evaluates the potential of the portfolio of research results to serve society by conducting projects in partnership with regional/national scale operational partners with the statutory responsibility to inform decision makers. These projects address NASA's National Applications and the societal benefit areas under the IEOS and GEOSS. Prototyping methods are used in two ways in NASA's Applied Sciences Program. The first is part of the National Applications program element, referred to as Integrated Systems Solutions (ISS) projects. The approach for these projects is to use high fidelity prototypes to benchmark the assimilation of NASA research results into our partners' decision support systems. The outcome from ISS projects is a prototype system that has been rigorously tested with the partner to understand the scientific uncertainty and improved value of their modified system. In many cases, these completed prototypes are adopted or adapted for use by the operational partners. The second falls under the Crosscutting Solutions program element, referred to as Rapid Prototyping (RP) experiments. The approach for RP experiments is to use low fidelity prototypes that are low cost and quickly produced to evaluate the potential of the breadth of NASA research results to serve society. The outcome from the set of RP experiments is an

  4. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  5. Physical Oceanography: Project Earth Science. Material for Middle School Teachers in Earth Science.

    ERIC Educational Resources Information Center

    Ford, Brent A.; Smith, P. Sean

    This book is one in a series of Earth science books and contains a collection of 18 hands-on activities/demonstrations developed for the middle/junior high school level. The activities are organized around three key concepts. First, students investigate the unique properties of water and how these properties shape the ocean and the global…

  6. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  7. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    NASA Astrophysics Data System (ADS)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be

  8. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram; Behnke, Jeanne; Hines-Watts, Tonjua

    2007-01-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's "Core Capabilities" that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute "Community Capabilities". These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASON), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is

  9. A Contrast in Use of Metrics in Earth Science Data Systems

    NASA Astrophysics Data System (ADS)

    Ramapriyan, H. K.; Behnke, J.; Hines-Watts, T. M.

    2007-12-01

    In recent years there has been a surge in the number of systems for processing, archiving and distributing remotely sensed data. Such systems, working independently as well as in collaboration, have been contributing greatly to the advances in the scientific understanding of the Earth system, as well as utilization of the data for nationally and internationally important applications. Among such systems, we consider those that are developed by or under the sponsorship of NASA to fulfill one of its strategic objectives: "Study Earth from space to advance scientific understanding and meet societal needs." NASA's Earth science data systems are of varying size and complexity depending on the requirements they are intended to meet. Some data systems are regarded as NASA's Core Capabilities that provide the basic infrastructure for processing, archiving and distributing a set of data products to a large and diverse user community in a robust and reliable manner. Other data systems constitute Community Capabilities. These provide specialized and innovative services to data users and/or research products offering new scientific insight. Such data systems are generally supported by NASA through peer reviewed competition. Examples of Core Capabilities are 1. Earth Observing Data and Information System (EOSDIS) with its Distributed Active Archive Centers (DAACs), Science Investigator-led Processing Systems (SIPSs), and the EOS Clearing House (ECHO); 2. Tropical Rainfall Measurement Mission (TRMM) Science Data and Information System (TSDIS); 3. Ocean Data Processing System (ODPS); and 4. CloudSat Data Processing Center. Examples of Community Capabilities are projects under the Research, Education and Applications Solutions Network (REASoN), and Advancing Collaborative Connections for Earth System Science (ACCESS) Programs. In managing these data system capabilities, it is necessary to have well-established goals and to measure progress relative to them. Progress is measured

  10. A Review of the Electronic Coursework Efforts of the University of Nebraska-Omaha in the Earth System Science Education Alliance

    NASA Astrophysics Data System (ADS)

    Shuster, R. D.; Grandgenett, N.

    2007-12-01

    The University of Nebraska at Omaha has been a state leader in helping Nebraska teachers embrace earth systems science education, with a special emphasis in online coursework. UNO was one of the initial members in the Earth Systems Science Education Alliance (ESSEA) and has offered three different ESSEA courses, with a total of 167 students having taken ESSEA courses at UNO for graduate credit. UNO is currently involved in expanding its earth system science courses, modules, and educational research. We are also integrating these courses into several degree programs, including a Masters of Science in Education, a new Middle School Endorsement, a Certificate in Urban Education, and the Graduate Program for the Department of Geography/Geology. UNO is beginning to examine teacher content learning and science reasoning within its coursework. Feedback surveys from earlier ESSEA offerings already indicate a strongly positive perception of the courses by the teachers enrolled in the coursework. Project impact has been documented in teacher projects, quotes, and lessons associated with the coursework activities. We will describe the UNO earth system science efforts (emphasizing ESSEA coursework), and describe past efforts and teacher perceptions, as well as new strategies being undertaken to more closely examine content learning and science reasoning impact with course participants. We will also describe online course modules being developed within the UNO online course efforts, including one on the global amphibian crisis, and also the impact of urbanization on a local native prairie environment.

  11. Making Connections: Where STEM Learning and Earth Science Data Services Meet

    NASA Technical Reports Server (NTRS)

    Bugbee, Kaylin; Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Weigel, Amanda

    2016-01-01

    STEM (Science, Technology, Engineering, Mathematics) learning is most effective when students are encouraged to see the connections between science, technology and real world problems. Helping to make these connections has become an increasingly important aspect of Earth Science data research. The Global Hydrology Resource Center (GHRC), one of NASA's 12 EOSDIS (Earth Observing System Data Information System) data centers, has developed a new type of documentation called the micro article to facilitate making connections between data and Earth science research problems.

  12. Harnessing Systems Engineering Methodology in Using Earth Science Research Data for Real Applications

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Policelli, Fritz S.; Zanoni, Vicki M.

    2004-01-01

    For the last three decades, Earth science remote sensing technologies have been providing an enormous amount of useful data and information serving to broaden our understanding of the home planet as a system. NASA's Earth science program has deployed about 18 complex satellites and is in the process of defining and launching multiple observing systems in this decade. At the same time, the European Community and many other countries such as Russia, France, India, Japan, and China have also significantly contributed to Earth science research. To date, the majority of such efforts have concentrated on expanding our scientific understanding of the multiple nonlinear and chaotic processes of Earth's behavior. In recent years, legislators and stakeholders have put serious pressure on the science community to devote more attention to making use of scientific results for societal benefit. For instance, there are a number of areas such as energy forecasting, aviation safety, agricultural efficiency, disaster management, air quality and public health that can directly take advantage of Earth science results to analyze and predict large scale problems and conditions. This is becoming even more important now that we live in a global economy interconnected via the internet and transportation systems; regional environmental conditions can have far reaching impact across continental boundaries. These factors dictate requirements for global data that can help us assess and control the devastating problems of famine, water resources, wildfires, human health and more. To do this requires a serious, organized, and systematic approach that transfers fundamental research products to the applied sciences domain. This paper presents a systems engineering and management process that can effectively make such transfer of data to the user community. Examples are presented on how the above decision making framework can help in solving critical problems such as the spread of vector borne

  13. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J. A.

    2001-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system -- for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events -- volcanic eruptions

  14. Overview of the Earth System Science Education Alliance Online Courses

    NASA Astrophysics Data System (ADS)

    Botti, J.; Myers, R.

    2002-12-01

    Science education reform has skyrocketed over the last decade in large part thanks to technology-and one technology in particular, the Internet. The World Wide Web has opened up dynamic new online communities of learners. It has allowed educators from around the world to share thoughts about Earth system science and reexamine the way science is taught. A positive offshoot of this reform effort is the Earth System Science Education Alliance (ESSEA). This partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational Technologiestm at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA courses are open to elementary, middle school, and high school teachers. Each course lasts one semester. The courses begin with three weeks of introductory content. Then teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. In week A of each learning cycle, teachers do earth system activities with their students. In week B teachers investigate aspects of the Earth system-for instance, the reason rocks change to soil, the relationship between rock weathering and soil nutrients, and the consequent development of biomes. In week C teachers develop classroom activities and share them online with other course participants. The middle school course stresses the effects of real-world events-volcanic eruptions

  15. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  16. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    NASA Astrophysics Data System (ADS)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    workshops have been enriched by the incorporation of earth and space science information and curricular materials from NASA. In addition, visits to Ames Research Center have given BAESI participants an opportunity to explore the Educator Resource Center, learn about NASA's programs for teachers and students, and experience presentations by NASA scientists engaged in cutting edge research about the earth system. Project ALERT demonstrates the power of a state-based partnership that unites scientists and educators with diverse perspectives and strengths in a synergistic effort to improve science education.

  17. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    NASA Astrophysics Data System (ADS)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  18. The 6th International Earth Science Olympiad: A Student Perspective

    ERIC Educational Resources Information Center

    Barlett, Luke; Cathro, Darcy; Mellow, Maddi; Tate, Clara

    2014-01-01

    In October 2012, two students from the Australian Science and Mathematics School and two from Yankalilla Area School were selected to travel to Olavarria, Argentina in order to compete in the 6th International Earth Science Olympiad (IESO). It was an opportunity for individuals with a passion for Earth science to come together from 17 countries to…

  19. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    NASA Astrophysics Data System (ADS)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  20. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide