Sample records for earth storable propellants

  1. Advanced space storable propellants for outer planet exploration

    NASA Technical Reports Server (NTRS)

    Thunnissen, Daniel P.; Guernsey, Carl S.; Baker, Raymond S.; Miyake, Robert N.

    2004-01-01

    An evaluation of the feasibility and mission performance benefits of using advanced space storable propellants for outer planet exploration was performed. For the purpose of this study, space storable propellants are defined to be propellants which can be passively stored without the need for active cooling.

  2. A Perspective on the Use of Storable Propellants for Future Space Vehicle Propulsion

    NASA Technical Reports Server (NTRS)

    Boyd, William C.; Brasher, Warren L.

    1989-01-01

    Propulsion system configurations for future NASA and DOD space initiatives are driven by the continually emerging new mission requirements. These initiatives cover an extremely wide range of mission scenarios, from unmanned planetary programs, to manned lunar and planetary programs, to earth-oriented (Mission to Planet Earth) programs, and they are in addition to existing and future requirements for near-earth missions such as to geosynchronous earth orbit (GEO). Increasing space transportation costs, and anticipated high costs associated with space-basing of future vehicles, necessitate consideration of cost-effective and easily maintainable configurations which maximize the use of existing technologies and assets, and use budgetary resources effectively. System design considerations associated with the use of storable propellants to fill these needs are presented. Comparisons in areas such as complexity, performance, flexibility, maintainability, and technology status are made for earth and space storable propellants, including nitrogen tetroxide/monomethylhydrazine and LOX/monomethylhydrazine.

  3. High-Performance, Space-Storable, Bi-Propellant Program Status

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2002-01-01

    Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.

  4. Earth storable bimodal engine, phase 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An in-depth study of an Earth Storable Bimodal (ESB) Engine using earth storable propellants N2O/N2H4 and operating in either a monopropellant or bipropellant mode was conducted. Detailed studies were completed for both a hot-gas, regeneratively cooled thrust chamber and a ducted hot-gas, film cooled thrust chamber. Hydrazine decomposition products were used for cooling in either configuration. The various arrangements and configurations of hydrazine reactors, secondary injectors, chambers and gimbal methods were considered. The two basic materials selected for the major components were columbium alloys and L-605. The secondary injector types considered were previously demonstrated by JPL and consisted of a liquid-on-gas triplet, a liquid-on-gas doublet, and a liquid-on-gas coaxial injector. Various design tradeoffs were made with different reactor types located at: the secondary injector station, the thrust chamber throat, and the nozzle/extension interface. Associated thermal, structural, and mass analyses were completed.

  5. Space storable propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Uney, P. E.; Anderson, J. E.; Fester, D. A.

    1972-01-01

    Surface tension propellant acquisition concepts for an advanced spacecraft propulsion system having a 10-year mission capability were investigated. Surface tension systems were specified because they were shown to be the best propellant acquisition technique for various interplanetery spacecraft in a prior study. A variety of surface tension concepts for accomplishing propellant acquisition were formulated for the baseline space storable propulsion module and Jupiter Orbiter mission. Analyses and evaluations were then conducted on each candidate concept to assess fabricability, performance capability, and spacecraft compatibility. A comparative evaluation of the results showed the Fruhof-class of low-g surface tension systems to be preferred for these interplanetary applications.

  6. Planetary mission applications for space storable propulsion

    NASA Technical Reports Server (NTRS)

    Chase, R. L.; Cork, M. J.; Young, D. L.

    1974-01-01

    This paper presents the results of a study to compare space-storable with earth-storable spacecraft propulsion systems, space-storable with solid kick stages, and several space-storable development options on the basis of benefits received for cost expenditures required. The results show that, for a launch vehicle with performance less than that of Shuttle/Centaur, space-storable spacecraft propulsion offers an incremental benefit/cost ratio between 1.0 and 5.5 when compared to earth-storable systems for three of the four missions considered. In the case of VOIR 83, positive benefits were apparent only for a specific launch vehicle-spacecraft propulsion combination. A space-storable propulsion system operating at thrust of 600 lbf, 355 units of specific impulse, and with blowdown pressurization, represents the best choice for the JO 81 mission on a Titan/Centaur if only spacecraft propulsion modifications are considered. For still higher performance, a new solid-propellant kick stage with space-storable spacecraft propulsion is preferred over a system which uses space-storable propellants for both the kick stage and the spacecraft system.

  7. Space shuttle seal material and design development for earth storable propellant systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The results of a program to investigate and characterize seal materials suitable for space shuttle storable propellant systems are given. Two new elastomeric materials were identified as being potentially superior to existing state-of-the art materials for specific sealing applications. These materials were AF-E-124D and AF-E-411. AF-E-124D is a cured perfluorinated polymer suitable for use with dinitrogen tetroxide oxidizer, and hydrazine base fuels. AF-E-411 is an ethylene propylene terpolymer material for hydrazine base fuel service. Data are presented relative to low and high temperature characteristics as well as propellant exposure effects. Types of data included are: mechanical properties, stress strain curves, friction and wear characteristics, compression set and permeability. Sealing tests with a flat poppet-seal valve were conducted for verification of sealing capability. A bibliography includes over 200 references relating to seal design or materials and presents a concise tabulation of the more useful seal design data sources.

  8. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  9. Boundary cooled rocket engines for space storable propellants

    NASA Technical Reports Server (NTRS)

    Kesselring, R. C.; Mcfarland, B. L.; Knight, R. M.; Gurnitz, R. N.

    1972-01-01

    An evaluation of an existing analytical heat transfer model was made to develop the technology of boundary film/conduction cooled rocket thrust chambers to the space storable propellant combination oxygen difluoride/diborane. Critical design parameters were identified and their importance determined. Test reduction methods were developed to enable data obtained from short duration hot firings with a thin walled (calorimeter) chamber to be used quantitatively evaluate the heat absorbing capability of the vapor film. The modification of the existing like-doublet injector was based on the results obtained from the calorimeter firings.

  10. Regeneratively cooled rocket engine for space storable propellants

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Waldman, B. J.

    1973-01-01

    Analyses and experimental studies were performed with the OF2 (F2/O2)/B2H6 propellant combination over a range in operating conditions to determine suitability for a space storable pressure fed engine configuration for an extended flight space vehicle configuration. The regenerative cooling mode selected for the thrust chamber was explored in detail with the use of both the fuel and oxidizer as coolants in an advanced milled channel construction thrust chamber design operating at 100 psia chamber pressure and a nominal mixture ratio of 3.0 with a 60:1 area ratio nozzle. Benefits of the simultaneous cooling as related to gaseous injection of both fuel and oxidizer propellants were defined. Heat transfer rates, performance and combustor stability were developed for impinging element triplet injectors in uncooled copper calorimeter hardware with flow, pressure and temperature instrumentation. Evaluation of the capabilities of the B2H6 and OF2 during analytical studies and numerous tests with flow through electrically heated blocks provided design criteria for subsequent regenerative chamber design and fabrication.

  11. Space Storable Propellant Performance Gas/Liquid Like-Doublet Injector Characterization

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.

    1972-01-01

    A 30-month applied research program was conducted, encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space-storable propellants. The gas/liquid propellant combination selected for study was FLOX (82.6% F2)/ambient temperature gaseous methane. The injector pattern characterized was the like-(self)-impinging doublet. Program effort was apportioned into four basic technical tasks: injector and thrust chamber design, injector and thrust chamber fabrication, performance evaluation testing, and data evaluation and reporting. Analytical parametric combustion analyses and cold flow distribution and atomization experiments were conducted with injector segment models to support design of injector/thrust chamber combinations for hot fire evaluation. Hot fire tests were conducted to: (1) optimize performance of the injector core elements, and (2) provide design criteria for the outer zone elements so that injector/thrust chamber compatibility could be achieved with only minimal performance losses.

  12. Performance comparison of earth and space storable bipropellant systems in interplanetary missions

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1978-01-01

    The paper evaluates and compares the performance of earth-storable and space-storable liquid bipropellant propulsion systems in high-energy planetary mission applications, including specifically Saturn and Mercury orbiters, as well as asteroid and comet rendezvous missions. The discussion covers a brief review of the status of space-storable propulsion technology, along with an illustrative propulsion module design for a three-axis stabilized outer planet and cometary mission spacecraft of the Mariner class. The results take revised Shuttle/Upper Stage performance projections into account. It is shown that in some of the missions the performance improvement achievable in the ballistic transfer mode with space-storable spacecraft propulsion can provide a possible alternative to the use of solar-electric propulsion.

  13. X-37 Storable Propulsion System Design and Operations

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris; Rehagen, Ronald J.

    2005-01-01

    In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.

  14. X-37 Storable Propulsion System Design and Operations

    NASA Technical Reports Server (NTRS)

    Rodriguez, Henry; Popp, Chris; Rehegan, Ronald J.

    2006-01-01

    In a response to NASA's X-37 TA-10 Cycle-1 contract, Boeing assessed nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) Storable Propellant Propulsion Systems to select a low risk X-37 propulsion development approach. Space Shuttle lessons learned, planetary spacecraft, and Boeing Satellite HS-601 systems were reviewed to arrive at a low risk and reliable storable propulsion system. This paper describes the requirements, trade studies, design solutions, flight and ground operational issues which drove X-37 toward the selection of a storable propulsion system. The design of storable propulsion systems offers the leveraging of hardware experience that can accelerate progress toward critical design. It also involves the experience gained from launching systems using MMH and N2O4 propellants. Leveraging of previously flight-qualified hardware may offer economic benefits and may reduce risk in cost and schedule. This paper summarizes recommendations based on experience gained from Space Shuttle and similar propulsion systems utilizing MMH and N2O4 propellants. System design insights gained from flying storable propulsion are presented and addressed in the context of the design approach of the X-37 propulsion system.

  15. Space storable propellant performance program coaxial injector characterization

    NASA Technical Reports Server (NTRS)

    Burick, R. J.

    1972-01-01

    An experimental program was conducted to characterize the circular coaxial injector concept for application with the space-storable gas/liquid propellant combination FLOX(82.6% F2)/CH4(g) at high pressure. The primary goal of the program was to obtain high characteristic velocity efficiency in conjunction with acceptable injector/chamber compatibility. A series of subscale (single element) cold flow and hot fire experiments was employed to establish design criteria for a 3000-lbf (sea level) engine operating at 500 psia. The subscale experiments characterized both high performance core elements and peripheral elements with enhanced injector/chamber compatibility. The full-scale injector which evolved from the study demonstrated a performance level of 99 percent of the theoretical shifting characteristic exhaust velocity with low chamber heat flux levels. A 44-second-duration firing demonstrated the durability of the injector. Parametric data are presented that are applicable for the design of circular, coaxial injectors that operate with injection dynamics (fuel and oxidizer velocity, etc.) similar to those employed in the work reported.

  16. On-Board Propulsion System Analysis of High Density Propellants

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1998-01-01

    The impact of the performance and density of on-board propellants on science payload mass of Discovery Program class missions is evaluated. A propulsion system dry mass model, anchored on flight-weight system data from the Near Earth Asteroid Rendezvous mission is used. This model is used to evaluate the performance of liquid oxygen, hydrogen peroxide, hydroxylammonium nitrate, and oxygen difluoride oxidizers with hydrocarbon and metal hydride fuels. Results for the propellants evaluated indicate that the state-of-art, Earth Storable propellants with high performance rhenium engine technology in both the axial and attitude control systems has performance capabilities that can only be exceeded by liquid oxygen/hydrazine, liquid oxygen/diborane and oxygen difluoride/diborane propellant combinations. Potentially lower ground operations costs is the incentive for working with nontoxic propellant combinations.

  17. Space storable propulsion components development

    NASA Technical Reports Server (NTRS)

    Hagler, R., Jr.

    1982-01-01

    The current development status of components to control the flow of propellants (liquid fluorine and hydrazine) in a demonstration space storable propulsion system is discussed. The criteria which determined the designs for the pressure regulator, explosive-actuated valves, propellant shutoff valve, latching solenoid-actuated valve and propellant filter are presented. The test philosophy that was followed during component development is outlined. The results from compatibility demonstrations for reusable connectors, flange seals, and CRES/Ti-6Al4V transition tubes and the evaluations of processes for welding (hand-held TIG, automated TIG, and EB), cleaning for fluorine service, and decontamination after fluorine exposure are described.

  18. Space Storable Rocket Technology (SSRT) basic program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.

    1992-01-01

    The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.

  19. Propellant material compatibility program and results

    NASA Technical Reports Server (NTRS)

    Toth, L. R.; Cannon, W. A.; Coulbert, C. D.; Long, H. R.

    1976-01-01

    The effects of long-term (up to 10 years) contact of inert materials with earth-storable propellants were studied for the purpose of designing chemical propulsion system components that can be used for current as well as future planetary spacecraft. The primary experimental work, and results to date are reported. Investigations include the following propellants: hydrazine, hydrazine-hydrazine nitrate blends, monomethyl-hydrazine, and nitrogen tetroxide. Materials include: aluminum alloys, corrosion-resistant steels, and titanium alloys. More than 700 test specimen capsules were placed in long-term storage testing at 43 C in the special material compatibility facility. Material ratings relative to the 10-year requirement have been assigned.

  20. Extending the life and recycle capability of earth storable propellant systems.

    NASA Technical Reports Server (NTRS)

    Schweickert, T. F.

    1972-01-01

    Rocket propulsion systems for reusable vehicles will be required to operate reliably for a large number of missions with a minimum of maintenance and a fast turnaround. For the space shuttle reaction control system to meet these requirements, current and prior related system failures were examined for their impact on reuse and, where warranted, component design and/or system configuration changes were defined for improving system service life. It was found necessary to change the pressurization component arrangement used on many single-use applications in order to eliminate a prevalent check valve failure mode and to incorporate redundant expulsion capability in propellant tank designs to achieve the necessary system reliability. Material flaws in pressurant and propellant tanks were noted to have a significant effect on tank cycle life. Finally, maintenance considerations dictated a modularized systems approach, allowing the system to be removed from the vehicle for service and repair at a remote site.

  1. Propellant Readiness Level: A Methodological Approach to Propellant Characterization

    NASA Technical Reports Server (NTRS)

    Bossard, John A.; Rhys, Noah O.

    2010-01-01

    A methodological approach to defining propellant characterization is presented. The method is based on the well-established Technology Readiness Level nomenclature. This approach establishes the Propellant Readiness Level as a metric for ascertaining the readiness of a propellant or a propellant combination by evaluating the following set of propellant characteristics: thermodynamic data, toxicity, applications, combustion data, heat transfer data, material compatibility, analytical prediction modeling, injector/chamber geometry, pressurization, ignition, combustion stability, system storability, qualification testing, and flight capability. The methodology is meant to be applicable to all propellants or propellant combinations; liquid, solid, and gaseous propellants as well as monopropellants and propellant combinations are equally served. The functionality of the proposed approach is tested through the evaluation and comparison of an example set of hydrocarbon fuels.

  2. Material Compatibility with Space Storable Propellants. Design Guidebook

    NASA Technical Reports Server (NTRS)

    Uney, P. E.; Fester, D. A.

    1972-01-01

    An important consideration in the design of spacecraft for interplanetary missions is the compatibility of storage materials with the propellants. Serious problems can arise because many propellants are either extremely reactive or subject to catalytic decomposition, making the selection of proper materials of construction for propellant containment and control a critical requirement for the long-life applications. To aid in selecting materials and designing and evaluating various propulsion subsystems, available information on the compatibility of spacecraft materials with propellants of interest was compiled from literature searches and personal contacts. The compatibility of both metals and nonmetals with hydrazine, monomethyl hydrazine, nitrated hydrazine, and diborance fuels and nitrogen tetroxide, fluorine, oxygen difluoride, and Flox oxidizers was surveyed. These fuels and oxidizers encompass the wide variety of problems encountered in propellant storage. As such, they present worst case situations of the propellant affecting the material and the material affecting the propellant. This includes material attack, propellant decomposition, and the formation of clogging materials.

  3. Cryogenic Propellant Management Device: Conceptual Design Study

    NASA Technical Reports Server (NTRS)

    Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher

    2010-01-01

    Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.

  4. High Pressure Earth Storable Rocket Technology Program-Hipes Options 1/2 Report

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Sicher, D.; Calvignac, J.; Ono, D.

    1999-01-01

    Under the High Pressure Earth Storable Rocket Technology (HIPES) Program, TRW successfully completed testing of two 100 lbf thrust class rhenium chambers using N204-MMH. The first chamber was successfully fired for 4789 seconds of operating time with a maximum duration of 700 seconds. This chamber had been previously fired for 5230 seconds with N2O4-N2H4. The second chamber was successfully fired for 8085 seconds with a maximum firing duration of 1200 seconds. The Isp (specific impulse) for both chambers ranged from 323 lbf-sec/lbm to 330 lbf-sec/lbm.

  5. Space Transportation System (STS) propellant scavenging system study. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objectives are to define the most efficient and cost effective methods for scavenging cryogenic and storable propellants and then define the requirements for these scavenging systems. For cryogenic propellants, scavenging is the transfer of propellants from the Shuttle orbiter external tank (ET) and/or main propulsion subsystems (MPS) propellant lines into storage tanks located in the orbiter payload bay for delivery to the user station by a space based transfer stage or the Space Transportation System (STS) by direct insertion. For storable propellants, scavenging is the direct transfer from the orbital maneuvering subsystem (OMS) and/or tankage in the payload bay to users in LEO as well as users in the vicinity of the Space Station.

  6. Propellant/material compatibility program and results: Ten-year milestones

    NASA Technical Reports Server (NTRS)

    Moran, C.; Bjorkland, R.

    1982-01-01

    The analyses and results of a test program to establish the effects of long term (10 years or more) contact of materials with earth-storable propellants for the purpose of designing chemical propulsion system components which are used for current as well as future planetary spacecraft are described. The period from the publication of JPL TM 33-779 IN 1976 through the testing accomplished in 1981 is covered. The following propellants are reported herein: hydrazine, monomethylhydrazine and nitrogen tetroxide. Materials included the following: aluminum alloys, corrosion resistant steels and a titanium alloy. The results of the testing of more than 80 specimens are included. Material ratings relative to the ten year milepost were assigned. Some evidence of propellant decomposition was found. Titanium is rated as acceptable for ten year applications. Aluminum and stainless steel alloys are also rated as acceptable with few restrictions.

  7. A Cryogenic Propellant Production Depot for Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Potter, Seth D.; Henley, Mark; Guitierrez, Sonia; Fikes, John; Carrington, Connie; Smitherman, David; Gerry, Mark; Sutherlin, Steve; Beason, Phil; Howell, Joe (Technical Monitor)

    2001-01-01

    The cost of access to space beyond low Earth orbit can be lowered if vehicles can refuel in orbit. The power requirements for a propellant depot that electrolyzes water and stores cryogenic oxygen and hydrogen can be met using technology developed for space solar power. A propellant depot is described that will be deployed in a 400 km circular equatorial orbit, receive tanks of water launched into a lower orbit from Earth by gun launch or reusable launch vehicle, convert the water to liquid hydrogen and oxygen, and store Lip to 500 metric tonnes of cryogenic propellants. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. The tanks are configured in an inline gravity-gradient configuration to minimize drag and settle the propellant. Temperatures can be maintained by body-mounted radiators; these will also provide some shielding against orbital debris. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotate once per orbit to track the Sun. In the longer term, cryogenic propellant production technology can be applied to a larger LEO depot, as well as to the use of lunar water resources at a similar depot elsewhere.

  8. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    NASA Technical Reports Server (NTRS)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  9. A Detailed Historical Review of Propellant Management Devices for Low Gravity Propellant Acquisition

    NASA Technical Reports Server (NTRS)

    Hartwig, Jason W.

    2016-01-01

    This paper presents a comprehensive background and historical review of Propellant Management Devices (PMDs) used throughout spaceflight history. The purpose of a PMD is to separate liquid and gas phases within a propellant tank and to transfer vapor-free propellant from a storage tank to a transfer line en route to either an engine or receiver depot tank, in any gravitational or thermal environment. The design concept, basic flow physics, and principle of operation are presented for each type of PMD. The three primary capillary driven PMD types of vanes, sponges, and screen channel liquid acquisition devices are compared and contrasted. For each PMD type, a detailed review of previous applications using storable propellants is given, which include space experiments as well as space missions and vehicles. Examples of previous cryogenic propellant management are also presented.

  10. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to establish an earth storable fluids tanker concept which satisfies the initial resupply requirements for the Gamma Ray Observatory (GRO) for reasonable front end (design, development, verification) cost while providing growth potential for foreseeable future earth storable resupply mission requirements. The achievement of these objectives becomes possible with the development of a modularized tanker concept which is a hybrid of a dedicated GRO tanker and a generic earth storable propellant tanker.

  11. Weight savings in aerospace vehicles through propellant scavenging

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Reed, Brian D.

    1988-01-01

    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  12. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  13. Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

    2014-01-01

    NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMDs), such as screen channel capillary liquid acquisition devices (LADs), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity these results to flow rate and tank internal pressure.

  14. Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.

    2014-01-01

    NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMD's), such as screen channel capillary liquid acquisition devices (LAD's), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity of these results to flow rate and tank internal pressure.

  15. Investigations Into Tank Venting for Propellant Resupply

    NASA Technical Reports Server (NTRS)

    Hearn, H. C.; Harrison, Robert A. (Technical Monitor)

    2002-01-01

    Models and simulations have been developed and applied to the evaluation of propellant tank ullage venting, which is integral to one approach for propellant resupply. The analytical effort was instrumental in identifying issues associated with resupply objectives, and it was used to help develop an operational procedure to accomplish the desired propellant transfer for a particular storable bipropellant system. Work on the project was not completed, and several topics have been identified as requiring further study; these include the potential for liquid entrainment during the low-g and thermal/freezing effects in the vent line and orifice. Verification of the feasibility of this propellant venting and resupply approach still requires additional analyses as well as testing to investigate the fluid and thermodynamic phenomena involved.

  16. Advanced Valve Technology. Volume 2. Materials Compatibility and Liquid Propellant Study

    DTIC Science & Technology

    1967-11-01

    hydrogen fluoride and hydrogen chloride, which are formed by the reaction of chlorine trifluoride with water. Aluminum alloys, 18-8 stainless steels... CHLORINE TRIFLUORIDE (CTF) (ClF3) 1-68 CHLORINE PENTAFLUORIDE 1-72 OXYGEN DIFLUORIDE (OF2) 1-74 PERCHLORYL FLUORIDE (PF) (FC103 or C103F) 1-79...enclosures refer to the Propellant Rating Chart, Page 1-11. 1-67 SPACE STORABLE PROPELLANTS (Continued) OXIDIZERS CHLORINE TRIFLUORIDE (CTF) (CIF 3

  17. Injector design guidelines for gas/liquid propellant systems

    NASA Technical Reports Server (NTRS)

    Falk, A. Y.; Burick, R. J.

    1973-01-01

    Injector design guidelines are provided for gas/liquid propellant systems. Information was obtained from a 30-month applied research program encompassing an analytical, design, and experimental effort to relate injector design parameters to simultaneous attainment of high performance and component (injector/thrust chamber) compatibility for gas/liquid space storable propellants. The gas/liquid propellant combination studied was FLOX (82.6% F2)/ ambient temperature gaseous methane. Design criteria that provide for simultaneous attainment of high performance and chamber compatibility are presented for both injector types. Parametric data are presented that are applicable for the design of circular coaxial and like-doublet injectors that operate with design parameters similar to those employed. However, caution should be exercised when applying these data to propellant combinations whose elements operate in ranges considerably different from those employed in this study.

  18. Regeneratively cooled rocket engine for space storable propellants

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.

    1973-01-01

    Analysis, design, fabrication, and test efforts were performed for the existing OF2/B2H6 regeneratively cooled lK (4448 N) thrust chamber to illustrate simultaneous B2H6 fuel and OF2 oxidizer cooling and to provide results for a gaseous propellant condition injected into the combustion chamber. Data derived from performance, thermal and flow measurements confirmed predictions derived from previous test work and from concurrent analytical study. Development data derived from the experimental study were indicated to be sufficient to develop a preflight thrust chamber demonstrator prototype for future space mission objectives.

  19. Earth-to-orbit propellant transportation overview

    NASA Technical Reports Server (NTRS)

    Fester, D.

    1984-01-01

    The transportation of large quantities of cryogenic propellants which are needed to support Space Station/OTV operation is discussed. Two ways to send propellants into space are: transporting them in dedicated tankers or scavenging unused STS propellant. Scavenging propellant, both with and without an aft cargo carrier system is examined. An average of two to four flights per year can be saved by scavenging and manifesting propellant as payload. Addition of an aft cargo carrier permits loading closer to maximum, reduces the required number of flights, and reduces the propellant available for scavenging. Sufficient propellant remains, however, for OTV needs.

  20. Improving Sugarbeet Storability

    USDA-ARS?s Scientific Manuscript database

    Studies were initiated to establish a storage cultivar selection program which would reduce sucrose losses through improving sugarbeet storability and resistance to rhizomania caused by Beet necrotic yellow vein virus (BNYVV). Studies were conducted in outdoor and indoor commercial sugarbeet piles ...

  1. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  2. Testing of Wrought Iridium/Chemical Vapor Deposition Rhenium Rocket

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Schneider, Steven J.

    1996-01-01

    A 22-N class, iridium/rhenium (Ir/Re) rocket chamber, composed of a thick (418 miocrometer) wrought iridium (Ir) liner and a rhenium substrate deposited via chemical vapor deposition, was tested over an extended period on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. The test conditions were designed to produce species concentrations similar to those expected in an Earth-storable propellant combustion environment. Temperatures attained in testing were significantly higher than those expected with Earth-storable propellants, both because of the inherently higher combustion temperature of GO2/GH2 propellants and because the exterior surface of the rocket was not treated with a high-emissivity coating that would be applied to flight class rockets. Thus the test conditions were thought to represent a more severe case than for typical operational applications. The chamber successfully completed testing (over 11 hr accumulated in 44 firings), and post-test inspections showed little degradation of the Ir liner. The results indicate that use of a thick, wrought Ir liner is a viable alternative to the Ir coatings currently used for Ir/Re rockets.

  3. New high energetic composite propellants for space applications: refrigerated solid propellant

    NASA Astrophysics Data System (ADS)

    Franson, C.; Orlandi, O.; Perut, C.; Fouin, G.; Chauveau, C.; Gökalp, I.; Calabro, M.

    2009-09-01

    Cryogenic solid propellants (CSP) are a new kind of chemical propellants that use frozen products to ensure the mechanical resistance of the grain. The objective is to combine the high performances of liquid propulsion and the simplicity of solid propulsion. The CSP concept has few disadvantages. Storability is limited by the need of permanent cooling between motor loading and firing. It needs insulations that increase the dry mass. It is possible to limit significantly these drawbacks by using a cooling temperature near the ambient one. It will permit not to change the motor materials and to minimize the supplementary dry mass due to insulator. The designation "Refrigerated Solid Propellant" (RPS) is in that case more appropriate as "Cryogenic Solid Propellant." SNPE Matériaux Energétiques is developing new concept of composition e e with cooling temperature as near the ambient temperature as possible. They are homogeneous and the main ingredients are hydrogen peroxide, polymer and metal or metal hydride, they are called "HydroxalaneTM." This concept allows reaching a high energy level. The expected specific impulse is between 355 and 375 s against 315 s for hydroxyl-terminated polybutadiene (HTPB) / ammonium perchlorate (AP) / Al composition. However, the density is lower than for current propellants, between 1377 and 1462 kg/m3 compared to around 1800 kg/m3 . This is an handicap only for volume-limited application. Works have been carried out at laboratory scale to define the quality of the raw materials and the manufacturing process to realize sample and small grain in a safer manner. To assess the process, a small grain with an internal bore had been realized with a composition based on aluminum and water. This grain had shown very good quality, without any defect, and good bonding properties on the insulator.

  4. Analysis of the Functionality of Refillable Propellant Management Devices (PMD)

    NASA Astrophysics Data System (ADS)

    Winkelmann, Yvonne; Gaulke, Diana; Dreyer, Michael E.

    In order to restart a stage of a spacecraft it is necessary to position the liquid stable over the tank outlet. The gas-or vapor-free provision of the thrusters for the main engine start-up can be accomplished by the use of propellant management devices (PMDs). A propellant refillable reservoir (PRR) will supply the engine with the required amount of liquid propellant until the liquid outside the PRR has settled at the bottom of the tank. Hence, the reservoir will be refilled and the main engine can be restarted. This technique has been applied in case of storable propellants yet, e.g. in satellites or ATVs. For the application in a cryogenic upper stage demonstration and validation tests are still necessary. Ground experiments to simulate propulsed phases are evaluated. To demonstrate the functionality under propulsed conditions first filling, draining and draining with a constant fill level of the tank (refilling) are analyzed. Different inflows with respect to filling and varied outflow rates for the draining tests are investigated. Pressure losses in the LOX-PMD are measured during draining and compared to a previously accomplished estimation with an one-dimensional streamtube theory.

  5. Test of cold asphalt storability based on alternative approaches

    NASA Astrophysics Data System (ADS)

    Abaffyová, Zora; Komačka, Jozef

    2017-09-01

    Cold asphalt products for potholes repairs should be workable (soft enough) for long time to ensure their applicability. Storability is assessed indirectly using various tests of workability. Therefore, simple test methods (self-compaction and disintegration test) was developed and verified to investigate changes of storability of this group of cold asphalts. Selfcompaction of the tested mixture in the upturned Abram’s cone for the cement concrete slump test and in the mould for the California Bearing Ratio test was assessed in first stage. After that the video record of disintegration test was taken. During this test, the mould was lifted up and the mixture fell off the mould (Abram’s cone) or disintegrate (CBR mould). The drop of surface after 10 min self-compaction and netto time related to falling out or disintegration of the mixture were used to evaluate the mixture from storability point of view. It was found out the self-compaction test has not a potential to reveal and prove changes of mixture properties. Based on the disintegration test results it can be stated this test at 5 °C using the upturned Abram’s cone could be a suitable approach to determine qualitative changes of a cold mixture from storability point of view.

  6. New Frontiers AO: Advanced Materials Bi-propellant Rocket (AMBR) Engine Information Summary

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    2008-01-01

    The Advanced Material Bi-propellant Rocket (AMBR) engine is a high performance (I(sub sp)), higher thrust, radiation cooled, storable bi-propellant space engine of the same physical envelope as the High Performance Apogee Thruster (HiPAT(TradeMark)). To provide further information about the AMBR engine, this document provides details on performance, development, mission implementation, key spacecraft integration considerations, project participants and approach, contact information, system specifications, and a list of references. The In-Space Propulsion Technology (ISPT) project team at NASA Glenn Research Center (GRC) leads the technology development of the AMBR engine. Their NASA partners were Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Aerojet leads the industrial partners selected competitively for the technology development via the NASA Research Announcement (NRA) process.

  7. Occupational hazards of missile operations with special regard to the hydrazine propellants.

    PubMed

    Back, K C; Carter, V L; Thomas, A A

    1978-04-01

    The second generation of ballistic missiles and boosters, characterized by increased range and quick reaction capability, required the development of new high-energy storage propellants. This exploration led to the introduction of hydrazine (Hz), monomethylhydrazine (MMH), and 1,1-dimethylhydrazine (UDMH) into the USAF inventory. These compounds are all storable, noncryogenic, high-energy fuels which may be used alone or in combination as mixed amine fuels. Early toxicology experiments were to produce data on acute and subacute effects of the propellants in order to set standards for test and operational procedures to protect propellant handlers. The early work indicated that, despite similar chemical characteristics, there were marked differences between the compounds in terms of toxicological mechanisms. Since the propellant systems have been used for some 15 years, recent emphasis on toxicology has been centered on the more chronic effects and on an increasing body of evidence from animal experiments that the compounds may possess oncogenic potential as well as chronic systemic effects. This paper addresses itself to data leading up to current occupational standards.

  8. Thrust Evaluation of an Arcjet Thruster Using Dimethyl Ether as a Propellant

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the performance of an arcjet thruster using dimethyl ether (DME) as a propellant. DME, an ether compound, has adequate characteristics for space propulsion systems; DME is storable in a liquid state without a high pressure or cryogenic device and requires no sophisticated temperature management. DME is gasified and liquefied simply by adjusting temperature, whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of the designed kW-class DME arcjet thruster is measured with a torsional thrust stand. Thrust measurements show that thrust is increased with propellant mass flow rate, and that thrust using DME propellant is higher than when using nitrogen. The prototype DME arcjet thruster yields a specific impulse of 330 s, a thruster efficiency of 0.14, and a thrust of 0.19 N at 60-mg/s DME mass flow rate at 25-A discharge current. The corresponding discharge power and specific power are 2.3 kW and 39 MJ/kg.

  9. Mapping of the genomic regions controlling seed storability in soybean (Glycine max L.).

    PubMed

    Dargahi, Hamidreza; Tanya, Patcharin; Srinives, Peerasak

    2014-08-01

    Seed storability is especially important in the tropics due to high temperature and relative humidity of storage environment that cause rapid deterioration of seeds in storage. The objective of this study was to use SSR markers to identify genomic regions associated with quantitative trait loci (QTLs) controlling seed storability based on relative germination rate in the F2:3 population derived from a cross between vegetable soybean line (MJ0004-6) with poor longevity and landrace cultivar from Myanmar (R18500) with good longevity. The F2:4 seeds harvested in 2011 and 2012 were used to investigate seed storability. The F2 population was genotyped with 148 markers and the genetic map consisted of 128 SSR loci which converged into 38 linkage groups covering 1664.3 cM of soybean genome. Single marker analysis revealed that 13 markers from six linkage groups (C1, D2, E, F, J and L) were associated with seed storability. Composite interval mapping identified a total of three QTLs on linkage groups C1, F and L with phenotypic variance explained ranging from 8.79 to 13.43%. The R18500 alleles increased seed storability at all of the detected QTLs. No common QTLs were found for storability of seeds harvested in 2011 and 2012. This study agreed with previous reports in other crops that genotype by environment interaction plays an important role in expression of seed storability.

  10. Refueling with In-Situ Produced Propellants

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2014-01-01

    In-situ produced propellants have been identified in many architecture studies as key to implementing feasible chemical propulsion missions to destinations beyond lunar orbit. Some of the more noteworthy ones include: launching from Mars to return to Earth (either direct from the surface, or via an orbital rendezvous); using the Earth-Moon Lagrange point as a place to refuel Mars transfer stages with Lunar surface produced propellants; and using Mars Moon Phobos as a place to produce propellants for descent and ascent stages bound for the Mars surface. However successful implementation of these strategies require an ability to successfully transfer propellants from the in-situ production equipment into the propellant tankage of the rocket stage used to move to the desired location. In many circumstances the most desirable location for this transfer to occur is in the low-gravity environment of space. In support of low earth orbit propellant depot concepts, extensive studies have been conducted on transferring propellants in-space. Most of these propellant transfer techniques will be applicable to low gravity operations in other locations. Even ground-based transfer operations on the Moon, Mars, and especially Phobos could benefit from the propellant conserving techniques used for depot refueling. This paper will review the literature of in-situ propellants and refueling to: assess the performance benefits of the use in-situ propellants for mission concepts; review the parallels with propellant depot efforts; assess the progress of the techniques required; and provide recommendations for future research.

  11. Performance Characteristics of a DME Propellant Arcjet Thruster

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beeppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the influence of cathode configuration on performance of an arcjet thruster using dimethyl ether (DME) propellant. DME, an ether compound, has suitable characteristics for a space propulsion system; DME is storable in a liquid state without being kept under a high pressure, and requires no sophisticated temperature management such as a cryogenic device. DME can be gasified and liquefied simply by adjusting temperature whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of a 1-kW class DME arcjet thruster is measured at a discharge current of 13 A, DME mass flow rates ranging 15 to 60 mg/s under three cathode configurations: flat-tip rods of 2 and 4 mm in diam. and 4-mm-diam. rod having a cavity of 2 mm in diameter. Thrust measurements show that thrust is increased with propellant mass flow rate. Among the tested cathodes, the flat-tip rod of 4 mm in diam. with 55 mg/s DME flow rate yielded the highest performance: specific impulse of 330 s, thrust of 0.18 N, discharge power of 1400 W and specific power of 25 MJ/kg.

  12. The Potential of Aluminium Metal Powder as a Fuel for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Ismail, A. M.; Osborne, B.; Welch, C. S.

    Metal powder propulsion systems have been addressed intermittently since the Second World War, initially in the field of underwater propulsion where research in the application of propelling torpedoes continues until this day. During the post war era, researchers attempted to utilise metal powders as a fuel for ram jet applications in missiles. The 1960's and 1970's saw additional interest in the use of `pure powder' propellants, i.e. fluidised metal fuel and oxidiser, both in solid particulate form. Again the application was for employment in space-constrained missiles where the idea was to maximise the performance of high energy density powder propellants in order to enhance the missile's flight duration. Metal powder as possible fuel was investigated for in-situ resource utilisation propulsion systems post-1980's where the emphasis was on the use of gaseous oxygen or liquid oxygen combined with aluminium metal powder for use as a ``lunar soil propellant'' or carbon dioxide and magnesium metal powder as a ``Martian propellant''.Albeit aluminium metal powder propellants are lower in performance than cryogenic and Earth storable propellants, the former does have an advantage inasmuch that the propulsion system is generic, i.e. it can be powered with chemicals mined and processed on Earth, the Moon and Mars. Thus, due to the potential refuelling capability, the lower performing aluminium metal powder propellant would effectively possess a much higher change in velocity (V) for multiple missions than the cryogenic or Earth storable propellant which is only suitable for one planet or one mission scenario, respectively.One of the principal limitations of long duration human spaceflight beyond cis-lunar orbit is the lack of refuelling capabilities on distant planets resulting in the reliance on con- ventional non-cryogenic, propellants produced on Earth. If one could develop a reliable propulsion system operating on pro- pellants derived entirely of ingredients found on

  13. Space Transportatioin System (STS) propellant scavenging system study. Volume 3: Cost and work breakdown structure-dictionary

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Fundamentally, the volumes of the oxidizer and fuel propellant scavenged from the orbiter and external tank determine the size and weight of the scavenging system. The optimization of system dimensions and weights is stimulated by the requirement to minimize the use of partial length of the orbiter payload bay. Thus, the cost estimates begin with weights established for the optimum design. Both the design, development, test, and evaluation and theoretical first unit hardware production costs are estimated from parametric cost weight scaling relations for four subsystems. For cryogenic propellants, the widely differing characteristics of the oxidizer and the fuel lead to two separate tank subsystems, in addition to the electrical and instrumentation subsystems. Hardwares costs also involve quantity, as an independent variable, since the number of production scavenging systems is not firm. For storable propellants, since the tankage volume of the oxidizer and fuel are equal, the hardware production costs for developing these systems are lower than for cryogenic propellants.

  14. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  15. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret

    2013-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  16. Propellant Mass Gauging: Database of Vehicle Applications and Research and Development Studies

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.

    2008-01-01

    Gauging the mass of propellants in a tank in low gravity is not a straightforward task because of the uncertainty of the liquid configuration in the tank and the possibility of there being more than one ullage bubble. Several concepts for such a low-gravity gauging system have been proposed, and breadboard or flight-like versions have been tested in normal gravity or even in low gravity, but at present, a flight-proven reliable gauging system is not available. NASA desired a database of the gauging techniques used in current and past vehicles during ascent or under settled conditions, and during short coasting (unpowered) periods, for both cryogenic and storable propellants. Past and current research and development efforts on gauging systems that are believed to be applicable in low-gravity conditions were also desired. This report documents the results of that survey.

  17. In situ propellant production: Alternatives for Mars exploration

    NASA Technical Reports Server (NTRS)

    Stancati, Michael L.; Jacobs, Mark K.; Cole, Kevin J.; Collins, John T.

    1991-01-01

    Current planning for the Space Exploration Initiative (SEI) recognizes the need for extraterrestrial resources to sustain long-term human presence and to attain some degree of self-sufficiency. As a practical matter, reducing the need to carry large supplies of propellant from Earth will make space exploration more economical. For nearly every round trip planned with conventional propulsion, the actual payload is only a small fraction - perhaps 10-15 percent - of the mass launched from Earth. The objective of this study was to analyze the potential application for SEI missions of propellants made exclusively from lunar or martian resources. Using such propellants could minimize or eliminate the cost of carrying propellant for surface excursion vehicles and return transfers through two high-energy maneuvers: Earth launch and trans-Mars injection. Certain chemical mono- and bipropellants are candidates for this approach; they could be recovered entirely from in situ resources on the Moon and Mars, without requiring a continuing Earth-based resupply of propellant constituents (e.g., fuel to mix with a locally obtained oxidizer) and, perhaps, with minimal need to resupply consumables (e.g., reagents or catalyst for process reactions). A complete assessment of the performance potential of these propellants must include the requirements for installation, operations, maintenance, and resupply of the chemical processing facility.

  18. Propellant isolation shutoff valve program

    NASA Technical Reports Server (NTRS)

    Merritt, F. L.

    1973-01-01

    An analysis and design effort directed to advancing the state-of-the-art of space storable isolation valves for control of flow of the propellants liquid fluorine/hydrazine and Flox/monomethylhydrazine is discussed. Emphasis is on achieving zero liquid leakage and capability of withstanding missions up to 10 years in interplanetary space. Included is a study of all-metal poppet sealing theory, an evaluation of candidate seal configurations, a valve actuator trade-off study and design description of a pneumo-thermally actuated soft metal poppet seal valve. The concepts and analysis leading to the soft seal approach are documented. A theoretical evaluation of seal leakage versus seal loading, related finishes and yield strengths of various materials is provided. Application of a confined soft aluminum seal loaded to 2 to 3 times yield strength is recommended. Use of either an electro-mechanical or pneumatic actuator appears to be feasible for the application.

  19. High performance N2O4/amine elements: Data dump covering. Task 1: Literature review

    NASA Technical Reports Server (NTRS)

    Hines, W. S.; Nurick, W. H.

    1974-01-01

    The phenomenon of reactive stream separation (RSS) in the N2O4/amine earth-storable propellant combinations is reviewed. Early theoretical models of RSS are presented, as are experimental combustion data under simulated rocket conditions. N2O4/amine combustion chemistry data is also provided. More recent work in the development of a comprehensive model is described.

  20. Safety and Performance Advantages of Nitrous Oxide Fuel Blends (NOFBX) Propellants for Manned and Unmanned Spaceflight Applications

    NASA Astrophysics Data System (ADS)

    Taylor, R.

    2012-01-01

    Hydrazine, N2H4, is the current workhorse monopropellant in the spacecraft industry. Although widely used since the 1960's, hydrazine is highly toxic and its specific impulse (ISP) performance of ~230s is far lower than bipropellants and solid motors. NOFBX™ monopropellants were originally developed under NASA's Mars Advanced Technology program (2004-2007) for deep space Mars missions. This work focused on characterizing various Nitrous Oxide Fuel Blend (NOFB) monopropellants which exhibited many favorable attributes to include: (1) Mono-propulsion, (2) Isp > 320s, (3) Non-toxic constituents, (4) Non-toxic effluents, (5) Low Cost, (6) High Density Specific Impulse, (7) Non-cryogenic, (8) Wide Storable Temperature Range, (9) Deeply throttlable [between 5 - 100lbs], (10) Self Pressurizing, (11) Wide Range of materials compatibility, along with many, many other benefits. All rocket propellants carry with them a history or stigma associated with either the development or implementation of that propellant and NOFBX™ is no exception. This paper examines the benefits of NOFBX™ propellants while addressing or dispelling a number of critiques N2O based propellants acquired through the decades of rocket propellant testing.

  1. Green Propellant Infusion Mission Program Development and Technology Maturation

    NASA Technical Reports Server (NTRS)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide

    2014-01-01

    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  2. Worldwide Space Launch Vehicles and Their Mainstage Liquid Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim A.

    2010-01-01

    Space launch vehicle begins with a basic propulsion stage, and serves as a missile or small launch vehicle; many are traceable to the 1945 German A-4. Increasing stage size, and increasingly energetic propulsion allows for heavier payloads and greater. Earth to Orbit lift capability. Liquid rocket propulsion began with use of storable (UDMH/N2O4) and evolved to high performing cryogenics (LOX/RP, and LOX/LH). Growth versions of SLV's rely on strap-on propulsive stages of either solid propellants or liquid propellants.

  3. Performance Optimization of Storable Bipropellant Engines to Fully Exploit Advanced Material Technologies

    NASA Technical Reports Server (NTRS)

    Miller, Scott; Henderson, Scott; Portz, Ron; Lu, Frank; Wilson, Kim; Krismer, David; Alexander, Leslie; Chapman, Jack; England, Chris

    2007-01-01

    This paper summarizes the work performed to dale on the NASA Cycle 3A Advanced Chemical Propulsion Technology Program. The primary goals of the program are to design, fabricate, and test high performance bipropellant engines using iridium/rhenium chamber technology to obtain 335 seconds specific impulse with nitrogen tetroxide/hydrazine propellants and 330 seconds specific impulse with nitrogen tetroxide/monomethylhydrazine propellants. Aerojet has successfully completed the Base Period of this program, wherein (1) mission and system studies have been performed to verify system performance benefits and to determine engine physical and operating parameters, (2) preliminary chamber and nozzle designs have been completed and a chamber supplier has been downselected, (3) high temperature, high pressure off-nominal hot fire testing of an existing state-of-the-art high performance bipropellant engine has been completed, and (4) thermal and performance data from the engine test have been correlated with new thermal models to enable design of the new engine injector and injector/chamber interface. In the next phase of the program, Aerojet will complete design, fabrication, and test of the nitrogen tetroxide/hydrazine engine to demonstrate 335 seconds specific impulse, and also investigate improved technologies for iridium/rhenium chamber fabrication. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. At the conclusion of the program, the objective is to have an engine ready for final design and qualification for a specific science mission or commercial application. The program also constitutes a stepping stone to future, development, such as higher pressure pump-fed in-space storable engines.

  4. Introduction to the problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1989-01-01

    Solid propellant rockets were used extensively in space missions ranging from large boosters to orbit-raising upper stages. The smaller motors find exclusive use in various earth-based applications. The advantage of the solids include simplicity, readiness, volumetric efficiency, and storability. Important recent progress in related fields (combustion, rheology, micro-instrumentation/diagnostics, and chaos theory) can be applied to solid rockets to derive maximum advantage and avoid waste. Main objectives of research in solid propellants include: to identify critical parameters, to establish specification rules, and to develop quantitative criteria.

  5. High-temperature earth-storable propellant acoustic cavity technology. [for combustion stability

    NASA Technical Reports Server (NTRS)

    Oberg, C. L.; Hines, W. S.; Falk, A. Y.

    1974-01-01

    Design criteria, methods and data, were developed to permit effective design of acoustic cavities for use in regeneratively cooled OME-type engines. This information was developed experimentally from two series of motor firings with high-temperature fuel during which the engine stability was evaluated under various conditions and with various cavity configurations. Supplementary analyses and acoustic model testing were used to aid cavity design and interpretation of results. Results from this program clearly indicate that dynamic stability in regeneratively cooled OME-type engines can be ensured through the use of acoustic cavities. Moreover, multiple modes of instability were successfully suppressed with the cavity.

  6. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  7. Effect of insecticide seed treatments improve sugarbeet storability

    USDA-ARS?s Scientific Manuscript database

    Sucrose loss in sugarbeet storage is a concern for all roots, but particularly those stored under ambient conditions. In order to control or suppress insect issues in sugarbeet production and consequently improve root storability, two neonicotinoid seed treatments, Poncho Beta (60 g a.i. [active in...

  8. Orbital refill of propulsion vehicle tankage

    NASA Technical Reports Server (NTRS)

    Merino, F.; Risberg, J. A.; Hill, M.

    1980-01-01

    Techniques for orbital refueling of space based vehicles were developed and experimental programs to verify these techniques were identified. Orbital refueling operations were developed for two cryogenic orbital transfer vehicles (OTV's) and an Earth storable low thrust liquid propellant vehicle. Refueling operations were performed assuming an orbiter tanker for near term missions and an orbital depot. Analyses were conducted using liquid hydrogen and N2O4. The influence of a pressurization system and acquisition device on operations was also considered. Analyses showed that vehicle refill operations will be more difficult with a cryogen than with an earth storable. The major elements of a successful refill with cryogens include tank prechill and fill. Propellant quantities expended for tank prechill appear to to insignificant. Techniques were identified to avoid loss of liquid or excessive tank pressures during refill. It was determined that refill operations will be similar whether or not an orbiter tanker or orbital depot is available. Modeling analyses were performed for prechill and fill tests to be conducted assuming the Spacelab as a test bed, and a 1/10 scale model OTV (with LN2 as a test fluid) as an experimental package.

  9. Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.

  10. Propellant management for low thrust chemical propulsion systems

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Dergance, R. H.; Aydelott, J. C.

    1981-01-01

    Low-thrust chemical propulsion systems (LTPS) will be required for orbital transfer of large space systems (LSS). The work reported in this paper was conducted to determine the propellant requirements, preferred propellant management technique, and propulsion system sizes for the LTPS. Propellants were liquid oxygen (LO2) combined with liquid hydrogen (LH2), liquid methane or kerosene. Thrust levels of 100, 500, and 1000 lbf were combined with 1, 4, and 8 perigee burns for transfer from low earth orbit to geosynchronous earth orbit. This matrix of systems was evaluated with a multilayer insulation (MLI) or a spray-on-foam insulation. Vehicle sizing results indicate that a toroidal tank configuration is needed for the LO2/LH2 system. Multiple perigee burns and MLI allow far superior LSS payload capability. Propellant settling, combined with a single screen device, was found to be the lightest and least complex propellant management technique.

  11. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  12. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging.

    PubMed

    Yan, Shijuan; Huang, Wenjie; Gao, Jiadong; Fu, Hua; Liu, Jun

    2018-06-01

    Seed storability is an important trait for crop breeding, however, the mechanism underlying seed storability remains largely unknown. Here, a mass spectrometry-based comparative metabolomic study was performed for rice seeds before and after 24-month natural storage between two hybrid rice cultivars, IIYou 998 (IIY) with low storability and BoYou 998 (BY) with relative high storability. A total of 48 metabolites among 90 metabolite peaks detected were conclusively identified, and most of them are involved in the primary metabolism. During the 24-month storage, 19 metabolites with significant changes in abundance were found in the storage-sensitive IIY seeds, but only 8 in the BY seeds, most of which are free amino acids and soluble sugars. The observed changes of the metabolites in IIY seeds that are consistent with our protoemics results are likely to be involved in its sensitivity to storage. Levels of all identified 18 amino acid-related metabolites and most sugar-related metabolites were significantly higher in IIY seeds both before and after storage. However the level of raffinose was lower in IIY seeds before and after storage, and did not change significantly throughout the storage period in both two cultivars, suggesting its potential role in seed storability. Taken together, these results may help to improve our understanding of seed storability. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Nano Icy Moons Propellant Harvester

    NASA Technical Reports Server (NTRS)

    VanWoerkom, Michael (Principal Investigator)

    2017-01-01

    . We also tailor the engine for a near stoichiometric mixture ratio of 7.5. Most high-performance liquid oxygen-liquid hydrogen engines inject extra liquid hydrogen to lower the average molecular weight of the exhaust, which improves specific impulse. However, this extra liquid hydroden requires additional power and processing time on the surface for the ISRU to create. This increases mission cost, and on missions within high radiation environments such as Europa, increases radiation shielding mass. The resulting engine weighs just 1.36 kg and produces 71.5 newton of thrust at 364 s specific impulse. Finally, the mission reduces landed mass by taking advantage of the SEP modules solar power to beam energy to the surface using a collimated laser. This allows us to replace an 45 kg MMRTG with a 2.5 kg resonant array. By using the combination of ISRU, a liquid oxygen-liquid hydrogen engine, and beamed power, we reduce the initial mass of the lander to just 51.5 kg. When combined with an SEP module to ferry the lander to Europa the initial mission mass is just 6397 kg - low enough to be placed on an Earth escape trajectory using an Atlas V 551 launch vehicle. By comparison, we estimate a duplicate lander using an MMRTG and semi-storable propellants such as liquid oxygen-methane would result in an order of magnitude increase in initial lander mass to 445 kg. Attempting to perform the trajectory with a 450 s liquid oxygen-liquid hydrogen engine would increase initial mass to approximately 135,000 kg. Using an Atlas V 1 U.S. Dollar per kg rate to Earth escape value of $27.7k per kg, just the launch savings are over $3.5 billion.

  14. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  15. A review of research in low earth orbit propellant collection

    NASA Astrophysics Data System (ADS)

    Singh, Lake A.; Walker, Mitchell L. R.

    2015-05-01

    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  16. Filament wound metal lined propellant tanks for future Earth-to-orbit transports

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Davis, Robert B.; Freeman, William T., Jr.

    1988-01-01

    For future Earth-to-orbit transport vehicles, reusability and lighter weights are sought for the main propellant tanks. To achieve this, a filament wound tank with a metal liner and an intermediate layer of foam-filled honeycomb is proposed. A hydrogen tank is used as an example. To accommodate mismatches in the expansion of liner and overwrap a design is proposed wherin the liner is configured so that the extension of the liner under pressure matches the expected contraction of the same liner due to the presence of a cryogen. In operation, the liner is pressurized at a rate such that the pressure strain matches the contraction due to decrease in temperature. As an alternate approach, compressive pre-stress is placed in the liner such that it will not separate from the overwrap. A finite element program is used to show stresses in the liner and overwrap for various tank pressures for the pre-stressed liner concept. A fracture mechanics analysis is made of the liners to determine tank life. The tank concept shown has a similar weight to the Shuttle external hydrogen tank, but the filament wound tank is expected to be reusable. Integration of the propellant tanks into a future transport vehicle is discussed.

  17. Space Resource Requirements for Future In-Space Propellant Production Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Fikes, John; Roy, Stephanie; Henley, Mark W.; Potter, Seth D.; Howell, Joe T. (Technical Monitor)

    2001-01-01

    In 2000 and 2001 studies were conducted at the NASA Marshall Space Flight Center on the technical requirements and commercial potential for propellant production depots in low Earth orbit (LEO) to support future commercial, NASA, and other Agency missions. Results indicate that propellant production depots appear to be technically feasible given continued technology development, and there is a substantial growing market that depots could support. Systems studies showed that the most expensive part of transferring payloads to geosynchronous orbit (GEO) is the fuel. A cryogenic propellant production and storage depot stationed in LEO could lower the cost of missions to GEO and beyond. Propellant production separates water into hydrogen and oxygen through electrolysis. This process utilizes large amounts of power, therefore a depot derived from advanced space solar power technology was defined. Results indicate that in the coming decades there could be a significant demand for water-based propellants from Earth, moon, or asteroid resources if in-space transfer vehicles (upper stages) transitioned to reusable systems using water based propellants. This type of strategic planning move could create a substantial commercial market for space resources development, and ultimately lead toward significant commercial infrastructure development within the Earth-Moon system.

  18. High energy, low temperature gelled bi-propellant formulation

    NASA Technical Reports Server (NTRS)

    Di Salvo, Roberto (Inventor)

    2011-01-01

    The present invention is a bi-propellant system comprising a gelled liquid propane (GLP) fuel and a gelled MON-30 (70% N.sub.2O.sub.4+30% NO) oxidizer. The bi-propellant system is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added to the fuel component to improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.

  19. Utilizing Solar Power Technologies for On-Orbit Propellant Production

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.

    2006-01-01

    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  20. Low-Cost Propellant Launch to Earth Orbit from a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2006-01-01

    Propellant will be more than 85% of the mass that needs to be lofted into Low Earth Orbit (LEO) in the planned program of Exploration of the Moon, Mars, and beyond. This paper describes a possible means for launching thousands of tons of propellant per year into LEO at a cost 15 to 30 times less than the current launch cost per kilogram. The basic idea is to mass-produce very simple, small and relatively low-performance rockets at a cost per kilogram comparable to automobiles, instead of the 25X greater cost that is customary for current launch vehicles that are produced in small quantities and which are manufactured with performance near the limits of what is possible. These small, simple rockets can reach orbit because they are launched above 95% of the atmosphere, where the drag losses even on a small rocket are acceptable, and because they can be launched nearly horizontally with very simple guidance based primarily on spin-stabilization. Launching above most of the atmosphere is accomplished by winching the rocket up a tether to a balloon. A fuel depot in equatorial orbit passes over the launch site on every orbit (approximately every 90 minutes). One or more rockets can be launched each time the fuel depot passes overhead, so the launch rate can be any multiple of 6000 small rockets per year, a number that is sufficient to reap the benefits of mass production.

  1. A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Asipauskas, Marius; Chen, Yongkang; Weislogel, Mark M.

    2010-01-01

    The equilibrium shape and location of fluid interfaces in spacecraft propellant tanks while in low-gravity is of interest to system designers, but can be challenging to predict. The propellant position can affect many aspects of the spacecraft such as the spacecraft center of mass, response to thruster firing due to sloshing, liquid acquisition, propellant mass gauging, and thermal control systems. We use Surface Evolver, a fluid interface energy minimizing algorithm, to investigate theoretical equilibrium liquid-vapor interfaces for spacecraft propellant tanks similar to those that have been considered for NASA's new class of Exploration vehicles. The choice of tank design parameters we consider are derived from the NASA Exploration Systems Architecture Study report. The local acceleration vector employed in the computations is determined by estimating low-Earth orbit (LEO) atmospheric drag effects and centrifugal forces due to a fixed spacecraft orientation with respect to the Earth or Moon, and rotisserie-type spacecraft rotation. Propellant/vapor interface positions are computed for the Earth Departure Stage and Altair lunar lander descent and ascent stage tanks for propellant loads applicable to LEO and low-lunar orbit. In some of the cases investigated the vapor ullage bubble is located at the drain end of the tank, where propellant management device hardware is often located.

  2. Genetic Analysis of Seed-Soluble Oligosaccharides in Relation to Seed Storability of Arabidopsis1

    PubMed Central

    Bentsink, Leónie; Alonso-Blanco, Carlos; Vreugdenhil, Dick; Tesnier, Karine; Groot, Steven P.C.; Koornneef, Maarten

    2000-01-01

    Seed oligosaccharides (OSs) and especially raffinose series OSs (RSOs) are hypothesized to play an important role in the acquisition of desiccation tolerance and consequently in seed storability. In the present work we analyzed the seed-soluble OS (sucrose, raffinose, and stachyose) content of several Arabidopsis accessions and thus identified the genotype Cape Verde Islands having a very low RSO content. By performing quantitative trait loci (QTL) mapping in a recombinant inbred line population, we found one major QTL responsible for the practically monogenic segregation of seed stachyose content. This locus also affected the content of the two other OSs, sucrose, and raffinose. Two candidate genes encoding respectively for galactinol synthase and raffinose synthase were located within the genomic region around this major QTL. In addition, three smaller-effect QTL were identified, each one specifically affecting the content of an individual OS. Seed storability was analyzed in the same recombinant inbred line population by measuring viability (germination) under two different seed aging assays: after natural aging during 4 years of dry storage at room temperature and after artificial aging induced by a controlled deterioration test. Thus, four QTL responsible for the variation of this trait were mapped. Comparison of the QTL genetic positions showed that the genomic region containing the major OS locus did not significantly affect the seed storability. We concluded that in the studied material neither RSOs nor sucrose content had a specific effect on seed storability. PMID:11115877

  3. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented

  4. Effect of gamma irradiation on storability of two cultivars of Syrian grapes ( Vitis vinifera)

    NASA Astrophysics Data System (ADS)

    Al-Bachir, M.

    1999-06-01

    This study was initiated to investigate the effect of gamma irradiation on storability of two local table grape varieties: Baladi and Helwani. The experiments were performed in 1995 and 1996, when both varieties were treated with 0, 0.5, 1.0 and 1.5 kGy in the first year. In the second year two additional doses were used 0.1 and 0.25 kGy for Helwani and 2.0 and 2.5 kGy for Baladi. Irradiated and unirradiated fruits were stored in a refrigerated room (temperature, 1-2°C). Weight loss, spoilage and total loss were evaluated every 2 and 4 weeks of storage for Baladi and Helwani, respectively. The results have shown that gamma irradiation improved the storability of both varieties. In addition, irradiation prevented molding and prolonged the storage time. The optimum doses for improving the storability were 0.5-1.0 kGy for Helwani and 1.5-2.0 kGy for Baladi, and the storage periods can be extended by 50% using these optimal doses for both varieties.

  5. High Pressure, Earth-storable Rocket Technology. Volume 1

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e., communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  6. High Pressure, Earth-storable Rocket Technology. Volume 2

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 Mpa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  7. Testing of electroformed deposited iridium/powder metallurgy rhenium rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.; Dickerson, Robert

    1996-01-01

    High-temperature, oxidation-resistant chamber materials offer the thermal margin for high performance and extended lifetimes for radiation-cooled rockets. Rhenium (Re) coated with iridium (Ir) allow hours of operation at 2200 C on Earth-storable propellants. One process for manufacturing Ir/Re rocket chambers is the fabrication of Re substrates by powder metallurgy (PM) and the application of Ir coatings by using electroformed deposition (ED). ED Ir coatings, however, have been found to be porous and poorly adherent. The integrity of ED Ir coatings could be improved by densification after the electroforming process. This report summarizes the testing of two 22-N, ED Ir/PM Re rocket chambers that were subjected to post-deposition treatments in an effort to densify the Ir coating. One chamber was vacuum annealed, while the other chamber was subjected to hot isostatic pressure (HIP). The chambers were tested on gaseous oxygen/gaseous hydrogen propellants, at mixture ratios that simulated the oxidizing environments of Earth-storable propellants. ne annealed ED Ir/PM Re chamber was tested for a total of 24 firings and 4.58 hr at a mixture ratio of 4.2. After only 9 firings, the annealed ED Ir coating began to blister and spall upstream of the throat. The blistering and spalling were similar to what had been experienced with unannealed, as-deposited ED Ir coatings. The HIP ED Ir/PM Re chamber was tested for a total of 91 firings and 11.45 hr at mixture ratios of 3.2 and 4.2. The HIP ED Ir coating remained adherent to the Re substrate throughout testing; there were no visible signs of coating degradation. Metallography revealed, however, thinning of the HIP Ir coating and occasional pores in the Re layer upstream of the throat. Pinholes in the Ir coating may have provided a path for oxidation of the Re substrate at these locations. The HIP ED Ir coating proved to be more effective than vacuum annealed and as-deposited ED Ir. Further densification is still required to

  8. The PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  9. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.

  10. Benefits of in situ propellant utilization for a Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1993-01-01

    Previous Mars rover sample return mission studies have shown a requirement for Titan 4 or STS Space Shuttle launch vehicles to complete a sample return from a single Mars site. These studies have either used terrestrial propellants or considered in situ production of methane and oxygen for the return portion of the mission. Using in situ propellants for the return vehicles reduces the Earth launch mass and allows for a smaller Earth launch vehicle, since the return propellant is not carried from Earth. Carbon monoxide and oxygen (CO/O2) and methane and oxygen (CH4/O2) were investigated as in situ propellants for a Mars sample return mission and the results were compared to a baseline study performed by the Jet Propulsion Laboratory using terrestrial propellants. Capability for increased sample return mass, use of an alternate launch vehicle, and an additional mini-rover as payload were included. CO/O2 and CH4/O2 were found to decrease the baseline Earth launch mass by 13.6 and 9.2 percent, respectively. This resulted in higher payload mass margins for the baseline Atlas 2AS launch vehicle. CO/O2 had the highest mass margin. And because of this, it was not only possible to increase the sample return mass and carry an additional mini-rover, but was also possible to use the smaller Atlas 2A launch vehicle.

  11. Large-payload earth-orbit transportation with electric propulsion

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.

    1976-01-01

    Economical unmanned earth orbit transportation for large payloads is evaluated. The high exhaust velocity achievable with electric propulsion is attractive because it minimizes the propellant that must be carried to low earth orbit. Propellant transport is a principal cost item. Electric propulsion subsystems utilizing advanced ion thrusters are compared to magnetoplasmadynamic (MPD) thrust subsystems. For very large payloads, a large lift vehicle is needed to low earth orbit, and argon propellant is required for electric propulsion. Under these circumstances, the MPD thruster is shown to be desirable over the ion thruster for earth orbit transportation.

  12. Mars rover sample return mission utilizing in situ production of the return propellants

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Nill, L.; Schubert, H.; Thill, B.; Warwick, R.

    1993-01-01

    This paper presents an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return trip. A key goal of the mission is to demonstrate the considerable benefits that can be realized through the use of indigenous resources and to test the viability of this approach as a precursor to manned missions to Mars. Two in situ propellant combinations, methane/oxygen and carbon monoxide/oxygen, are compared to imported terrestrial hydrogen/oxygen within a single mission architecture, using a single Earth launch vehicle. The mission is assumed to be launched from Earth in 2003. Upon reaching Mars, the landing vehicle aerobrakes, deploys a small satellite, and lands on the Martian surface. Once on the ground, the propellant production unit is activated, and the product gases are liquefied and stored in the empty tanks of the Earth Return Vehicle (ERV). Power for these activities is provided by a dynamic isotope power system. A semiautonomous rover, powered by the indigenous propellants, gathers between 25 and 30 kg of soil and rock samples which are loaded aboard the ERV for return to Earth. After a surface stay time of approximately 1.5 years, the ERV leaves Mars for the return voyage to Earth. When the vehicle reaches the vicinity of Earth, the sample return capsule detaches, and is captured and circularized in LEO via aerobraking maneuvers.

  13. Producing propellants from water in lunar soil using solar lasers

    NASA Astrophysics Data System (ADS)

    de Morais Mendonca Teles, Antonio

    The exploration of the Solar System is directly related to the efficiency of engines designed to explore it, and consequently, to the propulsion techniques, materials and propellants for those engines. With the present day propulsion techniques it is necessary great quantities of propellants to impulse a manned spacecraft to Mars and beyond in the Solar System, which makes these operations financially very expensive because of the costs involved in launching it from planet Earth, due to its high gravity field strength. To solve this problem, it is needed a planetary place with smaller gravity field strength, near to the Earth and with great quantities of substances at the surface necessary for the in-situ production of propellants for spacecrafts. The only place available is Earth's natural satellite the Moon. So, here in this paper, I propose the creation of a Lunar Propellant Manufacturer. It is a robot-spacecraft which can be launched from Earth using an Energia Rocket, and to land on the Moon in an area (principally near to the north pole where it was discovered water molecules ice recently) with great quantities of oxygen and hydrogen (propellants) in the silicate soil, previously observed and mapped by spacecrafts in lunar orbit, for the extraction of those molecules from the soil and the in-situ production of the necessary propellants. The Lunar Propellant Manufacturer (LPM) spacecraft consists of: 1) a landing system with four legs (extendable) and rovers -when the spacecraft touches down, the legs retract in order that two apparatuses, analogue to tractor's wheeled belts parallel sided and below the spacecraft, can touch firmly the ground -it will be necessary for the displacement of the spacecraft to new areas with richer propellants content, when the early place has already exhausted in propellants; 2) a digging machine -a long, resistant extendable arm with an excavator hand, in the outer part of the spacecraft -it will extend itself to the ground

  14. In-space propellant logistics. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study addresses the systems and operational problems associated with the transport, transfer, and storage of cryogenic propellants in low earth orbits. The safety problems connected with in-space propellant logistics operations are also considered.Correlation between the two projects was maintained by including safety considerations, resulting from the system safety analysis, in the trade studies and evaluations of alternate operating concepts in the systems operations analysis.

  15. Advanced solar-propelled cargo spacecraft for Mars missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, J.; Beall, M.; Burianek, J.; Cinniger, A.; Dunmire, B.; Haberman, E.; Iwamoto, J.; Johnson, S.; Mccracken, S.; Miller, M.

    1989-01-01

    At the University of Washington, three concepts for an unmanned, solar powered, cargo spacecraft for Mars-support missions have been investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: a solar radiation absorption (SRA) system, a solar-pumped laser (SPL) system, and a solar powered mangetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process developed at the University of Washington. A solar concentrator focuses sunlight into an absorption chamber. A mixture of hydrogen and potassium vapor absorbs the incident radiation and is heated to approximately 3700 K. The hot propellant gas exhausts through a nozzle to produce thrust. The SRA has an I(sub sp) of approximately 1000 sec and produces a thrust of 2940 N using two thrust chambers. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sun-synchronous Earth orbit converts solar energy to laser energy. The laser beams are transmitted to the spacecraft via laser relay satellites. The laser energy heats the hydrogen propellant through a plasma breakdown process in the center of an absorption chamber. Propellant flowing through the chamber, heated by the plasma core, expands through a nozzle to produce thrust. The SPL has an I(sub sp) of 1285 sec and produces a thrust of 1200 N using two thrust chambers. The MPD system uses indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. In this system, the argon propellant is ionized and electromagnetically accelerated by a magnetoplasmadynamic arc to produce thrust. The MPD spacecraft has an I(sub sp) of 2490 sec and produces a thrust of 100 N. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary

  16. Galileo 1989 VEEGA trajectory design. [Venus-Earth-Earth-Gravity-Assist

    NASA Technical Reports Server (NTRS)

    D'Amario, Louis A.; Byrnes, Dennis V.; Johannesen, Jennie R.; Nolan, Brian G.

    1989-01-01

    The new baseline for the Galileo Mission is a 1989 Venus-earth-earth gravity-assist (VEEGA) trajectory, which utilizes three gravity-assist planetary flybys in order to reduce launch energy requirements significantly compared to other earth-Jupiter transfer modes. The launch period occurs during October-November 1989. The total flight time is about 6 years, with November 1995 as the most likely choice for arrival at Jupiter. Optimal 1989 VEEGA trajectories have been generated for a wide range of earth launch dates and Jupiter arrival dates. Launch/arrival space contour plots are presented for various trajectory parameters, including propellant margin, which is used to measure mission performance. The accessible region of the launch/arrival space is defined by propellant margin and launch energy constraints; the available launch period is approximately 1.5 months long.

  17. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  18. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  19. Flight demonstration of new thruster and green propellant technology on the PRISMA satellite

    NASA Astrophysics Data System (ADS)

    Anflo, K.; Möllerberg, R.

    2009-11-01

    The concept of a storable liquid monopropellant blend for space applications based on ammonium dinitramide (ADN) was invented in 1997, within a co-operation between the Swedish Space Corporation (SSC) and the Swedish Defense Research Agency (FOI). The objective was to develop a propellant which has higher performance and is safer than hydrazine. The work has been performed under contract from the Swedish National Space Board and ESA. The progress of the development has been presented in several papers since 2000. ECAPS, a subsidiary of the Swedish Space Corporation was established in 2000 with the aim to develop and market the novel "high performance green propellant" (HPGP) technology for space applications. The new technology is based on several innovations and patents w.r.t. propellant formulation and thruster design, including a high temperature resistant catalyst and thrust chamber. The first flight demonstration of the HPGP propulsion system will be performed on PRISMA. PRISMA is an international technology demonstration program with Swedish Space Corporation as the Prime Contractor. This paper describes the performance, characteristics, design and verification of the HPGP propulsion system for PRISMA. Compatibility issues related to using a new propellant with COTS components is also discussed. The PRISMA mission includes two satellites in LEO orbit were the focus is on rendezvous and formation flying. One of the satellites will act as a "target" and the main spacecraft performs rendezvous and formation flying maneuvers, where the ECAPS HPGP propulsion system will provide delta-V capability. The PRISMA CDR was held in January 2007. Integration of the flight propulsion system is about to be finalized. The flight opportunity on PRISMA represents a unique opportunity to demonstrate the HPGP propulsion system in space, and thus take a significant step towards its use in future space applications. The launch of PRISMA scheduled to 2009.

  20. A compilation of lunar and Mars exploration strategies utilizing indigenous propellants

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.

    1992-01-01

    The use of propellants manufactured from indigenous space materials has the potential to significantly reduce the amount of mass required to be launched from the Earth's surface. The extent of the leverage, however, along with the cost for developing the infrastructure necessary to support such a process, is unclear. Many mission analyses have been performed that have attempted to quantify the potential benefits of in situ propellant utilization. Because the planning of future space missions includes many unknowns, the presentation of any single study on the use of in situ propellants is often met with critics' claims of the inaccuracy of assumptions or omission of infrastructure requirements. The results of many such mission analyses are presented in one format. Each summarized mission analysis used different assumptions and baseline mission scenarios. The conclusion from the studies is that the use of in situ produced propellants will provide significant reductions in Earth launch requirements. This result is consistent among all of the analyses regardless of the assumptions used to obtain the quantitative results. The determination of the best propellant combination and the amount of savings will become clearer and more apparent as the technology work progresses.

  1. Design and Development of an In-Space Deployable Sun Shield for the Atlas Centaur

    NASA Technical Reports Server (NTRS)

    Dew, Michael; Allwein, Kirk; Kutter, Bernard; Ware, Joanne; Lin, John; Madlangbayan, Albert; Willey, Cliff; Pitchford, Brian; O'Neil, Gary

    2008-01-01

    The Centaur, by virtue of its use of high specific-impulse (Isp) LO2/LH2 propellants, has initial mass-to-orbit launch requirements less than half of those upper stages using storable propellants. That is, for Earth escape or GSO missions the Centaur is half the launch weight of a storable propellant upper stage. A drawback to the use of Liquid oxygen and liquid hydrogen, at 90 K and 20 K respectively, over storable propellants is the necessity of efficient cryogen storage techniques that minimize boil-off from thermal radiation in space. Thermal blankets have been used successfully to shield both the Atlas Centaur and Titan Centaur. These blankets are protected from atmospheric air loads during launch by virtue of the fact that the Centaur is enclosed within the payload fairing. The smaller Atlas V vehicle, the Atlas 400, has the Centaur exposed to the atmosphere during launch, and therefore, to date has not flown with thermal blankets shielding the Centaur. A design and development effort is underway to fly a thermal shield on the Atlas V 400 vehicle that is not put in place until after the payload fairing jettisons. This can be accomplished by the use of an inflatable and deployable thermal blanket referred to as the Centaur Sun Shield (CSS). The CSS design is also scalable for use on a Delta upper stage, and the technology potentially could be used for telescope shades, re-entry shields, solar sails and propellant depots. A Phase I effort took place during 2007 in a partnership between ULA and ILC Dover which resulted in a deployable proof-of-concept Sun Shield being demonstrated at a test facility in Denver. A Phase H effort is underway during 2008 with a partnership between ULA, ILC, NASA Glenn Research Center (GRC) and NASA Kennedy Space Center (KSC) to define requirements, determine materials and fabrication techniques, and to test components in a vacuum chamber at cold temperatures. This paper describes the Sun Shield development work to date, and the

  2. In-space propellant logistics. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The prephase A conceptual project planning data as it pertains to the development of the selected logistics module configuration transported into earth orbit by the space shuttle orbiter. The data represents the test, implementation, and supporting research and technology requirements for attaining the propellant transfer operational capability for early 1985. The plan is based on a propellant module designed to support the space-based tug with cryogenic oxygen-hydrogen propellants. A logical sequence of activities that is required to define, design, develop, fabricate, test, launch, and flight test the propellant logistics module is described. Included are the facility and ground support equipment requirements. The schedule of activities are based on the evolution and relationship between the R and T, the development issues, and the resultant test program.

  3. Magnetically Actuated Propellant Orientation, Controlling Fluids in a Low-Gravity Environment

    NASA Technical Reports Server (NTRS)

    Martin, James J.; Holt, James B.

    2000-01-01

    Cryogenic fluid management (CFM) is a technology area common to virtually every space transportation propulsion concept envisioned. Storage, supply, transfer and handling of sub-critical cryogenic fluids are basic capabilities that have long been needed by multiple programs and the need is expected to continue in the future. The use of magnetic fields provides another method, which could replace or augment current/traditional approaches, potentially simplifying vehicle operational constraints. The magnetically actuated propellant orientation (MAPO) program effort focused on the use of magnetic fields to control fluid motion as it relates to positioning (i.e. orientation and acquisition) of a paramagnetic substance such as LO2. Current CFM state- of-the-art systems used to control and acquire propellant in low gravity environments rely on liquid surface tension devices which employ vanes, fine screen mesh channels and baskets. These devices trap and direct propellant to areas where it's needed and have been used routinely with storable (non-cryogenic) propellants. However, almost no data exists r,egarding their operation in cryogenics and the use of such devices confronts designers with a multitude of significant technology issues. Typical problems include a sensitivity to screen dry out (due to thermal loads and pressurant gas) and momentary adverse accelerations (generated from either internal or external sources). Any of these problems can potentially cause the acquisition systems to ingest or develop vapor and fail. The use of lightweight high field strength magnets may offer a valuable means of augmenting traditional systems potentially mitigating or at least easing operational requirements. Two potential uses of magnetic fields include: 1) strategically positioning magnets to keep vent ports clear of liquid (enabling low G vented fill operations), and 2) placing magnets in the center or around the walls of the tank to create an insulating vapor pocket (between

  4. In-Space Cryogenic Propellant Depot Stepping Stone

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Fikes, John C.

    2005-01-01

    An In-Space Cryogenic Propellant Depot (ISCPD) is an important stepping stone to provide the capability to preposition, store, manufacture, and later use the propellants for Earth-Neighborhood campaigns and beyond. An in-space propellant depot will provide affordable propellants and other similar consumables to support the development of sustainable and affordable exploration strategies as well as commercial space activities. An in-space propellant depot not only requires technology development in key areas such as zero boil-off storage and fluid transfer, but in other areas such as lightweight structures, highly reliable connectors, and autonomous operations. These technologies can be applicable to a broad range of propellant depot concepts or specific to a certain design. In addition, these technologies are required for spacecraft and orbit transfer vehicle propulsion and power systems, and space life support. Generally, applications of this technology require long-term storage, on-orbit fluid transfer and supply, cryogenic propellant production from water, unique instrumentation and autonomous operations. This paper discusses the reasons why such advances are important to future affordable and sustainable operations in space. This paper also discusses briefly R&D objectives comprising a promising approach to the systems planning and evolution into a meaningful stepping stone design, development, and implementation of an In-Space Cryogenic Propellant Depot. The success of a well-planned and orchestrated approach holds great promise for achieving innovation and revolutionary technology development for supporting future exploration and development of space.

  5. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2016

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 31 experimental cultivars were screened by growing them in a sugar beet field infested with...

  6. Architecture Studies for Commercial Production of Propellants From the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Duke, Michael B.; Diaz, Javier; Blair, Brad R.; Oderman, Mark; Vaucher, Marc

    2003-01-01

    Two architectures are developed that could be used to convert water held in regolith deposits within permanently shadowed lunar craters into propellant for use in near-Earth space. In particular, the model has been applied to an analysis of the commercial feasibility of using lunar derived propellant to convey payloads from low Earth orbit to geosynchronous Earth orbit. Production and transportation system masses were estimated for each architecture and cost analysis was made using the NAFCOM cost model. Data from the cost model were analyzed using a financial analysis tool reported in a companion paper (Lamassoure et al., 2002) to determine under what conditions the architectures might be commercially viable. Analysis of the architectural assumptions is used to identify the principal areas for further research, which include technological development of lunar mining and water extraction systems, power systems, reusable space transportation systems, and orbital propellant depots. The architectures and commercial viability are sensitive to the assumed concentration of ice in the lunar deposits, suggesting that further lunar exploration to determine whether higher-grade deposits exist would be economically justified.

  7. Reusable Hybrid Propellant Modules for Outer-Space Transport

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Mankins, John C.

    2005-01-01

    A report summarizes the concept of reusable hybrid propellant modules (HPMs), which would be used in outer space for long-term cryogenic storage of liquefied spacecraft-propellant gases, including for example, oxygen and hydrogen for combustion-based chemical rocket engines and xenon for electric thrusters. The HPM concept would provide the fundamental building block for an efficient, reusable in-space transportation system for both crewed and uncrewed missions. Each HPM would be equipped to implement an advanced zero-boil-off method of managing cryogenic fluids, and would include a fluid-transfer interface comprising standardized fittings that would be compatible with fittings on all supply facilities and on spacecraft to be supplied. The HPM, combined with a chemical or electric orbital transfer spacecraft, would provide an integrated propulsion system. HPMs would supply chemical propellant for time-critical transfers such as crewed missions, and utilize the more efficient electric-propulsion transfer vehicles to transport filled HPMs to the destinations and to return empty HPMs back to near-Earth orbits or other intermediate locations for replenishment and reuse. The HPM prepositioned using electric propulsion would provide the chemical propellant for the crew s return trip in a much more efficient manner than a chemical-only approach. The propellants to fill the HPMs would be delivered from the Earth or other initial supply locations to the intermediate locations by use of automated, compatible spacecraft designed specifically for that purpose. Additionally, multiple HPMs could be aggregated and positioned in orbits and on planets, moons, and asteroids to supply fluids to orbiting and interplanetary spacecraft.

  8. Experimental sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 32 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  9. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2015

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 28 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  10. Commercial sugar beet cultivars evaluated for rhizomania resistance and storability in Idaho, 2016

    USDA-ARS?s Scientific Manuscript database

    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To identify sugar beet cultivars with resistance to BNYVV and evaluate storability, 22 commercial cultivars were screened by growing them in a sugar beet field infested with B...

  11. Design evolution of the orbiter reaction control subsystem

    NASA Technical Reports Server (NTRS)

    Taeber, R. J.; Karakulko, W.; Belvins, D.; Hohmann, C.; Henderson, J.

    1985-01-01

    The challenges of space shuttle orbiter reaction control subsystem development began with selection of the propellant for the subsystem. Various concepts were evaluated before the current Earth storable, bipropellant combination was selected. Once that task was accomplished, additional challenges of designing the system to satisfy the wide range of requirements dictated by operating environments, reusability, and long life were met. Verification of system adequacy was achieved by means of a combination of analysis and test. The studies, the design efforts, and the test and analysis techniques employed in meeting the challenges are described.

  12. Study of a High-Energy Upper Stage for Future Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Dressler, Gordon A.; Matuszak, Leo W.; Stephenson, David D.

    2003-01-01

    Space Shuttle Orbiters are likely to remain in service to 2020 or beyond for servicing the International Space Station and for launching very high value spacecraft. There is a need for a new STS-deployable upper stage that can boost certain Orbiter payloads to higher energy orbits, up to and including Earth-escape trajectories. The inventory of solid rocket motor Inertial Upper Stages has been depleted, and it is unlikely that a LOX/LH2-fueled upper stage can fly on Shuttle due to safety concerns. This paper summarizes the results of a study that investigated a low cost, low risk approach to quickly developing a new large upper stage optimized to fly on the existing Shuttle fleet. Two design reference missions (DRMs) were specified: the James Webb Space Telescope (JWST) and the Space Interferometry Mission (SIM). Two categories of upper stage propellants were examined in detail: a storable liquid propellant and a storable gel propellant. Stage subsystems 'other than propulsion were based largely on heritage hardware to minimize cost, risk and development schedule span. The paper presents the ground rules and guidelines for conducting the study, the preliminary conceptual designs margins, assessments of technology readiness/risk, potential synergy with other programs, and preliminary estimates of development and production costs and schedule spans. Although the Orbiter Columbia was baselined for the study, discussion is provided to show how the results apply to the remaining STS Orbiter fleet.

  13. Lone Propeller

    NASA Image and Video Library

    2017-09-15

    This view of Saturn's A ring features a lone "propeller" -- one of many such features created by small moonlets embedded in the rings as they attempt, unsuccessfully, to open gaps in the ring material. The image was taken by NASA's Cassini spacecraft on Sept. 13, 2017. It is among the last images Cassini sent back to Earth. The view was taken in visible light using the Cassini spacecraft wide-angle camera at a distance of 420,000 miles (676,000 kilometers) from Saturn. Image scale is 2.3 miles (3.7 kilometers). https://photojournal.jpl.nasa.gov/catalog/PIA21894

  14. In-situ propellant rocket engines for Mars missions ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When contemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in situ propellants. But 95 pct of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant combination is a candidate for a Martian in situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  15. In-situ propellant rocket engines for Mars mission ascent vehicle

    NASA Technical Reports Server (NTRS)

    Roncace, Elizabeth A.

    1991-01-01

    When comtemplating the human exploration of Mars, many scenarios using various propulsion systems have been considered. One propulsion option among them is a vehicle stage with multiple, pump fed rocket engines capable of operating on propellants available on Mars. This reduces the Earth launch mass requirements, resulting in economic and payload benefits. No plentiful sources of hydrogen on Mars have been identified on the surface of Mars, so most commonly used high performance liquid fuels, such as hydrogen and hydrocarbons, can be eliminated as possible in-situ propellants. But 95 pct. of the Martian atmosphere consists of carbon dioxide, which can be converted into carbon monoxide and oxygen. The carbon monoxide oxygen propellant conbination is a candidate for a Martian in-situ propellant rocket engine. The feasibility is analyzed of a pump fed engine cycle using the propellant combination of carbon monoxide and oxygen.

  16. Analytic Modeling of Pressurization and Cryogenic Propellant

    NASA Technical Reports Server (NTRS)

    Corpening, Jeremy H.

    2010-01-01

    An analytic model for pressurization and cryogenic propellant conditions during all mission phases of any liquid rocket based vehicle has been developed and validated. The model assumes the propellant tanks to be divided into five nodes and also implements an empirical correlation for liquid stratification if desired. The five nodes include a tank wall node exposed to ullage gas, an ullage gas node, a saturated propellant vapor node at the liquid-vapor interface, a liquid node, and a tank wall node exposed to liquid. The conservation equations of mass and energy are then applied across all the node boundaries and, with the use of perfect gas assumptions, explicit solutions for ullage and liquid conditions are derived. All fluid properties are updated real time using NIST Refprop.1 Further, mass transfer at the liquid-vapor interface is included in the form of evaporation, bulk boiling of liquid propellant, and condensation given the appropriate conditions for each. Model validation has proven highly successful against previous analytic models and various Saturn era test data and reasonably successful against more recent LH2 tank self pressurization ground test data. Finally, this model has been applied to numerous design iterations for the Altair Lunar Lander, Ares V Core Stage, and Ares V Earth Departure Stage in order to characterize Helium and autogenous pressurant requirements, propellant lost to evaporation and thermodynamic venting to maintain propellant conditions, and non-uniform tank draining in configurations utilizing multiple LH2 or LO2 propellant tanks. In conclusion, this model provides an accurate and efficient means of analyzing multiple design configurations for any cryogenic propellant tank in launch, low-acceleration coast, or in-space maneuvering and supplies the user with pressurization requirements, unusable propellants from evaporation and liquid stratification, and general ullage gas, liquid, and tank wall conditions as functions of time.

  17. Propeller torque load and propeller shaft torque response correlation during ice-propeller interaction

    NASA Astrophysics Data System (ADS)

    Polić, Dražen; Ehlers, Sören; Æsøy, Vilmar

    2017-03-01

    Ships use propulsion machinery systems to create directional thrust. Sailing in ice-covered waters involves the breaking of ice pieces and their submergence as the ship hull advances. Sometimes, submerged ice pieces interact with the propeller and cause irregular fluctuations of the torque load. As a result, the propeller and engine dynamics become imbalanced, and energy propagates through the propulsion machinery system until equilibrium is reached. In such imbalanced situations, the measured propeller shaft torque response is not equal to the propeller torque. Therefore, in this work, the overall system response is simulated under the ice-related torque load using the Bond graph model. The energy difference between the propeller and propeller shaft is estimated and related to their corresponding mechanical energy. Additionally, the mechanical energy is distributed among modes. Based on the distribution, kinetic and potential energy are important for the correlation between propeller torque and propeller shaft response.

  18. In-Space Propellant Production Using Water

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  19. Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  20. Project Hyreus: Mars sample return mission utilizing in situ propellant production

    NASA Technical Reports Server (NTRS)

    Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  1. Design of multi-mission chemical propulsion modules for planetary orbiters. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results are presented of a conceptual design and feasibility study of chemical propulsion stages that can serve as modular propulsion units, with little or no modification, on a variety of planetary orbit missions, including orbiters of Mercury, Saturn, and Uranus. Planetary spacecraft of existing design or currently under development, viz., spacecraft of the Pioneer and Mariner families, are assumed as payload vehicles. Thus, operating requirements of spin-stabilized and 3-axis stabilized spacecraft have to be met by the respective propulsion module designs. As launch vehicle for these missions the Shuttle orbiter and interplanetary injection stage, or Tug, plus solid-propellant kick motor was assumed. Accommodation constraints and interfaces involving the payloads and the launch vehicle are considered in the propulsion module design. The applicability and performance advantages were evaluated of the space-storable high-energy bipropellants. The incentive for using this advanced propulsion technology on planetary missions is the much greater performance potential when orbit insertion velocities in excess of 4 km/sec are required, as in the Mercury orbiter. Design analyses and performance tradeoffs regarding earth-storable versus space-storable propulsion systems are included. Cost and development schedules of multi-mission versus custom-designed propulsion modules are examined.

  2. Mars ISPP Precursor (MIP): The First Flight Demonstration of In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Kaplan, David

    1997-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. The Mars reference mission concept predeploys a robotic propellant production plant to the planet two years before the planned departure of the crew from Earth. The successful operation of this plant is necessary for the human journey to begin.

  3. Cryogenic thermal system analysis for orbital propellant depot

    NASA Astrophysics Data System (ADS)

    Chai, Patrick R.; Wilhite, Alan W.

    2014-09-01

    In any manned mission architecture, upwards of seventy percent of all payload delivered to orbit is propellant, and propellant mass fraction dominates almost all transportation segments of any mission requiring a heavy lift launch system like the Saturn V. To mitigate this, the use of an orbital propellant depot has been extensively studied. In this paper, a thermal model of an orbital propellant depot is used to examine the effects of passive and active thermal management strategies. Results show that an all passive thermal management strategy results in significant boil-off for both hydrogen and oxygen. At current launch vehicle prices, these boil-offs equate to millions of dollars lost per month. Zero boil-off of propellant is achievable with the use of active cryocoolers; however, the cooling power required to produce zero-boil-off is an order of magnitude higher than current state-of-the-art cryocoolers. This study shows a zero-boil-off cryocooler minimum power requirement of 80-100 W at 80 K for liquid oxygen, and 100-120 W at 20 K for liquid hydrogen for a representative Near-Earth Object mission. Research and development effort is required to improve the state-of-the-arts in-space cryogenic thermal management.

  4. Project Minerva: A low-cost manned Mars mission based on indigenous propellant production

    NASA Technical Reports Server (NTRS)

    Bruckner, Adam P.; Anderson, Hobie; Caviezel, Kelly; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hamling, Steven; Johnson, Bryan; Kalberer, Martin; Machula, Mike

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface, using only two sets of two launches. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the senario originally proposed by R. Zubrin of Martin Marietta. The first set of launches delivers two unmanned payloads into low earth orbit (LEO): one consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles, and the second consists of the upper stage/trans-Mars injection (TMI) booster. In LEO, the two payloads are joined and inserted into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis-type process to combine six tons of hydrogen brought from earth with carbon dioxide from the Martian atmosphere to produce 100 tons of liquid oxygen and methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. Once the in-situ propellant production is completed, approximately two years after the first set of launches, the manned portion of the mission leaves earth. This set of two launches is similar to that of the unmanned vehicles; the two payloads are the Manned Transfer Vehicle (MTV) and the upper stage/TMI booster. The MTV contains the manned rover and the habitat which houses the astronauts enroute to Mars and on the Martian surface. During the 180-day trip to Mars, artificial gravity is created by tethering the MTV to the TMI booster and inducing rotation. Upon arrival the MTV performs aerobraking maneuvers to land near the fully-fueled ERV, which will be used by the crew a year and a half later to return to earth. The mission entails moderate travel times with relatively low-energy conjunction-class trajectories and allows ample time for scientific

  5. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  6. In-Space Chemical Propulsion System Model

    NASA Technical Reports Server (NTRS)

    Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.

    2004-01-01

    Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.

  7. Orbital simulations of laser-propelled spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.; Melis, Carl; Walsh, Kevin J.

    2015-09-01

    Spacecraft accelerate by directing propellant in the opposite direction. In the traditional approach, the propellant is carried on board in the form of material fuel. This approach has the drawback of being limited in Delta v by the amount of fuel launched with the craft, a limit that does not scale well to high Delta v due to the massive nature of the fuel. Directed energy photon propulsion solves this problem by eliminating the need for on-board fuel storage. We discuss our system which uses a phased array of lasers to propel the spacecraft which contributes no mass to the spacecraft beyond that of the reflector, enabling a prolonged acceleration and much higher final speeds. This paper compares the effectiveness of such a system for propelling spacecraft into interplanetary and interstellar space across various laser and sail configurations. Simulated parameters include laser power, optics size and orbit as well as payload mass, reflector size and the trajectory of the spacecraft. As one example, a 70 GW laser with 10 km optics could propel a 1 kg craft past Neptune (~30 au) in 5 days at 4% the speed of light, or a 1 g "wafer-sat" past Mars (~0.5 au) in 20 minutes at 21% the speed of light. However, even lasers down to 2 kW power and 1 m optics show noticeable effect on gram-class payloads, boosting their altitude in low Earth orbits by several kilometers per day which is already sufficient to be of practical use.

  8. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    PubMed Central

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  9. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  10. Thermal Optimization of an On-Orbit Long Duration Cryogenic Propellant Depot

    NASA Technical Reports Server (NTRS)

    Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Gary

    2012-01-01

    A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA's space exploration efforts. These benefits include elongation/extension of spacecraft missions and requirement reduction of launch vehicle up-mass. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with the new development of spacecraft hardware. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.

  11. Thermal Optimization and Assessment of a Long Duration Cryogenic Propellant Depot

    NASA Technical Reports Server (NTRS)

    Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Bernard

    2012-01-01

    A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA space exploration efforts. These benefits include elongation/extension of spacecraft missions and reduction of launch vehicle up-mass requirements. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with new spacecraft hardware development. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.

  12. STS propellant scavenging systems study. Part 2, volume 2: Cost and WBS/dictionary

    NASA Technical Reports Server (NTRS)

    Williams, Frank L.

    1987-01-01

    Presented are the results of the cost analysis performed to update and refine the program phase C/D cost estimates for a Shuttle Derived Vehicle (SDV) tanker. The SDV tanker concept is an unmanned cargo vehicle incorporating a set of propellant tanks in the vehicle's payload module. The tanker will be used to meet the demand for a cryogenic propellant supply in orbit. The propellant tanks are delivered to a low Earth orbit or to an orbit in the vicinity of the Space Station. The intent of the economic analysis is to provide NASA with economic justification for the propellant scavenging concept that minimizes the total Space Transportation System life cycle cost. The detailed costs supporting the concept selection process are presented with descriptive text to aid in forecasting the phase C/D project and program planning. Included are all propellant scavenging costs as well as all SDV, STS and Orbital Maneuvering Vehicle charges to deliver the propellants to the Space Station.

  13. Low cost manned Mars mission based on indigenous propellant production

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.

    1993-01-01

    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  14. Subcooling Cryogenic Propellants for Long Duration Space Exploration

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff

    2009-01-01

    The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the

  15. Low-Cost Propellant Launch From a Tethered Balloon

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian

    2006-01-01

    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  16. 78 FR 9005 - Airworthiness Directives; Dowty Propellers Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... the FAA, Engine & Propeller Directorate, 12 New England Executive Park, Burlington, MA. For..., Aerospace Engineer, Boston Aircraft Certification Office, FAA, Engine and Propeller Directorate, 12 New... Engineer, Boston Aircraft Certification Office, FAA, Engine and Propeller Directorate, 12 New England...

  17. Variable Pitch Propellers

    NASA Technical Reports Server (NTRS)

    1920-01-01

    In this report are described four different types of propellers which appeared at widely separated dates, but which were exhibited together at the last Salon de l'Aeronautique. The four propellers are the Chaviere variable pitch propeller, the variable pitch propeller used on the Clement Bayard dirigible, the variable pitch propeller used on Italian dirigibles, and the Levasseur variable pitch propeller.

  18. 78 FR 41283 - Airworthiness Directives; Dowty Propellers Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... service information at the FAA, Engine & Propeller Directorate, 12 New England Executive Park, Burlington... Engineer, Boston Aircraft Certification Office, FAA, Engine and Propeller Directorate, 12 New England... Engineer, Boston Aircraft Certification Office, FAA, Engine and Propeller Directorate, 12 New England...

  19. Survey of Constellation-Era LOX/Methane Development Activities and Future Development Needs

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Stiegemeier, Benjamin; Greene, Sandra Elam; Hurlbert, Eric A.

    2017-01-01

    NASA formed the Constellation Program in 2005 to achieve the objectives of maintaining American presence in low-Earth orbit, returning to the moon for purposes of establishing an outpost, and laying the foundation to explore Mars and beyond in the first half of the 21st century. The Exploration Technology Development Program (ETDP) was formulated to address the technology needs to address Constellation architecture decisions. The Propellants and Cryogenic Advanced Development (PCAD) project was tasked with risk mitigation of specific propulsion related technologies to support ETDP. Propulsion systems were identified as critical technologies owing to the high gear-ratio of lunar Mars landers Cryogenic propellants offer performance advantage over storables (NTOMMH) Mass savings translate to greater payload capacity In-situ production of propellant an attractive feature; methane and oxygen identified as possible Martian in-situ propellants New technologies were required to meet more difficult missions High performance LOX/LH2 deep throttle descent engines High performance LOX/LCH4 ascent main and reaction control system (RCS) engines The PCAD project sought to provide those technologies through Reliable ignition pulse RCS Fast start High efficiency engines Stable deep throttling.

  20. Integrated hydrogen/oxygen technology applied to auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Gerhardt, David L.

    1990-01-01

    The purpose of the Integrated Hydrogen/Oxygen Technology (IHOT) study was to determine if the vehicle/mission needs and technology of the 1990's support development of an all cryogenic H2/O2 system. In order to accomplish this, IHOT adopted the approach of designing Integrated Auxiliary Propulsion Systems (IAPS) for a representative manned vehicle; the advanced manned launch system. The primary objectives were to develop IAPS concepts which appeared to offer viable alternatives to state-of-the-art (i.e., hypergolic, or earth-storable) APS approaches. The IHOT study resulted in the definition of three APS concepts; two cryogenic IAPS, and a third concept utilizing hypergolic propellants.

  1. "Powdered Magnesium: Carbon Dioxide Combustion for Mars Propulsion"

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ron J.

    2005-01-01

    Powdered magnesium - carbon dioxide combustion is examined as a potential in-situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bi-propellants, it remains attractive as a potential basis for future Martian mobility systems since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in-situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multi-phase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  2. Teaching Earth Signals Analysis Using the Java-DSP Earth Systems Edition: Modern and Past Climate Change

    ERIC Educational Resources Information Center

    Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.

    2014-01-01

    Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…

  3. Effect of alternative postharvest control treatments on the storability of 'Golden Delicious' apples.

    PubMed

    Moscetti, Roberto; Carletti, Letizia; Monarca, Danilo; Cecchini, Massimo; Stella, Elisabetta; Massantini, Riccardo

    2013-08-30

    Apples are subject to a high degree of fungal diseases, but the use of synthetic fungicides has been questioned because of public safety concerns, social rejection, and the development of resistance in pathogens. Thus, development of new postharvest treatments against apple fungal pathogens is necessary. Most studies have reported their effectiveness, but not all report the effects on the quality and storability of the fruit. In this study, the effects of physical (hot water), chemical (quercetin) and biological (yeast antagonist) microfungal control on the quality of 'Golden Delicious' apple during storage at 2 ± 0.5 °C, and 90 ± 2% of relative humidity, for 2 months were investigated and compared. Heat-treated apples exhibited peel fruit damage (surface browning and internal breakdown disorders) and promoted ripening in the fruit. The quercetin caustic spray caused the development of peel chemical burn in all treated fruit. Both yeast antagonist and quercetin treatments did not affect the apple ripening process but stimulated an increase in ethylene production and in respiratory activity. The data indicated that the effects on quality and storability were dependent on the method of treatment used, and antagonistic yeast was the best microfungal control because of it did not cause any disorders or negative effects on apple quality during storage. © 2013 Society of Chemical Industry.

  4. In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission

    NASA Astrophysics Data System (ADS)

    Mueller, Paul; Durrant, Tom

    The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the

  5. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  6. Project Minerva: A low cost manned Mars mission based on indigenous propellant production

    NASA Technical Reports Server (NTRS)

    Beder, David; Bryan, Richard; Bui, Tuyen; Caviezel, Kelly; Cinnamon, Mark; Daggert, Todd; Folkers, Mike; Fornia, Mark; Hanks, Natasha; Hamilton, Steve

    1992-01-01

    Project Minerva is a low-cost manned Mars mission designed to deliver a crew of four to the Martian surface using only two sets of two launches from the Kennedy Space Center. Key concepts which make this mission realizable are the use of near-term technologies and in-situ propellant production, following the scenario originally proposed by R. Zubrin. The first set of launches delivers two unmanned payloads into low Earth orbit (LEO): the first payload consists of an Earth Return Vehicle (ERV), a propellant production plant, and a set of robotic vehicles; the second payload consists of the trans-Mars injection (TMI) upper stage. In LEO, the two payloads are docked and the configuration is injected into a Mars transfer orbit. The landing on Mars is performed with the aid of multiple aerobraking maneuvers. On the Martian surface, the propellant production plant uses a Sabatier/electrolysis type process to combine nine tons of hydrogen with carbon dioxide from the Martian atmosphere to produce over a hundred tons of liquid oxygen and liquid methane, which are later used as the propellants for the rover expeditions and the manned return journey of the ERV. The systems necessary for the flights to and from Mars, as well as those needed for the stay on Mars, are discussed. These systems include the transfer vehicle design, life support, guidance and communications, rovers and telepresence, power generation, and propellant manufacturing. Also included are the orbital mechanics, the scientific goals, and the estimated mission costs.

  7. Liquid Acquisition Strategies for Exploration Missions: Current Status 2010

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2010-01-01

    NASA is currently developing the propulsion system concepts for human exploration missions to the lunar surface. The propulsion concepts being investigated are considering the use of cryogenic propellants for the low gravity portion of the mission, that is, the lunar transit, lunar orbit insertion, lunar descent and the rendezvous in lunar orbit with a service module after ascent from the lunar surface. These propulsion concepts will require the vapor free delivery of the cryogenic propellants stored in the propulsion tanks to the exploration vehicles main propulsion system (MPS) engines and reaction control system (RCS) engines. Propellant management devices (PMD s) such as screen channel capillary liquid acquisition devices (LAD s), vanes and sponges currently are used for earth storable propellants in the Space Shuttle Orbiter OMS and RCS applications and spacecraft propulsion applications but only very limited propellant management capability exists for cryogenic propellants. NASA has begun a technology program to develop LAD cryogenic fluid management (CFM) technology through a government in-house ground test program of accurately measuring the bubble point delta-pressure for typical screen samples using LO2, LN2, LH2 and LCH4 as test fluids at various fluid temperatures and pressures. This presentation will document the CFM project s progress to date in concept designs, as well ground testing results.

  8. Propeller Study. Part 2: the Design of Propellers for Minimum Noise

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    The design of propellers which are efficient and yet produce minimum noise requires accurate determinations of both the flow over the propeller. Topics discussed in relating aerodynamic propeller design and propeller acoustics include the necessary approximations and assumptions involved, the coordinate systems and their transformations, the geometry of the propeller blade, and the problem formulations including the induced velocity, required in the determination of mean lines of blade sections, and the optimization of propeller noise. The numerical formulation for the lifting-line model are given. Some applications and numerical results are included.

  9. In-Situ Propellant Supplied Lunar Lander Concept

    NASA Astrophysics Data System (ADS)

    Donahue, Benjamin; Maulsby, Curtis

    2008-01-01

    Future NASA and commercial Lunar missions will require innovative spacecraft configurations incorporating reliable, sustainable propulsion, propellant storage, power and crew life support technologies that can evolve into long duration, partially autonomous systems that can be used to emplace and sustain the massive supplies required for a permanently occupied lunar base. Ambitious surface science missions will require efficient Lunar transfer systems to provide the consumables, science equipment, energy generation systems, habitation systems and crew provisions necessary for lengthy tours on the surface. Lunar lander descent and ascent stages become significantly more efficient when they can be refueled on the Lunar surface and operated numerous times. Landers enabled by Lunar In-Situ Propellant Production (ISPP) facilities will greatly ease constraints on spacecraft mass and payload delivery capability, and may operate much more affordably (in the long term) then landers that are dependant on Earth supplied propellants. In this paper, a Lander concept that leverages ISPP is described and its performance is quantified. Landers, operating as sortie vehicles from Low Lunar Orbit, with efficiencies facilitated by ISPP will enable economical utilization and enhancements that will provide increasingly valuable science yields from Lunar Bases.

  10. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  11. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    NASA Astrophysics Data System (ADS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Ali, Wan Khairuddin Wan

    2012-09-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  12. High Pressure, Earth-Storable Rocket Technology. Volume 3; Appendices C and D

    NASA Technical Reports Server (NTRS)

    Jassowski, D. M.

    1997-01-01

    The effect of elevated chamber pressure on combustion efficiency and heat transfer has been determined at the 100 lbf (445 N) thrust level for nitrogen tetroxide propellants. Measurements were made up to 500 psia (3.45 MPa) with testbed hardware; tests at 100 psia (0.690 MPa) and 250 psia (1.72 MPa) were made with radiation-cooled rhenium chambers. The first task of the program served to determine desirable thruster applications and operating conditions: high total impulse, i.e. communication satellite or spacecraft bus axial engines, at chamber pressures up to 250 psia (1.72 MPa) pressure-fed, or up to 500 psia (3.45 MPa) pump-fed. The hardware modifications and testing required to obtain the data were determined in Task 2, which included design-support hot fire tests; supplemental hardware, including a 250 psia (1.72 MPa) Pc rhenium chamber and a 20% fuel-film cooled platelet injector was fabricated in Task 3. Testing showed that satisfactory operation of Ir-Re radiation chambers is assured at pressures up to 250 psia and may be possible up to 500. The heat transfer data obtained show good correlation with throat Reynolds number and are generally under values given by the simplified Bartz equation; chambers equilibrium temperatures match predicted values. Preliminary optimization of trip configuration and mixture ratio were made; Isp performance from thrust measurements was within 1% of predicted values. Stability, compatibility, and front-end thermal management were determined to be satisfactory.

  13. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    NASA Technical Reports Server (NTRS)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  14. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  15. Design and Testing of Demonstration Unit for Maintaining Zero Cryogenic Propellant Boiloff

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    2000-01-01

    Launching of cryogenic propellants into earth orbit and beyond is very expensive. Each additional pound of payload delivered to low earth orbit requires approximately 35 pounds of additional weight at liftoff. There is therefore a critical need to minimize boiloff in spacecraft long term missions/systems. Various methods have been used to date, including superinsulation and thermodynamic vents to reduce boiloff. A system was designed and tested as described herein that will totally eliminate boiloff. This system is based on a closed-loop, two-stage pulse tube refrigerator with a net refrigeration of four watts at 15k for the recovery of hydrogen propellant. It is designed to operate at 30 Hz which is an order of magnitude higher than other typical pulse tube refrigerators. This high frequency allows the use of a much smaller, lighter weight compressor, This paper describes the system design, fabrication and test results.

  16. RD860 and RD860L Engines with Deep Thrust Throttling and a High Technology Readiness Level (TRL)

    NASA Astrophysics Data System (ADS)

    Prokopchuk, O. O.; Shul'ga, V. A.; Dibrivnyi, O. V.; Kukhta, A. S.

    2018-04-01

    To solve the problems of delivering payloads to Mars surface and returning them to the orbit, liquid rocket engines, operating on storable propellants with deep throttling possibility, are needed, besides having high energy-mass characteristics.

  17. LO2/LH2 propulsion for outer planet orbiter spacecraft

    NASA Technical Reports Server (NTRS)

    Garrison, P. W.; Sigurdson, K. B.

    1983-01-01

    Galileo class orbiter missions (750-1500 kg) to the outer planets require a large postinjection delta-V for improved propulsion performance. The present investigation shows that a pump-fed low thrust LO2/LH2 propulsion system can provide a significantly larger net on-orbit mass for a given delta-V than a state-of-the-art earth storable, N2O4/monomethylhydrazine pressure-fed propulsion system. A description is given of a conceptual design for a LO2/LH2 pump-fed propulsion system developed for a Galileo class mission to the outer planets. Attention is given to spacecraft configuration, details regarding the propulsion system, the thermal control of the cryogenic propellants, and aspects of mission performance.

  18. Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Howard, Robert L.

    2012-01-01

    Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.

  19. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.

  20. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate).

    PubMed

    Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun

    2017-10-01

    Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  2. An ISRU Propellant Production System to Fully Fuel a Mars Ascent Vehicle

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie E.; Paz, Aaron

    2017-01-01

    In-Situ Resource Utilization (ISRU) will enable the long term presence of humans beyond low earth orbit. Since 2009, oxygen production from the Mars atmosphere has been baselined as an enabling technology for Mars human exploration by NASA. However, using water from the Martian regolith in addition to the atmospheric CO2 would enable the production of both liquid Methane and liquid Oxygen, thus fully fueling a Mars return vehicle. A case study was performed to show how ISRU can support NASA's Evolvable Mars Campaign (EMC) using methane and oxygen production from Mars resources. A model was built and used to generate mass and power estimates of an end-to-end ISRU system including excavation and extraction water from Mars regolith, processing the Mars atmosphere, and liquefying the propellants. Even using the lowest yield regolith, a full ISRU system would weigh 1.7 mT while eliminating the need to transport 30 mT of ascent propellants from earth.

  3. In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Howell, Joe T.; Henley, Mark

    2006-01-01

    The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.

  4. Moisture Adsorption Isotherm and Storability of Hazelnut Inshells and Kernels Produced in Oregon, USA.

    PubMed

    Jung, Jooyeoun; Wang, Wenjie; McGorrin, Robert J; Zhao, Yanyun

    2018-02-01

    Moisture adsorption isotherms and storability of dried hazelnut inshells and kernels produced in Oregon were evaluated and compared among cultivars, including Barcelona, Yamhill, and Jefferson. Experimental moisture adsorption data fitted to Guggenheim-Anderson-de Boer (GAB) model, showing less hygroscopic properties in Yamhill than other cultivars of inshells and kernels due to lower content of carbohydrate and protein, but higher content of fat. The safe levels of moisture content (MC, dry basis) of dried inshells and kernels for reaching kernel water activity (a w ) ≤0.65 were estimated using the GAB model as 11.3% and 5.0% for Barcelona, 9.4% and 4.2% for Yamhill, and 10.7% and 4.9% for Jefferson, respectively. Storage conditions (2 °C at 85% to 95% relative humidity [RH], 10 °C at 65% to 75% RH, and 27 °C at 35% to 45% RH), times (0, 4, 8, or 12 mo), and packaging methods (atmosphere vs. vacuum) affected MC, a w , bioactive compounds, lipid oxidation, and enzyme activity of dried hazelnut inshells or kernels. For inshells packaged at woven polypropylene bag, MC and a w of inshells and kernels (inside shells) increased at 2 and 10 °C, but decreased at 27 °C during storage. For kernels, lipid oxidation and polyphenol oxidase activity also increased with extended storage time (P < 0.05), and MC and a w of vacuum packaged samples were more stable during storage than those atmospherically packaged ones. Principal component analysis showed correlation of kernel qualities with storage condition, time, and packaging method. This study demonstrated that the ideal storage condition or packaging method varied among cultivars due to their different moisture adsorption and physicochemical and enzymatic stability during storage. Moisture adsorption isotherm of hazelnut inshells and kernels is useful for predicting the storability of nuts. This study found that water adsorption and storability varied among the different cultivars of nuts, in which Yamhill was

  5. A Computational Investigation for Determining the Natural Frequencies and Damping Effects of Diaphragm-Implemented Spacecraft Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Lenahen, Brian; Bernier, Adrien; Gangadharan, Sathya; Sudermann, James; Marsell, Brandon

    2012-01-01

    Spin-stabilization maneuvers are typically performed by spacecraft entering low-earth orbit to maintain attitude stability. These maneuvers induce periodic fluid movement inside the spacecraft's propellant tank known as fuel slosh, which is responsible for creating forces and moments on the sidewalls of the propellant tank. These forces and moments adversely affect spin-stabilization and risk jeopardizing the mission of the spacecraft. Therefore, propellant tanks are designed with propellant management devices (PMD's) such as barnes or diaphragms which work to counteract the forces and moments associated with fuel slosh. However, despite the presence of PMD's, the threat of spin-stabilization interference still exists should the propellant tank be excited at its natural frequency. When the fluid is excited at its natural frequency, the forces and moments acting on the propellant tank are amplified and may result in destabilizing the spacecraft. Thus, a computational analysis is conducted concerning diaphragm-implemented propellant tanks excited at their natural frequencies. Using multi-disciplinary computational fluid dynamics (CFD) software, computational models are developed to reflect potential scenarios that spacecraft propellant tanks could experience. By simulating the propellant tank under a wide array of parameters and variables including fill-level, gravity and diaphragm material and shape, a better understanding is gained as to how these parameters individually and collectively affect liquid propellant tanks and ultimately, spacecraft attitude dynamics.

  6. ASRM propellant and igniter propellant development and process scale-up

    NASA Technical Reports Server (NTRS)

    Landers, L. C.; Booth, D. W.; Stanley, C. B.; Ricks, D. W.

    1993-01-01

    A program of formulation and process development for ANB-3652 motor propellant was conducted to validate design concepts and screen critical propellant composition and process parameters. Design experiments resulted in the selection of a less active grade of ferric oxide to provide better burning rate control, the establishment of AP fluidization conditions that minimized the adverse effects of particle attrition, and the selection of a higher mix temperature to improve mechanical properties. It is shown that the propellant can be formulated with AP and aluminum powder from various producers. An extended duration pilot plant run demonstrated stable equipment operation and excellent reproducibility of propellant properties. A similar program of formulation and process optimization culminating in large batch scaleup was conducted for ANB-3672 igniter propellant. The results for both ANB-3652 and ANB 37672 confirmed that their processing characteristics are compatible with full-scale production.

  7. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  8. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  9. Advanced Small Rocket Chambers. Basic Program and Option 2: Fundamental Processes and Material Evaluation

    NASA Technical Reports Server (NTRS)

    Jassowski, Donald M.

    1993-01-01

    Propellants, chamber materials, and processes for fabrication of small high performance radiation cooled liquid rocket engines were evaluated to determine candidates for eventual demonstration in flight-type thrusters. Both storable and cryogenic propellant systems were considered. The storable propellant systems chosen for further study were nitrogen tetroxide oxidizer with either hydrazine or monomethylhydrazine as fuel. The cryogenic propellants chosen were oxygen with either hydrogen or methane as fuel. Chamber material candidates were chemical vapor deposition (CVD) rhenium protected from oxidation by CVD iridium for the chamber hot section, and film cooled wrought platinum-rhodium or regeneratively cooled stainless steel for the front end section exposed to partially reacted propellants. Laser diagnostics of the combustion products near the hot chamber surface and measurements at the surface layer were performed in a collaborative program at Sandia National Laboratories, Livermore, CA. The Material Sample Test Apparatus, a laboratory system to simulate the combustion environment in terms of gas and material temperature, composition, and pressure up to 6 Atm, was developed for these studies. Rocket engine simulator studies were conducted to evaluate the materials under simulated combustor flow conditions, in the diagnostic test chamber. These tests used the exhaust species measurement system, a device developed to monitor optically species composition and concentration in the chamber and exhaust by emission and absorption measurements.

  10. Engine system assessment study using Martian propellants

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis; Jacobs, Mark; Scheil, Christine; Collins, John

    1992-01-01

    A top-level feasibility study was conducted that identified and characterized promising chemical propulsion system designs which use two or more of the following propellant combinations: LOX/H2, LOX/CH4, and LOX/CO. The engine systems examined emphasized the usage of common subsystem/component hardware where possible. In support of this study, numerous mission scenarios were characterized that used various combinations of Earth, lunar, and Mars propellants to establish engine system requirements to assess the promising engine system design concept examined, and to determine overall exploration leverage of such systems compared to state-of-the-art cryogenic (LOX/H2) propulsion systems. Initially in the study, critical propulsion system technologies were assessed. Candidate expander and gas generator cycle LOX/H2/CO, LOX/H2/CH4, and LOX/CO/CH4 engine system designs were parametrically evaluated. From this evaluation baseline, tripropellant Mars Transfer Vehicle (MTV) LOX cooled and bipropellant Lunar Excursion Vehicle (LEV) and Mars Excursion Vehicle (MEV) engine systems were identified. Representative tankage designs for a MTV were also investigated. Re-evaluation of the missions using the baseline engine design showed that in general the slightly lower performance, smaller, lower weight gas generator cycle-based engines required less overall mission Mars and in situ propellant production (ISPP) infrastructure support compared to the larger, heavier, higher performing expander cycle engine systems.

  11. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 23.905 Section 23.905...

  12. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 23.905 Section 23.905...

  13. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 23.905 Section 23.905...

  14. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 23.905 Section 23.905...

  15. 14 CFR 23.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational... tests, that the propeller is capable of continuous safe operation. (h) All engine cowling, access doors... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 23.905 Section 23.905...

  16. Tanker Argus: Re-supply for a LEO Cryogenic Propellant Depot

    NASA Astrophysics Data System (ADS)

    St. Germain, B.; Olds, J.; Kokan, T.; Marcus, L.; Miller, J.

    The Argus reusable launch vehicle (RLV) concept is a single-stage-to-orbit conical, winged bodied vehicle powered by two liquid hydrogen/liquid oxygen supercharged ejector ramjets. The 3rd generation Argus launch vehicle utilizes advanced vehicle technologies along with a Maglev launch assist track. A tanker version of the Argus RLV is envisioned to provide an economical means of providing liquid fuel and oxidizer to an orbiting low-Earth orbit (LEO) propellant depot. This depot could then provide propellant to various spacecraft, including reusable orbital transfer vehicles used to ferry space solar power satellites to geo-stationary orbit. Two different tanker Argus configurations were analyzed. The first simply places additional propellant tanks inside the payload bay of an existing Argus reusable launch vehicle. The second concept is a modified Argus RLV in which the payload bay is removed and the vehicle propellant tanks are stretched to hold extra propellant. An iterative conceptual design process was used to design both Argus vehicles. This process involves various disciplines including aerodynamics, trajectory analysis, weights &structures, propulsion, operations, safety, and cost/economics. The payload bay version of tanker Argus, which has a gross mass of 256.3MT, is designed to deliver a 9.07MT payload to LEO. This payload includes propellant and the tank structure required to secure this propellant in the payload bay. The modified, pure tanker version of Argus has a gross mass of 218.6MT and is sized to deliver a full 9.07MT of propellant to LEO. The economic analysis performed for this study involved the calculation of many factors including the design/development and recurring costs of each vehicle. These results were used along with other economic assumptions to determine the "per kilogram" cost of delivering propellant to orbit. The results show that for a given flight rate the "per kilogram" cost is cheaper for the pure tanker version of Argus

  17. LES of propeller crashback

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2014-11-01

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield a negative thrust. In crashback, the freestream interacts with the strong reverse flow from the propeller leading to massive flow separation and highly unsteady loads. We have used Large-Eddy Simulation (LES) in recent years to accurately simulate the flowfield in crashback around a stand-alone open propeller, hull-attached (posterior alone) open propeller and a ducted propeller with stator blades. This talk will discuss our work towards LES of crashback inclusive of the entire hull. The results will be compared to available experimental data, and the flow physics will be discussed. This work is supported by the Office of Naval Research.

  18. The Hybrid Propellant Module (HPM): A New Concept for Space Transfer in the Earth's Neighborhood and Beyond

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Mazanek, Daniel D.

    2001-01-01

    The safe, affordable and effective transfer of ever-larger payloads and eventually personnel beyond Low Earth Orbit (LEO) is a major challenge facing future commercial development and human exploration of space. Without reusable systems, sustained exploration or large scale development beyond LEO appears to be economically non-viable. However, reusable systems must be capable of both good fuel efficiency and "high utilization of capacity", or else economic costs will remain unacceptably high. Various options exist that can provide high fuel efficiency - for example, Solar Electric Propulsion Systems (SEPS) - but only at the cost of low thrust and concomitant long transit times. Chemical propulsion systems offer the potential for high thrust and short transit times - including both cryogenic and non-cryogenic options - but only at the cost of relatively low specific impulse (Isp). Nuclear thermal propulsion systems offer relatively good thrust-to-weight and Isp - but involve public concerns that may be insurmountable for all except the most-critical of public purposes. Fixed infrastructures have been suggested as one approach to solving this challenge; for example, rotating tether approaches. However, these systems tend to suffer from high initial costs or unacceptable operational constraints. A new concept has been identified - the Hybrid Propellant Module (HPM) - that integrates the best features of both chemical and solar electric transportation architectures. The HPM approach appears to hold promise of solving the issues associated with other approaches, opening a new family of capabilities for future space exploration and development of near-Earth space and beyond. This paper provides a summary overview of the challenge of Earth neighborhood transportation and discusses how various systems concepts might be applied to meet the needs of these architectures. The paper describes a new approach, the HPM, and illustrates the application of the concept for a typical

  19. High-Performance Bipropellant Engine

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.; Schneider, Steven J.

    1999-01-01

    TRW, under contract to the NASA Lewis Research Center, has successfully completed over 10 000 sec of testing of a rhenium thrust chamber manufactured via a new-generation powder metallurgy. High performance was achieved for two different propellants, N2O4- N2H4 and N2O4 -MMH. TRW conducted 44 tests with N2O4-N2H4, accumulating 5230 sec of operating time with maximum burn times of 600 sec and a specific impulse Isp of 333 sec. Seventeen tests were conducted with N2O4-MMH for an additional 4789 sec and a maximum Isp of 324 sec, with a maximum firing duration of 700 sec. Together, the 61 tests totalled 10 019 sec of operating time, with the chamber remaining in excellent condition. Of these tests, 11 lasted 600 to 700 sec. The performance of radiation-cooled rocket engines is limited by their operating temperature. For the past two to three decades, the majority of radiation-cooled rockets were composed of a high-temperature niobium alloy (C103) with a disilicide oxide coating (R512) for oxidation resistance. The R512 coating practically limits the operating temperature to 1370 C. For the Earth-storable bipropellants commonly used in satellite and spacecraft propulsion systems, a significant amount of fuel film cooling is needed. The large film-cooling requirement extracts a large penalty in performance from incomplete mixing and combustion. A material system with a higher temperature capability has been matured to the point where engines are being readied for flight, particularly the 100-lb-thrust class engine. This system has powder rhenium (Re) as a substrate material with an iridium (Ir) oxidation-resistant coating. Again, the operating temperature is limited by the coating; however, Ir is capable of long-life operation at 2200 C. For Earth-storable bipropellants, this allows for the virtual elimination of fuel film cooling (some film cooling is used for thermal control of the head end). This has resulted in significant increases in specific impulse performance

  20. Low-energy N-ion beam biotechnology application in the induction of Thai jasmine rice mutant with improved seed storability

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Techarang, Jiranat; Yu, Liangdeng; Phanchaisri, Boonrak

    2018-06-01

    Low-energy heavy-ion beam is a novel biotechnology used for mutation induction in plants. We used a low-energy N-ion beam to induce mutations in Thai jasmine rice (Oryza sativa L. cv. KDML 105) to improve the yield and seed quality. Seeds of BKOS6, a Thai jasmine rice mutant previously induced by ion beams, were re-bombarded with 60-kV-accelerated N-ions (N++N2+) to fluences of 1-2 × 1016 ions/cm2. The resulting mutant, named HyKOS21, exhibited photoperiod insensitivity, semi-dwarfness, and high yield potential. Seed storability of the mutant was studied in natural and accelerated ageing conditions and compared to that of KDML 105 and six other Thai rice varieties. In both testing conditions, HyKOS21 mutant had the highest seed storability among the tested varieties. After storage in the natural condition for 18 months, HyKOS21 had a seed germination percentage nearly two times as that of the original KDML 105. Biochemical analysis showed that the lipid peroxidation level of the mutant seeds was the lowest among those of the tested varieties. Furthermore, an expression analysis of genes encoding lipoxygenase isoenzyme (lox1, lox2, and lox3) revealed that the mutant lacked expression of lox1 and lox2 and expressed only lox3 in seeds. These results may explain the improved seed longevity of the mutant after storage. This work provides further evidence of the modification of biological materials using a low-energy ion beam to produce rice mutants with improved yield and seed storability. The benefits of this technology, to create new varieties with improved values, could serve for local economic development.

  1. 75 FR 7934 - Airworthiness Directives; McCauley Propeller Systems 1A103/TCM Series Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... with cracks that do not meet acceptable limits, and rework of propellers with cracks that meet..., replacement of propellers with cracks that do not meet acceptable limits, and rework of propellers with cracks... propeller hub, removal from service of propellers with cracks that do not meet acceptable limits, and rework...

  2. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems

  3. Nitramine smokeless propellant research

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. P.

    1977-01-01

    A transient ballistics and combustion model is derived to represent the closed vessel experiment that is widely used to characterize propellants. A computer program is developed to solve the time-dependent equations, and is applied to explain aspects of closed vessel behavior. In the case of nitramine propellants the cratering of the burning surface associated with combustion above break-point pressures augments the effective burning rate as deduced from the closed vessel experiment. Low pressure combustion is significantly affected by the ignition process and, in the case of nitramine propellants, by the developing and changing surface structure. Thus, burning rates deduced from the closed vessel experiment may or may not agree with those measured in the equilibrium strand burner. Series of T burner experiments are performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP)propellants. Although ash produced by more fuel rich propellants could have provided mechanical suppression, results from clean-burning propellants permit the conclusion that HMX reduces the acoustic driving.

  4. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  5. Portable propellant cutting assembly, and method of cutting propellant with assembly

    NASA Technical Reports Server (NTRS)

    Sharp, Roger A. (Inventor); Hoskins, Shawn W. (Inventor); Payne, Brett D. (Inventor)

    2002-01-01

    A propellant cutting assembly and method of using the assembly to cut samples of solid propellant in a repeatable and consistent manner is disclosed. The cutting assembly utilizes two parallel extension beams which are shorter than the diameter of a central bore of an annular solid propellant grain and can be loaded into the central bore. The assembly is equipped with retaining heads at its respective ends and an adjustment mechanism to position and wedge the assembly within the central bore. One end of the assembly is equipped with a cutting blade apparatus which can be extended beyond the end of the extension beams to cut into the solid propellant.

  6. LOX/Methane In-Space Propulsion Systems Technology Status and Gaps

    NASA Technical Reports Server (NTRS)

    Klem, Mark D.

    2017-01-01

    Human exploration architecture studies have identified liquid oxygen (LOX)Methane (LCH4) as a strong candidate for both interplanetary and descent ascent propulsion solutions. Significant research efforts into methane propulsion have been conducted for over 50 years, ranging from fundamental combustion mixing efforts to rocket chamber and system level demonstrations. Over the past 15 years NASA and its partners have built upon these early activities that have demonstrated practical components and sub-systems needed to field future methane space transportation elements. These advanced development efforts have formed a foundation of LOXLCH4 propulsion knowledge that has significantly reduced the development risks of future methane based space transportation elements for human exploration beyond earth orbit. As a bipropellant propulsion system, LOXLCH4 has some favorable characteristics for long life and reusability, which are critical to lunar and Mars missions. Non-toxic, non-corrosive, self-venting, and simple to purge. No extensive decontamination process required as with toxic propellants. High vapor pressure provides for excellent vacuum ignition characteristics. Performance is better than current earth storable propellants for human scale spacecraft. Provides the capability for future Mars exploration missions to use propellants that are produced in-situ on Mars Liquid Methane is thermally similar to O2 as a cryogenic propellant, 90,111 K (LO2, LCH4 respectively) instead of the 23 K of LH2. Allows for common components and thus providing cost savings as compared to liquid hydrogen (LH2). Due to liquid methane having a 6x higher density than hydrogen, it can be stored in much smaller volumes. Cryogenic storage aspect of these propellants needs to be addressed. Passive techniques using shielding and orientations to deep space Refrigeration may be required to maintain both oxygen and methane in liquid forms

  7. Propellant Mass Fraction Calculation Methodology for Launch Vehicles and Application to Ares Vehicles

    NASA Technical Reports Server (NTRS)

    Holt, James B.; Monk, Timothy S.

    2009-01-01

    Propellant Mass Fraction (pmf) calculation methods vary throughout the aerospace industry. While typically used as a means of comparison between candidate launch vehicle designs, the actual pmf calculation method varies slightly from one entity to another. It is the purpose of this paper to present various methods used to calculate the pmf of launch vehicles. This includes fundamental methods of pmf calculation that consider only the total propellant mass and the dry mass of the vehicle; more involved methods that consider the residuals, reserves and any other unusable propellant remaining in the vehicle; and calculations excluding large mass quantities such as the installed engine mass. Finally, a historical comparison is made between launch vehicles on the basis of the differing calculation methodologies, while the unique mission and design requirements of the Ares V Earth Departure Stage (EDS) are examined in terms of impact to pmf.

  8. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  9. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  10. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  11. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  12. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  13. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 25.905 Section 25.905...

  14. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 25.905 Section 25.905...

  15. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 25.905 Section 25.905...

  16. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 25.905 Section 25.905...

  17. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 25.905 Section 25.905...

  18. 78 FR 18255 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... engine oil leak. This proposed AD would require replacement of the propeller hydraulic bladder diaphragm. We are proposing this AD to prevent propeller hydraulic bladder diaphragm rupture, loss of engine oil, damage to the engine, and loss of the airplane. DATES: We must receive comments on this proposed AD by...

  19. Propellant Savings during Soyuz Undock from the International Space Station

    NASA Technical Reports Server (NTRS)

    Turett, Fiona

    2016-01-01

    As a vehicle continuously orbiting Earth for over a decade, the International Space Station (ISS) must be conscious of ways to conserve consumables to maximize the efficiency of cargo flights to ISS. One such consumable is propellant. As part of an ongoing effort to minimize propellant usage onboard ISS and use control moment gyroscopes as much as possible for ISS control, an effort was made in late 2014 to allow Soyuz manned vehicle undockings without requiring the use of thrusters. This method, which has been used for four Soyuz undockings, saves up to 160 kg of propellant each year. Fiona completed a B.S. is Mechanical Engienering at Washington University in St. Louis in 2009, after which she moved to Houston, TX to begin working at NASA Johnson Space Center. She currently works in the Flight Operations Directorate as an ADCO (Attitude Determination and Control Officer) flight controller and MCG (Motion Control Group) instructor. Her responsibilities include operating the motion control systems of the ISS in Mission Control, interfacing with Russian colleagues, mentoring and teaching flight controller trainees, and training astronauts for their missions to ISS.

  20. Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Kreppel, Samantha

    A scaled model of the downstream Orion service module propellant tank was constructed to asses the propellant dynamics under reduced and zero-gravity conditions. Flight and ground data from the experiment is currently being used to validate computational models of propel-lant dynamics in Orion-class propellant tanks. The high fidelity model includes the internal structures of the propellant management device (PMD) and the mass-gauging probe. Qualita-tive differences between experimental and CFD data are understood in terms of fluid dynamical scaling of inertial effects in the scaled system. Propellant configurations in zero-gravity were studied at a range of fill-fractions and the settling time for various docking maneuvers was determined. A clear understanding of the fluid dynamics within the tank is necessary to en-sure proper control of the spacecraft's flight and to maintain safe operation of this and future service modules. Understanding slosh dynamics in partially-filled propellant tanks is essential to assessing spacecraft stability.

  1. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  2. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  3. Propeller flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.

    1982-01-01

    Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.

  4. Powdered Magnesium-Carbon Dioxide Rocket Combustion Technology for In Situ Mars Propulsion

    NASA Technical Reports Server (NTRS)

    Foote, J. P.; Litchford, R. J.

    2007-01-01

    Powdered magnesium (Mg) carbon dioxide (CO2) combustion is examined as a potential in situ propellant combination for Mars propulsion. Although this particular combination has relatively low performance in comparison to traditional bipropellants, it remains attractive as a potential basis for future martian mobility systems, since it could be partially or wholly manufactured from indigenous planetary resources. As a means of achieving high mobility during long-duration Mars exploration missions, the poorer performing in situ combination can, in fact, become a superior alternative to conventional storable propellants, which would need to be entirely transported from Earth. Thus, the engineering aspects of powdered metal combustion devices are discussed including transport/injection of compacted powder, ignition, combustion efficiency, combustion stability, dilution effects, lean burn limits, and slag formation issues. It is suggested that these technological issues could be effectively addressed through a multiphase research and development effort beginning with basic feasibility tests using an existing dump configured atmospheric pressure burner. Follow-on phases would involve the development and testing of a pressurized research combustor and technology demonstration tests of a prototypical rocket configuration.

  5. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design

    NASA Astrophysics Data System (ADS)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  6. Recent Advancements in Propellant Densification

    NASA Technical Reports Server (NTRS)

    McNelis, Nancy B.; Tomsik, Thomas M.

    1998-01-01

    Next-generation launch vehicles demand several technological improvements to achieve lower cost and more reliable access to space. One technology area whose performance gains may far exceed others is densified propellants. The ideal rocket engine propellant is characterized by high specific impulse, high density, and low vapor pressure. A propellant combination of liquid hydrogen and liquid oxygen (LH2/LOX) is one of the highest performance propellants, but LH2 stored at standard conditions has a relatively low density and high vapor pressure. Propellant densification can significantly improve this propellant's properties relative to vehicle design and engine performance. Vehicle performance calculations based on an average of existing launch vehicles indicate that densified propellants may allow an increase in payload mass of up to 5 percent. Since the NASA Lewis Research Center became involved with the National Aerospace Plane program in the 1980's, it has been leading the way in making densified propellants a viable fuel for next-generation launch vehicles. Lewis researchers have been working to provide a method and critical data for continuous production of densified hydrogen and oxygen.

  7. Performance optimization of marine propellers

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Sup; Choi, Young-Dal; Ahn, Byoung-Kwon; Shin, Myoung-Sup; Jang, Hyun-Gil

    2010-12-01

    Recently a Wide Chord Tip (WCT) propeller has been developed and applied to a commercial ship by STX Offshore & Shipbuilding. It is reported that the WCT propeller significantly reduces pressure fluctuations and also ship's noise and vibration. On the sea trial, vibration magnitude in the accommodations at NCR was measured at 0.9mm/sec which is only 10% of international allowable magnitude of vibration (9mm/sec). In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

  8. Mobile propeller dynamometer validation

    NASA Astrophysics Data System (ADS)

    Morris, Mason Wade

    With growing interest in UAVs and OSU's interest in propeller performance and manufacturing, evaluating UAV propeller and propulsion system performance has become essential. In attempts to evaluate these propellers a mobile propeller dynamometer has been designed, built, and tested. The mobile dyno has been designed to be cost effective through the ability to load it into the back of a test vehicle to create simulated forward flight characteristics. This allows much larger propellers to be dynamically tested without the use of large and expensive wind tunnels. While evaluating the accuracy of the dyno, several improvements had to be made to get accurate results. The decisions made to design and improve the mobile propeller dyno will be discussed along with attempts to validate the dyno by comparing its results against known sources. Another large part of assuring the accuracy of the mobile dyno is determining if the test vehicle will influence the flow going into the propellers being tested. The flow into the propeller needs to be as smooth and uniform as possible. This is determined by characterizing the boundary layer and accelerated flow over the vehicle. This evaluation was accomplished with extensive vehicle aerodynamic measurements with the use of full-scale tests using a pitot-rake and the actual test vehicle. Additional tests were conducted in Oklahoma State University's low speed wind tunnel with a 1/8-scale model using qualitative flow visualization with smoke. Continuing research on the mobile dyno will be discussed, along with other potential uses for the dyno.

  9. Advanced Chemical Propulsion

    NASA Technical Reports Server (NTRS)

    Alexander, Leslie, Jr.

    2006-01-01

    Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.

  10. Long Life Testing of Oxide-Coated Iridium/Rhenium Rockets

    NASA Technical Reports Server (NTRS)

    Reed, Brian D.

    1995-01-01

    22-N class rockets, composed of a rhenium (Re) substrate, an iridium (Ir) coating, and an additional composite coating consisting of Ir and a ceramic oxide, were tested on gaseous oxygen/gaseous hydrogen (GO2/GH2) propellants. Two rockets were tested, one for nearly 39 hours at a nominal mixture ratio (MR) of 4.6 and chamber pressure (Pc) of 469 kPa, and the other for over 13 hours at a nominal MR of 5.8 and 621 kPa Pc. Four additional Ir/Re rockets, with a composite Ir-oxide coating fabricated using a modified process, were also tested, including one for 1.3 hours at a nominal MR of 16.7 and Pc of 503 kPa. The long lifetimes demonstrated on low MR GO2/GH2 suggest greatly extended chamber lifetimes (tens of hours) in the relatively low oxidizing combustion environments of Earth storable propellants. The oxide coatings could also serve as a protective coating in the near injector region, where a still-mixing flowfield may cause degradation of the Ir layer. Operation at MR close to 17 suggests that oxide-coated Ir/Re rockets could be used in severely oxidizing combustion environments, such as high MR GO2/GH2, oxygen/hydrocarbon, and liquid gun propellants.

  11. Propellers in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2013-12-01

    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~<500m in size) have been indirectly identified in Saturn's A ring through their propeller signature in the images. Furthermore, recent Cassini observations indicate the possible existence of objects embedded even in Saturn's B and C ring. In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B

  12. Special sliding door with storable handrail to support senior and handicapped persons to walk by themselves

    NASA Astrophysics Data System (ADS)

    Saitou, K.; Noda, N.-A.; Sano, Y.; Takase, Y.; Murai, K.; Wang, Z. F.; Li, S. Q.; Liu, X.; Tanaka, H.; Kubo, Y.

    2018-06-01

    In this paper, special sliding door is designed in order to support senior and handicapped persons to walk by themselves in hospitals and nursing facilities. This semiautomatic lifting equipment is utilized for the storable handrail to make sure the bad health persons are able to open the door by using a weak force. In this study, to design the equipment of the handrail, the theoretical formula of opening force is derived. Then the simulation is performed by varying geometrical conditions. The simulation results are compared with the experiment results.

  13. Status of Liquid Oxygen/Liquid Methane Injector Study for a Mars Ascent Engine

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Ogyic; Cramer, John M.

    1998-01-01

    Preliminary mission studies for human exploration of Mars have been performed at Marshall Space Flight Center (MSFC). These studies indicate that for non-toxic chemical rockets only a cryogenic propulsion system would provide high enough performance to be considered for a Mars ascent vehicle. Although the mission is possible with Earth-supplied propellants for this vehicle, utilization of in-situ propellants is highly attractive. This option would significantly reduce the overall mass of the return vehicle. Consequently, the cost of the mission would be greatly reduced because the number and size of the Earth launch vehicle(s) needed for the mission decrease. NASA/Johnson Space Center has initiated several concept studies (2) of in-situ propellant production plants. Liquid oxygen (LOX) is the primary candidate for an in-situ oxidizer. In-situ fuel candidates include methane (CH4), ethylene (C2H4), and methanol (CH3OH). MSFC initiated a technology development program for a cryogenic propulsion system for the Mars human exploration mission in 1998. One part of this technology program is the effort described here: an evaluation of propellant injection concepts for a LOX/liquid methane Mars Ascent Engine (MAE) with an emphasis on light-weight, high efficiency, reliability, and thermal compatibility. In addition to the main objective, hot-fire tests of the subject injectors will be used to test other key technologies including light-weight combustion chamber materials and advanced ignition concepts. This state-of-the-art technology will then be applied to the development of a cryogenic propulsion system that will meet the requirements of the planned Mars sample return (MSR) mission. The current baseline propulsion system for the MSR mission uses a storable propellant combination [monomethyl hydrazine/mixed oxides of nitrogen-25(MMH/MON-25)]. However, a mission option that incorporates in-situ propellant production and utilization for the ascent stage is being carefully

  14. Considerations on propeller efficiency

    NASA Technical Reports Server (NTRS)

    Betz, A

    1928-01-01

    The propeller cannot be considered alone, but the mutual interference between propeller and airplane must be considered. These difficulties are so great when the joint action of propeller and airplane is considered, that the aerodynamic laboratory at Gottingen originally abandoned the idea of applying the efficiency conception of the test results. These difficulties and the methods by which they are overcome are outlined in this report.

  15. Propulsion Technology Needs for Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Thomas

    2007-01-01

    The objectives of currently planned exploration efforts, as well as those further in the future, require significant advancements in propulsion technologies. The current Lunar exploration architecture has set goals and mission objectives that necessitate the use of new systems and the extension of existing technologies beyond present applications. In the near term, the majority of these technologies are the result of a need to apply high performing cryogenic propulsion systems to long duration in-space applications. Advancement of cryogenic propulsion to these applications is crucial to provide higher performing propulsion systems that reduce the vehicle masses; enhance the safety of vehicle systems and ground operations; and provide a path for In-situ Resource Utilization (ISRU).Use of a LOX/LH2 main propulsion system for Lunar Lander Descent is a top priority because more conventional storable propellants are far from meeting the performance needs of the current architecture. While LOX/LH2 pump feed engines have been used in flight applications for many years, these engines have limited throttle capabilities. Engines that are capable of much greater throttling while still meeting high performance goals are a necessity to achieving exploration goals. Applications of LOX/CH4 propulsion to Lander ascent propulsion systems and reaction control systems are also if interest because of desirable performance and operations improvements over conventional storable systems while being more suitable for use of in-situ produced propellants. Within the current lunar architecture, use of cryogenic propulsion for the Earth Departure Stage and Lunar Lander elements also necessitate the need for advanced Cryogenic Fluid Management technologies. These technologies include long duration propellant storage/distribution, low-gravity propellant management, cryogenic couplings and disconnects, light weight composite tanks and support structure, and subsystem integration. In addition to

  16. Propeller Belts of Saturn

    NASA Image and Video Library

    2017-05-10

    This view from NASA's Cassini spacecraft is the sharpest ever taken of belts of the features called propellers in the middle part of Saturn's A ring. The propellers are the small, bright features that look like double dashes, visible on both sides of the wave pattern that crosses the image diagonally from top to bottom. The original discovery of propellers in this region in Saturn's rings was made using several images taken from very close to the rings during Cassini's 2004 arrival at Saturn. Those discovery images were of low resolution and were difficult to interpret, and there were few clues as to how the small propellers seen in those images were related to the larger propellers Cassini observed later in the mission. This image, for the first time, shows swarms of propellers of a wide range of sizes, putting the ones Cassini observed in its Saturn arrival images in context. Scientists will use this information to derive a "particle size distribution" for propeller moons, which is an important clue to their origins. The image was taken using the Cassini spacecraft's narrow-angle camera on April 19. The view was has an image scale of 0.24 mile (385 meters) per pixel, and was taken at a sun-ring-spacecraft angle, or phase angle, of 108 degrees. The view looks toward a point approximately 80,000 miles (129,000 kilometers) from Saturn's center. https://photojournal.jpl.nasa.gov/catalog/PIA21448

  17. The "Tokyo" consensus on propeller flaps.

    PubMed

    Pignatti, Marco; Ogawa, Rei; Hallock, Geoffrey G; Mateev, Musa; Georgescu, Alexandru V; Balakrishnan, Govindasamy; Ono, Shimpei; Cubison, Tania C S; D'Arpa, Salvatore; Koshima, Isao; Hyakusoku, Hikko

    2011-02-01

    Over the past few years, the use of propeller flaps, which base their blood supply on subcutaneous tissue or isolated perforators, has become increasingly popular. Because no consensus has yet been reached on terminology and nomenclature of the propeller flap, different and confusing uses of the term can be found in the literature. In this article, the authors report the consensus on the definition and classification of propeller flaps reached by the authors that gathered at the First Tokyo Meeting on Perforator and Propeller Flaps in June of 2009. Some peculiar aspects of the surgical technique are discussed. A propeller flap can be defined as an "island flap that reaches the recipient site through an axial rotation." The classification is based on the nourishing pedicle (subcutaneous pedicled propeller flap, perforator pedicled propeller flap, supercharged propeller flap), the degrees of skin island rotation (90 to 180 degrees) and, when possible, the artery of origin of the perforator. The propeller flap is a useful reconstructive tool that can achieve good cosmetic and functional results. A flap should be called a propeller flap only if it fulfils the definition above. The type of nourishing pedicle, the source vessel (when known), and the degree of skin island rotation should be specified for each flap.

  18. Mars Ascent Vehicle-Propellant Aging

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob

    2015-01-01

    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  19. Improving the Performance of Multi-engined Airplanes by Means of Idling Propellers : the "free-wheel" Propeller

    NASA Technical Reports Server (NTRS)

    Pillard, M

    1930-01-01

    In order to demonstrate the importance of free-wheeling propellers, this report considers the braking effect of a propeller on a stopped engine when the propeller is rigidly connected with the engine shaft and also when mounted on a free-wheel hub. The cases of propellers of asymmetric and symmetric section are discussed. The author describes the mechanism of the free-wheel propeller as constructed for this test. The results obtained with the device mounted on a 1,000 horsepower two-engine airplane are given.

  20. Optimal spacecraft formation establishment and reconfiguration propelled by the geomagnetic Lorentz force

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2014-12-01

    The Lorentz force acting on an electrostatically charged spacecraft as it moves through the planetary magnetic field could be utilized as propellantless electromagnetic propulsion for orbital maneuvering, such as spacecraft formation establishment and formation reconfiguration. By assuming that the Earth's magnetic field could be modeled as a tilted dipole located at the center of Earth that corotates with Earth, a dynamical model that describes the relative orbital motion of Lorentz spacecraft is developed. Based on the proposed dynamical model, the energy-optimal open-loop trajectories of control inputs, namely, the required specific charges of Lorentz spacecraft, for Lorentz-propelled spacecraft formation establishment or reconfiguration problems with both fixed and free final conditions constraints are derived via Gauss pseudospectral method. The effect of the magnetic dipole tilt angle on the optimal control inputs and the relative transfer trajectories for formation establishment or reconfiguration is also investigated by comparisons with the results derived from a nontilted dipole model. Furthermore, a closed-loop integral sliding mode controller is designed to guarantee the trajectory tracking in the presence of external disturbances and modeling errors. The stability of the closed-loop system is proved by a Lyapunov-based approach. Numerical simulations are presented to verify the validity of the proposed open-loop control methods and demonstrate the performance of the closed-loop controller. Also, the results indicate the dipole tilt angle should be considered when designing control strategies for Lorentz-propelled spacecraft formation establishment or reconfiguration.

  1. Space Storable Rocket Technology program (SSRT). Option 1 program

    NASA Astrophysics Data System (ADS)

    Chazen, Melvin L.; Mueller, Thomas; Rust, Thomas

    1993-08-01

    The Space Storable Rocket Technology (SSRT) Option 1 Program was initiated in October 1991 after completion of the Basic Program. The program was restructured in mid-July 1992 to incorporate a Rhenium Technology Task and reduce the scope of the LO2-N2H4 engine development. The program was also extended to late February 1993 to allow for the Rhenium Technology Task completion. The Option 1 Program was devoted to evaluation of two new injector elements, evaluation of two different methods of thermal protection of the injector, evaluation of high temperature material properties of rhenium and evaluation of methods of joining the rhenium thrust chamber to the columbium injector and nozzle extension. In addition, critical experiments were conducted (Funded by Option 2) to evaluate mechanisms to understand the effects of GO2 injection into the chamber, helium injection into the main LO2, effect of the splash plate and effect of decreasing the aspect ratio of the 120-slot (-13a) element. The performance and thermal models were used to further correlate the test results with analyses. The results of the work accomplished are summarized.

  2. Space Storable Rocket Technology program (SSRT). Option 1 program

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L.; Mueller, Thomas; Rust, Thomas

    1993-01-01

    The Space Storable Rocket Technology (SSRT) Option 1 Program was initiated in October 1991 after completion of the Basic Program. The program was restructured in mid-July 1992 to incorporate a Rhenium Technology Task and reduce the scope of the LO2-N2H4 engine development. The program was also extended to late February 1993 to allow for the Rhenium Technology Task completion. The Option 1 Program was devoted to evaluation of two new injector elements, evaluation of two different methods of thermal protection of the injector, evaluation of high temperature material properties of rhenium and evaluation of methods of joining the rhenium thrust chamber to the columbium injector and nozzle extension. In addition, critical experiments were conducted (Funded by Option 2) to evaluate mechanisms to understand the effects of GO2 injection into the chamber, helium injection into the main LO2, effect of the splash plate and effect of decreasing the aspect ratio of the 120-slot (-13a) element. The performance and thermal models were used to further correlate the test results with analyses. The results of the work accomplished are summarized.

  3. Characteristics of Five Propellers in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Mixson, R E

    1928-01-01

    This investigation was made for the purpose of determining the characteristics of five full-scale propellers in flight. The equipment consisted of five propellers in conjunction with a VE-7 airplane and a Wright E-2 engine. The propellers were of the same diameter and aspect ratio. Four of them differed uniformly in thickness and pitch and the fifth propeller was identical with one of the other four with exception of a change of the airfoil section. The propeller efficiencies measured in flight are found to be consistently lower than those obtained in model tests. It is probable that this is mainly a result of the higher tip speeds used in the full-scale tests. The results show also that because of differences in propeller deflections it is difficult to obtain accurate comparisons of propeller characteristics. From this it is concluded that for accurate comparisons it is necessary to know the propeller pitch angles under actual operating conditions. (author)

  4. Destruction of propellant magazine, November 1982

    NASA Astrophysics Data System (ADS)

    Tozer, N. H.

    1984-08-01

    Details on the destruction of a propellant magazine are given. The properties of single base propellants are discussed. Although single base propellants have been around for one hundred years, production of this type of propellant in Australia only commenced during World War 2 when appropriate plant and know how were provided under the Lend Lease Scheme. Most of the single base propellants made at Mulwala Explosives Factory have been of the IMR type i.e., single perforated tubular granules with their surface coated with DNT for use in small to medium calibre ammunition. Since production started at Mulwala Explosives Factory in 1944 some fourteen different versions of style of propellant have been manufactured. Four versions only were made up until 1957 and these were identified with an IMR type number matching the US propellants from which they were copied. New varieties introduced since 1957 have been identified with an AR aeries number commencing with AR2001 - the original Australian 7.62 mm rifle propellant.

  5. Nitramine smokeless propellant research

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A transient ballistics and combustion model was derived to represent the closed vessel experiment that is widely used to characterize propellants. The model incorporates the nitramine combustion mechanisms. A computer program was developed to solve the time dependent equations, and was applied to explain aspects of closed vessel behavior. It is found that the rate of pressurization in the closed vessel is insufficient at pressures of interest to augment the burning rate by time dependent processes. Series of T-burner experiments were performed to compare the combustion instability characteristics of nitramine (HMX) containing propellants and ammonium perchlorate (AP) propellants. It is found that the inclusion of HMX consistently renders the propellant more stable.

  6. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person manufacturing propellers under a type certificate must give each variable pitch propeller an acceptable...

  7. Large-Eddy Simulation of Propeller Crashback

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2013-11-01

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in propeller crashback. Results are shown for a stand-alone open propeller, hull-attached open propeller and a ducted propeller. The simulations are compared to experiment, and used to discuss the essential physics behind the unsteady loads. This work is supported by the Office of Naval Research.

  8. Propellant Reuse/Recovery Technology

    DTIC Science & Technology

    1988-08-31

    viscosity of the nitrocellulose (NC) determine the solvent/solvent and solvent/propellant ratios required to properly resolvate the propellant. It was also...plasticization. An 11-min drying cycle was required to remove the excess solvent from the over-solvated propellant. To improve plasticization using...solvent, and (4) 15-min mix cycle. To eliminate the drying cycle and determine that a 15-min mix cycle will resolvate the propellart, an additional 1 h

  9. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate Only § 21.129 Tests: propellers. Each person manufacturing propellers under a type certificate only shall give each variable pitch propeller an...

  10. Advanced Chemical Propulsion Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  11. Application of theory to propeller design

    NASA Technical Reports Server (NTRS)

    Cox, G. G.; Morgan, W. B.

    1974-01-01

    The various theories concerning propeller design are discussed. The use of digital computers to obtain specific blade shapes to meet appropriate flow conditions is emphasized. The development of lifting-line and lifting surface configurations is analyzed. Ship propulsive performance and basic propeller design considerations are investigated. The characteristics of supercavitating propellers are compared with those of subcavitating propellers.

  12. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter. [Amdt. No. 35-8, 73 FR 63346, Oct...

  13. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter. [Amdt. No. 35-8, 73 FR 63346, Oct...

  14. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter. [Amdt. 35-8, 73 FR 63346, Oct. 24...

  15. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter. [Amdt. 35-8, 73 FR 63346, Oct. 24...

  16. 14 CFR 35.2 - Propeller configuration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller configuration. 35.2 Section 35.2... STANDARDS: PROPELLERS General § 35.2 Propeller configuration. The applicant must provide a list of all the... design of the propeller to be approved under § 21.31 of this chapter. [Amdt. 35-8, 73 FR 63346, Oct. 24...

  17. Bleriot Propeller Close-up

    NASA Image and Video Library

    2017-05-10

    This view from NASA's Cassini spacecraft shows Cassini's best image of the propeller feature known informally as Bleriot. The propeller is named after Louis Bleriot, the French engineer and aviator who in 1909 was the first person to fly across the English Channel. This is the third and final propeller to be targeted for a close flyby observation during Cassini's ring-grazing orbits (the period from Nov. 2016 to April 2017 when Cassini's orbit passed just outside the main rings). Because propellers are seen in the outermost parts of the main rings, the ring-grazing orbits provided Cassini's best opportunity to see them up close. Many small, bright specks and linear, scratch-like artifacts are visible in the image. These artifacts are due to cosmic rays and particles of radiation near the planet striking the camera detector during the exposure. Bleriot is the largest of the propellers in Saturn's rings. The wavy features embedded in the propeller structure indicate that its central moonlet is some 60 percent wider than that of Santos-Dumont, which means the Bleriot moonlet is about four times more massive. Cassini scientists have been tracking the orbit of this object for the past decade, tracing the effect that the ring has upon it. Because it is the biggest propeller, it is more easily seen in lower-resolution images than other propellers, and thus it can be spotted in the most images by far. Here, as Cassini moved in close to the rings as part of its ring-grazing orbits, it was able to obtain this extreme close-up view of the propeller, which enables researchers to examine its effects on the ring as never before. These views, and others like them, will inform models and studies in new ways going forward. This image was taken on the unilluminated side of the rings, where sunlight filters through the backlit ring. Like a frosted window, Saturn's rings look different depending on whether they are seen fully sunlit or backlit. On the lit side, the rings look darker

  18. SRM propellant, friction/ESD testing

    NASA Technical Reports Server (NTRS)

    Campbell, L. A.

    1989-01-01

    Following the Pershing 2 incident in 1985 and the Peacekeeper ignition during core removal in 1987, it was found that propellant can be much more sensitive to Electrostatic Discharges (ESD) than ever before realized. As a result of the Peacekeeper motor near miss incident, a friction machine was designed and fabricated, and used to determine friction hazards during core removal. Friction testing with and electrical charge being applied across the friction plates resulted in propellant ignitions at low friction pressures and extremely low ESD levels. The objective of this test series was to determine the sensitivity of solid rocket propellant to combined friction pressure and electrostatic stimuli and to compare the sensitivity of the SRM propellant to Peacekeeper propellant. The tests are fully discussed, summarized and conclusions drawn.

  19. Experimental Investigation of Magnesium Powder Combustion With C02 for Mars Ascent Applications

    NASA Technical Reports Server (NTRS)

    Foote, John P.; Litchford, Ronald J.

    2005-01-01

    Combustion of metals with CO2 has been identified as a possible propellant for Mars ascent applications. CO2 could be condensed from the Martian atmosphere, reducing the amount of propellant that must be transported from Earth. An attractive feature of this approach compared to other in situ propellant concepts is that no chemical processing on Mars is required. Magnesium has been identified as the most promising metal for this application because it ignites and burns easily in CO2. Preliminary systems studies indicate a 2 to 1 delivered mass advantage for Mg ascent propulsion using in situ C02, as compared to a conventional storable propellant system. The Propulsion Research Center at MSFC is undertaking an experimental investigation of magnesium powder combustion with CO2 in order to provide fundamental data on the combustion performance of Mg powder + CO2 mixtures needed to assess the feasibility of developing a practical Mg powder + CO2 rocket engine. Initial combustion experiments will be carried out in a small scale atmospheric pressure dump combustor. Effects of varying the Mg particle size, firing rate and O/F ratio on combustion stability and efficiency will be investigated. The combustion process will be characterized by optical flame measurements and extraction of combustion product samples. The experimental facility is currently being prepared and combustion experiments will begin during the first quarter of 2005. The final paper will describe the test facility and initial experimental results.

  20. The ram accelerator - A chemically driven mass launcher

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Bruckner, A. P.

    1988-01-01

    The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.

  1. Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    NASA Technical Reports Server (NTRS)

    Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.

    2012-01-01

    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.

  2. Ion-thruster propellant utilization

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1971-01-01

    The evaluation and understanding of maximum propellant utilization, with mercury used as the propellant are presented. The primary-electron region in the ion chamber of a bombardment thruster is analyzed at maximum utilization. The results of this analysis, as well as experimental data from a range of ion-chamber configurations, show a nearly constant loss rate for unionized propellant at maximum utilization over a wide range of total propellant flow rate. The discharge loss level of 1000 eV/ion was used as a definition of maximum utilization, but the exact level of this definition has no effect on the qualitative results and little effect on the quantitative results. There are obvious design applications for the results of this investigation, but the results are particularly significant whenever efficient throttled operation is required.

  3. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Gordon, Eliott B.; Jeracki, Robert J.

    1988-01-01

    The effect of forward-to-aft propeller spacing on the interaction noise of a counterrotation propeller with reduced aft diameter was measured at cruise conditions. In general, the tones at 100 percent speed decreased from close to nominal spacing as expected from a wake decay model. However, when the spacing was further increased to the far position, the noise did not decrease as expected and in some cases increased. The behavior at the far spacing was attributed to changing forward propeller performance, which produced larger wakes. The results of this experiment indicate that simple wake decay model is sufficient to describe the behavior of the interaction noise only if the aerodynamic coupling of the two propellers does not change with spacing. If significant coupling occurs such that the loading of the forward propeller is altered, the interaction noise does not necessarily decrease with larger forward-to-aft propeller spacing.

  4. Propellant Management in Microgravity- Further Analysis of an Experiment Flown on REXUS-14

    NASA Astrophysics Data System (ADS)

    Strobino, D.; Zumbrunen, E.; Putzu, R.; Pontelandolfo, P.

    2015-09-01

    This paper is about the further analysis of an experiment named CAESAR (stands for Capillarity-based Experiment for Spatial Advanced Research): a sounding rocket experiment carried out by students of hepia within the REXUS program. The authors have launched on REXUS-14 a propellant management experiment based on capillarity to reliably confirm other ground-based cxperiments. In the framework of the present work, the authors present the comparison of CAESAR experimental data with theoretical profiles provided in literature. The objective of this flight was to place several Propellant Management Devices (PMD) in a microgravity environment and acquire images of the fluid distribution around them. The main element of the experiment, called a sponge, is a PMD for space vehicles, often used in satellites. This radial panel shaped device can be used at the bottom of a satellite tank to keep the propellant near the outlet. It is designed to work even if the vehicle undergoes small accelerations, for example during station-keeping maneuvers. The fluid is eccentric but stays on the sponge and near the outlet, so the injection system of the motor is continuously supplied with the propellant. As previously published, the authors have created a buoyancy test bench and have designed another system by magnetic levitation to perform the same experiment on earth. These systems are easier to use and less expensive than a sounding rocket, a parabolic flight or a drop tower (i.e. other system to obtain microgravity on earth), so they will be very useful to make progress in this particular domain of science. They will also allow universities with small funds to work within this spatial field. A previous publication showed, from a qualitative point of view, a good agreement between experiments and theory; however in this paper quantitative comparisons are given. With this demonstrated, hepia can validate its buoyancy test facility with real flight tests.

  5. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The objective was to establish an earth storable fluid tanker concept which satisfies the initial resupply requirements for the Gamma Ray Observatory (GRO) at a reasonable front end cost while providing growth potential for foreseeable future earth storable fluid resupply mission requirements. The estimated costs required to design, develop, qualify, fabricate, and deliver a flight tanker and its associated control avionics, ground support equipment (GSE), and processing facilities, and the contractors costs to support the first operations mission are reviewed.

  6. Resonance vibrations of aircraft propellers

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    On the basis of the consideration of various possible kinds of propeller vibrations, the resonance vibrations caused by unequal impacts of the propeller blades appear to be the most important. Their theoretical investigation is made by separate analysis of torsional and bending vibrations. This method is justified by the very great difference in the two natural frequencies of aircraft propeller blades. The calculated data are illustrated by practical examples. Thereby the observed vibration phenomenon in the given examples is explained by a bending resonance, for which the bending frequency of the propeller is equal to twice the revolution speed.

  7. Pusher propeller noise directivity and trends

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1986-01-01

    The effects of pylon wake interaction on far-field propeller noise are studied using a model scale SR-2 propeller in a low-speed anechoic wind tunnel. The variation in the pusher noise penalty with axial angle theta and circumferential angle phi is compared to that of the tractor noise penalty; and the former exhibits minima occurring in the propeller plane and maxima occurring toward the propeller axis. The magnitude of the pusher installation noise penalty decreased with in increase in shaft horsepower and tip Mach number. Directivity comparisons revealed that both a noise reduction and a directivity pattern change resulted when the pylon was moved farther from the propeller. Noise emerging from the wake interaction was distinguished from that of the propeller by means of a modal decomposition.

  8. TDAP: Island versus propeller.

    PubMed

    Angrigiani, Claudio; Rancati, Alberto; Artero, Guillermo; Escudero, Ezequiel; Khouri, Roger K

    2016-04-01

    Thoracodorsal artery perforator (TDAP) island flap is a safe and reliable method for breast reconstruction. TDAP propeller flap has been described as a modification of the conventional island technique that saves time and does not require microsurgical skills. However, a substantial portion of the propeller flap remains under the axilla and is not used for breast augmentation. The aim of this study is to identify the differences in the reaching distances between the propeller and island TDAP flaps. In five cadaveric specimens and 10 breast reconstruction patients, an initial propeller flap was harvested and rotated to the anterior thorax; the distance from the tip of the flap to the anterior midline was recorded as the "midline-reaching deficit;" the flap was then converted into a conventional island flap, and the new midline-reaching deficit was recorded. Differences between groups were compared with paired two-tailed t-tests (α = 0.05). In the cadaveric specimens, the mean midline-reaching deficit was 4.8 ± 2.4 cm with the propeller TDAP and -0.6 ± 2.0 cm with the conventional island TDAP (P < 0.001). In the clinical cases, the mean midline-reaching deficit was 8.1 ± 1.0 cm with the propeller TDAP and -0.3 ± 1.1 cm with the island TDAP (P < 0.000000001). We observed that the midline-reaching deficit could be reduced by 7-9 cm with the conventional island TDAP in comparison to the propeller TDAP. This should be considered when reconstructing the medial inner part of the breast. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  10. Propeller from Unlit Side

    NASA Image and Video Library

    2010-07-08

    A propeller-shaped structure created by an unseen moon appears dark in this image obtained by NASA Cassini spacecraft of the unilluminated side of Saturn rings. The propeller is marked with a red arrow in the top left.

  11. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  12. Propellers in yaw

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S

    1945-01-01

    It was realized as early as 1909 that a propeller in yaw develops a side force like that of a fin. In 1917, R. G. Harris expressed this force in terms of the torque coefficient for the unyawed propeller. Of several attempts to express the side force directly in terms of the shape of the blades, however, none has been completely satisfactory. An analysis that incorporates induction effects not adequately covered in previous work and that gives good agreement with experiment over a wide range of operating conditions is presented. The present analysis shows that the fin analogy may be extended to the form of the side-force expression and that the effective fin area may be taken as the projected side area of the propeller.

  13. Development of HAN-based Liquid Propellant Thruster

    NASA Astrophysics Data System (ADS)

    Hisatsune, K.; Izumi, J.; Tsutaya, H.; Furukawa, K.

    2004-10-01

    Many of propellants that are applied to the conventional spacecraft propulsion system are toxic propellants. Because of its toxicity, considering the environmental pollution or safety on handling, it will be necessary to apply the "green" propellant to the spacecraft propulsion system. The purpose of this study is to apply HAN based liquid propellant (LP1846) to mono propellant thruster. Compared to the hydrazine that is used in conventional mono propellant thruster, HAN based propellant is not only lower toxic but also can obtain higher specific impulse. Moreover, HAN based propellant can be decomposed by the catalyst. It means there are the possibility of applying to the mono propellant thruster that can leads to the high reliability of the propulsion system.[1],[2] However, there are two technical subjects, to apply HAN based propellant to the mono propellant thruster. One is the high combustion temperature. The catalyst will be damaged under high temperature condition. The other is the low catalytic activity. It is the serious problem on application of HAN based propellant to the mono propellant thruster that is used for attitude control of spacecraft. To improve the catalytic activity of HAN based propellant, it is necessary to screen the best catalyst for HAN based propellant. The adsorption analysis is conducted by Monte Carlo Simulation to screen the catalyst metal for HAN and TEAN. The result of analysis shows the Iridium is the best catalyst metal for HAN and TEAN. Iridium is the catalyst metal that is used at conventional mono propellant thruster catalyst Shell405. Then, to confirm the result of analysis, the reaction test about catalyst is conducted. The result of this test is the same as the result of adsorption analysis. That means the adsorption analysis is effective in screening the catalyst metal. At the evaluating test, the various types of carrier of catalyst are also compared to Shell 405 to improve catalytic activity. The test result shows the

  14. Low acid producing solid propellants

    NASA Technical Reports Server (NTRS)

    Bennett, Robert R.

    1995-01-01

    The potential environmental effects of the exhaust products of conventional rocket propellants have been assessed by various groups. Areas of concern have included stratospheric ozone, acid rain, toxicity, air quality and global warming. Some of the studies which have been performed on this subject have concluded that while the impacts of rocket use are extremely small, there are propellant development options which have the potential to reduce those impacts even further. This paper discusses the various solid propellant options which have been proposed as being more environmentally benign than current systems by reducing HCI emissions. These options include acid neutralized, acid scavenged, and nonchlorine propellants. An assessment of the acid reducing potential and the viability of each of these options is made, based on current information. Such an assessment is needed in order to judge whether the potential improvements justify the expenditures of developing the new propellant systems.

  15. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  16. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  17. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  18. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  19. 14 CFR 35.43 - Propeller hydraulic components.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller hydraulic components. 35.43... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.43 Propeller hydraulic components. Applicants must show by test, validated analysis, or both, that propeller components that contain hydraulic...

  20. Kirsten-boeing Propeller

    NASA Technical Reports Server (NTRS)

    Sachse, H

    1926-01-01

    The advantages of the Kirsten-Boeing propeller consist essentially in the adjustability of the thrust in any desired direction, in the plane perpendicular to the axis of rotation of the system, and in its high efficiency. The propeller, which greatly resembles the paddle wheels used on river steamers, differs fundamentally from the latter, in that all the blades work simultaneously in the fluid medium (air or water).

  1. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller feathering controls. 23.1153... Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are propeller feathering controls installed, it must be possible to feather each propeller separately. Each control must...

  2. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller feathering controls. 23.1153... Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are propeller feathering controls installed, it must be possible to feather each propeller separately. Each control must...

  3. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller feathering controls. 23.1153... Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are propeller feathering controls installed, it must be possible to feather each propeller separately. Each control must...

  4. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller feathering controls. 23.1153... Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are propeller feathering controls installed, it must be possible to feather each propeller separately. Each control must...

  5. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering controls. 23.1153... Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are propeller feathering controls installed, it must be possible to feather each propeller separately. Each control must...

  6. [Characteristics and mechanism of boat propeller injuries].

    PubMed

    Yu, Song; Shen, Yi-Wen; Xue, Ai-Min

    2008-02-01

    To summarize the characteristics and investigate the mechanisms of boat propeller injuries so as to explore the identification methods between boat propeller injuries and corpse dismemberment. More than 100 autopsy cases of boat propeller injuries were collected in a period between 1994 and 2005 in Huzhou district, Zhejiang province. The characteristics of injuries caused by propeller, including abrasion, wound, fracture and severed wound, and the characteristics of clothing, were retrospectively studied and summarized. The severed cross wound section of boat propeller injuries was compared with that caused by corpse dismemberment. The boat propeller injuries were resulted from high-speed propellers with enormous splitting power and mechanical cutting, while corpse dismemberment were resulted from cutting and dismembering the body with sharp instruments. Due to the different mechanisms, the different strength of force and recoil force, the severed wound cross section had different characteristics. Wounds caused by boat propeller injuries have their unique characteristics, distinguished from wounds of dismembered corpse.

  7. Solar Electric Propulsion Vehicle Design Study for Cargo Transfer to Earth-moon L1

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.; Kerslake, Thomas W.; Rawlin, Vincent K.; Falck, Robert D.; Dudzinski, Leonard J.; Oleson, Steven R.

    2002-01-01

    A design study for a cargo transfer vehicle using solar electric propulsion was performed for NASA's Revolutionary Aerospace Systems Concepts program. Targeted for 2016, the solar electric propulsion (SEP) transfer vehicle is required to deliver a propellant supply module with a mass of approximately 36 metric tons from Low Earth Orbit to the first Earth-Moon libration point (LL1) within 270 days. Following an examination of propulsion and power technology options, a SEP transfer vehicle design was selected that incorporated large-area (approx. 2700 sq m) thin film solar arrays and a clustered engine configuration of eight 50 kW gridded ion thrusters mounted on an articulated boom. Refinement of the SEP vehicle design was performed iteratively to properly estimate the required xenon propellant load for the out-bound orbit transfer. The SEP vehicle performance, including the xenon propellant estimation, was verified via the SNAP trajectory code. Further efforts are underway to extend this system model to other orbit transfer missions.

  8. Combustion Mechanisms of Wide Distribution Propellants

    DTIC Science & Technology

    1988-06-01

    trimodal propellants were formulated. Each set contains an HTPB binder and duplicate formulations were made with either a IPDI or a DDI curative. The...Distinctive Mechanisms Previous studies [12,131 have shown that HTPB * propellants with wide AP distributions burn at rates much different than predictions...propellants. 17 .- = i.= i i i il =.. .l=limim mll ili= =.l i@ w. -’- 87% 400/20/ 3 MICRON,AP/ HTPB PROPELLANT 2.0 Z -1.0 --- 0--.-7- 0 CALCULATIONO0

  9. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering controls. 25.1153... Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering control for each propeller. The control must have means to prevent its inadvertent operation. (b) If...

  10. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller feathering controls. 25.1153... Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering control for each propeller. The control must have means to prevent its inadvertent operation. (b) If...

  11. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller feathering controls. 25.1153... Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering control for each propeller. The control must have means to prevent its inadvertent operation. (b) If...

  12. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller feathering controls. 25.1153... Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering control for each propeller. The control must have means to prevent its inadvertent operation. (b) If...

  13. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller feathering controls. 25.1153... Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering control for each propeller. The control must have means to prevent its inadvertent operation. (b) If...

  14. 14 CFR 23.1027 - Propeller feathering system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Oil System § 23.1027 Propeller feathering system. (a) If the propeller feathering system uses engine... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller feathering system. 23.1027... made to prevent sludge or other foreign matter from affecting the safe operation of the propeller...

  15. 14 CFR 23.1027 - Propeller feathering system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Oil System § 23.1027 Propeller feathering system. (a) If the propeller feathering system uses engine... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller feathering system. 23.1027... made to prevent sludge or other foreign matter from affecting the safe operation of the propeller...

  16. 14 CFR 23.1027 - Propeller feathering system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Oil System § 23.1027 Propeller feathering system. (a) If the propeller feathering system uses engine... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller feathering system. 23.1027... made to prevent sludge or other foreign matter from affecting the safe operation of the propeller...

  17. 14 CFR 23.1027 - Propeller feathering system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Oil System § 23.1027 Propeller feathering system. (a) If the propeller feathering system uses engine... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller feathering system. 23.1027... made to prevent sludge or other foreign matter from affecting the safe operation of the propeller...

  18. 14 CFR 23.1027 - Propeller feathering system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Oil System § 23.1027 Propeller feathering system. (a) If the propeller feathering system uses engine... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering system. 23.1027... made to prevent sludge or other foreign matter from affecting the safe operation of the propeller...

  19. Advanced propeller aerodynamic analysis

    NASA Technical Reports Server (NTRS)

    Bober, L. J.

    1980-01-01

    The analytical approaches as well as the capabilities of three advanced analyses for predicting propeller aerodynamic performance are presented. It is shown that two of these analyses use a lifting line representation for the propeller blades, and the third uses a lifting surface representation.

  20. Active Costorage of Cryogenic Propellants for Exploration

    NASA Technical Reports Server (NTRS)

    Canavan, Edgar R.; Boyle, Rob; Mustafi, Shuvo

    2008-01-01

    Long-term storage of cryogenic propellants is a critical requirement for NASA's effort to return to the moon. Liquid hydrogen and liquid oxygen provide the highest specific impulse of any practical chemical propulsion system, and thus provides the greatest payload mass per unit of launch mass. Future manned missions will require vehicles with the flexibility to remain in orbit for months, necessitating long-term storage of these cryogenic liquids. For decades cryogenic scientific satellites have used cryogens to cool instruments. In many cases, the lifetime of the primary cryogen tank has been extended by intercepting much of the heat incident on the tank at an intermediate-temperature shield cooled either by a second cryogen tank or a mechanical cryocooler. For an LH2/LO2 propellant system, a combination of these ideas can be used, in which the shield around the LO2 tank is attached to, and at the same temperature as, the LO2 tank, but is actively cooled so as to remove all heat impinging on the tank and shield. This configuration eliminates liquid oxygen boil-off and cuts the liquid hydrogen boil-off to a small fraction of the unshielded rate. This paper studies the concept of active costorage as a means of long-term cryogenic propellant storage. The paper describes the design impact of an active costorage system for the Crew Exploration Vehicle (CEV). This paper also compares the spacecraft level impact of the active costorage concept with a passive storage option in relation to two different scales of spacecraft that will be used for the lunar exploration effort, the CEV and the Earth Departure Stage (EDS). Spacecraft level studies are performed to investigate the impact of scaling of the costorage technologies for the different components of the Lunar Architecture and for different mission durations.

  1. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  2. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  3. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  4. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  5. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  6. Cars Spectroscopy of Propellant Flames

    DTIC Science & Technology

    1983-11-01

    applicability of CARS in studies of the combustion of propellants and other reactive systems. Broadband CARS spectra were obtained from both the reaction zone...ref 12). When ienited vith a flame, propellant burned in air with a luainous flame. A-e Ignittou with i hot wire resulted in flameless burning (fizz...ester). Current models of nitramine propellant combustion are essentially models of HMX (cyclotetranithylene tetranitramine) and RDX deflagration. The

  7. 14 CFR 35.16 - Propeller critical parts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller critical parts. 35.16 Section 35... AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.16 Propeller critical parts. The integrity of each propeller critical part identified by the safety analysis required by § 35.15 must be established...

  8. Effect of propellant deformation on ignition and combustion processes in solid propellant cracks

    NASA Technical Reports Server (NTRS)

    Kumar, M.; Kuo, K. K.

    1980-01-01

    A comprehensive theoretical model was formulated to study the development of convective burning in a solid propellant crack which continually deforms due to burning and pressure loading. In the theoretical model, the effect of interrelated structural deformation and combustion processes was taken into account by considering (1) transient, one dimensional mass, momentum, and energy conservation equations in the gas phase; (2) a transient, one dimensional heat conduction equation in the solid phase; and (3) quasi-static deformation of the two dimensional, linear viscoelastic propellant crack caused by pressure loading. Partial closures may generate substantial local pressure peaks along the crack, implying a strong coupling between chamber pressurization, crack combustion, and propellant deformation, especially when the cracks are narrow and the chamber pressurization rates high. The maximum pressure in the crack cavity is generally higher than that in the chamber. The initial flame-spreading process is not affected by propellant deformation.

  9. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  10. Unmanned planetary spacecraft chemical rocket propulsion.

    NASA Technical Reports Server (NTRS)

    Burlage, H., Jr.; Gin, W.; Riebling, R. W.

    1972-01-01

    Review of some chemical propulsion technology advances suitable for future unmanned spacecraft applications. Discussed system varieties include liquid space-storable propulsion systems, advanced liquid monopropellant systems, liquid systems for rendezvous and landing applications, and low-thrust high-performance solid-propellant systems, as well as hybrid space-storable systems. To optimize the performance and operational characteristics of an unmanned interplanetary spacecraft for a particular mission, and to achieve high cost effectiveness of the entire system, it is shown to be essential that the type of spacecraft propulsion system to be used matches, as closely as possible the various requirements and constraints. The systems discussed are deemed to be the most promising candidates for some of the anticipated interplanetary missions.

  11. The acoustics of ducted propellers

    NASA Astrophysics Data System (ADS)

    Ali, Sherif F.

    The return of the propeller to the long haul commercial service may be rapidly approaching in the form of advanced "prop fans". It is believed that the advanced turboprop will considerably reduce the operational cost. However, such aircraft will come into general use only if their noise levels meet the standards of community acceptability currently applied to existing aircraft. In this work a time-marching boundary-element technique is developed, and used to study the acoustics of ducted propeller. The numerical technique is developed in this work eliminated the inherent instability suffered by conventional approaches. The methodology is validated against other numerical and analytical results. The results show excellent agreement with the analytical solution and show no indication of unstable behavior. For the ducted propeller problem, the propeller is modeled by a rotating source-sink pairs, and the duct is modeled by rigid annular body of elliptical cross-section. Using the model and the developed technique, the effect of different parameters on the acoustic field is predicted and analyzed. This includes the effect of duct length, propeller axial location, and source Mach number. The results of this study show that installing a short duct around the propeller can reduce the noise that reaches an observer on a side line.

  12. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most adverse...

  13. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the most...

  14. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the most...

  15. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the most...

  16. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most adverse...

  17. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most adverse...

  18. 14 CFR 25.925 - Propeller clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller clearance. 25.925 Section 25.925... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances with the airplane at maximum weight, with the most adverse...

  19. 14 CFR 23.925 - Propeller clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller clearance. 23.925 Section 23.925... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.925 Propeller clearance. Unless smaller clearances are substantiated, propeller clearances, with the airplane at the most...

  20. Propeller injuries.

    PubMed

    Mann, R J

    1976-05-01

    Water skiing, boat racing, skin and scuba diving, and pleasure boat cruising are increasing in popularity. As a result the incidence of injuries secondary to motor propellers is becoming more frequent. In a ten-year period from 1963 to 1973, I collected a total of nine cases. In some amputations were necessary, and in other cases amputations occurred at the time of injury. Problems with bacterial flora occurring in open sea water versus salt water enclosed near docks and fresh lake water are discussed. A review of the orthopedic literature revealed sparse information regarding propeller injuries.

  1. Experimental verification of propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Munro, D. H.; Zimmer, J. A.

    1980-01-01

    Results of experimental measurements of the sound fields of 1/4-scale general aviation propellers are presented and experimental wake surveys and pressure signatures obtained are compared with theoretical predictions. Experiments were performed primarily on a 1C160 propeller model mounted in front of a symmetric body in an anechoic wind tunnel, and measured the thrust and torque produced by propeller at different rotation speeds and tunnel velocities, wakes at three axial distances, and sound pressure at various azimuths and tip speeds with advance ratio or tunnel velocity constant. Aerodynamic calculations of blade loading were performed using airfoil section characteristics and a modified strip analysis procedure. The propeller was then modeled as an array of point sound sources with each point characterized by the force and volume of the corresponding propeller section in order to obtain the acoustic characteristics. Measurements are found to agree with predictions over a wide range of operating conditions, tip speeds and propeller nacelle combinations, without the use of adjustable constants.

  2. New Propellants and Cryofuels

    NASA Technical Reports Server (NTRS)

    Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.

    2006-01-01

    The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to

  3. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Dwyer Ciancio, Alicia; Collins, Tim; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. NASA's Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed to sustain human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. Understanding how these choices affect the performance of the lander will allow a balanced optimization of this complex system of systems problem. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators, one of several entry system technologies currently considered for human missions.

  4. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  5. The Theory of Propellers I : Determination of the Circulation Function and the Mass Coefficient for Dual-Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1944-01-01

    Values of the circulation function have been obtained for dual-rotating propellers. Numerical values are given for four, eight, and twelve-blade dual-rotating propellers and for advance ratios from 2 to about 6. In addition, the circulation function has been determine for single-rotating propellers for the higher values of the advance ratio. The mass coefficient, another quantity of significance in propeller theory, has been introduced.

  6. Thrust Deduction in Contrarotating Propellers

    DTIC Science & Technology

    1974-11-01

    nuder gavc At = 0.056 Design CR propellers (Table 2) At = 0.029 Single Screw. Stromn-Tejsen 14 Very good agreement between the experimental and... design experimental points do not lie on the theoretical curve. This is believed to be due to either experimental test accuracy. or tile rudder effect, or...propellers. Con trarotating propellers operating at off- design loading and spacing as well as the contribution of a rudder were investigated. Theli

  7. The engineering of a nuclear thermal landing and ascent vehicle utilizing indigenous Martian propellant

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1991-01-01

    The following paper reports on a design study of a novel space transportation concept known as a 'NIMF' (Nuclear rocket using Indigenous Martian Fuel). The NIMF is a ballistic vehicle which obtains its propellant out of the Martian air by compression and liquefaction of atmospheric CO2. This propellant is subsequently used to generate rocket thrust at a specific impulse of 264 s by being heated to high temperature (2800 K) gas in the NIMFs' nuclear thermal rocket engines. The vehicle is designed to provide surface to orbit and surface to surface transportation, as well as housing, for a crew of three astronauts. It is capable of refueling itself for a flight to its maximum orbit in less than 50 days. The ballistic NIMF has a mass of 44.7 tonnes and, with the assumed 2800 K propellant temperature, is capable of attaining highly energetic (250 km by 34,000 km elliptical) orbits. This allows it to rendezvous with interplanetary transfer vehicles which are only very loosely bound into orbit around Mars. If a propellant temperature of 2000 K is assumed, then low Mars orbit can be attained; while if 3100 K is assumed, then the ballistic NIMF is capable of injecting itself onto a minimum energy transfer orbit to Earth in a direct ascent from the Martian surface.

  8. 3-D viscous flow CFD analysis of the propeller effect on an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1993-01-01

    The time-marching Navier-Stokes code PARC3D was used to study the 3D viscous flow associated with an advanced ducted propeller subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 deg became unstable at 29 deg, and separated at 30 deg. An experimental study with a similar inlet and without propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller, indicating the propeller's favorable effect on inlet performance. In the present numerical study, flow blockage analogous to the propeller was modeled via a PARC3D computational boundary condition (BC), the 'screen BC', based on 1-1/2 dimension actuator disk theory. The application of the screen BC in this numerical study provided results similar to those of past experimental efforts in which either the blockage device or the propeller was used.

  9. The theory of the screw propeller

    NASA Technical Reports Server (NTRS)

    Betz, A

    1922-01-01

    Given here is a brief review of the fundamental principles of the propeller slip-stream theory and its further development through later researches, which demonstrate the connection between the propeller slip-stream theory and Frounde's so-called 'propeller blade theory.' The propeller slip-stream theory, especially in its improved form, now gives us the basis for determining the mutual influence of the parts of the blade, so that, in calculating the shape of the blade, we can get along with certain section characteristics, which have been determined once and for all. It is argued that new theories present the possibility of investigating the phenomena in the vicinity of the propeller, allowing us to calculate its action on the basis of fewer experimental values.

  10. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    NASA Astrophysics Data System (ADS)

    Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek

    2012-03-01

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  11. ISRU Propellant Selection for Space Exploration Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Timothy T.

    2013-01-01

    Chemical propulsion remains the only viable solution as technically matured technology for the near term human space transportation to Lunar and Mars. Current mode of space travel requires us to "take everything we will need", including propellant for the return trip. Forcing the mission designers to carry propellant for the return trip limits payload mass available for mission operations and results in a large and costly (and often unaffordable) design. Producing propellant via In-Situ Resource Utilization (ISRU) will enable missions with chemical propulsion by the "refueling" of return-trip propellant. It will reduce vehicle propellant mass carrying requirement by over 50%. This mass reduction can translates into increased payload to enhance greater mission capability, reduces vehicle size, weight and cost. It will also reduce size of launch vehicle fairing size as well as number of launches for a given space mission and enables exploration missions with existing chemical propulsion. Mars remains the ultimate destination for Human Space Exploration within the Solar System. The Mars atmospheric consist of 95% carbon dioxide (CO2) and the presence of Ice (water) was detected on Mars surfaces. This presents a basic chemical building block for the ISRU propellant manufacturing. However, the rationale for the right propellant to produce via ISRU appears to be limited to the perception of "what we can produce" as oppose to "what is the right propellant". Methane (CH4) is often quoted as a logical choice for Mars ISRU propellant, however; it is believed that there are better alternatives available that can result in a better space transportation architecture. A system analysis is needed to determine on what is the right propellant choice for the exploration vehicle. This paper examines the propellant selection for production via ISRU method on Mars surfaces. It will examine propellant trades for the exploration vehicle with resulting impact on vehicle performance, size

  12. The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified insitu propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Glenn Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware that are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to (1) uncertainties in our knowledge of the Mars environment, and (2) conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  13. The Effects of Reducing the Structural Mass of the Transit Habitat on the Cryogenic Propellant Required for a Human Phobos Mission

    NASA Technical Reports Server (NTRS)

    Zipay, John Joseph

    2016-01-01

    A technique for rapidly determining the relationship between the pressurized volume, structural mass and the cryogenic propellant required to be delivered to Earth orbit for a Mars Transit Habitat is provided. This technique is based on assumptions for the required delta-V's, the Exploration Upper Stage performance and the historical structural masses for human spacecraft from Mercury Program through the International Space Station. If the Mars Transit Habitat is constructed from aluminum, structural mass estimates based on the habitat pressurized volume are accurate to within 15%. Other structural material options for the Mars Transit Habitat are also evaluated. The results show that small, achievable reductions in the structural mass of the Transit Habitat can save tens of thousands of pounds of cryogenic propellant that need to be delivered to Earth orbit for a human Phobos Mission.

  14. The Effects of Reducing the Structural Mass of the Transit Habitat on the Cryogenic Propellant Required for a Human Phobos Mission

    NASA Technical Reports Server (NTRS)

    Zipay, John J.

    2016-01-01

    A technique for rapidly determining the relationship between the pressurized volume, structural mass and the cryogenic propellant required to be delivered to Earth orbit for a Mars Transit Habitat is provided. This technique is based on assumptions for the required delta-V's, the Exploration Upper Stage performance and the historical structural masses for human spacecraft from Mercury Program through the International Space Station. If the Mars Transit Habitat is constructed from aluminum, structural mass estimates based on the habitat pressurized volume are accurate to within 15 percent. Other structural material options for the Mars Transit Habitat are also evaluated. The results show that small, achievable reductions in the structural mass of the Transit Habitat can save tens of thousands of pounds of cryogenic propellant that need to be delivered to Earth orbit for a human Phobos Mission.

  15. Earhart Propeller in Saturn A Ring

    NASA Image and Video Library

    2017-03-30

    The propeller informally named "Earhart" is seen in this view from NASA's Cassini spacecraft at much higher resolution than ever before. This view, obtained on March 22, 2017, is the second time Cassini has deliberately targeted an individual propeller for close-up viewing during its ring-grazing orbits, after its images of Santos-Dumont (PIA21433) a month earlier. The biggest known propeller, informally named "Bleriot," is slated for the third and final propeller close-up in April 2017. Propellers are disturbances in the ring caused by a central moonlet. The moonlet itself would be a few pixels wide in this view, but it is difficult to distinguish from (and may be obscured by) the disturbed ring material that surrounds it. (See PIA20525 for more info on propellers.) The detailed structure of the Earhart propeller, as seen here, differs from that of Santos-Dumont. It is not clear whether these differences have to do with intrinsic differences between Earhart and Santos-Dumont, or whether they have to do with different viewing angles or differences in where the propellers were imaged in their orbits around Saturn. Earhart is situated very close to the 200-mile-wide (320-kilometer-wide) Encke Gap, which is held open by the much larger moon Pan. In this view, half of the Encke Gap is visible as the dark region at right. The gap and the propeller are a study in contrasts. The propeller is nothing more than Earhart's attempt to open a gap like Encke using its gravity. However, Earhart's attempt is thwarted by the mass of the ring, which fills in the nascent gap before it can extend very far. Pan is a few thousand times more massive than Earhart, which enables it to maintain a gap that extends all the way around the ring. To the left of the propeller are wave features in the rings caused by the moons Pandora, Prometheus and Pan. The visible-light image was acquired by the Cassini narrow-angle camera at a distance of 69,183 miles (111,340 kilometers) from the propeller

  16. Turboprop: improved PROPELLER imaging.

    PubMed

    Pipe, James G; Zwart, Nicholas

    2006-02-01

    A variant of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) MRI, called turboprop, is introduced. This method employs an oscillating readout gradient during each spin echo of the echo train to collect more lines of data per echo train, which reduces the minimum scan time, motion-related artifact, and specific absorption rate (SAR) while increasing sampling efficiency. It can be applied to conventional fast spin-echo (FSE) imaging; however, this article emphasizes its application in diffusion-weighted imaging (DWI). The method is described and compared with conventional PROPELLER imaging, and clinical images collected with this PROPELLER variant are shown. Copyright 2006 Wiley-Liss, Inc.

  17. Catalytic ignitor for regenerative propellant gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1994-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the ignitor and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  18. Catalytic Ignitor for Regenerative Propellant Gun

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Ferraro, Ned W. (Inventor)

    1997-01-01

    An ignitor initiates combustion of liquid propellant in a gun by utilizing a heated catalyst onto which the liquid propellant is sprayed in a manner which mitigates the occurrence of undesirable combustion chamber oscillations. The heater heats the catalyst sufficiently to provide the activation necessary to initiate combustion of the liquid propellant sprayed thereonto. Two embodiments of the igniter and three alternative mountings thereof within the combustion chamber are disclosed. The ignitor may also be utilized to dispose of contaminated, excess, or waste liquid propellant in a safe, controlled, simple, and reliable manner.

  19. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... control systems that use engine oil to feather must incorporate a method to allow the propeller to feather if the engine oil system fails. (c) Feathering propellers must be designed to be capable of... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Feathering propellers. 35.22 Section 35.22...

  20. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... control systems that use engine oil to feather must incorporate a method to allow the propeller to feather if the engine oil system fails. (c) Feathering propellers must be designed to be capable of... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Feathering propellers. 35.22 Section 35.22...

  1. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... control systems that use engine oil to feather must incorporate a method to allow the propeller to feather if the engine oil system fails. (c) Feathering propellers must be designed to be capable of... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Feathering propellers. 35.22 Section 35.22...

  2. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... control systems that use engine oil to feather must incorporate a method to allow the propeller to feather if the engine oil system fails. (c) Feathering propellers must be designed to be capable of... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Feathering propellers. 35.22 Section 35.22...

  3. 14 CFR 35.22 - Feathering propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... control systems that use engine oil to feather must incorporate a method to allow the propeller to feather if the engine oil system fails. (c) Feathering propellers must be designed to be capable of... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Feathering propellers. 35.22 Section 35.22...

  4. 14 CFR 35.23 - Propeller control system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... propeller effect under the intended operating conditions. (4) The failure or corruption of data or signals... corruption of airplane-supplied data does not result in hazardous propeller effects. (e) The propeller...

  5. 14 CFR 35.23 - Propeller control system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... propeller effect under the intended operating conditions. (4) The failure or corruption of data or signals... corruption of airplane-supplied data does not result in hazardous propeller effects. (e) The propeller...

  6. Non-cavitating propeller noise modeling and inversion

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Lee, Keunhwa; Seong, Woojae

    2014-12-01

    Marine propeller is the dominant exciter of the hull surface above it causing high level of noise and vibration in the ship structure. Recent successful developments have led to non-cavitating propeller designs and thus present focus is the non-cavitating characteristics of propeller such as hydrodynamic noise and its induced hull excitation. In this paper, analytic source model of propeller non-cavitating noise, described by longitudinal quadrupoles and dipoles, is suggested based on the propeller hydrodynamics. To find the source unknown parameters, the multi-parameter inversion technique is adopted using the pressure data obtained from the model scale experiment and pressure field replicas calculated by boundary element method. The inversion results show that the proposed source model is appropriate in modeling non-cavitating propeller noise. The result of this study can be utilized in the prediction of propeller non-cavitating noise and hull excitation at various stages in design and analysis.

  7. Propeller flaps in eyelid reconstruction.

    PubMed

    Rajak, Saul N; Huilgol, Shyamala C; Murakami, Masahiro; Selva, Dinesh

    2018-03-14

    Propeller flaps are island flaps that reach the recipient site through an axial rotation. The flap has a subcutaneous pedicle on which it pivots, thereby resembling a helicopter propeller. We present our series of propeller flaps for the reconstruction of large eyelid defects. This is a retrospective review of the clinical case notes of eight patients that underwent tumour excision with reconstruction with a cutaneous propeller flap supplied by a non-perforator orbicularis pedicle between July and December 2016. Propeller flaps were used in the reconstruction of five lower lid defects (size range 19 × 5 mm to 25 × 8 mm), one medial canthus defect (13 mm diameter), one complete upper lid defect (42 × 19 mm diameter) and one lid sparing extenteration defect. The flaps were recruited from nasolabial, lateral canthal, temple or medial upper cheek skin. Post-operatively one case had 'trapdooring' which required flap revision at 4 months and one had persistent oedema that settled without intervention. The reconstruction of large eyelid defects is challenging in part because of the paucity of locally available skin. Propeller flaps are a paradigm shift in periocular reconstruction in which the subcutaneous pedicle enables the recruitment of large and highly mobile skin flaps from a wide area of regional tissue.

  8. The Effect of Propellant Optical Properties on Composite Solid Propellant Combustion

    DTIC Science & Technology

    1991-01-01

    i a J’i A tkkkeport of Research to NOffice of Naval Research "The Effect of Propellant Optical Properties on Composite Solid Propellant Combustion...87-0547 _ Period (original): July 1987 - June 1990 (with extension): July 1987- December 1990 January 1991 19 . 2 04 090 a Summary of Research ...Results The results of this research program are summarized below in five categories. Only a brief synopsis of the results and their significance are given

  9. Low-Cost Propellant Launch to LEO from a Tethered Balloon - Economic and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.

    2010-01-01

    This paper provides new analysis of the economics of low-cost propellant launch coupled with dry hardware re-use, and of the thermal control of the liquid hydrogen once on-orbit. One conclusion is that this approach enables an overall reduction in the cost-permission by as much as a factor of five as compared to current approaches for human exploration of the moon, Mars, and near-Earth asteroids.

  10. A Discussion of Two Challenges of Non-Cooperative Satellite Refueling

    NASA Technical Reports Server (NTRS)

    Coll, Gregory T.; Aranyos, Thomas J.; Nufer, Brian M.; Tomasic, David; Kandula, Max

    2015-01-01

    There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.

  11. A Discussion of Two Challenges of Non-cooperative Satellite Refueling

    NASA Technical Reports Server (NTRS)

    Coll, Gregory C.; Aranyos, Thomas; Nufer, Brian M.; Kandula, Max; Tomasic, David J.

    2015-01-01

    There is interest from government and commercial aerospace communities in advancing propellant transfer technology for in-orbit refueling of satellites. This paper introduces two challenges to a Propellant Transfer System (PTS) under development for demonstration of non-cooperative satellite refueling. The PTS is being developed to transfer storable propellant (heritage hypergolic fuels and oxidizers as well as xenon) safely and reliably from one servicer satellite to a non-cooperative typical existing client satellite. NASA is in the project evaluation planning stages for conducting a first time on-orbit demonstration to an existing government asset. The system manages pressure, flow rate totalization, temperature and other parameters to control the condition of the propellant being transferred to the client. It keeps the propellant isolated while performing leak checks of itself and the client interface before transferring propellant. A major challenge is to design a safe, reliable system with some new technologies while maintaining a reasonable cost.

  12. Nuclear thermal rockets using indigenous extraterrestrial propellants

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert M.

    1990-01-01

    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS.

  13. Modeling of pulsed propellant reorientation

    NASA Technical Reports Server (NTRS)

    Patag, A. E.; Hochstein, J. I.; Chato, D. J.

    1989-01-01

    Optimization of the propellant reorientation process can provide increased payload capability and extend the service life of spacecraft. The use of pulsed propellant reorientation to optimize the reorientation process is proposed. The ECLIPSE code was validated for modeling the reorientation process and is used to study pulsed reorientation in small-scale and full-scale propellant tanks. A dimensional analysis of the process is performed and the resulting dimensionless groups are used to present and correlate the computational predictions for reorientation performance.

  14. The Effect of Nacelle-Propeller Diameter Ratio on Body Interference and on Propeller and Cooling Characteristics

    NASA Technical Reports Server (NTRS)

    Mchugh, James G; Derring, Eldridge H

    1939-01-01

    Report presents the results of an investigation conducted in the NACA 20-foot tunnel to determine the slipstream drag, the body interference, and the cooling characteristics of nacelle-propeller diameter. Four combinations of geometrically similar propellers and nacelles, mounted on standard wing supports, were tested with values of the ratio of nacelle diameter to propeller diameter of 0.25, 0.33, and 0.44.

  15. Noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Propeller performance and noise were measured on two model scale propellers operating in an anechoic flow environment with and without a wake. Wake thickness of one and three propeller chords were generated by an airfoil which spanned the full diameter of the propeller. Noise measurements were made in the relative near field of the propeller at three streamwise and three azimuthal positions. The data show that as much as 10 dB increase in the OASPL results when a wake is introduced into an operating propeller. Performance data are also presented for completeness.

  16. Random sphere packing model of heterogeneous propellants

    NASA Astrophysics Data System (ADS)

    Kochevets, Sergei Victorovich

    It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous

  17. The pasty propellant rocket engine development

    NASA Astrophysics Data System (ADS)

    Kukushkin, V. I.; Ivanchenko, A. N.

    1993-06-01

    The paper describes a newly developed pasty propellant rocket engine (PPRE) and the combustion process and presents results of performance tests. It is shown that, compared with liquid propellant rocket engines, the PPREs can regulate the thrust level within a wider range, are safer ecologically, and have better weight characteristics. Compared with solid propellant rocket engines, the PPREs may be produced with lower costs and more safely, are able to regulate thrust performance within a wider range, and are able to offer a greater scope for the variation of the formulation components and propellant characteristics. Diagrams of the PPRE are included.

  18. Deflection of Propeller Blades While Running

    NASA Technical Reports Server (NTRS)

    Katzmayr, R

    1922-01-01

    The forces acting on the blades of a propeller proceed from the mass of the propeller and the resistance of the surrounding medium. The magnitude, direction and point of application of the resultant to the propeller blade is of prime importance for the strength calculation. Since it was obviously impracticable to bring any kind of testing device near the revolving propeller, not so much on account of the element of danger as on account of the resulting considerable disturbance of the air flow, the deflection in both cases was photographically recorded and subsequently measured at leisure.

  19. The design of propeller blade roots

    NASA Technical Reports Server (NTRS)

    Cordes, G

    1942-01-01

    Predicated on the assumption of certain normal conditions for engine and propeller, simple expressions for the static and dynamic stresses of propeller blade roots are evolved. They, in combination with the fatigue strength diagram of the employed material, afford for each engine power one certain operating point by which the state of stress serving as a basis for the design of the root is defined. Different stress cases must be analyzed, depending on the vibration tendency of engine and use of propeller. The solution affords an insight into the possible introduction of different size classes of propeller.

  20. In situ propellant production - A new potential for round-trip spacecraft

    NASA Technical Reports Server (NTRS)

    Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Ash, R. L.

    1979-01-01

    In situ propellant production (ISPP) greatly reduces the Earth escape requirements for some roundtrip missions, particularly Mars Sample Return. ISPP systems are described which produce oxygen or oxygen and methane from available atmospheric and surface materials. With ISPP, a 1 kg sample can be returned direct from Mars using a single Shuttle launch. Mars entry can be either direct or from orbit. Comet and asteroid sample return is also accomplished within a single Shuttle launch. Launch requirements for round-trip missions to Ganymede and Callisto are reduced by 15 to 40%.

  1. Influence of yaw on propeller aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Bang; Rozehnal, Dalibor; Hnidka, Jakub; Pham, Vu Uy

    2018-06-01

    Between the propeller axis and free stream direction, it can still be a non-zero yaw angle. This paper introduces some propeller experiments, in which the propeller aerodynamic characteristics have been determined in various yaw angle and different rotational speeds. The experimental aerodynamic characteristics are acquired dynamic values, from which the influence of yaw conditions on the frequency and the amplitude of propeller thrust and torque can be obtained.

  2. Erosivity of LOVA Propellants

    DTIC Science & Technology

    1981-09-01

    ant was a mixture of RDX with a KRATON binder. Two propellants (80% RDX-PU and 80% HMX- CTBN ) had heat inputs greater than the M735 projectile with a...LOVA propellants [80% RDX-PU and 80% HMX.- CTBN ) would require a wear-reducing additive to keep wear comparable to M735 and M774. The other LOVA

  3. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model

    NASA Technical Reports Server (NTRS)

    Mckim, Stephen A.

    2016-01-01

    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  4. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, Martin S.

    1993-01-01

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  5. Explosive laser light initiation of propellants

    DOEpatents

    Piltch, M.S.

    1993-05-18

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  6. Micarta Propellers II : Method of Construction

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Clay, N S

    1924-01-01

    The methods used in manufacturing Micarta propellers differ considerably from those employed with wood propellers on account of the hardness of the materials. The propellers must be formed accurately to size in a mold and afterwards balanced without the customary trimming of the material from the tips. Described here are the pressing and molding processes, filing, boring, balancing, and curing.

  7. Q-ball imaging with PROPELLER EPI acquisition.

    PubMed

    Chou, Ming-Chung; Huang, Teng-Yi; Chung, Hsiao-Wen; Hsieh, Tsyh-Jyi; Chang, Hing-Chiu; Chen, Cheng-Yu

    2013-12-01

    Q-ball imaging (QBI) is an imaging technique that is capable of resolving intravoxel fiber crossings; however, the signal readout based on echo-planar imaging (EPI) introduces geometric distortions in the presence of susceptibility gradients. This study proposes an imaging technique that reduces susceptibility distortions in QBI by short-axis PROPELLER EPI acquisition. Conventional QBI and PROPELLER QBI data were acquired from two 3T MR scans of the brains of five healthy subjects. Prior to the PROPELLER reconstruction, residual distortions in single-blade low-resolution b0 and diffusion-weighted images (DWIs) were minimized by linear affine and nonlinear diffeomorphic demon registrations. Subsequently, the PROPELLER keyhole reconstruction was applied to the corrected DWIs to obtain high-resolution PROPELLER DWIs. The generalized fractional anisotropy and orientation distribution function maps contained fewer distortions in PROPELLER QBI than in conventional QBI, and the fiber tracts more closely matched the brain anatomy depicted by turbo spin-echo (TSE) T2-weighted imaging (T2WI). Furthermore, for fixed T(E), PROPELLER QBI enabled a shorter scan time than conventional QBI. We conclude that PROPELLER QBI can reduce susceptibility distortions without lengthening the acquisition time and is suitable for tracing neuronal fiber tracts in the human brain. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Viscoelastic propellant effects on Space Shuttle Dynamics

    NASA Technical Reports Server (NTRS)

    Bugg, F.

    1981-01-01

    The program of solid propellant research performed in support of the space shuttle dynamics modeling effort is described. Stiffness, damping, and compressibility of the propellant and the effects of many variables on these properties are discussed. The relationship between the propellant and solid rocket booster dynamics during liftoff and boost flight conditions and the effects of booster vibration and propellant stiffness on free free solid rocket booster modes are described. Coupled modes of the shuttle system and the effect of propellant stiffness on the interfaces of the booster and the external tank are described. A finite shell model of the solid rocket booster was developed.

  9. Libration-point staging concepts for Earth-Mars transportation

    NASA Technical Reports Server (NTRS)

    Farquhar, Robert; Dunham, David

    1986-01-01

    The use of libration points as transfer nodes for an Earth-Mars transportation system is briefly described. It is assumed that a reusable Interplanetary Shuttle Vehicle (ISV) operates between the libration point and Mars orbit. Propellant for the round-trip journey to Mars and other supplies would be carried from low Earth orbit (LEO) to the ISV by additional shuttle vehicles. Different types of trajectories between LEO and libration points are presented, and approximate delta-V estimates for these transfers are given. The possible use of lunar gravity-assist maneuvers is also discussed.

  10. Non-terrestrial resources of economic importance to earth

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1991-01-01

    The status of research on the importation of energy and nonterrestrial materials is reviewed, and certain specific directions for new research are proposed. New technologies which are to be developed include aerobraking, in situ propellant production, mining and beneficiation of extraterresrrial minerals, nuclear power systems, electromagnetic launch, and solar thermal propulsion. Topics discussed include the system architecture for solar power satellite constellations, the return of nonterrestrial He-3 to earth for use as a clean fusion fuel, and the return to earth of platinum-group metal byproducts from processing of nonterrestrial native ferrous metals.

  11. SKYLAB II - Making a Deep Space Habitat from a Space Launch System Propellant Tank

    NASA Technical Reports Server (NTRS)

    Griffin, Brand N.; Smitherman, David; Kennedy, Kriss J.; Toups, Larry; Gill, Tracy; Howe, A. Scott

    2012-01-01

    Called a "House in Space," Skylab was an innovative program that used a converted Saturn V launch vehicle propellant tank as a space station habitat. It was launched in 1973 fully equipped with provisions for three separate missions of three astronauts each. The size and lift capability of the Saturn V enabled a large diameter habitat, solar telescope, multiple docking adaptor, and airlock to be placed on-orbit with a single launch. Today, the envisioned Space Launch System (SLS) offers similar size and lift capabilities that are ideally suited for a Skylab type mission. An envisioned Skylab II mission would employ the same propellant tank concept; however serve a different mission. In this case, the SLS upper stage hydrogen tank is used as a Deep Space Habitat (DSH) for NASA s planned missions to asteroids, Earth-Moon Lagrangian point and Mars.

  12. Nitramine propellants. [gun propellant burning rate

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D. (Inventor)

    1978-01-01

    Nitramine propellants without a pressure exponent shift in the burning rate curves are prepared by matching the burning rate of a selected nitramine or combination of nitramines within 10% of burning rate of a plasticized active binder so as to smooth out the break point appearance in the burning rate curve.

  13. Propeller speed and phase sensor

    NASA Technical Reports Server (NTRS)

    Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)

    1992-01-01

    A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.

  14. 75 FR 13238 - Special Conditions: McCauley Propeller Systems, Model Propeller 3D15C1401/C80MWX-X

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...-X AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed special conditions... for McCauley Propeller Systems for model propeller 3D15C1401/C80MWX-X. We are withdrawing the notice... McCauley Propeller Systems for model propeller 3D15C1401/C80MWX-X (71 FR 43674). On November 29, 2004...

  15. Noise from Two-Blade Propellers

    NASA Technical Reports Server (NTRS)

    Stowell, E Z; Deming, A F

    1936-01-01

    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included.

  16. Green Propellant Landing Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  17. Green Propellant Loading Demonstration at U.S. Range

    NASA Technical Reports Server (NTRS)

    Mulkey, Henry W.; Miller, Joseph T.; Bacha, Caitlin E.

    2016-01-01

    The Green Propellant Loading Demonstration (GPLD) was conducted December 2015 at Wallops Flight Facility (WFF), leveraging work performed over recent years to bring lower toxicity hydrazine replacement green propellants to flight missions. The objective of this collaboration between NASA Goddard Space Flight Center (GSFC), WFF, the Swedish National Space Board (SNSB), and Ecological Advanced Propulsion Systems (ECAPS) was to successfully accept LMP-103S propellant at a U.S. Range, store the propellant, and perform a simulated flight vehicle propellant loading. NASA GSFC Propulsion (Code 597) managed all aspects of the operation, handling logistics, preparing the procedures, and implementing the demonstration. In addition to the partnership described above, Moog Inc. developed an LMP-103S propellant-compatible titanium rolling diaphragm flight development tank and loaned it to GSFC to act as the GPLD flight vessel. The flight development tank offered the GPLD an additional level of flight-like propellant handling process and procedures. Moog Inc. also provided a compatible latching isolation valve for remote propellant expulsion. The GPLD operation, in concert with Moog Inc. executed a flight development tank expulsion efficiency performance test using LMP-103S propellant. As part of the demonstration work, GSFC and WFF documented Range safety analyses and practices including all elements of shipping, storage, handling, operations, decontamination, and disposal. LMP-103S has not been previously handled at a U.S. Launch Range. Requisite for this activity was an LMP-103S Risk Analysis Report and Ground Safety Plan. GSFC and WFF safety offices jointly developed safety documentation for application into the GPLD operation. The GPLD along with the GSFC Propulsion historical hydrazine loading experiences offer direct comparison between handling green propellant versus safety intensive, highly toxic hydrazine propellant. These described motives initiated the GPLD operation

  18. Return of the propeller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-05-01

    Resurrecting the propeller-driven airplane could help save fuel if there is another oil crisis like in the 1970s. This article discusses the new propeller engine, propfans, which are being developed for commercial airplanes. It discusses the three types of propfan engines and the advantages and disadvantages of each. It also tells about the propfan airplanes several companies are developing.

  19. Active synchrophasing of propeller unbalance

    NASA Technical Reports Server (NTRS)

    Kaptein, Dick

    1992-01-01

    The results of a survey are presented to reduce the inflight propeller unbalance vibrations in the cabin of the Fokker 50 airplanes. Several approaches have been investigated. Active synchrophasing of the unbalance vibrations of both propellers appears to be successful.

  20. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings VI : Wings and Nacelles with Pusher Propeller

    NASA Technical Reports Server (NTRS)

    Wood, Donald H; Bioletti, Carlton

    1935-01-01

    This report is the sixth of a series giving wind tunnel tests results on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. The present report gives the results of tests of a radial-engine nacelle with pusher propeller in 17 positions with reference to a Clark Y wing; tests of the same nacelle and propeller in three positions with reference to a thick wing; and tests of a body and pusher propeller with the thick wing, simulating the case of a propeller driven by an extension shaft from an engine within the wing. Some preliminary tests were made on pusher nacelles alone.

  1. Motorboat propeller injuries.

    PubMed

    Di Nunno, N; Di Nunno, C

    2000-07-01

    The authors analyze the case of an Albanian refugee who was killed by the propellers of the outboard engine of a rubber dinghy while illegally attempting to reach Italy. The finding of multiple parallel, deep clear-cut injuries is uncommon, but highly characteristic of the object producing the lesions. These are typical and cannot be mistaken with those produced by sharp objects or shark bites. The description of the injuries is vital for establishing the position of the victim with regard to the propeller that struck him.

  2. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  3. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  4. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  5. AP reclamation and reuse in RSRM propellant

    NASA Technical Reports Server (NTRS)

    Miks, Kathryn F.; Harris, Stacey A.

    1995-01-01

    A solid propellant ingredient reclamation pilot plant has been evaluated at the Strategic Operations of Thiokol Corporation, located in Brigham City, Utah. The plant produces AP wet cake (95 percent AP, 5 percent water) for recycling at AP vendors. AP has been obtained from two standard propellant binder systems (PBAN and HTPB). Analytical work conducted at Thiokol indicates that the vendor-recrystallized AP meets Space Shuttle propellant specification requirements. Thiokol has processed 1-, 5-, and 600-gallon propellant mixes with the recrystallized AP. Processing, cast, cure, ballistic, mechanical, and safety properties have been evaluated. Phillips Laboratory static-test-fired 70-pound and 800-pound BATES motors. The data indicate that propellant processed with reclaimed AP has nominal properties.

  6. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; hide

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  7. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Barona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP Precursors (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  8. 14 CFR 121.225 - Propeller deicing fluid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Propeller deicing fluid. 121.225 Section 121.225 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Propeller deicing fluid. If combustible fluid is used for propeller deicing, the certificate holder must...

  9. 14 CFR 121.225 - Propeller deicing fluid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Propeller deicing fluid. 121.225 Section 121.225 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Propeller deicing fluid. If combustible fluid is used for propeller deicing, the certificate holder must...

  10. 14 CFR 121.225 - Propeller deicing fluid.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Propeller deicing fluid. 121.225 Section 121.225 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Propeller deicing fluid. If combustible fluid is used for propeller deicing, the certificate holder must...

  11. 14 CFR 121.225 - Propeller deicing fluid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Propeller deicing fluid. 121.225 Section 121.225 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Propeller deicing fluid. If combustible fluid is used for propeller deicing, the certificate holder must...

  12. 14 CFR 121.225 - Propeller deicing fluid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Propeller deicing fluid. 121.225 Section 121.225 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Propeller deicing fluid. If combustible fluid is used for propeller deicing, the certificate holder must...

  13. LOX/hydrocarbon auxiliary propulsion system study

    NASA Technical Reports Server (NTRS)

    Orton, G. F.; Mark, T. D.; Weber, D. D.

    1982-01-01

    Liquid oxygen (LOX)/hydrocarbon propulsion concepts for a "second generation' orbiter auxiliary propulsion system was evaluated. The most attractive fuel and system design approach identified, and the technology advancements that are needed to provide high confidence for a subsequent system development were determined. The fuel candidates were ethanol, methane, propane, and ammonia. Even though ammonia is not a hydrocarbon, it was included for evaluation because it is clean burning and has a good technology base. The major system design options were pump versus pressure feed, cryogenic versus ambient temperature RCS propellant feed, and the degree of OMS-RCS integration. Ethanol was determined to be the best fuel candidate. It is an earth-storable fuel with a vapor pressure slightly higher than monomethyl hydrazine. A pump-fed OMS was recommended because of its high specific impulse, enabling greater velocity change and greater payload capability than a pressure fed system.

  14. Runtime and Pressurization Analyses of Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Field, Robert E.; Ryan, Harry M.; Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chung P.

    2007-01-01

    Multi-element unstructured CFD has been utilized at NASA SSC to carry out analyses of propellant tank systems in different modes of operation. The three regimes of interest at SSC include (a) tank chill down (b) tank pressurization and (c) runtime propellant draw-down and purge. While tank chill down is an important event that is best addressed with long time-scale heat transfer calculations, CFD can play a critical role in the tank pressurization and runtime modes of operation. In these situations, problems with contamination of the propellant by inclusion of the pressurant gas from the ullage causes a deterioration of the quality of the propellant delivered to the test article. CFD can be used to help quantify the mixing and propellant degradation. During tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. It should be noted that traditional CFD modeling is inadequate for such simulations because the fluids in the tank are in a range of different sub-critical and supercritical states and elaborate phase change and mixing rules have to be developed to accurately model the interaction between the ullage gas and the propellant. We show a typical run-time simulation of a spherical propellant tank, containing RP-1 in this case, being pressurized with room-temperature nitrogen at 540 R. Nitrogen

  15. 46 CFR 50.05-20 - Steam-propelled motorboats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-propelled motorboats. 50.05-20 Section 50.05-20... Application § 50.05-20 Steam-propelled motorboats. (a) The requirements covering design of the propelling... than 40 feet in length and which are propelled by machinery driven by steam shall be in accordance with...

  16. Research into the propeller strut for high speed outboard motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi; Sunayama, Yoshihiko

    1995-12-31

    For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances ofmore » the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut Suzuki`s 200 PS outboard motor and its improved version. The propeller used in the experiment is one having super cavitating blades with the Pseudo-Kirchhoff nose, whose performance the authors have been analyzing systematically. Detailed comparison was further made of the drags of the differently shaped propeller struts by means of computational fluid dynamics.« less

  17. 14 CFR 125.123 - Propeller deicing fluid.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Propeller deicing fluid. 125.123 Section 125.123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.123 Propeller deicing fluid. If combustible fluid is used for propeller deicing, the...

  18. 14 CFR 125.123 - Propeller deicing fluid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Propeller deicing fluid. 125.123 Section 125.123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.123 Propeller deicing fluid. If combustible fluid is used for propeller deicing, the...

  19. 14 CFR 125.123 - Propeller deicing fluid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Propeller deicing fluid. 125.123 Section 125.123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.123 Propeller deicing fluid. If combustible fluid is used for propeller deicing, the...

  20. 14 CFR 125.123 - Propeller deicing fluid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Propeller deicing fluid. 125.123 Section 125.123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.123 Propeller deicing fluid. If combustible fluid is used for propeller deicing, the...

  1. 14 CFR 125.123 - Propeller deicing fluid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Propeller deicing fluid. 125.123 Section 125.123 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... Requirements § 125.123 Propeller deicing fluid. If combustible fluid is used for propeller deicing, the...

  2. Disposal of Liquid Propellants

    DTIC Science & Technology

    1990-03-13

    propellant includes an oxi- dizer (hydroxylammoniuin nitrate), a fuel (triethanolammonium nitrate), and water . In an- ticipation of widespread (both...are also included. 20. DISTRIBUTION/ AVAILABILIT ’." OF ABMTRACT 21 ABSTRACT SECURITY CLASSIF.CATICIN IUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 OTIC...trieth- anolammoiur nitrate), anG water . In anticipation of widespread (both conti- nental U.S. and abroac) use of the propellant, USATHAMA began a

  3. Space shuttle propellant constitutive law verification tests

    NASA Technical Reports Server (NTRS)

    Thompson, James R.

    1995-01-01

    As part of the Propellants Task (Task 2.0) on the Solid Propulsion Integrity Program (SPIP), a database of material properties was generated for the Space Shuttle Redesigned Solid Rocket Motor (RSRM) PBAN-based propellant. A parallel effort on the Propellants Task was the generation of an improved constitutive theory for the PBAN propellant suitable for use in a finite element analysis (FEA) of the RSRM. The outcome of an analysis with the improved constitutive theory would be more reliable prediction of structural margins of safety. The work described in this report was performed by Materials Laboratory personnel at Thiokol Corporation/Huntsville Division under NASA contract NAS8-39619, Mod. 3. The report documents the test procedures for the refinement and verification tests for the improved Space Shuttle RSRM propellant material model, and summarizes the resulting test data. TP-H1148 propellant obtained from mix E660411 (manufactured February 1989) which had experienced ambient igloo storage in Huntsville, Alabama since January 1990, was used for these tests.

  4. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited as...

  5. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited as...

  6. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited as...

  7. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited as...

  8. 21 CFR 700.23 - Chlorofluorocarbon propellants.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) COSMETICS GENERAL Requirements for Specific Cosmetic Products § 700.23 Chlorofluorocarbon propellants. The use of chlorofluorocarbons in cosmetics as propellants in self-pressurized containers is prohibited as...

  9. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  10. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  11. A theoretical and experimental investigation of propeller performance methodologies

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Gregorek, G. M.; Mikkelson, D. C.

    1980-01-01

    This paper briefly covers aspects related to propeller performance by means of a review of propeller methodologies; presentation of wind tunnel propeller performance data taken in the NASA Lewis Research Center 10 x 10 wind tunnel; discussion of the predominent limitations of existing propeller performance methodologies; and a brief review of airfoil developments appropriate for propeller applications.

  12. The 3-D viscous flow CFD analysis of the propeller effect on an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1993-01-01

    A time marching Navier-Stokes code called PARC3D was used to study the 3-D viscous flow associated with an advanced ducted propeller (ADP) subsonic inlet at take-off operating conditions. At a free stream Mach number of 0.2, experimental data for the inlet-with-propeller test model indicated that the airflow was attached on the cowl windward lip at an angle of attack of 25 degrees became unstable at 29 degrees, and separated at 30 degrees. An experimental study with a similar inlet and with no propeller (through-flow) indicated that flow separation occurred at an angle of attack a few degrees below the value observed when the inlet was tested with the propeller. This tends to indicate that the propeller exerts a favorable effect on the inlet performance. During the through-flow experiment a stationary blockage device was used to successfully simulate the propeller effect on the inlet flow field at angles of attack. In the present numerical study, this flow blockage was modeled via a PARC3D computational boundary condition (BC) called the screen BC. The principle formulation of this BC was based on the one-and-half dimension actuator disk theory. This screen BC was applied at the inlet propeller face station of the computational grid. Numerical results were obtained with and without the screen BC. The application of the screen BC in this numerical study provided results which are similar to the results of past experimental efforts in which either the blockage device or the propeller was used.

  13. 14 CFR 25.1027 - Propeller feathering system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1027 Propeller feathering system. (a) If the propeller feathering system depends on engine oil, there must be means to trap... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller feathering system. 25.1027...

  14. 33 CFR 401.16 - Propeller direction alarms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Propeller direction alarms. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller... and barge unit of combined 1600 gross registered tons or more shall be equipped with— (a) Propeller...

  15. 14 CFR 25.1027 - Propeller feathering system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1027 Propeller feathering system. (a) If the propeller feathering system depends on engine oil, there must be means to trap... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller feathering system. 25.1027...

  16. 14 CFR 25.1027 - Propeller feathering system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1027 Propeller feathering system. (a) If the propeller feathering system depends on engine oil, there must be means to trap... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering system. 25.1027...

  17. 14 CFR 25.1027 - Propeller feathering system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1027 Propeller feathering system. (a) If the propeller feathering system depends on engine oil, there must be means to trap... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller feathering system. 25.1027...

  18. 14 CFR 25.1027 - Propeller feathering system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1027 Propeller feathering system. (a) If the propeller feathering system depends on engine oil, there must be means to trap... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller feathering system. 25.1027...

  19. 33 CFR 401.16 - Propeller direction alarms.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Propeller direction alarms. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller... and barge unit of combined 1600 gross registered tons or more shall be equipped with— (a) Propeller...

  20. 33 CFR 401.16 - Propeller direction alarms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Propeller direction alarms. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller... and barge unit of combined 1600 gross registered tons or more shall be equipped with— (a) Propeller...

  1. 33 CFR 401.16 - Propeller direction alarms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Propeller direction alarms. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller... and barge unit of combined 1600 gross registered tons or more shall be equipped with— (a) Propeller...

  2. 33 CFR 401.16 - Propeller direction alarms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Propeller direction alarms. 401..., DEPARTMENT OF TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Condition of Vessels § 401.16 Propeller... and barge unit of combined 1600 gross registered tons or more shall be equipped with— (a) Propeller...

  3. Application of Theodorsen's Theory to Propeller Design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1948-01-01

    A theoretical analysis is presented for obtaining by use of Theodorsen's propeller theory the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition.The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  4. Application of Theodorsen's theory to propeller design

    NASA Technical Reports Server (NTRS)

    Crigler, John L

    1949-01-01

    A theoretical analysis is presented for obtaining, by use of Theodorsen's propeller theory, the load distribution along a propeller radius to give the optimum propeller efficiency for any design condition. The efficiencies realized by designing for the optimum load distribution are given in graphs, and the optimum efficiency for any design condition may be read directly from the graph without any laborious calculations. Examples are included to illustrate the method of obtaining the optimum load distributions for both single-rotating and dual-rotating propellers.

  5. Cavitation noise studies on marine propellers

    NASA Astrophysics Data System (ADS)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  6. A logistics and potential hazard study of propellant systems for a Saturn 5 derived heavy lift (three-stage core) launch vehicle

    NASA Technical Reports Server (NTRS)

    Whitney, E. Dow

    1992-01-01

    The Bush Administration has directed NASA to prepare for a return to the Moon and on to Mars - the Space Exploration Initiative. To meet this directive, powerful rocket boosters will be required in order to lift payloads that may reach the half-million pound range into low earth orbit. In this report an analysis is presented on logistics and potential hazards of the propellant systems envisioned for future Saturn 5 derived heavy lift launch vehicles. In discussing propellant logistics, particular attention has been given to possible problems associated with procurement, transportation, and storage of RP-1, HL2, and LOX, the heavy lift launch vehicle propellants. Current LOX producing facilities will need to be expanded and propellant storage and some support facilities will require relocation if current Launch Pads 39A and/or 39B are to be used for future heavy noise-abatement measures. Included in the report is a discussion of suggested additional studies, primarily economic and environmental, which should be undertaken in support of the goals of the Space Exploration Initiative.

  7. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  8. Compatibility testing of spacecraft materials and space-storable liquid propellants

    NASA Technical Reports Server (NTRS)

    Constantino, L. L.; Denson, J. R.; Krishnan, C. S.; Toy, A.

    1974-01-01

    Compatibility measurements were made for aluminum 2219-T87 alloy and titanium 6Al-4V alloy in the presence of liquid fluorine and flox. Results of post test characterization after exposure durations of 61 and 70 weeks are presented. Results of the total test program are analyzed.

  9. Long-Term Cryogenic Propellant Storage on Mars with Hercules Propellant Storage Facility

    NASA Technical Reports Server (NTRS)

    Liu, Gavin

    2017-01-01

    This report details the process and results of roughly sizing the steady state, zero boil-off thermal and power parameters of the Hercules Propellant Storage Facility. For power analysis, isothermal and isobaric common bulkhead tank scenarios are considered. An estimated minimum power requirement of 8.3 kW for the Reverse Turbo-Brayton Cryocooler is calculated. Heat rejection concerns in soft vacuum Mars atmosphere are noted and potential solutions are proposed. Choice of coolant for liquid propellant conditioning and issues with current proposed cryocooler cycle are addressed; recommendations are made, e.g. adding a Joule-Thomson expansion valve after the Reverse Turbo-Brayton turbine in order to have two-phase, isothermal heat exchange through the Broad Area Cooling system. Issues with cross-country transfer lines from propellant storage to flight vehicle are briefly discussed: traditional vacuum jacketed lines are implausible, and Mars insulation needs to be developed.

  10. Green Propellant Infusion Mission

    NASA Image and Video Library

    2013-07-09

    U.S. Senator Mark Udall (D-CO) speaks at a Green Propellant Infusion Mission press conference at the Reserve Officers Association, Tuesday, July 9, 2013 in Washington. The NASA GPIM program, led by Ball Aerospace in conjunction with Aerojet Rocketdyne, is demonstrating a high-performance "green" fuel in space. The propellant used on this mission offers nearly 50 percent better performance when compared to traditional hydrazine. Photo Credit: (NASA/Carla Cioffi)

  11. Green Propellant Infusion Mission

    NASA Image and Video Library

    2013-07-09

    Roger Myers, Executive Director, Aerojet Rocketdyne speaks at a Green Propellant Infusion Mission press conference at the Reserve Officers Association, Tuesday, July 9, 2013 in Washington. The NASA GPIM program, led by Ball Aerospace in conjunction with Aerojet Rocketdyne, is demonstrating a high-performance "green" fuel in space. The propellant used on this mission offers nearly 50 percent better performance when compared to traditional hydrazine. Photo Credit: (NASA/Carla Cioffi)

  12. Propeller Flaps: A Literature Review.

    PubMed

    Sisti, Andrea; D'Aniello, Carlo; Fortezza, Leonardo; Tassinari, Juri; Cuomo, Roberto; Grimaldi, Luca; Nisi, Giuseppe

    2016-01-01

    Since their introduction in 1991, propeller flaps are increasingly used as a surgical approach to loss of substance. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rates using this reconstructing technique through a literature review. A search on PubMed was performed using "propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap" as key words. We selected clinical studies using propeller flaps as a reconstructing technique. We found 119 studies from 1991 to 2015. Overall, 1,315 propeller flaps were reported in 1,242 patients. Most frequent indications included loss of substance following tumor excision, repair of trauma-induced injuries, burn scar contractures, pressure sores and chronic infections. Complications were observed in 281/1242 patients (22.6%) occurring more frequently in the lower limbs (31.8%). Partial flap necrosis and venous congestion were the most frequent complications. The complications' rate was significantly higher in infants (<10 years old) and in the older population (>70 years old) but there was not a significant difference between the sexes. Trend of complication rate has not improved during the last years. Propeller flaps showed a great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost. The quality and volume of the transferred soft tissue, the scar orientation and the possibility of direct donor site closure should be considered in order to avoid complications. Indications for propeller flaps are small- or medium-sized defects located in a well-vascularized area with healthy surrounding tissues. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. 75 FR 18774 - Airworthiness Directives; McCauley Propeller Systems Model 4HFR34C653/L106FA Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... (ECI) of the propeller hub for cracks. That proposed AD resulted from reports of 3 hubs found cracked... NPRM results from reports of 7 additional hubs found cracked during propeller overhaul, totaling 10 cracked hubs. We are proposing this supplemental AD to prevent failure of the propeller hub, which could...

  14. Tests on thirteen navy type model propellers

    NASA Technical Reports Server (NTRS)

    Durand, W F

    1927-01-01

    The tests on these model propellers were undertaken for the purpose of determining the performance coefficients and characteristics for certain selected series of propellers of form and type as commonly used in recent navy designs. The first series includes seven propellers of pitch ratio varying by 0.10 to 1.10, the area, form of blade, thickness, etc., representing an arbitrary standard propeller which had shown good results. The second series covers changes in thickness of blade section, other things equal, and the third series, changes in blade area, other things equal. These models are all of 36-inch diameter. Propellers A to G form the series on pitch ratio, C, N. I. J the series on thickness of section, and K, M, C, L the series on area. (author)

  15. Handbook on Hypergolic Propellant Discharges and Disposal

    NASA Technical Reports Server (NTRS)

    Bowman, T. E.; Sivik, H. E.; Thomas, J. J.

    1977-01-01

    The efficiency of all treatment methods formerly or currently used in treating chemical wastes is assessed with emphasis on the disposal of hypergolic propellants. Maximum focus is on the space shuttle propellants MMH and N2O4. Except for hydrogen peroxide oxidizers, all the propellants are nitrogen based and can be potentially reduced to valuable plant nutrients. In theory, all the propellants can be reduced to carbon, hydrogen, nitrogen, and oxygen, except of fuming nitric acid which contains a small amount of fluorine. Appendices cover: (1) a general design criteria for disposal ponds; (2) thermal aspects of reaction in dilute solution; (3) gas bubble growth, detachment, and rise (4) absorption scrubber fundamentals and descriptions; (5) separation of a propellant vapor from a helium stream by permeation; and (6) atmospheric emission limits.

  16. Simple, Robust Cryogenic Propellant Depot for Near Term Applications

    NASA Technical Reports Server (NTRS)

    McLean, Christopher; Pitchford, Brian; Mustafi, Shuvo; Wollen, Mark; Walls, Laurie; Schmidt, Jeff

    2011-01-01

    The ability to refuel cryogenic propulsion stages on-orbit provides an innovative paradigm shift for space transportation supporting National Aeronautics and Space Administration s (NASA) Exploration program as well as deep space robotic, national security and commercial missions. Refueling enables large beyond low Earth orbit (LEO) missions without requiring super heavy lift vehicles that must continuously grow to support increasing mission demands as America s exploration transitions from early Lagrange point missions to near Earth objects (NEO), the lunar surface and eventually Mars. Earth-to-orbit launch can be optimized to provide competitive, cost-effective solutions that allow sustained exploration. This paper describes an experimental platform developed to demonstrate the major technologies required for fuel depot technology. This test bed is capable of transferring residual liquid hydrogen (LH2) or liquid oxygen (LO2) from a Centaur upper stage, and storage in a secondary tank for up to one year on-orbit. A dedicated, flight heritage spacecraft bus is attached to an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA) ring supporting experiments and data collection. This platform can be deployed as early as Q1 2013. The propellant depot design described in this paper can be deployed affordably this decade supporting missions to Earth-Moon Lagrange points and lunar fly by. The same depot concept can be scaled up to support more demanding missions and launch capabilities. The enabling depot design features, technologies and concept of operations are described.

  17. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Rogers, C. J.; Smith, P. L.; Klager, K.

    1978-01-01

    In a study conducted to evaluate flow parameters of uncured solid composite propellants during motor casting, two motors (1.8M-lb grain wt) were cast with a PBAN propellant exhibiting good flow characteristics in a 260-in. dia solid rocket motor. Attention is given to the effects of propellant compositional and processing variables on apparent viscosity as they pertain to rheological behavior and grain defect formation during casting. It is noted that optimized flow behavior is impaired with solid propellant loading. Non-Newtonian pseudoplastic flow is observed, which is dependent upon applied shear stress and the age of the uncured propellant.

  18. Propeller propulsion system integration: State of technology survey

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Vonlavante, E.

    1985-01-01

    A literature survey was performed to identify and review technical material applicable to the problem area of propeller propulsion system integration. The survey covered only aerodynamic interference aspects of the problem, and was restricted primarily to propeller effects on the airframe. The subject of airframe aerodynamic interference on the propeller was limited to the problem of vibration due to nonuniform inflow. The problem of airframe effects on propeller performance was not included. A total of 1121 references are given. The references are grouped into the subject areas of Aircraft Stability, Propulsive Efficiency, Aerodynamic Interference, Aerodynamic Interference-Propeller Vibration, and Miscellaneous.

  19. Computational Predictions of the Performance Wright 'Bent End' Propellers

    NASA Technical Reports Server (NTRS)

    Wang, Xiang-Yu; Ash, Robert L.; Bobbitt, Percy J.; Prior, Edwin (Technical Monitor)

    2002-01-01

    Computational analysis of two 1911 Wright brothers 'Bent End' wooden propeller reproductions have been performed and compared with experimental test results from the Langley Full Scale Wind Tunnel. The purpose of the analysis was to check the consistency of the experimental results and to validate the reliability of the tests. This report is one part of the project on the propeller performance research of the Wright 'Bent End' propellers, intend to document the Wright brothers' pioneering propeller design contributions. Two computer codes were used in the computational predictions. The FLO-MG Navier-Stokes code is a CFD (Computational Fluid Dynamics) code based on the Navier-Stokes Equations. It is mainly used to compute the lift coefficient and the drag coefficient at specified angles of attack at different radii. Those calculated data are the intermediate results of the computation and a part of the necessary input for the Propeller Design Analysis Code (based on Adkins and Libeck method), which is a propeller design code used to compute the propeller thrust coefficient, the propeller power coefficient and the propeller propulsive efficiency.

  20. Robust Exploration and Commercial Missions to the Moon Using NTR LANTR Propulsion and Lunar-Derived Propellants

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; Ryan, Stephen W.; Burke, Laura M.; McCurdy, David R.; Fittje, James E.; Joyner, Claude R.

    2017-01-01

    The nuclear thermal rocket (NTR) has frequently been identified as a key space asset required for the human exploration of Mars. This proven technology can also provide the affordable access through cislunar space necessary for commercial development and sustained human presence on the Moon. In his post-Apollo Integrated Space Program Plan (1970-1990), Wernher von Braun, proposed a reusable nuclear thermal propulsion stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base before undertaking human missions to Mars. The NTR option was selected by von Braun because it was a demonstrated technology capable of generating both high thrust and high specific impulse (Isp 900 s) twice that of todays best chemical rockets. In NASAs Mars Design Reference Architecture (DRA) 5.0 study, the crewed Mars transfer vehicle used three 25 klbf Pewee engines the smallest and highest performing engine tested in the Rover program along with graphite composite fuel. Smaller, lunar transfer vehicles consisting of a NTPS using three approximately 16.5 klbf Small Nuclear Rocket Engines (SNREs), an in-line propellant tank, plus the payload can enable a variety of reusable lunar missions. These include cargo delivery and crewed lunar landing missions. Even weeklong tourism missions carrying passengers into lunar orbit for a day of sightseeing and picture taking are possible. The NTR can play an important role in the next phase of lunar exploration and development by providing an affordable in-space lunar transportation system (LTS) that can allow initial outposts to evolve into settlements supported by a variety of commercial activities such as in-situ propellant production used to supply strategically located propellant depots and transportation nodes. The utilization of iron-rich volcanic glass or lunar polar ice (LPI) deposits (each estimated at billions of metric tons) for propellant production can significantly reduce the launch mass requirements from Earth and can

  1. Strength of Screw Propellers

    DTIC Science & Technology

    1975-07-07

    development depends not, only on the ability of the material to resist hydraulic impacts in cavitation, but also on the correct design of the propeller. Study...9) z where k - correction of Goldstein-Prandtl, which takes into considera- tion the effect of the finite number of propeller blades on the amount... correction of Goldztcin-Prwxidtl is deteri~inedi by graphs in Fig. 10. An example of the calculation of hydrodynamic forces distribu- tion along a

  2. 76 FR 27281 - Airworthiness Directives; Dowty Propellers Type R212/4-30-4/22 and R251/4-30-4/49 Propeller...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Airworthiness Directives; Dowty Propellers Type R212/4-30-4/22 and R251/4-30-4/49 Propeller Assemblies AGENCY.../22 propeller assemblies with hub and driving center assembly part number (P/N) 601022105, 601022211, 601022294, 601021426, 601021858, or 601021859 installed, and type R251/4-30-4/49 propeller assemblies with...

  3. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the...

  4. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the...

  5. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the...

  6. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the...

  7. 14 CFR 35.5 - Propeller ratings and operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller ratings and operating limitations... AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.5 Propeller ratings and operating limitations. (a) Propeller ratings and operating limitations must: (1) Be established by the applicant and approved by the...

  8. Solid Propellant Grain Structural Integrity Analysis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The structural properties of solid propellant rocket grains were studied to determine the propellant resistance to stresses. Grain geometry, thermal properties, mechanical properties, and failure modes are discussed along with design criteria and recommended practices.

  9. Ionic liquid propellants: future fuels for space propulsion.

    PubMed

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Approach Considerations in Aircraft with High-Lift Propeller Systems

    NASA Technical Reports Server (NTRS)

    Patterson, Michael D.; Borer, Nicholas K.

    2017-01-01

    NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented.

  11. Green Propellant Infusion Mission

    NASA Image and Video Library

    2013-07-09

    Dr. Michael Gazarik, Associate Administrator, NASA Space Technology Mission Directorate, answers a reporter's question at a Green Propellant Infusion Mission press conference at the Reserve Officers Association, Tuesday, July 9, 2013 in Washington. The NASA GPIM program, led by Ball Aerospace in conjunction with Aerojet Rocketdyne, is demonstrating a high-performance "green" fuel in space. The propellant used on this mission offers nearly 50 percent better performance when compared to traditional hydrazine. Photo Credit: (NASA/Carla Cioffi)

  12. Study on unsteady hydrodynamic performance of propeller in waves

    NASA Astrophysics Data System (ADS)

    Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin

    2017-09-01

    The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.

  13. Simultaneous multi-slice combined with PROPELLER.

    PubMed

    Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan

    2018-08-01

    Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Water Contaminant Mitigation in Ionic Liquid Propellant

    NASA Technical Reports Server (NTRS)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  15. Propellant Depots: The Future of Space Exploration

    NASA Astrophysics Data System (ADS)

    Crenwelge, Drew

    NASA is currently exploring several options for mankind's return to the lunar surface and beyond. The selected option must stimulate both commercial and international involvement, support future missions to the Moon and other destinations, and above all, fit within the current budget profile. Contrary to the current Constellation approach, this paper describes the option of using an in-space propellant depot architecture that can refuel or top-off visiting vehicles at EML1, and how it fits within NASA's new space exploration criteria. In addition to receiving and transferring fuel, the propellant depot will also provide cryogenic propellant storage and management that utilizes flight proven technologies in conjunction with technologies currently under development. The propellant depot system, propellant management and acquisition devices, thermodynamic analysis, and key enabling technologies are also discussed. Depot design concepts along with an overview of a future lunar mission sequence are also presented.

  16. Interaction Between Air Propellers and Airplane Structures

    NASA Technical Reports Server (NTRS)

    Durand, W F

    1927-01-01

    The purpose of this investigation was the determination of the character and amount of interaction between air propellers as usually mounted on airplanes and the adjacent parts of the airplane structure - or, more specifically, those parts of the airplane structure within the wash of the propeller, and capable of producing any significant effect on propeller performance. In report no. 177 such interaction between air propellers and certain simple geometrical forms was made the subject of investigation and report. The present investigation aims to carry this general study one stage further by substituting actual airplane structures for the simple geometrical forms. From the point of view of the present investigation, the airplane structures, viewed as an obstruction in the wake of the propeller, must also be viewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will. (author)

  17. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1985-01-01

    Advanced high speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eight bladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller nearfield noise data with linear acoustic theory indicate that the theory adequately predicts nearfield noise for subsonic tip speeds, but overpredicts the noise for supersonic tip speeds.

  18. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1984-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds.

  19. Design and simulation on the morphing composite propeller (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong

    2017-04-01

    As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.

  20. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  1. [Imaging characteristics of PROPELLER T2-weighted imaging].

    PubMed

    Goto, Masami; Aoki, Shigeki; Hayashi, Naoto; Mori, Harushi; Watanabe, Yasushi; Ino, Kenji; Satake, Yoshirou; Nishida, Katuji; Sato, Haruo; Iida, Kyouhito; Mima, Kazuo; Ohtomo, Kuni

    2004-11-01

    As the PROPELLER sequence is a combination of the radial scan and fast-spin-echo (FSE) sequence, it can be considered an FSE sequence with a motion correlation. However, there are some differences between PROPELLER and FSE owing to differences in k-space trajectory. We clarified the imaging characteristics of PROPELLER T2-weighted imaging (T2WI) for different parameters in comparison with usual FSE T2WI. When the same parameters were used, PROPELLER T2WI showed a higher signal-to-noise ratio (SNR) and lower spatial resolution than usual FSE. Effective echo time (TE) changed with different echo train lengths (ETL) or different bandwidths on PROPELLER, and imaging contrast changed accordingly to be more effective.

  2. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  3. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  4. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  5. Thermal Vacuum Test Correlation of A Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytics Model

    NASA Technical Reports Server (NTRS)

    McKim, Stephen A.

    2016-01-01

    This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  6. Combustion characteristics of SMX and SMX based propellants

    NASA Astrophysics Data System (ADS)

    Reese, David A.

    This work investigates the combustion of the new solid nitrate ester 2,3-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (SMX, C6H 8N6O16). SMX was synthesized for the first time in 2008. It has a melting point of 85 °C and oxygen balance of 0% to CO 2, allowing it to be used as an energetic additive or oxidizer in solid propellants. In addition to its neat combustion characteristics, this work also explores the use of SMX as a potential replacement for nitroglycerin (NG) in double base gun propellants and as a replacement for ammonium perchlorate in composite rocket propellants. The physical properties, sensitivity characteristics, and combustion behaviors of neat SMX were investigated. Its combustion is stable at pressures of up to at least 27.5 MPa (n = 0.81). The observed flame structure is nearly identical to that of other double base propellant ingredients, with a primary flame attached at the surface, a thick isothermal dark zone, and a luminous secondary flame wherein final recombination reactions occur. As a result, the burning rate and primary flame structure can be modeled using existing one-dimensional steady state techniques. A zero gas-phase activation energy approximation results in a good fit between modeled and observed behavior. Additionally, SMX was considered as a replacement for nitroglycerin in a double base propellant. Thermochemical calculations indicate improved performance when compared with the common double base propellant JA2 at SMX loadings above 40 wt-%. Also, since SMX is a room temperature solid, migration may be avoided. Like other nitrate esters, SMX is susceptible to decomposition over long-term storage due to the presence of excess acid in the crystals; the addition of stabilizers (e.g., derivatives of urea) during synthesis should be sufficient to prevent this. the addition of Both unplasticized and plasticized propellants were formulated. Thermal analysis of unplasticized propellant showed a distinct melt

  7. Performance analysis of mini-propellers based on FlightGear

    NASA Astrophysics Data System (ADS)

    Vogeltanz, Tomáš

    2016-06-01

    This paper presents a performance analysis of three mini-propellers based on the FlightGear flight simulator. Although a basic propeller analysis has to be performed before the use of FlightGear, for a complex and more practical performance analysis, it is advantageous to use a propeller model in cooperation with a particular aircraft model. This approach may determine whether the propeller has sufficient quality in respect of aircraft requirements. In the first section, the software used for the analysis is illustrated. Then, the parameters of the analyzed mini-propellers and the tested UAV are described. Finally, the main section shows and discusses the results of the performance analysis of the mini-propellers.

  8. Effect of a rotating propeller on the separation angle of attack and distortion in ducted propeller inlets

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Larkin, M.; Schweiger, P.

    1993-01-01

    The present study represents an extension of an earlier wind tunnel experiment performed with the P&W 17-in. Advanced Ducted Propeller (ADP) Simulator operating at Mach 0.2. In order to study the effects of a rotating propeller on the inlet flow, data were obtained in the UTRC 10- by 15-Foot Large Subsonic Wind Tunnel with the same hardware and instrumentation, but with the propeller removed. These new tests were performed over a range of flow rates which duplicated flow rates in the powered simulator program. The flow through the inlet was provided by a remotely located vacuum source. A comparison of the results of this flow-through study with the previous data from the powered simulator indicated that in the conventional inlet the propeller produced an increase in the separation angle of attack between 4.0 deg at a specific flow of 22.4 lb/sec-sq ft to 2.7 deg at a higher specific flow of 33.8 lb/sec-sq ft. A similar effect on separation angle of attack was obtained by using stationary blockage rather than a propeller.

  9. Foundational Methane Propulsion Related Technology Efforts, and Challenges for Applications to Human Exploration Beyond Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brown, Thomas; Klem, Mark; McRight, Patrick

    2016-01-01

    Current interest in human exploration beyond earth orbit is driving requirements for high performance, long duration space transportation capabilities. Continued advancement in photovoltaic power systems and investments in high performance electric propulsion promise to enable solar electric options for cargo delivery and pre-deployment of operational architecture elements. However, higher thrust options are required for human in-space transportation as well as planetary descent and ascent functions. While high thrust requirements for interplanetary transportation may be provided by chemical or nuclear thermal propulsion systems, planetary descent and ascent systems are limited to chemical solutions due to their higher thrust to weight and potential planetary protection concerns. Liquid hydrogen fueled systems provide high specific impulse, but pose challenges due to low propellant density and the thermal issues of long term propellant storage. Liquid methane fueled propulsion is a promising compromise with lower specific impulse, higher bulk propellant density and compatibility with proposed in-situ propellant production concepts. Additionally, some architecture studies have identified the potential for commonality between interplanetary and descent/ascent propulsion solutions using liquid methane (LCH4) and liquid oxygen (LOX) propellants. These commonalities may lead to reduced overall development costs and more affordable exploration architectures. With this increased interest, it is critical to understand the current state of LOX/LCH4 propulsion technology and the remaining challenges to its application to beyond earth orbit human exploration. This paper provides a survey of NASA's past and current methane propulsion related technology efforts, assesses the accomplishments to date, and examines the remaining risks associated with full scale development.

  10. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  11. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  12. 30 CFR 57.4260 - Underground self-propelled equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prevention and Control Firefighting Equipment § 57.4260 Underground self-propelled equipment. (a) Whenever self-propelled equipment is used underground, a fire extinguisher shall be on the equipment. This... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground self-propelled equipment. 57.4260...

  13. 14 CFR 25.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller vibration and fatigue. 25.907... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a...

  14. 14 CFR 25.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller vibration and fatigue. 25.907... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a...

  15. Development of a solid propellant viscoelastic dynamic model

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.; Fitzgerald, J. E.

    1976-01-01

    The results of a one year study to develop a dynamic response model for the Space Shuttle Solid Rocket Motor (SRM) propellant are presented. An extensive literature survey was conducted, from which it was concluded that the only significant variables affecting the dynamic response of the SRM propellant are temperature and frequency. Based on this study, and experimental data on propellants related to the SRM propellant, a dynamic constitutive model was developed in the form of a simple power law with temperature incorporated in the form of a modified power law. A computer program was generated which performs a least-squares curve-fit of laboratory data to determine the model parameters and it calculates dynamic moduli at any desired temperature and frequency. Additional studies investigated dynamic scaling laws and the extent of coupling between the SRM propellant and motor cases. It was found, in agreement with other investigations, that the propellant provides all of the mass and damping characteristics whereas the case provides all of the stiffness.

  16. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  17. MAST Propellant and Delivery System Design Methods

    NASA Technical Reports Server (NTRS)

    Nadeem, Uzair; Mc Cleskey, Carey M.

    2015-01-01

    A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.

  18. Motion Correction in PROPELLER and Turboprop-MRI

    PubMed Central

    Tamhane, Ashish A.; Arfanakis, Konstantinos

    2009-01-01

    PROPELLER and Turboprop-MRI are characterized by greatly reduced sensitivity to motion, compared to their predecessors, fast spin-echo and gradient and spin-echo, respectively. This is due to the inherent self-navigation and motion correction of PROPELLER-based techniques. However, it is unknown how various acquisition parameters that determine k-space sampling affect the accuracy of motion correction in PROPELLER and Turboprop-MRI. The goal of this work was to evaluate the accuracy of motion correction in both techniques, to identify an optimal rotation correction approach, and determine acquisition strategies for optimal motion correction. It was demonstrated that, blades with multiple lines allow more accurate estimation of motion than blades with fewer lines. Also, it was shown that Turboprop-MRI is less sensitive to motion than PROPELLER. Furthermore, it was demonstrated that the number of blades does not significantly affect motion correction. Finally, clinically appropriate acquisition strategies that optimize motion correction were discussed for PROPELLER and Turboprop-MRI. PMID:19365858

  19. Combustion chemistry of solid propellants

    NASA Technical Reports Server (NTRS)

    Baer, A. D.; Ryan, N. W.

    1974-01-01

    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process.

  20. Study of liquid oxygen/liquid hydrogen auxiliary propulsion systems for the space tug

    NASA Technical Reports Server (NTRS)

    Nichols, J. F.

    1975-01-01

    Design concepts are considered that permit use of a liquid-liquid (as opposed to gas-gas) oxygen/hydrogen thrust chamber for attitude control and auxiliary propulsion thrusters on the space tug. The best of the auxiliary propulsion system concepts are defined and their principal characteristics, including cost as well as operational capabilities, are established. Design requirements for each of the major components of the systems, including thrusters, are developed at the conceptual level. The competitive concepts considered use both dedicated (separate tanks) and integrated (propellant from main propulsion tanks) propellant supply. The integrated concept is selected as best for the space tug after comparative evaluation against both cryogenic and storable propellant dedicated systems. A preliminary design of the selected system is established and recommendations for supporting research and technology to further the concept are presented.

  1. Hydrogen Peroxide - Material Compatibility Studied by Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Homung, Steven D.; Davis, Dennis D.; Baker, David; Popp, Christopher G.

    2003-01-01

    Environmental and toxicity concerns with current hypergolic propellants have led to a renewed interest in propellant grade hydrogen peroxide (HP) for propellant applications. Storability and stability has always been an issue with HP. Contamination or contact of HP with metallic surfaces may cause decomposition, which can result in the evolution of heat and gas leading to increased pressure or thermal hazards. The NASA Johnson Space Center White Sands Test Facility has developed a technique to monitor the decompositions of hydrogen peroxide at temperatures ranging from 25 to 60 C. Using isothermal microcalorimetry we have measured decomposition rates at the picomole/s/g level showing the catalytic effects of materials of construction. In this paper we will present the results of testing with Class 1 and 2 materials in 90 percent hydrogen peroxide.

  2. Polar Satellite Launch Vehicle (PSLV) development programme in India

    NASA Astrophysics Data System (ADS)

    Janardhana, E.

    The design of the Indian Polar Satellite Launch Vehicle (PSLV), for the launching (by 1990) of 1-1.5-tonne payloads into 900-km sun-synchronous orbit, is discussed, and the mission development program is described. The first stage is a solid propellant motor augmented by six solid strap-ons, and the second stage of liquid storable propellant has a high thrust gimballed engine. A high performance solid motor incorporates a flex nozzle for control as the third stage, and the fourth stage is a liquid propulsion system using N204 and MMH propellant with two regeneratively cooled engines. The vehicle equipment bay, housing the inertial guidance and control system, and the TTC system are located around the fourth stage for guidance and tracking with the associated ground segment until spacecraft ejection into orbit.

  3. Circulation control propellers for general aviation, including a BASIC computer program

    NASA Technical Reports Server (NTRS)

    Taback, I.; Braslow, A. L.; Butterfield, A. J.

    1983-01-01

    The feasibility of replacing variable pitch propeller mechanisms with circulation control (Coanada effect) propellers on general aviation airplanes was examined. The study used a specially developed computer program written in BASIC which could compare the aerodynamic performance of circulation control propellers with conventional propellers. The comparison of aerodynamic performance for circulation control, fixed pitch and variable pitch propellers is based upon the requirements for a 1600 kg (3600 lb) single engine general aviation aircraft. A circulation control propeller using a supercritical airfoil was shown feasible over a representative range of design conditions. At a design condition for high speed cruise, all three types of propellers showed approximately the same performance. At low speed, the performance of the circulation control propeller exceeded the performance for a fixed pitch propeller, but did not match the performance available from a variable pitch propeller. It appears feasible to consider circulation control propellers for single engine aircraft or multiengine aircraft which have their propellers on a common axis (tractor pusher). The economics of the replacement requires a study for each specific airplane application.

  4. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.

  5. Lessons Learned with Metallized Gelled Propellants

    NASA Technical Reports Server (NTRS)

    1996-01-01

    During testing of metallized gelled propellants in a rocket engine, many changes had to be made to the normal test program for traditional liquid propellants. The lessons learned during the testing and the solutions for many of the new operational conditions posed with gelled fuels will help future programs run more smoothly. The major factors that influenced the success of the testing were propellant settling, piston-cylinder tank operation, control of self pressurization, capture of metal oxide particles, and a gelled-fuel protective layer. In these ongoing rocket combustion experiments at the NASA Lewis Research Center, metallized, gelled liquid propellants are used in a small modular engine that produces 30 to 40 lb of thrust. Traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt% loadings of aluminum are used with gaseous oxygen as the oxidizer. The figure compares the thrust chamber efficiencies of different engines.

  6. Analysis of noise measured from a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    In this experimental study, the acoustic characteristics of a propeller operating in a wake were studied. The propeller performance and noise were measured from two 0.25 scale propellers operating in an open jet anechoic flow environment with and without a wake. One propeller had NACA 16 series sections; the other, ARA-D. Wake thicknesses of 1 and 3 propeller chords were generated by an airfoil which spanned the full diameter of the propeller. The airfoil wake profiles were measured. Noise measurements were made in and out of the flow. The propellers were operated at 40, 83, and 100 inf of thrust. The acoustic data are analyzed, and the effects on the overall sound pressure level (OASPL) and scaled A weighted sound level L sub A with propeller thrust, wake thickness, and observer location are presented. The analysis showed that, generally, the wake increased the overall noise (OASPL) produced by the propeller; increased the harmonic content of the noise, thus the scaled L sub a; and produced an azimuthal dependence. With few exceptions, both propellers generally produced the same trends in delta OASPL and delta L sub a with thrust and wake thickness.

  7. Design of a mercury Propellant Storage and Distribution assembly

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Womack, J. R.

    1973-01-01

    A study has been conducted of a Propellant Storage and Distribution (PSD) assembly for a solar electric propulsion (SEP) thrust subsystem. As a result of the trade-off study an elastomeric diaphragm propellant tank with nitrogen blowdown pressurization was the method selected for propellant expulsion. This study included the following propellant management devices: surface tension, metallic bellows, and metallic and elastomeric diaphragms. Pressurant supply concepts investigated were blowdown, externally pressure regulated, vaporizing Freon 113, and heated CO2/Zeolite. The configuration selected consists of a single propellant tank, a single main propellant latching-solenoid valve, and individual thruster latching-solenoid valves. Stainless steel was the selected tankage material and AF-E-332 was the selected diaphragm material. The PSD design characteristics and interfaces are summarized.

  8. Propeller installation effects on turboprop aircraft acoustics

    NASA Astrophysics Data System (ADS)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas

    2018-06-01

    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  9. A Study on New Composite Thermoplastic Propellant

    NASA Astrophysics Data System (ADS)

    Kahara, Takehiro; Nakayama, Masanobu; Hasegawa, Hiroshi; Katoh, Kazushige; Miyazaki, Shigehumi; Maruizumi, Haruki; Hori, Keiichi; Morita, Yasuhiro; Akiba, Ryojiro

    Efforts have been paid to realize a new composite propellant using thermoplastics as a fuel binder and lithium as a metallic fuel. Thermoplastics binder makes it possible the storage of solid propellant in small blocks and to provide propellants blocks into rocket motor case at a quantity needed just before use, which enables the production facility of solid propellant at a minimum level, thus, production cost significantly lower. Lithium has been a candidate for a metallic fuel for the ammonium perchlorate based composite propellants owing to its capability to reduce the hydrogen chloride in the exhaust gas, however, never been used because lithium is not stable at room conditions and complex reaction products between oxygen, nitrogen, and water are formed at the surface of particles and even in the core. However, lithium particles whose surface shell structure is well controlled are rather stable and can be stored in thermoplastics for a long period. Evaluation of several organic thermoplastics whose melting temperatures are easily tractable was made from the standpoint of combustion characteristics, and it is shown that thermoplastics propellants can cover wide range of burning rate spectrum. Formation of well-defined surface shell of lithium particles and its kinetics are also discussed.

  10. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Polzin, K. A.

    2005-01-01

    There has been a recent, renewed interest in high-power electric thrusters for application in nuclear-electric propulsion systems. Two of the most promising thrusters utilize liquid metal propellants: the lithium-fed magnetoplasmadynamic thruster and the bismuth-fed Hall thruster. An important element of part of the maturation of these thrusters will be the development of compact, reliable conductive-propellant feed system components. In the present paper we provide design considerations and experimental calibration data for electromagnetic (EM) pumps. The role of an electromagnetic pump in a liquid metal feed system is to establish a pressure gradient between the propellant reservoir and the thruster - to establish the requisite mass flow rate. While EM pumps have previously been used to a limited extent in nuclear reactor cooling loops, they have never been implemented in electric propulsion (EP) systems. The potential benefit of using EM pumps for EP are reliability (no moving parts) and the ability to precisely meter the propellant flow rate. We have constructed and tested EM pumps that use gallium, lithium, and bismuth propellants. Design details, test results (pressure developed versus current), and material compatibility issues are reported. It is concluded that EM pumps are a viable technology for application in both laboratory and flight EP conductive-propellant feed systems.

  11. Tethered orbital refueling study

    NASA Technical Reports Server (NTRS)

    Fester, Dale A.; Rudolph, L. Kevin; Kiefel, Erlinda R.; Abbott, Peter W.; Grossrode, Pat

    1986-01-01

    One of the major applications of the space station will be to act as a refueling depot for cryogenic-fueled space-based orbital transfer vehicles (OTV), Earth-storable fueled orbit maneuvering vehicles, and refurbishable satellite spacecraft using hydrazine. One alternative for fuel storage at the space station is a tethered orbital refueling facility (TORF), separated from the space station by a sufficient distance to induce a gravity gradient force that settles the stored fuels. The technical feasibility was examined with the primary focus on the refueling of LO2/LH2 orbital transfer vehicles. Also examined was the tethered facility on the space station. It was compared to a zero-gravity facility. A tethered refueling facility should be considered as a viable alternative to a zero-gravity facility if the zero-gravity fluid transfer technology, such as the propellant management device and no vent fill, proves to be difficult to develop with the required performance.

  12. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  13. The Propeller and the Frog

    NASA Astrophysics Data System (ADS)

    Pan, Margaret; Chiang, Eugene

    2010-10-01

    "Propellers" in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the "frog" resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Blériot in Saturn's A ring, our theory predicts a libration period of ~4 years, similar to the ~3.7 year period over which Blériot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  14. In-space propellant logistics and safety

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Preliminary guidelines for the basic delivery system and safety aspects of the space shuttle configuration in connection with the transport, handling, storage, and transfer of propellants are developed. It is shown that propellants are the major shuttle space load and influence shuttle traffic modeling significantly.

  15. 30 CFR 57.4230 - Surface self-propelled equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Prevention and Control Firefighting Equipment § 57.4230 Surface self-propelled equipment. (a)(1) Whenever a fire or its effects could impede escape from self-propelled equipment, a fire extinguisher shall be on... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Surface self-propelled equipment. 57.4230...

  16. Holographic investigation of solid propellant particulates

    NASA Astrophysics Data System (ADS)

    Gillespie, T. R.

    1981-12-01

    The investigation completed the development process to establish a technique to obtain holographic recordings of particulate behavior during the combustion process of solid propellants in a two-dimensional rocket motor. Holographic and photographic recordings were taken in a crossflow environment using various compositions of metallized propellants. The reconstructed holograms are used to provide data on the behavior of aluminum/aluminum oxide particulates in a steady state combustion environment as a function of the initial aluminum size cast into the propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms.

  17. Sunlit Propeller

    NASA Image and Video Library

    2010-07-08

    A propeller-shaped structure created by an unseen moon is brightly illuminated on the sunlit side of Saturn rings in this image obtained by NASA Cassini spacecraft. The moon, which is too small to be seen, is marked with a red arrow.

  18. Solid propellant processing factor in rocket motor design

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  19. Rheology of composite solid propellants during motor casting

    NASA Technical Reports Server (NTRS)

    Klager, K.; Rogers, C. J.; Smith, P. L.

    1978-01-01

    Results of casting studies are reviewed so as to define the viscosity criteria insuring the fabrication of defect-free grains. The rheology of uncured propellants is analyzed showing that a realistic assessment of a propellant's flow properties must include measurement of viscosity as a function of shear stress and time after curing agent. Methods for measuring propellant viscosity are discussed, with particular attention given to the Haake-Rotovisko rotational viscometer. The effects of propellant compositional and processing variables on apparent viscosity are examined, as are results relating rheological behavior to grain defect formation during casting.

  20. Solid rocket propellant waste disposal/ingredient recovery study

    NASA Technical Reports Server (NTRS)

    Mcintosh, M. J.

    1976-01-01

    A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.

  1. Performance and acoustic prediction of counterrotating propeller configurations

    NASA Technical Reports Server (NTRS)

    Denner, B. W.; Korkan, K. D.

    1989-01-01

    The Davidson (1981) numerical method is used to predict the performance of a counterrotating propeller configuration over a range of different front and back disk rotation speeds with constant-speed propellers; this has yielded such overall performance parameters as integrated thrust, torque, and power, as well as the radial variation of blade torque and thrust. Since the unsteady component of the noise from a counterrotating propeller configuration is minimal in the plane of the propeller disk, this approach is restricted to noise-level predictions for observer locations in this region.

  2. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; hide

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  3. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  4. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  5. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  6. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  7. 14 CFR 33.95 - Engine-propeller systems tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine-propeller systems tests. 33.95... AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.95 Engine-propeller systems tests. If the engine is designed to operate with a propeller, the following tests must be made with a...

  8. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... based on direct testing of the propeller on the airplane and engine installation for which approval is... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood...

  9. 14 CFR 23.907 - Propeller vibration and fatigue.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... based on direct testing of the propeller on the airplane and engine installation for which approval is... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood...

  10. 14 CFR 35.3 - Instructions for propeller installation and operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Instructions for propeller installation and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.3 Instructions for propeller.... Those approved instructions must contain: (a) Instructions for installing the propeller, which: (1...

  11. 14 CFR 35.3 - Instructions for propeller installation and operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Instructions for propeller installation and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.3 Instructions for propeller.... Those approved instructions must contain: (a) Instructions for installing the propeller, which: (1...

  12. 14 CFR 35.3 - Instructions for propeller installation and operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Instructions for propeller installation and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.3 Instructions for propeller.... Those approved instructions must contain: (a) Instructions for installing the propeller, which: (1...

  13. 14 CFR 35.3 - Instructions for propeller installation and operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Instructions for propeller installation and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.3 Instructions for propeller.... Those approved instructions must contain: (a) Instructions for installing the propeller, which: (1...

  14. 14 CFR 35.3 - Instructions for propeller installation and operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Instructions for propeller installation and... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS General § 35.3 Instructions for propeller.... Those approved instructions must contain: (a) Instructions for installing the propeller, which: (1...

  15. Characterizing high-energy-density propellants for space propulsion applications

    NASA Astrophysics Data System (ADS)

    Kokan, Timothy

    There exists wide ranging research interest in high-energy-density matter (HEDM) propellants as a potential replacement for existing industry standard fuels for liquid rocket engines. The U.S. Air Force Research Laboratory, the U.S. Army Research Lab, the NASA Marshall Space Flight Center, and the NASA Glenn Research Center each either recently concluded or currently has ongoing programs in the synthesis and development of these potential new propellants. In order to perform conceptual designs using these new propellants, most conceptual rocket engine powerhead design tools (e.g. NPSS, ROCETS, and REDTOP-2) require several thermophysical properties of a given propellant over a wide range of temperature and pressure. These properties include enthalpy, entropy, density, viscosity, and thermal conductivity. Very little thermophysical property data exists for most of these potential new HEDM propellants. Experimental testing of these properties is both expensive and time consuming and is impractical in a conceptual vehicle design environment. A new technique for determining these thermophysical properties of potential new rocket engine propellants is presented. The technique uses a combination of three different computational methods to determine these properties. Quantum mechanics and molecular dynamics are used to model new propellants at a molecular level in order to calculate density, enthalpy, and entropy. Additivity methods are used to calculate the kinematic viscosity and thermal conductivity of new propellants. This new technique is validated via a series of verification experiments of HEDM compounds. Results are provided for two HEDM propellants: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). In each case, the new technique does a better job than the best current computational methods at accurately matching the experimental data of the HEDM compounds of interest. A case study is provided to help quantify the vehicle level impacts of using HEDM

  16. Performance of a capillary propellant management device with hydrazine

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.

    1979-01-01

    The propellant management device that was successfully used in the Viking Orbiter spacecraft was selected for the main propulsion system of the Teleoperator Retrieval System (TRS). Due to differences in the missions and different propellants, the operation of this sheet metal vane device required reverification for the TRS application. An analytical investigation was performed considering the adverse acceleration environment and the high contract angle of the hydrazine propellant. Drop tower tests demonstrated that the device would provide propellant acquisition while the TRS was docked with Skylab, but its operation would have to be supplemented through propellant settling when free-flying.

  17. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  18. Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.

    2013-01-01

    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the

  19. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person... functional test to determine if it operates properly throughout the normal range of operation. ...

  20. 14 CFR 21.129 - Tests: propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tests: propellers. 21.129 Section 21.129... PROCEDURES FOR PRODUCTS AND PARTS Production Under Type Certificate § 21.129 Tests: propellers. Each person... functional test to determine if it operates properly throughout the normal range of operation. ...