Sample records for earth simulator ofes

  1. 10 CFR 501.163 - OFE evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false OFE evaluation. 501.163 Section 501.163 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.163... source of information. OFE may solicit or accept submissions from third persons relevant to the complaint...

  2. 10 CFR 501.163 - OFE evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false OFE evaluation. 501.163 Section 501.163 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.163... source of information. OFE may solicit or accept submissions from third persons relevant to the complaint...

  3. 10 CFR 501.163 - OFE evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false OFE evaluation. 501.163 Section 501.163 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.163... source of information. OFE may solicit or accept submissions from third persons relevant to the complaint...

  4. 10 CFR 501.163 - OFE evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false OFE evaluation. 501.163 Section 501.163 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.163... source of information. OFE may solicit or accept submissions from third persons relevant to the complaint...

  5. 10 CFR 501.163 - OFE evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false OFE evaluation. 501.163 Section 501.163 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Enforcement § 501.163 OFE evaluation. (a) The record shall consist of the complaint and any supporting documents and all...

  6. HEPATIC LIPOGENESIS IN D$sub 2$O-FED MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, J.L.; Defendi, V.; Langan, J.

    1960-11-25

    Swiss mice were maintained on a regimen of 25% D/sub 2/O for three weeks. The mice were slightly smaller than H/sub 2/O-fed controls, but the liver weight to body weight ratio was greater. There were no significant differences in liver lipid or cholesterol. Histologic examination showed progressive vacuolization and loss of basophilia, with changes in the mitochondrial distribution in the cytoplasm. These alterations did not show any specific localization in the hepatic lobule. There was a progressive reduction in the ability of liver homogenates from D/sub 2/O-fed mice to convert acetate-2-C-14 to cholesterol and fatty acid. Incubation of normal mousemore » livers in media containing 75% D/sub 2/O resulted in significant enhancement of cholestero1 and fatty acid biosynthetic capacity. This reduced lipogenesis in D/sub 2/O-fed mice appears to be due to derangements in cell structure, rather than to inhibition of enzyme activity. (auth)« less

  7. 10 CFR 501.66 - OFE evaluation of the record, decision and order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false OFE evaluation of the record, decision and order. 501.66 Section 501.66 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Exemptions and Certifications § 501.66 OFE evaluation of the record, decision and order. (a) The...

  8. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  9. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  10. Disentangling the surface and bulk electronic structures of LaOFeAs

    DOE PAGES

    Zhang, P.; Ma, J.; Qian, T.; ...

    2016-09-20

    We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and very complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using in situ surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.

  11. Elastic properties and phase transitions of Fe7C3 and new constraints on the light element budget of the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Bykova, E.; Kupenko, I.; Glazyrin, K.; Kantor, A.; McCammon, C. A.; Mookherjee, M.; Miyajima, N.; Cerantola, V.; Nakajima, Y.; Prakapenka, V.; Rüffer, R.; Chumakov, A.; Dubrovinsky, L. S.

    2013-12-01

    The Earth's inner core consists mainly of iron (or iron-nickel alloy) with some amount of light element(s) whereby their nature remains controversial. Seismological data suggest that the material forming Earth's inner core (pressures over 330 GPa and temperatures above 5000 K) has an enigmatically high Poisson's ratio ~0.44, while iron or it alloys with Si, S, O, or H expected to have at appropriate thermodynamic conditions Poisson's ratio well below 0.39. We will present an experimental study on a new high pressure variant in the iron carbide system. We have synthesized and solved structure of high-pressure orthorhombic phase of o-Fe7C3, and investigated its stability and behavior at pressures over 180 GPa and temperatures above 3500 K by means of different methods including single crystal X-ray diffraction, Mössbauer spectroscopy, and nuclear resonance scattering. O-Fe7C3 is structurally stable to at least outer core conditions and demonstrates magnetic or electronic transitions at ~18 GPa and ~70 GPa. The high pressure phase of o-Fe7C3 above 70 GPa exhibits anomalous elastic properties. When extrapolated to the conditions of the Earth's inner core it shows shear wave velocities and Poisson's ratios close to the values inferred by seismological models. Our results not only support earlier works suggesting that carbon may be an important component of Earth's core, but shows that it may drastically change iron's elastic properties, thus explaining anomalous Earth's inner core elastic properties.

  12. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  13. 10 CFR 501.102 - OFE evaluation of the record, decision and order for modification or rescission of a rule or order.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a conference will advance its evaluation of the request. (b) Criteria. Except where modification or... rule or order. (a) OFE will consider the entire administrative record in its evaluation of the decision... request under this subpart and all interested persons will be afforded an opportunity to respond to these...

  14. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  15. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  16. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  17. The EarthCARE Simulator (Invited)

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; van Zadellhoff, G.; Lajas, D.; Eisinger, M.; Franco, R.

    2009-12-01

    In recent years, the value of multisensor remote sensing techniques applied to cloud, aerosol, radiation and precipitation studies has become clear. For example, combinations of instruments including lidars and/or radars have proved very useful for profile retrievals of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the ARM (and similar) sites as well as from results derived using the Cloudsat/CALIPSO/A-train combination of instruments. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission scheduled for launch in 2013 and has been designed with sensor-synergy playing a driving role in its scientific applications. The EarthCARE mission consists of a cloud profiling Doppler radar, a high-spectral-resolution lidar, a cloud/aerosol imager and a three-view broadband radiometer. As part of the mission development process, a detailed end-to-end multisensor simulation system has been developed. The EarthCARE Simulator (ECSIM) consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based Z vs IWC relationships) are avoided. Instead, the radiative transfer forward models are kept as separate as possible from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved cloud size distribution are

  18. Terra II--A Spaceship Earth Simulation.

    ERIC Educational Resources Information Center

    Mastrude, Peggy

    1985-01-01

    This simulation helps students in grades four to eight see their planet as one environment with limited resources shared by all. Students learn that the earth is a large system comprised of small systems, that systems are interdependent and often have irreplaceable parts, and that resources are not equally divided among countries. (RM)

  19. Near-Earth Object Survey Simulation Software

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  20. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  1. Evidence of a multiple boson emission in Sm1-xThxOFeAs

    NASA Astrophysics Data System (ADS)

    Kuzmichev, S. A.; Kuzmicheva, T. E.; Zhigadlo, N. D.

    2017-07-01

    We studied a reproducible fine structure observed in dynamic conductance spectra of Andreev arrays in Sm1-x Th x OFeAs superconductors with various thorium concentrations {(x = 0.08\\text{--}0.3)} and critical temperatures Tc = 26\\text{--}50 \\text{K} . This structure is unambiguously caused by a multiple boson emission (of the same energy) during the process of multiple Andreev reflections. The directly determined energy of the bosonic mode reaches \\varepsilon0 = 14.8 +/- 2.2 \\text{meV} for optimal compounds. Within the studied range of T c , this energy as well as the large ΔL and the small ΔS superconducting gaps, nearly scale with critical temperature with the characteristic ratio \\varepsilon_0/k_BTc ≈ 3.2 (and 2Δ_L/k_BTc ≈ 5.3 , respectively) resembling the expected energy ΔL + ΔS of spin resonance and spectral density enhancement in s+/- and s++ states, respectively.

  2. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2014-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory. More info available at: scied.ucar.edu/events/agu-2014-games-simulations-sessions

  3. Overview of the EarthCARE simulator and its applications

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.; Donovan, D. P.; Lajas, D.

    2011-12-01

    The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are

  4. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  5. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  6. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix

  7. Numerical simulation of the geodynamo reaches Earth's core dynamical regime

    NASA Astrophysics Data System (ADS)

    Aubert, J.; Gastine, T.; Fournier, A.

    2016-12-01

    Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action

  8. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  9. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  10. Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    2017-12-01

    An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.

  11. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2013-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  12. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  13. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  14. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  15. Validation of the BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7 broad-group libraries on the PCA-Replica (H2O/Fe) neutron shielding benchmark experiment

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-03-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and UGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-B7 (ENDF/B-VII.0) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  16. Doping influence on Sm1 - x Th x OFeAs superconducting properties: Observation of the effect of intrinsic multiple Andreev reflections and determination of the superconducting parameters

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Zhigadlo, N. D.

    2014-04-01

    We studied SNS and S-N-S-N-...-S contacts (where S is a superconductor and N is a normal metal) formed by "break-junction" technique in polycrystalline Sm1 - x Th x OFeAs superconductor samples with critical temperatures T C = 34-45 K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm1 - x Th x OFeAs to be driven by intraband coupling, and (where V ij are the electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, N 2/ N 1, correspondingly, was roughly of an order. We estimated "solo" BCS-ratio values in a hypothetic case of zero interband coupling ( V i ≠ j = 0) for each condensate as 2ΔL, S/ k B T {C/L,S} ≤ 4.5. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.

  17. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    NASA Astrophysics Data System (ADS)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  19. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  20. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  1. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  2. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  3. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    ERIC Educational Resources Information Center

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  4. Numerical simulation of earth fissures caused by overly aquifer exploitation at Guangming Village, China

    NASA Astrophysics Data System (ADS)

    Ye, S.; Franceschini, A.; Zhang, Y.; Janna, C.; Gong, X.; Yu, J.; Teatini, P.

    2017-12-01

    Earth fissures accompanying anthropogenic land subsidence due to overly aquifer exploitation create significant geohazards in China. In the framework of an efficient and safe management of groundwater, numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because, due to compatibility conditions, they cannot be effectively applied in discontinuous mechanics. We present an innovative modelling approach for the simulation of fissure development. Firstly, a regional 3D groundwater model is calibrated on available piezometric records; secondly, the regional outcome is used to define the boundary conditions of a local 3D groundwater model developed at the fissure scale and implementing a refined discretization of the local hydrogeologic setting; finally, the pressure change are used as forcing factor in a local 3D geomechanical model, which combines Finite Elements and Interface Elements to simulate the deformation of the continuous aquifer system and the generation and sliding/opening of earth fissures The approach has been applied to simulate the earth fissure at Guangming Village in Wuxi, China with land subsidence of more than 1 m caused by the overexploitation of the second confined aquifer. The first earth fissure was observed in 1998. It developed fast from 1998 to 2007. The domain addressed by the local simulations is 2 km wide and 5 km long. The thickness of the aquifer system ranges from 0 m, in the proximity of a mountain ridge southward, to 210 m northward and includes a phreatic aquifer, the first and second confined aquifers, and four aquitards. The simulations spanned the period from 1980, i.e. before the inception of large groundwater withdrawals, to 2015. The modelling results highlight that the earth fissures at Guangming Village have been caused by tension and shear, which developed from the land surface

  5. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  6. Simulation-based performance analysis of EC-Earth 3.2.0 using Dimemas

    NASA Astrophysics Data System (ADS)

    Yepes Arbós, Xavier; César Acosta Cobos, Mario; Serradell Maronda, Kim; Sanchez Lorente, Alicia; Doblas Reyes, Francisco Javier

    2017-04-01

    Earth System Models (ESMs) are complex applications executed in supercomputing facilities due to their high demand on computing resources. However, not all these models perform a good resources usage and the energy efficiency can be well below a minimum acceptable. One example is EC-Earth, a global coupled climate model which integrates different component models to simulate the Earth system. The two main components used in this analysis are IFS as atmospheric model and NEMO as ocean model, both coupled via the OASIS3-MCT coupler. Preliminary results proved that EC-Earth does not have a good computational performance. For example, the scalability of this model using the T255L91 grid with 512 MPI processes for IFS and the ORCA1L75 grid with 128 MPI processes for NEMO achieves 40.3 of speedup. This means that the 81.2% of the resources are wasted. Therefore, it is necessary a performance analysis to find the bottlenecks of the model and thus, determine the most appropriate optimization techniques. Using traces of the model collected with profiling tools such as Extrae, Paraver and Dimemas, allow us to simulate the model behaviour on a configurable parallel platform and extrapolate the impact of hardware changes in the performance of EC-Earth. In this document we propose a state-of-art procedure which makes possible to evaluate the different characteristics of climate models in a very efficient way. Accordingly, the performance of EC-Earth in different scenarios, namely assuming an ideal machine, model sensitivity and limiting model due to coupling has been shown. By simulating these scenarios, we realized that each model has different characteristics. With the ideal machine, we have seen that there are some sources of inefficiency: about a 20.59% of the execution time is communication; and there are workload imbalances produced by data dependences both between IFS and NEMO and within each model. In addition, in the model sensitivity simulations, we have described the

  7. Edge Simulation Laboratory Progress and Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, R

    The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less

  8. Radiative Transfer Simulations of Earth Spectra as Registered by ROSETTA/VIRTIS

    NASA Astrophysics Data System (ADS)

    Hurley, Jane; Irwin, P.; Adriani, A.; Moriconi, M.; Oliva, F.; Coradini, A.

    2010-10-01

    Rosetta, part of ESA's Horizon 2000 programme, will orbit and land on the comet 67P/Churyumov-Gerasimenko in May 2014. However, launched in March 2004, its trajectory has thus far muchly consisted of a series of planetary fly-bys and gravitational assists using Mars (2007) and Earth (March 2005, 2007 and 2009). During these close fly-bys Rosetta captured measurements of these planets - and of particular interest are those registed by the Visual Infrared Thermal Imaging Spectrometer VIRTIS of Earth, which were taken to help calibrate VIRTIS. Rosetta/VIRTIS measures at high spectral resolution from 0.25 - 5.0 microns, a spectral range which has been well studied by Earth observing instruments such as Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) and the Advanced Along-Track Scanning Radiometer (AATSR). Earth observing instruments, whilst having superior spatio-temporal coverage to the data provided during the Rosetta/VIRTIS fly-bys, are typically constrained to measuring in only a few spectral channels. Hence, Rosetta/VIRTIS should yield more detailed spectral information than these instruments - and is a good candidate for intercomparison studies. To this end, the radiative transfer software NEMESIS (Irwin et al., 2009) is employed for the first time on Earth simulations, having been used extensively for other bodies such as Venus, Mars, Jupiter, Saturn, Neptune, Uranus and Titan. This work compares Rosetta/VIRTIS measurements with NEMESIS-simulated spectra, concentrating on quantifying the ability of NEMESIS to reproduce spectral features associated with different surface topographies (such as ocean, desert and vegetation) in combination with clear and cloudy atmospheric states. Preliminary estimations of temperature and trace-species concentrations and distributions are presented as sample products.

  9. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  10. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  11. GCM simulations of cold dry Snowball Earth atmospheres

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  12. Synthetic Seismograms of Explosive Sources Calculated by the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Matsumoto, H.; Rozhkov, M.; Stachnik, J.

    2017-12-01

    We calculate broadband synthetic seismograms using the spectral-element method (Komatitsch & Tromp, 2001) for recent explosive events in northern Korean peninsula. We use supercomputer Earth Simulator system in JAMSTEC to compute synthetic seismograms using the spectral-element method. The simulations are performed on 8,100 processors, which require 2,025 nodes of the Earth Simulator. We use one chunk with the angular distance 40 degrees to compute synthetic seismograms. On this number of nodes, a simulation of 5 minutes of wave propagation accurate at periods of 1.5 seconds and longer requires about 10 hours of CPU time. We use CMT solution of Rozhkov et al (2016) as a source model for this event. One example of CMT solution for this source model has 28% double couple component and 51% isotropic component. The hypocenter depth of this solution is 1.4 km. Comparisons of the synthetic waveforms with the observation show that the arrival time of Pn and Pg waves matches well with the observation. Comparison also shows that the agreement of amplitude of other phases is not necessarily well, which demonstrates that the crustal structure should be improved to include in the simulation. The surface waves observed are also modeled well in the synthetics, which shows that the CMT solution we have used for this computation correctly grasps the source characteristics of this event. Because of characteristics of artificial explosive sources of which hypocenter location is already known, we may evaluate crustal structure along the propagation path from the waveform modeling for these sources. We may discuss the limitation of one dimensional crustal structure model by comparing the synthetic waveform of 3D crustal structure and the observed seismograms.

  13. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  14. The Simulated Impact of Dimethyl Sulfide Emissions on the Earth System

    NASA Astrophysics Data System (ADS)

    Cameron-Smith, P. J.; Elliott, S.; Shrivastava, M. B.; Burrows, S. M.; Maltrud, M. E.; Lucas, D. D.; Ghan, S.

    2015-12-01

    Dimethyl sulfide (DMS) is one of many biologically derived gases and particles emitted from the ocean that has the potential to affect climate. In the case of DMS it is oxidized to sulfate, which increases the aerosol loading in the atmosphere either through nucleation or condensation on other aerosols, which in turn changes the energy balance of the Earth by reflection of sunlight either through direct reflection by the aerosols or by modifying clouds. We have previously shown that the geographical distribution of DMS emission from the ocean may be quite sensitive to climate changes, especially in the Southern Ocean. Our state-of-the-art sulfur-cycle Earth system model (ESM), based on the Community Earth System Model (CESM) climate model, includes an ocean sulfur ecosystem model, the oxidation of DMS to sulfate by atmospheric chemistry, and the indirect effect of sulfate on radiation via clouds using the Modal Aerosol Model (MAM). Our multi-decadal simulations calculate the impact of DMS on the energy balance and climate of the Earth system, and its sensitivity/feedback to climate change. The estimate from our simulations is that DMS is responsible for ~6 W/m2 of reflected sunlight in the pre-industrial era (globally averaged), and ~4 W/m2 in the present era. The reduction is caused by increased competition with cloud condensation nuclei from anthropogenic aerosols in the present era, and therefore partially offsets the cooling from the anthropogenic aerosols. The distribution of these effects are not uniform, and doesn't necessarily follow the simulated DMS distribution, because some clouds are more sensitive to DMS derived sulfate than others, and there are surface feedbacks such as the ice-albedo feedback. Although our calculated impact of DMS is higher than some previous studies, it is not much higher than recent observational estimates (McCoy, et al., 2015). We are now porting these capabilities to the US Department of Energy's Accelerated Climate Modeling

  15. Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shouju; Kang Chengang; Sun, Wei

    2010-05-21

    Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.

  16. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  17. Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.

    2012-01-01

    Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.

  18. Simulating modern-day cropland and pasture burning in an Earth system model

    NASA Astrophysics Data System (ADS)

    Rabin, Sam; Malyshev, Sergey; Shevliakova, Elena; Magi, Brian; Pacala, Steve

    2015-04-01

    Throughout the Holocene, humans have extended our influence across a larger and larger fraction of ecosystems, even creating some new ones in the process. Herds of livestock grazing either native vegetation (rangeland) or specially planted species (pasture) have modified huge areas of land. We have even developed new plant species and cultivated them as crops. The extent of our ecosystem modification intensified dramatically with the advent of industrialized agriculture, to the point where cropland and pasture (which will henceforth encompass rangeland as well) now cover over a third of the Earth's land area. One way we have altered the terrestrial biosphere is by intentionally and unintentionally altering fire's frequency, intensity, and seasonal timing. This is especially true for agricultural ecosystems. Because their maintenance and use require a level of human control, cropland and pasture often experience fire regimes substantially different from those of the ecosystems they replaced or what would occur in the absence of active fire management. For example, farmers might burn to prepare land for planting or to dispose of crop residues, and pastoralists often use fire to prevent encroachment of unpalatable woody plants. Due to the vast global extent of agriculture, and considering the myriad ways fire affects the Earth system, it is critical that we understand (a) the ways people manage fire on cropland and pasture and (b) the effects of this management on the Earth system. Earth system models are an ideal tool for examining this kind of question. By simulating the processes within and interactions among the atmosphere, oceans, land, and terrestrial ecosystems, Earth system models allow phenomena such as fire to be examined in their global context. However, while the past fifteen years have seen great progress in the simulation of vegetation fire within Earth system models, the direct human influence via cropland and pasture management burning has been mostly

  19. SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Giorgini, J.

    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next

  20. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  1. The ab initio simulation of the Earth's core.

    PubMed

    Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D

    2002-06-15

    The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.

  2. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  3. Real-time global MHD simulation of the solar wind interaction with the earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Shimazu, H.; Tanaka, T.; Fujita, S.; Nakamura, M.; Obara, T.

    We have developed a real-time global MHD simulation of the solar wind interaction with the earth s magnetosphere By adopting the real-time solar wind parameters including the IMF observed routinely by the ACE spacecraft responses of the magnetosphere are calculated with the MHD code We adopted the modified spherical coordinates and the mesh point numbers for this simulation are 56 58 and 40 for the r theta and phi direction respectively The simulation is carried out routinely on the super computer system NEC SX-6 at National Institute of Information and Communications Technology Japan The visualized images of the magnetic field lines around the earth pressure distribution on the meridian plane and the conductivity of the polar ionosphere can be referred to on the Web site http www nict go jp dk c232 realtime The results show that various magnetospheric activities are almost reproduced qualitatively They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere From the viewpoint of space weather the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere To evaluate the simulation results we compare the AE index derived from the simulation and observations In the case of isolated substorms the indices almost agreed well in both timing and intensities In other cases the simulation can predict general activities although the exact timing of the onset of substorms and intensities did not always agree By analyzing

  4. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  5. Earth resources mission performance studies. Volume 2: Simulation results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Simulations were made at three month intervals to investigate the EOS mission performance over the four seasons of the year. The basic objectives of the study were: (1) to evaluate the ability of an EOS type system to meet a representative set of specific collection requirements, and (2) to understand the capabilities and limitations of the EOS that influence the system's ability to satisfy certain collection objectives. Although the results were obtained from a consideration of a two sensor EOS system, the analysis can be applied to any remote sensing system having similar optical and operational characteristics. While the category related results are applicable only to the specified requirement configuration, the results relating to general capability and limitations of the sensors can be applied in extrapolating to other U.S. based EOS collection requirements. The TRW general purpose mission simulator and analytic techniques discussed in this report can be applied to a wide range of collection and planning problems of earth orbiting imaging systems.

  6. First-principles prediction of Si-doped Fe carbide as one of the possible constituents of Earth's inner core

    NASA Astrophysics Data System (ADS)

    Das, Tilak; Chatterjee, Swastika; Ghosh, Sujoy; Saha-Dasgupta, Tanusri

    2017-09-01

    We perform a computational study based on first-principles calculations to investigate the relative stability and elastic properties of the doped and undoped Fe carbide compounds at 200-364 GPa. We find that upon doping a few weight percent of Si impurities at the carbon sites in Fe7C3 carbide phases, the values of Poisson's ratio and density increase while VP, and VS decrease compared to their undoped counterparts. This leads to marked improvement in the agreement of seismic parameters such as P wave and S wave velocity, Poisson's ratio, and density with the Preliminary Reference Earth Model (PREM) data. The agreement with PREM data is found to be better for the orthorhombic phase of iron carbide (o-Fe7C3) compared to hexagonal phase (h-Fe7C3). Our theoretical analysis indicates that Fe carbide containing Si impurities can be a possible constituent of the Earth's inner core. Since the density of undoped Fe7C3 is low compared to that of inner core, as discussed in a recent theoretical study, our proposal of Si-doped Fe7C3 can provide an alternative solution as an important component of the Earth's inner core.

  7. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  8. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  9. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  10. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  11. Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.

    2010-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.

  12. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.

  13. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  14. Material exposure effects in a simulated low-Earth orbit environment

    NASA Astrophysics Data System (ADS)

    Maldonado, C.; McHarg, G.; Asmolova, O.; Andersen, G.; Rodrigues, S.; Ketsdever, A.

    2016-11-01

    Spacecraft operating in low-Earth orbit (LEO) are subjected to a number of hazardous environmental constituents that can lead to decreased system performance and reduced operational lifetimes. Due to their thermal, optical, and mechanical properties, polymers are used extensively in space systems; however they are particularly susceptible to material erosion and degradation as a result of exposure to the LEO environment. The focus of this research is to examine the material erosion and mass loss experienced by the Novastrat 500 polyimide due to exposure in a simulated LEO environment. In addition to the polymer samples, chrome, silver and gold specimens will be examined to measure the oxidation rate and act as a control specimen, respectively. A magnetically filtered atomic oxygen plasma source has previously been developed and characterized for the purpose of simulating the low-Earth orbit environment. The plasma source can be operated at a variety of discharge currents and gas flow rates, of which the plasma parameters downstream of the source are dependent. The characteristics of the generated plasma were examined as a function of these operating parameters to optimize the production of O+ ions with energy relevant to LEO applications, where the ram energy of the ions due to the motion of the satellite relative to the LEO plasma is high (e.g. 7800 m/s, which corresponds to approximately 5 eV of kinetic energy for O+ ions). The plasma downstream of the source consists of streaming ions with energy of approximately 5 eV and an ion species fraction that is approximately 90% O+.

  15. Hybrid simulation techniques applied to the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Winske, D.; Leroy, M. M.

    1985-01-01

    The application of a hybrid simulation model, in which the ions are treated as discrete particles and the electrons as a massless charge-neutralizing fluid, to the study of the earth's bow shock is discussed. The essentials of the numerical methods are described in detail; movement of the ions, solution of the electromagnetic fields and electron fluid equations, and imposition of appropriate boundary and initial conditions. Examples of results of calculations for perpendicular shocks are presented which demonstrate the need for a kinetic treatment of the ions to reproduce the correct ion dynamics and the corresponding shock structure. Results for oblique shocks are also presented to show how the magnetic field and ion motion differ from the perpendicular case.

  16. A GCM simulation of the earth-atmosphere radiation balance for winter and summer

    NASA Technical Reports Server (NTRS)

    Wu, M. L. C.

    1979-01-01

    The radiation balance of the earth-atmosphere system simulated by using the general circulation model (GCM) of the Laboratory for Atmospheric Sciences (GLAS) is examined in regards to its graphical distribution, zonally-averaged distribution, and global mean. Most of the main features of the radiation balance at the top of the atmosphere are reasonably simulated, with some differences in the detailed structure of the patterns and intensities for both summer and winter in comparison with values as derived from Nimbus and NOAA (National Oceanic and Atmospheric Administration) satellite observations. Both the capability and defects of the model are discussed.

  17. Observations and simulations of specularly reflected He++ at Earth's quasiperpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Anderson, B. J.; Burch, J. L.; Giles, B. L.

    2016-12-01

    Specular reflection of protons at Earth's quasiperpendicular bow shock is an important process for supercritical shock dissipation. Previous studies have found evidence of He++ specular reflection from reduced particle distributions downstream from the shock, but confirmation of the process for heavier ions in the shock foot was not possible due to time resolution constraints. We present He++ distributions, observed by MMS in a quasiperpendicular bow shock crossing, that are consistent with specularly reflected He++. We also investigate the He++ dynamics with test-particle simulations in a simulated shock based on this crossing and we conduct wave analysis to determine what processes lead to separate gyrotropization timescales for the transmitted and reflected populations.

  18. The metallicity and elemental abundance gradients of simulated galaxies and their environmental dependence

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Kobayashi, Chiaki

    2017-11-01

    The internal distribution of heavy elements, in particular the radial metallicity gradient, offers insight into the merging history of galaxies. Using our cosmological, chemodynamical simulations that include both detailed chemical enrichment and feedback from active galactic nuclei (AGN), we find that stellar metallicity gradients in the most massive galaxies (≳3 × 1010M⊙) are made flatter by mergers and are unable to regenerate due to the quenching of star formation by AGN feedback. The fitting range is chosen on a galaxy-by-galaxy basis in order to mask satellite galaxies. The evolutionary paths of the gradients can be summarized as follows: (I) creation of initial steep gradients by gas-rich assembly, (II) passive evolution by star formation and/or stellar accretion at outskirts, and (III) sudden flattening by mergers. There is a significant scatter in gradients at a given mass, which originates from the last path, and therefore from galaxy type. Some variation remains at given galaxy mass and type because of the complexity of merging events, and hence we find only a weak environmental dependence. Our early-type galaxies (ETGs), defined from the star formation main sequence rather than their morphology, are in excellent agreement with the observed stellar metallicity gradients of ETGs in the SAURON and ATLAS3D surveys. We find small positive [O/Fe] gradients of stars in our simulated galaxies, although they are smaller with AGN feedback. Gas-phase metallicity and [O/Fe] gradients also show variation, the origin of which is not as clear as for stellar populations.

  19. The problems of cosmic ray particle simulation for the near-Earth orbital and interplanetary flight conditions.

    PubMed

    Nymmik, R A

    1999-10-01

    A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.

  20. Simulation and Correction of Triana-Viewed Earth Radiation Budget with ERBE/ISCCP Data

    NASA Technical Reports Server (NTRS)

    Huang, Jian-Ping; Minnis, Patrick; Doelling, David R.; Valero, Francisco P. J.

    2002-01-01

    This paper describes the simulation of the earth radiation budget (ERB) as viewed by Triana and the development of correction models for converting Trianaviewed radiances into a complete ERB. A full range of Triana views and global radiation fields are simulated using a combination of datasets from ERBE (Earth Radiation Budget Experiment) and ISCCP (International Satellite Cloud Climatology Project) and analyzed with a set of empirical correction factors specific to the Triana views. The results show that the accuracy of global correction factors to estimate ERB from Triana radiances is a function of the Triana position relative to the Lagrange-1 (L1) or the Sun location. Spectral analysis of the global correction factor indicates that both shortwave (SW; 0.2 - 5.0 microns) and longwave (LW; 5 -50 microns) parameters undergo seasonal and diurnal cycles that dominate the periodic fluctuations. The diurnal cycle, especially its amplitude, is also strongly dependent on the seasonal cycle. Based on these results, models are developed to correct the radiances for unviewed areas and anisotropic emission and reflection. A preliminary assessment indicates that these correction models can be applied to Triana radiances to produce the most accurate global ERB to date.

  1. To Create Space on Earth: The Space Environment Simulation Laboratory and Project Apollo

    NASA Technical Reports Server (NTRS)

    Walters, Lori C.

    2003-01-01

    Few undertakings in the history of humanity can compare to the great technological achievement known as Project Apollo. Among those who witnessed Armstrong#s flickering television image were thousands of people who had directly contributed to this historic moment. Amongst those in this vast anonymous cadre were the personnel of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center (MSC) in Houston, Texas. SESL houses two large thermal-vacuum chambers with solar simulation capabilities. At a time when NASA engineers had a limited understanding of the effects of extremes of space on hardware and crews, SESL was designed to literally create the conditions of space on Earth. With interior dimensions of 90 feet in height and a 55-foot diameter, Chamber A dwarfed the Apollo command/service module (CSM) it was constructed to test. The chamber#s vacuum pumping capacity of 1 x 10(exp -6) torr can simulate an altitude greater than 130 miles above the Earth. A "lunar plane" capable of rotating a 150,000-pound test vehicle 180 deg replicates the revolution of a craft in space. To reproduce the temperature extremes of space, interior chamber walls cool to -280F as two banks of carbon arc modules simulate the unfiltered solar light/heat of the Sun. With capabilities similar to that of Chamber A, early Chamber B tests included the Gemini modular maneuvering unit, Apollo EVA mobility unit and the lunar module. Since Gemini astronaut Charles Bassett first ventured into the chamber in 1966, Chamber B has assisted astronauts in testing hardware and preparing them for work in the harsh extremes of space.

  2. The direct simulation of acoustics on Earth, Mars, and Titan.

    PubMed

    Hanford, Amanda D; Long, Lyle N

    2009-02-01

    With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.

  3. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  4. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  5. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  6. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  7. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  8. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  9. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    NASA Astrophysics Data System (ADS)

    Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.

    2017-07-01

    Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  10. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  11. Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-time Profiles

    NASA Technical Reports Server (NTRS)

    Staniewicz, Robert J.; Willson, John; Briscoe, J. Douglas; Rao, Gopalakrishna M.

    2004-01-01

    This viewgraph presentation gives an update on test results from two 16 cell batteries, one in a simulated Low Earth Orbit (LEO) environment and the other in simulated Geosynchronous Earth Orbit (GEO) environment. The tests measured how voltage and capacity are affected over time by thermal cycling.

  12. Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations

    NASA Astrophysics Data System (ADS)

    Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish

    2010-11-01

    The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.

  13. Modeling Hf-W Evolution for Earth, Moon and Mars in Grand Tack Accretion Simulations: The Isotopic Consequences of Rapid Accretion

    NASA Astrophysics Data System (ADS)

    Zube, N.; Nimmo, F.; Jacobson, S. A.; Fischer, R. A.

    2017-12-01

    Short-lived isotopes, such as the decay of lithophile 182Hf into siderophile 182W with a half-life of 9 My, can provide constraints on the timescales of planetary core formation and accretion. Classical accretion scenarios have produced Hf-W isotopic outcomes like those measured presently on the Earth [2,3]. We examine Grand Tack accretion simulations [4,5] and determine the mantle equilibration conditions necessary to produce the observed tungsten isotopic anomaly. Additionally, we follow Hf-W evolution for pairs of bodies that experience a last giant impact fitting the conditions of Earth's Moon-forming collision. In this way, we determine the likelihood of producing the observed almost indistinguishable W isotope anomalies of the Earth and Moon mantles [6]. We model Hf-W evolution for growing planets in 141 N-body simulations during late accretion in the Grand Tack scenario. For each case, we vary the equilibration factor during collisions—the fraction of impactor core that experiences re-equilibration with the entire target mantle—in steps ranging from none (cores merging) to complete equilibration. For Earth-like and Mars-like surviving planets, we find that cases with a high equilibration factor (k > 0.8) and an intermediate (2:1 - 4:1) ratio of initial embryo mass to planetesimal mass were most frequently able to approximate the observed W measurements for Earth and Mars. The equilibration factor required is more restrictive than the one found for classical accretion scenarios [2,3] and may not be consistent with fluid-dynamical predictions [7]. Moons made of impactor material from Earth's last giant impact are only able to result in an Earth-Moon pair having sufficiently similar W anomalies with a likelihood of 8% or less across all simulations. This indicates that a scenario where the Moon isotopically equilibrated with the Earth's mantle after the impact [8] may be required to explain the measured values. [1] Kleine et al. 2009 [2] Nimmo et al. 2010

  14. Global simulation of formation and evolution of plasmoid and flux-rope in the Earth's Magnetotail

    NASA Astrophysics Data System (ADS)

    Ge, Y.; Raeder, J.; Du, A.

    2014-12-01

    The observation of plasmoids and flux-ropes in the Earth's magnetotail was crucial to establish the simultaneous presence of multiple x-lines in the tail, and has become the basis for the Near Earth Neutral Line (NENL) model of substorms. While the "classical" NENL model envisions x-lines that extend across the entire tail, recent observations have shown that neither do the x-lines and resulting plasmoids encompass the entire tail, nor do the x-lines have to lie along the y-axis. The fragmentation of the tail by spatially and temporally limited x-lines has important consequences for the mass and energy budget of the tail. Recent ARTEMIS observations have shown that the plasmoids in the distant tail are limited in the Y direction and some flux ropes are tilted during their tailward propagation. Understanding their formation and evolution during their propagation through the magnetotail shall shred more light on the general energy and flux transport of the Earth's magnetosphere. In this study we simulate plasmoids and flux-ropes in the Earth's magnetotail using the Open Global Geospace Circulation Model (OpenGGCM). We investigate the generation mechanisms for tail plasmoids and flux-ropes and their evolution as they propagate in the magnetotail. The simulation results show that the limited extend of NENL controls the length or the Y scale of tail plasmoid and flux rope. In addition, by studying their 3D magnetic topology we find that the tilted flux rope forms due to a progressive spreading of reconnection line along the east-west direction, which produces and releases two ends of the flux rope at different times and in different speeds. By constructing a catalogue of observational signatures of plasmoid and flux rope we compare the differences of their signatures and find that large-scale plasmoids have much weaker core fields than that inside the small-scale flux ropes.

  15. Observing the ExoEarth: Simulating the Retrieval of Exoplanet Parameters Using DSCOVR

    NASA Astrophysics Data System (ADS)

    Kane, S.; Cowan, N. B.; Domagal-Goldman, S. D.; Herman, J. R.; Robinson, T.; Stine, A.

    2017-12-01

    The field of exoplanets has rapidly expanded from detection to include exoplanet characterization. This has been enabled by developments such as the detection of terrestrial-sized planets and the use of transit spectroscopy to study exoplanet atmospheres. Studies of rocky planets are leading towards the direct imaging of exoplanets and the development of techniques to extract their intrinsic properties. The importance of properties such as rotation, albedo, and obliquity are significant since they inform planet formation theories and are key input parameters for Global Circulation Models used to determine surface conditions, including habitability. Thus, a complete characterization of exoplanets for understanding habitable climates requires the ability to measure these key planetary parameters. The retrieval of planetary rotation rates, albedos, and obliquities from highly undersampled imaging data can be honed using satellites designed to study the Earth's atmosphere. In this talk I will describe how the Deep Space Climate Observatory (DSCOVR) provides a unique opportunity to test such retrieval methods using data for the sunlit hemisphere of the Earth. Our methods use the high-resolution DSCOVR-EPIC images to simulate the Earth as an exoplanet, by deconvolving the images to match a variety of expected exoplanet mission requirements, and by comparing EPIC data with the cavity radiometer data from DSCOVR-NISTAR that views the Earth as a single pixel. Through this methodology, we are creating a grid of retrieval states as a function of image resolution, observing cadence, passband, etc. Our modeling of the DSCOVR data will provide an effective baseline from which to develop tools that can be applied to a variety of exoplanet imaging data.

  16. Method to Recover Media Ligand Losses During Sorption of Rare Earth Elements from Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    This document describes the method and results of an in-situ experiment used to confirm that ligand bleed from a sorptive media can be contained. The experiment focused on maintaining the media's sorption of rare earth elements (REE) obtained from a simulated geothermal brine doped with known mineral concentrations.

  17. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  18. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    DOE PAGES

    Ma, Q.; Li, W.; Thorne, R. M.; ...

    2016-04-28

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less

  19. SUN-TO-EARTH MHD SIMULATION OF THE 14 JULY 2000 "BASTILLE DAY" ERUPTION.

    PubMed

    Török, Tibor; Downs, Cooper; Linker, Jon A; Lionello, R; Titov, Viacheslav S; Mikić, Zoran; Riley, Pete; Caplan, Ronald M; Wijaya, Janvier

    2018-03-20

    Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 "Bastille Day" eruption, which produced a very strong geomagnetic storm. After constructing a "thermodynamic" MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption's source region and initiate the eruption by boundary flows. More than 10 33 ergs of magnetic energy are released in the eruption within a few minutes, driving a flare, an EUV wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s -1 , close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic-equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hours later and ≈ 15° too far to the North, with field strengths that are too weak by a factor of ≈ 1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic-field concentrations as it passes 1 AU. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  20. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  1. Serum periostin is associated with prevalent knee osteoarthritis and disease incidence/progression in women: the OFELY study.

    PubMed

    Rousseau, J C; Sornay-Rendu, E; Bertholon, C; Garnero, P; Chapurlat, R

    2015-10-01

    Our aim was to investigate the relationships between serum periostin (POSTN) and both prevalence and incidence/progression of knee osteoarthritis (OA) in women. We investigated 594 women (62.7 ± 11.2 yr) from the OFELY cohort. Knee radiographs were scored according to the Kellgren & Lawrence (KL) grading system at baseline and 4 years later. Spine, hip and hand OA were assessed at baseline. Prevalent knee OA was defined by a KL score higher or equal in 2. Progression of KL was defined as an increase of the KL score ≥1 during the 4 years follow-up. Serum POSTN was measured at baseline by ELISA. By non-parametric tests, POSTN was significantly lower in 83 women with a KL score ≥2 at baseline, compared to those with a KL score <2 (n = 511; 1101 ± 300 vs 1181 ± 294 ng/ml, P = 0.002) after adjustment for age, body mass index (BMI), treatments and diseases, prevalent hand OA and prevalent lumbar spine OA. By logistic regression analyses, the odds-ratio of knee OA incidence/progression was significantly reduced by 21% (P = 0.043) for each quartile increase in serum POSTN at baseline, after adjustment for age, BMI, prevalent knee OA, prevalent hand OA and prevalent lumbar spine OA. We show for the first time that serum POSTN is associated with prevalence and the risk of development/progression of knee OA in women. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  3. Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds

    NASA Astrophysics Data System (ADS)

    Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.

    2012-11-01

    A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.

  4. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  5. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.

    PubMed

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.

  6. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods

    PubMed Central

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth. PMID:29176916

  7. NIHAO VI. The hidden discs of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Obreja, Aura; Stinson, Gregory S.; Dutton, Aaron A.; Macciò, Andrea V.; Wang, Liang; Kang, Xi

    2016-06-01

    Detailed studies of galaxy formation require clear definitions of the structural components of galaxies. Precisely defined components also enable better comparisons between observations and simulations. We use a subsample of 18 cosmological zoom-in simulations from the Numerical Investigation of a Hundred Astrophysical Objects (NIHAO) project to derive a robust method for defining stellar kinematic discs in galaxies. Our method uses Gaussian Mixture Models in a 3D space of dynamical variables. The NIHAO galaxies have the right stellar mass for their halo mass, and their angular momenta and Sérsic indices match observations. While the photometric disc-to-total ratios are close to 1 for all the simulated galaxies, the kinematic ratios are around ˜0.5. Thus, exponential structure does not imply a cold kinematic disc. Above M* ˜ 109.5 M⊙, the decomposition leads to thin discs and spheroids that have clearly different properties, in terms of angular momentum, rotational support, ellipticity, [Fe/H] and [O/Fe]. At M* ≲ 109.5 M⊙, the decomposition selects discs and spheroids with less distinct properties. At these low masses, both the discs and spheroids have exponential profiles with high minor-to-major axes ratios, I.e. thickened discs.

  8. Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.

    PubMed

    van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D

    2015-04-01

    Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  10. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    NASA Technical Reports Server (NTRS)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  11. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  12. Simulations of a Molecular Cloud experiment using CRASH

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Keiter, Paul; Vandervort, Robert; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent laboratory experiments explore molecular cloud radiation hydrodynamics. The experiment irradiates a gold foil with a laser producing x-rays to drive the implosion or explosion of a foam ball. The CRASH code, an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction developed at the University of Michigan to design and analyze high-energy-density experiments, is used to perform a parameter search in order to identify optically thick, optically thin and transition regimes suitable for these experiments. Specific design issues addressed by the simulations are the x-ray drive temperature, foam density, distance from the x-ray source to the ball, as well as other complicating issues such as the positioning of the stalk holding the foam ball. We present the results of this study and show ways the simulations helped improve the quality of the experiment. This work is funded by the LLNL under subcontract B614207 and NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  13. Sun-to-Earth MHD Simulation of the 2000 July 14 “Bastille Day” Eruption

    NASA Astrophysics Data System (ADS)

    Török, Tibor; Downs, Cooper; Linker, Jon A.; Lionello, R.; Titov, Viacheslav S.; Mikić, Zoran; Riley, Pete; Caplan, Ronald M.; Wijaya, Janvier

    2018-03-01

    Solar eruptions are the main driver of space-weather disturbances at Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 2000 July 14 “Bastille Day” eruption, which produced a very strong geomagnetic storm. After constructing a “thermodynamic” MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption’s source region and initiate the eruption by boundary flows. More than 1033 erg of magnetic energy is released in the eruption within a few minutes, driving a flare, an extreme-ultraviolet wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s‑1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hr later and ≈15° too far to the north, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic field concentrations as it passes 1 au. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  14. Laboratory simulation of vehicle-plasma interaction in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Svenes, K. R.; Troim, J.

    1994-01-01

    We have performed simulations in a plasma chamber of the interaction between a stationary charged body and a streaming plasma. The plasma was set up so as to correspond to the conditions encountered in low Earth orbit (LEO). In this paper we will concentrate on the region of decreased ion density, downstream of the body, known as the `wake' region. The extent of the `near-wake' region (`closure distance') has been utilized to investigate the relative importance of the various factors influencing the formation of the complete wake region. As expected, both the Mach number and the body potential had a significant influence on the wake formation. In fact, it was verified that in the case of the circular disc the functional dependence of the closure distance on the Mach number and the body potential may be fitted to a semi-empirical form developed by Martin et al., (1991) on the basis of numerical simulations. However, it turned out that the general structure of the wake region as well as the closure distance was also very strongly dependent on the body geometry. This is due to the fact that both the magnitude and the distribution of the resulting electric fields are dependent both on the applied voltage and the geometry of the particular body. Hence, the path of the streaming plasma particles will be different for each of the various geometries. This has the consequence that any realistic simulation study of spacecraft-plasma interactions must take into account the detailed geometric specification of the particular system under consideration.

  15. Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, M.; Berdyugina, S.; Kuhn, J.

    Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Virmore » b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.« less

  16. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems

    NASA Astrophysics Data System (ADS)

    de La Cruz, Clarina; Huang, Q.; Lynn, J. W.; Li, Jiying; , W. Ratcliff, II; Zarestky, J. L.; Mook, H. A.; Chen, G. F.; Luo, J. L.; Wang, N. L.; Dai, Pengcheng

    2008-06-01

    Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-Tc) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile `electrons' or `holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at ~137K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-Tc copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

  17. Dark Matter Hairs Around Earth

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20176

  18. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  19. Simulating the Dynamics of Earth's Core: Using NCCS Supercomputers Speeds Calculations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    If one wanted to study Earth's core directly, one would have to drill through about 1,800 miles of solid rock to reach liquid core-keeping the tunnel from collapsing under pressures that are more than 1 million atmospheres and then sink an instrument package to the bottom that could operate at 8,000 F with 10,000 tons of force crushing every square inch of its surface. Even then, several of these tunnels would probably be needed to obtain enough data. Faced with difficult or impossible tasks such as these, scientists use other available sources of information - such as seismology, mineralogy, geomagnetism, geodesy, and, above all, physical principles - to derive a model of the core and, study it by running computer simulations. One NASA researcher is doing just that on NCCS computers. Physicist and applied mathematician Weijia Kuang, of the Space Geodesy Branch, and his collaborators at Goddard have what he calls the,"second - ever" working, usable, self-consistent, fully dynamic, three-dimensional geodynamic model (see "The Geodynamic Theory"). Kuang runs his model simulations on the supercomputers at the NCCS. He and Jeremy Bloxham, of Harvard University, developed the original version, written in Fortran 77, in 1996.

  20. GCM Simulations of Neoproterozoic "Snowball Earth" Conditions: Implications for the Environmental Limits on Terrestrial Metazoans and Their Extraterrestrial Analogues

    NASA Technical Reports Server (NTRS)

    Sohl, L. E.; Chandler, M. A.

    2001-01-01

    The Neoproterozoic Snowball Earth intervals provide excellent opportunities to examine the environmental limits on terrestrial metazoans. A series of GCM simulations was run in order to quantify climatic conditions during these intervals. Additional information is contained in the original extended abstract.

  1. Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.

    2017-12-01

    Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the

  2. Separator Reconnection at Earth's Dayside Magnetopause and the Tail: MMS Observations Compared to Global 3D Simulations

    NASA Astrophysics Data System (ADS)

    Buzulukova, N.; Dorelli, J.; Glocer, A.

    2017-12-01

    We present the results of global high resolution resistive magnetohydrodynamics (MHD BATS-R-US) simulations of Earth's magnetosphere. We extract location of magnetic separators with RECONX tool and compare the results with observations from the Magnetospheric Multiscale (MMS). A few cases are analysed including a southward IMF magnetopause crossing during October 16, 2015 that was previously identified as an electron diffusion region (EDR) event. The simulation predicts a complex time-dependent magnetic topology consisting of multiple separators and flux ropes. Despite the topological complexity, the predicted distance between MMS and the primary separator is less than 0.5 Earth radii. The simulation shows that the existence of IMF Bx results in a duskward shift of the location of the topological separator. The results are explained by a combined effect of solar wind draping and pile-up effect that modify the current density across the magnetopause and affect the location of the separator. The RECONX tool also is used to extract the separator location in the geomagnetic tail, and relate transient tail structures (bursty bulk flows) to the location of separator. These results suggest that global magnetic topology, rather than local magnetic geometry alone, determines the location of the separator reconnection both at the dayside magnetopause and in the tail. We show that the resistive MHD model helps to understand the global context of local MMS observations.

  3. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  4. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  5. Who Is Using Outdoor Fitness Equipment and How? The Case of Xihu Park

    PubMed Central

    Chow, Hsueh-wen; Mowen, Andrew J.; Wu, Guan-lin

    2017-01-01

    Outdoor fitness equipment (OFE) placed in public parks has the potential to encourage physical activity. However, little is known about OFE users and use patterns. This study employed onsite and video observations of OFE usage to describe user characteristics and patterns in Xihu Park. Results indicate that OFE in this park attracted considerable use, particularly in the early morning and late afternoon. During these peak-hour observations, approximately 12 users per hour used the OFE, with the majority being females and seniors. The triple arm stretch and air walker were the most popular stations. However, most OFE users interacted with less than three of the available six OFE stations. Furthermore, users spent an average of less than nine minutes on all OFE stations combined. While OFE equipment was well-used in this urban park, it appears users did not interact with OFE at rates to produce a sufficient bout or level of physical activity during their park visit. Further investigations of OFE are encouraged to determine their health impact. PMID:28430141

  6. Who Is Using Outdoor Fitness Equipment and How? The Case of Xihu Park.

    PubMed

    Chow, Hsueh-Wen; Mowen, Andrew J; Wu, Guan-Lin

    2017-04-21

    Outdoor fitness equipment (OFE) placed in public parks has the potential to encourage physical activity. However, little is known about OFE users and use patterns. This study employed onsite and video observations of OFE usage to describe user characteristics and patterns in Xihu Park. Results indicate that OFE in this park attracted considerable use, particularly in the early morning and late afternoon. During these peak-hour observations, approximately 12 users per hour used the OFE, with the majority being females and seniors. The triple arm stretch and air walker were the most popular stations. However, most OFE users interacted with less than three of the available six OFE stations. Furthermore, users spent an average of less than nine minutes on all OFE stations combined. While OFE equipment was well-used in this urban park, it appears users did not interact with OFE at rates to produce a sufficient bout or level of physical activity during their park visit. Further investigations of OFE are encouraged to determine their health impact.

  7. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  8. Development of an SP simulation package for understanding fundamentals of self-potential responses at an earth dam

    NASA Astrophysics Data System (ADS)

    Kang, S.; Lim, S. K.; Oldenburg, D.

    2016-12-01

    Fluid flow in an underground porous medium pulls positive ions in the direction of flow and results in a streaming current. This movement of ions in the direction of flow creates a charge imbalance in the system which, in turn, causes conduction currents to flow in the opposite Although, the streaming current only flows in the saturated pores, the conduction currents will flow in the entire medium. The electrical potentials due to the fluid flow can be measured in the same manner as those in a direct current survey. This method is often called the self-potential (SP) method. A number of applications using the SP technique have been investigated including earthquake prediction, the vadose zone flow, locating sinkholes, mineral deposits and volcanic chambers. In this study, we particularly focus on the monitoring of seepage flow through earth dams. Earth dams are usually made of permeable materials and are designed to allow limited amounts of seepage flow from the reservoir. Due to seepage forces, the fine grains in the core can be washed out, and this internal erosion is one the most prevalent failure modes in earth dams. Therefore, identifying and monitoring the region of preferential seepage flow is a key for dam safety assessment. Usually, an earth dam is composed of fine-grained core and coarse-grained cover, which have different hydraulic conductivities. The distribution of hydraulic head, water saturation and fluid flow is found by solving hydrogeologic equations with applied boundary conditions. When a seepage path is induced due to internal erosion, the hydrological properties will be changed and this results in additional fluid flow. This is an additional source of SP signal. Understanding the impact of different sources of the SP signals is thus a crucial factor towards effective use of the SP technique for safety assessment at earth dams. Modelling SP signals requires two essential simulation capabilities: a) computing fluid flow in porous medium and b

  9. Micromagnetics of rare-earth efficient permanent magnets

    NASA Astrophysics Data System (ADS)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  10. Migration-driven diversity of super-Earth compositions

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Boulet, Thibault; Izidoro, Andre; Esteves, Leandro; Bitsch, Bertram

    2018-06-01

    A leading model for the origin of super-Earths proposes that planetary embryos migrate inward and pile up on close-in orbits. As large embryos are thought to preferentially form beyond the snow line, this naively predicts that most super-Earths should be very water-rich. Here we show that the shortest-period planets formed in the migration model are often purely rocky. The inward migration of icy embryos through the terrestrial zone accelerates the growth of rocky planets via resonant shepherding. We illustrate this process with a simulation that provided a match to the Kepler-36 system of two planets on close orbits with very different densities. In the simulation, two super-Earths formed in a Kepler-36-like configuration; the inner planet was pure rock while the outer one was ice-rich. We conclude from a suite of simulations that the feeding zones of close-in super-Earths are likely to be broad and disconnected from their final orbital radii.

  11. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  12. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  13. The UK Earth System Model project

    NASA Astrophysics Data System (ADS)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  14. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  15. Effect of simulated microgravity on growth and production of exopolymeric substances of Micrococcus luteus space and earth isolates.

    PubMed

    Mauclaire, Laurie; Egli, Marcel

    2010-08-01

    Microorganisms tend to form biofilms on surfaces, thereby causing deterioration of the underlaying material. In addition, biofilm is a potential health risk to humans. Therefore, microorganism growth is not only an issue on Earth but also in manned space habitats like the International Space Station (ISS). The aim of the study was to identify physiological processes relevant for Micrococcus luteus attachment under microgravity conditions. The results demonstrate that simulated microgravity influences physiological processes which trigger bacterial attachment and biofilm formation. The ISS strains produced larger amounts of exopolymeric substances (EPS) compared with a reference strain from Earth. In contrast, M. luteus strains were growing faster, and Earth as well as ISS isolates produced a higher yield of biomass under microgravity conditions than under normal gravity. Furthermore, microgravity caused a reduction of the colloidal EPS production of ISS isolates in comparison with normal gravity, which probably influences biofilm thickness and stability as well.

  16. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  17. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.

    2014-10-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.

  18. Refractive indices of Early Earth organic aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Carrasco, N.; Fleury, B.; Vettier, L.

    2017-09-01

    Organic hazes in the early Earth atmosphere are hypothesized to provide additional shielding to solar radiation. We simulate the conditions of this primitive atmosphere by adding CO2 to a N2:CH4 gas mixture feeding a plasma. In this plasma, solid organic films were produced simulating early aerosols. We performed ellipsometry on these films from the visible to the near-ultraviolet range. Such measurements reveal how organic aerosols in the early Earth atmosphere preferentially absorb photons of shorter wavelengths than typical Titan tholins, suggesting a coolant role in the early Earth.

  19. Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, Sergio; Salinas, Alfonso; Morente-Molinera, Juan Antonio; Méndez, Antonio; Fornieles, Jesús; Portí, Jorge; Morente, Juan Antonio

    2013-03-01

    A parallel 3D algorithm for solving time-domain electromagnetic problems with arbitrary geometries is presented. The technique employed is the Transmission Line Modeling (TLM) method implemented in Shared Memory (SM) environments. The benchmarking performed reveals that the maximum speedup depends on the memory size of the problem as well as multiple hardware factors, like the disposition of CPUs, cache, or memory. A maximum speedup of 15 has been measured for the largest problem. In certain circumstances of low memory requirements, superlinear speedup is achieved using our algorithm. The model is employed to model the Earth-ionosphere cavity, thus enabling a study of the natural electromagnetic phenomena that occur in it. The algorithm allows complete 3D simulations of the cavity with a resolution of 10 km, within a reasonable timescale.

  20. Hot super-Earths stripped by their host stars

    PubMed Central

    Lundkvist, M. S.; Kjeldsen, H.; Albrecht, S.; Davies, G. R.; Basu, S.; Huber, D.; Justesen, A. B.; Karoff, C.; Silva Aguirre, V.; Van Eylen, V.; Vang, C.; Arentoft, T.; Barclay, T.; Bedding, T. R.; Campante, T. L.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Elsworth, Y. P.; Gilliland, R. L.; Handberg, R.; Hekker, S.; Kawaler, S. D.; Lund, M. N.; Metcalfe, T. S.; Miglio, A.; Rowe, J. F.; Stello, D.; Tingley, B.; White, T. R.

    2016-01-01

    Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths. PMID:27062914

  1. Hot super-Earths stripped by their host stars.

    PubMed

    Lundkvist, M S; Kjeldsen, H; Albrecht, S; Davies, G R; Basu, S; Huber, D; Justesen, A B; Karoff, C; Silva Aguirre, V; Van Eylen, V; Vang, C; Arentoft, T; Barclay, T; Bedding, T R; Campante, T L; Chaplin, W J; Christensen-Dalsgaard, J; Elsworth, Y P; Gilliland, R L; Handberg, R; Hekker, S; Kawaler, S D; Lund, M N; Metcalfe, T S; Miglio, A; Rowe, J F; Stello, D; Tingley, B; White, T R

    2016-04-11

    Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths.

  2. Simulating "Mars on Earth"

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    By now, everyone who's heard of the Haughton-Mars Project knows that we travel to Devon Island to learn how people will live and work on Mars. But how do we learn about Mars operations from what happens in the Arctic? We must document our experience--traverses, life in the hab, instrument deployment, communications, and so on. Then we must analyze and formally model what happens. In short, while most scientists are studying the crater, other scientists must be studying the expedition itself. That's what I have done in the past four field seasons. I study field science, both as it naturally occurs at Haughton (unconstrained by a "Mars Sam") and as a constrained experiment using the Flashline Mars Arctic Research Station. During the second week of July 2001, I lived and worked in the hab as part of the Phase 2 crew of six. Besides participating in all activities, I took many photographs and time lapse video. The result of my work will be a computer simulation of how we lived and worked in the hab. It won't be a model of particular people or even my own phase per se, but a pastiche that demonstrates (a proof of concept) that we have appropriate tools for simulating the layout of the hab and daily routines followed by the group and individual scientists. Activities-how people spend their time-are the focus of my observations for building such a simulation model.

  3. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  4. Dark Matter Hairs Around Earth -- Close-up

    NASA Image and Video Library

    2015-11-23

    This illustration shows Earth surrounded by filaments of dark matter called "hairs," which are proposed in a study in the Astrophysical Journal by Gary Prézeau of NASA's Jet Propulsion Laboratory, Pasadena, California. A hair is created when a stream of dark matter particles goes through the planet. According to simulations, the hair is densest at a point called the "root." When particles of a dark matter stream pass through the core of Earth, they form a hair whose root has a particle density about a billion times greater than average. The hairs in this illustration are not to scale. Simulations show that the roots of such hairs can be 600,000 miles (1 million kilometers) from Earth, while Earth's radius is only about 4,000 miles (6,400 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA20177

  5. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  6. A New Code SORD for Simulation of Polarized Light Scattering in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-01-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel atmosphere of the Earth. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/.

  7. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  8. Comparison of methane emission estimates from multiple measurement techniques at natural gas production pads

    DOE PAGES

    Bell, Clay Samuel; Vaughn, Timothy L.; Zimmerle, Daniel; ...

    2017-02-09

    This study presents the results of a campaign that estimated methane emissions at 268 gas production facilities in the Fayetteville shale gas play using onsite measurements (261 facilities) and two downwind methods - the dual tracer flux ratio method (Tracer Facility Estimate - TFE, 17 facilities) and the EPA Other Test Method 33a (OTM33A Facility Estimate - OFE, 50 facilities). A study onsite estimate (SOE) for each facility was developed by combining direct measurements and simulation of unmeasured emission sources, using operator activity data and emission data from literature. The SOE spans 0-403 kg/h and simulated methane emissions from liquidmore » unloadings account for 88% of total emissions estimated by the SOE, with 76% (95% CI [51%-92%]) contributed by liquid unloading at two facilities. TFE and SOE show overlapping 95% CI between individual estimates at 15 of 16 (94%) facilities where the measurements were paired, while OFE and SOE show overlapping 95% CI between individual estimates at 28 of 43 (65%) facilities. However, variance-weighted least-squares (VWLS) regressions performed on sets of paired estimates indicate statistically significant differences between methods. The SOE represents a lower bound of emissions at facilities where onsite direct measurements of continuously emitting sources are the primary contributor to the SOE, a sub-selection of facilities which minimizes expected inter-method differences for intermittent pneumatic controllers and the impact of episodically-emitting unloadings. At 9 such facilities, VWLS indicates that TFE estimates systematically higher emissions than SOE (TFE-to-SOE ratio = 1.6, 95% CI [1.2 to 2.1]). At 20 such facilities, VWLS indicates that OFE estimates systematically lower emissions than SOE (OFE-to-SOE ratio of 0.41 [0.26 to 0.90]). Given that SOE at these facilities is a lower limit on emissions, these results indicate that OFE is likely a less accurate method than SOE or TFE for this type of facility.« less

  9. Intercomparison of terrestrial carbon fluxes and carbon use efficiency simulated by CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Lee, Myong-In; Jeong, Su-Jong; Im, Jungho; Cha, Dong Hyun; Lee, Sanggyun

    2017-12-01

    This study compares historical simulations of the terrestrial carbon cycle produced by 10 Earth System Models (ESMs) that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Using MODIS satellite estimates, this study validates the simulation of gross primary production (GPP), net primary production (NPP), and carbon use efficiency (CUE), which depend on plant function types (PFTs). The models show noticeable deficiencies compared to the MODIS data in the simulation of the spatial patterns of GPP and NPP and large differences among the simulations, although the multi-model ensemble (MME) mean provides a realistic global mean value and spatial distributions. The larger model spreads in GPP and NPP compared to those of surface temperature and precipitation suggest that the differences among simulations in terms of the terrestrial carbon cycle are largely due to uncertainties in the parameterization of terrestrial carbon fluxes by vegetation. The models also exhibit large spatial differences in their simulated CUE values and at locations where the dominant PFT changes, primarily due to differences in the parameterizations. While the MME-simulated CUE values show a strong dependence on surface temperatures, the observed CUE values from MODIS show greater complexity, as well as non-linear sensitivity. This leads to the overall underestimation of CUE using most of the PFTs incorporated into current ESMs. The results of this comparison suggest that more careful and extensive validation is needed to improve the terrestrial carbon cycle in terms of ecosystem-level processes.

  10. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    PubMed

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  11. Hydrodynamic instabilities at an oblique interface: Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas-Mann, E.; Fiedler Kawaguchi, C.; Trantham, M. A.; Malamud, G.; Wan, W. C.; Klein, S. R.; Kuranz, C. C.

    2017-10-01

    Hydrodynamic instabilities are important phenomena that occur in high-energy-density systems, such as astrophysical systems and inertial confinement fusion experiments, where pressure, density, and velocity gradients are present. Using a 30 ns laser pulse from the Omega EP laser system, a steady shock wave is driven into a target. A Spherical Crystal Imager provides high-resolution x-ray radiographs to study the evolution of complex hydrodynamic structures. This experiment has a light-to-heavy interface at an oblique angle with a precision-machined perturbation. The incident shock wave deposits shear and vorticity at the interface causing the perturbation to grow via Richtmyer-Meshkov and Kelvin-Helmholtz processes. We present results from analysis of radiographic data and hydrodynamics simulations showing the evolution of the shock and unstable structure. This work is supported by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program and LILAC.

  12. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit".

    PubMed

    El-Jaby, Samy

    2016-06-01

    A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  13. Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.

    2012-12-01

    MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields

  14. Simulations of Rayleigh Taylor Instabilities in the presence of a Strong Radiative shock

    NASA Astrophysics Data System (ADS)

    Trantham, Matthew; Kuranz, Carolyn; Shvarts, Dov; Drake, R. P.

    2016-10-01

    Recent Supernova Rayleigh Taylor experiments on the National Ignition Facility (NIF) are relevant to the evolution of core-collapse supernovae in which red supergiant stars explode. Here we report simulations of these experiments using the CRASH code. The CRASH code, developed at the University of Michigan to design and analyze high-energy-density experiments, is an Eulerian code with block-adaptive mesh refinement, multigroup diffusive radiation transport, and electron heat conduction. We explore two cases, one in which the shock is strongly radiative, and another with negligible radiation. The experiments in all cases produced structures at embedded interfaces by the Rayleigh Taylor instability. The weaker shocked environment is cooler and the instability grows classically. The strongly radiative shock produces a warm environment near the instability, ablates the interface, and alters the growth. We compare the simulated results with the experimental data and attempt to explain the differences. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956.

  15. Terrestrial planet formation in the presence of migrating super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effectmore » on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.« less

  16. Sun-to-Earth simulations of geo-effective Coronal Mass Ejections with EUHFORIA: a heliospheric-magnetospheric model chain approach

    NASA Astrophysics Data System (ADS)

    Scolini, C.; Verbeke, C.; Gopalswamy, N.; Wijsen, N.; Poedts, S.; Mierla, M.; Rodriguez, L.; Pomoell, J.; Cramer, W. D.; Raeder, J.

    2017-12-01

    Coronal Mass Ejections (CMEs) and their interplanetary counterparts are considered to be the major space weather drivers. An accurate modelling of their onset and propagation up to 1 AU represents a key issue for more reliable space weather forecasts, and predictions about their actual geo-effectiveness can only be performed by coupling global heliospheric models to 3D models describing the terrestrial environment, e.g. magnetospheric and ionospheric codes in the first place. In this work we perform a Sun-to-Earth comprehensive analysis of the July 12, 2012 CME with the aim of testing the space weather predictive capabilities of the newly developed EUHFORIA heliospheric model integrated with the Gibson-Low (GL) flux rope model. In order to achieve this goal, we make use of a model chain approach by using EUHFORIA outputs at Earth as input parameters for the OpenGGCM magnetospheric model. We first reconstruct the CME kinematic parameters by means of single- and multi- spacecraft reconstruction methods based on coronagraphic and heliospheric CME observations. The magnetic field-related parameters of the flux rope are estimated based on imaging observations of the photospheric and low coronal source regions of the eruption. We then simulate the event with EUHFORIA, testing the effect of the different CME kinematic input parameters on simulation results at L1. We compare simulation outputs with in-situ measurements of the Interplanetary CME and we use them as input for the OpenGGCM model, so to investigate the magnetospheric response to solar perturbations. From simulation outputs we extract some global geomagnetic activity indexes and compare them with actual data records and with results obtained by the use of empirical relations. Finally, we discuss the forecasting capabilities of such kind of approach and its future improvements.

  17. Implementation of methane cycling for deep-time global warming simulations with the DCESS Earth system model (version 1.2)

    NASA Astrophysics Data System (ADS)

    Shaffer, Gary; Fernández Villanueva, Esteban; Rondanelli, Roberto; Olaf Pepke Pedersen, Jens; Malskær Olsen, Steffen; Huber, Matthew

    2017-11-01

    Geological records reveal a number of ancient, large and rapid negative excursions of the carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth system over a short duration. These injections may have forced strong global warming events, sometimes accompanied by mass extinctions such as the Triassic-Jurassic and end-Permian extinctions 201 and 252 million years ago, respectively. In many cases, evidence points to methane as the dominant form of injected carbon, whether as thermogenic methane formed by magma intrusions through overlying carbon-rich sediment or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth system models for addressing such events should include a comprehensive treatment of methane cycling but such a treatment has often been lacking. Here we implement methane cycling in the Danish Center for Earth System Science (DCESS) model, a simplified but well-tested Earth system model of intermediate complexity. We use a generic methane input function that allows variation in input type, size, timescale and ocean-atmosphere partition. To be able to treat such massive inputs more correctly, we extend the model to deal with ocean suboxic/anoxic conditions and with radiative forcing and methane lifetimes appropriate for high atmospheric methane concentrations. With this new model version, we carried out an extensive set of simulations for methane inputs of various sizes, timescales and ocean-atmosphere partitions to probe model behavior. We find that larger methane inputs over shorter timescales with more methane dissolving in the ocean lead to ever-increasing ocean anoxia with consequences for ocean life and global carbon cycling. Greater methane input directly to the atmosphere leads to more warming and, for example, greater carbon dioxide release

  18. Effects of Simulated Rare Earth Recycling Wastewaters on Biological Nitrification.

    PubMed

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Riman, Richard E; Navrotsky, Alexandra

    2015-08-18

    Increasing rare earth element (REE) supplies by recycling and expanded ore processing will result in generation of new wastewaters. In some cases, disposal to a sewage treatment plant may be favored, but plant performance must be maintained. To assess the potential effects of such wastewaters on biological treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50, and 100 ppm), and the extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions at 50 and 100 ppm inhibited N. europaea, even when virtually all of the REE was insoluble. Provision of TBP with Eu increased N. europaea inhibition, although TBP alone did not substantially alter activity. For N. winogradskyi cultures, Eu or Y additions at all tested levels induced significant inhibition, and nitrification shut down completely with TBP addition. REE solubility was calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, typically controlled by the precipitation of REE hydroxides but also likely affected by the formation of unknown phosphate phases, which determined aqueous concentrations experienced by the microorganisms.

  19. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  20. Outdoor fitness equipment in parks: a qualitative study from older adults’ perceptions

    PubMed Central

    2013-01-01

    Background The growing amount of outdoor fitness equipment (OFE) placed in parks in many countries has the intent of encouraging physical activity among aging populations. However, little investigated aspects are the perceptions and experiences of older adults regarding the use of these facilities. Hence, this study seeks senior OFE users’ opinions to understand the exact nature of use of these facilities, the perceived health benefits achieved, and equipment’s improvements that would further encourage use. Methods The study conducts semi-structured interviews with 55 senior OFE users at two parks in Taiwan. Results Study results suggest that although OFE use is not the main purpose for which seniors visit parks, most seniors perceive the benefit of using OFE in terms of both physical and psychological health, as well as social connection. Respondents also raised issues related to safety, maintenance, and management of OFE. Conclusions OFE appears to meet the health needs of seniors, but improved management is necessary to ensure safety. Further research would reveal the actual behavior involving OFE use and use’s relationship to the physical activity of seniors. PMID:24359536

  1. Accretion of the Earth.

    PubMed

    Canup, Robin M

    2008-11-28

    The origin of the Earth and its Moon has been the focus of an enormous body of research. In this paper I review some of the current models of terrestrial planet accretion, and discuss assumptions common to most works that may require re-examination. Density-wave interactions between growing planets and the gas nebula may help to explain the current near-circular orbits of the Earth and Venus, and may result in large-scale radial migration of proto-planetary embryos. Migration would weaken the link between the present locations of the planets and the original provenance of the material that formed them. Fragmentation can potentially lead to faster accretion and could also damp final planet orbital eccentricities. The Moon-forming impact is believed to be the final major event in the Earth's accretion. Successful simulations of lunar-forming impacts involve a differentiated impactor containing between 0.1 and 0.2 Earth masses, an impact angle near 45 degrees and an impact speed within 10 per cent of the Earth's escape velocity. All successful impacts-with or without pre-impact rotation-imply that the Moon formed primarily from material originating from the impactor rather than from the proto-Earth. This must ultimately be reconciled with compositional similarities between the Earth and the Moon.

  2. NIF laboratory astrophysics simulations investigating the effects of a radiative shock on hydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Angulo, A. A.; Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Park, H.-S.; Remington, B. A.; Kalantar, D.; MacLaren, S.; Raman, K.; Miles, A.; Trantham, Matthew; Kline, J. L.; Flippo, K.; Doss, F. W.; Shvarts, D.

    2016-10-01

    This poster will describe simulations based on results from ongoing laboratory astrophysics experiments at the National Ignition Facility (NIF) relevant to the effects of radiative shock on hydrodynamically unstable surfaces. The experiments performed on NIF uniquely provide the necessary conditions required to emulate radiative shock that occurs in astrophysical systems. The core-collapse explosions of red supergiant stars is such an example wherein the interaction between the supernova ejecta and the circumstellar medium creates a region susceptible to Rayleigh-Taylor (R-T) instabilities. Radiative and nonradiative experiments were performed to show that R-T growth should be reduced by the effects of the radiative shocks that occur during this core-collapse. Simulations were performed using the radiation hydrodynamics code Hyades using the experimental conditions to find the mean interface acceleration of the instability and then further analyzed in the buoyancy drag model to observe how the material expansion contributes to the mix-layer growth. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas under Grant Number DE-FG52-09NA29548.

  3. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  4. A new code SORD for simulation of polarized light scattering in the Earth atmosphere

    NASA Astrophysics Data System (ADS)

    Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent

    2016-05-01

    We report a new publicly available radiative transfer (RT) code for numerical simulation of polarized light scattering in plane-parallel Earth atmosphere. Using 44 benchmark tests, we prove high accuracy of the new RT code, SORD (Successive ORDers of scattering1, 2). We describe capabilities of SORD and show run time for each test on two different machines. At present, SORD is supposed to work as part of the Aerosol Robotic NETwork3 (AERONET) inversion algorithm. For natural integration with the AERONET software, SORD is coded in Fortran 90/95. The code is available by email request from the corresponding (first) author or from ftp://climate1.gsfc.nasa.gov/skorkin/SORD/ or ftp://maiac.gsfc.nasa.gov/pub/SORD.zip

  5. First observations and simulations of specularly reflected He++ at Earth's quasi-perpendicular bow shock

    NASA Astrophysics Data System (ADS)

    Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Giles, B. L.; Anderson, B. J.; Burch, J. L.

    2017-12-01

    Proton specular reflection at quasi-perpendicular shocks provides dissipation in cases where the upstream Mach number is too high for fluid dissipation mechanisms alone - as is almost always the case at Earth's bow shock. Some evidence of He++ specular reflection was found in reduced particle distributions measured by previous spacecraft at the bow shock. However, due to resolution constraints it was not possible to confirm that the bow shock was capable of reflecting solar wind He++. We present MMS observations of quasi-perpendicular bow shock crossing that are consistent with He++ specular reflection. These observations are supported by 1D particle-in- cell simulations demonstrating that a small amount of He++ can be turned back despite having twice the mass-per-charge of the protons.

  6. Space-based infrared near-Earth asteroid survey simulation

    NASA Astrophysics Data System (ADS)

    Tedesco, Edward F.; Muinonen, Karri; Price, Stephan D.

    2000-08-01

    We demonstrate the efficiency and effectiveness of using a satellite-based sensor with visual and infrared focal plane arrays to search for that subclass of Near-Earth Objects (NEOs) with orbits largely interior to the Earth's orbit. A space-based visual-infrared system could detect approximately 97% of the Atens and 64% of the IEOs (the, as yet hypothetical, objects with orbits entirely Interior to Earth's Orbit) with diameters greater than 1 km in a 5-year mission and obtain orbits, albedos and diameters for all of them; the respective percentages with diameters greater than 500 m are 90% and 60%. Incidental to the search for Atens and IEOs, we found that 70% of all Earth-Crossing Asteroids (ECAs) with diameters greater than 1 km, and 50% of those with diameters greater than 500 m, would also be detected. These are the results of a feasibility study; optimizing the concept presented would result in greater levels of completion. The cost of such a space-based system is estimated to be within a factor of two of the cost of a ground-based system capable of about 21st magnitude, which would provide only orbits and absolute magnitudes and require decades to reach these completeness levels. In addition to obtaining albedos and diameters for the asteroids discovered in the space-based survey, a space-based visual-infrared system would obtain the same information on virtually all NEOs of interest. A combined space-based and ground-based survey would be highly synergistic in that each can concentrate on what it does best and each complements the strengths of the other. The ground-based system would discover the majority of Amors and Apollos and provide long-term follow-up on all the NEOs discovered in both surveys. The space-based system would discover the majority of Atens and IEOs and provide albedos and diameters on all the NEOs discovered in both surveys and most previously discovered NEOs as well. Thus, an integrated ground- and space-based system could accomplish

  7. Forming a Moon with an Earth-like composition via a giant impact.

    PubMed

    Canup, Robin M

    2012-11-23

    In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.

  8. Uderstanding Snowball Earth Deglaciation

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2012-12-01

    Earth, a normally clement planet comfortably in its star's habitable zone, suffered global or nearly global glaciation at least twice during the Neoproterozoic era (at about 635 and 710 million years ago). Viewed in the context of planetary evolution, these pan-global glaciations (Snowball Earth events) were extremely rapid, lasting only a few million years. The dramatic effect of the Snowball Earth events on the development of the planet can be seen through their link to rises in atmospheric oxygen and evolutionary innovations. These potential catastrophes on an otherwise clement planet can be used to gain insight into planetary habitability more generally. Since Earth is not currently a Snowball, a sound deglaciation mechanism is crucial for the viability of the Snowball Earth hypothesis. The traditional deglaciation mechanism is a massive build up of CO2 due to reduced weathering during Snowball Earth events until tropical surface temperatures reach the melting point. Once initiated, such a deglaciation might happen on a timescale of only dozens of thousands of years and would thrust Earth from the coldest climate in its history to the warmest. Therefore embedded in Snowball Earth events is an even more rapid and dramatic environmental change. Early global climate model simulations raised doubt about whether Snowball Earth deglaciation could be achieved at a CO2 concentration low enough to be consistent with geochemical data, which represented a potential challenge to the Snowball Earth hypothesis. Over the past few years dust and clouds have emerged as the essential missing additional processes that would allow Snowball Earth deglaciation at a low enough CO2 concentration. I will discuss the dust and cloud mechanisms and the modeling behind these ideas. This effort is critical for the broader implications of Snowball Earth events because understanding the specific deglaciation mechanism determines whether similar processes could happen on other planets.

  9. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  10. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  11. Evaluating the design of satellite scanning radiometers for earth radiation budget measurements with system simulations. Part 1: Instantaneous estimates

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Ardanuy, Philip; Hucek, Richard; Abel, Peter; Jacobowitz, Herbert

    1991-01-01

    A set of system simulations was performed to evaluate candidate scanner configurations to fly as a part of the Earth Radiation Budget Instrument (ERBI) on the polar platforms during the 1990's. The simulation is considered of instantaneous sampling (without diurnal averaging) of the longwave and shortwave fluxes at the top of the atmosphere (TOA). After measurement and subsequent inversion to the TOA, the measured fluxes were compared to the reference fluxes for 2.5 deg lat/long resolution targets. The reference fluxes at this resolution are obtained by integrating over the 25 x 25 = 625 grid elements in each target. The differences between each of these two resultant spatially averaged sets of target measurements (errors) are taken and then statistically summarized. Five instruments are considered: (1) the Conically Scanning Radiometer (CSR); (2) the ERBE Cross Track Scanner; (3) the Nimbus-7 Biaxial Scanner; (4) the Clouds and Earth's Radiant Energy System Instrument (CERES-1); and (5) the Active Cavity Array (ACA). Identical studies of instantaneous error were completed for many days, two seasons, and several satellite equator crossing longitudes. The longwave flux errors were found to have the same space and time characteristics as for the shortwave fluxes, but the errors are only about 25 pct. of the shortwave errors.

  12. Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth

    NASA Astrophysics Data System (ADS)

    Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben

    2017-04-01

    There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.

  13. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit

    NASA Astrophysics Data System (ADS)

    El-Jaby, Samy; Richardson, Richard B.

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit.

  14. A piloted simulator investigation of augmentation systems to improve helicopter nap-of-the-earth handling qualities

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Talbot, P. D.; Gerdes, R. M.; Dugan, D. C.

    1978-01-01

    A piloted simulation study assessed various levels of stability and control augmentation designed to improve the handling qualities of several helicopters in nap-of-the-earth (NOE) flight. Five basic single rotor helicopters - one teetering, two articulated, and two hingeless - which were found to have a variety of major deficiencies in a previous fixed-based simulator study were selected as baseline configurations. The stability and control augmentation systems (SCAS) include simple control augmentation systems (CAS) to decouple pitch and yaw responses due to collective input and to quicken the pitch and roll control responses; SCAS of rate command type designed to optimize the sensitivity and damping and to decouple the pitch-roll due to aircraft angular rate; and attitude command type SCAS. Pilot ratings and commentary are presented as well as performance data related to the task. SCAS control usage and their gain levels associated with specific rotor type are also discussed.

  15. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  16. Simulating the interplay between plasma transport, electric field, and magnetic field in the near-earth nightside magnetosphere

    NASA Astrophysics Data System (ADS)

    Gkioulidou, Malamati

    The convection electric field resulting from the coupling of the Earth's magnetosphere with the solar wind and interplanetary magnetic field (IMF) drives plasma in the tail plasma sheet earthward. This transport and the resulting energy storage in the near Earth plasma sheet are important for setting up the conditions that lead to major space weather disturbances, such as storms and substorms. Penetration of plasma sheet particles into the near-Earth magnetosphere in response to enhanced convection is crucial to the development of the Region 2 field-aligned current system and large-scale magnetosphere-ionosphere (M-I) coupling, which results in the shielding of the convection electric field. In addition to the electric field, plasma transport is also strongly affected by the magnetic field, which is distinctly different from dipole field in the inner plasma sheet and changes with plasma pressure in maintaining force balance. The goal of this dissertation is to investigate how the plasma transport into the inner magnetosphere is affected by the interplay between plasma, electric field and magnetic field. For this purpose, we conduct simulations using the Rice Convection Model (RCM), which self-consistently calculates the electric field resulting from M-I coupling. In order to quantitatively evaluate the interplay, we improved the RCM simulations by establishing realistic plasma sheet particle sources, by incorporating it with a modified Dungey force balance magnetic field solver (RCM-Dungey runs), and by adopting more realistic electron loss rates. We found that plasma sheet particle sources strongly affect the shielding of the convection electric field, with a hotter and more tenuous plasma sheet resulting in less shielding than a colder and denser one and thus in more earthward penetration of the plasma sheet. The Harang reversal, which is closely associated with the shielding of the convection electric field and the earthward penetration of low-energy protons, is

  17. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  18. Planning by Search through Simulations.

    DTIC Science & Technology

    1985-10-01

    planners. 1.3 Planning: A New Paradigm After the advent of least-commitment planners, the planning problem became defined as the successive refinement of...ing, intervals during the execution of the plan (e.g., a thesis advisor is used discon- tinuously by a graduate student during his thesis research... The Garden I le\\ Ro4m tob Pita *44a Fr4Teot4i 4444444.4 (S-R4EST44CTIO pro444444 444 ( 4IT4 I B4 tually ~ ~ Rom com int effct For exmpe if the robo

  19. A Land-Use-Planning Simulation Using Google Earth

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Cirucci, Lori

    2009-01-01

    Google Earth (GE) is proving to be a valuable tool in the science classroom for understanding the environment and making responsible environmental decisions (Bodzin 2008). GE provides learners with a dynamic mapping experience using a simple interface with a limited range of functions. This interface makes geospatial analysis accessible and…

  20. Detectability of Boulders on Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Taylor, Patrick A.; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.

    2014-11-01

    Boulders are seen on spacecraft images of near-Earth asteroids Eros and Itokawa. Radar images often show bright pixels or groups of pixels that travel consistently across the surface as the object rotates, which may be indicative of similar boulders on other near-Earth asteroids. Examples of these bright pixels were found on radar observations of 2005 YU55 and 2006 VV2 (Benner et al. 2014). Nolan et al. (2013) also identify one large possible boulder on the surface of Bennu, target of the OSIRIS-REx sample return mission. We explore the detectability of boulders by adding synthetic features on asteroid models, and then simulating radar images. These synthetic features were added using BLENDER ver. 2.70, a free open-source 3-D animation suite. Starting with the shape model for Bennu (diameter ~500 m), spherical 'boulders' of 10 m, 20 m, and 40 m diameter were placed at latitudes between 0 and 90 deg. Simulated radar observations of these models indicated that spherical boulders smaller than 10 m may not be visible in observations but that larger ones should be readily seen. Boulders near the sub-Earth point can be hidden in the bright region near the leading edge, but as the asteroid's rotation moves them towards the terminator, they become visible again, with no significant dependence on the latitude of the boulder. These simulations suggest that we should detect large boulders under most circumstances in high-quality radar images, and we have a good estimate of the occurrence of such features on near-Earth objects. Results of these simulations will be presented.

  1. Imaging Near-Earth Electron Densities Using Thomson Scattering

    DTIC Science & Technology

    2009-01-15

    geocentric solar magnetospheric (GSM) coordinates1. TECs were initially computed from a viewing loca- tion at the Sun-Earth L1 Lagrange point2 for both...further find that an elliptical Earth orbit (apogee ~30 RE) is a suitable lower- cost option for a demonstration mission. 5. SIMULATED OBSERVATIONS We

  2. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  3. Simulation of major space particles toward selected materials in a near-equatorial low earth orbit

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Zulkeple, Siti Katrina

    2017-05-01

    A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.

  4. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  5. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent.

    PubMed

    Carbon, Claus-Christian

    2010-07-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  6. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    PubMed

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (<20 km) and for missions to low-Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: dynamics of tertiary and quaternary structures.

    PubMed

    Saito, Minoru; Okazaki, Isao

    2007-04-30

    Molecular dynamics (MD) simulations of human adult hemoglobin (HbA) were carried out for 45 ns in water with all degrees of freedom including bond stretching and without any artificial constraints. To perform such large-scale simulations, one of the authors (M.S.) accelerated his own software COSMOS90 on the Earth Simulator by vectorization and parallelization. The dynamical features of HbA were investigated by evaluating root-mean-square deviations from the initial X-ray structure (an oxy T-state hemoglobin with PDB code: 1GZX) and root-mean-square fluctuations around the average structure from the simulation trajectories. The four subunits (alpha(1), alpha(2), beta(1), and beta(2)) of HbA maintained structures close to their respective X-ray structures during the simulations even though no constraints were applied to HbA in the simulations. Dimers alpha(1)beta(1) and alpha(2)beta(2) also maintained structures close to their respective X-ray structures while they moved relative to each other like two stacks of dumbbells. The distance between the two dimers (alpha(1)beta(1) and alpha(2)beta(2)) increased by 2 A (7.4%) in the initial 15 ns and stably fluctuated at the distance with the standard deviation 0.2 A. The relative orientation of the two dimers fluctuated between the initial X-ray angle -100 degrees and about -105 degrees with intervals of a few tens of nanoseconds.

  8. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  9. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  10. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    PubMed

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  11. What Can Earth Paleoclimates Reveal About the Resiliency of Habitable States? An Example from the Neoproterozoic Snowball Earth

    NASA Astrophysics Data System (ADS)

    Sohl, L.

    2014-04-01

    The Neoproterozoic "Snowball Earth" glaciations ( 750-635 Ma) have been a special focus for outer habitable zone investigations, owing in large part to a captivating and controversial hypothesis suggesting that Earth may have only narrowly escaped a runaway icehouse state on multiple occasions (a.k.a. "the hard snowball"; Hoffman and Schrag 2001). A review of climate simulations exploring snowball inception (Godderis et al. 2011) reveals that a broad range of models (EBMs, EMICs and AGCMs) tend to yield hard snowball solutions, whereas models with greater 3-D dynamic response capabilities (AOGCMs) typically do not, unless some of their climate feedback responses (e.g., wind-driven ocean circulation, cloud forcings) are disabled (Poulsen and Jacobs 2004). This finding raises the likelihood that models incorporating dynamic climate feedbacks are essential to understanding how much flexibility there may be in the definition of a planet's habitable zone boundaries for a given point in its history. In the first of a series of new Snowball Earth simulations, we use the NASA/GISS ModelE2 Global Climate Model - a 3-D coupled atmosphere/ocean model with dynamic sea ice response - to explore the impacts of wind-driven ocean circulation, clouds and deep ocean circulation on the sea ice front when solar luminosity and atmospheric carbon dioxide are reduced to Neoproterozoic levels (solar = 94%, CO2 = 40 ppmv). The simulation includes a realistic Neoproterozoic land mass distribution, which is concentrated at mid- to tropical latitudes. After 300 years, the sea ice front is established near 30 degrees latitude, and after 600 years it remains stable. As with earlier coupled model simulations we conclude that runaway glacial states would have been difficult to achieve during the Neoproterozoic, and would be more likely to have occurred during earlier times in Earth history when solar luminosity was less. Inclusion of dynamic climate feedback capabilities in habitable zone

  12. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.

    PubMed

    Hu, Qingyang; Kim, Duck Young; Yang, Wenge; Yang, Liuxiang; Meng, Yue; Zhang, Li; Mao, Ho-Kwang

    2016-06-09

    The distribution, accumulation and circulation of oxygen and hydrogen in Earth's interior dictate the geochemical evolution of the hydrosphere, atmosphere and biosphere. The oxygen-rich atmosphere and iron-rich core represent two end-members of the oxygen-iron (O-Fe) system, overlapping with the entire pressure-temperature-composition range of the planet. The extreme pressure and temperature conditions of the deep interior alter the oxidation states, spin states and phase stabilities of iron oxides, creating new stoichiometries, such as Fe4O5 (ref. 5) and Fe5O6 (ref. 6). Such interactions between O and Fe dictate Earth's formation, the separation of the core and mantle, and the evolution of the atmosphere. Iron, in its multiple oxidation states, controls the oxygen fugacity and oxygen budget, with hydrogen having a key role in the reaction of Fe and O (causing iron to rust in humid air). Here we use first-principles calculations and experiments to identify a highly stable, pyrite-structured iron oxide (FeO2) at 76 gigapascals and 1,800 kelvin that holds an excessive amount of oxygen. We show that the mineral goethite, FeOOH, which exists ubiquitously as 'rust' and is concentrated in bog iron ore, decomposes under the deep lower-mantle conditions to form FeO2 and release H2. The reaction could cause accumulation of the heavy FeO2-bearing patches in the deep lower mantle, upward migration of hydrogen, and separation of the oxygen and hydrogen cycles. This process provides an alternative interpretation for the origin of seismic and geochemical anomalies in the deep lower mantle, as well as a sporadic O2 source for the Great Oxidation Event over two billion years ago that created the present oxygen-rich atmosphere.

  13. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  14. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth

    NASA Astrophysics Data System (ADS)

    Islamov, R. R.; Mishagina, E. A.; Tyapkina, O. V.; Shajmardanova, G. F.; Eremeev, A. A.; Kozlovskaya, I. B.; Nikolskij, E. E.; Grigorjev, A. I.

    2011-05-01

    It was previously shown that different cell types in vivo and in vitro may die via apoptosis under weightlessness conditions in space as well as in simulated hypogravity on the Earth. We assessed survivability of spinal motoneurons of rats after 35-day antiorthostatic hind limb suspension. Following weight bearing, unloading the total protein content in lumbar spinal cord is dropped by 21%. The electrophysiological studies of m. gastrocnemius revealed an elevated motoneurons' reflex excitability and conduction disturbances in the sciatic nerve axons. The number of myelinated fibers in the ventral root of experimental animals was insignificantly increased by 35-day of antiorthostatic hind limb suspension, although the retrograde axonal transport was significantly decreased during the first week of simulated hypogravity. The results of the immunohistochemical assay with antibodies against proapoptotic protein caspase 9 and cytotoxicity marker neuron specific nitric oxide synthase (nNOS) and the TUNEL staining did not reveal any signs of apoptosis in motoneurons of suspended and control animals. To examine the possible adaptation mechanisms activated in motoneurons in response to simulated hypogravity we investigated immunoexpression of Hsp25 and Hsp70 in lumbar spinal cord of the rats after 35-day antiorthostatic hind limb suspension. Comparative analysis of the immunohistochemical reaction with anti-Hsp25 antibodies revealed differential staining of motoneurons in intact and experimental animals. The density of immunoprecipitate with anti-Hsp25 antibodies was substantially higher in motoneurons of the 35-day suspended than control rats and the more intensive precipitate in this reaction was observed in motoneuron neuritis. Quantitative analysis of Hsp25 expression demonstrated an increase in the Hsp25 level by 95% in experimental rats compared to the control. The immunoexpression of Hsp70 found no qualitative and quantitative differences in control and experimental

  15. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  16. Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa

    NASA Astrophysics Data System (ADS)

    Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.

    2012-12-01

    We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical

  17. EarthEd Online: Open Source Online Software to Support Large Courses

    NASA Astrophysics Data System (ADS)

    Prothero, W. A.

    2003-12-01

    The purpose of the EarthEd Online software project is to support a modern instructional pedagogy in a large, college level, earth science course. It is an ongoing development project that has evolved in a large general education oceanography course over the last decade. Primary goals for the oceanography course are to support learners in acquiring a knowledge of science process, an appreciation for the relevance of science to society, and basic content knowledge. In order to support these goals, EarthEd incorporates: a) integrated access to various kinds of real earth data (and links to web-based data browsers), b) online discussions, live chat, with integrated graphics editing, linking, and upload, c) online writing, reviewing, and grading, d) online homework assignments, e) on demand grade calculation, and f) instructor grade entry and progress reports. The software was created using Macromedia Director. It is distributed to students on a CDROM and updates are downloaded and installed automatically. Data browsers for plate tectonics relevant data ("Our Dynamic Planet"), a virtual exploration of the East Pacific Rise, the World Ocean Atlas-98, and a fishing simulation game are integrated with the EarthEd software. The system is modular which allows new capabilities, such as new data browsers, to be added. Student reactions to the software are positive overall. They are especially appreciative of the on demand grade computation capability. The online writing, commenting and grading is particularly effective in managing the large number of papers that get submitted. The TA's grade the papers, but the instructor can provide feedback to them as they grade the papers, and a record is maintained of all comments and rubric item grades. Commenting is made easy by simply "dragging" a selection of pre-defined comments into the student's text. Scoring is supported by an integrated scoring rubric. All assignments, rubrics, etc. are configured in text files that are downloaded

  18. Earth Science in the News.

    ERIC Educational Resources Information Center

    Jackson, Julia A.; Paty, Alma Hale

    2000-01-01

    Offers two activities to help students explore the geosciences during Earth Science Week. Uses a fossil collection simulation that has students digging through strata of newspaper. Presents an interdisciplinary research project that has students investigate the fossils, minerals, and rocks of their home state. (ASK)

  19. Tidal Distortion and Disruption of Earth-Crossing Asteriods

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bottke, William, Jr.

    1997-01-01

    We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.

  20. The Visibility of Earth Transits

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The recent detection of planetary transits of the solar-like star HD 209458 at a distance of 47 parsecs suggest that transits can reveal the presence of Jupiter-size planetary companions in the solar neighborhood. Recent space-based transit searches have achieved photometric precision within an order of magnitude of that required to detect the much smaller transit signal of an earth-size planet around a solar-size star. Laboratory experiments in the presence of realistic noise sources have shown that CCDs can achieve photometric precision adequate to detect the 9.6 E-5 dimming, of the Sun due to a transit of the Earth. Space-based solar irradiance monitoring has shown that the intrinsic variability of the Sun would not preclude such a detection. Transits of the Sun by the Earth would be detectable by observers that reside within a narrow band of sky positions near the ecliptic plane, if the observers possess current Earth epoch levels of technology and astronomical expertise. A catalog of candidate target stars, their properties, and simulations of the photometric Earth transit signal detectability at each target is presented.

  1. Electron hybrid simulations of whistler-mode chorus generation with real parameters in the Earth's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Katoh, Y.; Omura, Y.

    2016-12-01

    Whistler-mode chorus emissions play curial roles in the evolution of radiation belt electrons. Chorus emissions are narrow band emissions observed in the typical frequency range of 0.2 to 0.8 fce0 with a gap at half the fce0, where fce0 represents the electron gyrofrequency at the magnetic equator. The generation process of chorus has been explained by the nonlinear wave growth theory [see review by Omura et al., in AGU Monograph "Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, 2012] and has been reproduced by self-consistent numerical experiments [e.g., Katoh and Omura, GRL 2007, JGR 2011, 2013]. In the present study, we show the result of electron hybrid simulation of the generation process of whistler-mode chorus emissions under realistic initial conditions. We refer in-situ observations by Cluster [Santolik et al., 2003] for the initial parameters of energetic electrons and the spatial inhomogeneity of the background magnetic field. In the simulation results we observe chorus emissions with rising tones whose the spectral characteristics are consistent with the observation. We also find that the simulation results are consistently explained by the theoretically estimated threshold and optimum wave amplitudes of chorus elements based on the nonlinear wave growth theory. A series of simulations reveal properties of the chorus generation depending on the velocity distribution of energetic electrons [Katoh and Omura, JGR 2011] and the background magnetic field inhomogeneity [Katoh and Omura, JGR 2013]. These properties should be evaluated by comparison with in-situ and ground-based observations.

  2. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    Spaceship Earth Scientist (SES) Module, featuring an Earth Scientist expert discussing the science seen in the presentation. Hands-on activities such as sea ice melting simulations will be held with participants. Results from these first pilot education experiences will be presented at the 2011 AGU.

  3. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  4. Analysis of the operation of on farm emergency slaughter of bovine animals in the Republic of Ireland.

    PubMed

    McDermott, Paul; McKevitt, Aideen

    2015-01-01

    On Farm Emergency Slaughter (OFES) is the slaughter outside the slaughterhouse, of an otherwise healthy animal, which has suffered an accident that, for welfare reasons, prevented its transport to a slaughterhouse. The procedure is designed to prevent the transport of welfare compromised animals, which may have veterinary certification to slaughterhouses for Casualty Slaughter (CS), and provides an alternative to the euthanasia and disposal of injured animals that are otherwise fit for human consumption. The aim of this study was to analyse the operation of OFES in the Republic of Ireland between 1st January 2011 and 31st December 2013. Data were obtained from the Animal Identification and Movement electronic database of the Department of Agriculture, Food and the Marine. Two structured surveys were designed, one for Official Veterinarians (OVs) who work in slaughterhouses and the second for Private Veterinary Practitioners (PVPs) who work in food animal practice in the Republic of Ireland. Surveys were administered through SurveyMonkey. The total number of bovines slaughtered and the number that underwent OFES in Northern Ireland and the Netherlands were obtained from the Northern Ireland Department of Agriculture and Rural Development and the Netherlands Food and Consumer Safety Authority. OFES is neither widely available nor used in the Republic of Ireland. Results from the OV survey showed that Food Business Operators consider that facilitation of OFES would be detrimental to business. Data from the 5 slaughterhouses which offer OFES showed that acceptance criteria are not standardised. Results from the PVP survey showed that 77 % (n = 79) of PVPs were willing to certify animals for OFES. Fifty four percent (n = 49) were aware of slaughterhouses in their area that provided the service of OFES and 64 % (n = 57) stated a willingness to certify the transport of acutely injured animals to slaughterhouses for CS. Data from the Northern Ireland

  5. Thermodynamic Vent System Test in a Low Earth Orbit Simulation

    NASA Technical Reports Server (NTRS)

    VanOverbeke, Thomas J.

    2004-01-01

    A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.

  6. Effects of simulated rare earth recycling wastewaters on biological nitrification

    DOE PAGES

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali; ...

    2015-07-16

    Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.more » europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.« less

  7. Effects of simulated rare earth recycling wastewaters on biological nitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Yoshiko; Barnes, Joni; Eslamimanesh, Ali

    Current efforts to increase domestic availability of rare-earth element (REE) supplies by recycling and expanded ore processing efforts will result in increased generation of associated wastewaters. In some cases disposal to a sewage treatment plant may be favored but plant performance must be maintained. To assess the potential effects of such wastewaters on biological wastewater treatment, model nitrifying organisms Nitrosomonas europaea and Nitrobacter winogradskyi were exposed to simulated wastewaters containing varying levels of yttrium or europium (10, 50 and 100 ppm), and the REE extractant tributyl phosphate (TBP, at 0.1 g/L). Y and Eu additions above 10 ppm inhibited N.more » europaea activity, even when initially virtually all of the REE was insoluble. The provision of TBP together with Eu increased inhibition of nitrite production by the N. europaea, although TBP alone did not substantially alter nitrifying activity N. winogradskyi was more sensitive to the stimulated wastewaters, with even 10 ppm Eu or Y inducing significant inhibition, and a complete shutdown of nitrifying activity occurred in the presence of the TBP. To analyze the availability of REEs in aqueous solutions, REE solubility has been calculated using the previously developed MSE (Mixed-Solvent Electrolyte) thermodynamic model. The model calculations reveal a strong pH dependence of solubility, which is typically controlled by the precipitation of REE hydroxides but may also be influenced by the formation of a phosphate phase.« less

  8. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  9. Omija fruit ethanol extract improves adiposity and related metabolic disturbances in mice fed a high-fat diet.

    PubMed

    Park, Hyo Jin; Kim, Hye-Jin; Kim, Sang Ryong; Choi, Myung-Sook; Jung, Un Ju

    2017-03-01

    This study investigated the biological and molecular mechanisms underlying the antiobesity effect of omija fruit ethanol extract (OFE) in mice fed a high-fat diet (HFD). C57BL/6J mice were fed an HFD (20% fat, w/w) with or without OFE (500 mg/kg body weight) for 16 weeks. Dietary OFE significantly increased brown adipose tissue weight and energy expenditure while concomitantly decreasing white adipose tissue (WAT) weight and adipocyte size by up-regulating the expression of brown fat-selective genes in WAT. OFE also improved hepatic steatosis and dyslipidemia by enhancing hepatic fatty acid oxidation-related enzymes activity and fecal lipid excretion. In addition to steatosis, OFE decreased the expression of pro-inflammatory genes in the liver. Moreover, OFE improved glucose tolerance and lowered plasma glucose, insulin and homeostasis model assessment of insulin resistance, which may be linked to decreases in the activity of hepatic gluconeogenic enzymes and the circulating level of gastric inhibitory polypeptide. These findings suggest that OFE may protect against diet-induced adiposity and related metabolic disturbances by controlling brown-like transformation of WAT, fatty acid oxidation, inflammation in the liver and fecal lipid excretion. Improved insulin resistance may be also associated with its antiobesity effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  11. Electrochemistry of Prebiotic Early Earth Hydrothermal Chimney Systems

    NASA Astrophysics Data System (ADS)

    Hermis, N.; Barge, L. M.; Chin, K. B.; LeBlanc, G.; Cameron, R.

    2017-12-01

    Hydrothermal chimneys are self-organizing chemical garden precipitates generated from geochemical disequilibria within sea-vent environments, and have been proposed as a possible setting for the emergence of life because they contain mineral catalysts and transect ambient pH / Eh / chemical gradients [1]. We simulated the growth of hydrothermal chimneys in early Earth vent systems by using different hydrothermal simulants such as sodium sulfide (optionally doped with organic molecules) which were injected into an early Earth ocean simulant containing dissolved ferrous iron, nickel, and bicarbonate [2]. Chimneys on the early Earth would have constituted flow-through reactors, likely containing Fe/Ni-sulfide catalysts that could have driven proto-metabolic electrochemical reactions. The electrochemical activity of the chimney system was characterized non-invasively by placing electrodes at different locations across the chimney wall and in the ocean to analyze the bulk properties of surface charge potential in the chimney / ocean / hydrothermal fluid system. We performed in-situ characterization of the chimney using electrochemical impedance spectroscopy (EIS) which allowed us to observe the changes in physio-chemical behavior of the system through electrical spectra of capacitance and impedance over a wide range of frequencies during the metal sulfide chimney growth. The electrochemical properties of hydrothermal chimneys in natural systems persist due to the disequilibria maintained between the ocean and hydrothermal fluid. When the injection in our experiment (analogous to fluid flow in a vent) stopped, we observed a corresponding decline in open circuit voltage across the chimney wall, though the impedance of the precipitate remained lor. Further work is needed to characterize the electrochemistry of simulated chimney systems by controlling response factors such as electrode geometry and environmental conditions, in order to simulate electrochemical reactions

  12. Integrated Earth System Model (iESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter Edmond; Mao, Jiafu; Shi, Xiaoying

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  13. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  14. Factors controlling the initiation of Snowball Earth events

    NASA Astrophysics Data System (ADS)

    Voigt, A.

    2012-12-01

    During the Neoproterozoic glaciations tropical continents were covered by active glaciers that extended down to sea level. To explain these glaciers, the Snowball Earth hypothesis assumes that oceans were completely sea-ice covered during these glaciation, but there is an ongoing debate whether or not some regions of the tropical oceans remained open. In this talk, I will describe past and ongoing climate modelling activities with the comprehensive coupled climate model ECHAM5/MPI-OM that identify and compare factors that control the initiation of Snowball Earth events. I first show that shifting the continents from their present-day location to their Marinoan (635 My BP) low-latitude location increases the planetary albedo, cools the climate, and thereby allows Snowball Earth initiation at higher levels of total solar irradiance and atmospheric CO2. I then present simulations with successively lowered bare sea-ice albedo, disabled sea-ice dynamics, and switched-off ocean heat transport. These simulations show that both lowering the bare sea-ice albedo and disabling sea-ice dynamics increase the critical sea-ice cover in ECHAM5/MPI-OM, but sea-ice dynamics due to strong equatorward sea-ice transport have a much larger influence on the critical CO2. Disabling sea-ice transport allows a state with sea-ice margin at 10 deg latitude by virtue of the Jormungand mechanism. The accumulation of snow on land, in combination with tropical land temperatures below or close to freezing, suggests that tropical land glaciers could easily form in such a state. However, in contrast to aquaplanet simulations without ocean heat transport, there is no sign of a Jormungand hysteresis in the coupled simulations. Ocean heat transport is not responsible for the lack of a Jormungand hysteresis in the coupled simulations. By relating the above findings to previous studies, I will outline promising future avenues of research on the initiation of Snowball Earth events. In particular, an

  15. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    NASA Astrophysics Data System (ADS)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  16. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  17. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  18. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  19. Simulation's Ensemble is Better Than Ensemble Simulation

    NASA Astrophysics Data System (ADS)

    Yan, X.

    2017-12-01

    Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.

  20. Sheath effects observed on a 10 meter high voltage panel in simulated low earth orbit plasma

    NASA Technical Reports Server (NTRS)

    Mccox, J. E.; Konradi, A.

    1979-01-01

    A large (1m x 10m) flat surface of conductive material was biased to high voltage (+ or - 3000 V) to simulate the behavior of a large solar array in low earth orbit. The model array was operated in a plasma environment of 1,000 to 1,000,000/cu cm, with sufficient free space around it for the resulting plasma sheaths to develop unimpeded for 5-10 meters into the surrounding plasma. Measurements of the resulting sheath thickness were obtained. The observed thickness varied approximately as V to the 3/4 power and N to the 1/2 power. This effect appears to limit total current leakage from the test array until sheath dimensions exceed about 1 meter. Total leakage current was also measured with the array.

  1. Characteristics of Quasi-Biennial Oscillation simulation in the Meteorological Research Institute earth system model

    NASA Astrophysics Data System (ADS)

    Yoshida, K.; Naoe, H.

    2016-12-01

    Whether climate models drive Quasi-Biennial Oscillation (QBO) appropriately is important to assess QBO impact on climate change such as global warming and solar related variation. However, there were few models generating QBO in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This study focuses on dynamical structure of the QBO and its sensitivity to background wind pattern and model configuration. We present preliminary results of experiments designed by "Towards Improving the QBO in Global Climate Models (QBOi)", which is derived from the Stratosphere-troposphere processes and their role in climate (SPARC), in the Meteorological Research Institute earth system model, MRI-ESM2. The simulations were performed in present-day climate condition, repeated annual cycle condition with various CO2 level and sea surface temperatures, and QBO hindcast. In the present climate simulation, zonal wind in the equatorial stratosphere generally exhibits realistic behavior of the QBO. Equatorial zonal wind variability associated with QBO is overestimated in upper stratosphere and underestimated in lower stratosphere. In the MRI-ESM2, the QBO behavior is mainly driven by gravity wave drag parametrization (GWDP) introduced in Hines (1997). Comparing to reanalyses, shortage of resolved wave forcing is found especially in equatorial lower stratosphere. These discrepancies can be attributed to difference in wave forcing, background wind pattern and model configuration. We intend to show results of additional sensitivity experiments to examine how model configuration and background wind pattern affect resolved wave source, wave propagation characteristics, and QBO behavior.

  2. Vegetation-climate feedback causes reduced precipitation in CMIP5 regional Earth system model simulation over Africa

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick

    2013-04-01

    Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and

  3. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses A 2O–2MO–4SiO 2 with molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-05-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observedmore » that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.« less

  4. Coupling dry deposition to vegetation phenology in the Community Earth System Model: Implications for the simulation of surface O3

    NASA Astrophysics Data System (ADS)

    Val Martin, M.; Heald, C. L.; Arnold, S. R.

    2014-04-01

    Dry deposition is an important removal process controlling surface ozone. We examine the representation of this ozone loss mechanism in the Community Earth System Model. We first correct the dry deposition parameterization by coupling the leaf and stomatal vegetation resistances to the leaf area index, an omission which has adversely impacted over a decade of ozone simulations using both the Model for Ozone and Related chemical Tracers (MOZART) and Community Atmospheric Model-Chem (CAM-Chem) global models. We show that this correction increases O3 dry deposition velocities over vegetated regions and improves the simulated seasonality in this loss process. This enhanced removal reduces the previously reported bias in summertime surface O3 simulated over eastern U.S. and Europe. We further optimize the parameterization by scaling down the stomatal resistance used in the Community Land Model to observed values. This in turn further improves the simulation of dry deposition velocity of O3, particularly over broadleaf forested regions. The summertime surface O3 bias is reduced from 30 ppb to 14 ppb over eastern U.S. and 13 ppb to 5 ppb over Europe from the standard to the optimized scheme, respectively. O3 deposition processes must therefore be accurately coupled to vegetation phenology within 3-D atmospheric models, as a first step toward improving surface O3 and simulating O3 responses to future and past vegetation changes.

  5. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  6. A primordial origin for the compositional similarity between the Earth and the Moon.

    PubMed

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B; Raymond, Sean N

    2015-04-09

    Most of the properties of the Earth-Moon system can be explained by a collision between a planetary embryo (giant impactor) and the growing Earth late in the accretion process. Simulations show that most of the material that eventually aggregates to form the Moon originates from the impactor. However, analysis of the terrestrial and lunar isotopic compositions show them to be highly similar. In contrast, the compositions of other Solar System bodies are significantly different from those of the Earth and Moon, suggesting that different Solar System bodies have distinct compositions. This challenges the giant impact scenario, because the Moon-forming impactor must then also be thought to have a composition different from that of the proto-Earth. Here we track the feeding zones of growing planets in a suite of simulations of planetary accretion, to measure the composition of Moon-forming impactors. We find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are statistically more similar to the planets they impact. A large fraction of planet-impactor pairs have almost identical compositions. Thus, the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

  7. SciDAC GSEP: Gyrokinetic Simulation of Energetic Particle Turbulence and Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhihong

    Energetic particle (EP) confinement is a key physics issue for burning plasma experiment ITER, the crucial next step in the quest for clean and abundant energy, since ignition relies on self-heating by energetic fusion products (α-particles). Due to the strong coupling of EP with burning thermal plasmas, plasma confinement property in the ignition regime is one of the most uncertain factors when extrapolating from existing fusion devices to the ITER tokamak. EP population in current tokamaks are mostly produced by auxiliary heating such as neutral beam injection (NBI) and radio frequency (RF) heating. Remarkable progress in developing comprehensive EP simulationmore » codes and understanding basic EP physics has been made by two concurrent SciDAC EP projects GSEP funded by the Department of Energy (DOE) Office of Fusion Energy Science (OFES), which have successfully established gyrokinetic turbulence simulation as a necessary paradigm shift for studying the EP confinement in burning plasmas. Verification and validation have rapidly advanced through close collaborations between simulation, theory, and experiment. Furthermore, productive collaborations with computational scientists have enabled EP simulation codes to effectively utilize current petascale computers and emerging exascale computers. We review here key physics progress in the GSEP projects regarding verification and validation of gyrokinetic simulations, nonlinear EP physics, EP coupling with thermal plasmas, and reduced EP transport models. Advances in high performance computing through collaborations with computational scientists that enable these large scale electromagnetic simulations are also highlighted. These results have been widely disseminated in numerous peer-reviewed publications including many Phys. Rev. Lett. papers and many invited presentations at prominent fusion conferences such as the biennial International Atomic Energy Agency (IAEA) Fusion Energy Conference and the annual meeting

  8. Simulation of the geomagnetic field experienced by the International Space Station in its revolution around the Earth: Effects on psychophysiological responses to affective picture viewing

    NASA Astrophysics Data System (ADS)

    Del Seppia, C.; Mezzasalma, L.; Messerotti, M.; Cordelli, A.; Ghione, S.

    2006-02-01

    There is evidence suggesting that exposure to an abnormal magnetic environment may produce psychophysiological effects related to abnormalities in responses to stress. This may be of relevance for space medicine where astronauts are exposed to a magnetic field different from that exerted by the Earth. Aim of this study was to assess how the exposure of the head to a magnetic field simulating the one encountered by the International Space Station (ISS) during a single orbit (90 min) around the Earth affects the cardiovascular and psychophysiological parameters. Twenty-four human volunteers were studied double blindly in random order under sham and magnetic exposure. During exposure, the persons were shown a set of pictures of different emotional content while subjective self-rating, skin conductance (SC), blood pressure (BP), and heart rate (HR) were measured. In addition, BP, HR, and tooth pain threshold were assessed before and after exposure. While subjects were under magnetic exposure, skin conductance was strongly differentiated (F|2,36 = 22.927; p = 0.0001), being high during emotionally involving (positive and negative) pictures and low during neutral pictures. Conversely, when subjects were under sham exposure, no significant differences were observed. There was, however, a trend for higher heart rate during picture viewing under magnetic exposure as compared to sham exposure. No effects were found for the other variables. These results suggest that an abnormal magnetic field that simulates the one encountered by ISS orbiting around the Earth may enhance autonomic response to emotional stimuli.

  9. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  10. Spacecraft orbit/earth scan derivations, associated APL program, and application to IMP-6

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1971-01-01

    The derivation of a time shared, remote site, demand processed computer program is discussed. The computer program analyzes the effects of selected orbit, attitude, and spacecraft parameters on earth sensor detections of earth. For prelaunch analysis, the program may be used to simulate effects in nominal parameters which are used in preparing attitude data processing programs. After launch, comparison of results from a simulation and from satellite data will produce deviations helpful in isolating problems.

  11. Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.

    2016-12-01

    The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information

  12. Smarter Earth Science Data System

    NASA Technical Reports Server (NTRS)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  13. Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment

    NASA Astrophysics Data System (ADS)

    Azema-Rovira, Monica

    Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.

  14. Effect of simulated Earth reentry exposure on mechanical properties of several oxide dispersion strengthened and superalloy sheet materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The effects of simulated multiple reentry into the earth's atmosphere on the mechanical properties of several high temperature metallic sheet materials were evaluated. The materials included five tin-gage (nominally 0.025- or 0.037-cm) oxide dispersion strengthened (ODS) alloys and two thin-gage (nominally 0.037-cm) superalloys. Multiple reentry conditions were simulated through cyclic Plasma Arc Tunnel (PAT) exposure. PAT exposure generally consisted of 100 cycles of 600 second duration at 1255, 1366, or 1477 K in a Mach 4.6 airstream with an impact pressure of nominally 800 N/m2. PAT exposure generally produced a uniform oxide scale, oxide pits or intergranular oxidation, Kirkendall porosity, and alloy depletion zones except for the aluminum-containing ODS alloys. Only a uniform oxide scale was formed on the aluminum-containing ODS alloys. PAT exposure did not significantly affect the mechanical properties of the thin-gage (nominally 0.025- or 0.037-cm) alloys evaluated. Thus it appears that the microstructural changes produced by Plasma Arc Tunnel exposure has little influence on mechanical properties.

  15. China's Rare Earth Supply Chain: Illegal Production, and Response to new Cerium Demand

    NASA Astrophysics Data System (ADS)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-07-01

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China's supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructed a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the US market starting from 2018. Results showed that market share of the illegal sector has grown since 2007-2015, ranging between 22% and 25% of China's rare earth supply, translating into 59-65% illegal heavy rare earths and 14-16% illegal light rare earths. There will be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Finally, we illustrate revenue streams for different ore compositions in China in 2015.

  16. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  17. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  18. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  19. Accretion disc origin of the Earth's water.

    PubMed

    Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario

    2013-07-13

    Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.

  20. User data dissemination concepts for earth resources

    NASA Technical Reports Server (NTRS)

    Davies, R.; Scott, M.; Mitchell, C.; Torbett, A.

    1976-01-01

    Domestic data dissemination networks for earth-resources data in the 1985-1995 time frame were evaluated. The following topics were addressed: (1) earth-resources data sources and expected data volumes, (2) future user demand in terms of data volume and timeliness, (3) space-to-space and earth point-to-point transmission link requirements and implementation, (4) preprocessing requirements and implementation, (5) network costs, and (6) technological development to support this implementation. This study was parametric in that the data input (supply) was varied by a factor of about fifteen while the user request (demand) was varied by a factor of about nineteen. Correspondingly, the time from observation to delivery to the user was varied. This parametric evaluation was performed by a computer simulation that was based on network alternatives and resulted in preliminary transmission and preprocessing requirements. The earth-resource data sources considered were: shuttle sorties, synchronous satellites (e.g., SEOS), aircraft, and satellites in polar orbits.

  1. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  2. Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models

    NASA Technical Reports Server (NTRS)

    Bryan, Frank

    2001-01-01

    Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.

  3. Parabolic flights as Earth analogue for surface processes on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2017-04-01

    The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.

  4. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  5. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  6. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    NASA Technical Reports Server (NTRS)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  7. Effects of snow grain shape on climate simulations: sensitivity tests with the Norwegian Earth System Model

    NASA Astrophysics Data System (ADS)

    Räisänen, Petri; Makkonen, Risto; Kirkevåg, Alf; Debernard, Jens B.

    2017-12-01

    Snow consists of non-spherical grains of various shapes and sizes. Still, in radiative transfer calculations, snow grains are often treated as spherical. This also applies to the computation of snow albedo in the Snow, Ice, and Aerosol Radiation (SNICAR) model and in the Los Alamos sea ice model, version 4 (CICE4), both of which are employed in the Community Earth System Model and in the Norwegian Earth System Model (NorESM). In this study, we evaluate the effect of snow grain shape on climate simulated by NorESM in a slab ocean configuration of the model. An experiment with spherical snow grains (SPH) is compared with another (NONSPH) in which the snow shortwave single-scattering properties are based on a combination of three non-spherical snow grain shapes optimized using measurements of angular scattering by blowing snow. The key difference between these treatments is that the asymmetry parameter is smaller in the non-spherical case (0.77-0.78 in the visible region) than in the spherical case ( ≈ 0.89). Therefore, for the same effective snow grain size (or equivalently, the same specific projected area), the snow broadband albedo is higher when assuming non-spherical rather than spherical snow grains, typically by 0.02-0.03. Considering the spherical case as the baseline, this results in an instantaneous negative change in net shortwave radiation with a global-mean top-of-the-model value of ca. -0.22 W m-2. Although this global-mean radiative effect is rather modest, the impacts on the climate simulated by NorESM are substantial. The global annual-mean 2 m air temperature in NONSPH is 1.17 K lower than in SPH, with substantially larger differences at high latitudes. The climatic response is amplified by strong snow and sea ice feedbacks. It is further demonstrated that the effect of snow grain shape could be largely offset by adjusting the snow grain size. When assuming non-spherical snow grains with the parameterized grain size increased by ca. 70 %, the

  8. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  9. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  10. Terra II--A Spaceship Earth Simulation for the Middle Grades

    ERIC Educational Resources Information Center

    Mastrude, Peggy

    1972-01-01

    The unit of study consists of four lessons based on the concept that the earth is a large system made up of many small systems (air, food, water, man, etc.). Complete procedures are included to study the environment, examine developing countries, determine interaction between peoples and nations. The problem solving excercise is an inquiry…

  11. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE PAGES

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  12. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  13. Simulation of Prebiotic Processing by Comet and Meteoroid Impact: Implications for Life on Early Earth and Other Planets

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.

    2003-01-01

    We develop a reacting flow model to simulate the shock induced chemistry of comets and meteoroids entering planetary atmospheres. Various atmospheric compositions comprising of simpler molecules (i.e., CH4, CO2, H2O, etc.) are investigated to determine the production efficiency of more complex prebiotic molecules as a function of composition, pressure, and entry velocity. The possible role of comets and meteoroids in creating the inventory of prebiotic material necessary for life on Early Earth is considered. Comets and meteoroids can also introduce new materials from the Interstellar Medium (ISM) to planetary atmospheres. The ablation of water from comets, introducing the element oxygen into Titan's atmosphere will also be considered and its implications for the formation of organic and prebiotic material.

  14. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Hyde, J. L.; Prior, T.; Matney, Mark

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 m and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 m.

  15. Simulation of Micron-Sized Debris Populations in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Matney, M.; Liou, J.-C.; Hyde, J. L.; Prior, T. G.

    2010-01-01

    The update of ORDEM2000, the NASA Orbital Debris Engineering Model, to its new version . ORDEM2010, is nearly complete. As a part of the ORDEM upgrade, this paper addresses the simulation of micro-debris (greater than 10 micron and smaller than 1 mm in size) populations in low Earth orbit. The principal data used in the modeling of the micron-sized debris populations are in-situ hypervelocity impact records, accumulated in post-flight damage surveys on the space-exposed surfaces of returned spacecrafts. The development of the micro-debris model populations follows the general approach to deriving other ORDEM2010-required input populations for various components and types of debris. This paper describes the key elements and major steps in the statistical inference of the ORDEM2010 micro-debris populations. A crucial step is the construction of a degradation/ejecta source model to provide prior information on the micron-sized objects (such as orbital and object-size distributions). Another critical step is to link model populations with data, which is rather involved. It demands detailed information on area-time/directionality for all the space-exposed elements of a shuttle orbiter and damage laws, which relate impact damage with the physical properties of a projectile and impact conditions such as impact angle and velocity. Also needed are model-predicted debris fluxes as a function of object size and impact velocity from all possible directions. In spite of the very limited quantity of the available shuttle impact data, the population-derivation process is satisfactorily stable. Final modeling results obtained from shuttle window and radiator impact data are reasonably convergent and consistent, especially for the debris populations with object-size thresholds at 10 and 100 micron.

  16. Southern Ocean Open Ocean Polynyas in Observations and from a Low- and a High-Resolution Fully-Coupled Earth System Model Simulation

    NASA Astrophysics Data System (ADS)

    Veneziani, C.; Kurtakoti, P. K.; Weijer, W.; Stoessel, A.

    2016-12-01

    In contrast to their better known coastal counterpart, open ocean polynyas (OOPs) form through complex driving mechanisms, involving pre-conditioning of the water column, external forcing and internal ocean dynamics, and are therefore much more elusive and less predictable than coastal polynyas. Yet, their impact on bottom water formation and the Meridional Overturning Circulation could prove substantial. Here, we characterize the formation of Southern Ocean OOPs by analyzing the full satellite NASA microwave imager and radiometer (SSMI/SMMR) data record from 1972 to present day. We repeat the same analysis within the low-resolution (LR) and high-resolution (HR) fully-coupled Earth System Model simulations that are part of the Accelerated Climate Model for Energy (ACME) v0 baseline experiments. The focus is on two OOPs that are more consistently seen in observations: the Maud Rise and the Weddell Sea polynyas. Results show that the LR simulation is unable to reproduce any OOP over the 195 years of its duration, while both Maud Rise and Weddell Sea polynyas are seen in the HR simulation, with extents similar to observations'. We explore possible mechanisms that would explain the asymmetric behavior, including topographic processes, eddy shedding events, and different water column stratification between the two simulations.

  17. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  18. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  19. Low cost Earth attitude sensor

    NASA Astrophysics Data System (ADS)

    Liberati, Fabrizio; Perrotta, Giorgio; Verzegnassi, Fulvia

    2017-11-01

    A patent-pending, low-cost, moderate performance, Earth Attitude Sensor for LEO satellites is described in this paper. The paper deals with the system concepts, the technology adopted and the simulation results. The sensor comprises three or four narrow field of view mini telescopes pointed towards the Earth edge to detect and measure the variation of the off-nadir angle of the Earth-to-black sky transition using thermopile detectors suitably placed in the foci of the optical min telescopes. The system's innovation consists in the opto-mechanical configuration adopted that is sturdy and has no moving parts being , thus, inherently reliable. In addition, with a view to reducing production costs, the sensor does without hi-rel and is instead mainly based on COTS parts suitably chosen. Besides it is flexible and can be adapted to perform attitude measurement onboard spacecraft flying in orbits other than LEO with a minimum of modifications to the basic design. At present the sensor is under development by IMT and OptoService.

  20. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanromá, E.; Pallé, E.; López, R.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At thatmore » time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.« less

  1. Orbital Noise in the Earth System and Climate Fluctuations

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  2. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    NASA Astrophysics Data System (ADS)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    current working groups are focused toward the issues of Air Quality, Coastal Management, Disaster Management, Ecological Forecasting, Public Health, and Water Management. Initially, the Exchange will be linked to USGS's Geospatial One Stop portal, NASA's Earth Science Gateway, the Global Change Master Directory (GCMD) and the Eos ClearingHOuse (ECHO). The Earth Information Exchange will be an integrated system of distributed components that work together to expedite the process of Earth science and to increase the effective application of its results to benefit the public. Specifically the EIE is designed to provide a comprehensive inventory of Earth observation metadata by GEOSS and other commonly used issue area categories. To provide researchers, educators and policy makers with ready access to metadata over the web, via URLs. To provide researchers with access to data in common scientific data formats such as netCDF and HDF-EOS and common scientific data models such as swath, point and grid. To provide policy makers and others with an e-commerce marketplace where advanced data products (analysis tools, models, simulations, decision support products) can be found and acquired. And, to provide researchers, educators and policy makers with a broad inventory of the human resources associated with the Federation and its partners.

  3. Mechanism of Earth Fissures in Beijing,China

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Gong, H.; Gu, Z.; Wang, R.; Jia, S.; Li, X.

    2013-12-01

    Earth fissure is one of the natural hazards that can occur due to different mechanisms. The Beijing city, located in the north of North China Plain, China, has undergone extensive fissuring for the last twenty years. These fissures have caused serious damages to homes, farmlands and infrastructures. The previous investigation shows the distribution and direction of the major earth fissures mostly paralleled to the active fault, such as Huangzhuang-Gaoliying Fault. Hence, tectonic movements were thought to be the major cause of the fissuring in this region. But the subsidence caused by overdraft and other geological, hydrological and mechanical factors may also play important roles in forming earth fissure. The purpose of the work was to further explores the reason for the cause of the earth fissures and their mechanism of formations using field investigations, geophysical surveys, geotechnical tests and numerical analysis. The results indicated that over-extraction groundwater and differential subsidence are the major causes of the fissuring. The active faulting and fault zone provided or created an ideal condition for stress to accumulate. The earth fissures occur at times when the accumulated stress exceed the strength of soil or coupled with other process by which the strength of soil material is reduced. Survey and simulated results reveal the complex pattern of earth fissure including tensile deformation, vertical offset and rotation. The potential locations for future damage were also evaluated. Keywords: Earth Fissure; Mechanism; Beijing; Subsidence; tectonic movement; Geophysical survey

  4. Realtime Data to Enable Earth-Observing Sensor Web Capabilities

    NASA Astrophysics Data System (ADS)

    Seablom, M. S.

    2015-12-01

    Over the past decade NASA's Earth Science Technology Office (ESTO) has invested in new technologies for information systems to enhance the Earth-observing capabilities of satellites, aircraft, and ground-based in situ observations. One focus area has been to create a common infrastructure for coordinated measurements from multiple vantage points which could be commanded either manually or through autonomous means, such as from a numerical model. This paradigm became known as the sensor web, formally defined to be "a coherent set of heterogeneous, loosely-coupled, distributed observing nodes interconnected by a communications fabric that can collectively behave as a single dynamically adaptive and reconfigurable observing system". This would allow for adaptive targeting of rapidly evolving, transient, or variable meteorological features to improve our ability to monitor, understand, and predict their evolution. It would also enable measurements earmarked at critical regions of the atmosphere that are highly sensitive to data analysis errors, thus offering the potential for significant improvements in the predictive skill of numerical weather forecasts. ESTO's investment strategy was twofold. Recognizing that implementation of an operational sensor web would not only involve technical cost and risk but also would require changes to the culture of how flight missions were designed and operated, ESTO funded the development of a mission-planning simulator that would quantitatively assess the added value of coordinated observations. The simulator was designed to provide the capability to perform low-cost engineering and design trade studies using synthetic data generated by observing system simulation experiments (OSSEs). The second part of the investment strategy was to invest in prototype applications that implemented key features of a sensor web, with the dual goals of developing a sensor web reference architecture as well as supporting useful science activities that

  5. Energy Exascale Earth System Model (E3SM) Project Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, D.

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  6. Earth as a Tool for Astrobiology—A European Perspective

    NASA Astrophysics Data System (ADS)

    Martins, Zita; Cottin, Hervé; Kotler, Julia Michelle; Carrasco, Nathalie; Cockell, Charles S.; de la Torre Noetzel, Rosa; Demets, René; de Vera, Jean-Pierre; d'Hendecourt, Louis; Ehrenfreund, Pascale; Elsaesser, Andreas; Foing, Bernard; Onofri, Silvano; Quinn, Richard; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; Stalport, Fabien; ten Kate, Inge L.; van Loon, Jack J. W. A.; Westall, Frances

    2017-07-01

    Scientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201-243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing

  7. Simulated Van Allen Belts Generated by Plasma Thruster in Tank 5

    NASA Image and Video Library

    1966-09-21

    The model of the Earth housed inside Vacuum Tank 5 contained a coil which produced a magnetic field simulating that of the Earth. It was bombarded with a stream of ionized particles simulating the solar wind which impinges on the Earth's magnetic field. The bands or belts of luminous plasma seen in this image were suggestive of the Van Allen belts found around the Earth. Scientists at Lewis probed the plasma around the model and studied scaling laws in an attempt to find an explanation for the actual formation of the Van Allen belt.

  8. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  9. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  10. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  11. Mapping Near-Earth Hazards

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  12. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation

  13. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    NASA Technical Reports Server (NTRS)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  14. Determination of Earth orientation using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.

    1989-01-01

    Modern spacecraft tracking and navigation require highly accurate Earth-orientation parameters. For near-real-time applications, errors in these quantities and their extrapolated values are a significant error source. A globally distributed network of high-precision receivers observing the full Global Positioning System (GPS) configuration of 18 or more satellites may be an efficient and economical method for the rapid determination of short-term variations in Earth orientation. A covariance analysis using the JPL Orbit Analysis and Simulation Software (OASIS) was performed to evaluate the errors associated with GPS measurements of Earth orientation. These GPS measurements appear to be highly competitive with those from other techniques and can potentially yield frequent and reliable centimeter-level Earth-orientation information while simultaneously allowing the oversubscribed Deep Space Network (DSN) antennas to be used more for direct project support.

  15. 10 CFR 501.34 - Public hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or OFE may exercise discretion to control a hearing by denying, temporarily or permanently, the... affidavits or other writings; (3) Lacks the specific authority to represent the person seeking an OFE action...

  16. Occurrence of earth-like bodies in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1991-01-01

    Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.

  17. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    NASA Astrophysics Data System (ADS)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum

  18. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation.

    PubMed

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-14

    NH 3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH 3 from atmospheric N 2 and oceanic H 2 O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH 3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH 3 . Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N 2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  19. Strategy for earth explorers in global earth sciences

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The goal of the current NASA Earth System Science initiative is to obtain a comprehensive scientific understanding of the Earth as an integrated, dynamic system. The centerpiece of the Earth System Science initiative will be a set of instruments carried on polar orbiting platforms under the Earth Observing System program. An Earth Explorer program can open new vistas in the earth sciences, encourage innovation, and solve critical scientific problems. Specific missions must be rigorously shaped by the demands and opportunities of high quality science and must complement the Earth Observing System and the Mission to Planet Earth. The committee believes that the proposed Earth Explorer program provides a substantial opportunity for progress in the earth sciences, both through independent missions and through missions designed to complement the large scale platforms and international research programs that represent important national commitments. The strategy presented is intended to help ensure the success of the Earth Explorer program as a vital stimulant to the study of the planet.

  20. Low Earth orbital atomic oxygen environmental simulation facility for space materials evaluation

    NASA Technical Reports Server (NTRS)

    Stidham, Curtis R.; Banks, Bruce A.; Stueber, Thomas J.; Dever, Joyce A.; Rutledge, Sharon K.; Bruckner, Eric J.

    1993-01-01

    Simulation of low Earth orbit atomic oxygen for accelerated exposure in ground-based facilities is necessary for the durability evaluation of space power system component materials for Space Station Freedom (SSF) and future missions. A facility developed at the National Aeronautics and Space Administrations's (NASA) Lewis Research Center provides accelerated rates of exposure to a directed or scattered oxygen beam, vacuum ultraviolet (VUV) radiation, and offers in-situ optical characterization. The facility utilizes an electron-cyclotron resonance (ECR) plasma source to generate a low energy oxygen beam. Total hemispherical spectral reflectance of samples can be measured in situ over the wavelength range of 250 to 2500 nm. Deuterium lamps provide VUV radiation intensity levels in the 115 to 200 nm range of three to five equivalent suns. Retarding potential analyses show distributed ion energies below 30 electron volts (eV) for the operating conditions most suited for high flux, low energy testing. Peak ion energies are below the sputter threshold energy (approximately 30 eV) of the protective coatings on polymers that are evaluated in the facility, thus allowing long duration exposure without sputter erosion. Neutral species are expected to be at thermal energies of approximately .04 eV to .1 eV. The maximum effective flux level based on polyimide Kapton mass loss is 4.4 x 10 exp 6 atoms/((sq. cm)*s), thus providing a highly accelerated testing capability.

  1. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones

  2. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  3. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  4. Modeling Earth's Ring Current Using The CIMI Model

    NASA Astrophysics Data System (ADS)

    Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.

    2015-12-01

    Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.

  5. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  6. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  7. NASA/NOAA/AMS Earth Science Electronic Theater

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    Selections from the following very large Earth science observed & simulated datasets shown from: Historical: GOES-10 & AVHRR, SeaWIFS, TRMM, Meteosat, GMS, FY2, and ADEOS. and Simulated: EOS-AM1, Landsat 7, Astrovision, and 3D numerical storm model. Also highlights of the 1998 Hurricane & Severe Storm Seasons will be reviewed. A spectacular animations of La Nina season hurricanes: Bonnie, Georges, etc. 5000 frame 5-min GOES 10 continuous 28 day animation of the'98 Spring tornadic thunderstorm season and other special GOES test datasets will be shown.

  8. A climate simulation of the first millennium AD using a comprehensive Earth System Model

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Zorita, Eduardo

    2014-05-01

    Investigations of past climate using fully coupled comprehensive Earth System Models are restricted by the large computational costs of these simulations. Here we present first results from an on-going simulation with the MPI-ESM-P starting in year 100 BC. The simulation is forced with changes in orbital forcing and long-term solar variations augmented by a synthetic 11-year cycle including an interactive ozone cycle. For the first time also changes in volcanic activity are implemented based on the reconstruction method by Crowley and Unterman (2012). The basis of the extended volcanic forcing in terms of aerosol optical depth and effective radius are new sulfate estimations from ice cores from Greenland (NEEM) and Antarctica (WAIS) presented by Sigl et al. (2013). Because the NEEM record only reaches back as far as 79 AD, the time until 100 BC was filled by earlier information contained in the Dye 3 and GRIP record (Clausen et al., 1997). Compared to the 2nd millennium AD, the first millennium does however show a considerably reduced amount of large explosive tropical eruptions. On hemispheric and global scale the large outbreaks around the years 530 and 740 AD are well reflected as negative temperature anomalies. The 79 AD Vesuvius eruption does not however produce a pronounced hemispheric signal. The amount of sulphate ejected into the stratosphere may have been too low for a sustained hemispheric-scale cooling. The large eruption of 530 AD (so called 'mystic cloud') is however well reflected within the temperature evolution and is more pronounced over the northern hemisphere during summertime. On longer, multi-centennial, time scales, global temperatures show a slight decrease. This decrease is more pronounced over the NH hemisphere during JJA and is caused by the decline in the TOA short wave incoming radiation. Over the extratropical SH changes in orbital forcing are not reflected in temperature trends as clearly as over the NH due to the larger oceanic and

  9. Numerical Study of Solar Storms from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen

    2017-04-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  10. Scale-dependent performances of CMIP5 earth system models in simulating terrestrial vegetation carbon

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Luo, Y.; Yan, Y.; Hararuk, O.

    2013-12-01

    Mitigation of global changes will depend on reliable projection for the future situation. As the major tools to predict future climate, Earth System Models (ESMs) used in Coupled Model Intercomparison Project Phase 5 (CMIP5) for the IPCC Fifth Assessment Report have incorporated carbon cycle components, which account for the important fluxes of carbon between the ocean, atmosphere, and terrestrial biosphere carbon reservoirs; and therefore are expected to provide more detailed and more certain projections. However, ESMs are never perfect; and evaluating the ESMs can help us to identify uncertainties in prediction and give the priorities for model development. In this study, we benchmarked carbon in live vegetation in the terrestrial ecosystems simulated by 19 ESMs models from CMIP5 with an observationally estimated data set of global carbon vegetation pool 'Olson's Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: An Updated Database Using the GLC2000 Land Cover Product' by Gibbs (2006). Our aim is to evaluate the ability of ESMs to reproduce the global vegetation carbon pool at different scales and what are the possible causes for the bias. We found that the performance CMIP5 ESMs is very scale-dependent. While CESM1-BGC, CESM1-CAM5, CESM1-FASTCHEM and CESM1-WACCM, and NorESM1-M and NorESM1-ME (they share the same model structure) have very similar global sums with the observation data but they usually perform poorly at grid cell and biome scale. In contrast, MIROC-ESM and MIROC-ESM-CHEM simulate the best on at grid cell and biome scale but have larger differences in global sums than others. Our results will help improve CMIP5 ESMs for more reliable prediction.

  11. Adsorption Behavior of Rare Earth Metal Cations in the Interlayer Space of γ-ZrP.

    PubMed

    Takei, Takahiro; Iidzuka, Kiyoaki; Miura, Akira; Yanagida, Sayaka; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-10-04

    Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.

  12. Greenland ice sheet beyond 2100: Simulating its evolution and influence using the coupled climate-ice sheet model EC-Earth - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Christensen, J. H.; Madsen, M. S.; Ringgaard, I. M.; Petersen, R. A.; Langen, P. P.

    2017-12-01

    Greenland ice sheet (GrIS) is observed undergoing a rapid change in the recent decades, with an increasing area of surface melting and ablation and a speeding mass loss. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems incorporating with an explicit and physically consistent ice sheet module. In this work we study the GrIS evolution and its interaction with the climate system using a fully coupled global climate model with a dynamical ice sheet model for the GrIS. The coupled model system, EC-EARTH - PISM, consisting of the atmosphere-ocean-sea ice model system EC-EARTH, and the Parallel Ice Sheet Model (PISM), has been employed for a 1400-year simulation forced by CMIP5 historical forcing from 1850 to 2005 and continued along an extended RCP8.5 scenario with the forcing peaking at 2200 and stabilized hereafter. The simulation reveals that, following the anthropogenic forcing increase, the global mean surface temperature rapidly rises about 10 °C in the 21st and 22nd century. After the forcing stops increasing after 2200, the temperature change slows down and eventually stabilizes at about 12.5 °C above the preindustrial level. In response to the climate warming, the GrIS starts losing mass slowly in the 21st century, but the ice retreat accelerates substantially after 2100 and ice mass loss continues hereafter at a constant rate of approximately 0.5 m sea level rise equivalence per 100 years, even as the warming rate gradually levels off. Ultimately the volume and extent of GrIS reduce to less than half of its preindustrial value. To understand the interaction of GrIS with the climate system, the characteristics of atmospheric and oceanic circulation in the warm climate are analyzed. The circulation patterns associated with the negative surface mass balance that leads to GrIS retreat are investigated

  13. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  14. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  15. 10 CFR 500.2 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... electric powerplant that produces: (1) Electric power; and (2) Any other form of useful energy (such as... of 1981, Public Law 97-35. OFE means the Office of Fossil Energy of OFE. Offset means “emission...

  16. 10 CFR 500.2 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... electric powerplant that produces: (1) Electric power; and (2) Any other form of useful energy (such as... of 1981, Public Law 97-35. OFE means the Office of Fossil Energy of OFE. Offset means “emission...

  17. 10 CFR 500.2 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... electric powerplant that produces: (1) Electric power; and (2) Any other form of useful energy (such as... of 1981, Public Law 97-35. OFE means the Office of Fossil Energy of OFE. Offset means “emission...

  18. 10 CFR 500.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... electric powerplant that produces: (1) Electric power; and (2) Any other form of useful energy (such as... of 1981, Public Law 97-35. OFE means the Office of Fossil Energy of OFE. Offset means “emission...

  19. 10 CFR 500.2 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... electric powerplant that produces: (1) Electric power; and (2) Any other form of useful energy (such as... of 1981, Public Law 97-35. OFE means the Office of Fossil Energy of OFE. Offset means “emission...

  20. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; hide

    2017-01-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  1. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  2. Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Simpson, Christine M.

    2014-08-01

    We analyse the properties of the circumgalactic medium and the metal content of the stars comprising the central galaxy in eight hydrodynamical `zoom-in' simulations of disc galaxy formation. We use these properties as a benchmark for our model of galaxy formation physics implemented in the moving-mesh code AREPO, which succeeds in forming quite realistic late-type spirals in the set of `Aquarius' initial conditions of Milky-Way-sized haloes. Galactic winds significantly influence the morphology of the circumgalactic medium and induce bipolar features in the distribution of heavy elements. They also affect the thermodynamic properties of the circumgalactic gas by supplying an energy input that sustains its radiative losses. Although a significant fraction of the heavy elements are transferred from the central galaxy to the halo, and even beyond the virial radius, enough metals are retained by stars to yield a peak in their metallicity distributions at about Z⊙. All our default runs overestimate the stellar [O/Fe] ratio, an effect that we demonstrate can be rectified by an increase of the adopted Type Ia supernova rate. Nevertheless, the models have difficulty in producing stellar metallicity gradients of the same strength as observed in the Milky Way.

  3. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  4. A channel simulator design study

    NASA Technical Reports Server (NTRS)

    Devito, D. M.; Goutmann, M. M.; Harper, R. C.

    1971-01-01

    A propagation path simulator was designed for the channel between a Tracking and Data Relay Satellite in geostationary orbit and a user spacecraft orbiting the earth at an altitude between 200 and 4000 kilometers. The simulator is required to duplicate the time varying parameters of the propagation channel.

  5. Effects of Variable Eccentricity on the Climate of an Earth-like World

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  6. Heterogeneous Delivery of Silicate and Metal to the Earth via Large Planetesimals

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Canup, R. M.; Walker, R. J.

    2017-12-01

    Earth's mantle abundances of at least some highly siderophile elements, (HSE; Re, Os, Ir, Ru, Pt, Rh, Pd, and Au), are much higher than would result from metal-silicate equilibration during terrestrial core formation, and can be better explained as a result of late accretion of a minimum of 0.5% Earth's masses after core formation was complete. Traditional models assume that HSEs delivered by late projectiles completely mixed and chemically equilibrated with the Earth's mantle. This appears likely for undifferentiated, well-mixed projectiles, or for relatively small, differentiated projectiles. However several arguments suggest that late projectiles may have been large (> 1500 km in diameter) and differentiated, and in this case, portions of the projectile's core may merge with the Earth's core, rather than being mixed into the Earth's mantle. We investigate projectile mixing with a suite of SPH simulations of differentiated planetesimal colliding with the Earth. A range of outcomes emerge from our simulations suggesting that for large impactors (>1500 km), the delivery of HSE to the Earth's mantle may be disproportionate with the overall delivery of mass. For impacts with impact angles < 45° , between ˜ 20% to 80% of the impactor's core may merge directly with the Earth's core; while for impact angle > 60°, most of the impactor core escapes for moderate impact speeds. An implication is that the late accreted mass inferred from terrestrial HSE abundances may be a substantial underestimate, by a factor 2-5. In addition, partial mixing of projectiles result in an enrichment in mantle vs core material delivered to the bulk silicate Earth, implying substantial compositional variations in the accreted mass. Such variations could produce initially localized domains in Earth's mantle with distinct, mass independent isotopic signatures, given the isotopic variability resulting from nucleosynthetic heterogeneities among genetically diverse meteorites. In general we find

  7. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  8. Simulation of the synergistic low Earth orbit effects of vacuum thermal cycling, vacuum UV radiation, and atomic oxygen

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Degroh, Kim K.; Stidham, Curtis R.; Stueber, Thomas J.; Dever, Therese M.; Rodriguez, Elvin; Terlep, Judith A.

    1992-01-01

    In order to assess the low Earth orbit (LEO) durability of candidate space materials, it is necessary to use ground laboratory facilities which provide LEO environmental effects. A facility combining vacuum thermal cycling and vacuum ultraviolet (VUV) radiation has been designed and constructed at NASA Lewis Research Center for this purpose. This facility can also be operated without the VUV lamps. An additional facility can be used to provide VUV exposure only. By utilizing these facilities, followed by atomic oxygen exposure in an RF plasma asher, the effects of the individual vacuum thermal cycling and VUV environments can be compared to the effect of the combined vacuum thermal cycling/VUV environment on the atomic oxygen durability of materials. The synergistic effects of simulated LEO environmental conditions on materials were evaluated by first exposing materials to vacuum thermal cycling, VUV, and vacuum thermal cycling/VUV environments followed by exposure to atomic oxygen in an RP plasma asher. Candidate space power materials such as atomic oxygen protected polyimides and solar concentrator mirrors were evaluated using these facilities. Characteristics of the Vacuum Thermal Cycling/VUV Exposure Facility which simulates the temperature sequences and solar ultraviolet radiation exposure that would be experienced by a spacecraft surface in LEO are discussed. Results of durability evaluations of some candidate space power materials to the simulated LEO environmental conditions will also be discussed. Such results have indicated that for some materials, atomic oxygen durability is affected by previous exposure to thermal cycling and/or VUV exposure.

  9. Accurate, reliable prototype earth horizon sensor head

    NASA Technical Reports Server (NTRS)

    Schwarz, F.; Cohen, H.

    1973-01-01

    The design and performance is described of an accurate and reliable prototype earth sensor head (ARPESH). The ARPESH employs a detection logic 'locator' concept and horizon sensor mechanization which should lead to high accuracy horizon sensing that is minimally degraded by spatial or temporal variations in sensing attitude from a satellite in orbit around the earth at altitudes in the 500 km environ 1,2. An accuracy of horizon location to within 0.7 km has been predicted, independent of meteorological conditions. This corresponds to an error of 0.015 deg-at 500 km altitude. Laboratory evaluation of the sensor indicates that this accuracy is achieved. First, the basic operating principles of ARPESH are described; next, detailed design and construction data is presented and then performance of the sensor under laboratory conditions in which the sensor is installed in a simulator that permits it to scan over a blackbody source against background representing the earth space interface for various equivalent plant temperatures.

  10. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  11. Ground penetrating radar antenna system analysis for prediction of earth material properties

    USGS Publications Warehouse

    Oden, C.P.; Wright, D.L.; Powers, M.H.; Olhoeft, G.

    2005-01-01

    The electrical properties of the ground directly beneath a ground penetrating radar (GPR) antenna very close to the earth's surface (ground-coupled) must be known in order to predict the antenna response. In order to investigate changing antenna response with varying ground properties, a series of finite difference time domain (FDTD) simulations were made for a bi-static (fixed horizontal offset between transmitting and receiving antennas) antenna array over a homogeneous ground. We examine the viability of using an inversion algorithm based on the simulated received waveforms to estimate the material properties of the earth near the antennas. Our analysis shows that, for a constant antenna height above the earth, the amplitude of certain frequencies in the received signal can be used to invert for the permittivity and conductivity of the ground. Once the antenna response is known, then the wave field near the antenna can be determined and sharper images of the subsurface near the antenna can be made. ?? 2005 IEEE.

  12. Solar rotation effects on the thermospheres of Mars and Earth.

    PubMed

    Forbes, Jeffrey M; Bruinsma, Sean; Lemoine, Frank G

    2006-06-02

    The responses of Earth's and Mars' thermospheres to the quasi-periodic (27-day) variation of solar flux due to solar rotation were measured contemporaneously, revealing that this response is twice as large for Earth as for Mars. Per typical 20-unit change in 10.7-centimeter radio flux (used as a proxy for extreme ultraviolet flux) reaching each planet, we found temperature changes of 42.0 +/- 8.0 kelvin and 19.2 +/- 3.6 kelvin for Earth and Mars, respectively. Existing data for Venus indicate values of 3.6 +/- 0.6 kelvin. Our observational result constrains comparative planetary thermosphere simulations and may help resolve existing uncertainties in thermal balance processes, particularly CO2 cooling.

  13. Controlling Factors of the Fate of Ionospheric Outflow at Earth and Mars

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Ilie, R.; Ganushkina, N. Y.; Johnson, B. C.; Xu, S.; Dong, C.

    2015-12-01

    Both Earth and Mars experience ionospheric outflow, but the radically different magnetic field configurations at the two planets yield significantly different patterns of outflow and processes governing outflow. This study examines a set of numerical simulations for Earth and Mars to explore the factors controlling ionospheric outflow and the fate of the escaping ions (immediate precipitation, magnetospheric recirculation, or loss to deep space). Specifically, simulation results from the Space Weather Modeling Framework (SWMF), which is capable of handling both planetary space environments, are analyzed to assess the physical processes governing the fate of ionospheric ions. Velocity streamlines from the SWMF results are traced from the high-latitude inner boundary of the BATS-R-US MHD simulation domain and followed through geospace. Some of these streamlines return to the inner boundary of the simulation domain, others extend to the outer boundary of the domain, while most others eventually cross (or at least approach) the magnetospheric equatorial plane. At Earth, this plane is well defined, while at Mars there are multiple mini-magnetospheres in which ionospheric ions can become trapped. These streamlines are categorized according to their eventual destination. Multi-fluid MHD simulations are examined in this study, assessing the influence of species mass on trajectories through near-planet space. Steady-state numerical experiments with different levels of solar driving are examined to quantify the influence of each driver on outflow characteristics and the fate of outflowing ions. Real event intervals are considered to assess flows in a time-varying magnetospheric system. For Earth, as solar wind dynamic pressure increases, the dominant outflow region moves to lower latitudes and significantly more of the outflowing ions escape to deep space. As the interplanetary magnetic field increases in southward magnitude, the region of dominant outflow shifts to lower

  14. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  15. Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification

    NASA Technical Reports Server (NTRS)

    Ray, David M.

    1994-01-01

    To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.

  16. Low Velocity Earth-Penetration Test and Analysis

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jones, Yvonne; Knight, Norman F., Jr.; Kellas, Sotiris

    2001-01-01

    Modeling and simulation of structural impacts into soil continue to challenge analysts to develop accurate material models and detailed analytical simulations to predict the soil penetration event. This paper discusses finite element modeling of a series of penetrometer drop tests into soft clay. Parametric studies are performed with penetrometers of varying diameters, masses, and impact speeds to a maximum of 45 m/s. Parameters influencing the simulation such as the contact penalty factor and the material model representing the soil are also studied. An empirical relationship between key parameters is developed and is shown to correlate experimental and analytical results quite well. The results provide preliminary design guidelines for Earth impact that may be useful for future space exploration sample return missions.

  17. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less

  18. Magnetic Nanofluid Rare Earth Element Extraction Process Report, Techno Economic Analysis, and Results for Geothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pete McGrail

    This GDR submission is an interim technical report and raw data files from the first year of testing on functionalized nanoparticles for rare earth element extraction from geothermal fluids. The report contains Rare Earth Element uptake results (percent removal, mg Rare Earth Element/gram of sorbent, distribution coefficient) for the elements of Neodymium, Europium, Yttrium, Dysprosium, and Cesium. A detailed techno economic analysis is also presented in the report for a scaled up geothermal rare earth element extraction process. All rare earth element uptake testing was done on simulated geothermal brines with one rare earth element in each brine. The raremore » earth element uptake testing was conducted at room temperature.« less

  19. Evaluating the design of an earth radiation budget instrument with system simulations. Part 2: Minimization of instantaneous sampling errors for CERES-I

    NASA Technical Reports Server (NTRS)

    Stowe, Larry; Hucek, Richard; Ardanuy, Philip; Joyce, Robert

    1994-01-01

    Much of the new record of broadband earth radiation budget satellite measurements to be obtained during the late 1990s and early twenty-first century will come from the dual-radiometer Clouds and Earth's Radiant Energy System Instrument (CERES-I) flown aboard sun-synchronous polar orbiters. Simulation studies conducted in this work for an early afternoon satellite orbit indicate that spatial root-mean-square (rms) sampling errors of instantaneous CERES-I shortwave flux estimates will range from about 8.5 to 14.0 W/m on a 2.5 deg latitude and longitude grid resolution. Rms errors in longwave flux estimates are only about 20% as large and range from 1.5 to 3.5 W/sq m. These results are based on an optimal cross-track scanner design that includes 50% footprint overlap to eliminate gaps in the top-of-the-atmosphere coverage, and a 'smallest' footprint size to increase the ratio in the number of observations lying within to the number of observations lying on grid area boundaries. Total instantaneous measurement error also depends on the variability of anisotropic reflectance and emission patterns and on retrieval methods used to generate target area fluxes. Three retrieval procedures from both CERES-I scanners (cross-track and rotating azimuth plane) are used. (1) The baseline Earth Radiaton Budget Experiment (ERBE) procedure, which assumes that errors due to the use of mean angular dependence models (ADMs) in the radiance-to-flux inversion process nearly cancel when averaged over grid areas. (2) To estimate N, instantaneous ADMs are estimated from the multiangular, collocated observations of the two scanners. These observed models replace the mean models in computation of satellite flux estimates. (3) The scene flux approach, conducts separate target-area retrievals for each ERBE scene category and combines their results using area weighting by scene type. The ERBE retrieval performs best when the simulated radiance field departs from the ERBE mean models by less than

  20. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  1. On the genesis of the Earth's magnetism.

    PubMed

    Roberts, Paul H; King, Eric M

    2013-09-01

    Few areas of geophysics are today progressing as rapidly as basic geomagnetism, which seeks to understand the origin of the Earth's magnetism. Data about the present geomagnetic field pours in from orbiting satellites, and supplements the ever growing body of information about the field in the remote past, derived from the magnetism of rocks. The first of the three parts of this review summarizes the available geomagnetic data and makes significant inferences about the large scale structure of the geomagnetic field at the surface of the Earth's electrically conducting fluid core, within which the field originates. In it, we recognize the first major obstacle to progress: because of the Earth's mantle, only the broad, slowly varying features of the magnetic field within the core can be directly observed. The second (and main) part of the review commences with the geodynamo hypothesis: the geomagnetic field is induced by core flow as a self-excited dynamo. Its electrodynamics define 'kinematic dynamo theory'. Key processes involving the motion of magnetic field lines, their diffusion through the conducting fluid, and their reconnection are described in detail. Four kinematic models are presented that are basic to a later section on successful dynamo experiments. The fluid dynamics of the core is considered next, the fluid being driven into motion by buoyancy created by the cooling of the Earth from its primordial state. The resulting flow is strongly affected by the rotation of the Earth and by the Lorentz force, which alters fluid motion by the interaction of the electric current and magnetic field. A section on 'magnetohydrodynamic (MHD) dynamo theory' is devoted to this rotating magnetoconvection. Theoretical treatment of the MHD responsible for geomagnetism culminates with numerical solutions of its governing equations. These simulations help overcome the first major obstacle to progress, but quickly meet the second: the dynamics of Earth's core are too complex

  2. Survival of akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions.

    PubMed

    Olsson-Francis, Karen; de la Torre, Rosa; Towner, Martin C; Cockell, Charles S

    2009-12-01

    Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7×10(-3) kPa), temperature extremes (-80 to 80°C), Mars conditions (-27°C, 0.8 kPa, CO(2)) and UV radiation (325-400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.

  3. Understanding Water-Energy-Ecology Nexus from an Integrated Earth-Human System Perspective

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Zhang, X.; Wan, W.; Zhuang, Y.; Hejazi, M. I.; Leung, L. R.

    2017-12-01

    Both Earth and human systems exert notable controls on streamflow and stream temperature that influence energy production and ecosystem health. An integrated water model representing river processes and reservoir regulations has been developed and coupled to a land surface model and an integrated assessment model of energy, land, water, and socioeconomics to investigate the energy-water-ecology nexus in the context of climate change and water management. Simulations driven by two climate change projections following the RCP 4.5 and RCP 8.5 radiative forcing scenarios, with and without water management, are analyzed to evaluate the individual and combined effects of climate change and water management on streamflow and stream temperature in the U.S. The simulations revealed important impacts of climate change and water management on hydrological droughts. The simulations also revealed the dynamics of competition between changes in water demand and water availability in the RCP 4.5 and RCP 8.5 scenarios that influence streamflow and stream temperature, with important consequences to thermoelectricity production and future survival of juvenile Salmon. The integrated water model is being implemented to the Accelerated Climate Modeling for Energy (ACME), a coupled Earth System Model, to enable future investigations of the energy-water-ecology nexus in the integrated Earth-Human system.

  4. Simulation research: A vital step for human missions to Mars

    NASA Astrophysics Data System (ADS)

    Perino, Maria Antonietta; Apel, Uwe; Bichi, Alessandro

    The complex nature of the challenge as humans embark on exploration missions beyond Earth orbit will require that, in the early stages, simulation facilities be established at least on Earth. Suitable facilities in Low Earth Orbit and on the Moon surface would provide complementary information of critical importance for the overall design of a human mission to Mars. A full range of simulation campaigns is required, in fact, to reach a better understanding of the complexities involved in exploration missions that will bring humans back to the Moon and then outward to Mars. The corresponding simulation means may range from small scale environmental simulation chambers and/or computer models that will aid in the development of new materials, to full scale mock-ups of spacecraft and planetary habitats and/or orbiting infrastructues. This paper describes how a suitable simulation campaign will contribute to the definition of the required countermeasures with respect to the expected duration of the flight. This will allow to be traded contermeasure payload and astronaut time against effort in technological development of propulsion systems.

  5. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  6. Earth's inner core nucleation paradox

    NASA Astrophysics Data System (ADS)

    Huguet, Ludovic; Van Orman, James A.; Hauck, Steven A.; Willard, Matthew A.

    2018-04-01

    The conventional view of Earth's inner core is that it began to crystallize at Earth's center when the temperature dropped below the melting point of the iron alloy and has grown steadily since that time as the core continued to cool. However, this model neglects the energy barrier to the formation of the first stable crystal nucleus, which is commonly represented in terms of the critical supercooling required to overcome the barrier. Using constraints from experiments, simulations, and theory, we show that spontaneous crystallization in a homogeneous liquid iron alloy at Earth's core pressures requires a critical supercooling of order 1000 K, which is too large to be a plausible mechanism for the origin of Earth's inner core. We consider mechanisms that can lower the nucleation barrier substantially. Each has caveats, yet the inner core exists: this is the nucleation paradox. Heterogeneous nucleation on a solid metallic substrate tends to have a low energy barrier and offers the most straightforward solution to the paradox, but solid metal would probably have to be delivered from the mantle and such events are unlikely to have been common. A delay in nucleation, whether due to a substantial nucleation energy barrier, or late introduction of a low energy substrate, would lead to an initial phase of rapid inner core growth from a supercooled state. Such rapid growth may lead to distinctive crystallization texturing that might be observable seismically. It would also generate a spike in chemical and thermal buoyancy that could affect the geomagnetic field significantly. Solid metal introduced to Earth's center before it reached saturation could also provide a nucleation substrate, if large enough to escape complete dissolution. Inner core growth, in this case, could begin earlier and start more slowly than standard thermal models predict.

  7. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  8. On the paleo-magnetospheres of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Khodachenko, Maxim; Alexeev, Igor; Belenkaya, Elena; Blokhina, Marina; Johnstone, Colin; Tarduno, John; Lammer, Helmut; Tu, Lin; Guedel, Manuel

    2017-04-01

    The intrinsic magnetic field of a terrestrial planet is considered to be an important factor for the evolution of terrestrial atmospheres. This is in particular relevant for early stages of the solar system, in which the solar wind as well as the EUV flux from the young Sun were significantly stronger than at present-day. We therefore will present simulations of the paleo-magnetospheres of ancient Earth and Mars, which were performed for ˜4.1 billion years ago, i.e. the Earth's late Hadean eon and Mars' early Noachian. These simulations were performed with specifically adapted versions of the Paraboloid Magnetospheric Model (PMM) of the Skobeltsyn Institute of Nuclear Physics of the Moscow State University, which serves as ISO-standard for the Earth's magnetic field (see e.g. Alexeev et al., 2003). One of the input parameters into our model is the ancient solar wind pressure. This is derived from a newly developed solar/stellar wind evolution model, which is strongly dependent on the initial rotation rate of the early Sun (Johnstone et al., 2015). Another input parameter is the ancient magnetic dipole field. In case of Earth this is derived from measurements of the paleomagnetic field strength by Tarduno et al., 2015. These data from zircons are varying between 0.12 and 1.0 of today's magnetic field strength. For Mars the ancient magnetic field is derived from the remanent magnetization in the Martian crust as measured by the Mars Global Surveyor MAG/ER experiment. These data together with dynamo theory are indicating an ancient Martian dipole field strength in the range of 0.1 to 1.0 of the present-day terrestrial dipole field. For the Earth our simulations show that the paleo-magnetosphere during the late Hadean eon was significantly smaller than today, with a standoff-distance rs ranging from ˜3.4 to 8 Re, depending on the input parameters. These results also have implications for the early terrestrial atmosphere. Due to the significantly higher EUV flux, the

  9. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  10. Analysis of Rosetta/VIRTIS spectra of earth using observations from ENVISAT/AATSR, TERRA/MODIS and ENVISAT/SCIAMACHY, and radiative-transfer simulations

    NASA Astrophysics Data System (ADS)

    Hurley, J.; Irwin, P. G. J.; Adriani, A.; Moriconi, M.; Oliva, F.; Capaccioni, F.; Smith, A.; Filacchione, G.; Tosi, F.; Thomas, G.

    2014-01-01

    Rosetta, the Solar System cornerstone mission of ESA's Horizon 2000 programme, consists of an orbiter and a lander, and is due to arrive at the comet 67P/Churyumov-Gerasimenko in May 2014. Following its 2004 launch, Rosetta carried out a series of planetary fly-bys and gravitational assists. On these close fly-bys of the Earth, measurements were taken by the Visible Infrared Thermal Imaging Spectrometer (VIRTIS). Analysis of these spectra and comparison with spectra acquired by Earth-observing satellites can support the verification of the inflight calibration of Rosetta/VIRTIS. In this paper, measurements taken by VIRTIS in November 2009 are compared with suitable coincident data from Earth-observing instruments (ESA-ENVISAT/AATSR and SCIAMACHY, and EOS-TERRA/MODIS). Radiative transfer simulations using NEMESIS (Irwin et al., 2008) are fit to the fly-by data taken by VIRTIS, using representative atmospheric and surface parameters. VIRTIS measurements correlate 90% with AATSR's, 85-94% with MODIS, and 82-88% with SCIAMACHYs. The VIRTIS spectra are reproducible in the 1-5 μm region, except in the 1.4 μm deep water vapour spectral absorption band in the near-infrared in cases in which the radiance is very low (cloud-free topographies), where VIRTIS consistently registers more radiance than do MODIS and SCIAMACHY. Over these cloud-free regions, VIRTIS registers radiances a factor of 3-10 larger than SCIAMACHY and of 3-8 greater than MODIS. It is speculated that this discrepancy could be due to a spectral light leak originating from reflections from the order-sorting filters above the detector around 1.4 μm.

  11. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters

  12. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  13. Data Mining in Earth System Science (DMESS 2011)

    Treesearch

    Forrest M. Hoffman; J. Walter Larson; Richard Tran Mills; Bhorn-Gustaf Brooks; Auroop R. Ganguly; William Hargrove; et al

    2011-01-01

    From field-scale measurements to global climate simulations and remote sensing, the growing body of very large and long time series Earth science data are increasingly difficult to analyze, visualize, and interpret. Data mining, information theoretic, and machine learning techniques—such as cluster analysis, singular value decomposition, block entropy, Fourier and...

  14. Computer Simulations: An Integrating Tool.

    ERIC Educational Resources Information Center

    Bilan, Bohdan J.

    This introduction to computer simulations as an integrated learning experience reports on their use with students in grades 5 through 10 using commercial software packages such as SimCity, SimAnt, SimEarth, and Civilization. Students spent an average of 60 hours with the simulation games and reported their experiences each week in a personal log.…

  15. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    NASA Astrophysics Data System (ADS)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  16. Towards "open applied" Earth sciences

    NASA Astrophysics Data System (ADS)

    Ziegler, C. R.; Schildhauer, M.

    2014-12-01

    Concepts of open science -- in the context of cyber/digital technology and culture -- could greatly benefit applied and secondary Earth science efforts. However, international organizations (e.g., environmental agencies, conservation groups and sustainable development organizations) that are focused on applied science have been slow to incorporate open practices across the spectrum of scientific activities, from data to decisions. Myriad benefits include transparency, reproducibility, efficiency (timeliness and cost savings), stakeholder engagement, direct linkages between research and environmental outcomes, reduction in bias and corruption, improved simulation of Earth systems and improved availability of science in general. We map out where and how open science can play a role, providing next steps, with specific emphasis on applied science efforts and processes such as environmental assessment, synthesis and systematic reviews, meta-analyses, decision support and emerging cyber technologies. Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the organizations for which they work and/or represent.

  17. Stellar oxygen abundances. I - A resolution to the 7774 A O I abundance discrepancy

    NASA Astrophysics Data System (ADS)

    King, Jeremy R.

    1993-09-01

    We investigate the discrepancy between O/Fe abundance ratios of metal-poor stars derived from the 7774 A O I triplet and O/Fe ratios determined from other oxygen lines. We propose a possible resolution to this discrepancy which also eliminates the correlation of O/Fe and T(eff) found in a recent 7774 A O I analysis. The equivalent widths of Abia & Rebolo (1989) are found to be systematically too high by 25 percent. Arguments are presented that current temperature estimates for halo stars are 150-200 K too low. Using the guidance of both model atmospheres and other empirical color-T(eff) relations, we construct new color temperature relations for metal-poor stars. These relations are tied to the temperature scale of Saxner & Hammarback (1985) for metal-rich stars. We use (b-y) and (V-K) indices to redetermine values of T(eff) for a handful of halo stars. (B-V)-T(eff) relations which do not take into account the effects of metallicity are found to be inadequate. Revised O/Fe ratios are determined using the new temperature scale. The mean abundance ratio of the reanalyzed halo dwarfs is about +0.52. There is no trend of O/Fe with Fe/H or T(eff).

  18. Towards a standardized method to assess straylight in earth observing optical instruments

    NASA Astrophysics Data System (ADS)

    Caron, J.; Taccola, M.; Bézy, J.-L.

    2017-09-01

    Straylight is a spurious effect that can seriously degrade the radiometric accuracy achieved by Earth observing optical instruments, as a result of the high contrast in the observed Earth radiance scenes and spectra. It is considered critical for several ESA missions such as Sentinel-5, FLEX and potential successors to CarbonSat. Although it is traditionally evaluated by Monte-Carlo simulations performed with commercial softwares (e.g. ASAP, Zemax, LightTools), semi-analytical approximate methods [1,2] have drawn some interest in recent years due to their faster computing time and the greater insight they provide in straylight mechanisms. They cannot replace numerical simulations, but may be more advantageous in contexts where many iterations are needed, for instance during the early phases of an instrument design.

  19. Characterising Super Earths With The EChO Spacemission Concept

    NASA Astrophysics Data System (ADS)

    Tessenyi, Marcell; Ollivier, M.; Tinetti, G.; Beaulieu, J. P.; Coudé du Foresto, V.; Encrenaz, T.; Micela, G.; Swinyard, B.; Ribas, I.; Aylward, A.; Tennyson, J.; Swain, M. R.; Sozzetti, A.; Vasisht, G.; Deroo, P.

    2011-09-01

    Transiting Super Earths orbiting M dwarfs are excellent targets for the prospect of studying potentially habitable extrasolar planets. While most of the currently known Exoplanets are of the Hot Jupiter and Neptune type, attention is now turning to these Super Earths. Two recent examples are GJ 1214b, found by Charbonneau et al. in 2009, and Cancri 55 e, found by Winn et al. in 2011. These candidates offer the opportunity of obtaining spectral signatures of their atmospheres in transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. With the recent selection of the Exoplanet Characterisation Observatory (EChO) mission by ESA for further studies, I present observational strategies and time requirements for a range of targets characterisable by EChO, with a view to Super Earths orbiting M dwarfs.

  20. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    NASA Technical Reports Server (NTRS)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  1. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  2. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  3. Simulation and Preliminary Design of a Cold Stream Experiment on Omega EP

    NASA Astrophysics Data System (ADS)

    Coffing, Shane; Angulo, Adrianna; Trantham, Matt; Malamud, Guy; Kuranz, Carolyn; Drake, R. P.

    2017-10-01

    Galaxies form within dark matter halos, accreting gas that may clump and eventually form stars. Infalling matter gradually increases the density of the halo, and, if cooling is insufficient, rising pressure forms a shock that slows the infalling gas, reducing star formation. However, galaxies with sufficient cooling become prolific star formers. A recent theory suggests that so called ``stream fed galaxies'' are able to acquire steady streams of cold gas via galactic ``filaments'' that penetrate the halo. The cold, dense filament flowing into a hot, less dense environment is potentially Kelvin-Helmholtz unstable. This instability may hinder the ability of the stream to deliver gas deeply enough into the halo. To study this process, we have begun preliminary design of a well-scaled laser experiment on Omega EP. We present here early simulation results and the physics involved. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944.

  4. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-07-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein, we propose a scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semimajor axis of 4Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the PKDGRAV package with a soft-sphere discrete element method to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best matching to the shape of Toutatis at an approaching distance rp = 1.4-1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  5. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, M. M.

    2009-11-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths'more » equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless

  6. Diurnal and Semidiurnal Variations in Earth Rotation

    NASA Astrophysics Data System (ADS)

    Weijing, Q.; Xu, X.; Dong, D.; Zhou, Y.

    2016-12-01

    In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including Satellite Laser ranging (SLR), Very Long Baseline Interferometry (VLBI) and the Global Positioning System (GPS). We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1 with Consistency of 90% , and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. This work add the motivating term libration to the empirical tidal models, which can reduce the difference between the high frequency earth rotation model and observations. Then the numerical simulated ocean tidal model is obtained with the newest ERP datas from GPS, and the Scaled Sensitivity Matrix (SSM) approach is used to separate the sidebands in major ocean tides.

  7. Acceleration of Particles Near Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2012-12-01

    Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).

  8. DESDynI Lidar for Solid Earth Applications

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne; Hofton, Michelle; Bruhn, Ronald; Lutchke, Scott; Blair, Bryan

    2011-01-01

    As part of the NASA's DESDynI mission, global elevation profiles from contiguous 25 m footprint Lidar measurements will be made. Here we present results of a performance simulation of a single pass of the multi-beam Lidar instrument over uplifted marine terraces in southern Alaska. The significance of the Lidar simulations is that surface topography would be captured at sufficient resolution for mapping uplifted terraces features but it will be hard to discern I-2m topographic change over features less than tens of meters in width. Since Lidar would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m OEM.

  9. Impact of Radiatively Interactive Dust Aerosols on Dust Transport and Mobilization in the NASA Goddard Earth Observing System (GEOS-5) Earth Model

    NASA Astrophysics Data System (ADS)

    Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.

    2017-12-01

    Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.

  10. Sensitivity of planetary cruise navigation to earth orientation calibration errors

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Folkner, W. M.

    1995-01-01

    A detailed analysis was conducted to determine the sensitivity of spacecraft navigation errors to the accuracy and timeliness of Earth orientation calibrations. Analyses based on simulated X-band (8.4-GHz) Doppler and ranging measurements acquired during the interplanetary cruise segment of the Mars Pathfinder heliocentric trajectory were completed for the nominal trajectory design and for an alternative trajectory with a longer transit time. Several error models were developed to characterize the effect of Earth orientation on navigational accuracy based on current and anticipated Deep Space Network calibration strategies. The navigational sensitivity of Mars Pathfinder to calibration errors in Earth orientation was computed for each candidate calibration strategy with the Earth orientation parameters included as estimated parameters in the navigation solution. In these cases, the calibration errors contributed 23 to 58% of the total navigation error budget, depending on the calibration strategy being assessed. Navigation sensitivity calculations were also performed for cases in which Earth orientation calibration errors were not adjusted in the navigation solution. In these cases, Earth orientation calibration errors contributed from 26 to as much as 227% of the total navigation error budget. The final analysis suggests that, not only is the method used to calibrate Earth orientation vitally important for precision navigation of Mars Pathfinder, but perhaps equally important is the method for inclusion of the calibration errors in the navigation solutions.

  11. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  12. Global-scale water circulation in the Earth's mantle: Implications for the mantle water budget in the early Earth

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Spiegelman, Marc W.

    2017-04-01

    We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.

  13. Organic haze on Titan and the early Earth

    PubMed Central

    Trainer, Melissa G.; Pavlov, Alexander A.; DeWitt, H. Langley; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2006-01-01

    Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH4/N2 atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and early Earth. We have used a deuterium lamp to initiate particle production in these simulated atmospheres from UV photolysis. Using a unique analysis technique, the aerosol mass spectrometer, we have studied the chemical composition, size, and shape of the particles produced as a function of initial trace gas composition. Our results show that the aerosols produced in the laboratory can serve as analogs for the observed haze in Titan's atmosphere. Experiments performed under possible conditions for early Earth suggest a significant optical depth of haze may have dominated the early Earth's atmosphere. Aerosol size measurements are presented, and implications for the haze layer properties are discussed. We estimate that aerosol production on the early Earth may have been on the order of 1014 g·year−1 and thus could have served as a primary source of organic material to the surface. PMID:17101962

  14. Core dynamics and the nutations of the Earth.

    NASA Astrophysics Data System (ADS)

    Dehant, V. M. A.; Laguerre, R.; Rekier, J.; Rivoldini, A.; Trinh, A.; Triana, A. S.; Van Hoolst, T.; Zhu, P.

    2016-12-01

    We here present an overview of the recent activities within the project RotaNut - Rotation and Nutation of a Wobbly Earth, an ERC Advanced Grant funding from the European Research Council. We have recomputed the Basic Earth Parameters from recent VLBI series and we interpret them in terms of physics of the Earth's deep interior. This includes updates of the nutational constraints on Earth's internal magnetic field and inner core viscosity, as well as of the coupling constants at the core-mantle boundary (CMB) and inner core boundary ICB. We have explored on simplified Earth models the interactions between rotational and gravito-inertial modes. With the help of numerical simulations, we have also addressed the coupling between the global rotation and the inertial waves in the fluid core through parametric instabilities. Special interests have been given to the influence of the inner core onto the stability properties of the liquid core and the large scale formation in the turbulent flow through inverse cascade of energy. The role of precession and nutation forcing for the liquid core is characterized as well as the interaction between the Free Core Nutation (in the fluid core community called the tilt-over mode) and the inertial waves. This research represents the first steps in the project RotaNut financed by the European Research Council under ERC Advanced Grant 670874 for 2015-2020.

  15. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  16. Low Earth orbit journey and ground simulations studies point out metabolic changes in the ESA life support organism Rhodospirillum rubrum

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; Leys, Natalie; Benotmane, Rafi; Vanhavere, Filip; Janssen, Ann; Hendrickx, Larissa; Wattiez, Ruddy; Mergeay, Max

    MELiSSA (Micro-Ecological Life Support System Alternative) is a project of closed regenerative life support system for future space flights developed by the European Space Agency. It consists of interconnected processes (i.e. bioreactors, higher plant compartments, filtration units,..) targeting the total recycling of organic waste into oxygen, water and food. Within the MELiSSA loop, the purple non-sulfur alpha-proteobacterium R. rubrum ATCC25903 is used to convert fatty acids released from the upstream raw waste digesting reactor to CO2 and biomass, and to complete the mineralization of aminoacids into NH4+ that will be forwarded to the nitrifying compartment. Among the numerous challenges of the project, the functional stability of the bioreactors in long term and under space flight conditions is of paramount importance for the efficiency of the life support system and consequently the crew safety. Therefore, the physiological and metabolic changes induced by space flight were investigated for R. rubrum. The bacterium grown on solid medium during 2 different 10-day space flights to the ISS (MES- SAGE2, BASE-A experiments) were compared to cells grown on Earth 1 g gravity or modeled microgravity and normal Earth radiation or simulated space flight radiation conditions in order to relate each single stress to its respective cellular response. For simulating the radiation environment, pure gamma and neutron sources were combined, while simulation of changes in gravity where performed using the Random Positioning Machine technology. Transcriptome analysis using R. rubrum total genome DNA-chip showed up-regulation of genes involved in oxidative stress response after a 10-day mission inside the ISS, without loss of viability. As an example, alkyl hydroperoxide reductase, thioredoxin reductase and bacterioferritin genes are least 2 fold induced although the radiation dose experienced by the bacterium (4 mSv) is very low compared to its radiotolerance (D10 = 100 Sv

  17. Sorting Recycled Trash: An Activity for Earth Day 2007

    ERIC Educational Resources Information Center

    Harris, Mary E.; Harris, Harold H.

    2007-01-01

    Middle or high school students celebrate Earth Day on April 22, 2007 by participating in the activity to separate commingled recyclable trash to simulate sorting in a recycling center. Students would gain an appreciation for recyclable trash, after it is taken to a recycling center and learn about properties of recyclables.

  18. Ferroelectricity of domain walls in rare earth iron garnet films.

    PubMed

    Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K

    2016-11-16

    In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.

  19. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  20. The simulation of the geosynchronous Earth orbit plasma environment in Chamber A: An assessment of possible experimental investigations

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1981-01-01

    The possible use of Chamber A for the replication or simulation of space plasma physics processes which occur in the geosynchronous Earth orbit (GEO) environment is considered. It is shown that replication is not possible and that scaling of the environmental conditions is required for study of the important instability processes. Rules for such experimental scaling are given. At the present time, it does not appear technologically feasible to satisfy these requirements in Chamber A. It is, however, possible to study and qualitatively evaluate the problem of vehicle charging at GEO. In particular, Chamber A is sufficiently large that a complete operational spacecraft could be irradiated by beams and charged to high potentials. Such testing would contribute to the assessment of the operational malfunctions expected at GEO and their possible correction. However, because of the many tabulated limitations in such a testing programs, its direct relevance to conditions expected in the geo environment remains questionable.

  1. Spectral properties and associated plasma energization by magnetosonic waves in the Earth's magnetosphere: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Liu, Xu; Wang, Xueyi; Tao, Xin; Wang, Shui

    2017-05-01

    In this paper, we perform a 1-D particle-in-cell (PIC) simulation model consisting of three species, cold electrons, cold ions, and energetic ion ring, to investigate spectral structures of magnetosonic waves excited by ring distribution protons in the Earth's magnetosphere, and dynamics of charged particles during the excitation of magnetosonic waves. As the wave normal angle decreases, the spectral range of excited magnetosonic waves becomes broader with upper frequency limit extending beyond the lower hybrid resonant frequency, and the discrete spectra tends to merge into a continuous one. This dependence on wave normal angle is consistent with the linear theory. The effects of magnetosonic waves on the background cold plasma populations also vary with wave normal angle. For exactly perpendicular magnetosonic waves (parallel wave number k|| = 0), there is no energization in the parallel direction for both background cold protons and electrons due to the negligible fluctuating electric field component in the parallel direction. In contrast, the perpendicular energization of background plasmas is rather significant, where cold protons follow unmagnetized motion while cold electrons follow drift motion due to wave electric fields. For magnetosonic waves with a finite k||, there exists a nonnegligible parallel fluctuating electric field, leading to a significant and rapid energization in the parallel direction for cold electrons. These cold electrons can also be efficiently energized in the perpendicular direction due to the interaction with the magnetosonic wave fields in the perpendicular direction. However, cold protons can be only heated in the perpendicular direction, which is likely caused by the higher-order resonances with magnetosonic waves. The potential impacts of magnetosonic waves on the energization of the background cold plasmas in the Earth's inner magnetosphere are also discussed in this paper.

  2. The effect of the earth's and stray magnetic fields on mobile mass spectrometer systems.

    PubMed

    Bell, Ryan J; Davey, Nicholas G; Martinsen, Morten; Short, R Timothy; Gill, Chris G; Krogh, Erik T

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  3. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  4. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less

  5. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward

    2012-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  6. A Compound Model for the Origin of Earth's Water

    NASA Astrophysics Data System (ADS)

    Izidoro, A.; de Souza Torres, K.; Winter, O. C.; Haghighipour, N.

    2013-04-01

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  7. Simulation of the Ozone Monitoring Instrument Aerosol Index Using the NASA Goddard Earth Observing System Aerosol Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Colarco, Peter R.; Gasso, Santiago; Ahn, Changwoo; Buchard, Virginie; Da Silva, Arlindo M.; Torres, Omar

    2017-01-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI aerosol retrieval algorithms, and its retrieved AI (OMAERUV AI) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600hPa and 1013.25hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  8. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    NASA Astrophysics Data System (ADS)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  9. 10 CFR 501.7 - General filing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false General filing requirements. 501.7 Section 501.7 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS General Provisions... OFE office. (10) The same or related matters. In filing a petition or other document requesting OFE...

  10. Effects of Variable Eccentricity on the Climate of an Earth-Like World

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  11. Prebiotic Chemistry and Atmospheric Warming of Early Earth by an Active Young Sun

    NASA Technical Reports Server (NTRS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hebrard, E.; Danchi, W.

    2016-01-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed Into the Earth's early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun -- so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth's magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, C02 and CH, suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  12. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    NASA Astrophysics Data System (ADS)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  13. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  14. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  15. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  16. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. A dynamic nuclear polarization strategy for multi-dimensional Earth's field NMR spectroscopy.

    PubMed

    Halse, Meghan E; Callaghan, Paul T

    2008-12-01

    Dynamic nuclear polarization (DNP) is introduced as a powerful tool for polarization enhancement in multi-dimensional Earth's field NMR spectroscopy. Maximum polarization enhancements, relative to thermal equilibrium in the Earth's magnetic field, are calculated theoretically and compared to the more traditional prepolarization approach for NMR sensitivity enhancement at ultra-low fields. Signal enhancement factors on the order of 3000 are demonstrated experimentally using DNP with a nitroxide free radical, TEMPO, which contains an unpaired electron which is strongly coupled to a neighboring (14)N nucleus via the hyperfine interaction. A high-quality 2D (19)F-(1)H COSY spectrum acquired in the Earth's magnetic field with DNP enhancement is presented and compared to simulation.

  18. Algorithms for radiative transfer simulations for aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko

    2012-11-01

    Aerosol retrieval work from satellite data, i.e. aerosol remote sensing, is divided into three parts as: satellite data analysis, aerosol modeling and multiple light scattering calculation in the atmosphere model which is called radiative transfer simulation. The aerosol model is compiled from the accumulated measurements during more than ten years provided with the world wide aerosol monitoring network (AERONET). The radiative transfer simulations take Rayleigh scattering by molecules and Mie scattering by aerosols in the atmosphere, and reflection by the Earth surface into account. Thus the aerosol properties are estimated by comparing satellite measurements with the numerical values of radiation simulations in the Earth-atmosphere-surface model. It is reasonable to consider that the precise simulation of multiple light-scattering processes is necessary, and needs a long computational time especially in an optically thick atmosphere model. Therefore efficient algorithms for radiative transfer problems are indispensable to retrieve aerosols from space.

  19. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    NASA Astrophysics Data System (ADS)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  20. Thermochemistry and Photochemistry in Thick Atmospheres on Super Earths and Mini Neptunes

    NASA Astrophysics Data System (ADS)

    Hu, R.; Seager, S.

    2013-12-01

    Dectection and characterization of low-mass exoplanets is poised to accelerate in the coming decade. Some low-mass exoplanets, namely super Earths and some mini Neptunes, will likely have thick atmospheres that are not H2-dominated. We have developed a photochemistry-thermochemistry model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H2-dominated atmospheres and non-H2-dominated atmospheres. Using this model, we have simulated the molecular composition of thick atmospheres on warm and hot super Earths/mini Neptunes, and classified thick atmospheres into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres, depending on the hydrogen abundance and the carbon to oxygen abundance ratio. We find that carbon has to be in the form of CO2 rather than CH4 or CO in an H2-depleted water-dominated thick atmosphere, and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to formation of unsaturated hydrocarbons. For future observations, we find for GJ 1214b that (1) C2H2 features at 1.0 and 1.5 μm in transmission are diagnostic for hydrocarbon-rich atmospheres; (2) a constraint on the thermal emission at 4.5 μm could differentiate water-rich atmospheres versus hydrocarbon-rich atmospheres; (3) a detection of water-vapor features and a confirmation of nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. For a hot super Earth like 55 Cnc e, the diagnostic features of water-rich atmospheres (H2O) and the diagnostic features of hydrocarbon-rich atmospheres (CO and C2H2) are well separated in transmission spectra at 0.6-5 μm, which would enable straightforward characterization. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Theoretical transmission spectra and thermal emission

  1. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists pose for a group photo at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  2. IPSL-CM5A2. An Earth System Model designed to run long simulations for past and future climates.

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Caubel, Arnaud; Marti, Olivier; Hourdin, Frédéric; Dufresne, Jean-Louis; Boucher, Olivier

    2017-04-01

    The IPSL-CM5A model was developed and released in 2013 "to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5)" [Dufresne et al., 2013]. Although this model also has been used for numerous paleoclimate studies, a major limitation was its computation time, which averaged 10 model-years / day on 32 cores of the Curie supercomputer (on TGCC computing center, France). Such performances were compatible with the experimental designs of intercomparison projects (e.g. CMIP, PMIP) but became limiting for modelling activities involving several multi-millenial experiments, which are typical for Quaternary or "deeptime" paleoclimate studies, in which a fully-equilibrated deep-ocean is mandatory. Here we present the Earth-System model IPSL-CM5A2. Based on IPSL-CM5A, technical developments have been performed both on separate components and on the coupling system in order to speed up the whole coupled model. These developments include the integration of hybrid parallelization MPI-OpenMP in LMDz atmospheric component, the use of a new input-ouput library to perform parallel asynchronous input/output by using computing cores as "IO servers", the use of a parallel coupling library between the ocean and the atmospheric components. Running on 304 cores, the model can now simulate 55 years per day, opening new gates towards multi-millenial simulations. Apart from obtaining better computing performances, one aim of setting up IPSL-CM5A2 was also to overcome the cold bias depicted in global surface air temperature (t2m) in IPSL-CM5A. We present the tuning strategy to overcome this bias as well as the main characteristics (including biases) of the pre-industrial climate simulated by IPSL-CM5A2. Lastly, we shortly present paleoclimate simulations run with this model, for the Holocene and for deeper timescales in the Cenozoic, for which the particular continental configuration

  3. Chandra Looks Back At The Earth

    NASA Astrophysics Data System (ADS)

    2005-12-01

    In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co

  4. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.

    2017-07-01

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.

  5. Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Way, M. J.; Aleinov, I.; Amundsen, David S.

    Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less

  6. Simulations of Prebiotic Chemistry under Post-Impact Conditions on Titan.

    PubMed

    Turse, Carol; Leitner, Johannes; Firneis, Maria; Schulze-Makuch, Dirk

    2013-12-17

    The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller's famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller's experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O'Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102-104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.

  7. Make Earth science education as dynamic as Earth itself

    NASA Astrophysics Data System (ADS)

    Lautenbacher, Conrad C.; Groat, Charles G.

    2004-12-01

    The images of rivers spilling over their banks and washing away entire towns, buildings decimated to rubble by the violent shaking of the Earth's plates, and molten lava flowing up from inside the Earth's core are constant reminders of the power of the Earth. Humans are simply at the whim of the forces of Mother Nature—or are we? Whether it is from a great natural disaster, a short-term weather event like El Nino, or longer-term processes like plate tectonics, Earth processes affect us all. Yet,we are only beginning to scratch the surface of our understanding of Earth sciences. We believe the day will come when our understanding of these dynamic Earth processes will prompt better policies and decisions about saving lives and property. One key place to start is in America's classrooms.

  8. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  9. Toward a Climate OSSE for NASA Earth Sciences

    NASA Astrophysics Data System (ADS)

    Leroy, S. S.; Collins, W. D.; Feldman, D.; Field, R. D.; Ming, Y.; Pawson, S.; Sanderson, B.; Schmidt, G. A.

    2016-12-01

    In the Continuity Study, the National Academy of Sciences advised that future space missions be rated according to five categories: the importance of a well-defined scientific objective, the utility of the observation in addressing the scientific objective, the quality with which the observation can be made, the probability of the mission's success, and the mission's affordability. The importance, probability, and affordability are evaluated subjectively by scientific consensus, by engineering review panels, and by cost models; however, the utility and quality can be evaluated objectively by a climate observation system simulation experiment (COSSE). A discussion of the philosophical underpinnings of a COSSE for NASA Earth Sciences will be presented. A COSSE is built upon a perturbed physics ensemble of a sophisticated climate model that can simulate a mission's prospective observations and its well-defined quantitative scientific objective and that can capture the uncertainty associated with each. A strong correlation between observation and scientific objective after consideration of physical uncertainty leads to a high quality. Persistence of a high correlation after inclusion of the proposed measurement error leads to a high utility. There are five criteria that govern that nature of a particular COSSE: (1) whether the mission's scientific objective is one of hypothesis testing or climate prediction, (2) whether the mission is empirical or inferential, (3) whether the core climate model captures essential physical uncertainties, (4) the level of detail of the simulated observations, and (5) whether complementarity or redundancy of information is to be valued. Computation of the quality and utility is done using Bayesian statistics, as has been done previously for multi-decadal climate prediction conditioned on existing data. We advocate for a new program within NASA Earth Sciences to establish a COSSE capability. Creation of a COSSE program within NASA Earth

  10. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.

    PubMed

    Ćuk, Matija; Stewart, Sarah T

    2012-11-23

    A common origin for the Moon and Earth is required by their identical isotopic composition. However, simulations of the current giant impact hypothesis for Moon formation find that most lunar material originated from the impactor, which should have had a different isotopic signature. Previous Moon-formation studies assumed that the angular momentum after the impact was similar to that of the present day; however, Earth-mass planets are expected to have higher spin rates at the end of accretion. Here, we show that typical last giant impacts onto a fast-spinning proto-Earth can produce a Moon-forming disk derived primarily from Earth's mantle. Furthermore, we find that a faster-spinning early Earth-Moon system can lose angular momentum and reach the present state through an orbital resonance between the Sun and Moon.

  11. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments

    PubMed Central

    Kawamura, Kunio

    2017-01-01

    Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048

  12. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  13. A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; De Souza Torres, K.

    2013-04-10

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In viewmore » of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.« less

  14. Optimum satellite orbits for accurate measurement of the earth's radiation budget, summary

    NASA Technical Reports Server (NTRS)

    Campbell, G. G.; Vonderhaar, T. H.

    1978-01-01

    The optimum set of orbit inclinations for the measurement of the earth radiation budget from spacially integrating sensor systems was estimated for two and three satellite systems. The best set of the two were satellites at orbit inclinations of 80 deg and 50 deg; of three the inclinations were 80 deg, 60 deg and 50 deg. These were chosen on the basis of a simulation of flat plate and spherical detectors flying over a daily varying earth radiation field as measured by the Nimbus 3 medium resolution scanners. A diurnal oscillation was also included in the emitted flux and albedo to give a source field as realistic as possible. Twenty three satellites with different inclinations and equator crossings were simulated, allowing the results of thousand of multisatellite sets to be intercompared. All were circular orbits of radius 7178 kilometers.

  15. Simulation of climate change effects on streamflow, groundwater, and stream temperature using GSFLOW and SNTEMP in the Black Earth Creek Watershed, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Westenbroek, Stephen M.; Walker, John F.; Selbig, William R.; Regan, R. Steven; Leaf, Andrew T.; Saad, David A.

    2016-08-23

    Potential future changes in air temperature drivers were consistently upward regardless of General Circulation Model and emission scenario selected; thus, simulated stream temperatures are forecast to increase appreciably with future climate. However, the amount of temperature increase was variable. Such uncertainty is reflected in temperature model results, along with uncertainty in the groundwater/surface-water interaction itself. The estimated increase in annual average temperature ranged from approximately 3 to 6 degrees Celsius by 2100 in the upper reaches of Black Earth Creek and 2 to 4 degrees Celsius in reaches farther downstream. As with all forecasts that rely on projections of an unknowable future, the results are best considered to approximate potential outcomes of climate change given the underlying uncertainty.

  16. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU

    1987-01-01

    Earth terrain covers were modeled as random media characterized by different dielectric constants and correlation functions. In order to model sea ice with brine inclusions and vegetation with row structures, the random medium is assumed to be anisotropic. A three layer model is used to simulate a vegetation field or a snow covered ice field with the top layer being snow or leaves, the middle layer being ice or trunks, and the bottom layer being sea water or ground. The strong fluctuation theory with the distorted Born approximation is applied to the solution of the radar backscattering coefficients.

  17. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.

  18. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    NASA Astrophysics Data System (ADS)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  19. Space exercise and Earth benefits.

    PubMed

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  20. Geoengineering the Earth's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Google Tech Talks

    2008-01-08

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probablymore » be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.« less

  1. Geoengineering the Earth's Climate

    ScienceCinema

    Google Tech Talks

    2017-12-09

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  2. ISS EarthKam: Taking Photos of the Earth from Space

    ERIC Educational Resources Information Center

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  3. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Panelists discuss how research on early Earth could help guide our search for habitable planets orbiting other stars at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Photo Credit: (NASA/Aubrey Gemignani)

  4. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. David H. Grinspoon, Senior Scientist, Planetary Science Institute, moderates a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and highlighted how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  5. Robotic space simulation integration of vision algorithms into an orbital operations simulation

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1987-01-01

    In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.

  6. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  7. Body fluid regulation in micro-gravity differs from that on Earth: an overview.

    PubMed

    Drummer, C; Gerzer, R; Baisch, F; Heer, M

    2000-01-01

    Similar to the response to central hypervolemic conditions on Earth, the shift of blood volume from the legs to the upper part of the body in astronauts entering micro-gravity should, in accordance with the Henry-Gauer mechanism, mediate diuresis and natriuresis. However, fluid balance and kidney function experiments during various space missions resulted in the surprising observation that the responses qualitatively differ from those observed during simulations of hypervolemia on Earth. There is some evidence that the attenuated responses of the kidney while entering weightlessness, and also later during space flight, may be caused by augmented fluid distribution to extravascular compartments compared to conditions on Earth. A functional decoupling of the kidney may also contribute to the observation that renal responses during exposure to micro-gravity are consistently weaker than those during simulation experiments before space flight. Deficits in body mass after landing have always been interpreted as an indication of absolute fluid loss early during space missions. However, recent data suggest that body mass changes during space flight are rather the consequences of hypocaloric nutrition and can be overcome by improved nutrition schemes. Finally, sodium-retaining humoral systems are activated during space flight and may contribute to a new steady-state of metabolic balances with a pronounced increase in body sodium compared to respective conditions on Earth. A revision of the classical "micro-gravity fluid shift" scheme is required.

  8. EPIC Radiance Simulator for Deep Space Climate ObserVatoRy (DSCOVR)

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Marshak, Alexander; Wang, Yujie; Korkin, Sergey; Herman, Jay

    2011-01-01

    The Deep Space Climate ObserVatoRy (DSCOVR) is a planned space weather mission for the Sun and Earth observations from the Lagrangian L1 point. Onboard of DSCOVR is a multispectral imager EPIC designed for unique observations of the full illuminated disk of the Earth with high temporal and 10 km spatial resolution. Depending on latitude, EPIC will observe the same Earth surface area during the course of the day in a wide range of solar and view zenith angles in the backscattering view geometry with the scattering angle of 164-172 . To understand the information content of EPIC data for analysis of the Earth clouds, aerosols and surface properties, an EPIC radiance Simulator was developed covering the UV -VIS-NIR range including the oxygen A and B-bands (A=340, 388, 443, 555, 680, 779.5, 687.7, 763.3 nm). The Simulator uses ancillary data (surface pressure/height, NCEP wind speed) as well as MODIS-based geophysical fields such as spectral surface bidirectional reflectance, column water vapor, and properties of aerosols and clouds including optical depth, effective radius, phase and cloud top height. The original simulations are conducted at 1 km resolution using the look-up table approach and then are averaged to 10 km EPIC radiances. This talk will give an overview of the EPIC Simulator with analysis of results over the continental USA and northern Atlantic.

  9. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  10. Reduced gas accretion on super-Earths and ice giants

    NASA Astrophysics Data System (ADS)

    Lambrechts, M.; Lega, E.

    2017-10-01

    A large fraction of giant planets have gaseous envelopes that are limited to about 10% of their total mass budget. Such planets are present in the solar system (Uranus, Neptune) and are frequently observed in short periods around other stars (the so-called super-Earths). In contrast to these observations, theoretical calculations based on the evolution of hydrostatic envelopes argue that such low-mass envelopes cannot be maintained around cores exceeding five Earth masses. Instead, under nominal disk conditions, these planets would acquire massive envelopes through runaway gas accretion within the lifetime of the protoplanetary disk. In this work we show that planetary envelopes are not in hydrostatic balance, which slows down envelope growth. A series of 3D global, radiative hydrodynamical simulations reveal a steady-state gas flow, which enters through the poles and exits in the disk midplane. Gas is pushed through the outer envelope in about ten orbital timescales. In regions of the disk that are not significantly dust-depleted, envelope accretion onto cores of about five Earth masses can get stalled as the gas flow enters the deep interior. Accreted solids sublimate deep in the convective interior, but small opacity-providing grains are trapped in the flow and do not settle, which further prevents rapid envelope accretion. The transition to runaway gas accretion can however be reached when cores grow larger than typical super-Earths, beyond 15 Earth masses, and preferably when disk opacities are below κ = 1 cm2/g. These findings offer an explanation for the typical low-mass envelopes around the cores of super-Earths.

  11. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  12. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  13. Reduced Gravity Walking Simulator

    NASA Image and Video Library

    1963-02-11

    A test subject being suited up for studies on the Reduced Gravity Walking Simulator located in the hangar at Langley Research Center. The initial version of this simulator was located inside the hangar. Later a larger version would be located at the Lunar Landing Facility. The purpose of this simulator was to study the subject while walking, jumping or running. Researchers conducted studies of various factors such as fatigue limit, energy expenditure, and speed of locomotion. Francis B. Smith wrote in his paper "Simulators For Manned Space Research," "I would like to conclude this talk with a discussion of a device for simulating lunar gravity which is very effective and yet which is so simple that its cost is in the order of a few thousand dollars at most, rather than hundreds of thousands. With a little ingenuity, one could almost build this type simulator in his backyard for children to play on. The principle is ...if a test subject is suspended in a sling so that his body axis makes an angle of 9 1/2 degrees with the horizontal and if he then "stands" on a platform perpendicular to his body axis, the component of the earth's gravity forcing him toward the platform is one times the sine of 9 1/2 degrees or approximately 1/6 of the earth's normal gravity field. That is, a 180 pound astronaut "standing" on the platform would exert a force of only 30 pounds - the same as if he were standing upright on the lunar surface." -- Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308; Francis B. Smith, "Simulators For Manned Space Research," Paper for 1966 IEEE International Convention, New York, NY, March 21-25, 1966

  14. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  15. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  16. Stovetop Earth Pecan Pie

    NASA Astrophysics Data System (ADS)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  17. Modeling of proton-induced radioactivation background in hard X-ray telescopes: Geant4-based simulation and its demonstration by Hitomi's measurement in a low Earth orbit

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Asai, Makoto; Hagino, Kouichi; Koi, Tatsumi; Madejski, Greg; Mizuno, Tsunefumi; Ohno, Masanori; Saito, Shinya; Sato, Tamotsu; Wright, Dennis H.; Enoto, Teruaki; Fukazawa, Yasushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Kobayashi, Shogo B.; Kokubun, Motohide; Laurent, Philippe; Lebrun, Francois; Limousin, Olivier; Maier, Daniel; Makishima, Kazuo; Mimura, Taketo; Miyake, Katsuma; Mori, Kunishiro; Murakami, Hiroaki; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Ohta, Masayuki; Ozaki, Masanobu; Sato, Goro; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yasuda, Tetsuya; Yatsu, Yoichi; Yuasa, Takayuki; Zoglauer, Andreas

    2018-05-01

    Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.

  18. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-06-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  19. Anthropogenic changes in the surface all-sky UV-B radiation through 1850-2005 simulated by an Earth system model

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Takemura, T.; Sudo, K.; Yokohata, T.; Kawase, H.

    2012-02-01

    The historical anthropogenic change in the surface all-sky UV-B (solar ultraviolet: 280-315 nm) radiation through 1850-2005 is evaluated using an Earth system model. Responses of UV-B dose to anthropogenic changes in ozone and aerosols are separately evaluated using a series of historical simulations including/excluding these changes. Increases in these air pollutants cause reductions in UV-B transmittance, which occur gradually/rapidly before/after 1950 in and downwind of industrial and deforestation regions. Furthermore, changes in ozone transport in the lower stratosphere, which is induced by increasing greenhouse gas concentrations, increase ozone concentration in the extratropical upper troposphere and lower stratosphere. These transient changes work to decrease the amount of UV-B reaching the Earth's surface, counteracting the well-known effect increasing UV-B due to stratospheric ozone depletion, which developed rapidly after ca. 1980. As a consequence, the surface all-sky UV-B radiation change between 1850 and 2000 is negative in the tropics and NH extratropics and positive in the SH extratropics. Comparing the contributions of ozone and aerosol changes to the UV-B change, the transient change in ozone absorption of UV-B mainly determines the total change in the surface all-sky UV-B radiation at most locations. On the other hand, the aerosol direct and indirect effects on UV-B play an equally important role to that of ozone in the NH mid-latitudes and tropics. A typical example is East Asia (25° N-60° N and 120° E-150° E), where the effect of aerosols (ca. 70%) dominates the total UV-B change.

  20. Global three-dimensional simulation of Earth's dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: initial results: 3D MHD-EPIC simulation of magnetosphere

    DOE PAGES

    Chen, Yuxi; Tóth, Gábor; Cassak, Paul; ...

    2017-09-18

    Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less

  1. Global three-dimensional simulation of Earth's dayside reconnection using a two-way coupled magnetohydrodynamics with embedded particle-in-cell model: initial results: 3D MHD-EPIC simulation of magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuxi; Tóth, Gábor; Cassak, Paul

    Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less

  2. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  3. Evaluation of the Pseudostatic Analyses of Earth Dams Using FE Simulation and Observed Earthquake-Induced Deformations: Case Studies of Upper San Fernando and Kitayama Dams

    PubMed Central

    Akhlaghi, Tohid

    2014-01-01

    Evaluation of the accuracy of the pseudostatic approach is governed by the accuracy with which the simple pseudostatic inertial forces represent the complex dynamic inertial forces that actually exist in an earthquake. In this study, the Upper San Fernando and Kitayama earth dams, which have been designed using the pseudostatic approach and damaged during the 1971 San Fernando and 1995 Kobe earthquakes, were investigated and analyzed. The finite element models of the dams were prepared based on the detailed available data and results of in situ and laboratory material tests. Dynamic analyses were conducted to simulate the earthquake-induced deformations of the dams using the computer program Plaxis code. Then the pseudostatic seismic coefficient used in the design and analyses of the dams were compared with the seismic coefficients obtained from dynamic analyses of the simulated model as well as the other available proposed pseudostatic correlations. Based on the comparisons made, the accuracy and reliability of the pseudostatic seismic coefficients are evaluated and discussed. PMID:24616636

  4. Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.

    2001-05-01

    A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less

  5. Digital Earth for Earth Sciences and Public Education

    NASA Astrophysics Data System (ADS)

    Foresman, T. W.

    2006-12-01

    Buckminster Fuller was an early advocate for better comprehension of the planet and its resources related to human affairs. A comprehensive vision was articulated by a US Vice President and quickly adopted by the world's oldest country China.. Digital Earth brings fresh perspective on the current state of affairs and connects citizens with scientists through the applications of 3D visualization, spinning globes, virtual Earths, and the current collaboration with Virtual Globes. The prowess of Digital Earth technology has been so successful in both understanding and communicating the more challenging topics for global change and climate change phenomena that China has assigned it priority status with the Ministry of Science and Technology and the Chinese Academy of Sciences. New Zealand has recently begun to adjust its national strategies for sustainability with the technologies of Digital Earth. A comprehensive coverage of the results compiled over the past seven years is presented to place a foundation for the science and engineering community to prepare to align with this compelling science enterprise as a fundamental new paradigm for the registration, storage, and access of science data and information through the emerging Digital Earth Exchange under protocols developed for the Digital Earth Reference Model.

  6. Orbiting Rainbows Simulation

    NASA Image and Video Library

    2015-04-22

    This simulated image shows how a cloud of glitter in geostationary orbit would be illuminated and controlled by two laser beams. As the cloud orbits Earth, grains scatter the sun's light at different angles like many tiny prisms, similar to how rainbows are produced from light being dispersed by water droplets. That is why the project concept is called "Orbiting Rainbows." The cloud functions like a reflective surface, allowing the exoplanet (displayed in the bottom right) to be imaged. The orbit path is shown in the top right. On the bottom left, Earth's image is seen behind the cloud. To image an exoplanet, the cloud would need to have a diameter of nearly 98 feet (30 meters). This simulation confines the cloud to a 3.3 x 3.3 x 3.3 foot volume (1 x 1 x 1 meter volume) to simplify the computations. The elements of the orbiting telescope are not to scale. Orbiting Rainbows is currently in Phase II development through the NASA Innovative Advanced Concepts (NIAC) Program. It was one of five technology proposals chosen for continued study in 2014. In the current phase, Orbiting Rainbows researchers are conducting small-scale ground experiments to demonstrate how granular materials can be manipulated using lasers and simulations of how the imaging system would behave in orbit. http://photojournal.jpl.nasa.gov/catalog/PIA19318

  7. Feasibility studies for the detection of O{sub 2} in an Earth-like exoplanet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodler, Florian; López-Morales, Mercedes

    2014-01-20

    We present the results of simulations on the detectability of O{sub 2} in the atmosphere of Earth twins around nearby low mass stars using high resolution transmission spectroscopy. We explore such detectability with each of the three upcoming Extremely Large Telescopes (ELTs), i.e., GMT, TMT, and E-ELT, and high resolution spectrographs, assuming such instruments will be available in all ELTs. With these simulations we extend previous studies by taking into account atmospheric refraction in the transmission spectrum of the exo-Earth and observational white and red noise contributions. Our studies reveal that the number of transits necessary to detect O{sub 2}more » in the atmosphere of an Earth twin around an M dwarf is by far higher than the number of transits estimated by Snellen et al. In addition, our simulations show that, when accounting for typical noise levels associated with observations in the optical and near-infrared, the O{sub 2} A band at 760 nm is more favorable for detecting the exoplanetary signal than the O{sub 2} band at 1268 nm for all the spectral types, except M9V. We conclude that, unless unpredicted instrumental limitations arise, the implementation of pre-slit optics such as image slicers appears to be key to significantly improving the yield of this particular science case. However, even in the most optimistic cases, we conclude that the detection of O{sub 2} in the atmosphere of an Earth twin will only be feasible with the ELTs if the planet is orbiting a bright close by (d ≤ 8 pc) M dwarf with a spectral type later than M3.« less

  8. Why Earth Science?

    ERIC Educational Resources Information Center

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  9. A synthetic high fidelity, high cadence spectral Earth database

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty

    2016-10-01

    Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time

  10. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  11. Towards a comprehensive model of Earth's disk-integrated Stokes vector

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2015-07-01

    A significant body of work on simulating the remote appearance of Earth-like exoplanets has been done over the last decade. The research is driven by the prospect of characterizing habitable planets beyond the Solar System in the near future. In this work, I present a method to produce the disk-integrated signature of planets that are described in their three-dimensional complexity, i.e. with both horizontal and vertical variations in the optical properties of their envelopes. The approach is based on Pre-conditioned Backward Monte Carlo integration of the vector Radiative Transport Equation and yields the full Stokes vector for outgoing reflected radiation. The method is demonstrated through selected examples inspired by published work at wavelengths from the visible to the near infrared and terrestrial prescriptions of both cloud and surface albedo maps. I explore the performance of the method in terms of computational time and accuracy. A clear strength of this approach is that its computational cost does not appear to be significantly affected by non-uniformities in the planet optical properties. Earth's simulated appearance is strongly dependent on wavelength; both brightness and polarization undergo diurnal variations arising from changes in the planet cover, but polarization yields a better insight into variations with phase angle. There is partial cancellation of the polarized signal from the northern and southern hemispheres so that the outgoing polarization vector lies preferentially either in the plane parallel or perpendicular to the planet scattering plane, also for non-uniform cloud and albedo properties and various levels of absorption within the atmosphere. The evaluation of circular polarization is challenging; a number of one-photon experiments of 109 or more is needed to resolve hemispherically integrated degrees of circular polarization of a few times 10-5. Last, I introduce brightness curves of Earth obtained with one of the Messenger cameras

  12. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  13. The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S; Wolf, Eric T; Schwieterman, Edward; Charnay, Benjamin; Claire, Mark; Hébrard, Eric; Trainer, Melissa G

    2016-11-01

    Recognizing whether a planet can support life is a primary goal of future exoplanet spectral characterization missions, but past research on habitability assessment has largely ignored the vastly different conditions that have existed in our planet's long habitable history. This study presents simulations of a habitable yet dramatically different phase of Earth's history, when the atmosphere contained a Titan-like, organic-rich haze. Prior work has claimed a haze-rich Archean Earth (3.8-2.5 billion years ago) would be frozen due to the haze's cooling effects. However, no previous studies have self-consistently taken into account climate, photochemistry, and fractal hazes. Here, we demonstrate using coupled climate-photochemical-microphysical simulations that hazes can cool the planet's surface by about 20 K, but habitable conditions with liquid surface water could be maintained with a relatively thick haze layer (τ ∼ 5 at 200 nm) even with the fainter young Sun. We find that optically thicker hazes are self-limiting due to their self-shielding properties, preventing catastrophic cooling of the planet. Hazes may even enhance planetary habitability through UV shielding, reducing surface UV flux by about 97% compared to a haze-free planet and potentially allowing survival of land-based organisms 2.7-2.6 billion years ago. The broad UV absorption signature produced by this haze may be visible across interstellar distances, allowing characterization of similar hazy exoplanets. The haze in Archean Earth's atmosphere was strongly dependent on biologically produced methane, and we propose that hydrocarbon haze may be a novel type of spectral biosignature on planets with substantial levels of CO 2 . Hazy Archean Earth is the most alien world for which we have geochemical constraints on environmental conditions, providing a useful analogue for similar habitable, anoxic exoplanets. Key Words: Haze-Archean Earth-Exoplanets-Spectra-Biosignatures-Planetary habitability

  14. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  15. Anomalous flow deflection at earth's low-Alfvén-Mach-Number bow shock.

    PubMed

    Nishino, Masaki N; Fujimoto, Masaki; Phan, Tai-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M; Rastätter, Lutz

    2008-08-08

    Earth's magnetosphere is an obstacle to the supersonic solar wind and the bow shock is formed in the front side of it. In ordinary hydrodynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the Earth-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low-density solar wind in which duskward flow was observed in the dawnside magnetosheath. A Rankine-Hugoniot test shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional magnetohydrodynamics (MHD) simulation of the situation confirming this interpretation and earlier simulations is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle.

  16. EarthChem and SESAR: Data Resources and Interoperability for EarthScope Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Block, K.; Vinay, S.; Ash, J.

    2008-12-01

    Data management within the EarthScope Cyberinfrastructure needs to pursue two goals in order to advance and maximize the broad scientific application and impact of the large volumes of observational data acquired by EarthScope facilities: (a) to provide access to all data acquired by EarthScope facilities, and to promote their use by broad audiences, and (b) to facilitate discovery of, access to, and integration of multi-disciplinary data sets that complement EarthScope data in support of EarthScope science. EarthChem and SESAR, the System for Earth Sample Registration, are two projects within the Geoinformatics for Geochemistry program that offer resources for EarthScope CI. EarthChem operates a data portal that currently provides access to >13 million analytical values for >600,000 samples, more than half of which are from North America, including data from the USGS and all data from the NAVDAT database, a web-accessible repository for age, chemical and isotopic data from Mesozoic and younger igneous rocks in western North America. The new EarthChem GEOCHRON database will house data collected in association with GeoEarthScope, storing and serving geochronological data submitted by participating facilities. The EarthChem Deep Lithosphere Dataset is a compilation of petrological data for mantle xenoliths, initiated in collaboration with GeoFrame to complement geophysical endeavors within EarthScope science. The EarthChem Geochemical Resource Library provides a home for geochemical and petrological data products and data sets. Parts of the digital data in EarthScope CI refer to physical samples such as drill cores, igneous rocks, or water and gas samples, collected, for example, by SAFOD or by EarthScope science projects and acquired through lab-based analysis. Management of sample-based data requires the use of global unique identifiers for samples, so that distributed data for individual samples generated in different labs and published in different papers can be

  17. On the Feasibility of Intense Radial Velocity Surveys for Earth-twin Discoveries

    NASA Astrophysics Data System (ADS)

    Hall, Richard D.; Thompson, Samantha J.; Handley, Will; Queloz, Didier

    2018-06-01

    This work assesses the potential capability of the next generation of high-precision Radial Velocity (RV) instruments for Earth-twin exoplanet detection. From the perspective of the importance of data sampling, the Terra Hunting Experiment aims to do this through an intense series of nightly RV observations over a long baseline on a carefully selected target list, via the brand-new instrument HARPS3. This paper describes an end-to-end simulation of generating and processing such data to help us better understand the impact of uncharacterised stellar noise in the recovery of Earth-mass planets with orbital periods of the order of many months. We consider full Keplerian systems, realistic simulated stellar noise, instrument white noise, and location-specific weather patterns for our observation schedules. We use Bayesian statistics to assess various planetary models fitted to the synthetic data, and compare the successful planet recovery of the Terra Hunting Experiment schedule with a typical reference survey. We find that the Terra Hunting Experiment can detect Earth-twins in the habitable zones of solar-type stars, in single and multi-planet systems, and in the presence of stellar signals. Also that it out-performs a typical reference survey on accuracy of recovered parameters, and that it performs comparably to an uninterrupted space-based schedule.

  18. Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, Jaime; Carvalho, Washington R.; Payet, Kévin; Romero-Wolf, Andrés; Schoorlemmer, Harm; Zas, Enrique

    2018-01-01

    There has been a recent surge in interest in the detection of τ -lepton-induced air showers from detectors at altitude. When a τ neutrino (ντ) enters the Earth, it produces τ leptons as a result of nuclear charged-current interactions. In some cases, this process results in a τ lepton exiting the surface of the Earth, which can subsequently decay in the atmosphere and produce an extensive air shower. These upward-going air showers can be detected via fluorescence, optical Cherenkov, or geomagnetic radio emission. Several experiments have been proposed to detect these signals. We present a comprehensive simulation of the production of τ leptons by ντ's propagating through Earth to aid the design of future experiments. These simulations for ντ's and leptons in the energy range from 1 015 eV to 1 021 eV treat the full range of incidence angles from Earth-skimming to diametrically traversing. Propagation of ντ's and leptons includes the effects of rock and an ocean or ice layer of various thicknesses. The interaction models include ντ regeneration and account for uncertainties in the Standard Model neutrino cross section and in the photonuclear contribution to the τ energy-loss rate.

  19. Notes on Earth Atmospheric Entry for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Rivell, Thomas

    2006-01-01

    The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.

  20. The International Solid Earth Research Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Fox, G.; Pierce, M.; Rundle, J.; Donnellan, A.; Parker, J.; Granat, R.; Lyzenga, G.; McLeod, D.; Grant, L.

    2004-12-01

    We describe the architecture and initial implementation of the International Solid Earth Research Virtual Observatory (iSERVO). This has been prototyped within the USA as SERVOGrid and expansion is planned to Australia, China, Japan and other countries. We base our design on a globally scalable distributed "cyber-infrastructure" or Grid built around a Web Services-based approach consistent with the extended Web Service Interoperability approach. The Solid Earth Science Working Group of NASA has identified several challenges for Earth Science research. In order to investigate these, we need to couple numerical simulation codes and data mining tools to observational data sets. This observational data are now available on-line in internet-accessible forms, and the quantity of this data is expected to grow explosively over the next decade. We architect iSERVO as a loosely federated Grid of Grids with each country involved supporting a national Solid Earth Research Grid. The national Grid Operations, possibly with dedicated control centers, are linked together to support iSERVO where an International Grid control center may eventually be necessary. We address the difficult multi-administrative domain security and ownership issues by exposing capabilities as services for which the risk of abuse is minimized. We support large scale simulations within a single domain using service-hosted tools (mesh generation, data repository and sensor access, GIS, visualization). Simulations typically involve sequential or parallel machines in a single domain supported by cross-continent services. We use Web Services implement Service Oriented Architecture (SOA) using WSDL for service description and SOAP for message formats. These are augmented by UDDI, WS-Security, WS-Notification/Eventing and WS-ReliableMessaging in the WS-I+ approach. Support for the latter two capabilities will be available over the next 6 months from the NaradaBrokering messaging system. We augment these

  1. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    An audience member asks the panelists a question at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  2. Low Earth Orbit Rendezvous Strategy for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Cirillo, William M.; Stromgren, Chel

    2006-01-01

    On January 14, 2004 President George W. Bush announced a new Vision for Space Exploration calling for NASA to return humans to the moon. In 2005 NASA decided to use a Low Earth Orbit (LEO) rendezvous strategy for the lunar missions. A Discrete Event Simulation (DES) based model of this strategy was constructed. Results of the model were then used for subsequent analysis to explore the ramifications of the LEO rendezvous strategy.

  3. Tracking the Momentum Flux of a CME and Quantifying Its Influence on Geomagnetically Induced Currents at Earth

    NASA Technical Reports Server (NTRS)

    Savani, N. P.; Vourlidas, A.; Pulkkinen, A.; Nieves-Chinchilla, T.; Lavraud, B.; Owens, M. J.

    2013-01-01

    We investigate a coronal mass ejection (CME) propagating toward Earth on 29 March 2011. This event is specifically chosen for its predominately northward directed magnetic field, so that the influence from the momentum flux onto Earth can be isolated. We focus our study on understanding how a small Earth-directed segment propagates. Mass images are created from the white-light cameras onboard STEREO which are also converted into mass height-time maps (mass J-maps). The mass tracks on these J-maps correspond to the sheath region between the CME and its associated shockfront as detected by in situ measurements at L1. A time series of mass measurements from the STEREOCOR-2A instrument is made along the Earth propagation direction. Qualitatively, this mass time series shows a remarkable resemblance to the L1 in situ density series. The in situ measurements are used as inputs into a three-dimensional (3-D) magnetospheric space weather simulation from the Community Coordinated Modeling Center. These simulations display a sudden compression of the magnetosphere from the large momentum flux at the leading edge of the CME, and predictions are made for the time derivative of the magnetic field (dBdt) on the ground. The predicted dBdt values were then compared with the observations from specific equatorially located ground stations and showed notable similarity. This study of the momentum of a CME from the Sun down to its influence on magnetic ground stations on Earth is presented as a preliminary proof of concept, such that future attempts may try to use remote sensing to create density and velocity time series as inputs to magnetospheric simulations.

  4. Earth Science Europe "Is Earth Science Europe an interesting and useful construct?"

    NASA Astrophysics Data System (ADS)

    Ludden, John

    2015-04-01

    In 2014 we managed to have a group of earth scientists from across the spectrum: from academic, survey, industry and government, pull together to create the first output for Earth Science Europe http://www.bgs.ac.uk/earthScienceEurope/downloads/EarthScienceEuropeBrochure.pdf In this document we stated that Earth scientists need a united, authoritative voice to enhance the status and impact of Earth science across Europe. The feeling was that there were many diverse infrastructure and research initiatives spanning the terrestrial and oceanic realms and science ranged from historical geology to active dynamics on Earth, and that a level of coordination and mutual knowledge sharing was necessary. In addition to a better understanding of the Earth in general, we thought there was a need to have Earth Science Europe develop a strategic research capacity in geohazards, georesources and environmental earth sciences, through a roadmap addressing fundamental and societal challenges. This would involve a robust research infrastructure to deliver strategic goals, enabling inspirational research and promoting solutions to societal challenges. In this talk I will propose some next steps and discuss what this "authoritative voice" could look like and ask the question - "is Earth Science Europe and interesting and useful concept?"

  5. Ground-based simulation of the Earth's upper atmosphere oxygen impact on polymer composites with nanosized fillers

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Voronina, Ekaterina; Chechenin, Nikolay; Samokhina, Maria S.; Bondarenko, Gennady G.; Gaidar, Anna I.; Vorobyeva, Ekaterina A.; Petrov, Dmitrii V.; Chirskaya, Natalia P.

    The improvement of durability of polymer composites to the space environment impact is a very important task because these materials are considered currently as very promising type of materials for aerospace engineering. By embedding various nanosized fillers into a polymer matrix it is possible to obtain composites with required mechanical, thermal, electrical and optic properties. However, while developing such materials for operation in low Earth orbits (LEO), it is necessary to study thoroughly their durability to the impact of atomic oxygen (AO) of the Earth’s upper atmosphere, because AO is the main factor that causes erosion and damage of spacecraft surface materials in LEO. Ground-based simulation of AO impact on polymer composites was performed on a magnetoplasmadynamic accelerator developed at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Polymer composite samples which were prepared as films of 30-50 mum thickness with different amount (3-20 wt%) of various inorganic and organic nanofillers including nanoparticles of metal oxides and carbides as well as polyethoxysiloxanes and carbon nanotubes (CNTs), were exposed to hyperthermal AO flow, and mass losses of samples were estimated. Changes in the structure of composite surface and in material optical properties were studied. The experiments demonstrated that embedding nanosized fillers into a polymer matrix can significantly reduced mass losses, and the good dispersion of fillers improves AO durability in comparison with initial polymers [1]. The computer simulation within the developed 2D Monte-Carlo model demonstrated a good agreement with the experimental data [2]. Special attention was given to the study of AO impact on aligned multiwalled CNTs and CNT-based composites [3]. Some results of computer simulation of hyperthermal oxygen atom interaction with CNT and graphene as well as with polymers are presented to discuss elementary processes which occur in nanostructures

  6. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. A new trajectory concept for exploring the earth's geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Dunham, D. W.

    1981-01-01

    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.

  8. Understanding earth system models: how Global Sensitivity Analysis can help

    NASA Astrophysics Data System (ADS)

    Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Computer models are an essential element of earth system sciences, underpinning our understanding of systems functioning and influencing the planning and management of socio-economic-environmental systems. Even when these models represent a relatively low number of physical processes and variables, earth system models can exhibit a complicated behaviour because of the high level of interactions between their simulated variables. As the level of these interactions increases, we quickly lose the ability to anticipate and interpret the model's behaviour and hence the opportunity to check whether the model gives the right response for the right reasons. Moreover, even if internally consistent, an earth system model will always produce uncertain predictions because it is often forced by uncertain inputs (due to measurement errors, pre-processing uncertainties, scarcity of measurements, etc.). Lack of transparency about the scope of validity, limitations and the main sources of uncertainty of earth system models can be a strong limitation to their effective use for both scientific and decision-making purposes. Global Sensitivity Analysis (GSA) is a set of statistical analysis techniques to investigate the complex behaviour of earth system models in a structured, transparent and comprehensive way. In this presentation, we will use a range of examples across earth system sciences (with a focus on hydrology) to demonstrate how GSA is a fundamental element in advancing the construction and use of earth system models, including: verifying the consistency of the model's behaviour with our conceptual understanding of the system functioning; identifying the main sources of output uncertainty so to focus efforts for uncertainty reduction; finding tipping points in forcing inputs that, if crossed, would bring the system to specific conditions we want to avoid.

  9. Exo-Earth Discovery and Characterization with Large UV-Optical-IR Observatories

    NASA Astrophysics Data System (ADS)

    Mandell, Avi; Stark, Christopher; Roberge, Aki; Domagal-Goldman, Shawn; Stapelfeldt, Karl; Robinson, Tyler; Clampin, Mark; Postman, Marc; Thronson, Harley

    2015-07-01

    A Large UV-Optical-InfraRed (LUVOIR) telescope was recommended by the recent AURA Beyond JWST report [1] and our study team is developing the concept further for consideration by the US National Research Council 2020 Decadal Survey. A critical metric for constraining requirements of this mission is the discovery and characterization of Earth-like planets around Sun-like stars using high-contrast imaging, and we have focused on using exo-Earth yield to provide constraints on technical requirements early in the design process. An estimate of the detection yield for Earth-like planets can be calculated using a Monte Carlo simulation of a design reference mission (DRM), allowing the exploration of a variety of mission design and astrophysical parameters. We have developed a new strategy called altruistic yield optimazation (AYO) that optimizes the target list, exposure times, and number of revisits to maximize mission yield for a specific set of mission parameters [2]. In this presentation we discuss the various physical and technological parameters that go into the DRM simulations, and the associated uncertainties based on the current state of research. We will also discuss the potential follow-up science capabilities for spectroscopic characterization facilitated by a large aperture. For example, a telescope of aperture ≥10 meters would be able to measure integrated exo-Earth fluxes with multi-hour integration times, providing a map of albedo variations as the planet rotates. A large aperture would also provide reasonable inner working angles for coronographic observations beyond the visible wavelength range, enabling detections of important atmospheric molecules such as CH4 and CO2.

  10. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  11. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  12. Space plasma simulations; Proceedings of the Second International School for Space Simulations, Kapaa, HI, February 4-15, 1985. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M. (Editor); Dutton, D. A. (Editor)

    1985-01-01

    Space plasma simulations, observations, and theories are discussed. Papers are presented on the capabilities of various types of simulation codes and simulation models. Consideration is given to plasma waves in the earth's magnetotail, outer planet magnetosphere, geospace, and the auroral and polar cap regions. Topics discussed include space plasma turbulent dissipation, the kinetics of plasma waves, wave-particle interactions, whistler mode propagation, global energy regulation, and auroral arc formation.

  13. Determination of Earth outgoing radiation using a constellation of satellites

    NASA Astrophysics Data System (ADS)

    Gristey, Jake; Chiu, Christine; Gurney, Robert; Han, Shin-Chan; Morcrette, Cyril

    2017-04-01

    The outgoing radiation fluxes at the top of the atmosphere, referred to as Earth outgoing radiation (EOR), constitute a vital component of the Earth's energy budget. This EOR exhibits strong diurnal signatures and is inherently connected to the rapidly evolving scene from which the radiation originates, so our ability to accurately monitor EOR with sufficient temporal resolution and spatial coverage is crucial for weather and climate studies. Despite vast improvements in satellite observations in recent decades, achieving these criteria remains challenging from current measurements. A technology revolution in small satellites and sensor miniaturisation has created a new and exciting opportunity for a novel, viable and sustainable observation strategy from a constellation of satellites, capable of providing both global coverage and high temporal resolution simultaneously. To explore the potential of a constellation approach for observing EOR we perform a series of theoretical simulation experiments. Using the results from these simulation experiments, we will demonstrate a baseline constellation configuration capable of accurately monitoring global EOR at unprecedented temporal resolution. We will also show whether it is possible to reveal synoptic scale, fast evolving phenomena by applying a deconvolution technique to the simulated measurements. The ability to observe and understand the relationship between these phenomena and changes in EOR is of fundamental importance in constraining future warming of our climate system.

  14. Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.

    2017-12-01

    Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.

  15. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  16. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Phoebe Cohen, Professor of Geosciences, Williams College, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  17. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Christopher House, Professor of Geosciences, Pennsylvania State University, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  18. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Dawn Sumner, Professor of Geology, UC Davis, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  19. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Timothy Lyons, Professor of Biogeochemistry, UC Riverside, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  20. Hydrazines and carbohydrazides produced from oxidized carbon in earth's primitive environment

    NASA Technical Reports Server (NTRS)

    Folsome, C. E.; Brittain, A.; Smith, A.; Chang, S.

    1981-01-01

    Whether abiological organic compounds can be formed from the interactions of energy sources with nitrogen, oxidized carbon and water is held to be of importance in geochemical models of the primordial earth atmosphere. It is reported that experiments using quenched spark discharges through molecular nitrogen on aqueous suspensions of CaCO3 and other reactants to simulate the hydrosphere/atmosphere interface yield hydrazine and carbohydrazine in significant but low yields. Such reactions in primitive aquatic environments may have supplied a pathway for chemical evolution and the origin of life, on a primitive earth in which fully oxidized states of carbon were available for the primary synthesis of organic matter.

  1. CO/sub 2/ and Spaceship Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terra, S.

    1978-01-01

    Atmospheric CO/sub 2/ concentrations have increased so rapidly since the start of the industrial revolution that the threat of climatic and economic disruptions may require limitations on future fossil-energy production. The greenhouse effect by which longwave radiation is absorbed by CO/sub 2/ and reradiated back to earth, will raise the earth's temperature. Other factors can be traced to a warming trend caused by an increase in nitrous oxides from agricultural activity and a cooling tendency as the added warmth increases evaporation and cloud formation. Several national and international studies of CO/sub 2/ effects are underway and legislation for further datamore » and research has been proposed in Congress. While scientists agree that CO/sub 2/ levels are increasing, they disagree on the nature of the long-term effects on climate, crop production, deglaciation, and the impact of forest and other biological matter. Simulation models for projecting future conditions need to include transients to predict the effects of CO/sub 2/ level changes.« less

  2. Barchan asymmetry as a proxy for wind conditions on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Dwyer, Diarmuid; Bourke, Mary

    2014-05-01

    The absence of weather stations in many remote arid regions on Earth and Mars introduces a difficulty in testing atmospheric circulation models. While several proxies have been recommended for the reconstruction of wind regimes, they remain to be tested in a wide range of terrains. We examine the relationship between instrumented wind data and barchan asymmetric shape in order to ascertain if this dune attribute can be used to reliably infer aspects of a wind regime. The two study areas are located in La Joya, Peru and the Namib Desert, Namibia. Dune observations were made using high resolution satellite images available on Google Earth. The wind data was sourced from Wunderground and the National Peruvian Meteorological Service. Asymmetric barchans are reported to form in bimodal wind regimes (Tsoar, 1984). The barchan dune is oriented parallel to the strong wind regime and is modified by oblique gentler winds. Our analysis of wind data and dune form supports the Tsoar model for barchan asymmetry. Numerical simulations have shown that the duration of winds in bi-directional regimes also influences asymmetry (Parteli, 2014). Our analysis finds good agreement between the model simulations of Parteli et al (2014) and the instrument data for Namibia and Peru. We use our findings on Earth to infer formative wind direction and duration at five sites on Mars. These are the first maps of wind direction and relative duration for Mars. Our findings do not concur with previous estimates of wind direction derived either from the NASA Ames General Circulation Model or dune slipface orientation. We propose that the Parteli et al (2014) approach can be usefully applied to remote areas on Earth and Mars to extract data on relative wind duration and direction. Parteli, E.J.R., Duran, O., Bourke, M.C., Tsoar, H., Poschel, T., Herrmann, H.J., (in press). Origins of barchan dune asymmetry: Insights from numerical simulations. Aeolian Research. Tsoar, H., (1984). The formation of seif

  3. Study of Kapton Degradation under Simulated Shuttle Environment

    NASA Technical Reports Server (NTRS)

    Eck, T. G.; Hoffman, R. W.

    1985-01-01

    Weight loss and severe degradation of the surface of Kapton that occurs in low Earth orbit is studied. Atomic oxygen, the major ambient species at low Earth altitude and incident with approximately 5 eV energy in ram conditions, is the primary suspect, but a thorough study of oxygen-Kapton interactions has not yet been carried out. A low-energy ion source is used to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis and mass spectroscopic capability, is being used to carry out experiments from which quantum yields may be obtained.

  4. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  5. A new model for early Earth: heat-pipe cooling

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.

    2013-12-01

    In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the

  6. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    NASA Astrophysics Data System (ADS)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate

  7. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  8. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.

    2017-12-01

    One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal

  9. Computer Generated View of Earth as seen from the Asteroid Toutatis

    NASA Image and Video Library

    1996-11-27

    This computer generated image depicts a view of Earth as seen from the surface of the asteroid Toutatis on Nov 29th 1996. A 2.5 degree field-of-view synthetic computer camera was used for this simulation. Toutatis is visible on this date as a twelfth magnitude object in the night sky in the constellation of Virgo and could be viewed with a medium sized telescope. Toutatis currently approaches Earth once every four years and, on Nov. 29th, 1996 will be 5.2 million kilometers away (approx. 3.3 million miles). In approximately 8 years, on Sept. 29th, 2004, it will be less than 1.6 million kilometers from Earth. This is only 4 times the distance to the moon, and is the closest approach predicted for any known asteroid or comet during the next 60 years. http://photojournal.jpl.nasa.gov/catalog/PIA00515

  10. Evaluation of Simulated Marine Aerosol Production Using the WaveWatchIII Prognostic Wave Model Coupled to the Community Atmosphere Model within the Community Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M. S.; Keene, William C.; Zhang, J.

    2016-11-08

    Primary marine aerosol (PMA) is emitted into the atmosphere via breaking wind waves on the ocean surface. Most parameterizations of PMA emissions use 10-meter wind speed as a proxy for wave action. This investigation coupled the 3 rd generation prognostic WAVEWATCH-III wind-wave model within a coupled Earth system model (ESM) to drive PMA production using wave energy dissipation rate – analogous to whitecapping – in place of 10-meter wind speed. The wind speed parameterization did not capture basin-scale variability in relations between wind and wave fields. Overall, the wave parameterization did not improve comparison between simulated versus measured AOD ormore » Na +, thus highlighting large remaining uncertainties in model physics. Results confirm the efficacy of prognostic wind-wave models for air-sea exchange studies coupled with laboratory- and field-based characterizations of the primary physical drivers of PMA production. No discernible correlations were evident between simulated PMA fields and observed chlorophyll or sea surface temperature.« less

  11. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Feng, Song; Liu, Chang; Chen, Jie; Chen, Jianhui; Chen, Fahu

    2018-01-01

    This study examines the shifts in terrestrial climate regimes using the Köppen-Trewartha (K-T) climate classification by analyzing the Community Earth System Model Last Millennium Ensemble (CESM-LME) simulations for the period 850-2005 and CESM Medium Ensemble (CESM-ME), CESM Large Ensemble (CESM-LE) and CESM with fixed aerosols Medium Ensemble (CESM-LE_FixA) simulations for the period 1920-2080. We compare K-T climate types from the Medieval Climate Anomaly (MCA) (950-1250) with the Little Ice Age (LIA) (1550-1850), from present day (PD) (1971-2000) with the last millennium (LM) (850-1850), and from the future (2050-2080) with the LM in order to place anthropogenic changes in the context of changes due to natural forcings occurring during the last millennium. For CESM-LME, we focused on the simulations with all forcings, though the impacts of individual forcings (e.g., solar activities, volcanic eruptions, greenhouse gases, aerosols and land use changes) were also analyzed. We found that the climate types changed slightly between the MCA and the LIA due to weak changes in temperature and precipitation. The climate type changes in PD relative to the last millennium have been largely driven by greenhouse gas-induced warming, but anthropogenic aerosols have also played an important role on regional scales. At the end of the twenty-first century, the anthropogenic forcing has a much greater effect on climate types than the PD. Following the reduction of aerosol emissions, the impact of greenhouse gases will further promote global warming in the future. Compared to precipitation, changes in climate types are dominated by greenhouse gas-induced warming. The large shift in climate types by the end of this century suggests possible wide-spread redistribution of surface vegetation and a significant change in species distributions.

  12. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  13. EarthExplorer

    USGS Publications Warehouse

    Houska, Treva

    2012-01-01

    The EarthExplorer trifold provides basic information for on-line access to remotely-sensed data from the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center archive. The EarthExplorer (http://earthexplorer.usgs.gov/) client/server interface allows users to search and download aerial photography, satellite data, elevation data, land-cover products, and digitized maps. Minimum computer system requirements and customer service contact information also are included in the brochure.

  14. Life sciences laboratory breadboard simulations for shuttle

    NASA Technical Reports Server (NTRS)

    Taketa, S. T.; Simmonds, R. C.; Callahan, P. X.

    1975-01-01

    Breadboard simulations of life sciences laboratory concepts for conducting bioresearch in space were undertaken as part of the concept verification testing program. Breadboard simulations were conducted to test concepts of and scope problems associated with bioresearch support equipment and facility requirements and their operational integration for conducting manned research in earth orbital missions. It emphasized requirements, functions, and procedures for candidate research on crew members (simulated) and subhuman primates and on typical radioisotope studies in rats, a rooster, and plants.

  15. Advance the Earth Science Education in China by Using New Technology

    NASA Astrophysics Data System (ADS)

    Qian, R.; Wang, X.; Sun, L.

    2013-12-01

    With the development of Chinese economy, science and technology, as well as the increasing demand of the persons with knowledge and experience in earth science and geological exploration, the higher education of earth science has been boosted in recent years. There are 2,000 to 3,000 students studying earth science every year and many of them will take part in scientific research and engineering technology work around the world after graduation, which increased the demand of educators, both in quantity and quality. However, the fact is that there is a huge gap between the demand and the current number of educators due to the explosion of students, which makes the reform of traditional education methods inevitable. There is great significance in doing research on the teaching methods catering to a large number of students. Some research contents and result based on the reform of education methods has been conducted. We integrate the teaching contents with the cutting-edge research projects and stress significance of earth science, which will greatly enhance the student's enthusiasm of it. Moreover. New technology will be applied to solve the problem that every teacher are responsible for 100~150 students in one courses. For instance, building the Internet platform where teachers and the students can discuss the courses contents, read the latest scientific articles. With the numerical simulation technology, the internal structure of the Earth, geological phenomena, characteristics of ore body, geophysical and hydrological fields, etc. can be simulated and the experiments and teaching practice can be demonstrated via video technology. It can also be used to design algorithm statistics and assessment and monitor teaching effect. Students are separated into small groups to take research training with their personal tutor at the beginning of the first semester, which will increase the opportunities for students to communicate with educators and solve the problem that the

  16. MARSIS data and simulation exploited using array databases: PlanetServer/EarthServer for sounding radars

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    MARSIS is an orbital synthetic aperture radar for both ionosphere and subsurface sounding on board ESA's Mars Express (Picardi et al. 2005). It transmits electromagnetic pulses centered at 1.8, 3, 4 or 5 MHz that penetrate below the surface and are reflected by compositional and/or structural discontinuities in the subsurface of Mars. MARSIS data are available as a collection of single orbit data files. The availability of tools for a more effective access to such data would greatly ease data analysis and exploitation by the community of users. For this purpose, we are developing a database built on the raster database management system RasDaMan (e.g. Baumann et al., 1994), to be populated with MARSIS data and integrated in the PlanetServer/EarthServer (e.g. Oosthoek et al., 2013; Rossi et al., this meeting) project. The data (and related metadata) are stored in the db for each frequency used by MARSIS radar. The capability of retrieving data belonging to a certain orbit or to multiple orbit on the base of latitute/longitude boundaries is a key requirement of the db design, allowing, besides the "classical" radargram representation of the data, and in area with sufficiently hight orbit density, a 3D data extraction, subset and analysis of subsurface structures. Moreover the use of the OGC WCPS (Web Coverage Processing Service) standard can allow calculations on database query results for multiple echoes and/or subsets of a certain data product. Because of the low directivity of its dipole antenna, MARSIS receives echoes from portions of the surface of Mars that are distant from nadir and can be mistakenly interpreted as subsurface echoes. For this reason, methods have been developed to simulate surface echoes (e.g. Nouvel et al., 2004), to reveal the true origin of an echo through comparison with instrument data. These simulations are usually time-consuming, and so far have been performed either on a case-by-case basis or in some simplified form. A code for

  17. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  18. Ancient Earth, Alien Earths Event

    NASA Image and Video Library

    2014-08-20

    Dr. Shawn Domagal-Goldman, Research Space Scientist, NASA Goddard Space Flight Center, speaks on a panel at the “Ancient Earth, Alien Earths” Event at NASA Headquarters in Washington, DC Wednesday, August 20, 2014. The event was sponsored by NASA, the National Science Foundation (NSF), and the Smithsonian Institution and was moderated by Dr. David H. Grinspoon, Senior Scientist at the Planetary Science Institute. Six scientists discussed how research on early Earth could help guide our search for habitable planets orbiting other stars. Photo Credit: (NASA/Aubrey Gemignani)

  19. Earth - South America (first frame of Earth Spin Movie)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  20. Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Kittredge, Kenneth; Xoker, Robert F.; Cummings, Ramona; Gomez, Carlos F.

    2012-01-01

    "NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the development of atmosphere revitalization models and simulations. A companion paper discusses the hardware design and sorbent screening and characterization effort in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  1. Dynamical evolution of near-Earth asteroid 1991 VG

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2018-01-01

    The discovery of 1991 VG on 1991 November 6 attracted an unprecedented amount of attention as it was the first near-Earth object (NEO) ever found on an Earth-like orbit. At that time, it was considered by some as the first representative of a new dynamical class of asteroids, while others argued that an artificial (terrestrial or extraterrestrial) origin was more likely. Over a quarter of a century later, this peculiar NEO has been recently recovered and the new data may help in confirming or ruling out early theories about its origin. Here, we use the latest data to perform an independent assessment of its current dynamical status and short-term orbital evolution. Extensive N-body simulations show that its orbit is chaotic on time-scales longer than a few decades. We confirm that 1991 VG was briefly captured by Earth's gravity as a minimoon during its previous fly-by in 1991-1992; although it has been a recurrent transient co-orbital of the horseshoe type in the past and it will return as such in the future, it is not a present-day co-orbital companion of the Earth. A realistic NEO orbital model predicts that objects like 1991 VG must exist and, consistently, we have found three other NEOs - 2001 GP2, 2008 UA202 and 2014 WA366 - which are dynamically similar to 1991 VG. All this evidence confirms that there is no compelling reason to believe that 1991 VG is not natural.

  2. Sensitivity of grounding line dynamics to viscoelastic deformation of the solid Earth: Inferences from a fully coupled ice sheet - solid Earth model

    NASA Astrophysics Data System (ADS)

    Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.

    2013-12-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  3. Controllability of Large SEP for Earth Orbit Raising

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    2004-01-01

    A six-degree-of-freedom (6DOF) simulation was constructed and exercised for a large solar electric propulsion (SEP) vehicle operating in low Earth orbit Nominal power was 500 kWe, with the large array sizes implied. Controllability issues, including gravity gradient, roll maneuvering for Sun tracking, and flexible arrays, and flight control methods, were investigated. Initial findings are that a SEP vehicle of this size is controllable and could be used for orbit raising of heavy payloads.

  4. Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.

    2012-01-01

    Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.

  5. The Dynamic Earth.

    ERIC Educational Resources Information Center

    Siever, Raymond

    1983-01-01

    Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)

  6. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-04-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  7. Haze production rates in super-Earth and mini-Neptune atmosphere experiments

    NASA Astrophysics Data System (ADS)

    Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique

    2018-03-01

    Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.

  8. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM)

  9. Additional Developments in Atmosphere Revitalization Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Coker, Robert F.; Knox, James C.; Cummings, Ramona; Brooks, Thomas; Schunk, Richard G.; Gomez, Carlos

    2013-01-01

    NASA's Advanced Exploration Systems (AES) program is developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit. These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach. This paper describes the continuing development of atmosphere revitalization models and simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project within the AES program.

  10. The Toxicological Geochemistry of Dusts, Soils, and Other Earth Materials: Insights From In Vitro Physiologically-based Geochemical Leach Tests

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Ziegler, T. L.; Lamothe, P.; Meeker, G. P.; Sutley, S.

    2003-12-01

    Exposure to mineral dusts, soils, and other earth materials results in chemical reactions between the materials and different body fluids that include, depending upon the exposure route, lung fluids, gastrointestinal fluids, and perspiration. In vitro physiologically-based geochemical leach tests provide useful insights into these chemical reactions and their potential toxicological implications. We have conducted such leach tests on a variety of earth materials, including asbestos, volcanic ash, dusts from dry lake beds, mine wastes, wastes left from the roasting of mercury ores, mineral processing wastes, coal dusts and coal fly ash, various soils, and complex dusts generated by the World Trade Center collapse. Size-fractionated samples of earth materials that have been well-characterized mineralogically and chemically are reacted at body temperature (37 C) for periods from 2 hours up to multiple days with various proportions of simulated lung, gastric, intestinal, and/or plasma-based fluids. Results indicate that different earth materials may have quite different solubility and dissolution behavior in vivo, depending upon a) the mineralogic makeup of the material, and b) the exposure route. For example, biodurable minerals such as asbestos and volcanic ash particles, whose health effects result because they dissolve very slowly in vivo, bleed off low levels of trace metals into the simulated lung fluids; these include metals such as Fe and Cr that are suspected by health scientists of contributing to the generation of reactive oxygen species and resulting DNA damage in vivo. In contrast, dry lake bed dusts and concrete-rich dusts are highly alkaline and bioreactive, and cause substantial pH increases and other chemical changes in the simulated body fluids. Many of the earth materials tested contain a variety of metals that can be quite soluble (bioaccessible), depending upon the material and the simulated body fluid composition. For example, due to their acidic

  11. Building a Dashboard of the Planet with Google Earth and Earth Engine

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  12. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  13. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  14. Image data processing system requirements study. Volume 1: Analysis. [for Earth Resources Survey Program

    NASA Technical Reports Server (NTRS)

    Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.

    1973-01-01

    Digital image processing, image recorders, high-density digital data recorders, and data system element processing for use in an Earth Resources Survey image data processing system are studied. Loading to various ERS systems is also estimated by simulation.

  15. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].

    PubMed

    Zhao, Hui-Jie; Jiang, Cheng; Jia, Guo-Rui

    2014-01-01

    Adjacency effects may introduce errors in the quantitative applications of hyperspectral remote sensing, of which the significant item is the earth-atmosphere coupling radiance. However, the surrounding relief and shadow induce strong changes in hyperspectral images acquired from rugged terrain, which is not accurate to describe the spectral characteristics. Furthermore, the radiative coupling process between the earth and the atmosphere is more complex over the rugged scenes. In order to meet the requirements of real-time processing in data simulation, an equivalent reflectance of background was developed by taking into account the topography and the geometry between surroundings and targets based on the radiative transfer process. The contributions of the coupling to the signal at sensor level were then evaluated. This approach was integrated to the sensor-level radiance simulation model and then validated through simulating a set of actual radiance data. The results show that the visual effect of simulated images is consistent with that of observed images. It was also shown that the spectral similarity is improved over rugged scenes. In addition, the model precision is maintained at the same level over flat scenes.

  16. Evaluating Regional Scale Deforestation in the University of Victoria Earth System Climate Model

    NASA Astrophysics Data System (ADS)

    Longobardi, P.; Montenegro, A.; Beltrami, H.; Eby, M.

    2011-12-01

    Forests play a key role in influencing the Earths climate and at the same time are affected by changing climates. At this point it is estimated that 15-30% of Earths natural forests have already been converted to pasture or cropland. With such large amounts of forest being converted to cropland and grassland, it is important to determine the climatic effects of these actions. To date, most modelling efforts towards understanding the climatic effects of deforestation have simulated global deforestation or have been based on experiments where trees were removed from large areas, i.e. the entire Amazon or all forests above 50 N. Here we use the University of Victoria Earth System Climate model which contains a fully coupled carbon cycle, to evaluate the response to deforestation of 10%, 25%, 50% and 100% of the forested areas in three latitude bands: high (above 50°N), mid (above ± 30°) and low (between ± 30°). All simulations were transient simulations, allowing for changes to atmospheric forcings following the A2 emissions scenario. High latitude deforestation lead to cooling (-.05 °C to -0.45 °C) and increase in soil carbon (0.5 to 3 x 1014 kg) for all fractions of deforestation. Due in part to the increase in soil carbon, there was a decrease in atmospheric CO2 in the 50% (-20 ppm) and 100% (-60 ppm) high-latitude deforestation simulations. Low-latitude deforestation initially produced warming in all scenarios (0.1 to 0.25 °C), although all were colder (-0.05 to -0.1 °C) than the control by the end of the simulation. Atmospheric CO2 increased in all simulations (40 to 80 ppm), as well as soil carbon (2 to 16 x 1013 kg). Mid-latitude deforestation also lead to initial warming (0.01 to 0.1 °C) followed by cooling (-0.01 to -0.1 °C). Mid latitude deforestation also produced an increase in soil carbon (2 to 10 x 1013 kg), and atmospheric CO2 (0 to 25ppm). In all three latitude bands forest dieback was observed. Results range from 7% to 37% for high

  17. Student Geoscientists Explore the Earth during Earth Science Week 2005

    ERIC Educational Resources Information Center

    Benbow, Ann E.; Camphire, Geoff

    2005-01-01

    Taking place October 9-15, Earth Science Week 2005 will celebrate the theme "Geoscientists Explore the Earth." The American Geological Institute (AGI) is organizing the event, as always, to help people better understand and appreciate the Earth sciences and to encourage stewardship of the planet. This year, the focus will be on the wide range of…

  18. An analysis of the low-earth-orbit communications environment

    NASA Astrophysics Data System (ADS)

    Diersing, Robert Joseph

    Advances in microprocessor technology and availability of launch opportunities have caused interest in low-earth-orbit satellite based communications systems to increase dramatically during the past several years. In this research the capabilities of two low-cost, store-and-forward LEO communications satellites operating in the public domain are examined--PACSAT-1 (operated by the Radio Amateur Satellite Corporation) and UoSAT-3 (operated by the University of Surrey, England, Electrical Engineering Department). The file broadcasting and file transfer facilities are examined in detail and a simulation model of the downlink traffic pattern is developed. The simulator will aid the assessment of changes in design and implementation for other systems. The development of the downlink traffic simulator is based on three major parts. First, is a characterization of the low-earth-orbit operating environment along with preliminary measurements of the PACSAT-1 and UoSAT-3 systems including: satellite visibility constraints on communications, monitoring equipment configuration, link margin computations, determination of block and bit error rates, and establishing typical data capture rates for ground stations using computer-pointed directional antennas and fixed omni-directional antennas. Second, arrival rates for successful and unsuccessful file server connections are established along with transaction service times. Downlink traffic has been further characterized by measuring: frame and byte counts for all data-link layer traffic; 30-second interval average response time for all traffic and for file server traffic only; file server response time on a per-connection basis; and retry rates for information and supervisory frames. Finally, the model is verified by comparison with measurements of actual traffic not previously used in the model building process. The simulator is then used to predict operation of the PACSAT-1 satellite with modifications to the original design.

  19. Two-Phase Dynamics Simulations of the Growth and Instability of Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.; Jellinek, M.; Labrosse, S.

    2008-12-01

    When the center of Earth's core began to freeze from a homogeneous liquid 1-2 billion years ago, its constitution was very likely that of a mushy region. As this incipient inner core grew by further crystallization of the outer core, an increase in gravity force allowed for the solid grains to compress against one another, undergo viscous compaction, and begin to expel remnant fluid out of the inner core by percolation. Meanwhile, inside the inner core the residual fluid and solid remained in equilibrium, and any perturbations that resulted in upwelling of the deformable mush would also be accompanied by decompression melting. Upwelling and melting regions might then increase in liquid fraction, become less dense, and hence buoyant in a way that would propel them upward at a faster rate, setting up a runaway instability and partial Rayleigh-Taylor-like overturn of Earth's inner core. Structures inherited from this event possibly include the distinct innermost inner core posited by seismologists to exist at Earth's centermost 300-600 km. We use a new two-phase dynamics code to model this scenario in axi-symmetric geometry in order to understand whether and when such an instability occurred, what size the core will have been at the onset of instability, and the degree and style of deformation that would have accompanied this episode. We have found that the growth of instability competes with the rate of background melt percolation, such that the instability would only have occurred after the inner core reaches a critical size and expelled a certain amount of liquid from its interior. A linear stability analysis confirms that there is a critical Rayleigh number for the onset of instability at a given radius. The combined constraints show that the inner core is guaranteed to have undergone this kind of instability, at a time and strength governed solely by physical properties such as grain size, density differences between liquid and solid, and viscosities of the

  20. Empirical Quantification of the Runaway Greenhouse Limit on Earth

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Dewey, M. C.

    2015-12-01

    There have been many modeling studies of the runaway greenhouse effect and the conditions required to produce one on an Earth-like planet, however these models have not been verified with empirical evidence. It has been suggested that the Earth's tropics may be near a state of localized runaway greenhouse, meaning the surface temperature and atmospheric composition in those areas could cause runaway greenhouse, were it not for the tempering effects of meridional heat transport and circulation (Pierrehumbert, 1995). Using the assumption that some areas of the Earth's tropics may be under these conditions, this study uses measurements of the atmospheric properties, surface properties, and radiation budgets of these areas to quantify a radiation limit for runaway greenhouse on Earth, by analyzing the dependence of outgoing longwave radiation (OLR) at the top of the atmosphere on surface temperature and total column water vapour. An upper limit on OLR for clear-sky conditions was found between 289.8 W/m2 and 292.2 W/m2, which occurred at surface temperatures near 300K. For surface temperatures above this threshold, total column water vapour increased, but OLR initially decreased and then remained relatively constant, between 273.6 W/m2 and 279.7 W/m2. These limits are in good agreement with recent modeling results (Goldblatt et al., 2013), supporting the idea that some of the Earth's tropics may be in localized runaway greenhouse, and that radiation limits for runaway greenhouse on Earth can be empirically derived. This research was done as part of Maura Dewey's undergraduate honours thesis at the University of Victoria. Refs: Robert T. Pierrehumbert. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Sciences, 52(10):1784-1806, 1995. Colin Goldblatt, Tyler D. Robinson, Kevin J. Zahnle, and David Crisp. Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience, 6:661-667, 2013.