Sample records for earth simulator-class computer

  1. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  2. Inquiry-Based Whole-Class Teaching with Computer Simulations in Physics

    ERIC Educational Resources Information Center

    Rutten, Nico; van der Veen, Jan T.; van Joolingen, Wouter R.

    2015-01-01

    In this study we investigated the pedagogical context of whole-class teaching with computer simulations. We examined relations between the attitudes and learning goals of teachers and their students regarding the use of simulations in whole-class teaching, and how teachers implement these simulations in their teaching practices. We observed…

  3. Theoretical and computational foundations of management class simulation

    Treesearch

    Denie Gerold

    1978-01-01

    Investigations on complicated, complex, and not well-ordered systems are possible only with the aid of mathematical methods and electronic data processing. Simulation as a method of operations research is particularly suitable for this purpose. Theoretical and computational foundations of management class simulation must be integrated into the planning systems of...

  4. Computer simulation results of attitude estimation of earth orbiting satellites

    NASA Technical Reports Server (NTRS)

    Kou, S. R.

    1976-01-01

    Computer simulation results of attitude estimation of Earth-orbiting satellites (including Space Telescope) subjected to environmental disturbances and noises are presented. Decomposed linear recursive filter and Kalman filter were used as estimation tools. Six programs were developed for this simulation, and all were written in the basic language and were run on HP 9830A and HP 9866A computers. Simulation results show that a decomposed linear recursive filter is accurate in estimation and fast in response time. Furthermore, for higher order systems, this filter has computational advantages (i.e., less integration errors and roundoff errors) over a Kalman filter.

  5. The use of computer simulations in whole-class versus small-group settings

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen

    This study explored the use of computer simulations in a whole-class as compared to small-group setting. Specific consideration was given to the nature and impact of classroom conversations and interactions when computer simulations were incorporated into a high school chemistry course. This investigation fills a need for qualitative research that focuses on the social dimensions of actual classrooms. Participants included a novice chemistry teacher experienced in the use of educational technologies and two honors chemistry classes. The study was conducted in a rural school in the south-Atlantic United States at the end of the fall 2007 semester. The study took place during one instructional unit on atomic structure. Data collection allowed for triangulation of evidence from a variety of sources approximately 24 hours of video- and audio-taped classroom observations, supplemented with the researcher's field notes and analytic journal; miscellaneous classroom artifacts such as class notes, worksheets, and assignments; open-ended pre- and post-assessments; student exit interviews; teacher entrance, exit and informal interviews. Four web-based simulations were used, three of which were from the ExploreLearning collection. Assessments were analyzed using descriptive statistics and classroom observations, artifacts and interviews were analyzed using Erickson's (1986) guidelines for analytic induction. Conversational analysis was guided by methods outlined by Erickson (1982). Findings indicated (a) the teacher effectively incorporated simulations in both settings (b) students in both groups significantly improved their understanding of the chemistry concepts (c) there was no statistically significant difference between groups' achievement (d) there was more frequent exploratory talk in the whole-class group (e) there were more frequent and meaningful teacher-student interactions in the whole-class group (f) additional learning experiences not measured on the assessment

  6. Cane Toad or Computer Mouse? Real and Computer-Simulated Laboratory Exercises in Physiology Classes

    ERIC Educational Resources Information Center

    West, Jan; Veenstra, Anneke

    2012-01-01

    Traditional practical classes in many countries are being rationalised to reduce costs. The challenge for university educators is to provide students with the opportunity to reinforce theoretical concepts by running something other than a traditional practical program. One alternative is to replace wet labs with comparable computer simulations.…

  7. Challenges in Integrating a Complex Systems Computer Simulation in Class: An Educational Design Research

    ERIC Educational Resources Information Center

    Loke, Swee-Kin; Al-Sallami, Hesham S.; Wright, Daniel F. B.; McDonald, Jenny; Jadhav, Sheetal; Duffull, Stephen B.

    2012-01-01

    Complex systems are typically difficult for students to understand and computer simulations offer a promising way forward. However, integrating such simulations into conventional classes presents numerous challenges. Framed within an educational design research, we studied the use of an in-house built simulation of the coagulation network in four…

  8. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  9. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  10. Computer-simulated laboratory explorations for middle school life, earth, and physical Science

    NASA Astrophysics Data System (ADS)

    von Blum, Ruth

    1992-06-01

    Explorations in Middle School Science is a set of 72 computer-simulated laboratory lessons in life, earth, and physical Science for grades 6 9 developed by Jostens Learning Corporation with grants from the California State Department of Education and the National Science Foundation.3 At the heart of each lesson is a computer-simulated laboratory that actively involves students in doing science improving their: (1) understanding of science concepts by applying critical thinking to solve real problems; (2) skills in scientific processes and communications; and (3) attitudes about science. Students use on-line tools (notebook, calculator, word processor) to undertake in-depth investigations of phenomena (like motion in outer space, disease transmission, volcanic eruptions, or the structure of the atom) that would be too difficult, dangerous, or outright impossible to do in a “live” laboratory. Suggested extension activities lead students to hands-on investigations, away from the computer. This article presents the underlying rationale, instructional model, and process by which Explorations was designed and developed. It also describes the general courseware structure and three lesson's in detail, as well as presenting preliminary data from the evaluation. Finally, it suggests a model for incorporating technology into the science classroom.

  11. The computational challenges of Earth-system science.

    PubMed

    O'Neill, Alan; Steenman-Clark, Lois

    2002-06-15

    The Earth system--comprising atmosphere, ocean, land, cryosphere and biosphere--is an immensely complex system, involving processes and interactions on a wide range of space- and time-scales. To understand and predict the evolution of the Earth system is one of the greatest challenges of modern science, with success likely to bring enormous societal benefits. High-performance computing, along with the wealth of new observational data, is revolutionizing our ability to simulate the Earth system with computer models that link the different components of the system together. There are, however, considerable scientific and technical challenges to be overcome. This paper will consider four of them: complexity, spatial resolution, inherent uncertainty and time-scales. Meeting these challenges requires a significant increase in the power of high-performance computers. The benefits of being able to make reliable predictions about the evolution of the Earth system should, on their own, amply repay this investment.

  12. A Hybrid Cloud Computing Service for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.

    2016-12-01

    Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.

  13. Design of object-oriented distributed simulation classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D. (Principal Investigator)

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package is being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for 'Numerical Propulsion Simulation System'. NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT 'Actor' model of a concurrent object and uses 'connectors' to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has

  14. Design of Object-Oriented Distributed Simulation Classes

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.

    1995-01-01

    Distributed simulation of aircraft engines as part of a computer aided design package being developed by NASA Lewis Research Center for the aircraft industry. The project is called NPSS, an acronym for "Numerical Propulsion Simulation System". NPSS is a flexible object-oriented simulation of aircraft engines requiring high computing speed. It is desirable to run the simulation on a distributed computer system with multiple processors executing portions of the simulation in parallel. The purpose of this research was to investigate object-oriented structures such that individual objects could be distributed. The set of classes used in the simulation must be designed to facilitate parallel computation. Since the portions of the simulation carried out in parallel are not independent of one another, there is the need for communication among the parallel executing processors which in turn implies need for their synchronization. Communication and synchronization can lead to decreased throughput as parallel processors wait for data or synchronization signals from other processors. As a result of this research, the following have been accomplished. The design and implementation of a set of simulation classes which result in a distributed simulation control program have been completed. The design is based upon MIT "Actor" model of a concurrent object and uses "connectors" to structure dynamic connections between simulation components. Connectors may be dynamically created according to the distribution of objects among machines at execution time without any programming changes. Measurements of the basic performance have been carried out with the result that communication overhead of the distributed design is swamped by the computation time of modules unless modules have very short execution times per iteration or time step. An analytical performance model based upon queuing network theory has been designed and implemented. Its application to realistic configurations has not

  15. Modeling Subsurface Reactive Flows Using Leadership-Class Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Richard T; Hammond, Glenn; Lichtner, Peter

    2009-01-01

    We describe our experiences running PFLOTRAN - a code for simulation of coupled hydro-thermal-chemical processes in variably saturated, non-isothermal, porous media - on leadership-class supercomputers, including initial experiences running on the petaflop incarnation of Jaguar, the Cray XT5 at the National Center for Computational Sciences at Oak Ridge National Laboratory. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). We discuss some of the hurdles to 'at scale' performance with PFLOTRAN and the progress we have made in overcoming them on leadership-class computer architectures.

  16. Computer Simulations: An Integrating Tool.

    ERIC Educational Resources Information Center

    Bilan, Bohdan J.

    This introduction to computer simulations as an integrated learning experience reports on their use with students in grades 5 through 10 using commercial software packages such as SimCity, SimAnt, SimEarth, and Civilization. Students spent an average of 60 hours with the simulation games and reported their experiences each week in a personal log.…

  17. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  18. CPU SIM: A Computer Simulator for Use in an Introductory Computer Organization-Architecture Class.

    ERIC Educational Resources Information Center

    Skrein, Dale

    1994-01-01

    CPU SIM, an interactive low-level computer simulation package that runs on the Macintosh computer, is described. The program is designed for instructional use in the first or second year of undergraduate computer science, to teach various features of typical computer organization through hands-on exercises. (MSE)

  19. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  20. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  1. Interactive visualization of Earth and Space Science computations

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  2. Exact and efficient simulation of concordant computation

    NASA Astrophysics Data System (ADS)

    Cable, Hugo; Browne, Daniel E.

    2015-11-01

    Concordant computation is a circuit-based model of quantum computation for mixed states, that assumes that all correlations within the register are discord-free (i.e. the correlations are essentially classical) at every step of the computation. The question of whether concordant computation always admits efficient simulation by a classical computer was first considered by Eastin in arXiv:quant-ph/1006.4402v1, where an answer in the affirmative was given for circuits consisting only of one- and two-qubit gates. Building on this work, we develop the theory of classical simulation of concordant computation. We present a new framework for understanding such computations, argue that a larger class of concordant computations admit efficient simulation, and provide alternative proofs for the main results of arXiv:quant-ph/1006.4402v1 with an emphasis on the exactness of simulation which is crucial for this model. We include detailed analysis of the arithmetic complexity for solving equations in the simulation, as well as extensions to larger gates and qudits. We explore the limitations of our approach, and discuss the challenges faced in developing efficient classical simulation algorithms for all concordant computations.

  3. Computer Simulations Improve University Instructional Laboratories1

    PubMed Central

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  4. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2014-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory. More info available at: scied.ucar.edu/events/agu-2014-games-simulations-sessions

  5. Studying the Earth's Environment from Space: Computer Laboratory Exercised and Instructor Resources

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.; Alfultis, Michael

    1998-01-01

    Studying the Earth's Environment From Space is a two-year project to develop a suite of CD-ROMs containing Earth System Science curriculum modules for introductory undergraduate science classes. Lecture notes, slides, and computer laboratory exercises, including actual satellite data and software, are being developed in close collaboration with Carla Evans of NASA GSFC Earth Sciences Directorate Scientific and Educational Endeavors (SEE) project. Smith and Alfultis are responsible for the Oceanography and Sea Ice Processes Modules. The GSFC SEE project is responsible for Ozone and Land Vegetation Modules. This document constitutes a report on the first year of activities of Smith and Alfultis' project.

  6. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  7. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  8. In-class Simulations of the Iterated Prisoner's Dilemma Game.

    ERIC Educational Resources Information Center

    Bodo, Peter

    2002-01-01

    Developed a simple computer program for the in-class simulation of the repeated prisoner's dilemma game with student-designed strategies. Describes the basic features of the software. Presents two examples using the program to teach the problems of cooperation among profit-maximizing agents. (JEH)

  9. Earth and Space Science Ph.D. Class of 2003 Report released

    NASA Astrophysics Data System (ADS)

    Keelor, Brad

    AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.

  10. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2013-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by education groups at NCAR/UCAR in Boulder, primarily Spark and the COMET Program. These materials have been disseminated via Spark's web site (spark.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility. Spark has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  11. Conservative parallel simulation of priority class queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David

    1992-01-01

    A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.

  12. Conservative parallel simulation of priority class queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    A conservative synchronization protocol is described for the parallel simulation of queueing networks having C job priority classes, where a job's class is fixed. This problem has long vexed designers of conservative synchronization protocols because of its seemingly poor ability to compute lookahead: the time of the next departure. For, a job in service having low priority can be preempted at any time by an arrival having higher priority and an arbitrarily small service time. The solution is to skew the event generation activity so that the events for higher priority jobs are generated farther ahead in simulated time than lower priority jobs. Thus, when a lower priority job enters service for the first time, all the higher priority jobs that may preempt it are already known and the job's departure time can be exactly predicted. Finally, the protocol was analyzed and it was demonstrated that good performance can be expected on the simulation of large queueing networks.

  13. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    NASA Astrophysics Data System (ADS)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  14. Progress in Computational Simulation of Earthquakes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert

    2006-01-01

    GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).

  15. Computer Generated View of Earth as seen from the Asteroid Toutatis

    NASA Image and Video Library

    1996-11-27

    This computer generated image depicts a view of Earth as seen from the surface of the asteroid Toutatis on Nov 29th 1996. A 2.5 degree field-of-view synthetic computer camera was used for this simulation. Toutatis is visible on this date as a twelfth magnitude object in the night sky in the constellation of Virgo and could be viewed with a medium sized telescope. Toutatis currently approaches Earth once every four years and, on Nov. 29th, 1996 will be 5.2 million kilometers away (approx. 3.3 million miles). In approximately 8 years, on Sept. 29th, 2004, it will be less than 1.6 million kilometers from Earth. This is only 4 times the distance to the moon, and is the closest approach predicted for any known asteroid or comet during the next 60 years. http://photojournal.jpl.nasa.gov/catalog/PIA00515

  16. Learning Oceanography from a Computer Simulation Compared with Direct Experience at Sea

    ERIC Educational Resources Information Center

    Winn, William; Stahr, Frederick; Sarason, Christian; Fruland, Ruth; Oppenheimer, Peter; Lee, Yen-Ling

    2006-01-01

    Considerable research has compared how students learn science from computer simulations with how they learn from "traditional" classes. Little research has compared how students learn science from computer simulations with how they learn from direct experience in the real environment on which the simulations are based. This study compared two…

  17. Macromod: Computer Simulation For Introductory Economics

    ERIC Educational Resources Information Center

    Ross, Thomas

    1977-01-01

    The Macroeconomic model (Macromod) is a computer assisted instruction simulation model designed for introductory economics courses. An evaluation of its utilization at a community college indicates that it yielded a 10 percent to 13 percent greater economic comprehension than lecture classes and that it met with high student approval. (DC)

  18. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  19. Gaming via Computer Simulation Techniques for Junior College Economics Education. Final Report.

    ERIC Educational Resources Information Center

    Thompson, Fred A.

    A study designed to answer the need for more attractive and effective economics education involved the teaching of one junior college economics class by the conventional (lecture) method and an experimental class by computer simulation techniques. Econometric models approximating the "real world" were computer programed to enable the experimental…

  20. Simulating Snow in Canadian Boreal Environments with CLASS for ESM-SnowMIP

    NASA Astrophysics Data System (ADS)

    Wang, L.; Bartlett, P. A.; Derksen, C.; Ireson, A. M.; Essery, R.

    2017-12-01

    The ability of land surface schemes to provide realistic simulations of snow cover is necessary for accurate representation of energy and water balances in climate models. Historically, this has been particularly challenging in boreal forests, where poor treatment of both snow masking by forests and vegetation-snow interaction has resulted in biases in simulated albedo and snowpack properties, with subsequent effects on both regional temperatures and the snow albedo feedback in coupled simulations. The SnowMIP (Snow Model Intercomparison Project) series of experiments or `MIPs' was initiated in order to provide assessments of the performance of various snow- and land-surface-models at selected locations, in order to understand the primary factors affecting model performance. Here we present preliminary results of simulations conducted for the third such MIP, ESM-SnowMIP (Earth System Model - Snow Model Intercomparison Project), using the Canadian Land Surface Scheme (CLASS) at boreal forest sites in central Saskatchewan. We assess the ability of our latest model version (CLASS 3.6.2) to simulate observed snowpack properties (snow water equivalent, density and depth) and above-canopy albedo over 13 winters. We also examine the sensitivity of these simulations to climate forcing at local and regional scales.

  1. Synthetic Seismograms of Explosive Sources Calculated by the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Matsumoto, H.; Rozhkov, M.; Stachnik, J.

    2017-12-01

    We calculate broadband synthetic seismograms using the spectral-element method (Komatitsch & Tromp, 2001) for recent explosive events in northern Korean peninsula. We use supercomputer Earth Simulator system in JAMSTEC to compute synthetic seismograms using the spectral-element method. The simulations are performed on 8,100 processors, which require 2,025 nodes of the Earth Simulator. We use one chunk with the angular distance 40 degrees to compute synthetic seismograms. On this number of nodes, a simulation of 5 minutes of wave propagation accurate at periods of 1.5 seconds and longer requires about 10 hours of CPU time. We use CMT solution of Rozhkov et al (2016) as a source model for this event. One example of CMT solution for this source model has 28% double couple component and 51% isotropic component. The hypocenter depth of this solution is 1.4 km. Comparisons of the synthetic waveforms with the observation show that the arrival time of Pn and Pg waves matches well with the observation. Comparison also shows that the agreement of amplitude of other phases is not necessarily well, which demonstrates that the crustal structure should be improved to include in the simulation. The surface waves observed are also modeled well in the synthetics, which shows that the CMT solution we have used for this computation correctly grasps the source characteristics of this event. Because of characteristics of artificial explosive sources of which hypocenter location is already known, we may evaluate crustal structure along the propagation path from the waveform modeling for these sources. We may discuss the limitation of one dimensional crustal structure model by comparing the synthetic waveform of 3D crustal structure and the observed seismograms.

  2. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    NASA Astrophysics Data System (ADS)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  3. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  4. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  5. Simulation-based performance analysis of EC-Earth 3.2.0 using Dimemas

    NASA Astrophysics Data System (ADS)

    Yepes Arbós, Xavier; César Acosta Cobos, Mario; Serradell Maronda, Kim; Sanchez Lorente, Alicia; Doblas Reyes, Francisco Javier

    2017-04-01

    Earth System Models (ESMs) are complex applications executed in supercomputing facilities due to their high demand on computing resources. However, not all these models perform a good resources usage and the energy efficiency can be well below a minimum acceptable. One example is EC-Earth, a global coupled climate model which integrates different component models to simulate the Earth system. The two main components used in this analysis are IFS as atmospheric model and NEMO as ocean model, both coupled via the OASIS3-MCT coupler. Preliminary results proved that EC-Earth does not have a good computational performance. For example, the scalability of this model using the T255L91 grid with 512 MPI processes for IFS and the ORCA1L75 grid with 128 MPI processes for NEMO achieves 40.3 of speedup. This means that the 81.2% of the resources are wasted. Therefore, it is necessary a performance analysis to find the bottlenecks of the model and thus, determine the most appropriate optimization techniques. Using traces of the model collected with profiling tools such as Extrae, Paraver and Dimemas, allow us to simulate the model behaviour on a configurable parallel platform and extrapolate the impact of hardware changes in the performance of EC-Earth. In this document we propose a state-of-art procedure which makes possible to evaluate the different characteristics of climate models in a very efficient way. Accordingly, the performance of EC-Earth in different scenarios, namely assuming an ideal machine, model sensitivity and limiting model due to coupling has been shown. By simulating these scenarios, we realized that each model has different characteristics. With the ideal machine, we have seen that there are some sources of inefficiency: about a 20.59% of the execution time is communication; and there are workload imbalances produced by data dependences both between IFS and NEMO and within each model. In addition, in the model sensitivity simulations, we have described the

  6. The Shuttle Mission Simulator computer generated imagery

    NASA Technical Reports Server (NTRS)

    Henderson, T. H.

    1984-01-01

    Equipment available in the primary training facility for the Space Transportation System (STS) flight crews includes the Fixed Base Simulator, the Motion Base Simulator, the Spacelab Simulator, and the Guidance and Navigation Simulator. The Shuttle Mission Simulator (SMS) consists of the Fixed Base Simulator and the Motion Base Simulator. The SMS utilizes four visual Computer Generated Image (CGI) systems. The Motion Base Simulator has a forward crew station with six-degrees of freedom motion simulation. Operation of the Spacelab Simulator is planned for the spring of 1983. The Guidance and Navigation Simulator went into operation in 1982. Aspects of orbital visual simulation are discussed, taking into account the earth scene, payload simulation, the generation and display of 1079 stars, the simulation of sun glare, and Reaction Control System jet firing plumes. Attention is also given to landing site visual simulation, and night launch and landing simulation.

  7. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  8. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  10. Low Earth Orbit satellite traffic simulator

    NASA Technical Reports Server (NTRS)

    Hoelzel, John

    1995-01-01

    This paper describes a significant tool for Low Earth Orbit (LEO) capacity analysis, needed to support marketing, economic, and design analysis, known as a Satellite Traffic Simulator (STS). LEO satellites typically use multiple beams to help achieve the desired communication capacity, but the traffic demand in these beams in usually not uniform. Simulations of dynamic, average, and peak expected demand per beam is a very critical part of the marketing, economic, and design analysis necessary to field a viable LEO system. An STS is described in this paper which can simulate voice, data and FAX traffic carried by LEO satellite beams and Earth Station Gateways. It is applicable world-wide for any LEO satellite constellations operating over any regions. For aeronautical applications to LEO satellites. the anticipates aeronautical traffic (Erlangs for each hour of the day to be simulated) is prepared for geographically defined 'area targets' (each major operational region for the respective aircraft), and used as input to the STS. The STS was designed by Constellations Communications Inc. (CCI) and E-Systems for usage in Brazil in accordance with an ESCA/INPE Statement Of Work, and developed by Analytical Graphics Inc. (AGI) to execute on top of its Satellite Tool Kit (STK) commercial software. The STS simulates constellations of LEO satellite orbits, with input of traffic intensity (Erlangs) for each hour of the day generated from area targets (such as Brazilian States). accumulated in custom LEO satellite beams, and then accumulated in Earth Station Gateways. The STS is a very general simulator which can accommodate: many forms of orbital element and Walker Constellation input; simple beams or any user defined custom beams; and any location of Gateways. The paper describes some of these features, including Manual Mode dynamic graphical display of communication links, to illustrate which Gateway links are accessible and which links are not, at each 'step' of the

  11. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  12. Numerical simulation of the geodynamo reaches Earth's core dynamical regime

    NASA Astrophysics Data System (ADS)

    Aubert, J.; Gastine, T.; Fournier, A.

    2016-12-01

    Numerical simulations of the geodynamo have been successful at reproducing a number of static (field morphology) and kinematic (secular variation patterns, core surface flows and westward drift) features of Earth's magnetic field, making them a tool of choice for the analysis and retrieval of geophysical information on Earth's core. However, classical numerical models have been run in a parameter regime far from that of the real system, prompting the question of whether we do get "the right answers for the wrong reasons", i.e. whether the agreement between models and nature simply occurs by chance and without physical relevance in the dynamics. In this presentation, we show that classical models succeed in describing the geodynamo because their large-scale spatial structure is essentially invariant as one progresses along a well-chosen path in parameter space to Earth's core conditions. This path is constrained by the need to enforce the relevant force balance (MAC or Magneto-Archimedes-Coriolis) and preserve the ratio of the convective overturn and magnetic diffusion times. Numerical simulations performed along this path are shown to be spatially invariant at scales larger than that where the magnetic energy is ohmically dissipated. This property enables the definition of large-eddy simulations that show good agreement with direct numerical simulations in the range where both are feasible, and that can be computed at unprecedented values of the control parameters, such as an Ekman number E=10-8. Combining direct and large-eddy simulations, large-scale invariance is observed over half the logarithmic distance in parameter space between classical models and Earth. The conditions reached at this mid-point of the path are furthermore shown to be representative of the rapidly-rotating, asymptotic dynamical regime in which Earth's core resides, with a MAC force balance undisturbed by viscosity or inertia, the enforcement of a Taylor state and strong-field dynamo action

  13. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  14. Computer simulation of on-orbit manned maneuvering unit operations

    NASA Technical Reports Server (NTRS)

    Stuart, G. M.; Garcia, K. D.

    1986-01-01

    Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations.

  15. Earth-Directed X-Class Flare and CME

    NASA Image and Video Library

    2014-09-15

    An active region just about squarely facing Earth erupted with an X 1.6 flare (largest class) as well as a coronal mass ejection (CME) on Sept. 10-11, 2014. This event featured both a long flare decay time and a storm of electrically charged, energetic particles. The particles can be seen as bright white specks scattering across the frames. The coronagraph movie shows the cloud of particles expanding in all directions as if it were creating a halo around the Sun. Data shows that the CME was heading towards Earth that could generate strong aurora displays several days later. In coronagraph images the Sun (represented by the small white circle in the center) is blocked by an occulting disk so that we can observe faint features in the corona and beyond. Credit: NASA/ESA/Goddard/SOHO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  17. A parallel computational model for GATE simulations.

    PubMed

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  19. Children's Independent Exploration of a Natural Phenomenon by Using a Pictorial Computer-Based Simulation.

    ERIC Educational Resources Information Center

    Kangassalo, Marjatta

    Using a pictorial computer simulation of a natural phenomenon, children's exploration processes and their construction of conceptual models were examined. The selected natural phenomenon was the variations of sunlight and heat of the sun experienced on the earth in relation to the positions of the earth and sun in space, and the subjects were…

  20. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  1. Effect of computer game playing on baseline laparoscopic simulator skills.

    PubMed

    Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd

    2013-08-01

    Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.

  2. The Global Energy Situation on Earth, Student Guide. Computer Technology Program Environmental Education Units.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This is the student guide in a set of five computer-oriented environmental/energy education units. Contents of this guide are: (1) Introduction to the unit; (2) The "EARTH" program; (3) Exercises; and (4) Sources of information on the energy crisis. This guide supplements a simulation which allows students to analyze different aspects of…

  3. An Earth Summit in a Large General Education Oceanography Class

    NASA Astrophysics Data System (ADS)

    Dodson, H.; Prothero, W. A.

    2001-12-01

    An Earth Summit approach in UCSB's undergraduate physical oceanography course has raised student interest level while it also supports the course goals of increased learner awareness of the process of science, and critical analysis of scientific claims. At the beginning of the quarter, each group of students chooses a country to represent in the Earth Summit. During the course of the quarter, these groups relate each of the class themes to their chosen country. Themes include 1) ocean basins and plate tectonics, 2) atmospheres, oceans and climate, and 3) fisheries. Students acquire and utilize Earth data to support their positions. Earth data sources include the "Our Dynamic Planet" CDROM (http://oceanography.geol.ucsb.edu/ODP_Advert/odp_onepage.htm), NOAA's ocean and climate database (http://ferret.wrc.noaa.gov/las/), WorldWatcher CD (http://www.worldwatcher.northwestern.edu/) and JPL's Seawinds web site (http://haifung.jpl.nasa.gov/index.html). During the atmospheres, oceans and climate theme, students choose from 12 mini-studies that use various kinds of on-line Earth data related to important global or regional phenomena relevant to the course. The Earth datasets that the students access for their analysis include: winds; atmospheric pressure; ocean chemistry; sea surface temperature; solar radiation; precipitation, etc. The first group of 6 mini-studies focus on atmosphere and ocean, and are: 1) global winds and surface currents, 2) atmosphere and ocean interactions, 3) stratospheric ozone depletion, 4) El Nino, 5) Indian monsoon, and 6) deep ocean circulation. The second group focus on the Earth's heat budget and climate and are: 1) influence of man's activities on the climate, 2) the greenhouse effect, 3) seasonal variation and the Earth's heat budget, 4) global warming, 5) paleoclimate, and 6) volcanoes and climate. The students use what they have learned in these mini-studies to address atmospheric and climatic issues pertinent to their specific Earth

  4. Grid Computing for Earth Science

    NASA Astrophysics Data System (ADS)

    Renard, Philippe; Badoux, Vincent; Petitdidier, Monique; Cossu, Roberto

    2009-04-01

    The fundamental challenges facing humankind at the beginning of the 21st century require an effective response to the massive changes that are putting increasing pressure on the environment and society. The worldwide Earth science community, with its mosaic of disciplines and players (academia, industry, national surveys, international organizations, and so forth), provides a scientific basis for addressing issues such as the development of new energy resources; a secure water supply; safe storage of nuclear waste; the analysis, modeling, and mitigation of climate changes; and the assessment of natural and industrial risks. In addition, the Earth science community provides short- and medium-term prediction of weather and natural hazards in real time, and model simulations of a host of phenomena relating to the Earth and its space environment. These capabilities require that the Earth science community utilize, both in real and remote time, massive amounts of data, which are usually distributed among many different organizations and data centers.

  5. Particle-in-cell simulations of Earth-like magnetosphere during a magnetic field reversal

    NASA Astrophysics Data System (ADS)

    Barbosa, M. V. G.; Alves, M. V.; Vieira, L. E. A.; Schmitz, R. G.

    2017-12-01

    The geologic record shows that hundreds of pole reversals have occurred throughout Earth's history. The mean interval between the poles reversals is roughly 200 to 300 thousand years and the last reversal occurred around 780 thousand years ago. Pole reversal is a slow process, during which the strength of the magnetic field decreases, become more complex, with the appearance of more than two poles for some time and then the field strength increases, changing polarity. Along the process, the magnetic field configuration changes, leaving the Earth-like planet vulnerable to the harmful effects of the Sun. Understanding what happens with the magnetosphere during these pole reversals is an open topic of investigation. Only recently PIC codes are used to modeling magnetospheres. Here we use the particle code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] to simulate an Earth-like magnetosphere at three different times along the pole reversal process. The code was modified, so the Earth-like magnetic field is generated using an expansion in spherical harmonics with the Gauss coefficients given by a MHD simulation of the Earth's core [Glatzmaier et al, Nature, 1995; 1999; private communication to L.E.A.V.]. Simulations show the qualitative behavior of the magnetosphere, such as the current structures. Only the planet magnetic field was changed in the runs. The solar wind is the same for all runs. Preliminary results show the formation of the Chapman-Ferraro current in the front of the magnetosphere in all the cases. Run for the middle of the reversal process, the low intensity magnetic field and its asymmetrical configuration the current structure changes and the presence of multiple poles can be observed. In all simulations, a structure similar to the radiation belts was found. Simulations of more severe solar wind conditions are necessary to determine the real impact of the reversal in the magnetosphere.

  6. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  7. Computer-Simulated Psychotherapy as an Aid in Teaching Clinical Psychology.

    ERIC Educational Resources Information Center

    Suler, John R.

    1987-01-01

    Describes how Elisa, a widely known computer program which simulates the responses of a psychotherapist, can be used as a teaching aid in undergraduate clinical psychology classes. Provides information on conducting the exercise, integrating it into the course syllabus, and evaluating its impact on students. (JDH)

  8. Wavelet subband coding of computer simulation output using the A++ array class library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, J.N.; Brislawn, C.M.; Quinlan, D.J.

    1995-07-01

    The goal of the project is to produce utility software for off-line compression of existing data and library code that can be called from a simulation program for on-line compression of data dumps as the simulation proceeds. Naturally, we would like the amount of CPU time required by the compression algorithm to be small in comparison to the requirements of typical simulation codes. We also want the algorithm to accomodate a wide variety of smooth, multidimensional data types. For these reasons, the subband vector quantization (VQ) approach employed in has been replaced by a scalar quantization (SQ) strategy using amore » bank of almost-uniform scalar subband quantizers in a scheme similar to that used in the FBI fingerprint image compression standard. This eliminates the considerable computational burdens of training VQ codebooks for each new type of data and performing nearest-vector searches to encode the data. The comparison of subband VQ and SQ algorithms in indicated that, in practice, there is relatively little additional gain from using vector as opposed to scalar quantization on DWT subbands, even when the source imagery is from a very homogeneous population, and our subjective experience with synthetic computer-generated data supports this stance. It appears that a careful study is needed of the tradeoffs involved in selecting scalar vs. vector subband quantization, but such an analysis is beyond the scope of this paper. Our present work is focused on the problem of generating wavelet transform/scalar quantization (WSQ) implementations that can be ported easily between different hardware environments. This is an extremely important consideration given the great profusion of different high-performance computing architectures available, the high cost associated with learning how to map algorithms effectively onto a new architecture, and the rapid rate of evolution in the world of high-performance computing.« less

  9. Cloud-Based Computational Tools for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Fatland, R.; Howe, B.

    2015-12-01

    Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.

  10. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones

  11. Earth System Science Education in a General Education Context: Two Case Studies

    NASA Astrophysics Data System (ADS)

    Herring, J. A.

    2004-12-01

    The teaching of Earth System Science (ESS) to non-science majors is examined in a large lecture format class at a state university and in small classes with a significant research component at a liberal arts college. Quantitative and qualitative evaluations of both approaches reveal some of the challenges educators face as they work to advance students' integrated understanding of the Earth system. Student learning on selected concepts in the large lecture format class was poorly or negatively correlated with the amount of class time spent on the topic, even when the time was spent in teacher-student dialogue or in cooperative learning activities. The small class format emphasized student participation in research, which was found to be particularly effective when the class operated as a three-week intensive block and student use of computer models to simulate the dynamics of complex systems, which was found to be more effective when the class was held in a ten-week quarter. This study provides some clarification as to the utility of specific pedagogical frameworks (such as constructivism and experiential education) in the teaching of ESS to a general education audience and emphasizes the importance of carefully defining educational goals (both cognitive and affective) as a part of the curriculum design.

  12. Discovery of M class objects among the near-earth asteroid population

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.; Gradie, Jonathan

    1987-01-01

    Broadband colorimetry, visual photometry, near-infrared photometry, and 10 and 20 micron radiometry of the near-earth asteroids (NEAs) 1986 DA and 1986 EB are used to show that these objects belong to the M class of asteroids. The similarity among the distributions of taxonomic classes among the 38 NEAs to the abundances found in the inner astoroid belt between the 3:1 and 5:2 resonances suggests that NEAs have their origins among asteroids in the vicinity of these resonances. The implied mineralogy of 1986 DA and 1986 EB is mostly nickel-iron metal; if this is indeed the case, then current models for meteorite production based on strength-related collisional processes on asteroidal surfaces predict that these two objects alone should produce about one percent of all meteorite falls. Iron meteorites derived from these near-earth asteroids should have low cosmic-ray exposure ages.

  13. Google Earth Engine: a new cloud-computing platform for global-scale earth observation data and analysis

    NASA Astrophysics Data System (ADS)

    Moore, R. T.; Hansen, M. C.

    2011-12-01

    Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as

  14. Novel systems and methods for quantum communication, quantum computation, and quantum simulation

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey Vyacheslavovich

    Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly

  15. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    PubMed

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to

  16. Teaching Computational Geophysics Classes using Active Learning Techniques

    NASA Astrophysics Data System (ADS)

    Keers, H.; Rondenay, S.; Harlap, Y.; Nordmo, I.

    2016-12-01

    We give an overview of our experience in teaching two computational geophysics classes at the undergraduate level. In particular we describe The first class is for most students the first programming class and assumes that the students have had an introductory course in geophysics. In this class the students are introduced to basic Matlab skills: use of variables, basic array and matrix definition and manipulation, basic statistics, 1D integration, plotting of lines and surfaces, making of .m files and basic debugging techniques. All of these concepts are applied to elementary but important concepts in earthquake and exploration geophysics (including epicentre location, computation of travel time curves for simple layered media plotting of 1D and 2D velocity models etc.). It is important to integrate the geophysics with the programming concepts: we found that this enhances students' understanding. Moreover, as this is a 3 year Bachelor program, and this class is taught in the 2nd semester, there is little time for a class that focusses on only programming. In the second class, which is optional and can be taken in the 4th or 6th semester, but often is also taken by Master students we extend the Matlab programming to include signal processing and ordinary and partial differential equations, again with emphasis on geophysics (such as ray tracing and solving the acoustic wave equation). This class also contains a project in which the students have to write a brief paper on a topic in computational geophysics, preferably with programming examples. When teaching these classes it was found that active learning techniques, in which the students actively participate in the class, either individually, in pairs or in groups, are indispensable. We give a brief overview of the various activities that we have developed when teaching theses classes.

  17. Fractal Simulations of African Design in Pre-College Computing Education

    ERIC Educational Resources Information Center

    Eglash, Ron; Krishnamoorthy, Mukkai; Sanchez, Jason; Woodbridge, Andrew

    2011-01-01

    This article describes the use of fractal simulations of African design in a high school computing class. Fractal patterns--repetitions of shape at multiple scales--are a common feature in many aspects of African design. In African architecture we often see circular houses grouped in circular complexes, or rectangular houses in rectangular…

  18. The ab initio simulation of the Earth's core.

    PubMed

    Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D

    2002-06-15

    The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.

  19. Using an In-Class Simulation in the First Accounting Class: Moving from Surface to Deep Learning

    ERIC Educational Resources Information Center

    Phillips, Mary E.; Graeff, Timothy R.

    2014-01-01

    As students often find the first accounting class to be abstract and difficult to understand, the authors designed an in-class simulation as an intervention to move students toward deep learning and away from surface learning. The simulation consists of buying and selling merchandise and accounting for transactions. The simulation is an effective…

  20. Automatic Computer Mapping of Terrain

    NASA Technical Reports Server (NTRS)

    Smedes, H. W.

    1971-01-01

    Computer processing of 17 wavelength bands of visible, reflective infrared, and thermal infrared scanner spectrometer data, and of three wavelength bands derived from color aerial film has resulted in successful automatic computer mapping of eight or more terrain classes in a Yellowstone National Park test site. The tests involved: (1) supervised and non-supervised computer programs; (2) special preprocessing of the scanner data to reduce computer processing time and cost, and improve the accuracy; and (3) studies of the effectiveness of the proposed Earth Resources Technology Satellite (ERTS) data channels in the automatic mapping of the same terrain, based on simulations, using the same set of scanner data. The following terrain classes have been mapped with greater than 80 percent accuracy in a 12-square-mile area with 1,800 feet of relief; (1) bedrock exposures, (2) vegetated rock rubble, (3) talus, (4) glacial kame meadow, (5) glacial till meadow, (6) forest, (7) bog, and (8) water. In addition, shadows of clouds and cliffs are depicted, but were greatly reduced by using preprocessing techniques.

  1. Girls in computer science: A female only introduction class in high school

    NASA Astrophysics Data System (ADS)

    Drobnis, Ann W.

    This study examined the impact of an all girls' classroom environment in a high school introductory computer science class on the student's attitudes towards computer science and their thoughts on future involvement with computer science. It was determined that an all girls' introductory class could impact the declining female enrollment and female students' efficacy towards computer science. This research was conducted in a summer school program through a regional magnet school for science and technology which these students attend during the school year. Three different groupings of students were examined for the research: female students in an all girls' class, female students in mixed-gender classes and male students in mixed-gender classes. A survey, Attitudes about Computers and Computer Science (ACCS), was designed to obtain an understanding of the students' thoughts, preconceptions, attitude, knowledge of computer science, and future intentions around computer science, both in education and career. Students in all three groups were administered the ACCS prior to taking the class and upon completion of the class. In addition, students in the all girls' class wrote in a journal throughout the course, and some of those students were also interviewed upon completion of the course. The data was analyzed using quantitative and qualitative techniques. While there were no major differences found in the quantitative data, it was determined that girls in the all girls' class were truly excited by what they had learned and were more open to the idea of computer science being a part of their future.

  2. Enabling Earth Science Through Cloud Computing

    NASA Technical Reports Server (NTRS)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  3. A Queue Simulation Tool for a High Performance Scientific Computing Center

    NASA Technical Reports Server (NTRS)

    Spear, Carrie; McGalliard, James

    2007-01-01

    The NASA Center for Computational Sciences (NCCS) at the Goddard Space Flight Center provides high performance highly parallel processors, mass storage, and supporting infrastructure to a community of computational Earth and space scientists. Long running (days) and highly parallel (hundreds of CPUs) jobs are common in the workload. NCCS management structures batch queues and allocates resources to optimize system use and prioritize workloads. NCCS technical staff use a locally developed discrete event simulation tool to model the impacts of evolving workloads, potential system upgrades, alternative queue structures and resource allocation policies.

  4. The effect of homogeneous and heterogeneous review pairs on student achievement and attitude when utilizing computer-assisted instruction in middle-level Earth science classes

    NASA Astrophysics Data System (ADS)

    Lyon, Ellen Beth

    1998-09-01

    This research project investigated the influence of homogeneous (like-ability) review pairs coupled with heterogeneous (mixed-ability) cooperative learning groups using computer-assisted instruction (CAI) on academic achievement and attitude toward science in eighth grade Earth science students. Subjects were placed into academic quartiles (Hi, Med-Hi, Med-Lo, and Lo) based on achievement. Cooperative learning groups of four (one student from each academic quartile) were formed in all classes, within which students completed CAI through a software package entitled Geoscience Education Through Interactive Technology, or GETITspTM. Each day, when computer activities were completed, students in the experimental classes were divided into homogeneous review pairs to review their work. The students in the control classes were divided into heterogeneous review pairs to review their work. The effects of the experimental treatment were measured by pretest, posttest, and delayed posttest measures, by pre- and post-student attitude scales, and by evaluation of amendments students made to their work during the time spent in review pairs. Results showed that student achievement was not significantly influenced by placement in homogeneous or heterogeneous review pairs, regardless of academic quartile assignment. Student attitude toward science as a school subject did not change significantly due to experimental treatment. Achievement retention of students in experimental and control groups within each quartile showed no significant difference. Notebook amendment patterns showed some significant differences in a few categories. For the Hi quartile, there were significant differences in numbers of deletion amendments and substitution amendments between the experimental and the control group. In both cases, subjects in the experimental group (homogeneous review pairs) made greater number of amendments then those in the control group (heterogeneous review pairs). For the Lo quartile

  5. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  6. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  7. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  8. Students' learning of clinical sonography: use of computer-assisted instruction and practical class.

    PubMed

    Wood, A K; Dadd, M J; Lublin, J R

    1996-08-01

    The application of information technology to teaching radiology will profoundly change the way learning is mediated to students. In this project, the integration of veterinary medical students' knowledge of sonography was promoted by a computer-assisted instruction program and a subsequent practical class. The computer-assisted instruction program emphasized the physical principles of clinical sonography and contained simulations and user-active experiments. In the practical class, the students used an actual sonographic machine for the first time and made images of a tissue-equivalent phantom. Students' responses to questionnaires were analyzed. On completing the overall project, 96% of the students said that they now understood sonographic concepts very or reasonably well, and 98% had become very or moderately interested in clinical sonography. The teaching and learning initiatives enhanced an integrated approach to learning, stimulated student interest and curiosity, improved understanding of sonographic principles, and contributed to an increased confidence and skill in using sonographic equipment.

  9. A Structured-Inquiry Approach to Teaching Neurophysiology Using Computer Simulation

    PubMed Central

    Crisp, Kevin M.

    2012-01-01

    Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, “How do ion channels influence neuronal firing?”, which they completed on weeks 6 and 15 of the semester. Students’ answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed. PMID:23494064

  10. Assessing the Effectiveness of a Computer Simulation for Teaching Ecological Experimental Design

    ERIC Educational Resources Information Center

    Stafford, Richard; Goodenough, Anne E.; Davies, Mark S.

    2010-01-01

    Designing manipulative ecological experiments is a complex and time-consuming process that is problematic to teach in traditional undergraduate classes. This study investigates the effectiveness of using a computer simulation--the Virtual Rocky Shore (VRS)--to facilitate rapid, student-centred learning of experimental design. We gave a series of…

  11. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  12. [Earth Science Technology Office's Computational Technologies Project

    NASA Technical Reports Server (NTRS)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  13. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a climate observation system designed to study Earth's climate variability with unprecedented absolute radiometric accuracy and SI traceability. Observation System Simulation Experiments (OSSEs) were developed using GCM output and MODTRAN to simulate CLARREO reflectance measurements during the 21st century as a design tool for the CLARREO hyperspectral shortwave imager. With OSSE simulations of hyperspectral reflectance, Feldman et al. [2011a,b] found that shortwave reflectance is able to detect changes in climate variables during the 21st century and improve time-to-detection compared to broadband measurements. The OSSE has been a powerful tool in the design of the CLARREO imager and for understanding the effect of climate change on the spectral variability of reflectance, but it is important to evaluate how well the OSSE simulates the Earth's present-day spectral variability. For this evaluation we have used hyperspectral reflectance measurements from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY), a shortwave spectrometer that was operational between March 2002 and April 2012. To study the spectral variability of SCIAMACHY-measured and OSSE-simulated reflectance, we used principal component analysis (PCA), a spectral decomposition technique that identifies dominant modes of variability in a multivariate data set. Using quantitative comparisons of the OSSE and SCIAMACHY PCs, we have quantified how well the OSSE captures the spectral variability of Earth?s climate system at the beginning of the 21st century relative to SCIAMACHY measurements. These results showed that the OSSE and SCIAMACHY data sets share over 99% of their total variance in 2004. Using the PCs and the temporally distributed reflectance spectra projected onto the PCs (PC scores), we can study the temporal variability of the observed and simulated reflectance spectra. Multivariate time

  14. Computer programs for plotting spot-beam coverages from an earth synchronous satellite and earth-station antenna elevation angle contours

    NASA Technical Reports Server (NTRS)

    Stagl, T. W.; Singh, J. P.

    1972-01-01

    A description and listings of computer programs for plotting geographical and political features of the world or a specified portion of it, for plotting spot-beam coverages from an earth-synchronous satellite over the computer generated mass, and for plotting polar perspective views of the earth and earth-station antenna elevation contours for a given satellite location are presented. The programs have been prepared in connection with a project on Application of Communication Satellites to Educational Development.

  15. Real-time global MHD simulation of the solar wind interaction with the earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Shimazu, H.; Tanaka, T.; Fujita, S.; Nakamura, M.; Obara, T.

    We have developed a real-time global MHD simulation of the solar wind interaction with the earth s magnetosphere By adopting the real-time solar wind parameters including the IMF observed routinely by the ACE spacecraft responses of the magnetosphere are calculated with the MHD code We adopted the modified spherical coordinates and the mesh point numbers for this simulation are 56 58 and 40 for the r theta and phi direction respectively The simulation is carried out routinely on the super computer system NEC SX-6 at National Institute of Information and Communications Technology Japan The visualized images of the magnetic field lines around the earth pressure distribution on the meridian plane and the conductivity of the polar ionosphere can be referred to on the Web site http www nict go jp dk c232 realtime The results show that various magnetospheric activities are almost reproduced qualitatively They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere From the viewpoint of space weather the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere To evaluate the simulation results we compare the AE index derived from the simulation and observations In the case of isolated substorms the indices almost agreed well in both timing and intensities In other cases the simulation can predict general activities although the exact timing of the onset of substorms and intensities did not always agree By analyzing

  16. Restructuring the CS 1 classroom: Examining the effect of open laboratory-based classes vs. closed laboratory-based classes on Computer Science 1 students' achievement and attitudes toward computers and computer courses

    NASA Astrophysics Data System (ADS)

    Henderson, Jean Foster

    The purpose of this study was to assess the effect of classroom restructuring involving computer laboratories on student achievement and student attitudes toward computers and computer courses. The effects of the targeted student attributes of gender, previous programming experience, math background, and learning style were also examined. The open lab-based class structure consisted of a traditional lecture class with a separate, unscheduled lab component in which lab assignments were completed outside of class; the closed lab-based class structure integrated a lab component within the lecture class so that half the class was reserved for lecture and half the class was reserved for students to complete lab assignments by working cooperatively with each other and under the supervision and guidance of the instructor. The sample consisted of 71 students enrolled in four intact classes of Computer Science I during the fall and spring semesters of the 2006--2007 school year at two southern universities: two classes were held in the fall (one at each university) and two classes were held in the spring (one at each university). A counterbalanced repeated measures design was used in which all students experienced both class structures for half of each semester. The order of control and treatment was rotated among the four classes. All students received the same amount of class and instructor time. A multivariate analysis of variance (MANOVA) via a multiple regression strategy was used to test the study's hypotheses. Although the overall MANOVA model was statistically significant, independent follow-up univariate analyses relative to each dependent measure found that the only significant research factor was math background: Students whose mathematics background was at the level of Calculus I or higher had significantly higher student achievement than students whose mathematics background was less than Calculus I. The results suggest that classroom structures that

  17. The EarthCARE Simulator (Invited)

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; van Zadellhoff, G.; Lajas, D.; Eisinger, M.; Franco, R.

    2009-12-01

    In recent years, the value of multisensor remote sensing techniques applied to cloud, aerosol, radiation and precipitation studies has become clear. For example, combinations of instruments including lidars and/or radars have proved very useful for profile retrievals of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the ARM (and similar) sites as well as from results derived using the Cloudsat/CALIPSO/A-train combination of instruments. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission scheduled for launch in 2013 and has been designed with sensor-synergy playing a driving role in its scientific applications. The EarthCARE mission consists of a cloud profiling Doppler radar, a high-spectral-resolution lidar, a cloud/aerosol imager and a three-view broadband radiometer. As part of the mission development process, a detailed end-to-end multisensor simulation system has been developed. The EarthCARE Simulator (ECSIM) consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based Z vs IWC relationships) are avoided. Instead, the radiative transfer forward models are kept as separate as possible from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved cloud size distribution are

  18. Cloud Computing Technologies Facilitate Earth Research

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  19. Massively parallel quantum computer simulator

    NASA Astrophysics Data System (ADS)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.

  20. Simulation studies of wide and medium field of view earth radiation data analysis

    NASA Technical Reports Server (NTRS)

    Green, R. N.

    1978-01-01

    A parameter estimation technique is presented to estimate the radiative flux distribution over the earth from radiometer measurements at satellite altitude. The technique analyzes measurements from a wide field of view (WFOV), horizon to horizon, nadir pointing sensor with a mathematical technique to derive the radiative flux estimates at the top of the atmosphere for resolution elements smaller than the sensor field of view. A computer simulation of the data analysis technique is presented for both earth-emitted and reflected radiation. Zonal resolutions are considered as well as the global integration of plane flux. An estimate of the equator-to-pole gradient is obtained from the zonal estimates. Sensitivity studies of the derived flux distribution to directional model errors are also presented. In addition to the WFOV results, medium field of view results are presented.

  1. Micromagnetics of rare-earth efficient permanent magnets

    NASA Astrophysics Data System (ADS)

    Fischbacher, Johann; Kovacs, Alexander; Gusenbauer, Markus; Oezelt, Harald; Exl, Lukas; Bance, Simon; Schrefl, Thomas

    2018-05-01

    The development of permanent magnets containing less or no rare-earth elements is linked to profound knowledge of the coercivity mechanism. Prerequisites for a promising permanent magnet material are a high spontaneous magnetization and a sufficiently high magnetic anisotropy. In addition to the intrinsic magnetic properties the microstructure of the magnet plays a significant role in establishing coercivity. The influence of the microstructure on coercivity, remanence, and energy density product can be understood by using micromagnetic simulations. With advances in computer hardware and numerical methods, hysteresis curves of magnets can be computed quickly so that the simulations can readily provide guidance for the development of permanent magnets. The potential of rare-earth reduced and rare-earth free permanent magnets is investigated using micromagnetic simulations. The results show excellent hard magnetic properties can be achieved in grain boundary engineered NdFeB, rare-earth magnets with a ThMn12 structure, Co-based nano-wires, and L10-FeNi provided that the magnet’s microstructure is optimized.

  2. Computer Graphics Instruction in VizClass

    ERIC Educational Resources Information Center

    Grimes, Douglas; Warschauer, Mark; Hutchinson, Tara; Kuester, Falko

    2005-01-01

    "VizClass" is a university classroom environment designed to offer students in computer graphics and engineering courses up-to-date visualization technologies. Three digital whiteboards and a three-dimensional stereoscopic display provide complementary display surfaces. Input devices include touchscreens on the digital whiteboards, remote…

  3. GeoBrain Computational Cyber-laboratory for Earth Science Studies

    NASA Astrophysics Data System (ADS)

    Deng, M.; di, L.

    2009-12-01

    Computational approaches (e.g., computer-based data visualization, analysis and modeling) are critical for conducting increasingly data-intensive Earth science (ES) studies to understand functions and changes of the Earth system. However, currently Earth scientists, educators, and students have met two major barriers that prevent them from being effectively using computational approaches in their learning, research and application activities. The two barriers are: 1) difficulties in finding, obtaining, and using multi-source ES data; and 2) lack of analytic functions and computing resources (e.g., analysis software, computing models, and high performance computing systems) to analyze the data. Taking advantages of recent advances in cyberinfrastructure, Web service, and geospatial interoperability technologies, GeoBrain, a project funded by NASA, has developed a prototype computational cyber-laboratory to effectively remove the two barriers. The cyber-laboratory makes ES data and computational resources at large organizations in distributed locations available to and easily usable by the Earth science community through 1) enabling seamless discovery, access and retrieval of distributed data, 2) federating and enhancing data discovery with a catalogue federation service and a semantically-augmented catalogue service, 3) customizing data access and retrieval at user request with interoperable, personalized, and on-demand data access and services, 4) automating or semi-automating multi-source geospatial data integration, 5) developing a large number of analytic functions as value-added, interoperable, and dynamically chainable geospatial Web services and deploying them in high-performance computing facilities, 6) enabling the online geospatial process modeling and execution, and 7) building a user-friendly extensible web portal for users to access the cyber-laboratory resources. Users can interactively discover the needed data and perform on-demand data analysis and

  4. Simulating the Dynamics of Earth's Core: Using NCCS Supercomputers Speeds Calculations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    If one wanted to study Earth's core directly, one would have to drill through about 1,800 miles of solid rock to reach liquid core-keeping the tunnel from collapsing under pressures that are more than 1 million atmospheres and then sink an instrument package to the bottom that could operate at 8,000 F with 10,000 tons of force crushing every square inch of its surface. Even then, several of these tunnels would probably be needed to obtain enough data. Faced with difficult or impossible tasks such as these, scientists use other available sources of information - such as seismology, mineralogy, geomagnetism, geodesy, and, above all, physical principles - to derive a model of the core and, study it by running computer simulations. One NASA researcher is doing just that on NCCS computers. Physicist and applied mathematician Weijia Kuang, of the Space Geodesy Branch, and his collaborators at Goddard have what he calls the,"second - ever" working, usable, self-consistent, fully dynamic, three-dimensional geodynamic model (see "The Geodynamic Theory"). Kuang runs his model simulations on the supercomputers at the NCCS. He and Jeremy Bloxham, of Harvard University, developed the original version, written in Fortran 77, in 1996.

  5. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  6. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  7. The Longitudinal Study of Computer Simulation in Learning Statistics for Hospitality College Students

    ERIC Educational Resources Information Center

    Huang, Ching-Hsu

    2014-01-01

    The class quasi-experiment was conducted to determine whether using computer simulation teaching strategy enhanced student understanding of statistics concepts for students enrolled in an introductory course. One hundred and ninety-three sophomores in hospitality management department were invited as participants in this two-year longitudinal…

  8. Manual for a workstation-based generic flight simulation program (LaRCsim), version 1.4

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce

    1995-01-01

    LaRCsim is a set of ANSI C routines that implement a full set of equations of motion for a rigid-body aircraft in atmospheric and low-earth orbital flight, suitable for pilot-in-the-loop simulations on a workstation-class computer. All six rigid-body degrees of freedom are modeled. The modules provided include calculations of the typical aircraft rigid-body simulation variables, earth geodesy, gravity and atmospheric models, and support several data recording options. Features/limitations of the current version include English units of measure, a 1962 atmosphere model in cubic spline function lookup form, ranging from sea level to 75,000 feet, rotating oblate spheroidal earth model, with aircraft C.G. coordinates in both geocentric and geodetic axes. Angular integrations are done using quaternion state variables Vehicle X-Z symmetry is assumed.

  9. Computer Simulations of Intrinsically Disordered Proteins

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Chatterjee, Prathit; Ham, Sihyun

    2017-05-01

    The investigation of intrinsically disordered proteins (IDPs) is a new frontier in structural and molecular biology that requires a new paradigm to connect structural disorder to function. Molecular dynamics simulations and statistical thermodynamics potentially offer ideal tools for atomic-level characterizations and thermodynamic descriptions of this fascinating class of proteins that will complement experimental studies. However, IDPs display sensitivity to inaccuracies in the underlying molecular mechanics force fields. Thus, achieving an accurate structural characterization of IDPs via simulations is a challenge. It is also daunting to perform a configuration-space integration over heterogeneous structural ensembles sampled by IDPs to extract, in particular, protein configurational entropy. In this review, we summarize recent efforts devoted to the development of force fields and the critical evaluations of their performance when applied to IDPs. We also survey recent advances in computational methods for protein configurational entropy that aim to provide a thermodynamic link between structural disorder and protein activity.

  10. Orbits: Computer simulation

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen.

  11. Terra II--A Spaceship Earth Simulation.

    ERIC Educational Resources Information Center

    Mastrude, Peggy

    1985-01-01

    This simulation helps students in grades four to eight see their planet as one environment with limited resources shared by all. Students learn that the earth is a large system comprised of small systems, that systems are interdependent and often have irreplaceable parts, and that resources are not equally divided among countries. (RM)

  12. Computational search for rare-earth free hard-magnetic materials

    NASA Astrophysics Data System (ADS)

    Flores Livas, José A.; Sharma, Sangeeta; Dewhurst, John Kay; Gross, Eberhard; MagMat Team

    2015-03-01

    It is difficult to over state the importance of hard magnets for human life in modern times; they enter every walk of our life from medical equipments (NMR) to transport (trains, planes, cars, etc) to electronic appliances (for house hold use to computers). All the known hard magnets in use today contain rare-earth elements, extraction of which is expensive and environmentally harmful. Rare-earths are also instrumental in tipping the balance of world economy as most of them are mined in limited specific parts of the world. Hence it would be ideal to have similar characteristics as a hard magnet but without or at least with reduced amount of rare-earths. This is the main goal of our work: search for rare-earth-free magnets. To do so we employ a combination of density functional theory and crystal prediction methods. The quantities which define a hard magnet are magnetic anisotropy energy (MAE) and saturation magnetization (Ms), which are the quantities we maximize in search for an ideal magnet. In my talk I will present details of the computation search algorithm together with some potential newly discovered rare-earth free hard magnet. J.A.F.L. acknowledge financial support from EU's 7th Framework Marie-Curie scholarship program within the ``ExMaMa'' Project (329386).

  13. SURVEY SIMULATIONS OF A NEW NEAR-EARTH ASTEROID DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mainzer, A.; Bauer, J.; Giorgini, J.

    We have carried out simulations to predict the performance of a new space-based telescopic survey operating at thermal infrared wavelengths that seeks to discover and characterize a large fraction of the potentially hazardous near-Earth asteroid (NEA) population. Two potential architectures for the survey were considered: one located at the Earth–Sun L1 Lagrange point, and one in a Venus-trailing orbit. A sample cadence was formulated and tested, allowing for the self-follow-up necessary for objects discovered in the daytime sky on Earth. Synthetic populations of NEAs with sizes as small as 140 m in effective spherical diameter were simulated using recent determinationsmore » of their physical and orbital properties. Estimates of the instrumental sensitivity, integration times, and slew speeds were included for both architectures assuming the properties of newly developed large-format 10 μm HgCdTe detector arrays capable of operating at ∼35 K. Our simulation included the creation of a preliminary version of a moving object processing pipeline suitable for operating on the trial cadence. We tested this pipeline on a simulated sky populated with astrophysical sources such as stars and galaxies extrapolated from Spitzer Space Telescope and Wide-field Infrared Explorer data, the catalog of known minor planets (including Main Belt asteroids, comets, Jovian Trojans, planets, etc.), and the synthetic NEA model. Trial orbits were computed for simulated position-time pairs extracted from the synthetic surveys to verify that the tested cadence would result in orbits suitable for recovering objects at a later time. Our results indicate that the Earth–Sun L1 and Venus-trailing surveys achieve similar levels of integral completeness for potentially hazardous asteroids larger than 140 m; placing the telescope in an interior orbit does not yield an improvement in discovery rates. This work serves as a necessary first step for the detailed planning of a next

  14. The Simulated Impact of Dimethyl Sulfide Emissions on the Earth System

    NASA Astrophysics Data System (ADS)

    Cameron-Smith, P. J.; Elliott, S.; Shrivastava, M. B.; Burrows, S. M.; Maltrud, M. E.; Lucas, D. D.; Ghan, S.

    2015-12-01

    Dimethyl sulfide (DMS) is one of many biologically derived gases and particles emitted from the ocean that has the potential to affect climate. In the case of DMS it is oxidized to sulfate, which increases the aerosol loading in the atmosphere either through nucleation or condensation on other aerosols, which in turn changes the energy balance of the Earth by reflection of sunlight either through direct reflection by the aerosols or by modifying clouds. We have previously shown that the geographical distribution of DMS emission from the ocean may be quite sensitive to climate changes, especially in the Southern Ocean. Our state-of-the-art sulfur-cycle Earth system model (ESM), based on the Community Earth System Model (CESM) climate model, includes an ocean sulfur ecosystem model, the oxidation of DMS to sulfate by atmospheric chemistry, and the indirect effect of sulfate on radiation via clouds using the Modal Aerosol Model (MAM). Our multi-decadal simulations calculate the impact of DMS on the energy balance and climate of the Earth system, and its sensitivity/feedback to climate change. The estimate from our simulations is that DMS is responsible for ~6 W/m2 of reflected sunlight in the pre-industrial era (globally averaged), and ~4 W/m2 in the present era. The reduction is caused by increased competition with cloud condensation nuclei from anthropogenic aerosols in the present era, and therefore partially offsets the cooling from the anthropogenic aerosols. The distribution of these effects are not uniform, and doesn't necessarily follow the simulated DMS distribution, because some clouds are more sensitive to DMS derived sulfate than others, and there are surface feedbacks such as the ice-albedo feedback. Although our calculated impact of DMS is higher than some previous studies, it is not much higher than recent observational estimates (McCoy, et al., 2015). We are now porting these capabilities to the US Department of Energy's Accelerated Climate Modeling

  15. Near-Earth Object Survey Simulation Software

    NASA Astrophysics Data System (ADS)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  16. Development of simulation computer complex specification

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.

  17. Earth2Class: Assessing Interactions Between Research Scientists and Classroom Teachers

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Iturrino, G.; Assumpcao, C. M.; Baggio, F. D.

    2006-12-01

    The Earth2Class Workshops at the Lamont-Doherty Earth Observatory (E2C) have brought together research scientists and secondary school teachers from the New York metropolitan area and neighboring states to learn about outcomes of investigations into many aspects of the Earth System and processes involved in making such discoveries. NSF Geoscience Education Grant 0331232 has provided support for an expanded program over the past three years, described at the 2005 Fall Meeting. We now present the results of formative and summative assessments of the effectiveness of this project. Among questions explored were: What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? Formative evaluations were conducted through online and written responses from participants, feedback from conference presentations, and comments posted on teacher list-servers. Almost all responses were overwhelmingly positive. Formal, summative studies conducted by two external grant evaluators also noted many positive results. One abridged conclusion states: The E2C project is a unique and effective professional development program that can stimulate teachers and keep them informed of the vital content they teach. It is a model worthy of duplication in other subject areas and across the country. It may help to retain the best of our teachers and overcome an unfortunate attrition rate. The direct contact with professional scientists and collegial interactions in a non-threatening professional environment are critical dispositional and cognitive components of this

  18. Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.

    2010-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.

  19. The direct simulation of acoustics on Earth, Mars, and Titan.

    PubMed

    Hanford, Amanda D; Long, Lyle N

    2009-02-01

    With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.

  20. Using a Virtual Class to Demonstrate Computer-Mediated Group Dynamics Concepts

    ERIC Educational Resources Information Center

    Franz, Timothy M.; Vicker, Lauren A.

    2010-01-01

    We report about an active learning demonstration designed to use a virtual class to present computer-mediated group communication course concepts to show that students can learn about these concepts in a virtual class. We designated 1 class period as a virtual rather than face-to-face class, when class members "attended" virtually using…

  1. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  2. Fast Eigensolver for Computing 3D Earth's Normal Modes

    NASA Astrophysics Data System (ADS)

    Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.

    2017-12-01

    We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.

  3. A fast exact simulation method for a class of Markov jump processes.

    PubMed

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  4. Beat the Bourgeoisie: A Social Class Inequality and Mobility Simulation Game

    ERIC Educational Resources Information Center

    Norris, Dawn R.

    2013-01-01

    Simulation games can help overcome student resistance to thinking structurally about social class inequality, meritocracy, and mobility. Most inequality simulations focus solely on economic inequality and omit social and cultural capital, both of which contribute to social class reproduction. Using a pretest/posttest design, the current study…

  5. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  6. The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) - Part 1: Model description and pre-industrial simulation

    NASA Astrophysics Data System (ADS)

    Law, Rachel M.; Ziehn, Tilo; Matear, Richard J.; Lenton, Andrew; Chamberlain, Matthew A.; Stevens, Lauren E.; Wang, Ying-Ping; Srbinovsky, Jhan; Bi, Daohua; Yan, Hailin; Vohralik, Peter F.

    2017-07-01

    Earth system models (ESMs) that incorporate carbon-climate feedbacks represent the present state of the art in climate modelling. Here, we describe the Australian Community Climate and Earth System Simulator (ACCESS)-ESM1, which comprises atmosphere (UM7.3), land (CABLE), ocean (MOM4p1), and sea-ice (CICE4.1) components with OASIS-MCT coupling, to which ocean and land carbon modules have been added. The land carbon model (as part of CABLE) can optionally include both nitrogen and phosphorous limitation on the land carbon uptake. The ocean carbon model (WOMBAT, added to MOM) simulates the evolution of phosphate, oxygen, dissolved inorganic carbon, alkalinity and iron with one class of phytoplankton and zooplankton. We perform multi-centennial pre-industrial simulations with a fixed atmospheric CO2 concentration and different land carbon model configurations (prescribed or prognostic leaf area index). We evaluate the equilibration of the carbon cycle and present the spatial and temporal variability in key carbon exchanges. Simulating leaf area index results in a slight warming of the atmosphere relative to the prescribed leaf area index case. Seasonal and interannual variations in land carbon exchange are sensitive to whether leaf area index is simulated, with interannual variations driven by variability in precipitation and temperature. We find that the response of the ocean carbon cycle shows reasonable agreement with observations. While our model overestimates surface phosphate values, the global primary productivity agrees well with observations. Our analysis highlights some deficiencies inherent in the carbon models and where the carbon simulation is negatively impacted by known biases in the underlying physical model and consequent limits on the applicability of this model version. We conclude the study with a brief discussion of key developments required to further improve the realism of our model simulation.

  7. Combining a Laboratory Practical Class with a Computer Simulation: Studies on the Synthesis of Urea in Isolated Hepatocytes.

    ERIC Educational Resources Information Center

    Bender, David A.

    1986-01-01

    Describes how a computer simulation is used with a laboratory experiment on the synthesis of urea in isolated hepatocytes. The simulation calculates the amount of urea formed and the amount of ammonium remaining as the concentrations of ornithine, citrulline, argininosuccinate, arginine, and aspartate are altered. (JN)

  8. Fast Monte Carlo-assisted simulation of cloudy Earth backgrounds

    NASA Astrophysics Data System (ADS)

    Adler-Golden, Steven; Richtsmeier, Steven C.; Berk, Alexander; Duff, James W.

    2012-11-01

    A calculation method has been developed for rapidly synthesizing radiometrically accurate ultraviolet through longwavelengthinfrared spectral imagery of the Earth for arbitrary locations and cloud fields. The method combines cloudfree surface reflectance imagery with cloud radiance images calculated from a first-principles 3-D radiation transport model. The MCScene Monte Carlo code [1-4] is used to build a cloud image library; a data fusion method is incorporated to speed convergence. The surface and cloud images are combined with an upper atmospheric description with the aid of solar and thermal radiation transport equations that account for atmospheric inhomogeneity. The method enables a wide variety of sensor and sun locations, cloud fields, and surfaces to be combined on-the-fly, and provides hyperspectral wavelength resolution with minimal computational effort. The simulations agree very well with much more time-consuming direct Monte Carlo calculations of the same scene.

  9. In Junior High You Take Earth Science: Including a Student with Severe Disabilities into an Academic Class.

    ERIC Educational Resources Information Center

    Siegel-Causey, Ellin; McMorris, Carol; McGowen, Susan; Sands-Buss, Sue

    1998-01-01

    This case study of a 14-year-old boy with severe disabilities describes the collaboration of a team of educators who sought to include him in eighth-grade general-education classes. His inclusion plan included four steps: planning, selecting classes, accommodating, and collaborating. The accomplishments of the student's inclusion in earth science…

  10. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  11. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  12. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  13. class="more">More details...
  14. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    NASA Astrophysics Data System (ADS)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  15. Computational structural mechanics engine structures computational simulator

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    The Computational Structural Mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures.

  16. A fast exact simulation method for a class of Markov jump processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yao, E-mail: yaoli@math.umass.edu; Hu, Lili, E-mail: lilyhu86@gmail.com

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze itsmore » properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.« less

  17. Overview of the EarthCARE simulator and its applications

    NASA Astrophysics Data System (ADS)

    van Zadelhoff, G.; Donovan, D. P.; Lajas, D.

    2011-12-01

    The EarthCARE Simulator (ECSIM) was initially developed in 2004 as a scientific tool to simulate atmospheric scenes, radiative transfer and instrument models for the four instruments of the EarthCARE mission. ECSIM has subsequently been significantly further enhanced and is evolving into a tool for both mission performance assessment and L2 retrieval development. It is an ESA requirement that all L2 retrieval algorithms foreseen for the ground segment will be integrated and tested in ECSIM. It is furthermore envisaged, that the (retrieval part of) ECSIM will be the tool for scientists to work with on updates and new L2 algorithms during the EarthCARE Commissioning phase and beyond. ECSIM is capable of performing 'end to end' simulations of single, or any combination of the EarthCARE instruments. That is, ECSIM starts with an input atmospheric ``scene'', then uses various radiative transfer and instrument models in order to generate synthetic observations which can be subsequently inverted. The results of the inversions may then be compared to the input "truth". ECSIM consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based radar reflectivity vs. IWC relationships) are avoided. Instead, the radiative transfer forward models are kept separate (as possible) from the instrument models. In order to accomplish this, the atmospheric scenes are

  18. Real time simulation of computer-assisted sequencing of terminal area operations

    NASA Technical Reports Server (NTRS)

    Dear, R. G.

    1981-01-01

    A simulation was developed to investigate the utilization of computer assisted decision making for the task of sequencing and scheduling aircraft in a high density terminal area. The simulation incorporates a decision methodology termed Constrained Position Shifting. This methodology accounts for aircraft velocity profiles, routes, and weight classes in dynamically sequencing and scheduling arriving aircraft. A sample demonstration of Constrained Position Shifting is presented where six aircraft types (including both light and heavy aircraft) are sequenced to land at Denver's Stapleton International Airport. A graphical display is utilized and Constrained Position Shifting with a maximum shift of four positions (rearward or forward) is compared to first come, first serve with respect to arrival at the runway. The implementation of computer assisted sequencing and scheduling methodologies is investigated. A time based control concept will be required and design considerations for such a system are discussed.

  19. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations

    PubMed Central

    2017-01-01

    Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163

  20. Computation of free oscillations of the earth

    USGS Publications Warehouse

    Buland, Raymond P.; Gilbert, F.

    1984-01-01

    Although free oscillations of the Earth may be computed by many different methods, numerous practical considerations have led us to use a Rayleigh-Ritz formulation with piecewise cubic Hermite spline basis functions. By treating the resulting banded matrix equation as a generalized algebraic eigenvalue problem, we are able to achieve great accuracy and generality and a high degree of automation at a reasonable cost. ?? 1984.

  21. Computer simulation of space charge

    NASA Astrophysics Data System (ADS)

    Yu, K. W.; Chung, W. K.; Mak, S. S.

    1991-05-01

    Using the particle-mesh (PM) method, a one-dimensional simulation of the well-known Langmuir-Child's law is performed on an INTEL 80386-based personal computer system. The program is coded in turbo basic (trademark of Borland International, Inc.). The numerical results obtained were in excellent agreement with theoretical predictions and the computational time required is quite modest. This simulation exercise demonstrates that some simple computer simulation using particles may be implemented successfully on PC's that are available today, and hopefully this will provide the necessary incentives for newcomers to the field who wish to acquire a flavor of the elementary aspects of the practice.

  1. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  2. BASIC Simulation Programs; Volumes I and II. Biology, Earth Science, Chemistry.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    Computer programs which teach concepts and processes related to biology, earth science, and chemistry are presented. The seven biology problems deal with aspects of genetics, evolution and natural selection, gametogenesis, enzymes, photosynthesis, and the transport of material across a membrane. Four earth science problems concern climates, the…

  3. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  4. Computer Modeling and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronskikh, V. S.

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossiblemore » to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes« less

  5. Computing the total atmospheric refraction for real-time optical imaging sensor simulation

    NASA Astrophysics Data System (ADS)

    Olson, Richard F.

    2015-05-01

    Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.

  6. A real-time digital computer program for the simulation of automatic spacecraft reentries

    NASA Technical Reports Server (NTRS)

    Kaylor, J. T.; Powell, L. F.; Powell, R. W.

    1977-01-01

    The automatic reentry flight dynamics simulator, a nonlinear, six-degree-of-freedom simulation, digital computer program, has been developed. The program includes a rotating, oblate earth model for accurate navigation calculations and contains adjustable gains on the aerodynamic stability and control parameters. This program uses a real-time simulation system and is designed to examine entries of vehicles which have constant mass properties whose attitudes are controlled by both aerodynamic surfaces and reaction control thrusters, and which have automatic guidance and control systems. The program has been used to study the space shuttle orbiter entry. This report includes descriptions of the equations of motion used, the control and guidance schemes that were implemented, the program flow and operation, and the hardware involved.

  7. Computer-based simulation training to improve learning outcomes in mannequin-based simulation exercises.

    PubMed

    Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J

    2011-08-10

    To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.

  8. The Time-Sharing Computer In Introductory Earth Science.

    ERIC Educational Resources Information Center

    MacDonald, William D.; MacDonald, Geraldine E.

    Time-sharing computer-assisted instructional (CAI) programs employing the APL language are being used in support of introductory earth science laboratory exercises at the State University of New York at Binghamton. Three examples are sufficient to illustrate the variety of applications to which these programs are put. The BRACH program is used in…

  9. Simulating chemistry using quantum computers.

    PubMed

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  10. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  11. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  12. Simulation of nap-of-the-Earth flight in helicopters

    NASA Technical Reports Server (NTRS)

    Condon, Gregory W.

    1991-01-01

    NASA-Ames along with the U.S. Army has conducted extensive simulation studies of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental studies conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research studies. The results of a recent simulation experiment to study simulator sickness in this flight regime is also discussed.

  13. Computer simulation of a geomagnetic substorm

    NASA Technical Reports Server (NTRS)

    Lyon, J. G.; Brecht, S. H.; Huba, J. D.; Fedder, J. A.; Palmadesso, P. J.

    1981-01-01

    A global two-dimensional simulation of a substormlike process occurring in earth's magnetosphere is presented. The results are consistent with an empirical substorm model - the neutral-line model. Specifically, the introduction of a southward interplanetary magnetic field forms an open magnetosphere. Subsequently, a substorm neutral line forms at about 15 earth radii or closer in the magnetotail, and plasma sheet thinning and plasma acceleration occur. Eventually the substorm neutral line moves tailward toward its presubstorm position.

  14. Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.

    2009-03-01

    Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.

  15. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  16. Spacecraft orbit/earth scan derivations, associated APL program, and application to IMP-6

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1971-01-01

    The derivation of a time shared, remote site, demand processed computer program is discussed. The computer program analyzes the effects of selected orbit, attitude, and spacecraft parameters on earth sensor detections of earth. For prelaunch analysis, the program may be used to simulate effects in nominal parameters which are used in preparing attitude data processing programs. After launch, comparison of results from a simulation and from satellite data will produce deviations helpful in isolating problems.

  17. [Computer simulation of a clinical magnet resonance tomography scanner for training purposes].

    PubMed

    Hackländer, T; Mertens, H; Cramer, B M

    2004-08-01

    The idea for this project was born by the necessity to offer medical students an easy approach to the theoretical basics of magnetic resonance imaging. The aim was to simulate the features and functions of such a scanner on a commercially available computer by means of a computer program. The simulation was programmed in pure Java under the GNU General Public License and is freely available for a commercially available computer with Windows, Macintosh or Linux operating system. The graphic user interface is oriented to a real scanner. In an external program parameter, images for the proton density and the relaxation times T1 and T2 are calculated on the basis of clinical examinations. From this, the image calculation is carried out in the simulation program pixel by pixel on the basis of a pulse sequence chosen and modified by the user. The images can be stored and printed. In addition, it is possible to display and modify k-space images. Seven classes of pulse sequences are implemented and up to 14 relevant sequence parameters, such as repetition time and echo time, can be altered. Aliasing and motion artifacts can be simulated. As the image calculation only takes a few seconds, interactive working is possible. The simulation has been used in the university education for more than 1 year, successfully illustrating the dependence of the MR images on the measuring parameters. This should facititate the approach of students to the understanding MR imaging in the future.

  18. Astronomy Simulation with Computer Graphics.

    ERIC Educational Resources Information Center

    Thomas, William E.

    1982-01-01

    "Planetary Motion Simulations" is a system of programs designed for students to observe motions of a superior planet (one whose orbit lies outside the orbit of the earth). Programs run on the Apple II microcomputer and employ high-resolution graphics to present the motions of Saturn. (Author/JN)

  19. Influence of pharyngeal airway respiration pressure on Class II mandibular retrusion in children: A computational fluid dynamics study of inspiration and expiration.

    PubMed

    Iwasaki, T; Sato, H; Suga, H; Takemoto, Y; Inada, E; Saitoh, I; Kakuno, K; Kanomi, R; Yamasaki, Y

    2017-05-01

    To examine the influence of negative pressure of the pharyngeal airway on mandibular retraction during inspiration in children with nasal obstruction using the computational fluid dynamics (CFD) method. Sixty-two children were divided into Classes I, II (mandibular retrusion) and III (mandibular protrusion) malocclusion groups. Cone-beam computed tomography data were used to reconstruct three-dimensional shapes of the nasal and pharyngeal airways. Airflow pressure was simulated using CFD to calculate nasal resistance and pharyngeal airway pressure during inspiration and expiration. Nasal resistance of the Class II group was significantly higher than that of the other two groups, and oropharyngeal airway inspiration pressure in the Class II (-247.64 Pa) group was larger than that in the Class I (-43.51 Pa) and Class III (-31.81 Pa) groups (P<.001). The oropharyngeal airway inspiration-expiration pressure difference in the Class II (-27.38 Pa) group was larger than that in the Class I (-5.17 Pa) and Class III (0.68 Pa) groups (P=.006). Large negative inspiratory pharyngeal airway pressure due to nasal obstruction in children with Class II malocclusion may be related to their retrognathia. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Imaging Near-Earth Electron Densities Using Thomson Scattering

    DTIC Science & Technology

    2009-01-15

    geocentric solar magnetospheric (GSM) coordinates1. TECs were initially computed from a viewing loca- tion at the Sun-Earth L1 Lagrange point2 for both...further find that an elliptical Earth orbit (apogee ~30 RE) is a suitable lower- cost option for a demonstration mission. 5. SIMULATED OBSERVATIONS We

  1. Development of response models for the Earth Radiation Budget Experiment (ERBE) sensors. Part 1: Dynamic models and computer simulations for the ERBE nonscanner, scanner and solar monitor sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Choi, Sang H.; Chrisman, Dan A., Jr.; Samms, Richard W.

    1987-01-01

    Dynamic models and computer simulations were developed for the radiometric sensors utilized in the Earth Radiation Budget Experiment (ERBE). The models were developed to understand performance, improve measurement accuracy by updating model parameters and provide the constants needed for the count conversion algorithms. Model simulations were compared with the sensor's actual responses demonstrated in the ground and inflight calibrations. The models consider thermal and radiative exchange effects, surface specularity, spectral dependence of a filter, radiative interactions among an enclosure's nodes, partial specular and diffuse enclosure surface characteristics and steady-state and transient sensor responses. Relatively few sensor nodes were chosen for the models since there is an accuracy tradeoff between increasing the number of nodes and approximating parameters such as the sensor's size, material properties, geometry, and enclosure surface characteristics. Given that the temperature gradients within a node and between nodes are small enough, approximating with only a few nodes does not jeopardize the accuracy required to perform the parameter estimates and error analyses.

  2. Protection for the U.S. Automobile Industry: A Joint Class Simulation in Trade Policy.

    ERIC Educational Resources Information Center

    Hess, Peter N.; Ortmayer, Louis M.

    A description of a joint class simulation in trade policy undertaken by an international economics class and a political science class at Davidson College (Pennsylvania) is presented in three sections. Section I describes the structure of the simulation. Students were divided into groups of United States auto manufacturers, the United Auto…

  3. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  4. Space Ultrareliable Modular Computer (SUMC) instruction simulator

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1972-01-01

    The design principles, description, functional operation, and recommended expansion and enhancements are presented for the Space Ultrareliable Modular Computer interpretive simulator. Included as appendices are the user's manual, program module descriptions, target instruction descriptions, simulator source program listing, and a sample program printout. In discussing the design and operation of the simulator, the key problems involving host computer independence and target computer architectural scope are brought into focus.

  5. Simulating Society: An Experimental Approach to Teaching Race/Class Relations.

    ERIC Educational Resources Information Center

    Diver-Stamnes, Ann C.

    In Los Angeles, racial demographics have changed radically in the past 30 years resulting in inevitable tensions in the school. This paper reports on a classroom simulation of ethnicity/race and class relations. Students adopted the roles of three polarized and rigid "color groupings": (1) Greens--ruling class, wealthy since birth; (2)…

  6. JAVA CLASSES FOR NONPROCEDURAL VARIOGRAM MONITORING. JOURNAL OF COMPUTERS AND GEOSCIENCE

    EPA Science Inventory

    NRMRL-ADA-00229 Faulkner*, B.P. Java Classes for Nonprocedural Variogram Monitoring. Journal of Computers and Geosciences ( Elsevier Science, Ltd.) 28:387-397 (2002). EPA/600/J-02/235. A set of Java classes was written for variogram modeling to support research for US EPA's Reg...

  7. Simulation study of geometric shape factor approach to estimating earth emitted flux densities from wide field-of-view radiation measurements

    NASA Technical Reports Server (NTRS)

    Weaver, W. L.; Green, R. N.

    1980-01-01

    A study was performed on the use of geometric shape factors to estimate earth-emitted flux densities from radiation measurements with wide field-of-view flat-plate radiometers on satellites. Sets of simulated irradiance measurements were computed for unrestricted and restricted field-of-view detectors. In these simulations, the earth radiation field was modeled using data from Nimbus 2 and 3. Geometric shape factors were derived and applied to these data to estimate flux densities on global and zonal scales. For measurements at a satellite altitude of 600 km, estimates of zonal flux density were in error 1.0 to 1.2%, and global flux density errors were less than 0.2%. Estimates with unrestricted field-of-view detectors were about the same for Lambertian and non-Lambertian radiation models, but were affected by satellite altitude. The opposite was found for the restricted field-of-view detectors.

  8. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  9. Computationally efficient multibody simulations

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Kumar, Manoj

    1994-01-01

    Computationally efficient approaches to the solution of the dynamics of multibody systems are presented in this work. The computational efficiency is derived from both the algorithmic and implementational standpoint. Order(n) approaches provide a new formulation of the equations of motion eliminating the assembly and numerical inversion of a system mass matrix as required by conventional algorithms. Computational efficiency is also gained in the implementation phase by the symbolic processing and parallel implementation of these equations. Comparison of this algorithm with existing multibody simulation programs illustrates the increased computational efficiency.

  10. Computer simulation of reconstructed image for computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Yasuda, Tomoki; Kitamura, Mitsuru; Watanabe, Masachika; Tsumuta, Masato; Yamaguchi, Takeshi; Yoshikawa, Hiroshi

    2009-02-01

    This report presents the results of computer simulation images for image-type Computer-Generated Holograms (CGHs) observable under white light fabricated with an electron beam lithography system. The simulated image is obtained by calculating wavelength and intensity of diffracted light traveling toward the viewing point from the CGH. Wavelength and intensity of the diffracted light are calculated using FFT image generated from interference fringe data. Parallax image of CGH corresponding to the viewing point can be easily obtained using this simulation method. Simulated image from interference fringe data was compared with reconstructed image of real CGH with an Electron Beam (EB) lithography system. According to the result, the simulated image resembled the reconstructed image of the CGH closely in shape, parallax, coloring and shade. And, in accordance with the shape of the light sources the simulated images which were changed in chroma saturation and blur by using two kinds of simulations: the several light sources method and smoothing method. In addition, as the applications of the CGH, full-color CGH and CGH with multiple images were simulated. The result was that the simulated images of those CGHs closely resembled the reconstructed image of real CGHs.

  11. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  12. Simulation Modeling of a Facility Layout in Operations Management Classes

    ERIC Educational Resources Information Center

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  13. Simulation/Gaming in the EAP Writing Class: Benefits and Drawbacks.

    ERIC Educational Resources Information Center

    Salies, Tania Gastao

    2002-01-01

    Describes an integrated use of simulation/gaming in an English for Academic Purposes (EAP) class, analyzes benefits and drawbacks, and suggest how the technique could apply to other specific contexts. Explains how international students ran a simulation on gun control; discusses the debriefing process; and considers motivation, metacognitive…

  14. Analyzing Robotic Kinematics Via Computed Simulations

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  15. Computation and analysis of cavitating flow in Francis-class hydraulic turbines

    NASA Astrophysics Data System (ADS)

    Leonard, Daniel J.

    Hydropower is the most proven renewable energy technology, supplying the world with 16% of its electricity. Conventional hydropower generates a vast majority of that percentage. Although a mature technology, hydroelectric generation shows great promise for expansion through new dams and plants in developing hydro countries. Moreover, in developed hydro countries, such as the United States, installing generating units in existing dams and the modern refurbishment of existing plants can greatly expand generating capabilities with little to no further impact on the environment. In addition, modern computational technology and fluid dynamics expertise has led to substantial improvements in modern turbine design and performance. Cavitation has always presented a problem in hydroturbines, causing performance breakdown, erosion, damage, vibration, and noise. While modern turbines are usually designed to be cavitation-free at their best efficiency point, due to the variable demand of the energy market it is fairly common to operate at off-design conditions. Here, cavitation and its deleterious effects are unavoidable, and hence, cavitation is a limiting factor on the design and operation of these turbines. Multiphase Computational Fluid Dynamics (CFD) has been used in recent years to model cavitating flow for a large range of problems, including turbomachinery. However, CFD of cavitating flow in hydroturbines is still in its infancy. This dissertation presents steady-periodic Reynolds-averaged Navier-Stokes simulations of a cavitating Francis-class hydroturbine at model and prototype scales. Computational results of the reduced-scale model and full-scale prototype, undergoing performance breakdown, are compared with empirical model data and prototype performance estimations based on standard industry scalings from the model data. Mesh convergence of the simulations is also displayed. Comparisons are made between the scales to display that cavitation performance breakdown

  16. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    NASA Technical Reports Server (NTRS)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  17. Can We Apply TAM in Computer-Based Classes?

    ERIC Educational Resources Information Center

    Williams, David; Williams, Denise

    2013-01-01

    While students may struggle in any classroom and consequently require help beyond the schedule meeting time and place of the class, computer-based courses pose the additional hurdle of requiring ready access to hardware and software that may be unavailable or inconvenient for students outside of the classroom and its scheduled meeting time. This…

  18. Computing with Beowulf

    NASA Technical Reports Server (NTRS)

    Cohen, Jarrett

    1999-01-01

    Parallel computers built out of mass-market parts are cost-effectively performing data processing and simulation tasks. The Supercomputing (now known as "SC") series of conferences celebrated its 10th anniversary last November. While vendors have come and gone, the dominant paradigm for tackling big problems still is a shared-resource, commercial supercomputer. Growing numbers of users needing a cheaper or dedicated-access alternative are building their own supercomputers out of mass-market parts. Such machines are generally called Beowulf-class systems after the 11th century epic. This modern-day Beowulf story began in 1994 at NASA's Goddard Space Flight Center. A laboratory for the Earth and space sciences, computing managers there threw down a gauntlet to develop a $50,000 gigaFLOPS workstation for processing satellite data sets. Soon, Thomas Sterling and Don Becker were working on the Beowulf concept at the University Space Research Association (USRA)-run Center of Excellence in Space Data and Information Sciences (CESDIS). Beowulf clusters mix three primary ingredients: commodity personal computers or workstations, low-cost Ethernet networks, and the open-source Linux operating system. One of the larger Beowulfs is Goddard's Highly-parallel Integrated Virtual Environment, or HIVE for short.

  19. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  20. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  1. Computer-generated forces in distributed interactive simulation

    NASA Astrophysics Data System (ADS)

    Petty, Mikel D.

    1995-04-01

    Distributed Interactive Simulation (DIS) is an architecture for building large-scale simulation models from a set of independent simulator nodes communicating via a common network protocol. DIS is most often used to create a simulated battlefield for military training. Computer Generated Forces (CGF) systems control large numbers of autonomous battlefield entities in a DIS simulation using computer equipment and software rather than humans in simulators. CGF entities serve as both enemy forces and supplemental friendly forces in a DIS exercise. Research into various aspects of CGF systems is ongoing. Several CGF systems have been implemented.

  2. Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.

    1986-01-01

    Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.

  3. Class of cooperative stochastic models: Exact and approximate solutions, simulations, and experiments using ionic self-assembly of nanoparticles.

    PubMed

    Mazilu, I; Mazilu, D A; Melkerson, R E; Hall-Mejia, E; Beck, G J; Nshimyumukiza, S; da Fonseca, Carlos M

    2016-03-01

    We present exact and approximate results for a class of cooperative sequential adsorption models using matrix theory, mean-field theory, and computer simulations. We validate our models with two customized experiments using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state systems with cooperative effects.

  4. Simulating the Earth System Response to Negative Emissions

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Milne, J.; Littleton, E. W.; Jones, C.; Canadell, J.; Peters, G. P.; van Vuuren, D.; Davis, S. J.; Jonas, M.; Smith, P.; Ciais, P.; Rogelj, J.; Torvanger, A.; Shrestha, G.

    2016-12-01

    The natural carbon sinks of the land and oceans absorb approximately half the anthropogenic CO2 emitted every year. The CO2 that is not absorbed accumulates in the Earth's atmosphere and traps the suns rays causing an increase in the global mean temperature. Removing this left over CO2 using negative emissions technologies (NETs) has been proposed as a strategy to lessen the accumulating CO2 and avoid dangerous climate change. Using CMIP5 Earth system model simulations this study assessed the impact on the global carbon cycle, and how the Earth system might respond, to negative emissions strategies applied to low emissions scenarios, over different times horizons from the year 2000 to 2300. The modeling results suggest that using NETs to remove atmospheric CO2 over five 50-year time horizons has varying effects at different points in time. The effects of anthropogenic and natural sources and sinks, can result in positive or negative changes in atmospheric CO2 concentration. Results show that historic emissions and the current state of the Earth System have impacts on the behavior of atmospheric CO2, as do instantaneous anthropogenic emissions. Indeed, varying background scenarios seemed to have a greater effect on atmospheric CO2 than the actual amount and timing of NETs. These results show how NETs interact with the physical climate-carbon cycle system and highlight the need for more research on earth-system dynamics as they relate to carbon sinks and sources and anthropogenic perturbations.

  5. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  6. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  7. Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping

    NASA Technical Reports Server (NTRS)

    Fujita, M.; Ulaby, F. (Principal Investigator)

    1982-01-01

    The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging.

  8. Radiotherapy Monte Carlo simulation using cloud computing technology.

    PubMed

    Poole, C M; Cornelius, I; Trapp, J V; Langton, C M

    2012-12-01

    Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1/n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal.

  9. Class D Management Implementation Approach of the First Orbital Mission of the Earth Venture Series

    NASA Technical Reports Server (NTRS)

    Wells, James E.; Scherrer, John; Law, Richard; Bonniksen, Chris

    2013-01-01

    A key element of the National Research Council's Earth Science and Applications Decadal Survey called for the creation of the Venture Class line of low-cost research and application missions within NASA (National Aeronautics and Space Administration). One key component of the architecture chosen by NASA within the Earth Venture line is a series of self-contained stand-alone spaceflight science missions called "EV-Mission". The first mission chosen for this competitively selected, cost and schedule capped, Principal Investigator-led opportunity is the CYclone Global Navigation Satellite System (CYGNSS). As specified in the defining Announcement of Opportunity, the Principal Investigator is held responsible for successfully achieving the science objectives of the selected mission and the management approach that he/she chooses to obtain those results has a significant amount of freedom as long as it meets the intent of key NASA guidance like NPR 7120.5 and 7123. CYGNSS is classified under NPR 7120.5E guidance as a Category 3 (low priority, low cost) mission and carries a Class D risk classification (low priority, high risk) per NPR 8705.4. As defined in the NPR guidance, Class D risk classification allows for a relatively broad range of implementation strategies. The management approach that will be utilized on CYGNSS is a streamlined implementation that starts with a higher risk tolerance posture at NASA and that philosophy flows all the way down to the individual part level.

  10. LEGO - A Class Library for Accelerator Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai

    1998-11-19

    An object-oriented class library of accelerator design and simulation is designed and implemented in a simple and modular fashion. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and non-linear cases. Recently, Monte Carlo simulation of synchrotron radiation has been added into the library. The code is used to design and simulatemore » the lattices of the PEP-II and SPEAR3. And it is also used for the commissioning of the PEP-II. Some examples of how to use the library will be given.« less

  11. Parallel computing in enterprise modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priorimore » ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.« less

  12. Some theoretical issues on computer simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, C.L.; Reidys, C.M.

    1998-02-01

    The subject of this paper is the development of mathematical foundations for a theory of simulation. Sequentially updated cellular automata (sCA) over arbitrary graphs are employed as a paradigmatic framework. In the development of the theory, the authors focus on the properties of causal dependencies among local mappings in a simulation. The main object of and study is the mapping between a graph representing the dependencies among entities of a simulation and a representing the equivalence classes of systems obtained by all possible updates.

  13. Computer simulation of position and maximum of linear polarization of asteroids

    NASA Astrophysics Data System (ADS)

    Petrov, Dmitry; Kiselev, Nikolai

    2018-01-01

    The ground-based observations of near-Earth asteroids at large phase angles have shown some feature: the linear polarization maximum position of the high-albedo E-type asteroids shifted markedly towards smaller phase angles (αmax ≈ 70°) with respect to that for the moderate-albedo S-type asteroids (αmax ≈ 110°), weakly depending on the wavelength. To study this phenomenon, the theoretical approach and the modified T-matrix method (the so-called Sh-matrices method) were used. Theoretical approach was devoted to finding the values of αmax, corresponding to maximal values of positive polarization Pmax. Computer simulations were performed for an ensemble of random Gaussian particles, whose scattering properties were averaged over with different particle orientations and size parameters in the range X = 2.0 ... 21.0, with the power law distribution X - k, where k = 3.6. The real parts of the refractive index mr were 1.5, 1.6 and 1.7. Imaginary part of refractive index varied from mi = 0.0 to mi = 0.5. Both theoretical approach and computer simulation showed that the value of αmax strongly depends on the refractive index. The increase of mi leads to increased αmax and Pmax. In addition, computer simulation shows that the increase of the real part of the refractive index reduces Pmax. Whereas E-type high-albedo asteroids have smaller values of mi, than S -type asteroids, we can conclude, that value of αmax of E-type asteroids should be smaller than for S -type ones. This is in qualitative agreement with the observed effect in asteroids.

  14. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  15. Computer simulation: A modern day crystal ball?

    NASA Technical Reports Server (NTRS)

    Sham, Michael; Siprelle, Andrew

    1994-01-01

    It has long been the desire of managers to be able to look into the future and predict the outcome of decisions. With the advent of computer simulation and the tremendous capability provided by personal computers, that desire can now be realized. This paper presents an overview of computer simulation and modeling, and discusses the capabilities of Extend. Extend is an iconic-driven Macintosh-based software tool that brings the power of simulation to the average computer user. An example of an Extend based model is presented in the form of the Space Transportation System (STS) Processing Model. The STS Processing Model produces eight shuttle launches per year, yet it takes only about ten minutes to run. In addition, statistical data such as facility utilization, wait times, and processing bottlenecks are produced. The addition or deletion of resources, such as orbiters or facilities, can be easily modeled and their impact analyzed. Through the use of computer simulation, it is possible to look into the future to see the impact of today's decisions.

  16. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  17. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  18. Earth Model with Laser Beam Simulating Seismic Ray Paths.

    ERIC Educational Resources Information Center

    Ryan, John Arthur; Handzus, Thomas Jay, Jr.

    1988-01-01

    Described is a simple device, that uses a laser beam to simulate P waves. It allows students to follow ray paths, reflections and refractions within the earth. Included is a set of exercises that lead students through the steps by which the presence of the outer and inner cores can be recognized. (Author/CW)

  19. Using Laptop Computers in Class: A Student Motivation Perspective

    ERIC Educational Resources Information Center

    Houle, Philip A.; Reed, Diana; Vaughan, Amy Grace; Clayton, Suzanne R.

    2013-01-01

    This study examined the reasons why students choose to take laptop computers into college classes. The model involved the individual student choice involving opportunity, ability and motivation. The resulting model demonstrated how some (primary) factors, such as effective learning, directly impact the laptop usage choice, and other factors…

  20. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  1. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  2. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  3. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Kerner, H.; Weatherbee, J. E.; Taylor, D. S.; Hodges, B.

    1973-01-01

    A deterministic simulator is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Its use as a tool to study and determine the minimum computer system configuration necessary to satisfy the on-board computational requirements of a typical mission is presented. The paper describes how the computer system configuration is determined in order to satisfy the data processing demand of the various shuttle booster subsytems. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources.

  4. Numerical simulation of earth fissures caused by overly aquifer exploitation at Guangming Village, China

    NASA Astrophysics Data System (ADS)

    Ye, S.; Franceschini, A.; Zhang, Y.; Janna, C.; Gong, X.; Yu, J.; Teatini, P.

    2017-12-01

    Earth fissures accompanying anthropogenic land subsidence due to overly aquifer exploitation create significant geohazards in China. In the framework of an efficient and safe management of groundwater, numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because, due to compatibility conditions, they cannot be effectively applied in discontinuous mechanics. We present an innovative modelling approach for the simulation of fissure development. Firstly, a regional 3D groundwater model is calibrated on available piezometric records; secondly, the regional outcome is used to define the boundary conditions of a local 3D groundwater model developed at the fissure scale and implementing a refined discretization of the local hydrogeologic setting; finally, the pressure change are used as forcing factor in a local 3D geomechanical model, which combines Finite Elements and Interface Elements to simulate the deformation of the continuous aquifer system and the generation and sliding/opening of earth fissures The approach has been applied to simulate the earth fissure at Guangming Village in Wuxi, China with land subsidence of more than 1 m caused by the overexploitation of the second confined aquifer. The first earth fissure was observed in 1998. It developed fast from 1998 to 2007. The domain addressed by the local simulations is 2 km wide and 5 km long. The thickness of the aquifer system ranges from 0 m, in the proximity of a mountain ridge southward, to 210 m northward and includes a phreatic aquifer, the first and second confined aquifers, and four aquitards. The simulations spanned the period from 1980, i.e. before the inception of large groundwater withdrawals, to 2015. The modelling results highlight that the earth fissures at Guangming Village have been caused by tension and shear, which developed from the land surface

  5. Computational Environments and Analysis methods available on the NCI High Performance Computing (HPC) and High Performance Data (HPD) Platform

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will

  6. Computer-aided Instructional System for Transmission Line Simulation.

    ERIC Educational Resources Information Center

    Reinhard, Erwin A.; Roth, Charles H., Jr.

    A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…

  7. Computational simulation of progressive fracture in fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.

  8. Challenges to Computational Aerothermodynamic Simulation and Validation for Planetary Entry Vehicle Analysis

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Johnston, Christopher O.; Kleb, Bil

    2010-01-01

    Challenges to computational aerothermodynamic (CA) simulation and validation of hypersonic flow over planetary entry vehicles are discussed. Entry, descent, and landing (EDL) of high mass to Mars is a significant driver of new simulation requirements. These requirements include simulation of large deployable, flexible structures and interactions with reaction control system (RCS) and retro-thruster jets. Simulation of radiation and ablation coupled to the flow solver continues to be a high priority for planetary entry analyses, especially for return to Earth and outer planet missions. Three research areas addressing these challenges are emphasized. The first addresses the need to obtain accurate heating on unstructured tetrahedral grid systems to take advantage of flexibility in grid generation and grid adaptation. A multi-dimensional inviscid flux reconstruction algorithm is defined that is oriented with local flow topology as opposed to grid. The second addresses coupling of radiation and ablation to the hypersonic flow solver - flight- and ground-based data are used to provide limited validation of these multi-physics simulations. The third addresses the challenges of retro-propulsion simulation and the criticality of grid adaptation in this application. The evolution of CA to become a tool for innovation of EDL systems requires a successful resolution of these challenges.

  9. A Comparison of Earth Science Science Classes Taught by Using Original Data in a Research-Approach Technique Versus Classes Taught by Conventional Approaches not Using Such Data

    ERIC Educational Resources Information Center

    Agne, Russell M.

    1972-01-01

    Students in classes using a self-instructional unit on meteorology and climatology which provided research data from which generalizations could be drawn increased their critical thinking skills more than groups using conventional earth science texts but did not differ significantly in performance on an achievement test. (AL)

  10. Software Engineering for Scientific Computer Simulations

    NASA Astrophysics Data System (ADS)

    Post, Douglass E.; Henderson, Dale B.; Kendall, Richard P.; Whitney, Earl M.

    2004-11-01

    Computer simulation is becoming a very powerful tool for analyzing and predicting the performance of fusion experiments. Simulation efforts are evolving from including only a few effects to many effects, from small teams with a few people to large teams, and from workstations and small processor count parallel computers to massively parallel platforms. Successfully making this transition requires attention to software engineering issues. We report on the conclusions drawn from a number of case studies of large scale scientific computing projects within DOE, academia and the DoD. The major lessons learned include attention to sound project management including setting reasonable and achievable requirements, building a good code team, enforcing customer focus, carrying out verification and validation and selecting the optimum computational mathematics approaches.

  11. Survey of the class of isovalent antiperovskite alkaline-earth pnictide compounds

    NASA Astrophysics Data System (ADS)

    Goh, Wen Fong; Pickett, Warren E.

    2018-01-01

    The few reported members of the antiperovskite structure class A e3P nAP nB of alkaline-earth (A e =Ca , Sr, Ba) pnictide (P n =N , P, As, Sb, Bi) compounds are all based on the B -site anion P nB=N . All can be categorized as narrow-gap semiconductors, making them of interest for several reasons. Because chemical reasoning suggests that more members of this class may be stable, we provide here a density functional theory (DFT)-based survey of this entire class of 3 ×5 ×5 compounds. We determine first the relative energetic stability of the distribution of pairs of P n ions in the A and B sites of the structure, finding that the B site always favors the small pnictogen anion. The trends of the calculated energy gaps versus the A e cation and P n anions are determined, and we study effects of spin-orbit coupling as well as two types of gap corrections to the conventional DFT electronic spectrum. Because there have been suggestions that this class harbors topological insulating phases, we have given this possibility attention and found that energy gap corrections indicate the cubic structures will provide at most a few topological insulators. Structural instability is addressed by calculating phonon dispersion curves for a few compounds, with one outcome being that distorted structures should be investigated further for thermoelectric and topological character. Examples of the interplay between spin-orbit coupling and strain on the topological nature are provided. A case study of Ca3BiP including the effect of strain illustrates how a topological semimetal can be transformed into a topological insulator and Dirac semimetal.

  12. Computer Simulation in Undergraduate Instruction: A Symposium.

    ERIC Educational Resources Information Center

    Street, Warren R.; And Others

    These symposium papers discuss the instructional use of computers in psychology, with emphasis on computer-produced simulations. The first, by Rich Edwards, briefly outlines LABSIM, a general purpose system of FORTRAN programs which simulate data collection in more than a dozen experimental models in psychology and are designed to train students…

  13. Computational Intelligence for Medical Imaging Simulations.

    PubMed

    Chang, Victor

    2017-11-25

    This paper describes how to simulate medical imaging by computational intelligence to explore areas that cannot be easily achieved by traditional ways, including genes and proteins simulations related to cancer development and immunity. This paper has presented simulations and virtual inspections of BIRC3, BIRC6, CCL4, KLKB1 and CYP2A6 with their outputs and explanations, as well as brain segment intensity due to dancing. Our proposed MapReduce framework with the fusion algorithm can simulate medical imaging. The concept is very similar to the digital surface theories to simulate how biological units can get together to form bigger units, until the formation of the entire unit of biological subject. The M-Fusion and M-Update function by the fusion algorithm can achieve a good performance evaluation which can process and visualize up to 40 GB of data within 600 s. We conclude that computational intelligence can provide effective and efficient healthcare research offered by simulations and visualization.

  14. Computer Simulation in Social Science.

    ERIC Educational Resources Information Center

    Garson, G. David

    From a base in military models, computer simulation has evolved to provide a wide variety of applications in social science. General purpose simulation packages and languages such as FIRM, DYNAMO, and others have made significant contributions toward policy discussion in the social sciences and have well-documented efficacy in instructional…

  15. Automatic temperature computation for realistic IR simulation

    NASA Astrophysics Data System (ADS)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  16. A hybrid method for the computation of quasi-3D seismograms.

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  17. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  18. The Learning Effects of Computer Simulations in Science Education

    ERIC Educational Resources Information Center

    Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.

    2012-01-01

    This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…

  19. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  20. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  1. Evaluation of Visual Computer Simulator for Computer Architecture Education

    ERIC Educational Resources Information Center

    Imai, Yoshiro; Imai, Masatoshi; Moritoh, Yoshio

    2013-01-01

    This paper presents trial evaluation of a visual computer simulator in 2009-2011, which has been developed to play some roles of both instruction facility and learning tool simultaneously. And it illustrates an example of Computer Architecture education for University students and usage of e-Learning tool for Assembly Programming in order to…

  2. Computational steering of GEM based detector simulations

    NASA Astrophysics Data System (ADS)

    Sheharyar, Ali; Bouhali, Othmane

    2017-10-01

    Gas based detector R&D relies heavily on full simulation of detectors and their optimization before final prototypes can be built and tested. These simulations in particular those with complex scenarios such as those involving high detector voltages or gas with larger gains are computationally intensive may take several days or weeks to complete. These long-running simulations usually run on the high-performance computers in batch mode. If the results lead to unexpected behavior, then the simulation might be rerun with different parameters. However, the simulations (or jobs) may have to wait in a queue until they get a chance to run again because the supercomputer is a shared resource that maintains a queue of other user programs as well and executes them as time and priorities permit. It may result in inefficient resource utilization and increase in the turnaround time for the scientific experiment. To overcome this issue, the monitoring of the behavior of a simulation, while it is running (or live), is essential. In this work, we employ the computational steering technique by coupling the detector simulations with a visualization package named VisIt to enable the exploration of the live data as it is produced by the simulation.

  3. WWC Review of the Report "Conceptualizing Astronomical Scale: Virtual Simulations on Handheld Tablet Computers Reverse Misconceptions." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    The 2014 study, "Conceptualizing Astronomical Scale: Virtual Simulations on Handheld Tablet Computers Reverse Misconceptions," examined the effects of using the true-to-scale (TTS) display mode versus the orrery display mode in the iPad's Solar Walk software application on students' knowledge of the Earth's place in the solar system. The…

  4. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    PubMed

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  5. The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems

    PubMed Central

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method. PMID:25310106

  6. The 1986 DA and 1986 EB: M-class asteroids in near-Earth orbits

    NASA Technical Reports Server (NTRS)

    Gradie, Jonathan; Tedesco, Edward

    1987-01-01

    The Earth-approaching asteroid population is composed of asteroids in orbits with short lifetimes compared with the age of the solar system. These objects which are comprised of Aten, Apollo, and Amor asteroids must be replenished from either cometary or mainbelt asteroid sources since lifetimes against collision with or ejection by a planet are on the order of 10 to 100 million years. The physical study of Earth-approaching asteroids is constrained by the generally long period between favorable apparitions and poorly known orbits. Broadband spectrophotometry on the Johnson UBVR system and the Eight-Color Asteroid Survey system were obtained at Kitt Peak National Observatory and on the Johnson JHK system and at 10 and 20 microns at the NASA Infrared Telescope Facility at Mauna Kea Observatory. These observations were used to determine the absolute visual magnitudes and to derive the visual geometric albedos and diameters on the IRAS system. The spectral reflectance properties and geometric albedos of the M-class asteroids are consistent compositions analogous to the iron nickel meteorites or the enstatite-metal assemblages of the enstatite chondrites. The issue of the source(s) of the near-Earth asteroids population was examined by comparing the classifications on the scheme employed by Gradie and Tedesco of 38 such asteroids. Most of the near-Earth objects is indeed the asteroid belt as the observations suggest, then a method for removing extinct nuclei of short period comets must be found since the rate of production of short period comets from the long period comets is relatively large.

  7. Comparing In-Class and Out-of-Class Computer-Based Tests to Traditional Paper-and-Pencil Tests in Introductory Psychology Courses

    ERIC Educational Resources Information Center

    Frein, Scott T.

    2011-01-01

    This article describes three experiments comparing paper-and-pencil tests (PPTs) to computer-based tests (CBTs) in terms of test method preferences and student performance. In Experiment 1, students took tests using three methods: PPT in class, CBT in class, and CBT at the time and place of their choosing. Results indicate that test method did not…

  8. Multi-Agent Simulations of Earth's Dynamics: Towards a Virtual Laboratory for Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Tisseau, C.; LeYaouanq, S.; Parenthoen, M.; Tisseau, J.

    2012-12-01

    MACMA (Multi-Agent Convective MAntle) is a new tool developed at Laboratoire Domaines Océaniques (UMR CNRS 6538) and CERV-LabSTICC (Centre Européen de Réalité Virtuelle, UMR CNRS 6285) to simulate evolutive plates tectonics and mantle convection in a 2-D cylindrical geometry (Combes et al., 2012). In this approach, ridges, subduction zones, continents and convective cells are agents, whose behavior is controlled by analytical and phenomenological laws. These agents are autonomous entities which collect information from their environment and interact with each other. The dynamics of the system is mainly based on a force balance on each plate, that accounts for slab pull, ridge push, bending dissipation and viscous convective drag. Insulating continents are accounted for. Tectonic processes such as trench migration, plate suturing or continental breakup are controlled by explicit parameterizations. A heat balance is used to compute Earth's thermal evolution as a function of seafloor age distribution. We thereby obtain an evolutive system where the geometry and the number of tectonic plates are not imposed but emerge naturally from its dynamical history. Our approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the Earth. MACMA can thus be seen as a 'plate tectonics virtual laboratory'. We can test not only the effect of input parameters, such as mantle initial temperature and viscosity, initial plate tectonics configuration, number and geometry of continents etc., but also study the effect of the analytical and empirical rules that we are using to describe the system. These rules can be changed at any time, and MACMA is an evolutive tool that can easily integrate new behavioral laws. Even poorly understood processes, that cannot be accounted for with differential equations, can be studied with this virtual laboratory. For Earth-like input parameters, MACMA yields

  9. Computer Game Design Classes: The Students' and Professionals' Perspectives

    ERIC Educational Resources Information Center

    Swacha, Jakub; Skrzyszewski, Adam; Syslo, Wojciech A.

    2010-01-01

    There are multiple reasons that justify teaching computer game design. Its multi-aspectual nature creates opportunity to develop, at the same time, creativity, technical skills and ability to work in team. Thinking of game design classes, one needs direction on what to focus on so that the students could benefit the most. In this paper, we present…

  10. Radiative Transfer Simulations of Earth Spectra as Registered by ROSETTA/VIRTIS

    NASA Astrophysics Data System (ADS)

    Hurley, Jane; Irwin, P.; Adriani, A.; Moriconi, M.; Oliva, F.; Coradini, A.

    2010-10-01

    Rosetta, part of ESA's Horizon 2000 programme, will orbit and land on the comet 67P/Churyumov-Gerasimenko in May 2014. However, launched in March 2004, its trajectory has thus far muchly consisted of a series of planetary fly-bys and gravitational assists using Mars (2007) and Earth (March 2005, 2007 and 2009). During these close fly-bys Rosetta captured measurements of these planets - and of particular interest are those registed by the Visual Infrared Thermal Imaging Spectrometer VIRTIS of Earth, which were taken to help calibrate VIRTIS. Rosetta/VIRTIS measures at high spectral resolution from 0.25 - 5.0 microns, a spectral range which has been well studied by Earth observing instruments such as Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) and the Advanced Along-Track Scanning Radiometer (AATSR). Earth observing instruments, whilst having superior spatio-temporal coverage to the data provided during the Rosetta/VIRTIS fly-bys, are typically constrained to measuring in only a few spectral channels. Hence, Rosetta/VIRTIS should yield more detailed spectral information than these instruments - and is a good candidate for intercomparison studies. To this end, the radiative transfer software NEMESIS (Irwin et al., 2009) is employed for the first time on Earth simulations, having been used extensively for other bodies such as Venus, Mars, Jupiter, Saturn, Neptune, Uranus and Titan. This work compares Rosetta/VIRTIS measurements with NEMESIS-simulated spectra, concentrating on quantifying the ability of NEMESIS to reproduce spectral features associated with different surface topographies (such as ocean, desert and vegetation) in combination with clear and cloudy atmospheric states. Preliminary estimations of temperature and trace-species concentrations and distributions are presented as sample products.

  11. Earth Science Computational Architecture for Multi-disciplinary Investigations

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.

    2005-12-01

    Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with

  12. Simulating Drosophila Genetics with the Computer.

    ERIC Educational Resources Information Center

    Small, James W., Jr.; Edwards, Kathryn L.

    1979-01-01

    Presents some techniques developed to help improve student understanding of Mendelian principles through the use of a computer simulation model by the genetic system of the fruit fly. Includes discussion and evaluation of this computer assisted program. (MA)

  13. Polymer Composites Corrosive Degradation: A Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2007-01-01

    A computational simulation of polymer composites corrosive durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured pH factor and is represented by voids, temperature and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  14. Simulating complex intracellular processes using object-oriented computational modelling.

    PubMed

    Johnson, Colin G; Goldman, Jacki P; Gullick, William J

    2004-11-01

    The aim of this paper is to give an overview of computer modelling and simulation in cellular biology, in particular as applied to complex biochemical processes within the cell. This is illustrated by the use of the techniques of object-oriented modelling, where the computer is used to construct abstractions of objects in the domain being modelled, and these objects then interact within the computer to simulate the system and allow emergent properties to be observed. The paper also discusses the role of computer simulation in understanding complexity in biological systems, and the kinds of information which can be obtained about biology via simulation.

  15. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  16. GEANT4 distributed computing for compact clusters

    NASA Astrophysics Data System (ADS)

    Harrawood, Brian P.; Agasthya, Greeshma A.; Lakshmanan, Manu N.; Raterman, Gretchen; Kapadia, Anuj J.

    2014-11-01

    A new technique for distribution of GEANT4 processes is introduced to simplify running a simulation in a parallel environment such as a tightly coupled computer cluster. Using a new C++ class derived from the GEANT4 toolkit, multiple runs forming a single simulation are managed across a local network of computers with a simple inter-node communication protocol. The class is integrated with the GEANT4 toolkit and is designed to scale from a single symmetric multiprocessing (SMP) machine to compact clusters ranging in size from tens to thousands of nodes. User designed 'work tickets' are distributed to clients using a client-server work flow model to specify the parameters for each individual run of the simulation. The new g4DistributedRunManager class was developed and well tested in the course of our Neutron Stimulated Emission Computed Tomography (NSECT) experiments. It will be useful for anyone running GEANT4 for large discrete data sets such as covering a range of angles in computed tomography, calculating dose delivery with multiple fractions or simply speeding the through-put of a single model.

  17. Credibility Assessment of Deterministic Computational Models and Simulations for Space Biomedical Research and Operations

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Myers, Jerry

    2015-01-01

    Human missions beyond low earth orbit to destinations, such as to Mars and asteroids will expose astronauts to novel operational conditions that may pose health risks that are currently not well understood and perhaps unanticipated. In addition, there are limited clinical and research data to inform development and implementation of health risk countermeasures for these missions. Consequently, NASA's Digital Astronaut Project (DAP) is working to develop and implement computational models and simulations (M&S) to help predict and assess spaceflight health and performance risks, and enhance countermeasure development. In order to effectively accomplish these goals, the DAP evaluates its models and simulations via a rigorous verification, validation and credibility assessment process to ensure that the computational tools are sufficiently reliable to both inform research intended to mitigate potential risk as well as guide countermeasure development. In doing so, DAP works closely with end-users, such as space life science researchers, to establish appropriate M&S credibility thresholds. We will present and demonstrate the process the DAP uses to vet computational M&S for space biomedical analysis using real M&S examples. We will also provide recommendations on how the larger space biomedical community can employ these concepts to enhance the credibility of their M&S codes.

  18. Two-dimensional nonsteady viscous flow simulation on the Navier-Stokes computer miniNode

    NASA Technical Reports Server (NTRS)

    Nosenchuck, Daniel M.; Littman, Michael G.; Flannery, William

    1986-01-01

    The needs of large-scale scientific computation are outpacing the growth in performance of mainframe supercomputers. In particular, problems in fluid mechanics involving complex flow simulations require far more speed and capacity than that provided by current and proposed Class VI supercomputers. To address this concern, the Navier-Stokes Computer (NSC) was developed. The NSC is a parallel-processing machine, comprised of individual Nodes, each comparable in performance to current supercomputers. The global architecture is that of a hypercube, and a 128-Node NSC has been designed. New architectural features, such as a reconfigurable many-function ALU pipeline and a multifunction memory-ALU switch, have provided the capability to efficiently implement a wide range of algorithms. Efficient algorithms typically involve numerically intensive tasks, which often include conditional operations. These operations may be efficiently implemented on the NSC without, in general, sacrificing vector-processing speed. To illustrate the architecture, programming, and several of the capabilities of the NSC, the simulation of two-dimensional, nonsteady viscous flows on a prototype Node, called the miniNode, is presented.

  19. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  20. Cooperative Learning in Reservoir Simulation Classes: Overcoming Disparate Entry Skills

    NASA Astrophysics Data System (ADS)

    Awang, Mariyamni

    2006-10-01

    Reservoir simulation is one of the core courses in the petroleum engineering curriculum and it requires knowledge and skills in three major disciplines, namely programming, numerical methods and reservoir engineering. However, there were often gaps in the students' readiness to undertake the course, even after completing the necessary requirements. The disparate levels of competency of the good and poor students made it difficult to target a certain level. Cooperative learning in the form of projects and peer teaching was designed to address the major concern of disparate entry skills, and at the same time the method used should also succeed in keeping students interest in class, developing communication skills and improving self-learning. Slower and weaker students were expected to benefit from being taught by good students, who were better prepared, and good students would gain deeper comprehension of the subject matter. From evaluations, the approach was considered successful since the overall passing rate was greater than 95% compared to previous years of around 70-80%. It had also succeeded in improving the learning environment in class. Future simulation classes will continue to use the cooperative approach with minor adjustments.

  1. Buying into the Computer Age: A Look at the Hispanic Middle Class.

    ERIC Educational Resources Information Center

    Wilhelm, Anthony G.

    The Tomas Rivera Policy Institute conducted focus groups in the summer of 1997 to gain insight into why there is a gap in computer ownership between Hispanic middle-class families and non-Hispanic families of the same middle class income bracket (between 25 and 50 thousand dollars). Results from 6 focus groups of 15 to 20 heads of household each…

  2. An integrated computational tool for precipitation simulation

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, F.; Chen, S.-L.; Zhang, C.; Chang, Y. A.

    2011-07-01

    Computer aided materials design is of increasing interest because the conventional approach solely relying on experimentation is no longer viable within the constraint of available resources. Modeling of microstructure and mechanical properties during precipitation plays a critical role in understanding the behavior of materials and thus accelerating the development of materials. Nevertheless, an integrated computational tool coupling reliable thermodynamic calculation, kinetic simulation, and property prediction of multi-component systems for industrial applications is rarely available. In this regard, we are developing a software package, PanPrecipitation, under the framework of integrated computational materials engineering to simulate precipitation kinetics. It is seamlessly integrated with the thermodynamic calculation engine, PanEngine, to obtain accurate thermodynamic properties and atomic mobility data necessary for precipitation simulation.

  3. GCM simulations of cold dry Snowball Earth atmospheres

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  4. Computer Applications in Class and Transportation Scheduling. Educational Management Review Series Number 1.

    ERIC Educational Resources Information Center

    Piele, Philip K.

    This document shows how computer technology can aid educators in meeting demands for improved class scheduling and more efficient use of transportation resources. The first section surveys literature on operational systems that provide individualized scheduling for students, varied class structures, and maximum use of space and staff skills.…

  5. Simulating "Mars on Earth"

    NASA Technical Reports Server (NTRS)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    By now, everyone who's heard of the Haughton-Mars Project knows that we travel to Devon Island to learn how people will live and work on Mars. But how do we learn about Mars operations from what happens in the Arctic? We must document our experience--traverses, life in the hab, instrument deployment, communications, and so on. Then we must analyze and formally model what happens. In short, while most scientists are studying the crater, other scientists must be studying the expedition itself. That's what I have done in the past four field seasons. I study field science, both as it naturally occurs at Haughton (unconstrained by a "Mars Sam") and as a constrained experiment using the Flashline Mars Arctic Research Station. During the second week of July 2001, I lived and worked in the hab as part of the Phase 2 crew of six. Besides participating in all activities, I took many photographs and time lapse video. The result of my work will be a computer simulation of how we lived and worked in the hab. It won't be a model of particular people or even my own phase per se, but a pastiche that demonstrates (a proof of concept) that we have appropriate tools for simulating the layout of the hab and daily routines followed by the group and individual scientists. Activities-how people spend their time-are the focus of my observations for building such a simulation model.

  6. Parallelized computation for computer simulation of electrocardiograms using personal computers with multi-core CPU and general-purpose GPU.

    PubMed

    Shen, Wenfeng; Wei, Daming; Xu, Weimin; Zhu, Xin; Yuan, Shizhong

    2010-10-01

    Biological computations like electrocardiological modelling and simulation usually require high-performance computing environments. This paper introduces an implementation of parallel computation for computer simulation of electrocardiograms (ECGs) in a personal computer environment with an Intel CPU of Core (TM) 2 Quad Q6600 and a GPU of Geforce 8800GT, with software support by OpenMP and CUDA. It was tested in three parallelization device setups: (a) a four-core CPU without a general-purpose GPU, (b) a general-purpose GPU plus 1 core of CPU, and (c) a four-core CPU plus a general-purpose GPU. To effectively take advantage of a multi-core CPU and a general-purpose GPU, an algorithm based on load-prediction dynamic scheduling was developed and applied to setting (c). In the simulation with 1600 time steps, the speedup of the parallel computation as compared to the serial computation was 3.9 in setting (a), 16.8 in setting (b), and 20.0 in setting (c). This study demonstrates that a current PC with a multi-core CPU and a general-purpose GPU provides a good environment for parallel computations in biological modelling and simulation studies. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  8. Computer Access and Flowcharting as Variables in Learning Computer Programming.

    ERIC Educational Resources Information Center

    Ross, Steven M.; McCormick, Deborah

    Manipulation of flowcharting was crossed with in-class computer access to examine flowcharting effects in the traditional lecture/laboratory setting and in a classroom setting where online time was replaced with manual simulation. Seventy-two high school students (24 male and 48 female) enrolled in a computer literacy course served as subjects.…

  9. GATE Monte Carlo simulation in a cloud computing environment

    NASA Astrophysics Data System (ADS)

    Rowedder, Blake Austin

    The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.

  10. Virtual reality computer simulation.

    PubMed

    Grantcharov, T P; Rosenberg, J; Pahle, E; Funch-Jensen, P

    2001-03-01

    Objective assessment of psychomotor skills should be an essential component of a modern surgical training program. There are computer systems that can be used for this purpose, but their wide application is not yet generally accepted. The aim of this study was to validate the role of virtual reality computer simulation as a method for evaluating surgical laparoscopic skills. The study included 14 surgical residents. On day 1, they performed two runs of all six tasks on the Minimally Invasive Surgical Trainer, Virtual Reality (MIST VR). On day 2, they performed a laparoscopic cholecystectomy on living pigs; afterward, they were tested again on the MIST VR. A group of experienced surgeons evaluated the trainees' performance on the animal operation, giving scores for total performance error and economy of motion. During the tasks on the MIST VR, errors and noneconomy of movements for the left and right hand were also recorded. There were significant correlations between error scores in vivo and three of the six in vitro tasks (p < 0.05). In vivo economy scores correlated significantly with non-economy right-hand scores for five of the six tasks and with non-economy left-hand scores for one of the six tasks (p < 0.05). In this study, laparoscopic performance in the animal model correlated significantly with performance on the computer simulator. Thus, the computer model seems to be a promising objective method for the assessment of laparoscopic psychomotor skills.

  11. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  12. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)

    2005-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  13. Computational Simulation of Composite Structural Fatigue

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    2004-01-01

    Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.

  14. Cooperative Learning with a Computer in a Native Language Class.

    ERIC Educational Resources Information Center

    Bennett, Ruth

    In a cooperative task, American Indian elementary students produced bilingual natural history dictionaries using a Macintosh computer. Students in grades 3 through 8 attended weekly, multi-graded bilingual classes in Hupa/English or Yurok/English, held at two public school field sites for training elementary teaching-credential candidates. Teams…

  15. Exposing earth surface process model simulations to a large audience

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kettner, A. J.; Borkowski, L.; Russell, E. L.; Peddicord, H.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) represents a diverse group of >1300 scientists who develop and apply numerical models to better understand the Earth's surface. CSDMS has a mandate to make the public more aware of model capabilities and therefore started sharing state-of-the-art surface process modeling results with large audiences. One platform to reach audiences outside the science community is through museum displays on 'Science on a Sphere' (SOS). Developed by NOAA, SOS is a giant globe, linked with computers and multiple projectors and can display data and animations on a sphere. CSDMS has developed and contributed model simulation datasets for the SOS system since 2014, including hydrological processes, coastal processes, and human interactions with the environment. Model simulations of a hydrological and sediment transport model (WBM-SED) illustrate global river discharge patterns. WAVEWATCH III simulations have been specifically processed to show the impacts of hurricanes on ocean waves, with focus on hurricane Katrina and super storm Sandy. A large world dataset of dams built over the last two centuries gives an impression of the profound influence of humans on water management. Given the exposure of SOS, CSDMS aims to contribute at least 2 model datasets a year, and will soon provide displays of global river sediment fluxes and changes of the sea ice free season along the Arctic coast. Over 100 facilities worldwide show these numerical model displays to an estimated 33 million people every year. Datasets storyboards, and teacher follow-up materials associated with the simulations, are developed to address common core science K-12 standards. CSDMS dataset documentation aims to make people aware of the fact that they look at numerical model results, that underlying models have inherent assumptions and simplifications, and that limitations are known. CSDMS contributions aim to familiarize large audiences with the use of numerical

  16. All Roads Lead to Computing: Making, Participatory Simulations, and Social Computing as Pathways to Computer Science

    ERIC Educational Resources Information Center

    Brady, Corey; Orton, Kai; Weintrop, David; Anton, Gabriella; Rodriguez, Sebastian; Wilensky, Uri

    2017-01-01

    Computer science (CS) is becoming an increasingly diverse domain. This paper reports on an initiative designed to introduce underrepresented populations to computing using an eclectic, multifaceted approach. As part of a yearlong computing course, students engage in Maker activities, participatory simulations, and computing projects that…

  17. Advancements in Afterbody Radiative Heating Simulations for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.

    2016-01-01

    Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell

  18. MAGIC Computer Simulation. Volume 2: Analyst Manual, Part 1

    DTIC Science & Technology

    1971-05-01

    A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1971 4. TITLE AND SUBTITLE MAGIC Computer Simulation Analyst Manual Part 1 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT The MAGIC computer simulation generates target description data consisting of item-by-item listings of the target’s components and air

  19. Using News Media Databases (LexisNexis) To Identify Relevant Topics For Introductory Earth Science Classes

    NASA Astrophysics Data System (ADS)

    Cervato, C.; Jach, J. Y.; Ridky, R.

    2003-12-01

    Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms

  20. Overview of Computer Simulation Modeling Approaches and Methods

    Treesearch

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  1. Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks

    NASA Technical Reports Server (NTRS)

    Thomas, W. J.

    1967-01-01

    Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.

  2. Program for integrating multizonal photographs of the Earth, taken by MKF-6 camera, in a computer

    NASA Technical Reports Server (NTRS)

    Agapov, A. V.; Mosin, S. T.

    1980-01-01

    An algorithm and program are described, for integrating up to 6 simultaneously exposed photographs in different spectral ranges of the surface of the Earth, taken by MKF-6 cameras aboard Soyuz-22. Three of the reference marks are identified on 1 photograph and then are used to integrate the other photographs with the first. The program was compiled for the ES-1040 computer, as a standard subprogram in a system for computer processing of data of study of the Earth from space.

  3. New Pedagogies on Teaching Science with Computer Simulations

    ERIC Educational Resources Information Center

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  4. Assessment methodology for computer-based instructional simulations.

    PubMed

    Koenig, Alan; Iseli, Markus; Wainess, Richard; Lee, John J

    2013-10-01

    Computer-based instructional simulations are becoming more and more ubiquitous, particularly in military and medical domains. As the technology that drives these simulations grows ever more sophisticated, the underlying pedagogical models for how instruction, assessment, and feedback are implemented within these systems must evolve accordingly. In this article, we review some of the existing educational approaches to medical simulations, and present pedagogical methodologies that have been used in the design and development of games and simulations at the University of California, Los Angeles, Center for Research on Evaluation, Standards, and Student Testing. In particular, we present a methodology for how automated assessments of computer-based simulations can be implemented using ontologies and Bayesian networks, and discuss their advantages and design considerations for pedagogical use. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  5. Digital Simulation in Education.

    ERIC Educational Resources Information Center

    Braun, Ludwig

    Simulation as a mode of computer use in instruction has been neglected by educators. This paper briefly explores the circumstances in which simulations are useful and presents several examples of simulation programs currently being used in high-school biology, chemistry, physics, and social studies classes. One program, STERIL, which simulates…

  6. Computer Simulation Of Cyclic Oxidation

    NASA Technical Reports Server (NTRS)

    Probst, H. B.; Lowell, C. E.

    1990-01-01

    Computer model developed to simulate cyclic oxidation of metals. With relatively few input parameters, kinetics of cyclic oxidation simulated for wide variety of temperatures, durations of cycles, and total numbers of cycles. Program written in BASICA and run on any IBM-compatible microcomputer. Used in variety of ways to aid experimental research. In minutes, effects of duration of cycle and/or number of cycles on oxidation kinetics of material surveyed.

  7. Using Computer Simulations in Drug Education Lessons.

    ERIC Educational Resources Information Center

    Bentz, Glenda D.

    1989-01-01

    Discussion of drug education for fifth grade students focuses on a computer simulation in which students role-play adolescents encountering various situations where there is drug or alcohol involvement. Activities in the simulation are explained, and discussion groups that occur following the simulation are described. (LRW)

  8. Understanding Islamist political violence through computational social simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Jennifer H; Mackerrow, Edward P; Patelli, Paolo G

    Understanding the process that enables political violence is of great value in reducing the future demand for and support of violent opposition groups. Methods are needed that allow alternative scenarios and counterfactuals to be scientifically researched. Computational social simulation shows promise in developing 'computer experiments' that would be unfeasible or unethical in the real world. Additionally, the process of modeling and simulation reveals and challenges assumptions that may not be noted in theories, exposes areas where data is not available, and provides a rigorous, repeatable, and transparent framework for analyzing the complex dynamics of political violence. This paper demonstrates themore » computational modeling process using two simulation techniques: system dynamics and agent-based modeling. The benefits and drawbacks of both techniques are discussed. In developing these social simulations, we discovered that the social science concepts and theories needed to accurately simulate the associated psychological and social phenomena were lacking.« less

  9. Biomes computed from simulated climatologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a differencemore » in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.« less

  10. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  11. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  12. Generalized dynamic engine simulation techniques for the digital computers

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1975-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.

  13. Using Computational Simulations to Confront Students' Mental Models

    ERIC Educational Resources Information Center

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  14. Parallel Computing for Brain Simulation.

    PubMed

    Pastur-Romay, L A; Porto-Pazos, A B; Cedron, F; Pazos, A

    2017-01-01

    The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment

    NASA Astrophysics Data System (ADS)

    Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri

    2007-10-01

    Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.

  16. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  17. Interactive computer simulations of knee-replacement surgery.

    PubMed

    Gunther, Stephen B; Soto, Gabriel E; Colman, William W

    2002-07-01

    Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback. We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on

  18. Computer simulation of liquid metals

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.

    2013-12-01

    Methods for and the results of the computer simulation of liquid metals are reviewed. Two basic methods, classical molecular dynamics with known interparticle potentials and the ab initio method, are considered. Most attention is given to the simulated results obtained using the embedded atom model (EAM). The thermodynamic, structural, and diffusion properties of liquid metal models under normal and extreme (shock) pressure conditions are considered. Liquid-metal simulated results for the Groups I - IV elements, a number of transition metals, and some binary systems (Fe - C, Fe - S) are examined. Possibilities for the simulation to account for the thermal contribution of delocalized electrons to energy and pressure are considered. Solidification features of supercooled metals are also discussed.

  19. Computer simulation models as tools for identifying research needs: A black duck population model

    USGS Publications Warehouse

    Ringelman, J.K.; Longcore, J.R.

    1980-01-01

    Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.

  20. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    PubMed

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Computers for real time flight simulation: A market survey

    NASA Technical Reports Server (NTRS)

    Bekey, G. A.; Karplus, W. J.

    1977-01-01

    An extensive computer market survey was made to determine those available systems suitable for current and future flight simulation studies at Ames Research Center. The primary requirement is for the computation of relatively high frequency content (5 Hz) math models representing powered lift flight vehicles. The Rotor Systems Research Aircraft (RSRA) was used as a benchmark vehicle for computation comparison studies. The general nature of helicopter simulations and a description of the benchmark model are presented, and some of the sources of simulation difficulties are examined. A description of various applicable computer architectures is presented, along with detailed discussions of leading candidate systems and comparisons between them.

  2. Computer Simulation for Pain Management Education: A Pilot Study.

    PubMed

    Allred, Kelly; Gerardi, Nicole

    2017-10-01

    Effective pain management is an elusive concept in acute care. Inadequate knowledge has been identified as a barrier to providing optimal pain management. This study aimed to determine student perceptions of an interactive computer simulation as a potential method for learning pain management, as a motivator to read and learn more about pain management, preference over traditional lecture, and its potential to change nursing practice. A post-computer simulation survey with a mixed-methods descriptive design was used in this study. A college of nursing in a large metropolitan university in the Southeast United States. A convenience sample of 30 nursing students in a Bachelor of Science nursing program. An interactive computer simulation was developed as a potential alternative method of teaching pain management to nursing students. Increases in educational gain as well as its potential to change practice were explored. Each participant was asked to complete a survey consisting of 10 standard 5-point Likert scale items and 5 open-ended questions. The survey was used to evaluate the students' perception of the simulation, specifically related to educational benefit, preference compared with traditional teaching methods, and perceived potential to change nursing practice. Data provided descriptive statistics for initial evaluation of the computer simulation. The responses on the survey suggest nursing students perceive the computer simulation to be entertaining, fun, educational, occasionally preferred over regular lecture, and with potential to change practice. Preliminary data support the use of computer simulation in educating nursing students about pain management. Copyright © 2017 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  3. Optimum spaceborne computer system design by simulation

    NASA Technical Reports Server (NTRS)

    Williams, T.; Weatherbee, J. E.; Taylor, D. S.

    1972-01-01

    A deterministic digital simulation model is described which models the Automatically Reconfigurable Modular Multiprocessor System (ARMMS), a candidate computer system for future manned and unmanned space missions. Use of the model as a tool in configuring a minimum computer system for a typical mission is demonstrated. The configuration which is developed as a result of studies with the simulator is optimal with respect to the efficient use of computer system resources, i.e., the configuration derived is a minimal one. Other considerations such as increased reliability through the use of standby spares would be taken into account in the definition of a practical system for a given mission.

  4. Monte Carlo Computer Simulation of a Rainbow.

    ERIC Educational Resources Information Center

    Olson, Donald; And Others

    1990-01-01

    Discusses making a computer-simulated rainbow using principles of physics, such as reflection and refraction. Provides BASIC program for the simulation. Appends a program illustrating the effects of dispersion of the colors. (YP)

  5. Reflections on the GUN CONTROL Simulation: Pedagogical Implications for EAP Writing Classes

    ERIC Educational Resources Information Center

    Salies, Tania Gastao

    2007-01-01

    This article critically reflects on the GUN CONTROL simulation (Salies, 1994a) by retaking ideas advanced by Salies (2002) and applying them to the context of English for Academic Purposes (EAP) writing classes in Brazil. It examines how controlled practice relates to learners' performance on the first draft in a simulation-based content unit…

  6. Energy Exascale Earth System Model (E3SM) Project Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, D.

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  7. HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry

    2014-01-01

    Spaceflight missions expose astronauts to novel operational and environmental conditions that pose health risks that are currently not well understood, and perhaps unanticipated. Furthermore, given the limited number of humans that have flown in long duration missions and beyond low Earth-orbit, the amount of research and clinical data necessary to predict and mitigate these health and performance risks are limited. Consequently, NASA's Human Research Program (HRP) conducts research and develops advanced methods and tools to predict, assess, and mitigate potential hazards to the health of astronauts. In this light, NASA has explored the possibility of leveraging computational modeling since the 1970s as a means to elucidate the physiologic risks of spaceflight and develop countermeasures. Since that time, substantial progress has been realized in this arena through a number of HRP funded activates such as the Digital Astronaut Project (DAP) and the Integrated Medical Model (IMM). Much of this success can be attributed to HRP's endeavor to establish rigorous verification, validation, and credibility (VV&C) processes that ensure computational models and simulations (M&S) are sufficiently credible to address issues within their intended scope. This presentation summarizes HRP's activities in credibility of modeling and simulation, in particular through its outreach to the community of modeling and simulation practitioners. METHODS: The HRP requires all M&S that can have moderate to high impact on crew health or mission success must be vetted in accordance to NASA Standard for Models and Simulations, NASA-STD-7009 (7009) [5]. As this standard mostly focuses on engineering systems, the IMM and DAP have invested substantial efforts to adapt the processes established in this standard for their application to biological M&S, which is more prevalent in human health and performance (HHP) and space biomedical research and operations [6,7]. These methods have also generated

  8. A computer simulation of aircraft evacuation with fire

    NASA Technical Reports Server (NTRS)

    Middleton, V. E.

    1983-01-01

    A computer simulation was developed to assess passenger survival during the post-crash evacuation of a transport category aircraft when fire is a major threat. The computer code, FIREVAC, computes individual passenger exit paths and times to exit, taking into account delays and congestion caused by the interaction among the passengers and changing cabin conditions. Simple models for the physiological effects of the toxic cabin atmosphere are included with provision for including more sophisticated models as they become available. Both wide-body and standard-body aircraft may be simulated. Passenger characteristics are assigned stochastically from experimentally derived distributions. Results of simulations of evacuation trials and hypothetical evacuations under fire conditions are presented.

  9. A Computer-Based Simulation of an Acid-Base Titration

    ERIC Educational Resources Information Center

    Boblick, John M.

    1971-01-01

    Reviews the advantages of computer simulated environments for experiments, referring in particular to acid-base titrations. Includes pre-lab instructions and a sample computer printout of a student's use of an acid-base simulation. Ten references. (PR)

  10. Computer Simulation of the Neuronal Action Potential.

    ERIC Educational Resources Information Center

    Solomon, Paul R.; And Others

    1988-01-01

    A series of computer simulations of the neuronal resting and action potentials are described. Discusses the use of simulations to overcome the difficulties of traditional instruction, such as blackboard illustration, which can only illustrate these events at one point in time. Describes systems requirements necessary to run the simulations.…

  11. Computer simulation of earthquakes

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1976-01-01

    Two computer simulation models of earthquakes were studied for the dependence of the pattern of events on the model assumptions and input parameters. Both models represent the seismically active region by mechanical blocks which are connected to one another and to a driving plate. The blocks slide on a friction surface. In the first model elastic forces were employed and time independent friction to simulate main shock events. The size, length, and time and place of event occurrence were influenced strongly by the magnitude and degree of homogeniety in the elastic and friction parameters of the fault region. Periodically reoccurring similar events were frequently observed in simulations with near homogeneous parameters along the fault, whereas, seismic gaps were a common feature of simulations employing large variations in the fault parameters. The second model incorporated viscoelastic forces and time-dependent friction to account for aftershock sequences. The periods between aftershock events increased with time and the aftershock region was confined to that which moved in the main event.

  12. Quantum simulations with noisy quantum computers

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  13. Salesperson Ethics: An Interactive Computer Simulation

    ERIC Educational Resources Information Center

    Castleberry, Stephen

    2014-01-01

    A new interactive computer simulation designed to teach sales ethics is described. Simulation learner objectives include gaining a better understanding of legal issues in selling; realizing that ethical dilemmas do arise in selling; realizing the need to be honest when selling; seeing that there are conflicting demands from a salesperson's…

  14. Simulations of Probabilities for Quantum Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1996-01-01

    It has been demonstrated that classical probabilities, and in particular, probabilistic Turing machine, can be simulated by combining chaos and non-LIpschitz dynamics, without utilization of any man-made devices (such as random number generators). Self-organizing properties of systems coupling simulated and calculated probabilities and their link to quantum computations are discussed.

  15. Long-Term, Non-Computer, Communication Simulations as Course Integration Activities

    ERIC Educational Resources Information Center

    Hamilton, James P.

    2008-01-01

    This article offers a few guidelines for constructing effective simulations. It presents a sample class activity called simulated public hearing which aims to integrate the various elements of a public speaking course into a more comprehensive whole. Properly designed, simulated hearings have elements of persuasive, informative, and impromptu…

  16. Computer simulation of the metastatic progression.

    PubMed

    Wedemann, Gero; Bethge, Anja; Haustein, Volker; Schumacher, Udo

    2014-01-01

    A novel computer model based on a discrete event simulation procedure describes quantitatively the processes underlying the metastatic cascade. Analytical functions describe the size of the primary tumor and the metastases, while a rate function models the intravasation events of the primary tumor and metastases. Events describe the behavior of the malignant cells until the formation of new metastases. The results of the computer simulations are in quantitative agreement with clinical data determined from a patient with hepatocellular carcinoma in the liver. The model provides a more detailed view on the process than a conventional mathematical model. In particular, the implications of interventions on metastasis formation can be calculated.

  17. USA Stratified Monopoly: A Simulation Game about Social Class Stratification

    ERIC Educational Resources Information Center

    Fisher, Edith M.

    2008-01-01

    Effectively teaching college students about social class stratification is a difficult challenge. Explanations for this difficulty tend to focus on the students who often react with resistance, paralysis, or rage. Sociologists have been using games and simulations as alternative methods for several decades to teach about these sensitive subjects.…

  18. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  19. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  20. Computer Simulation of Reading.

    ERIC Educational Resources Information Center

    Leton, Donald A.

    In recent years, coding and decoding have been claimed to be the processes for converting one language form to another. But there has been little effort to locate these processes in the human learner or to identify the nature of the internal codes. Computer simulation of reading is useful because the similarities in the human reception and…

  1. Evaluation of Computer Simulations for Teaching Apparel Merchandising Concepts.

    ERIC Educational Resources Information Center

    Jolly, Laura D.; Sisler, Grovalynn

    1988-01-01

    The study developed and evaluated computer simulations for teaching apparel merchandising concepts. Evaluation results indicated that teaching method (computer simulation versus case study) does not significantly affect cognitive learning. Student attitudes varied, however, according to topic (profitable merchandising analysis versus retailing…

  2. MAGIC Computer Simulation. Volume 1: User Manual

    DTIC Science & Technology

    1970-07-01

    vulnerability and MAGIC programs. A three-digit code is assigned to each component of the target, such as armor, gun tube; and a two-digit code is assigned to...A review of the subject Magic Computer Simulation User and Analyst Manuals has been conducted based upon a request received from the US Army...1970 4. TITLE AND SUBTITLE MAGIC Computer Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  3. Development of an SP simulation package for understanding fundamentals of self-potential responses at an earth dam

    NASA Astrophysics Data System (ADS)

    Kang, S.; Lim, S. K.; Oldenburg, D.

    2016-12-01

    Fluid flow in an underground porous medium pulls positive ions in the direction of flow and results in a streaming current. This movement of ions in the direction of flow creates a charge imbalance in the system which, in turn, causes conduction currents to flow in the opposite Although, the streaming current only flows in the saturated pores, the conduction currents will flow in the entire medium. The electrical potentials due to the fluid flow can be measured in the same manner as those in a direct current survey. This method is often called the self-potential (SP) method. A number of applications using the SP technique have been investigated including earthquake prediction, the vadose zone flow, locating sinkholes, mineral deposits and volcanic chambers. In this study, we particularly focus on the monitoring of seepage flow through earth dams. Earth dams are usually made of permeable materials and are designed to allow limited amounts of seepage flow from the reservoir. Due to seepage forces, the fine grains in the core can be washed out, and this internal erosion is one the most prevalent failure modes in earth dams. Therefore, identifying and monitoring the region of preferential seepage flow is a key for dam safety assessment. Usually, an earth dam is composed of fine-grained core and coarse-grained cover, which have different hydraulic conductivities. The distribution of hydraulic head, water saturation and fluid flow is found by solving hydrogeologic equations with applied boundary conditions. When a seepage path is induced due to internal erosion, the hydrological properties will be changed and this results in additional fluid flow. This is an additional source of SP signal. Understanding the impact of different sources of the SP signals is thus a crucial factor towards effective use of the SP technique for safety assessment at earth dams. Modelling SP signals requires two essential simulation capabilities: a) computing fluid flow in porous medium and b

  4. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  5. Methodology of modeling and measuring computer architectures for plasma simulations

    NASA Technical Reports Server (NTRS)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  6. Computer Simulation of a Hardwood Processing Plant

    Treesearch

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  7. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  8. A Computer Simulation of Bacterial Growth During Food-Processing

    DTIC Science & Technology

    1974-11-01

    1 AD A TECHNICAL REPORT A COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD PROCESSING =r= by Edward W. Ross, Jr. Approved for public...COMPUTER SIMULATION OF BACTERIAL GROWTH DURING FOOD - PROCESSING Edward W. Ross, Jr. Army Natick Laboratories Natick, Massachusetts Novembe...CATALOG NUMBER 4. TITLE fand SubtKUJ "A Computer Sinulatlon of Bacterial Growth During Food - Processing " 5. TYPE OF REPORT A PERIOD COVERED 6

  9. Human Exploration of Earth's Neighborhood and Mars

    NASA Technical Reports Server (NTRS)

    Condon, Gerald

    2003-01-01

    The presentation examines Mars landing scenarios, Earth to Moon transfers comparing direct vs. via libration points. Lunar transfer/orbit diagrams, comparison of opposition class and conjunction class missions, and artificial gravity for human exploration missions. Slides related to Mars landing scenarios include: mission scenario; direct entry landing locations; 2005 opportunity - Type 1; Earth-mars superior conjunction; Lander latitude accessibility; Low thrust - Earth return phase; SEP Earth return sequence; Missions - 200, 2007, 2009; and Mission map. Slides related to Earth to Moon transfers (direct vs. via libration points (L1, L2) include libration point missions, expeditionary vs. evolutionary, Earth-Moon L1 - gateway for lunar surface operations, and Lunar mission libration point vs. lunar orbit rendezvous (LOR). Slides related to lunar transfer/orbit diagrams include: trans-lunar trajectory from ISS parking orbit, trans-Earth trajectories, parking orbit considerations, and landing latitude restrictions. Slides related to comparison of opposition class (short-stay) and conjunction class (long-stay) missions for human exploration of Mars include: Mars mission planning, Earth-Mars orbital characteristics, delta-V variations, and Mars mission duration comparison. Slides related to artificial gravity for human exploration missions include: current configuration, NEP thruster location trades, minor axis rotation, and example load paths.

  10. Computational Earth Science: Big Data Transformed Into Insight

    NASA Astrophysics Data System (ADS)

    Sellars, Scott; Nguyen, Phu; Chu, Wei; Gao, Xiaogang; Hsu, Kuo-lin; Sorooshian, Soroosh

    2013-08-01

    More than ever in the history of science, researchers have at their fingertips an unprecedented wealth of data from continuously orbiting satellites, weather monitoring instruments, ecological observatories, seismic stations, moored buoys, floats, and even model simulations and forecasts. With just an internet connection, scientists and engineers can access atmospheric and oceanic gridded data and time series observations, seismographs from around the world, minute-by-minute conditions of the near-Earth space environment, and other data streams that provide information on events across local, regional, and global scales. These data sets have become essential for monitoring and understanding the associated impacts of geological and environmental phenomena on society.

  11. Highway Traffic Simulations on Multi-Processor Computers

    DOT National Transportation Integrated Search

    1997-01-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high degree of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway ...

  12. Methods for computing internal flattening, with applications to the Earth's structure and geodynamics

    NASA Astrophysics Data System (ADS)

    Denis, C.; Amalvict, M.; Rogister, Y.; Tomecka-Suchoń, S.

    1998-03-01

    After general comments (Section 1) on using variational procedures to compute the oblateness of internal strata in the Earth and slowly rotating planets, we recall briefly some basic concepts about barotropic equilibrium figures (Section 2), and then proceed to discuss several accurate methods to derive the internal flattening. The algorithms given in Section 3 are based on the internal gravity field theory of Clairaut, Laplace and Lyapunov. They make explicit use of the concept of a level surface. The general formulation given here leads to a number of formulae which are of both theoretical and practical use in studying the Earth's structure, dynamics and rotational evolution. We provide exact solutions for the figure functions of three Earth models, and apply the formalism to yield curves for the internal flattening as a function of the spin frequency. Two more methods, which use the general deformation equations, are discussed in Section 4. The latter do not rely explicitly on the existence of level surfaces. They offer an alternative to the classical first-order internal field theory, and can actually be used to compute changes of the flattening on short timescales produced by variations in the LOD. For short durations, the Earth behaves elastically rather than hydrostatically. We discuss in some detail static deformations and Longman's static core paradox (Section 5), and demonstrate that in general no static solution exists for a realistic Earth model. In Section 6 we deal briefly with differential rotation occurring in cylindrical shells, and show why differential rotation of the inner core such as has been advocated recently is incompatible with the concept of level surfaces. In Section 7 we discuss first-order hydrostatic theory in relation to Earth structure, and show how to derive a consistent reference Earth model which is more suitable for geodynamical modelling than are modern Earth models such as 1066-A, PREM or CORE11. An important result is that a

  13. Spiking network simulation code for petascale computers.

    PubMed

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M; Plesser, Hans E; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today.

  14. Spiking network simulation code for petascale computers

    PubMed Central

    Kunkel, Susanne; Schmidt, Maximilian; Eppler, Jochen M.; Plesser, Hans E.; Masumoto, Gen; Igarashi, Jun; Ishii, Shin; Fukai, Tomoki; Morrison, Abigail; Diesmann, Markus; Helias, Moritz

    2014-01-01

    Brain-scale networks exhibit a breathtaking heterogeneity in the dynamical properties and parameters of their constituents. At cellular resolution, the entities of theory are neurons and synapses and over the past decade researchers have learned to manage the heterogeneity of neurons and synapses with efficient data structures. Already early parallel simulation codes stored synapses in a distributed fashion such that a synapse solely consumes memory on the compute node harboring the target neuron. As petaflop computers with some 100,000 nodes become increasingly available for neuroscience, new challenges arise for neuronal network simulation software: Each neuron contacts on the order of 10,000 other neurons and thus has targets only on a fraction of all compute nodes; furthermore, for any given source neuron, at most a single synapse is typically created on any compute node. From the viewpoint of an individual compute node, the heterogeneity in the synaptic target lists thus collapses along two dimensions: the dimension of the types of synapses and the dimension of the number of synapses of a given type. Here we present a data structure taking advantage of this double collapse using metaprogramming techniques. After introducing the relevant scaling scenario for brain-scale simulations, we quantitatively discuss the performance on two supercomputers. We show that the novel architecture scales to the largest petascale supercomputers available today. PMID:25346682

  15. Earth & Space Science PhDs, Class of 2001.

    ERIC Educational Resources Information Center

    Claudy, Nicholas; Henly, Megan; Migdalski, Chet

    This study documents the employment patterns and demographic characteristics of recent PhDs in earth and space science. It summarizes the latest annual survey of recent earth and space science PhDs conducted by the American Geological Institute, the American Geophysical Union, and the Statistical Research Center of the American Institute of…

  16. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  17. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  18. Airport Simulations Using Distributed Computational Resources

    NASA Technical Reports Server (NTRS)

    McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The Virtual National Airspace Simulation (VNAS) will improve the safety of Air Transportation. In 2001, using simulation and information management software running over a distributed network of super-computers, researchers at NASA Ames, Glenn, and Langley Research Centers developed a working prototype of a virtual airspace. This VNAS prototype modeled daily operations of the Atlanta airport by integrating measured operational data and simulation data on up to 2,000 flights a day. The concepts and architecture developed by NASA for this prototype are integral to the National Airspace Simulation to support the development of strategies improving aviation safety, identifying precursors to component failure.

  19. Octree-based Global Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.

    2017-12-01

    Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.

  20. Numerical Simulation of Earth Pressure on Head Chamber of Shield Machine with FEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Shouju; Kang Chengang; Sun, Wei

    2010-05-21

    Model parameters of conditioned soils in head chamber of shield machine are determined based on tree-axial compression tests in laboratory. The loads acting on tunneling face are estimated according to static earth pressure principle. Based on Duncan-Chang nonlinear elastic constitutive model, the earth pressures on head chamber of shield machine are simulated in different aperture ratio cases for rotating cutterhead of shield machine. Relationship between pressure transportation factor and aperture ratio of shield machine is proposed by using aggression analysis.

  1. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    PubMed

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  2. Virtual Instrument Simulator for CERES

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    1997-01-01

    A benchtop virtual instrument simulator for CERES (Clouds and the Earth's Radiant Energy System) has been built at NASA, Langley Research Center in Hampton, VA. The CERES instruments will fly on several earth orbiting platforms notably NASDA's Tropical Rainfall Measurement Mission (TRMM) and NASA's Earth Observing System (EOS) satellites. CERES measures top of the atmosphere radiative fluxes using microprocessor controlled scanning radiometers. The CERES Virtual Instrument Simulator consists of electronic circuitry identical to the flight unit's twin microprocessors and telemetry interface to the supporting spacecraft electronics and two personal computers (PC) connected to the I/O ports that control azimuth and elevation gimbals. Software consists of the unmodified TRW developed Flight Code and Ground Support Software which serves as the instrument monitor and NASA/TRW developed engineering models of the scanners. The CERES Instrument Simulator will serve as a testbed for testing of custom instrument commands intended to solve in-flight anomalies of the instruments which could arise during the CERES mission. One of the supporting computers supports the telemetry display which monitors the simulator microprocessors during the development and testing of custom instrument commands. The CERES engineering development software models have been modified to provide a virtual instrument running on a second supporting computer linked in real time to the instrument flight microprocessor control ports. The CERES Instrument Simulator will be used to verify memory uploads by the CERES Flight Operations TEAM at NASA. Plots of the virtual scanner models match the actual instrument scan plots. A high speed logic analyzer has been used to track the performance of the flight microprocessor. The concept of using an identical but non-flight qualified microprocessor and electronics ensemble linked to a virtual instrument with identical system software affords a relatively inexpensive

  3. The Earth2Class Model for Professional Development to Implement the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Passow, M. J.; Assumpcao, C. M.; Baggio, F. D.; Hemming, S. R.; Goodwillie, A. M.; Brenner, C.

    2014-12-01

    Professional development for teachers involved in the implementation of the Next Generation Science Standards (NGSS) will require a multifaceted approach combining curriculum development, understanding the nature of science, applications of engineering and technology, integrating reading and writing, and other pedagogical components. The Earth2Class Workshops (E2C) at the Lamont-Doherty Earth Observatory of Columbia University (LDEO) provides one model for creating effective training to meet the NGSS challenges. E2C has provided more than 135 workshops since 1998 that have brought together LDEO research scientists with classroom teachers and students from the New York metropolitan area and elsewhere. Each session provides teachers with the chance to learn first-hand about the wide range of investigations conducted at LDEO. This approach aligns strongly with the NGSS goals: mastery of the disciplinary core ideas, science and engineering practices, understanding the nature of science, and cross-cutting relationships. During workshops, participating teachers interact with scientists to gain understanding of what stimulated research questions, how scientists put together all the components of investigations, and ways in which results are disseminated. Networking among teachers often leads to developing lesson plans based on the science, as well as support for professional growth not always possible within the school setting. Through the E2C website www.earth2class.org, teachers and students not able to attend the live workshops can access archival versions of the sessions. The website also provides a wide variety of educational resources. These have proved to be valuable on a national basis, as evidenced by an average of more than 300,000 hits per month from thousands of site visitors. Participating researchers have found E2C to be an effective approach to provide broader outreach of their results. During the next couple of years, the E2C program will expand to provide

  4. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  5. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  6. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  7. Computational algorithms for simulations in atmospheric optics.

    PubMed

    Konyaev, P A; Lukin, V P

    2016-04-20

    A computer simulation technique for atmospheric and adaptive optics based on parallel programing is discussed. A parallel propagation algorithm is designed and a modified spectral-phase method for computer generation of 2D time-variant random fields is developed. Temporal power spectra of Laguerre-Gaussian beam fluctuations are considered as an example to illustrate the applications discussed. Implementation of the proposed algorithms using Intel MKL and IPP libraries and NVIDIA CUDA technology is shown to be very fast and accurate. The hardware system for the computer simulation is an off-the-shelf desktop with an Intel Core i7-4790K CPU operating at a turbo-speed frequency up to 5 GHz and an NVIDIA GeForce GTX-960 graphics accelerator with 1024 1.5 GHz processors.

  8. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1983-01-01

    Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.

  9. Structural Composites Corrosive Management by Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    A simulation of corrosive management on polymer composites durability is presented. The corrosive environment is assumed to manage the polymer composite degradation on a ply-by-ply basis. The degradation is correlated with a measured Ph factor and is represented by voids, temperature, and moisture which vary parabolically for voids and linearly for temperature and moisture through the laminate thickness. The simulation is performed by a computational composite mechanics computer code which includes micro, macro, combined stress failure, and laminate theories. This accounts for starting the simulation from constitutive material properties and up to the laminate scale which exposes the laminate to the corrosive environment. Results obtained for one laminate indicate that the ply-by-ply managed degradation degrades the laminate to the last one or the last several plies. Results also demonstrate that the simulation is applicable to other polymer composite systems as well.

  10. Measure the Earth's Radius and the Speed of Light with Simple and Inexpensive Computer-Based Experiments

    ERIC Educational Resources Information Center

    Martin, Michael J.

    2004-01-01

    With new and inexpensive computer-based methods, measuring the speed of light and the Earth's radius--historically difficult endeavors--can be simple enough to be tackled by high school and college students working in labs that have limited budgets. In this article, the author describes two methods of estimating the Earth's radius using two…

  11. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    NASA Astrophysics Data System (ADS)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  12. Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Moder, Jeffrey

    2010-01-01

    For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The

  13. SiMon: Simulation Monitor for Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming

    2017-09-01

    Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.

  14. CPMIP: measurements of real computational performance of Earth system models in CMIP6

    NASA Astrophysics Data System (ADS)

    Balaji, Venkatramani; Maisonnave, Eric; Zadeh, Niki; Lawrence, Bryan N.; Biercamp, Joachim; Fladrich, Uwe; Aloisio, Giovanni; Benson, Rusty; Caubel, Arnaud; Durachta, Jeffrey; Foujols, Marie-Alice; Lister, Grenville; Mocavero, Silvia; Underwood, Seth; Wright, Garrett

    2017-01-01

    A climate model represents a multitude of processes on a variety of timescales and space scales: a canonical example of multi-physics multi-scale modeling. The underlying climate system is physically characterized by sensitive dependence on initial conditions, and natural stochastic variability, so very long integrations are needed to extract signals of climate change. Algorithms generally possess weak scaling and can be I/O and/or memory-bound. Such weak-scaling, I/O, and memory-bound multi-physics codes present particular challenges to computational performance. Traditional metrics of computational efficiency such as performance counters and scaling curves do not tell us enough about real sustained performance from climate models on different machines. They also do not provide a satisfactory basis for comparative information across models. codes present particular challenges to computational performance. We introduce a set of metrics that can be used for the study of computational performance of climate (and Earth system) models. These measures do not require specialized software or specific hardware counters, and should be accessible to anyone. They are independent of platform and underlying parallel programming models. We show how these metrics can be used to measure actually attained performance of Earth system models on different machines, and identify the most fruitful areas of research and development for performance engineering. codes present particular challenges to computational performance. We present results for these measures for a diverse suite of models from several modeling centers, and propose to use these measures as a basis for a CPMIP, a computational performance model intercomparison project (MIP).

  15. Development of a Space Radiation Monte Carlo Computer Simulation

    NASA Technical Reports Server (NTRS)

    Pinsky, Lawrence S.

    1997-01-01

    The ultimate purpose of this effort is to undertake the development of a computer simulation of the radiation environment encountered in spacecraft which is based upon the Monte Carlo technique. The current plan is to adapt and modify a Monte Carlo calculation code known as FLUKA, which is presently used in high energy and heavy ion physics, to simulate the radiation environment present in spacecraft during missions. The initial effort would be directed towards modeling the MIR and Space Shuttle environments, but the long range goal is to develop a program for the accurate prediction of the radiation environment likely to be encountered on future planned endeavors such as the Space Station, a Lunar Return Mission, or a Mars Mission. The longer the mission, especially those which will not have the shielding protection of the earth's magnetic field, the more critical the radiation threat will be. The ultimate goal of this research is to produce a code that will be useful to mission planners and engineers who need to have detailed projections of radiation exposures at specified locations within the spacecraft and for either specific times during the mission or integrated over the entire mission. In concert with the development of the simulation, it is desired to integrate it with a state-of-the-art interactive 3-D graphics-capable analysis package known as ROOT, to allow easy investigation and visualization of the results. The efforts reported on here include the initial development of the program and the demonstration of the efficacy of the technique through a model simulation of the MIR environment. This information was used to write a proposal to obtain follow-on permanent funding for this project.

  16. Simulating the Liaison Navigation Concept in a Geo + Earth-Moon Halo Constellation

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Leonard, J. M.; McGranaghan, R. M.; Parker, J. S.; Anderson, R. L.; Born, G. H.

    2012-01-01

    Linked Autonomous Interplanetary Satellite Orbit Navigation, or LiAISON, is a novel satellite navigation technique where relative radiometric measurements between two or more spacecraft in a constellation are processed to obtain the absolute state of all spacecraft. The method leverages the asymmetry of the gravity field that the constellation exists in. This paper takes a step forward in developing a high fidelity navigation simulation for the LiAISON concept in an Earth-Moon constellation. In particular, we aim to process two-way Doppler measurements between a satellite in GEO orbit and another in a halo orbit about the Earth-Moon L1 point.

  17. Computer Series, 98. Electronics for Scientists: A Computer-Intensive Approach.

    ERIC Educational Resources Information Center

    Scheeline, Alexander; Mork, Brian J.

    1988-01-01

    Reports the design for a principles-before-details presentation of electronics for an instrumental analysis class. Uses computers for data collection and simulations. Requires one semester with two 2.5-hour periods and two lectures per week. Includes lab and lecture syllabi. (MVL)

  18. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  19. Biocellion: accelerating computer simulation of multicellular biological system models

    PubMed Central

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-01-01

    Motivation: Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. Results: We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Availability and implementation: Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. Contact: seunghwa.kang@pnnl.gov PMID:25064572

  20. Simulating modern-day cropland and pasture burning in an Earth system model

    NASA Astrophysics Data System (ADS)

    Rabin, Sam; Malyshev, Sergey; Shevliakova, Elena; Magi, Brian; Pacala, Steve

    2015-04-01

    Throughout the Holocene, humans have extended our influence across a larger and larger fraction of ecosystems, even creating some new ones in the process. Herds of livestock grazing either native vegetation (rangeland) or specially planted species (pasture) have modified huge areas of land. We have even developed new plant species and cultivated them as crops. The extent of our ecosystem modification intensified dramatically with the advent of industrialized agriculture, to the point where cropland and pasture (which will henceforth encompass rangeland as well) now cover over a third of the Earth's land area. One way we have altered the terrestrial biosphere is by intentionally and unintentionally altering fire's frequency, intensity, and seasonal timing. This is especially true for agricultural ecosystems. Because their maintenance and use require a level of human control, cropland and pasture often experience fire regimes substantially different from those of the ecosystems they replaced or what would occur in the absence of active fire management. For example, farmers might burn to prepare land for planting or to dispose of crop residues, and pastoralists often use fire to prevent encroachment of unpalatable woody plants. Due to the vast global extent of agriculture, and considering the myriad ways fire affects the Earth system, it is critical that we understand (a) the ways people manage fire on cropland and pasture and (b) the effects of this management on the Earth system. Earth system models are an ideal tool for examining this kind of question. By simulating the processes within and interactions among the atmosphere, oceans, land, and terrestrial ecosystems, Earth system models allow phenomena such as fire to be examined in their global context. However, while the past fifteen years have seen great progress in the simulation of vegetation fire within Earth system models, the direct human influence via cropland and pasture management burning has been mostly

  1. Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    NASA Technical Reports Server (NTRS)

    Montag, Bruce C.; Bishop, Alfred M.; Redfield, Joe B.

    1989-01-01

    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power.

  2. The QuakeSim Project: Numerical Simulations for Active Tectonic Processes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry

    2004-01-01

    In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.

  3. IPSL-CM5A2. An Earth System Model designed to run long simulations for past and future climates.

    NASA Astrophysics Data System (ADS)

    Sepulchre, Pierre; Caubel, Arnaud; Marti, Olivier; Hourdin, Frédéric; Dufresne, Jean-Louis; Boucher, Olivier

    2017-04-01

    The IPSL-CM5A model was developed and released in 2013 "to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5)" [Dufresne et al., 2013]. Although this model also has been used for numerous paleoclimate studies, a major limitation was its computation time, which averaged 10 model-years / day on 32 cores of the Curie supercomputer (on TGCC computing center, France). Such performances were compatible with the experimental designs of intercomparison projects (e.g. CMIP, PMIP) but became limiting for modelling activities involving several multi-millenial experiments, which are typical for Quaternary or "deeptime" paleoclimate studies, in which a fully-equilibrated deep-ocean is mandatory. Here we present the Earth-System model IPSL-CM5A2. Based on IPSL-CM5A, technical developments have been performed both on separate components and on the coupling system in order to speed up the whole coupled model. These developments include the integration of hybrid parallelization MPI-OpenMP in LMDz atmospheric component, the use of a new input-ouput library to perform parallel asynchronous input/output by using computing cores as "IO servers", the use of a parallel coupling library between the ocean and the atmospheric components. Running on 304 cores, the model can now simulate 55 years per day, opening new gates towards multi-millenial simulations. Apart from obtaining better computing performances, one aim of setting up IPSL-CM5A2 was also to overcome the cold bias depicted in global surface air temperature (t2m) in IPSL-CM5A. We present the tuning strategy to overcome this bias as well as the main characteristics (including biases) of the pre-industrial climate simulated by IPSL-CM5A2. Lastly, we shortly present paleoclimate simulations run with this model, for the Holocene and for deeper timescales in the Cenozoic, for which the particular continental configuration

  4. Computer simulation in mechanical spectroscopy

    NASA Astrophysics Data System (ADS)

    Blanter, M. S.

    2012-09-01

    Several examples are given for use of computer simulation in mechanical spectroscopy. On one hand simulation makes it possible to study relaxation mechanisms, and on the other hand to use the colossal accumulation of experimental material to study metals and alloys. The following examples are considered: the effect of Al atom ordering on the Snoek carbon peak in alloys of the system Fe - Al - C; the effect of plastic strain on Finkel'shtein - Rozin relaxation in Fe - Ni - C austenitic steel; checking the adequacy of energy interactions of interstitial atoms, calculated on the basis of a first-principle model by simulation of the concentration dependence of Snoek relaxation parameters in Nb - O.

  5. Gender and Socioeconomic Differences in Enrollment in Computer Camps and Classes.

    ERIC Educational Resources Information Center

    Hess, Robert D.; Miura, Irene T.

    Informal reports suggest that computer literacy (programming) is sought more often by boys than by girls and by students from middle SES backgrounds. In order to gather more systematic data on this perceived trend, questionnaires were sent to directors of summer camps and classes that offered training in programming for microcomputers.…

  6. Cloud Computing Technologies in Writing Class: Factors Influencing Students' Learning Experience

    ERIC Educational Resources Information Center

    Wang, Jenny

    2017-01-01

    The proposed interactive online group within the cloud computing technologies as a main contribution of this paper provides easy and simple access to the cloud-based Software as a Service (SaaS) system and delivers effective educational tools for students and teacher on after-class group writing assignment activities. Therefore, this study…

  7. [Animal experimentation, computer simulation and surgical research].

    PubMed

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  8. Taxis through Computer Simulation Programs.

    ERIC Educational Resources Information Center

    Park, David

    1983-01-01

    Describes a sequence of five computer programs (listings for Apple II available from author) on tactic responses (oriented movement of a cell, cell group, or whole organism in reponse to stimuli). The simulation programs are useful in helping students examine mechanisms at work in real organisms. (JN)

  9. Computational Approach for Improving Three-Dimensional Sub-Surface Earth Structure for Regional Earthquake Hazard Simulations in the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A. J.

    In our Exascale Computing Project (ECP) we seek to simulate earthquake ground motions at much higher frequency than is currently possible. Previous simulations in the SFBA were limited to 0.5-1 Hz or lower (Aagaard et al. 2008, 2010), while we have recently simulated the response to 5 Hz. In order to improve confidence in simulated ground motions, we must accurately represent the three-dimensional (3D) sub-surface material properties that govern seismic wave propagation over a broad region. We are currently focusing on the San Francisco Bay Area (SFBA) with a Cartesian domain of size 120 x 80 x 35 km, butmore » this area will be expanded to cover a larger domain. Currently, the United States Geologic Survey (USGS) has a 3D model of the SFBA for seismic simulations. However, this model suffers from two serious shortcomings relative to our application: 1) it does not fit most of the available low frequency (< 1 Hz) seismic waveforms from moderate (magnitude M 3.5-5.0) earthquakes; and 2) it is represented with much lower resolution than necessary for the high frequency simulations (> 5 Hz) we seek to perform. The current model will serve as a starting model for full waveform tomography based on 3D sensitivity kernels. This report serves as the deliverable for our ECP FY2017 Quarter 4 milestone to FY 2018 “Computational approach to developing model updates”. We summarize the current state of 3D seismic simulations in the SFBA and demonstrate the performance of the USGS 3D model for a few selected paths. We show the available open-source waveform data sets for model updates, based on moderate earthquakes recorded in the region. We present a plan for improving the 3D model utilizing the available data and further development of our SW4 application. We project how the model could be improved and present options for further improvements focused on the shallow geotechnical layers using dense passive recordings of ambient and human-induced noise.« less

  10. Solving search problems by strongly simulating quantum circuits

    PubMed Central

    Johnson, T. H.; Biamonte, J. D.; Clark, S. R.; Jaksch, D.

    2013-01-01

    Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time. PMID:23390585

  11. Particle simulation of plasmas and stellar systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, T.; Clark, A.; Craddock, G.G.

    1985-04-01

    A computational technique is introduced which allows the student and researcher an opportunity to observe the physical behavior of a class of many-body systems. A series of examples is offered which illustrates the diversity of problems that may be studied using particle simulation. These simulations were in fact assigned as homework in a course on computational physics.

  12. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  13. A Computational Framework for Efficient Low Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  14. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  15. On the role of cost-sensitive learning in multi-class brain-computer interfaces.

    PubMed

    Devlaminck, Dieter; Waegeman, Willem; Wyns, Bart; Otte, Georges; Santens, Patrick

    2010-06-01

    Brain-computer interfaces (BCIs) present an alternative way of communication for people with severe disabilities. One of the shortcomings in current BCI systems, recently put forward in the fourth BCI competition, is the asynchronous detection of motor imagery versus resting state. We investigated this extension to the three-class case, in which the resting state is considered virtually lying between two motor classes, resulting in a large penalty when one motor task is misclassified into the other motor class. We particularly focus on the behavior of different machine-learning techniques and on the role of multi-class cost-sensitive learning in such a context. To this end, four different kernel methods are empirically compared, namely pairwise multi-class support vector machines (SVMs), two cost-sensitive multi-class SVMs and kernel-based ordinal regression. The experimental results illustrate that ordinal regression performs better than the other three approaches when a cost-sensitive performance measure such as the mean-squared error is considered. By contrast, multi-class cost-sensitive learning enables us to control the number of large errors made between two motor tasks.

  16. Paper simulation techniques in user requirements analysis for interactive computer systems

    NASA Technical Reports Server (NTRS)

    Ramsey, H. R.; Atwood, M. E.; Willoughby, J. K.

    1979-01-01

    This paper describes the use of a technique called 'paper simulation' in the analysis of user requirements for interactive computer systems. In a paper simulation, the user solves problems with the aid of a 'computer', as in normal man-in-the-loop simulation. In this procedure, though, the computer does not exist, but is simulated by the experimenters. This allows simulated problem solving early in the design effort, and allows the properties and degree of structure of the system and its dialogue to be varied. The technique, and a method of analyzing the results, are illustrated with examples from a recent paper simulation exercise involving a Space Shuttle flight design task

  17. Computer Simulation of Microwave Devices

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1997-01-01

    The accurate simulation of cold-test results including dispersion, on-axis beam interaction impedance, and attenuation of a helix traveling-wave tube (TWT) slow-wave circuit using the three-dimensional code MAFIA (Maxwell's Equations Solved by the Finite Integration Algorithm) was demonstrated for the first time. Obtaining these results is a critical step in the design of TWT's. A well-established procedure to acquire these parameters is to actually build and test a model or a scale model of the circuit. However, this procedure is time-consuming and expensive, and it limits freedom to examine new variations to the basic circuit. These limitations make the need for computational methods crucial since they can lower costs, reduce tube development time, and lessen limitations on novel designs. Computer simulation has been used to accurately obtain cold-test parameters for several slow-wave circuits. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. A new computer modeling technique developed at the NASA Lewis Research Center overcomes these difficulties. The MAFIA three-dimensional mesh for a C-band helix slow-wave circuit is shown.

  18. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  19. Comparative Implementation of High Performance Computing for Power System Dynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng

    Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less

  20. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  1. Incorporating Earth Science into Other High School Science Classes

    NASA Astrophysics Data System (ADS)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  2. MARSIS data and simulation exploited using array databases: PlanetServer/EarthServer for sounding radars

    NASA Astrophysics Data System (ADS)

    Cantini, Federico; Pio Rossi, Angelo; Orosei, Roberto; Baumann, Peter; Misev, Dimitar; Oosthoek, Jelmer; Beccati, Alan; Campalani, Piero; Unnithan, Vikram

    2014-05-01

    parallel computing has been developed and tested on a Tier 0 class HPC cluster computer located at CINECA, Bologna, Italy, to produce accurate simulations for the entire MARSIS dataset. Although the necessary computational resources have not yet been secured, through the HPC cluster at Jacobs University in Bremen it was possible to simulate a significant subset of orbits covering the area of the Medusae Fossae Formation (MFF), a seeimingly soft, easily eroded deposit that extends for nearly 1,000 km along the equator of Mars (e.g. Watters et al., 2007; Carter et al., 2009). Besides the MARSIS data, simulation of MARSIS surface clutter signal are included in the db to further improve its scientific value. Simulations will be available throught the project portal to end users/scientists and they will eventually be provided in the PSA/PDS archives. References: Baumann, P. On the management of multidimensional discrete data. VLDB J. 4 (3), 401-444, Special Issue on Spatial Database Systems, 1994. Carter, L. M., Campbell, B. A., Watters, T. R., Phillips, R. J., Putzig, N. E., Safaeinili, A., Plaut, J., Okubo, C., Egan, A. F., Biccari, D., Orosei, R. (2009). Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars. Icarus, 199(2), 295-302. Nouvel, J.-F., Herique, A., Kofman, W., Safaeinili, A. 2004. Radar signal simulation: Surface modeling with the Facet Method. Radio Science 39, 1013. Oosthoek, J.H.P, Flahaut J., Rossi, A. P., Baumann, P., Misev, D., Campalani, P., Unnithan, V. (2013) PlanetServer: Innovative Approaches for the Online Analysis of Hyperspectral Satellite Data from Mars, Advances in Space Research. DOI: 10.1016/j.asr.2013.07.002 Picardi, G., and 33 colleagues 2005. Radar Soundings of the Subsurface of Mars. Science 310, 1925-1928. Rossi, A. P., Baumann, P., Oosthoek, J., Beccati, A., Cantini, F., Misev, D. Orosei, R., Flahaut, J., Campalani, P., Unnithan, V. (2014),Geophys. Res. Abs., Vol. 16, #EGU2014-5149, this meeting. Watters, T. R

  3. The DYNAMO Simulation Language--An Alternate Approach to Computer Science Education.

    ERIC Educational Resources Information Center

    Bronson, Richard

    1986-01-01

    Suggests the use of computer simulation of continuous systems as a problem solving approach to computer languages. Outlines the procedures that the system dynamics approach employs in computer simulations. Explains the advantages of the special purpose language, DYNAMO. (ML)

  4. An Algorithm for Converting Static Earth Sensor Measurements into Earth Observation Vectors

    NASA Technical Reports Server (NTRS)

    Harman, R.; Hashmall, Joseph A.; Sedlak, Joseph

    2004-01-01

    An algorithm has been developed that converts penetration angles reported by Static Earth Sensors (SESs) into Earth observation vectors. This algorithm allows compensation for variation in the horizon height including that caused by Earth oblateness. It also allows pitch and roll to be computed using any number (greater than 1) of simultaneous sensor penetration angles simplifying processing during periods of Sun and Moon interference. The algorithm computes body frame unit vectors through each SES cluster. It also computes GCI vectors from the spacecraft to the position on the Earth's limb where each cluster detects the Earth's limb. These body frame vectors are used as sensor observation vectors and the GCI vectors are used as reference vectors in an attitude solution. The attitude, with the unobservable yaw discarded, is iteratively refined to provide the Earth observation vector solution.

  5. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  6. Biocellion: accelerating computer simulation of multicellular biological system models.

    PubMed

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Two inviscid computational simulations of separated flow about airfoils

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.

    1976-01-01

    Two inviscid computational simulations of separated flow about airfoils are described. The basic computational method is the line relaxation finite-difference method. Viscous separation is approximated with inviscid free-streamline separation. The point of separation is specified, and the pressure in the separation region is calculated. In the first simulation, the empiricism of constant pressure in the separation region is employed. This empiricism is easier to implement with the present method than with singularity methods. In the second simulation, acoustic theory is used to determine the pressure in the separation region. The results of both simulations are compared with experiment.

  8. Integrative metabolomics for characterizing unknown low-abundance metabolites by capillary electrophoresis-mass spectrometry with computer simulations.

    PubMed

    Lee, Richard; Ptolemy, Adam S; Niewczas, Liliana; Britz-McKibbin, Philip

    2007-01-15

    Characterization of unknown low-abundance metabolites in biological samples is one the most significant challenges in metabolomic research. In this report, an integrative strategy based on capillary electrophoresis-electrospray ionization-ion trap mass spectrometry (CE-ESI-ITMS) with computer simulations is examined as a multiplexed approach for studying the selective nutrient uptake behavior of E. coli within a complex broth medium. On-line sample preconcentration with desalting by CE-ESI-ITMS was performed directly without off-line sample pretreatment in order to improve detector sensitivity over 50-fold for cationic metabolites with nanomolar detection limits. The migration behavior of charged metabolites were also modeled in CE as a qualitative tool to support MS characterization based on two fundamental analyte physicochemical properties, namely, absolute mobility (muo) and acid dissociation constant (pKa). Computer simulations using Simul 5.0 were used to better understand the dynamics of analyte electromigration, as well as aiding de novo identification of unknown nutrients. There was excellent agreement between computer-simulated and experimental electropherograms for several classes of cationic metabolites as reflected by their relative migration times with an average error of <2.0%. Our studies revealed differential uptake of specific amino acids and nucleoside nutrients associated with distinct stages of bacterial growth. Herein, we demonstrate that CE can serve as an effective preconcentrator, desalter, and separator prior to ESI-MS, while providing additional qualitative information for unambiguous identification among isobaric and isomeric metabolites. The proposed strategy is particularly relevant for characterizing unknown yet biologically relevant metabolites that are not readily synthesized or commercially available.

  9. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  10. Combat Simulation Using Breach Computer Language

    DTIC Science & Technology

    1979-09-01

    simulation and weapon system analysis computer language Two types of models were constructed: a stochastic duel and a dynamic engagement model The... duel model validates the BREACH approach by comparing results with mathematical solutions. The dynamic model shows the capability of the BREACH...BREACH 2 Background 2 The Language 3 Static Duel 4 Background and Methodology 4 Validation 5 Results 8 Tank Duel Simulation 8 Dynamic Assault Model

  11. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  12. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  13. Specification of the near-Earth space environment with SHIELDS

    DOE PAGES

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...

    2017-11-26

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  14. Specification of the near-Earth space environment with SHIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard

    Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less

  15. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.

    PubMed

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-08

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4_ speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration.

  16. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing

    PubMed Central

    Li, Zhixin; Su, Dandan; Zhu, Haijiang; Li, Wei; Zhang, Fan; Li, Ruirui

    2017-01-01

    Synthetic Aperture Radar (SAR) raw data simulation is a fundamental problem in radar system design and imaging algorithm research. The growth of surveying swath and resolution results in a significant increase in data volume and simulation period, which can be considered to be a comprehensive data intensive and computing intensive issue. Although several high performance computing (HPC) methods have demonstrated their potential for accelerating simulation, the input/output (I/O) bottleneck of huge raw data has not been eased. In this paper, we propose a cloud computing based SAR raw data simulation algorithm, which employs the MapReduce model to accelerate the raw data computing and the Hadoop distributed file system (HDFS) for fast I/O access. The MapReduce model is designed for the irregular parallel accumulation of raw data simulation, which greatly reduces the parallel efficiency of graphics processing unit (GPU) based simulation methods. In addition, three kinds of optimization strategies are put forward from the aspects of programming model, HDFS configuration and scheduling. The experimental results show that the cloud computing based algorithm achieves 4× speedup over the baseline serial approach in an 8-node cloud environment, and each optimization strategy can improve about 20%. This work proves that the proposed cloud algorithm is capable of solving the computing intensive and data intensive issues in SAR raw data simulation, and is easily extended to large scale computing to achieve higher acceleration. PMID:28075343

  17. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  18. Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme

    PubMed Central

    Toon, Owen B.; Bardeen, Charles G.; Mills, Michael J.; Fan, Tianyi; English, Jason M.; Neely, Ryan R.

    2015-01-01

    Abstract A sectional aerosol model (CARMA) has been developed and coupled with the Community Earth System Model (CESM1). Aerosol microphysics, radiative properties, and interactions with clouds are simulated in the size‐resolving model. The model described here uses 20 particle size bins for each aerosol component including freshly nucleated sulfate particles, as well as mixed particles containing sulfate, primary organics, black carbon, dust, and sea salt. The model also includes five types of bulk secondary organic aerosols with four volatility bins. The overall cost of CESM1‐CARMA is approximately ∼2.6 times as much computer time as the standard three‐mode aerosol model in CESM1 (CESM1‐MAM3) and twice as much computer time as the seven‐mode aerosol model in CESM1 (CESM1‐MAM7) using similar gas phase chemistry codes. Aerosol spatial‐temporal distributions are simulated and compared with a large set of observations from satellites, ground‐based measurements, and airborne field campaigns. Simulated annual average aerosol optical depths are lower than MODIS/MISR satellite observations and AERONET observations by ∼32%. This difference is within the uncertainty of the satellite observations. CESM1/CARMA reproduces sulfate aerosol mass within 8%, organic aerosol mass within 20%, and black carbon aerosol mass within 50% compared with a multiyear average of the IMPROVE/EPA data over United States, but differences vary considerably at individual locations. Other data sets show similar levels of comparison with model simulations. The model suggests that in addition to sulfate, organic aerosols also significantly contribute to aerosol mass in the tropical UTLS, which is consistent with limited data. PMID:27668039

  19. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  20. Computer simulation of space station computer steered high gain antenna

    NASA Technical Reports Server (NTRS)

    Beach, S. W.

    1973-01-01

    The mathematical modeling and programming of a complete simulation program for a space station computer-steered high gain antenna are described. The program provides for reading input data cards, numerically integrating up to 50 first order differential equations, and monitoring up to 48 variables on printed output and on plots. The program system consists of a high gain antenna, an antenna gimbal control system, an on board computer, and the environment in which all are to operate.

  1. A combined calorimetric and computational study of the energetics of rare earth substituted UO 2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Solomon, Jonathan M.; Asta, Mark

    2015-09-01

    The energetics of rare earth substituted UO2 solid solutions (U1-xLnxO2-0.5x+y, where Ln = La, Y, and Nd) are investigated employing a combination of calorimetric measurements and density functional theory based computations. Calculated and measured formation enthalpies agree within 10 kJ/mol for stoichiometric oxygen/metal compositions. To better understand the factors governing the stability and defect binding in rare earth substituted urania solid solutions, systematic trends in the energetics are investigated based on the present results and previous computational and experimental thermochemical studies of rare earth substituted fluorite oxides (A1-xLnxO2-0.5x, where A = Hf, Zr, Ce, and Th). A consistent trend towardsmore » increased energetic stability with larger size mismatch between the smaller host tetravalent cation and the larger rare earth trivalent cation is found for both actinide and non-actinide fluorite oxide systems where aliovalent substitution of Ln cations is compensated by oxygen vacancies. However, the large exothermic oxidation enthalpy in the UO2 based systems favors oxygen rich compositions where charge compensation occurs through the formation of uranium cations with higher oxidation states.« less

  2. Teaching by Simulation with Personal Computers.

    ERIC Educational Resources Information Center

    Randall, James E.

    1978-01-01

    Describes the use of a small digital computer to simulate a peripheral nerve demonstration in which the action potential responses to pairs of stimuli are used to illustrate the properties of excitable membranes. (Author/MA)

  3. A Review of Computer Simulations in Teacher Education

    ERIC Educational Resources Information Center

    Bradley, Elizabeth Gates; Kendall, Brittany

    2014-01-01

    Computer simulations can provide guided practice for a variety of situations that pre-service teachers would not frequently experience during their teacher education studies. Pre-service teachers can use simulations to turn the knowledge they have gained in their coursework into real experience. Teacher simulation training has come a long way over…

  4. Theoretical computation of internal co- and post-seismic deformation fields caused by great earthquakes in a spherically stratified viscoelastic earth

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Okubo, S.

    2016-12-01

    Internal co- and post-seismic deformation fields such as strain and stress changes have been modelled in order to study their effects on the subsequent earthquake and/or volcanic activity around the epicentre. When modelling strain or stress changes caused by great earthquakes (M>9.0), we should use a realistic earth model including earth's curvature and stratification; according to Toda et al.'s (2011) result, the stress changes caused by the 2011 Tohoku-oki earthquake (Mw=9.0) exceed 0.1 bar (0.01 MPa) even at the epicentral distance over 400 km. Although many works have been carried out to compute co- and post-seismic surface deformation fields using a spherically stratified viscoelastic earth (e.g. Piersanti et al. 1995; Pollitz 1996, 1997; Tanaka et al. 2006), less attention has been paid to `internal' deformation fields. Tanaka et al. (2006) succeeded in computing post-seismic surface displacements in a continuously stratified compressible viscoelastic earth by evaluating the inverse Laplace integration numerically. To our regret, however, their method cannot calculate internal deformation because they use Okubo's (1993) reciprocity theorem. We found that Okubo's (1993) reciprocity theorem can be extended to computation of internal deformation fields. In this presentation, we show a method of computing internal co- and post-seismic deformation fields and discuss the effects of earth's curvature and stratification on them.

  5. Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Herrick, Gregory P.; Chen, Jen-Ping

    2012-01-01

    This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.

  6. Proton Upset Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    O'Neill, Patrick M.; Kouba, Coy K.; Foster, Charles C.

    2009-01-01

    The Proton Upset Monte Carlo Simulation (PROPSET) program calculates the frequency of on-orbit upsets in computer chips (for given orbits such as Low Earth Orbit, Lunar Orbit, and the like) from proton bombardment based on the results of heavy ion testing alone. The software simulates the bombardment of modern microelectronic components (computer chips) with high-energy (.200 MeV) protons. The nuclear interaction of the proton with the silicon of the chip is modeled and nuclear fragments from this interaction are tracked using Monte Carlo techniques to produce statistically accurate predictions.

  7. Uses of Computer Simulation Models in Ag-Research and Everyday Life

    USDA-ARS?s Scientific Manuscript database

    When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...

  8. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit

  9. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  10. DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Poole, Stephen W

    2013-01-01

    In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET,more » and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.« less

  11. A Computer Simulation of Community Pharmacy Practice for Educational Use.

    PubMed

    Bindoff, Ivan; Ling, Tristan; Bereznicki, Luke; Westbury, Juanita; Chalmers, Leanne; Peterson, Gregory; Ollington, Robert

    2014-11-15

    To provide a computer-based learning method for pharmacy practice that is as effective as paper-based scenarios, but more engaging and less labor-intensive. We developed a flexible and customizable computer simulation of community pharmacy. Using it, the students would be able to work through scenarios which encapsulate the entirety of a patient presentation. We compared the traditional paper-based teaching method to our computer-based approach using equivalent scenarios. The paper-based group had 2 tutors while the computer group had none. Both groups were given a prescenario and postscenario clinical knowledge quiz and survey. Students in the computer-based group had generally greater improvements in their clinical knowledge score, and third-year students using the computer-based method also showed more improvements in history taking and counseling competencies. Third-year students also found the simulation fun and engaging. Our simulation of community pharmacy provided an educational experience as effective as the paper-based alternative, despite the lack of a human tutor.

  12. How Effective Is Instructional Support for Learning with Computer Simulations?

    ERIC Educational Resources Information Center

    Eckhardt, Marc; Urhahne, Detlef; Conrad, Olaf; Harms, Ute

    2013-01-01

    The study examined the effects of two different instructional interventions as support for scientific discovery learning using computer simulations. In two well-known categories of difficulty, data interpretation and self-regulation, instructional interventions for learning with computer simulations on the topic "ecosystem water" were developed…

  13. Methods of parallel computation applied on granular simulations

    NASA Astrophysics Data System (ADS)

    Martins, Gustavo H. B.; Atman, Allbens P. F.

    2017-06-01

    Every year, parallel computing has becoming cheaper and more accessible. As consequence, applications were spreading over all research areas. Granular materials is a promising area for parallel computing. To prove this statement we study the impact of parallel computing in simulations of the BNE (Brazil Nut Effect). This property is due the remarkable arising of an intruder confined to a granular media when vertically shaken against gravity. By means of DEM (Discrete Element Methods) simulations, we study the code performance testing different methods to improve clock time. A comparison between serial and parallel algorithms, using OpenMP® is also shown. The best improvement was obtained by optimizing the function that find contacts using Verlet's cells.

  14. Accelerating sino-atrium computer simulations with graphic processing units.

    PubMed

    Zhang, Hong; Xiao, Zheng; Lin, Shien-fong

    2015-01-01

    Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.

  15. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.

    PubMed

    Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao

    2018-02-01

    Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.

  16. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    NASA Technical Reports Server (NTRS)

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  17. Numerical Study of Solar Storms from the Sun to Earth

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Jiang, Chaowei; Zhou, Yufen

    2017-04-01

    As solar storms are sweeping the Earth, adverse changes occur in geospace environment. How human can mitigate and avoid destructive damages caused by solar storms becomes an important frontier issue that we must face in the high-tech times. It is of both scientific significance to understand the dynamic process during solar storm's propagation in interplanetary space and realistic value to conduct physics-based numerical researches on the three-dimensional process of solar storms in interplanetary space with the aid of powerful computing capacity to predict the arrival times, intensities, and probable geoeffectiveness of solar storms at the Earth. So far, numerical studies based on magnetohydrodynamics (MHD) have gone through the transition from the initial qualitative principle researches to systematic quantitative studies on concrete events and numerical predictions. Numerical modeling community has a common goal to develop an end-to-end physics-based modeling system for forecasting the Sun-Earth relationship. It is hoped that the transition of these models to operational use depends on the availability of computational resources at reasonable cost and that the models' prediction capabilities may be improved by incorporating the observational findings and constraints into physics-based models, combining the observations, empirical models and MHD simulations in organic ways. In this talk, we briefly focus on our recent progress in using solar observations to produce realistic magnetic configurations of CMEs as they leave the Sun, and coupling data-driven simulations of CMEs to heliospheric simulations that then propagate the CME configuration to 1AU, and outlook the important numerical issues and their possible solutions in numerical space weather modeling from the Sun to Earth for future research.

  18. Psychology on Computers: Simulations, Experiments and Projects.

    ERIC Educational Resources Information Center

    Belcher, Duane M.; Smith, Stephen D.

    PSYCOM is a unique mixed media package which combines high interest projects on the computer with a written text of expository material. It goes beyond most computer-assisted instruction which emphasizes drill and practice and testing of knowledge. A project might consist of a simulation or an actual experiment, or it might be a demonstration, a…

  19. Integrating interactive computational modeling in biology curricula.

    PubMed

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  20. Entry, Descent and Landing Systems Analysis: Exploration Class Simulation Overview and Results

    NASA Technical Reports Server (NTRS)

    DwyerCianciolo, Alicia M.; Davis, Jody L.; Shidner, Jeremy D.; Powell, Richard W.

    2010-01-01

    NASA senior management commissioned the Entry, Descent and Landing Systems Analysis (EDL-SA) Study in 2008 to identify and roadmap the Entry, Descent and Landing (EDL) technology investments that the agency needed to make in order to successfully land large payloads at Mars for both robotic and exploration or human-scale missions. The year one exploration class mission activity considered technologies capable of delivering a 40-mt payload. This paper provides an overview of the exploration class mission study, including technologies considered, models developed and initial simulation results from the EDL-SA year one effort.

  1. The effects of computer-based dynamic visualization simulations on student learning in high school science

    NASA Astrophysics Data System (ADS)

    Moodley, Sadha

    The purpose of this study was to determine whether the use of dynamic computer-based visualizations of the classical model of particle behavior helps to improve student understanding, performance, and interest in science when used by teachers as visual presentations to complement their traditional methods of teaching. The software, Virtual Molecular Dynamics Laboratory (VMDL), was developed at the Center for Polymer Studies at Boston University through funding from the National Science Foundation. The design of the study included five pairs of classes in four different schools in New England from the inner city and from advantaged suburbs. The study employed a treatment-control group design for testing the impact of several VMDL simulations on student learning in several content areas from traditional chemistry and physical science courses. The study employed a mixed qualitative and quantitative design. The quantitative part involved administering the Group Assessment of Logical Thinking (GALT) as well as post-tests that were topic specific. An Analysis of Covariance (ANCOVA) was conducted on the test scores with the GALT scores serving as a covariate. Results of the ANCOVA showed that students' understanding and performance were better in classes where teachers used the computer-based dynamic visualizations to complement their traditional teaching. GALT scores were significantly different among schools but very similar within schools. They were significant in adjusting post-test scores for pre-treatment differences for only two of the schools. The treatment groups outscored the control groups in all five comparisons. The mean differences reached statistical significance at the p < .01 level in only four of the comparisons. The qualitative part of the study involved classroom observations and student interviews. Analysis of classroom observations revealed a shift in classroom dynamics to more learner-centeredness with greater engagement by students, especially in

  2. Augmented Reality Simulations on Handheld Computers

    ERIC Educational Resources Information Center

    Squire, Kurt; Klopfer, Eric

    2007-01-01

    Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…

  3. Computer Simulation of the Circulation Subsystem of a Library

    ERIC Educational Resources Information Center

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  4. Brain without mind: Computer simulation of neural networks with modifiable neuronal interactions

    NASA Astrophysics Data System (ADS)

    Clark, John W.; Rafelski, Johann; Winston, Jeffrey V.

    1985-07-01

    Aspects of brain function are examined in terms of a nonlinear dynamical system of highly interconnected neuron-like binary decision elements. The model neurons operate synchronously in discrete time, according to deterministic or probabilistic equations of motion. Plasticity of the nervous system, which underlies such cognitive collective phenomena as adaptive development, learning, and memory, is represented by temporal modification of interneuronal connection strengths depending on momentary or recent neural activity. A formal basis is presented for the construction of local plasticity algorithms, or connection-modification routines, spanning a large class. To build an intuitive understanding of the behavior of discrete-time network models, extensive computer simulations have been carried out (a) for nets with fixed, quasirandom connectivity and (b) for nets with connections that evolve under one or another choice of plasticity algorithm. From the former experiments, insights are gained concerning the spontaneous emergence of order in the form of cyclic modes of neuronal activity. In the course of the latter experiments, a simple plasticity routine (“brainwashing,” or “anti-learning”) was identified which, applied to nets with initially quasirandom connectivity, creates model networks which provide more felicitous starting points for computer experiments on the engramming of content-addressable memories and on learning more generally. The potential relevance of this algorithm to developmental neurobiology and to sleep states is discussed. The model considered is at the same time a synthesis of earlier synchronous neural-network models and an elaboration upon them; accordingly, the present article offers both a focused review of the dynamical properties of such systems and a selection of new findings derived from computer simulation.

  5. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  6. Freshman year computer engineering students' experiences for flipped physics lab class: An action research

    NASA Astrophysics Data System (ADS)

    Akı, Fatma Nur; Gürel, Zeynep

    2017-02-01

    The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.

  7. "Small Talk Is Not Cheap": Phatic Computer-Mediated Communication in Intercultural Classes

    ERIC Educational Resources Information Center

    Maíz-Arévalo, Carmen

    2017-01-01

    The present study aims to analyse the phatic exchanges performed by a class of nine intercultural Master's students during a collaborative assignment which demanded online discussion using English as a lingua franca (ELF). Prior studies on the use of phatic communication in computer-mediated communication have concentrated on social networking…

  8. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  9. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience

    PubMed Central

    Stockton, David B.; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project. PMID:26528175

  10. NeuroManager: a workflow analysis based simulation management engine for computational neuroscience.

    PubMed

    Stockton, David B; Santamaria, Fidel

    2015-01-01

    We developed NeuroManager, an object-oriented simulation management software engine for computational neuroscience. NeuroManager automates the workflow of simulation job submissions when using heterogeneous computational resources, simulators, and simulation tasks. The object-oriented approach (1) provides flexibility to adapt to a variety of neuroscience simulators, (2) simplifies the use of heterogeneous computational resources, from desktops to super computer clusters, and (3) improves tracking of simulator/simulation evolution. We implemented NeuroManager in MATLAB, a widely used engineering and scientific language, for its signal and image processing tools, prevalence in electrophysiology analysis, and increasing use in college Biology education. To design and develop NeuroManager we analyzed the workflow of simulation submission for a variety of simulators, operating systems, and computational resources, including the handling of input parameters, data, models, results, and analyses. This resulted in 22 stages of simulation submission workflow. The software incorporates progress notification, automatic organization, labeling, and time-stamping of data and results, and integrated access to MATLAB's analysis and visualization tools. NeuroManager provides users with the tools to automate daily tasks, and assists principal investigators in tracking and recreating the evolution of research projects performed by multiple people. Overall, NeuroManager provides the infrastructure needed to improve workflow, manage multiple simultaneous simulations, and maintain provenance of the potentially large amounts of data produced during the course of a research project.

  11. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  12. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  13. Effects of Psychology Courseware Use on Computer Anxiety in Students.

    ERIC Educational Resources Information Center

    Lambert, Matthew E.; Lenthall, Gerard

    1989-01-01

    Describes study that examined the relationship between computer anxiety and the use of psychology courseware in an undergraduate abnormal psychology class using four computerized case simulations. Comparisons of pretest and posttest computer anxiety measures are described, and the relationship between computer anxiety/attitudes and computer use is…

  14. Institutional Computing Executive Group Review of Multi-programmatic & Institutional Computing, Fiscal Year 2005 and 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, S; Rotman, D; Schwegler, E

    The Institutional Computing Executive Group (ICEG) review of FY05-06 Multiprogrammatic and Institutional Computing (M and IC) activities is presented in the attached report. In summary, we find that the M and IC staff does an outstanding job of acquiring and supporting a wide range of institutional computing resources to meet the programmatic and scientific goals of LLNL. The responsiveness and high quality of support given to users and the programs investing in M and IC reflects the dedication and skill of the M and IC staff. M and IC has successfully managed serial capacity, parallel capacity, and capability computing resources.more » Serial capacity computing supports a wide range of scientific projects which require access to a few high performance processors within a shared memory computer. Parallel capacity computing supports scientific projects that require a moderate number of processors (up to roughly 1000) on a parallel computer. Capability computing supports parallel jobs that push the limits of simulation science. M and IC has worked closely with Stockpile Stewardship, and together they have made LLNL a premier institution for computational and simulation science. Such a standing is vital to the continued success of laboratory science programs and to the recruitment and retention of top scientists. This report provides recommendations to build on M and IC's accomplishments and improve simulation capabilities at LLNL. We recommend that institution fully fund (1) operation of the atlas cluster purchased in FY06 to support a few large projects; (2) operation of the thunder and zeus clusters to enable 'mid-range' parallel capacity simulations during normal operation and a limited number of large simulations during dedicated application time; (3) operation of the new yana cluster to support a wide range of serial capacity simulations; (4) improvements to the reliability and performance of the Lustre parallel file system; (5) support for the new GDO

  15. User data dissemination concepts for earth resources

    NASA Technical Reports Server (NTRS)

    Davies, R.; Scott, M.; Mitchell, C.; Torbett, A.

    1976-01-01

    Domestic data dissemination networks for earth-resources data in the 1985-1995 time frame were evaluated. The following topics were addressed: (1) earth-resources data sources and expected data volumes, (2) future user demand in terms of data volume and timeliness, (3) space-to-space and earth point-to-point transmission link requirements and implementation, (4) preprocessing requirements and implementation, (5) network costs, and (6) technological development to support this implementation. This study was parametric in that the data input (supply) was varied by a factor of about fifteen while the user request (demand) was varied by a factor of about nineteen. Correspondingly, the time from observation to delivery to the user was varied. This parametric evaluation was performed by a computer simulation that was based on network alternatives and resulted in preliminary transmission and preprocessing requirements. The earth-resource data sources considered were: shuttle sorties, synchronous satellites (e.g., SEOS), aircraft, and satellites in polar orbits.

  16. [The characteristics of computer simulation of traffic accidents].

    PubMed

    Zou, Dong-Hua; Liu, Ning-Guo; Chen, Jian-Guo; Jin, Xian-Long; Zhang, Xiao-Yun; Zhang, Jian-Hua; Chen, Yi-Jiu

    2008-12-01

    To reconstruct the collision process of traffic accident and the injury mode of the victim by computer simulation technology in forensic assessment of traffic accident. Forty actual accidents were reconstructed by stimulation software and high performance computer based on analysis of the trace evidences at the scene, damage of the vehicles and injury of the victims, with 2 cases discussed in details. The reconstruction correlated very well in 28 cases, well in 9 cases, and suboptimal in 3 cases with the above parameters. Accurate reconstruction of the accident would be helpful for assessment of the injury mechanism of the victims. Reconstruction of the collision process of traffic accident and the injury mechanism of the victim by computer simulation is useful in traffic accident assessment.

  17. The Politics of City Planning Simulations.

    ERIC Educational Resources Information Center

    Kolson, Kenneth

    This research paper presents an analysis of the computer simulation, SimCity, used for an urban city planning class. The data were gathered by actual use of the simulation and an electronic mail network was employed to secure impressions from users of the simulation. SimCity (developed by Maxis) provides the player with rules of human factors,…

  18. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  19. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  20. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  1. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  2. 47 CFR 97.209 - Earth station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Earth station. 97.209 Section 97.209... SERVICE Special Operations § 97.209 Earth station. (a) Any amateur station may be an Earth station. A holder of any class operator license may be the control operator of an Earth station, subject to the...

  3. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmalz, Mark S

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G}more » for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient

  4. A fully coupled flow simulation around spacecraft in low earth orbit

    NASA Technical Reports Server (NTRS)

    Justiz, C. R.; Sega, R. M.

    1991-01-01

    The primary objective of this investigation is to provide a full flow simulation of a spacecraft in low earth orbit (LEO). Due to the nature of the environment, the simulation includes the highly coupled effects of neutral particle flow, free stream plasma flow, nonequilibrium gas dynamics effects, spacecraft charging and electromagnetic field effects. Emphasis is placed on the near wake phenomenon and will be verified in space by the Wake Shield Facility (WSF) and developed for application to Space Station conditions as well as for other spacecraft. The WSF is a metallic disk-type structure that will provide a controlled space platform for highly accurate measurements. Preliminary results are presented for a full flow around a metallic disk.

  5. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing

    NASA Astrophysics Data System (ADS)

    Nishiura, Daisuke; Furuichi, Mikito; Sakaguchi, Hide

    2015-09-01

    The computational performance of a smoothed particle hydrodynamics (SPH) simulation is investigated for three types of current shared-memory parallel computer devices: many integrated core (MIC) processors, graphics processing units (GPUs), and multi-core CPUs. We are especially interested in efficient shared-memory allocation methods for each chipset, because the efficient data access patterns differ between compute unified device architecture (CUDA) programming for GPUs and OpenMP programming for MIC processors and multi-core CPUs. We first introduce several parallel implementation techniques for the SPH code, and then examine these on our target computer architectures to determine the most effective algorithms for each processor unit. In addition, we evaluate the effective computing performance and power efficiency of the SPH simulation on each architecture, as these are critical metrics for overall performance in a multi-device environment. In our benchmark test, the GPU is found to produce the best arithmetic performance as a standalone device unit, and gives the most efficient power consumption. The multi-core CPU obtains the most effective computing performance. The computational speed of the MIC processor on Xeon Phi approached that of two Xeon CPUs. This indicates that using MICs is an attractive choice for existing SPH codes on multi-core CPUs parallelized by OpenMP, as it gains computational acceleration without the need for significant changes to the source code.

  6. FACE computer simulation. [Flexible Arm Controls Experiment

    NASA Technical Reports Server (NTRS)

    Sadeh, Willy Z.; Szmyd, Jeffrey A.

    1990-01-01

    A computer simulation of the FACE (Flexible Arm Controls Experiment) was conducted to assess its design for use in the Space Shuttle. The FACE is supposed to be a 14-ft long articulate structure with 4 degrees of freedom, consisting of shoulder pitch and yaw, elbow pitch, and wrist pitch. Kinematics of the FACE was simulated to obtain data on arm operation, function, workspace and interaction. Payload capture ability was modeled. The simulation indicates the capability for detailed kinematic simulation and payload capture ability analysis, and the feasibility of real-time simulation was determined. In addition, the potential for interactive real-time training through integration of the simulation with various interface controllers was revealed. At this stage, the flexibility of the arm was not yet considered.

  7. Earth resources mission performance studies. Volume 2: Simulation results

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Simulations were made at three month intervals to investigate the EOS mission performance over the four seasons of the year. The basic objectives of the study were: (1) to evaluate the ability of an EOS type system to meet a representative set of specific collection requirements, and (2) to understand the capabilities and limitations of the EOS that influence the system's ability to satisfy certain collection objectives. Although the results were obtained from a consideration of a two sensor EOS system, the analysis can be applied to any remote sensing system having similar optical and operational characteristics. While the category related results are applicable only to the specified requirement configuration, the results relating to general capability and limitations of the sensors can be applied in extrapolating to other U.S. based EOS collection requirements. The TRW general purpose mission simulator and analytic techniques discussed in this report can be applied to a wide range of collection and planning problems of earth orbiting imaging systems.

  8. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters

  9. Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.

    2017-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.

  10. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  11. Simulation of Robot Kinematics Using Interactive Computer Graphics.

    ERIC Educational Resources Information Center

    Leu, M. C.; Mahajan, R.

    1984-01-01

    Development of a robot simulation program based on geometric transformation softwares available in most computer graphics systems and program features are described. The program can be extended to simulate robots coordinating with external devices (such as tools, fixtures, conveyors) using geometric transformations to describe the…

  12. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  13. A scalable parallel black oil simulator on distributed memory parallel computers

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Liu, Hui; Chen, Zhangxin

    2015-11-01

    This paper presents our work on developing a parallel black oil simulator for distributed memory computers based on our in-house parallel platform. The parallel simulator is designed to overcome the performance issues of common simulators that are implemented for personal computers and workstations. The finite difference method is applied to discretize the black oil model. In addition, some advanced techniques are employed to strengthen the robustness and parallel scalability of the simulator, including an inexact Newton method, matrix decoupling methods, and algebraic multigrid methods. A new multi-stage preconditioner is proposed to accelerate the solution of linear systems from the Newton methods. Numerical experiments show that our simulator is scalable and efficient, and is capable of simulating extremely large-scale black oil problems with tens of millions of grid blocks using thousands of MPI processes on parallel computers.

  14. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  15. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure.

    PubMed

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-07

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed.

  16. Toward real-time Monte Carlo simulation using a commercial cloud computing infrastructure

    NASA Astrophysics Data System (ADS)

    Wang, Henry; Ma, Yunzhi; Pratx, Guillem; Xing, Lei

    2011-09-01

    Monte Carlo (MC) methods are the gold standard for modeling photon and electron transport in a heterogeneous medium; however, their computational cost prohibits their routine use in the clinic. Cloud computing, wherein computing resources are allocated on-demand from a third party, is a new approach for high performance computing and is implemented to perform ultra-fast MC calculation in radiation therapy. We deployed the EGS5 MC package in a commercial cloud environment. Launched from a single local computer with Internet access, a Python script allocates a remote virtual cluster. A handshaking protocol designates master and worker nodes. The EGS5 binaries and the simulation data are initially loaded onto the master node. The simulation is then distributed among independent worker nodes via the message passing interface, and the results aggregated on the local computer for display and data analysis. The described approach is evaluated for pencil beams and broad beams of high-energy electrons and photons. The output of cloud-based MC simulation is identical to that produced by single-threaded implementation. For 1 million electrons, a simulation that takes 2.58 h on a local computer can be executed in 3.3 min on the cloud with 100 nodes, a 47× speed-up. Simulation time scales inversely with the number of parallel nodes. The parallelization overhead is also negligible for large simulations. Cloud computing represents one of the most important recent advances in supercomputing technology and provides a promising platform for substantially improved MC simulation. In addition to the significant speed up, cloud computing builds a layer of abstraction for high performance parallel computing, which may change the way dose calculations are performed and radiation treatment plans are completed. This work was presented in part at the 2010 Annual Meeting of the American Association of Physicists in Medicine (AAPM), Philadelphia, PA.

  17. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  18. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  19. Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations

    NASA Astrophysics Data System (ADS)

    Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.

    2018-05-01

    We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.

  20. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  1. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  2. Computer Simulations as an Integral Part of Intermediate Macroeconomics.

    ERIC Educational Resources Information Center

    Millerd, Frank W.; Robertson, Alastair R.

    1987-01-01

    Describes the development of two interactive computer simulations which were fully integrated with other course materials. The simulations illustrate the effects of various real and monetary "demand shocks" on aggregate income, interest rates, and components of spending and economic output. Includes an evaluation of the simulations'…

  3. The Use of Computer Simulation Gaming in Teaching Broadcast Economics.

    ERIC Educational Resources Information Center

    Mancuso, Louis C.

    The purpose of this study was to develop a broadcast economic computer simulation and to ascertain how a lecture-computer simulation game compared as a teaching method with a more traditional lecture and case study instructional methods. In each of three sections of a broadcast economics course, a different teaching methodology was employed: (1)…

  4. CloudMC: a cloud computing application for Monte Carlo simulation.

    PubMed

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  5. Computer-intensive simulation of solid-state NMR experiments using SIMPSON.

    PubMed

    Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas

    2014-09-01

    Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. An Evaluation of Mandibular Dental and Basal Arch Dimensions in Class I and Class II Division 1 Adult Syrian Patients using Cone-beam Computed Tomography.

    PubMed

    Al-Hilal, Layal H; Sultan, Kinda; Hajeer, Mohammad Y; Mahmoud, Ghiath; Wanli, Abdulrahman A

    2018-04-01

    Aim: The aim of this study is (1) to inspect any difference in mandibular arch widths between males and females in class I and class II division 1 (class malocclusions using cone-beam computed tomography (CBCT), (2) to compare the mandibular dental and basal widths between the two groups, and (3) to investigate any possible correlation between dental and basal arch widths in both groups. Materials and methods: The CBCT images of 68 patients aged between 18 and 25 years consisted of 34 class I (17 males and 17 females) and 34 class (17 males and 17 females) who were recruited at the Department of Orthodontics, University of Damascus Dental School (Syria). Using on-demand three-dimensional (3D) on axial views, facial axis points for dental measurements and basal bone center (BBC) points for basal measurements were identified on lower canines and first molars. Dental and basal intercanine width (ICW) and intermolar width (IMW) were measured. Results: Independent t-test showed a statistically significant difference between males and females in several variables in both groups and a statistically significant difference between class I and class groups in the basal ICW for both genders and in the dental ICW for females only (p < 0.05). In class I group, Pearson's correlation coefficients between dental and basal measurements showed a strong correlation in the IMW for both genders (r > 0.73; p < 0.01) and a moderate correlation in females' ICW (r = 0.67; p < 0.01). In the class group, a moderate correlation in females' IMW (r = 0.67; p < 0.01) was found. Conclusion: Females compared with males had narrower dimensions. Class I patients had larger ICW than class II-1 patients in all measurements and had narrower IMW than class in most measurements for both genders. There were moderate-to-strong correlations between dental and basal dimensions. BBC points might be landmarks that accurately represent the basal bone arch. Clinical significance: CBCT-based assessments of dental

  7. Computers with Wings: Flight Simulation and Personalized Landscapes

    ERIC Educational Resources Information Center

    Oss, Stefano

    2005-01-01

    We propose, as a special way to explore the physics of flying objects, to use a flight simulator with a personalized scenery to reproduce the territory where students live. This approach increases the participation and attention of students to physics classes but also creates several opportunities for addressing side activities and arguments of…

  8. A low Earth orbit molecular beam space simulation facility

    NASA Technical Reports Server (NTRS)

    Cross, J. B.

    1984-01-01

    A brief synopsis of the low Earth orbit (LEO) satellite environment is presented including neutral and ionic species. Two ground based atomic and molecular beam instruments are described which are capable of simulating the interaction of spacecraft surfaces with the LEO environment and detecting the results of these interactions. The first detects mass spectrometrically low level fluxes of reactively and nonreactively surface scattered species as a function of scattering angle and velocity while the second ultrahigh velocity (UHV) molecular beam, laser induced fluorescence apparatus is capable of measuring chemiluminescence produced by either gas phase or gas-surface interactions. A number of proposed experiments are described.

  9. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  10. A compositional reservoir simulator on distributed memory parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rame, M.; Delshad, M.

    1995-12-31

    This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less

  11. n-body simulations using message passing parallel computers.

    NASA Astrophysics Data System (ADS)

    Grama, A. Y.; Kumar, V.; Sameh, A.

    The authors present new parallel formulations of the Barnes-Hut method for n-body simulations on message passing computers. These parallel formulations partition the domain efficiently incurring minimal communication overhead. This is in contrast to existing schemes that are based on sorting a large number of keys or on the use of global data structures. The new formulations are augmented by alternate communication strategies which serve to minimize communication overhead. The impact of these communication strategies is experimentally studied. The authors report on experimental results obtained from an astrophysical simulation on an nCUBE2 parallel computer.

  12. Traffic Simulations on Parallel Computers Using Domain Decomposition Techniques

    DOT National Transportation Integrated Search

    1995-01-01

    Large scale simulations of Intelligent Transportation Systems (ITS) can only be acheived by using the computing resources offered by parallel computing architectures. Domain decomposition techniques are proposed which allow the performance of traffic...

  13. Computer considerations for real time simulation of a generalized rotor model

    NASA Technical Reports Server (NTRS)

    Howe, R. M.; Fogarty, L. E.

    1977-01-01

    Scaled equations were developed to meet requirements for real time computer simulation of the rotor system research aircraft. These equations form the basis for consideration of both digital and hybrid mechanization for real time simulation. For all digital simulation estimates of the required speed in terms of equivalent operations per second are developed based on the complexity of the equations and the required intergration frame rates. For both conventional hybrid simulation and hybrid simulation using time-shared analog elements the amount of required equipment is estimated along with a consideration of the dynamic errors. Conventional hybrid mechanization using analog simulation of those rotor equations which involve rotor-spin frequencies (this consititutes the bulk of the equations) requires too much analog equipment. Hybrid simulation using time-sharing techniques for the analog elements appears possible with a reasonable amount of analog equipment. All-digital simulation with affordable general-purpose computers is not possible because of speed limitations, but specially configured digital computers do have the required speed and consitute the recommended approach.

  14. Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations

    NASA Astrophysics Data System (ADS)

    Eskandari Nasrabad, A.; Laghaei, R.

    2018-04-01

    Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.

  15. Computer Graphics Simulations of Sampling Distributions.

    ERIC Educational Resources Information Center

    Gordon, Florence S.; Gordon, Sheldon P.

    1989-01-01

    Describes the use of computer graphics simulations to enhance student understanding of sampling distributions that arise in introductory statistics. Highlights include the distribution of sample proportions, the distribution of the difference of sample means, the distribution of the difference of sample proportions, and the distribution of sample…

  16. Computer Support of Operator Training: Constructing and Testing a Prototype of a CAL (Computer Aided Learning) Supported Simulation Environment.

    ERIC Educational Resources Information Center

    Zillesen, P. G. van Schaick; And Others

    Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…

  17. Earth Science Data Education through Cooking Up Recipes

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Maskey, M.; Smith, T.; Conover, H.

    2016-12-01

    One of the major challenges in Earth science research and applications is understanding and applying the proper methods, tools, and software for using scientific data. These techniques are often difficult and time consuming to identify, requiring novel users to conduct extensive research, take classes, and reach out for assistance, thus hindering scientific discovery and real-world applications. To address these challenges, the Global Hydrology Resource Center (GHRC) DAAC has developed a series of data recipes that novel users such as students, decision makers, and general Earth scientists can leverage to learn how to use Earth science datasets. Once the data recipe content had been finalized, GHRC computer and Earth scientists collaborated with a web and graphic designer to ensure the content is both attractively presented to data users, and clearly communicated to promote the education and use of Earth science data. The completed data recipes include, but are not limited to, tutorials, iPython Notebooks, resources, and tools necessary for addressing key difficulties in data use across a broad user base. These recipes enable non-traditional users to learn how to use data, but also curates and communicates common methods and approaches that may be difficult and time consuming for these users to identify.

  18. Building an adiabatic quantum computer simulation in the classroom

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  19. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    NASA Astrophysics Data System (ADS)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    Spaceship Earth Scientist (SES) Module, featuring an Earth Scientist expert discussing the science seen in the presentation. Hands-on activities such as sea ice melting simulations will be held with participants. Results from these first pilot education experiences will be presented at the 2011 AGU.
    class="jpg" border=0 width=600px src="/meetings/fm11/program/tables/ED23B-0627_T1.jpg">

  20. Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.

    ERIC Educational Resources Information Center

    Samsel, Richard W.; And Others

    1994-01-01

    At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…

  1. Software Maintenance of the Subway Environment Simulation Computer Program

    DOT National Transportation Integrated Search

    1980-12-01

    This document summarizes the software maintenance activities performed to support the Subway Environment Simulation (SES) Computer Program. The SES computer program is a design-oriented analytic tool developed during a recent five-year research proje...

  2. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  3. Hybrid annealing: Coupling a quantum simulator to a classical computer

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Lewenstein, Maciej

    2017-05-01

    Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.

  4. Advanced computational simulations of water waves interacting with wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  5. Computer Simulation for Emergency Incident Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D L

    2004-12-03

    This report describes the findings and recommendations resulting from the Department of Homeland Security (DHS) Incident Management Simulation Workshop held by the DHS Advanced Scientific Computing Program in May 2004. This workshop brought senior representatives of the emergency response and incident-management communities together with modeling and simulation technologists from Department of Energy laboratories. The workshop provided an opportunity for incident responders to describe the nature and substance of the primary personnel roles in an incident response, to identify current and anticipated roles of modeling and simulation in support of incident response, and to begin a dialog between the incident responsemore » and simulation technology communities that will guide and inform planned modeling and simulation development for incident response. This report provides a summary of the discussions at the workshop as well as a summary of simulation capabilities that are relevant to incident-management training, and recommendations for the use of simulation in both incident management and in incident management training, based on the discussions at the workshop. In addition, the report discusses areas where further research and development will be required to support future needs in this area.« less

  6. A School Finance Computer Simulation Model

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    1974-01-01

    Presents a description of the computer simulation model developed by the National Educational Finance Project for use by States in planning and evaluating alternative approaches for State support programs. Provides a general introduction to the model, a program operation overview, a sample run, and some conclusions. (Author/WM)

  7. Sawmill simulation: concepts and computer use

    Treesearch

    Hugh W. Reynolds; Charles J. Gatchell

    1969-01-01

    Product specifications were fed into a computer so that the yield of products from the same sample of logs could be determined for simulated sawing methods. Since different sawing patterns were tested on the same sample, variation among log samples was eliminated; hence, the statistical conclusions are very precise.

  8. Simulation of Earth textures by conditional image quilting

    NASA Astrophysics Data System (ADS)

    Mahmud, K.; Mariethoz, G.; Caers, J.; Tahmasebi, P.; Baker, A.

    2014-04-01

    Training image-based approaches for stochastic simulations have recently gained attention in surface and subsurface hydrology. This family of methods allows the creation of multiple realizations of a study domain, with a spatial continuity based on a training image (TI) that contains the variability, connectivity, and structural properties deemed realistic. A major drawback of these methods is their computational and/or memory cost, making certain applications challenging. It was found that similar methods, also based on training images or exemplars, have been proposed in computer graphics. One such method, image quilting (IQ), is introduced in this paper and adapted for hydrogeological applications. The main difficulty is that Image Quilting was originally not designed to produce conditional simulations and was restricted to 2-D images. In this paper, the original method developed in computer graphics has been modified to accommodate conditioning data and 3-D problems. This new conditional image quilting method (CIQ) is patch based, does not require constructing a pattern databases, and can be used with both categorical and continuous training images. The main concept is to optimally cut the patches such that they overlap with minimum discontinuity. The optimal cut is determined using a dynamic programming algorithm. Conditioning is accomplished by prior selection of patches that are compatible with the conditioning data. The performance of CIQ is tested for a variety of hydrogeological test cases. The results, when compared with previous multiple-point statistics (MPS) methods, indicate an improvement in CPU time by a factor of at least 50.

  9. School physics teacher class management, laboratory practice, student engagement, critical thinking, cooperative learning and use of simulations effects on student performance

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad

    The purpose of this study was to examine how simulations in physics class, class management, laboratory practice, student engagement, critical thinking, cooperative learning, and use of simulations predicted the percentage of students achieving a grade point average of B or higher and their academic performance as reported by teachers in secondary school physics classes. The target population consisted of secondary school physics teachers who were members of Science Technology, Engineeering and,Mathematics Teachers of New York City (STEMteachersNYC) and American Modeling Teachers Association (AMTA). They used simulations in their physics classes in the 2013 and 2014 school years. Subjects for this study were volunteers. A survey was constructed based on a literature review. Eighty-two physics teachers completed the survey about instructional practice in physics. All respondents were anonymous. Classroom management was the only predictor of the percent of students achieving a grade point average of B or higher in high school physics class. Cooperative learning, use of simulations, and student engagement were predictors of teacher's views of student academic performance in high school physics class. All other variables -- class management, laboratory practice, critical thinking, and teacher self-efficacy -- were not predictors of teacher's views of student academic performance in high school physics class. The implications of these findings were discussed and recommendations for physics teachers to improve student learning were presented.

  10. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    PubMed Central

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  11. Simulations in a Science and Society Course.

    ERIC Educational Resources Information Center

    Maier, Mark H.; Venanzi, Thomas

    1984-01-01

    Provides a course outline which includes simulation exercises designed as in-class activities related to science and society interactions. Simulations focus on the IQ debate, sociobiology, nuclear weapons and nulcear strategy, nuclear power and radiation, computer explosion, and cosmology. Indicates that learning improves when students take active…

  12. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  13. Combining high performance simulation, data acquisition, and graphics display computers

    NASA Technical Reports Server (NTRS)

    Hickman, Robert J.

    1989-01-01

    Issues involved in the continuing development of an advanced simulation complex are discussed. This approach provides the capability to perform the majority of tests on advanced systems, non-destructively. The controlled test environments can be replicated to examine the response of the systems under test to alternative treatments of the system control design, or test the function and qualification of specific hardware. Field tests verify that the elements simulated in the laboratories are sufficient. The digital computer is hosted by a Digital Equipment Corp. MicroVAX computer with an Aptec Computer Systems Model 24 I/O computer performing the communication function. An Applied Dynamics International AD100 performs the high speed simulation computing and an Evans and Sutherland PS350 performs on-line graphics display. A Scientific Computer Systems SCS40 acts as a high performance FORTRAN program processor to support the complex, by generating numerous large files from programs coded in FORTRAN that are required for the real time processing. Four programming languages are involved in the process, FORTRAN, ADSIM, ADRIO, and STAPLE. FORTRAN is employed on the MicroVAX host to initialize and terminate the simulation runs on the system. The generation of the data files on the SCS40 also is performed with FORTRAN programs. ADSIM and ADIRO are used to program the processing elements of the AD100 and its IOCP processor. STAPLE is used to program the Aptec DIP and DIA processors.

  14. iSTEM: Celebrating Earth Day with Sustainability

    ERIC Educational Resources Information Center

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  15. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study

    PubMed Central

    Kim, Minjung; Lamont, Andrea E.; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M. Lee

    2015-01-01

    Regression mixture models are a novel approach for modeling heterogeneous effects of predictors on an outcome. In the model building process residual variances are often disregarded and simplifying assumptions made without thorough examination of the consequences. This simulation study investigated the impact of an equality constraint on the residual variances across latent classes. We examine the consequence of constraining the residual variances on class enumeration (finding the true number of latent classes) and parameter estimates under a number of different simulation conditions meant to reflect the type of heterogeneity likely to exist in applied analyses. Results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted estimated class sizes and showed the potential to greatly impact parameter estimates in each class. Results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions were made. PMID:26139512

  16. Scalable High Performance Computing: Direct and Large-Eddy Turbulent Flow Simulations Using Massively Parallel Computers

    NASA Technical Reports Server (NTRS)

    Morgan, Philip E.

    2004-01-01

    This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.

  17. Effectiveness of an Endodontic Diagnosis Computer Simulation Program.

    ERIC Educational Resources Information Center

    Fouad, Ashraf F.; Burleson, Joseph A.

    1997-01-01

    Effectiveness of a computer simulation to teach endodontic diagnosis was assessed using three groups (n=34,32,24) of dental students. All were lectured on diagnosis, pathology, and radiographic interpretation. One group then used the simulation, another had a seminar on the same material, and the third group had no further instruction. Results…

  18. Approximation-based common principal component for feature extraction in multi-class brain-computer interfaces.

    PubMed

    Hoang, Tuan; Tran, Dat; Huang, Xu

    2013-01-01

    Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.

  19. High performance computing in biology: multimillion atom simulations of nanoscale systems

    PubMed Central

    Sanbonmatsu, K. Y.; Tung, C.-S.

    2007-01-01

    Computational methods have been used in biology for sequence analysis (bioinformatics), all-atom simulation (molecular dynamics and quantum calculations), and more recently for modeling biological networks (systems biology). Of these three techniques, all-atom simulation is currently the most computationally demanding, in terms of compute load, communication speed, and memory load. Breakthroughs in electrostatic force calculation and dynamic load balancing have enabled molecular dynamics simulations of large biomolecular complexes. Here, we report simulation results for the ribosome, using approximately 2.64 million atoms, the largest all-atom biomolecular simulation published to date. Several other nanoscale systems with different numbers of atoms were studied to measure the performance of the NAMD molecular dynamics simulation program on the Los Alamos National Laboratory Q Machine. We demonstrate that multimillion atom systems represent a 'sweet spot' for the NAMD code on large supercomputers. NAMD displays an unprecedented 85% parallel scaling efficiency for the ribosome system on 1024 CPUs. We also review recent targeted molecular dynamics simulations of the ribosome that prove useful for studying conformational changes of this large biomolecular complex in atomic detail. PMID:17187988

  20. Free-electron laser simulations on the MPP

    NASA Technical Reports Server (NTRS)

    Vonlaven, Scott A.; Liebrock, Lorie M.

    1987-01-01

    Free electron lasers (FELs) are of interest because they provide high power, high efficiency, and broad tunability. FEL simulations can make efficient use of computers of the Massively Parallel Processor (MPP) class because most of the processing consists of applying a simple equation to a set of identical particles. A test version of the KMS Fusion FEL simulation, which resides mainly in the MPPs host computer and only partially in the MPP, has run successfully.

  1. On efficiency of fire simulation realization: parallelization with greater number of computational meshes

    NASA Astrophysics Data System (ADS)

    Valasek, Lukas; Glasa, Jan

    2017-12-01

    Current fire simulation systems are capable to utilize advantages of high-performance computer (HPC) platforms available and to model fires efficiently in parallel. In this paper, efficiency of a corridor fire simulation on a HPC computer cluster is discussed. The parallel MPI version of Fire Dynamics Simulator is used for testing efficiency of selected strategies of allocation of computational resources of the cluster using a greater number of computational cores. Simulation results indicate that if the number of cores used is not equal to a multiple of the total number of cluster node cores there are allocation strategies which provide more efficient calculations.

  2. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less

  3. Decision Making in Computer-Simulated Experiments.

    ERIC Educational Resources Information Center

    Suits, J. P.; Lagowski, J. J.

    A set of interactive, computer-simulated experiments was designed to respond to the large range of individual differences in aptitude and reasoning ability generally exhibited by students enrolled in first-semester general chemistry. These experiments give students direct experience in the type of decision making needed in an experimental setting.…

  4. Gender and Computer Education: An Observation of At Risk Girls in Class.

    ERIC Educational Resources Information Center

    Pikula, Karen

    This paper presents results of a 23-day observation of 36 girls in all-girl math and computer classes at a public school's enrichment summer session for at-risk girls. Ages of the students observed ranged from 12 to 18. The students observed came to school with a long history of truancy, from homes where they suffered neglect and abuse. School was…

  5. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  6. MINEXP, A Computer-Simulated Mineral Exploration Program

    ERIC Educational Resources Information Center

    Smith, Michael J.; And Others

    1978-01-01

    This computer simulation is designed to put students into a realistic decision making situation in mineral exploration. This program can be used with different exploration situations such as ore deposits, petroleum, ground water, etc. (MR)

  7. An Investigation of Computer-based Simulations for School Crises Management.

    ERIC Educational Resources Information Center

    Degnan, Edward; Bozeman, William

    2001-01-01

    Describes development of a computer-based simulation program for training school personnel in crisis management. Addresses the data collection and analysis involved in developing a simulated event, the systems requirements for simulation, and a case study of application and use of the completed simulation. (Contains 21 references.) (Authors/PKP)

  8. Method for simulating paint mixing on computer monitors

    NASA Astrophysics Data System (ADS)

    Carabott, Ferdinand; Lewis, Garth; Piehl, Simon

    2002-06-01

    Computer programs like Adobe Photoshop can generate a mixture of two 'computer' colors by using the Gradient control. However, the resulting colors diverge from the equivalent paint mixtures in both hue and value. This study examines why programs like Photoshop are unable to simulate paint or pigment mixtures, and offers a solution using Photoshops existing tools. The article discusses how a library of colors, simulating paint mixtures, is created from 13 artists' colors. The mixtures can be imported into Photoshop as a color swatch palette of 1248 colors and as 78 continuous or stepped gradient files, all accessed in a new software package, Chromafile.

  9. A Computer Program for Mapping Satellite-borne Narrow-Beam Antenna Footprints on Earth. Memorandum Number 72/3.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; Singh, Jai P.

    Written primarily to define the area of the earth covered by a narrow-beam antenna carried on a synchronous satellite in circular, near equatorial orbits, a computer program has been developed that computes the locus of intersection of a quadric cone and a sphere. The program, which outputs a list of the longitude and latitude coordinates of the…

  10. Future missions for observing Earth's changing gravity field: a closed-loop simulation tool

    NASA Astrophysics Data System (ADS)

    Visser, P. N.

    2008-12-01

    The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.

  11. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  12. 77 FR 9839 - Amendment of Class D and Class E Airspace, and Establishment of Class E Airspace; Bozeman, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ..., to accommodate aircraft using Instrument Landing System (ILS) Localizer (LOC) standard instrument... 6005 Class E airspace areas extending upward from 700 feet or more above the surface of the earth...

  13. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-06-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode is found to excellent accuracy. The computed periods of the Chandler wobble and free core nutation are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values is other than fortuitous

  14. Truncation Effects in Computing Free Wobble/Nutation Modes Explored Using a Simple Earth Model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogers, C. M.

    2016-12-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincare problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode (TOM) is found to excellent accuracy. The computed periods of the Chandler wobble (CW) and free core nutation (FCN) are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble (ICW) is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 sd, with no guarantee that its proximity to earlier values is other than fortuitous. We

  15. Computational methods for coupling microstructural and micromechanical materials response simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.

    2000-04-01

    Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less

  16. Positive Wigner functions render classical simulation of quantum computation efficient.

    PubMed

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  17. Parabolic flights as Earth analogue for surface processes on Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2017-04-01

    The interpretation of landforms and environmental archives on Mars with regards to habitability and preservation of traces of life requires a quantitative understanding of the processes that shaped them. Commonly, qualitative similarities in sedimentary rocks between Earth and Mars are used as an analogue to reconstruct the environments in which they formed on Mars. However, flow hydraulics and sedimentation differ between Earth and Mars, requiring a recalibration of models describing runoff, erosion, transport and deposition. Simulation of these processes on Earth is limited because gravity cannot be changed and the trade-off between adjusting e.g. fluid or particle density generates other mismatches, such as fluid viscosity. Computational Fluid Dynamics offer an alternative, but would also require a certain degree of calibration or testing. Parabolic flights offer a possibility to amend the shortcomings of these approaches. Parabolas with reduced gravity last up to 30 seconds, which allows the simulation of sedimentation processes and the measurement of flow hydraulics. This study summarizes the experience gathered during four campaigns of parabolic flights, aimed at identifying potential and limitations of their use as an Earth analogue for surface processes on Mars.

  18. Assessing Practical Skills in Physics Using Computer Simulations

    ERIC Educational Resources Information Center

    Walsh, Kevin

    2018-01-01

    Computer simulations have been used very effectively for many years in the teaching of science but the focus has been on cognitive development. This study, however, is an investigation into the possibility that a student's experimental skills in the real-world environment can be judged via the undertaking of a suitably chosen computer simulation…

  19. Computer simulation of stair falls to investigate scenarios in child abuse.

    PubMed

    Bertocci, G E; Pierce, M C; Deemer, E; Aguel, F

    2001-09-01

    To demonstrate the usefulness of computer simulation techniques in the investigation of pediatric stair falls. Since stair falls are a common falsely reported injury scenario in child abuse, our specific aim was to investigate the influence of stair characteristics on injury biomechanics of pediatric stair falls by using a computer simulation model. Our long-term goal is to use knowledge of biomechanics to aid in distinguishing between accidents and abuse. A computer simulation model of a 3-year-old child falling down stairs was developed using commercially available simulation software. This model was used to investigate the influence that stair characteristics have on biomechanical measures associated with injury risk. Since femur fractures occur in unintentional and abuse scenarios, biomechanical measures were focused on the lower extremities. The number and slope of steps and stair surface friction and elasticity were found to affect biomechanical measures associated with injury risk. Computer simulation techniques are useful for investigating the biomechanics of stair falls. Using our simulation model, we determined that stair characteristics have an effect on potential for lower extremity injuries. Although absolute values of biomechanical measures should not be relied on in an unvalidated model such as this, relationships between accident-environment factors and biomechanical measures can be studied through simulation. Future efforts will focus on model validation.

  20. Material exposure effects in a simulated low-Earth orbit environment

    NASA Astrophysics Data System (ADS)

    Maldonado, C.; McHarg, G.; Asmolova, O.; Andersen, G.; Rodrigues, S.; Ketsdever, A.

    2016-11-01

    Spacecraft operating in low-Earth orbit (LEO) are subjected to a number of hazardous environmental constituents that can lead to decreased system performance and reduced operational lifetimes. Due to their thermal, optical, and mechanical properties, polymers are used extensively in space systems; however they are particularly susceptible to material erosion and degradation as a result of exposure to the LEO environment. The focus of this research is to examine the material erosion and mass loss experienced by the Novastrat 500 polyimide due to exposure in a simulated LEO environment. In addition to the polymer samples, chrome, silver and gold specimens will be examined to measure the oxidation rate and act as a control specimen, respectively. A magnetically filtered atomic oxygen plasma source has previously been developed and characterized for the purpose of simulating the low-Earth orbit environment. The plasma source can be operated at a variety of discharge currents and gas flow rates, of which the plasma parameters downstream of the source are dependent. The characteristics of the generated plasma were examined as a function of these operating parameters to optimize the production of O+ ions with energy relevant to LEO applications, where the ram energy of the ions due to the motion of the satellite relative to the LEO plasma is high (e.g. 7800 m/s, which corresponds to approximately 5 eV of kinetic energy for O+ ions). The plasma downstream of the source consists of streaming ions with energy of approximately 5 eV and an ion species fraction that is approximately 90% O+.