Sample records for earth structure model

  1. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    NASA Astrophysics Data System (ADS)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  2. Seismic modeling of Earth's 3D structure: Recent advancements

    NASA Astrophysics Data System (ADS)

    Ritsema, J.

    2008-12-01

    Global models of Earth's seismic structure continue to improve due to the growth of seismic data sets, implementation of advanced wave propagations theories, and increased computational power. In my presentation, I will summarize seismic tomography results from the past 5-10 years. I will compare the most recent P and S velocity models, discuss model resolution and model interpretation, and present an, admittedly biased, list of research directions required to develop the next generation 3D models.

  3. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    DOT National Transportation Integrated Search

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  4. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  5. Models of earth structure inferred from neodymium and strontium isotopic abundances

    PubMed Central

    Wasserburg, G. J.; DePaolo, D. J.

    1979-01-01

    A simplified model of earth structure based on the Nd and Sr isotopic characteristics of oceanic and continental tholeiitic flood basalts is presented, taking into account the motion of crustal plates and a chemical balance for trace elements. The resulting structure that is inferred consists of a lower mantle that is still essentially undifferentiated, overlain by an upper mantle that is the residue of the original source from which the continents were derived. PMID:16592688

  6. Seismic anisotropy in the Earth's innermost inner core: Testing structural models against mineral physics predictions

    DOE PAGES

    Romanowicz, Barbara; Cao, Aimin; Godwal, Budhiram; ...

    2016-01-06

    Using an updated data set of ballistic PKIKP travel time data at antipodal distances, we test different models of anisotropy in the Earth's innermost inner core (IMIC) and obtain significantly better fits for a fast axis aligned with Earth's rotation axis, rather than a quasi-equatorial direction, as proposed recently. Reviewing recent results on the single crystal structure and elasticity of iron at core conditions, we find that an hcp structure with the fast c axis parallel to Earth's rotation is more likely but a body-centered cubic structure with the [111] axis aligned in that direction results in very similar predictionsmore » for seismic anisotropy. These models are therefore not distinguishable based on current seismological data. In addition, to match the seismological observations, the inferred strength of anisotropy in the IMIC (6–7%) implies almost perfect alignment of iron crystals, an intriguing, albeit unlikely situation, especially in the presence of heterogeneity, which calls for further studies. Fast axis of anisotropy in the central part of the inner core aligned with Earth's axis of rotation Lastly, the structure of iron in the inner core is most likely hcp, not bcc Not currently possible to distinguish between hcp and bcc structures from seismic observations« less

  7. Numerical modelling of sedimentary structures in rivers on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-04-01

    preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580.

  8. Discovering and measuring a layered Earth: A foundational laboratory for developing students' understanding of Earth's interior structure

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Braile, L. W.; Olds, S. E.; Taber, J.

    2010-12-01

    Geophysics research is continuously revealing new insights about Earth’s interior structure. Before students can grasp theses new complexities, they first must internalize the 1st order layered structure of Earth and comprehend how seismology contributes to the development of such models. Earth structure is of course covered in most introductory geoscience courses, though all too often instruction of this content is limited to didactic methods that make little effort to inspire or engage the minds of students. In the process, students are expected to blindly accept our understanding of the unseen and abstract. Thus, it is not surprising then that many students can draw a layered Earth diagram, yet not know that knowledge of Earth’s interior is based on information from earthquakes. Cognitive learning theory would suggest that what has been missing from instruction of Earth structure is a feasible method to present students with seismic evidence in a manner that allows students to become minds-on with the content; discovering or dispelling the presence of a layered Earth for themselves. Recent advances in serving seismic data to a non-seismologist audience have made the development of such laboratory investigations possible. In this exercise students use an inquiry approach to examine seismic evidence and determine that the Earth cannot have a homogeneous composition. Further they use the data to estimate the dimensions of Earth’s outer core. To reach these conclusions, students are divided into two teams, theoreticians and seismologists, to test the simplest hypothesis for Earth's internal structure; a homogeneous Earth. The theoreticians create a scale model of a homogeneous Earth and predict when seismic waves should arrive at various points on the model. Simultaneously, seismologists interpret a seismic record section from a recent earthquake noting when seismic waves arrive at various points around Earth. The two groups of students then compare the

  9. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  10. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  11. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  12. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  13. The Collaborative Seismic Earth Model Project

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.

    2017-12-01

    We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.

  14. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  15. Evaluation of gravitational gradients generated by Earth's crustal structures

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Tenzer, Robert; Eshagh, Mehdi; Bagherbandi, Mohammad

    2013-02-01

    Spectral formulas for the evaluation of gravitational gradients generated by upper Earth's mass components are presented in the manuscript. The spectral approach allows for numerical evaluation of global gravitational gradient fields that can be used to constrain gravitational gradients either synthesised from global gravitational models or directly measured by the spaceborne gradiometer on board of the GOCE satellite mission. Gravitational gradients generated by static atmospheric, topographic and continental ice masses are evaluated numerically based on available global models of Earth's topography, bathymetry and continental ice sheets. CRUST2.0 data are then applied for the numerical evaluation of gravitational gradients generated by mass density contrasts within soft and hard sediments, upper, middle and lower crust layers. Combined gravitational gradients are compared to disturbing gravitational gradients derived from a global gravitational model and an idealised Earth's model represented by the geocentric homogeneous biaxial ellipsoid GRS80. The methodology could be used for improved modelling of the Earth's inner structure.

  16. The influence of lateral Earth structure on glacial isostatic adjustment in Greenland

    NASA Astrophysics Data System (ADS)

    Milne, Glenn A.; Latychev, Konstantin; Schaeffer, Andrew; Crowley, John W.; Lecavalier, Benoit S.; Audette, Alexandre

    2018-05-01

    We present the first results that focus on the influence of lateral Earth structure on Greenland glacial isostatic adjustment (GIA) using a model that can explicitly incorporate 3-D Earth structure. In total, eight realisations of lateral viscosity structure were developed using four global seismic velocity models and two global lithosphere (elastic) thickness models. Our results show that lateral viscosity structure has a significant influence on model output of both deglacial relative sea level (RSL) changes and present-day rates of vertical land motion. For example, lateral structure changes the RSL predictions in the Holocene by several 10 s of metres in many locations relative to the 1-D case. Modelled rates of vertical land motion are also significantly affected, with differences from the 1-D case commonly at the mm/yr level and exceeding 2 mm/yr in some locations. The addition of lateral structure was unable to account for previously identified data-model RSL misfits in northern and southern Greenland, suggesting limitations in the adopted ice model (Lecavalier et al. 2014) and/or the existence of processes not included in our model. Our results show large data-model discrepancies in uplift rates when applying a 1-D viscosity model tuned to fit the RSL data; these discrepancies cannot be reconciled by adding the realisations of lateral structure considered here. In many locations, the spread in model output for the eight different 3-D Earth models is of similar amplitude or larger than the influence of lateral structure (as defined by the average of all eight model runs). This reflects the differences between the four seismic and two lithosphere models used and implies a large uncertainty in defining the GIA signal given that other aspects that contribute to this uncertainty (e.g. scaling from seismic velocity to viscosity) were not considered in this study. In order to reduce this large model uncertainty, an important next step is to develop more accurate

  17. 8 years of experience in international, interdisciplinary and structured doctoral training in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Weitz, Antje; Stevens, Bjorn; Marotzke, Jochem

    2010-05-01

    The mission of the International Max Planck Research School on Earth System Modelling (IMPRS-ESM) is to provide a high quality, modern and structured graduate education to students pursuing a doctoral degree in Earth system modelling. In so doing, the IMPRS-ESM also strives to advance the emerging discipline (or cross-discipline) of Earth system modelling; to provide a framework for attracting the most talented and creative young women and men from around the world to pursue their doctoral education in Germany; to provide advanced as well as specialized academic training and scientific guidance to doctoral students; to encourage academic networking and publication of research results; to better integrate doctoral research at the Max Planck Institute for Meteorology (MPI-M) with education and research at the University of Hamburg and other cooperating institutions. Core elements are rigorous selection of doctoral students, effective academic supervision, advanced academic training opportunities and interdisciplinary communication as well as administrative support. IMPRS-ESM graduates have been recognized with a variety of awards. 85% of our alumni continue a career in research. In this presentation we review the challenges for an interdisciplinary PhD program in Earth system sciences and the types of routines we have implemented to surmount them as well as key elements that we believe contribute to the success of our doctoral program.

  18. The Collaborative Seismic Earth Model: Generation 1

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; van Herwaarden, Dirk-Philip; Afanasiev, Michael; SimutÄ--, SaulÄ--; Krischer, Lion; ćubuk-Sabuncu, Yeşim; Taymaz, Tuncay; Colli, Lorenzo; Saygin, Erdinc; Villaseñor, Antonio; Trampert, Jeannot; Cupillard, Paul; Bunge, Hans-Peter; Igel, Heiner

    2018-05-01

    We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or different inversion techniques. The first-generation Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional refinements translate into whole-Earth structure.

  19. The Sensitivity of Glacial Isostatic Adjustment in West Antarctica to Lateral Variations in Earth Structure

    NASA Astrophysics Data System (ADS)

    Nield, G.; Whitehouse, P. L.; Blank, B.; van der Wal, W.; O'Donnell, J. P.; Stuart, G. W.; Lloyd, A. J.; Wiens, D.

    2017-12-01

    Accurate models of Glacial Isostatic Adjustment (GIA) are required for correcting satellite measurements of ice-mass change and for interpretation of geodetic data at the location of present and former ice sheets. Global models of GIA tend to adopt a 1-D representation of Earth structure, varying in the radial direction only. In some regions rheological parameters may differ significantly from this global average leading to bias in model predictions of present-day deformation, geoid change rates and sea-level change. The advancement of 3-D GIA modelling techniques in recent years has led to improvements in the representation of the Earth via the incorporation of laterally varying structure. This study investigates the influence of 3-D Earth structure on deformation rates in West Antarctica using a finite element GIA model with power-law rheology. We utilise datasets of seismic velocity and temperature for the crust and upper mantle with the aim of determining a data-driven Earth model, and consider the differences when compared to deformation predicted from an equivalent 1-D Earth structure.

  20. Foundations for a multiscale collaborative Earth model

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas

    2016-01-01

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage

  1. Velocity and Attenuation Structure of the Earth's Inner Core Boundary From Semi-Automatic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Jin, J.; Song, X.; Sun, D.; Helmberger, D. V.

    2013-12-01

    The structure of the Earth's inner core boundary (ICB) is complex. Hemispherical differences and local variations of velocity and attenuation structures, as well as the ICB topography have been reported in previous studies. We are using an automatic waveform modeling method to improve the resolution of the ICB structures. The full waveforms of triplicated PKP phases at distance ranges from 120 to 165 degrees are used to model the lowermost 200 km of the outer core and the uppermost 600km of the inner core. Given a 1D velocity and attenuation model, synthetic seismograms are generated by Generalized Ray Theory. We are also experimenting 2D synthetic methods (WKM, AXISEM, and 2D FD) for 2D models (in the mantle and the inner core). The source time function is determined by observed seismic data. We use neighborhood algorithm to search for a group of models that minimize the misfit between predictions and observations. Tests on synthetic data show the efficiency of this method in resolving detailed velocity and attenuation structures of the ICB simultaneously. We are analyzing seismic record sections at dense arrays along different paths and will report our modeling and inversion results in the meeting.

  2. Scattering - a probe to Earth's small scale structure

    NASA Astrophysics Data System (ADS)

    Rost, S.; Earle, P.

    2009-05-01

    Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.

  3. Computer modelling of BaY2F8: defect structure, rare earth doping and optical behaviour

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Couto Dos Santos, M. A.; Valerio, M. E. G.; Jackson, R. A.

    2005-10-01

    BaY2F8, when doped with rare earth elements, is a material of interest in the development of solid-state laser systems, especially for use in the infrared region. This paper presents the application of a computational technique, which combines atomistic modelling and crystal field calculations, in a study of rare earth doping of the material. Atomistic modelling is used to calculate the intrinsic defect structure and the symmetry and detailed geometry of the dopant ion-host lattice system, and this information is then used to calculate the crystal field parameters, which are an important indicator in assessing the optical behaviour of the dopant-crystal system. Energy levels are then calculated for the Dy3+-substituted material, and comparisons with the results of recent experimental work are made.

  4. The Earth System Model

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  5. Self-organizing Large-scale Structures in Earth's Foreshock Waves

    NASA Astrophysics Data System (ADS)

    Ganse, U.; Pfau-Kempf, Y.; Turc, L.; Hoilijoki, S.; von Alfthan, S.; Vainio, R. O.; Palmroth, M.

    2017-12-01

    Earth's foreshock is populated by plasma waves in the ULF regime, assumed to be caused by wave instabilities of shock-reflected particle beams. While in-situ observation of these waves has provided plentiful data of their amplitudes, frequencies, obliquities and relation to local plasma conditions, global-scale structures are hard to grasp from observation data alone. The hybrid-Vlasov simulation system Vlasiator, designed for kinetic modeling of the Earth's magnetosphere, has been employed to study foreshock formation under radial and near-radial IMF conditions on global scales. Structures arising in the foreshock can be comprehensively studied and directly compared to observation results. Our modeling results show that foreshock waves present emergent large-scale structures, in which regions of waves with similar phase exist. At the interfaces of these regions ("spines") we observe high wave obliquity, higher beam densities and lower beam velocities than inside them. We characterize these apparently self-organizing structures through the interplay between wave- and beam properties and present the microphysical mechanisms involved in their creation.

  6. One technique for refining the global Earth gravity models

    NASA Astrophysics Data System (ADS)

    Koneshov, V. N.; Nepoklonov, V. B.; Polovnev, O. V.

    2017-01-01

    The results of the theoretical and experimental research on the technique for refining the global Earth geopotential models such as EGM2008 in the continental regions are presented. The discussed technique is based on the high-resolution satellite data for the Earth's surface topography which enables the allowance for the fine structure of the Earth's gravitational field without the additional gravimetry data. The experimental studies are conducted by the example of the new GGMplus global gravity model of the Earth with a resolution about 0.5 km, which is obtained by expanding the EGM2008 model to degree 2190 with the corrections for the topograohy calculated from the SRTM data. The GGMplus and EGM2008 models are compared with the regional geoid models in 21 regions of North America, Australia, Africa, and Europe. The obtained estimates largely support the possibility of refining the global geopotential models such as EGM2008 by the procedure implemented in GGMplus, particularly in the regions with relatively high elevation difference.

  7. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes

    USGS Publications Warehouse

    Bedrosian, P.A.

    2007-01-01

    As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.

  8. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2016-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  9. The Impacts of 3-D Earth Structure on GIA-Induced Crustal Deformation and Future Sea-Level Change in the Antarctic

    NASA Astrophysics Data System (ADS)

    Powell, E. M.; Hay, C.; Latychev, K.; Gomez, N. A.; Mitrovica, J. X.

    2017-12-01

    Glacial Isostatic Adjustment (GIA) models used to constrain the extent of past ice sheets and viscoelastic Earth structure, or to correct geodetic and geological observables for ice age effects, generally only consider depth-dependent variations in Earth viscosity and lithospheric structure. A et al. [2013] argued that 3-D Earth structure could impact GIA observables in Antarctica, but concluded that the presence of such structure contributes less to GIA uncertainty than do differences in Antarctic deglaciation histories. New seismic and geological evidence, however, indicates the Antarctic is underlain by complex, high amplitude variability in viscoelastic structure, including a low viscosity zone (LVZ) under West Antarctica. Hay et al. [2016] showed that sea-level fingerprints of modern melting calculated using such Earth models differ from those based on elastic or 1-D viscoelastic Earth models within decades of melting. Our investigation is motivated by two questions: (1) How does 3-D Earth structure, especially this LVZ, impact observations of GIA-induced crustal deformation associated with the last deglaciation? (2) How will 3-D Earth structure affect predictions of future sea-level rise in Antarctica? We compute the gravitationally self-consistent sea level, uplift, and gravity changes using the finite volume treatment of Latychev et al. [2005]. We consider four viscoelastic Earth models: a global 1-D model; a regional, West Antarctic-like 1-D model; a 3-D model where the lithospheric thickness varies laterally; and a 3-D model where both viscosity and lithospheric thickness vary laterally. For our Last Glacial Maximum to present investigations we employ ICE6g [Peltier et al., 2015]. For our present-future investigations we consider a melt scenario consistent with GRACE satellite gravity derived solutions [Harig et al., 2015]. Our calculations indicate that predictions of crustal deformations due to both GIA and ongoing melting are strongly influenced by 3-D

  10. Earth retaining structures manual

    DOT National Transportation Integrated Search

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  11. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    NASA Technical Reports Server (NTRS)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  12. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    PubMed

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  13. Advances in target imaging of deep Earth structure

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.; Clouzet, P.

    2015-12-01

    A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where

  14. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    NASA Technical Reports Server (NTRS)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  15. Methods for computing internal flattening, with applications to the Earth's structure and geodynamics

    NASA Astrophysics Data System (ADS)

    Denis, C.; Amalvict, M.; Rogister, Y.; Tomecka-Suchoń, S.

    1998-03-01

    After general comments (Section 1) on using variational procedures to compute the oblateness of internal strata in the Earth and slowly rotating planets, we recall briefly some basic concepts about barotropic equilibrium figures (Section 2), and then proceed to discuss several accurate methods to derive the internal flattening. The algorithms given in Section 3 are based on the internal gravity field theory of Clairaut, Laplace and Lyapunov. They make explicit use of the concept of a level surface. The general formulation given here leads to a number of formulae which are of both theoretical and practical use in studying the Earth's structure, dynamics and rotational evolution. We provide exact solutions for the figure functions of three Earth models, and apply the formalism to yield curves for the internal flattening as a function of the spin frequency. Two more methods, which use the general deformation equations, are discussed in Section 4. The latter do not rely explicitly on the existence of level surfaces. They offer an alternative to the classical first-order internal field theory, and can actually be used to compute changes of the flattening on short timescales produced by variations in the LOD. For short durations, the Earth behaves elastically rather than hydrostatically. We discuss in some detail static deformations and Longman's static core paradox (Section 5), and demonstrate that in general no static solution exists for a realistic Earth model. In Section 6 we deal briefly with differential rotation occurring in cylindrical shells, and show why differential rotation of the inner core such as has been advocated recently is incompatible with the concept of level surfaces. In Section 7 we discuss first-order hydrostatic theory in relation to Earth structure, and show how to derive a consistent reference Earth model which is more suitable for geodynamical modelling than are modern Earth models such as 1066-A, PREM or CORE11. An important result is that a

  16. Understanding earth system models: how Global Sensitivity Analysis can help

    NASA Astrophysics Data System (ADS)

    Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Computer models are an essential element of earth system sciences, underpinning our understanding of systems functioning and influencing the planning and management of socio-economic-environmental systems. Even when these models represent a relatively low number of physical processes and variables, earth system models can exhibit a complicated behaviour because of the high level of interactions between their simulated variables. As the level of these interactions increases, we quickly lose the ability to anticipate and interpret the model's behaviour and hence the opportunity to check whether the model gives the right response for the right reasons. Moreover, even if internally consistent, an earth system model will always produce uncertain predictions because it is often forced by uncertain inputs (due to measurement errors, pre-processing uncertainties, scarcity of measurements, etc.). Lack of transparency about the scope of validity, limitations and the main sources of uncertainty of earth system models can be a strong limitation to their effective use for both scientific and decision-making purposes. Global Sensitivity Analysis (GSA) is a set of statistical analysis techniques to investigate the complex behaviour of earth system models in a structured, transparent and comprehensive way. In this presentation, we will use a range of examples across earth system sciences (with a focus on hydrology) to demonstrate how GSA is a fundamental element in advancing the construction and use of earth system models, including: verifying the consistency of the model's behaviour with our conceptual understanding of the system functioning; identifying the main sources of output uncertainty so to focus efforts for uncertainty reduction; finding tipping points in forcing inputs that, if crossed, would bring the system to specific conditions we want to avoid.

  17. Inverse Problems in Complex Models and Applications to Earth Sciences

    NASA Astrophysics Data System (ADS)

    Bosch, M. E.

    2015-12-01

    The inference of the subsurface earth structure and properties requires the integration of different types of data, information and knowledge, by combined processes of analysis and synthesis. To support the process of integrating information, the regular concept of data inversion is evolving to expand its application to models with multiple inner components (properties, scales, structural parameters) that explain multiple data (geophysical survey data, well-logs, core data). The probabilistic inference methods provide the natural framework for the formulation of these problems, considering a posterior probability density function (PDF) that combines the information from a prior information PDF and the new sets of observations. To formulate the posterior PDF in the context of multiple datasets, the data likelihood functions are factorized assuming independence of uncertainties for data originating across different surveys. A realistic description of the earth medium requires modeling several properties and structural parameters, which relate to each other according to dependency and independency notions. Thus, conditional probabilities across model components also factorize. A common setting proceeds by structuring the model parameter space in hierarchical layers. A primary layer (e.g. lithology) conditions a secondary layer (e.g. physical medium properties), which conditions a third layer (e.g. geophysical data). In general, less structured relations within model components and data emerge from the analysis of other inverse problems. They can be described with flexibility via direct acyclic graphs, which are graphs that map dependency relations between the model components. Examples of inverse problems in complex models can be shown at various scales. At local scale, for example, the distribution of gas saturation is inferred from pre-stack seismic data and a calibrated rock-physics model. At regional scale, joint inversion of gravity and magnetic data is applied

  18. Earth Walk: Touring Our Planet's Inner Structure.

    ERIC Educational Resources Information Center

    Muller, Eric P.

    1995-01-01

    Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)

  19. Model Meets Data: Challenges and Opportunities to Implement Land Management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, J.; Dolman, A. J.; Don, A.; Erb, K. H.; Fuchs, R.; Herold, M.; Jones, C.; Luyssaert, S.; Kuemmerle, T.; Meyfroidt, P.

    2016-12-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals

  20. Model meets data: Challenges and opportunities to implement land management in Earth System Models

    NASA Astrophysics Data System (ADS)

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Luyssaert, Sebastiaan; Kuemmerle, Tobias; Meyfroidt, Patrick; Naudts, Kim

    2017-04-01

    Land-based demand for food and fibre is projected to increase in the future. In light of global sustainability challenges only part of this increase will be met by expansion of land use into relatively untouched regions. Additional demand will have to be fulfilled by intensification and other adjustments in management of land that already is under agricultural and forestry use. Such land management today occurs on about half of the ice-free land surface, as compared to only about one quarter that has undergone a change in land cover. As the number of studies revealing substantial biogeophysical and biogeochemical effects of land management is increasing, moving beyond land cover change towards including land management has become a key focus for Earth system modeling. However, a basis for prioritizing land management activities for implementation in models is lacking. We lay this basis for prioritization in a collaborative project across the disciplines of Earth system modeling, land system science, and Earth observation. We first assess the status and plans of implementing land management in Earth system and dynamic global vegetation models. A clear trend towards higher complexity of land use representation is visible. We then assess five criteria for prioritizing the implementation of land management activities: (1) spatial extent, (2) evidence for substantial effects on the Earth system, (3) process understanding, (4) possibility to link the management activity to existing concepts and structures of models, (5) availability of data required as model input. While the first three criteria have been assessed by an earlier study for ten common management activities, we review strategies for implementation in models and the availability of required datasets. We can thus evaluate the management activities for their performance in terms of importance for the Earth system, possibility of technical implementation in models, and data availability. This synthesis reveals

  1. Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2017-04-01

    The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth's interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images. In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geological structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this "box tomography" [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present

  2. integrated Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andew; Di Vittorio, Alan; Collins, William

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human-Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human-Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems.« less

  3. Predicting lower mantle heterogeneity from 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Flament, Nicolas; Williams, Simon; Müller, Dietmar; Gurnis, Michael; Bower, Dan J.

    2016-04-01

    The Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs), approximately ˜15000 km in diameter and 500-1000 km high, located under Africa and the Pacific Ocean. The spatial stability and chemical nature of these LLSVPs are debated. Here, we compare the lower mantle structure predicted by forward global mantle flow models constrained by tectonic reconstructions (Bower et al., 2015) to an analysis of five global tomography models. In the dynamic models, spanning 230 million years, slabs subducting deep into the mantle deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour (Rayleigh number Ra), mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify a set of equally-spaced points (average separation ˜0.45°) on the Earth's surface into two groups of points with similar variations in present-day temperature between 1000-2800 km depth, for each model case. Below ˜2400 km depth, this procedure reveals a high-temperature cluster in which mantle temperature is significantly larger than ambient and a low-temperature cluster in which mantle temperature is lower than ambient. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the African and Pacific LLSVPs revealed by a similar cluster analysis of five tomography models (Lekic et al., 2012). Model success is quantified by computing the accuracy and sensitivity of the predicted temperature clusters in predicting the low-velocity cluster obtained from tomography (Lekic et al., 2012). In these cases, the accuracy varies between 0.61-0.80, where a value of 0.5 represents the random case, and the sensitivity ranges between 0.18-0.83. The largest accuracies and sensitivities are obtained for models with Ra ≈ 5 x 107, no asthenosphere (or an asthenosphere restricted to the oceanic domain), and a

  4. The 3D Reference Earth Model: Status and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  5. Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.

    2001-05-01

    A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less

  6. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  7. Laminated rare earth structure and method of making

    DOEpatents

    Senor, David J [West Richland, WA; Johnson, Roger N [Richland, WA; Reid, Bruce D [Pasco, WA; Larson, Sandra [Richland, WA

    2002-07-30

    A laminated structure having two or more layers, wherein at least one layer is a metal substrate and at least one other layer is a coating comprising at least one rare earth element. For structures having more than two layers, the coating and metal substrate layers alternate. In one embodiment of the invention, the structure is a two-layer laminate having a rare earth coating electrospark deposited onto a metal substrate. In another embodiment of the invention, the structure is a three-layer laminate having the rare earth coating electrospark deposited onto a first metal substrate and the coating subsequently abonded to a second metal substrate. The bonding of the coating to the second metal substrate may be accomplished by hot pressing, hot rolling, high deformation rate processing, or combinations thereof. The laminated structure may be used in nuclear components where reactivity control or neutron absorption is desired and in non-nuclear applications such as magnetic and superconducting films.

  8. Using the heterogeneity distribution in Earth's mantle to study structure and flow

    NASA Astrophysics Data System (ADS)

    Rost, S.; Frost, D. A.; Bentham, H. L.

    2016-12-01

    The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.

  9. On the Structure of Earth Science Data Collections

    NASA Astrophysics Data System (ADS)

    Barkstrom, B. R.

    2009-12-01

    identified by the starting time of the data in the file. For data intended for climate uses, it seems appropriate to state this time in terms of Astronomical Julian Date, which is a long-standing international standard that provides continuity between current observations and paleo-climatic observations. Because this collection structure is hierarchical, it could be used by either of the two hierarchical identifier schema families, although it is probably easier to use with the OID/DOI family. This hierarchical collection structure fits into the hierarchical structure of Archival Information Packages (AIPs) identified in the Open Archival Information Systems (OAIS) Reference Model. In that model, AIPs are subdivided into Archival Information Units (AIUs), which describe individual files, or Archival Information Collections (AICs). The latter can be hierarchically nested, leading to an OAIS RM-consistent collection structure that does not appear clearly in other metadata standards. This paper will also discuss the connection between these collection categories and other metadata, as well as the possible need for other organizational schemas to capture the full range of Earth science data collection structures.

  10. Geocoded data structures and their applications to Earth science investigations

    NASA Technical Reports Server (NTRS)

    Goldberg, M.

    1984-01-01

    A geocoded data structure is a means for digitally representing a geographically referenced map or image. The characteristics of representative cellular, linked, and hybrid geocoded data structures are reviewed. The data processing requirements of Earth science projects at the Goddard Space Flight Center and the basic tools of geographic data processing are described. Specific ways that new geocoded data structures can be used to adapt these tools to scientists' needs are presented. These include: expanding analysis and modeling capabilities; simplifying the merging of data sets from diverse sources; and saving computer storage space.

  11. 3D-model: Earth's seasons

    NASA Astrophysics Data System (ADS)

    Meirlaen, Koen

    2017-04-01

    A lot of subjects in geography and geology are linked to the seasons of the earth. Most of the students think that the earth's seasons are caused by the differences in the distance from the sun throughout the year. So as a teacher I tried year after year to explain the motion of the earth around the sun. Even when I used animations/movies/… it still seemed difficult for the students to understand the 3D-situation. Most of the animations only show the start of every season but it's important to demonstrate to the students the motion of the earth during a year so they can see that the tilt of our planet causes the seasons. The earth's axis is tilted by 23.4 degrees to the plane in which it travels around the sun, the ecliptic. So I started to work on a 3D-model on a scale to use in a classroom. It measures approximately 2m by 1m. You can buy all the materials in DIY-shop for less than € 100: wooden plank, lamp, styrofoam spheres (= earth), … I have been using the model for over 4 years now and it's very nice to work with. You can involve the students more and let them investigate for themselves what causes the seasons. The model demonstrates the start of every season, why it is dark for several months in several places on Earth. They can draw the positions of the Tropic of Cancer, Tropic of Capricorn, Arctic Circle and Antarctic Circle on the styrofoam spheres. Also the difference between day and night is well shown on the globes. A lot of subjects in geography and geology are linked to the seasons of the earth: the changes in weather, ocean currents, winds, tropical storms, vegetation, fauna and flora, hours of daylight, … even economy, migration and social health. This way the model can be used in many lessons during the year. The poster session will demonstrate how you can make the 3D-model, some exercises, …

  12. Earth impedance model for through-the-earth communication applications with electrodes

    NASA Astrophysics Data System (ADS)

    Bataller, Vanessa; MuñOz, Antonio; Gaudó, Pilar Molina; Mediano, Arturo; Cuchí, José A.; Villarroel, José L.

    2010-12-01

    Through-the-earth (TTE) communications are relevant in applications such as caving, tunnel and cave rescue, mining, and subsurface radiolocation. The majority of the TTE communication systems use ground electrodes as load antenna. Wires, electrode contact, and earth impedances are the major contributors to the impedance observed by the transmitter. In this paper, state-of-art models found in the literature are reviewed, and an improved method to measure the earth impedance is presented. The paper also proposes an optimal circuit model for earth impedance between electrodes as a function of frequency, as a consequence of the particular conditions of the application. The model is validated with measurements for different soil conditions, showing a good agreement between empirical data and the simulation results.

  13. Earth horizon modeling and application to static Earth sensors on TRMM spacecraft

    NASA Technical Reports Server (NTRS)

    Keat, J.; Challa, M.; Tracewell, D.; Galal, K.

    1995-01-01

    Data from Earth sensor assemblies (ESA's) often are used in the attitude determination (AD) for both spinning and Earth-pointing spacecraft. The ESA's on previous such spacecraft for which the ground-based AD operation was performed by the Flight Dynamics Division (FDD) used the Earth scanning method. AD on such spacecraft requires a model of the shape of the Earth disk as seen from the spacecraft. AD accuracy requirements often are too severe to permit Earth oblateness to be ignored when modeling disk shape. Section 2 of this paper reexamines and extends the methods for Earth disk shape modeling employed in AD work at FDD for the past decade. A new formulation, based on a more convenient Earth flatness parameter, is introduced, and the geometric concepts are examined in detail. It is shown that the Earth disk can be approximated as an ellipse in AD computations. Algorithms for introducing Earth oblateness into the AD process for spacecraft carrying scanning ESA's have been developed at FDD and implemented into the support systems. The Tropical Rainfall Measurement Mission (TRMM) will be the first spacecraft with AD operation performed at FDD that uses a different type of ESA - namely, a static one - containing four fixed detectors D(sub i) (i = 1 to 4). Section 3 of this paper considers the effect of Earth oblateness on AD accuracy for TRMM. This effect ideally will not induce AD errors on TRMM when data from all four D(sub i) are present. When data from only two or three D(sub i) are available, however, a spherical Earth approximation can introduce errors of 0.05 to 0.30 deg on TRMM. These oblateness-induced errors are eliminated by a new algorithm that uses the results of Section 2 to model the Earth disk as an ellipse.

  14. Modeling the Earth System, volume 3

    NASA Technical Reports Server (NTRS)

    Ojima, Dennis (Editor)

    1992-01-01

    The topics covered fall under the following headings: critical gaps in the Earth system conceptual framework; development needs for simplified models; and validating Earth system models and their subcomponents.

  15. Pressure-induced structural modifications of rare-earth hafnate pyrochlore

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.

    2017-06-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that

  16. Pressure-induced structural modifications of rare-earth hafnate pyrochlore.

    PubMed

    Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C

    2017-06-28

    Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show

  17. Earth Structure, Ice Mass Changes, and the Local Dynamic Geoid

    NASA Astrophysics Data System (ADS)

    Harig, C.; Simons, F. J.

    2014-12-01

    Spherical Slepian localization functions are a useful method for studying regional mass changes observed by satellite gravimetry. By projecting data onto a sparse basis set, the local field can be estimated more easily than with the full spherical harmonic basis. We have used this method previously to estimate the ice mass change in Greenland from GRACE data, and it can also be applied to other planetary problems such as global magnetic fields. Earth's static geoid, in contrast to the time-variable field, is in large part related to the internal density and rheological structure of the Earth. Past studies have used dynamic geoid kernels to relate this density structure and the internal deformation it induces to the surface geopotential at large scales. These now classical studies of the eighties and nineties were able to estimate the mantle's radial rheological profile, placing constraints on the ratio between upper and lower mantle viscosity. By combining these two methods, spherical Slepian localization and dynamic geoid kernels, we have created local dynamic geoid kernels which are sensitive only to density variations within an area of interest. With these kernels we can estimate the approximate local radial rheological structure that best explains the locally observed geoid on a regional basis. First-order differences of the regional mantle viscosity structure are accessible to this technique. In this contribution we present our latest, as yet unpublished results on the geographical and temporal pattern of ice mass changes in Antarctica over the past decade, and we introduce a new approach to extract regional information about the internal structure of the Earth from the static global gravity field. Both sets of results are linked in terms of the relevant physics, but also in being developed from the marriage of Slepian functions and geoid kernels. We make predictions on the utility of our approach to derive fully three-dimensional rheological Earth models, to

  18. The 3D Reference Earth Model (REM-3D): Update and Outlook

    NASA Astrophysics Data System (ADS)

    Lekic, V.; Moulik, P.; Romanowicz, B. A.; Dziewonski, A. M.

    2016-12-01

    Elastic properties of the Earth's interior (e.g. density, rigidity, compressibility, anisotropy) vary spatially due to changes in temperature, pressure, composition, and flow. In the 20th century, seismologists have constructed reference models of how these quantities vary with depth, notably the PREM model of Dziewonski and Anderson (1981). These 1D reference earth models have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, more sophisticated efforts by seismologists have yielded several generations of models of how properties vary not only with depth, but also laterally. Yet, though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. We propose to overcome these challenges by compiling, reconciling, and distributing a long period (>15 s) reference seismic dataset, from which we will construct a 3D seismic reference model (REM-3D) for the Earth's mantle, which will come in two flavors: a long wavelength smoothly parameterized model and a set of regional profiles. Here, we summarize progress made in the construction of the reference long period dataset, and present preliminary versions of the REM-3D in order to illustrate the two flavors of REM-3D and their relative advantages and disadvantages. As a community reference model and with fully quantified uncertainties and tradeoffs, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. In this presentation, we outline the outlook for setting up advisory community

  19. Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure

    NASA Astrophysics Data System (ADS)

    Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.

    2017-12-01

    Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.

  20. The UK Earth System Model project

    NASA Astrophysics Data System (ADS)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  1. Effects of 3D Earth structure on W-phase CMT parameters

    NASA Astrophysics Data System (ADS)

    Morales, Catalina; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo

    2017-04-01

    The source inversion of the W-phase has demonstrated a great potential to provide fast and reliable estimates of the centroid moment tensor (CMT) for moderate to large earthquakes. It has since been implemented in different operational environments (NEIC-USGS, PTWC, etc.) with the aim of providing rapid CMT solutions. These solutions are in particular useful for tsunami warning purposes. Computationally, W-phase waveforms are usually synthetized by summation of normal modes at long period (100 - 1000 s) for a spherical Earth model (e.g., PREM). Although the energy of these modes mainly stays in the mantle where lateral structural variations are relatively small, the impact of 3D heterogeneities on W-phase solutions have not yet been quantified. In this study, we investigate possible bias in W-phase source parameters due to unmodeled lateral structural heterogeneities. We generate a simulated dataset consisting of synthetic seismograms of large past earthquakes that accounts for the Earth's 3D structure. The W-phase algorithm is then used to invert the synthetic dataset for earthquake CMT parameters with and without added noise. Results show that the impact of 3D heterogeneities is generally larger for surface-waves than for W-phase waveforms. However, some discrepancies are noted between inverted W-phase parameters and target values. Particular attention is paid to the possible bias induced by the unmodeled 3D structure into the location of the W-phase centroid. Preliminary results indicate that the parameter that is most susceptible to 3D Earth structure seems to be the centroid depth.

  2. Models meet data: Challenges and opportunities in implementing land management in Earth system models.

    PubMed

    Pongratz, Julia; Dolman, Han; Don, Axel; Erb, Karl-Heinz; Fuchs, Richard; Herold, Martin; Jones, Chris; Kuemmerle, Tobias; Luyssaert, Sebastiaan; Meyfroidt, Patrick; Naudts, Kim

    2018-04-01

    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs. © 2017 John Wiley & Sons Ltd.

  3. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  4. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  5. The Earth's magnetosphere modeling and ISO standard

    NASA Astrophysics Data System (ADS)

    Alexeev, I.

    The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace

  6. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  7. Effect of 3-D heterogeneous-earth on rheology inference of postseismic model following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Pratama, C.; Ito, T.; Sasajima, R.; Tabei, T.; Kimata, F.; Gunawan, E.; Ohta, Y.; Yamashina, T.; Ismail, N.; Muksin, U.; Maulida, P.; Meilano, I.; Nurdin, I.; Sugiyanto, D.; Efendi, J.

    2017-12-01

    Postseismic deformation following the 2012 Indian Ocean earthquake has been modeled by several studies (Han et al. 2015, Hu et al. 2016, Masuti et al. 2016). Although each study used different method and dataset, the previous studies constructed a significant difference of earth structure. Han et al. (2015) ignored subducting slab beneath Sumatra while Masuti et al. (2016) neglect sphericity of the earth. Hu et al. (2016) incorporated elastic slab and spherical earth but used uniform rigidity in each layer of the model. As a result, Han et al. (2015) model estimated one order higher Maxwell viscosity than the Hu et al. (2016) and half order lower Kelvin viscosity than the Masuti et al. (2016) model predicted. In the present study, we conduct a quantitative analysis of each heterogeneous geometry and parameter effect on rheology inference. We develop heterogeneous three-dimensional spherical-earth finite element models. We investigate the effect of subducting slab, spherical earth, and three-dimensional earth rigidity on estimated lithosphere-asthenosphere rheology beneath the Indian Ocean. A wide range of viscosity structure from time constant rheology to time dependent rheology was chosen as previous studies have been modeled. In order to evaluate actual displacement, we compared the model to the Global Navigation Satellite System (GNSS) observation. We incorporate the GNSS data from previous studies and introduce new GNSS site as a part of the Indonesian Continuously Operating Reference Stations (InaCORS) located in Sumatra that has not been used in the last analysis. As a preliminary result, we obtained the effect of the spherical earth and elastic slab when we assumed burgers rheology. The model that incorporates the sphericity of the earth needs a one third order lower viscosity than the model that neglects earth curvature. The model that includes elastic slab needs half order lower viscosity than the model that excluding the elastic slab.

  8. New earth system model for optical performance evaluation of space instruments.

    PubMed

    Ryu, Dongok; Kim, Sug-Whan; Breault, Robert P

    2017-03-06

    In this study, a new global earth system model is introduced for evaluating the optical performance of space instruments. Simultaneous imaging and spectroscopic results are provided using this global earth system model with fully resolved spatial, spectral, and temporal coverage of sub-models of the Earth. The sun sub-model is a Lambertian scattering sphere with a 6-h scale and 295 lines of solar spectral irradiance. The atmospheric sub-model has a 15-layer three-dimensional (3D) ellipsoid structure. The land sub-model uses spectral bidirectional reflectance distribution functions (BRDF) defined by a semi-empirical parametric kernel model. The ocean is modeled with the ocean spectral albedo after subtracting the total integrated scattering of the sun-glint scatter model. A hypothetical two-mirror Cassegrain telescope with a 300-mm-diameter aperture and 21.504 mm × 21.504-mm focal plane imaging instrument is designed. The simulated image results are compared with observational data from HRI-VIS measurements during the EPOXI mission for approximately 24 h from UTC Mar. 18, 2008. Next, the defocus mapping result and edge spread function (ESF) measuring result show that the distance between the primary and secondary mirror increases by 55.498 μm from the diffraction-limited condition. The shift of the focal plane is determined to be 5.813 mm shorter than that of the defocused focal plane, and this result is confirmed through the estimation of point spread function (PSF) measurements. This study shows that the earth system model combined with an instrument model is a powerful tool that can greatly help the development phase of instrument missions.

  9. A Comprehensive Structural Dynamic Analysis Approach for Multi Mission Earth Entry Vehicle (MMEEV) Development

    NASA Technical Reports Server (NTRS)

    Perino, Scott; Bayandor, Javid; Siddens, Aaron

    2012-01-01

    The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.

  10. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  11. Near-Earth Space Radiation Models

    NASA Technical Reports Server (NTRS)

    Xapsos, Michael A.; O'Neill, Patrick M.; O'Brien, T. Paul

    2012-01-01

    Review of models of the near-Earth space radiation environment is presented, including recent developments in trapped proton and electron, galactic cosmic ray and solar particle event models geared toward spacecraft electronics applications.

  12. How Successful Has Earth Science Education Been in Teaching Deep Time and Terminology of the Earth's Structure?

    ERIC Educational Resources Information Center

    Murphy, Phil

    2012-01-01

    A very limited questioning of undergraduate Environmental Science students at the start of their studies suggests the age of the Earth is being successfully taught in high schools. The same cannot be said for the teaching of the structure of the Earth.

  13. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  14. The Geochemical Earth Reference Model (GERM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staudigel, H.; Albarede, F.; Shaw, H.

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals aremore » clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.« less

  15. Modeling Earth's Ring Current Using The CIMI Model

    NASA Astrophysics Data System (ADS)

    Craven, J. D., II; Perez, J. D.; Buzulukova, N.; Fok, M. C. H.

    2015-12-01

    Earth's ring current is a result of the injection of charged particles trapped in the magnetosphere from solar storms. The enhancement of the ring current particles produces magnetic depressions and disturbances to the Earth's magnetic field known as geomagnetic storms, which have been modeled using the comprehensive inner magnetosphere-ionosphere (CIMI) model. The purpose of this model is to identify and understand the physical processes that control the dynamics of the geomagnetic storms. The basic procedure was to use the CIMI model for the simulation of 15 storms since 2009. Some of the storms were run multiple times, but with varying parameters relating to the dynamics of the Earth's magnetic field, particle fluxes, and boundary conditions of the inner-magnetosphere. Results and images were placed in the TWINS online catalog page for further analysis and discussion. Particular areas of interest were extreme storm events. A majority of storms simulated had average DST values of -100 nT; these extreme storms exceeded DST values of -200 nT. The continued use of the CIMI model will increase knowledge of the interactions and processes of the inner-magnetosphere as well as lead to a better understanding of extreme solar storm events for the future advancement of space weather physics.

  16. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  17. More details...
  18. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    NASA Astrophysics Data System (ADS)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  19. Strain-induced modification of magnetic structure and new magnetic phases in rare-earth epitaxial films

    NASA Astrophysics Data System (ADS)

    Dufour, C.; Dumesnil, K.; Mangin, Ph

    2006-07-01

    Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.

  20. Diversity of Approaches to Structuring University-Based Earth System Science Education

    NASA Astrophysics Data System (ADS)

    Aron, J.; Ruzek, M.; Johnson, D. R.

    2004-12-01

    Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government

  21. The Geolocation model for lunar-based Earth observation

    NASA Astrophysics Data System (ADS)

    Ding, Yixing; Liu, Guang; Ren, Yuanzhen; Ye, Hanlin; Guo, Huadong; Lv, Mingyang

    2016-07-01

    In recent years, people are more and more aware of that the earth need to treated as an entirety, and consequently to be observed in a holistic, systematic and multi-scale view. However, the interaction mechanism between the Earth's inner layers and outer layers is still unclear. Therefore, we propose to observe the Earth's inner layers and outer layers instantaneously on the Moon which may be helpful to the studies in climatology, meteorology, seismology, etc. At present, the Moon has been proved to be an irreplaceable platform for Earth's outer layers observation. Meanwhile, some discussions have been made in lunar-based observation of the Earth's inner layers, but the geolocation model of lunar-based observation has not been specified yet. In this paper, we present a geolocation model based on transformation matrix. The model includes six coordinate systems: The telescope coordinate system, the lunar local coordinate system, the lunar-reference coordinate system, the selenocentric inertial coordinate system, the geocentric inertial coordinate system and the geo-reference coordinate system. The parameters, lncluding the position of the Sun, the Earth, the Moon, the libration and the attitude of the Earth, can be acquired from the Ephemeris. By giving an elevation angle and an azimuth angle of the lunar-based telescope, this model links the image pixel to the ground point uniquely.

  1. The Network Structure Underlying the Earth Observation Assessment

    NASA Astrophysics Data System (ADS)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  2. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  3. Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.

    2003-04-01

    Space weather is caused by a series of interconnected events, beginning at the Sun and ending in the near-Earth space environment. Our ability to predict conditions and events in space depends on our understanding of these connections, and more importantly, our ability to predict details, such as the orientation of the magnetic field within a CME that is on its way to Earth. One approach to both improved understanding and prediction is through the use of models, particularly computer simulation models. Although models of the space environment are not yet good enough for this approach to be quantitative, things are changing. Models of components of the system the magnetosphere or the Sun’s corona, for example are now approaching a point where the biggest uncertainties in the model results are due to uncertainties in boundary conditions or in interactions with neighboring regions. Thus the time is ripe for the models to be joined into one large model that can deal with the complex couplings between the components of the system. In this talk we will review efforts to do this being undertaken by the new NSF Science and Technology Center, the Center for Integrated Space Weather Modeling, a consortium of ten institutions headed by Boston University. We will discuss results of initial efforts to couple MHD models of the corona and solar wind, and to couple a global magnetospheric MHD model with a global ionosphere/thermosphere model and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner

  4. Challenges in Modeling the Sun-Earth System

    NASA Technical Reports Server (NTRS)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  5. Near Earth Asteroid Scout Thrust and Torque Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew; Ahmad, Naeem; Miller, Kyle

    2017-01-01

    The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid in preparation for manned missions to asteroids. NEA Scout will use a solar sail as the primary means of propulsion. Thus it is important for mission planning to accurately characterize the thrust of the sail. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust. We have also found that other than uncertainty over the precise shape, the effect of small (approximately millimeter scale) wrinkles on the diffusivity of the sail is the leading remaining source of uncertainty. We demonstrate that millimeter-scale wrinkles can be modeled analytically as a change in the fraction of specular reflection. Finally we discuss the implications of these results for the NEA Scout mission.

  6. Models of the Earth's Core.

    PubMed

    Stevenson, D J

    1981-11-06

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with the following properties. Core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and laboratory data.

  7. Models of the earth's core

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  8. A carbon dioxide radiance model of the earth planet using the conical earth sensor data

    NASA Astrophysics Data System (ADS)

    Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi

    2013-10-01

    Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with

  9. Exact free oscillation spectra, splitting functions and the resolvability of Earth's density structure

    NASA Astrophysics Data System (ADS)

    Akbarashrafi, F.; Al-Attar, D.; Deuss, A.; Trampert, J.; Valentine, A. P.

    2018-04-01

    Seismic free oscillations, or normal modes, provide a convenient tool to calculate low-frequency seismograms in heterogeneous Earth models. A procedure called `full mode coupling' allows the seismic response of the Earth to be computed. However, in order to be theoretically exact, such calculations must involve an infinite set of modes. In practice, only a finite subset of modes can be used, introducing an error into the seismograms. By systematically increasing the number of modes beyond the highest frequency of interest in the seismograms, we investigate the convergence of full-coupling calculations. As a rule-of-thumb, it is necessary to couple modes 1-2 mHz above the highest frequency of interest, although results depend upon the details of the Earth model. This is significantly higher than has previously been assumed. Observations of free oscillations also provide important constraints on the heterogeneous structure of the Earth. Historically, this inference problem has been addressed by the measurement and interpretation of splitting functions. These can be seen as secondary data extracted from low frequency seismograms. The measurement step necessitates the calculation of synthetic seismograms, but current implementations rely on approximations referred to as self- or group-coupling and do not use fully accurate seismograms. We therefore also investigate whether a systematic error might be present in currently published splitting functions. We find no evidence for any systematic bias, but published uncertainties must be doubled to properly account for the errors due to theoretical omissions and regularization in the measurement process. Correspondingly, uncertainties in results derived from splitting functions must also be increased. As is well known, density has only a weak signal in low-frequency seismograms. Our results suggest this signal is of similar scale to the true uncertainties associated with currently published splitting functions. Thus, it seems

  10. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    NASA Astrophysics Data System (ADS)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  11. The Secrets of Plasticine Balls and the Structure of the Earth: Investigation through Discussion

    ERIC Educational Resources Information Center

    King, Chris

    2002-01-01

    Balls made of modelling clay (Plasticine[TM]) can be used to generate a classroom discussion about the scientific evidence used to determine the structure of the Earth. This allows pupils to appreciate how evidence is used to support hypotheses and to distinguish fact from hypothesis. It also provides opportunity to correct misconceptions held by…

  12. THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nettelmann, N.; Fortney, J. J.; Kramm, U.

    The planet GJ 1214b is the second known super-Earth with a measured mass and radius. Orbiting a quiet M star, it receives considerably less mass-loss driving X-ray and UV radiation than CoRoT-7b, so that the interior may be quite dissimilar in composition, including the possibility of a large fraction of water. We model the interior of GJ 1214b assuming a two-layer (envelope+rock core) structure where the envelope material is either H/He, pure water, or a mixture of H/He and H{sub 2}O. Within this framework, we perform models of the thermal evolution and contraction of the planet. We discuss possible compositionsmore » that are consistent with M{sub p} = 6.55 M{sub +}, R{sub p} = 2.678 R{sub +}, an age {tau} = 3-10 Gyr, and the irradiation level of the atmosphere. These conditions require that if water exists in the interior, it must remain in a fluid state, with important consequences for magnetic field generation. These conditions also require the atmosphere to have a deep isothermal region extending down to 80-800 bar, depending on composition. Our results bolster the suggestion of a metal-enriched H/He atmosphere for the planet, as we find water-world models that lack an H/He atmosphere to require an implausibly large water-to-rock ratio of more than 6:1. We instead favor an H/He/H{sub 2}O envelope with high water mass fraction ({approx}0.5-0.85), similar to recent models of the deep envelope of Uranus and Neptune. Even with these high water mass fractions in the H/He envelope, generally the bulk composition of the planet can have subsolar water:rock ratios. Dry, water-enriched, and pure water envelope models differ to an observationally significant level in their tidal Love numbers k{sub 2} of, respectively, {approx}0.018, {approx}0.15, and {approx}0.7.« less

  13. Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, M.; Berdyugina, S.; Kuhn, J.

    Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Virmore » b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.« less

  14. SPITFIRE within the MPI Earth system model: Model development and evaluation

    NASA Astrophysics Data System (ADS)

    Lasslop, Gitta; Thonicke, Kirsten; Kloster, Silvia

    2014-09-01

    Quantification of the role of fire within the Earth system requires an adequate representation of fire as a climate-controlled process within an Earth system model. To be able to address questions on the interaction between fire and the Earth system, we implemented the mechanistic fire model SPITFIRE, in JSBACH, the land surface model of the MPI Earth system model. Here, we document the model implementation as well as model modifications. We evaluate our model results by comparing the simulation to the GFED version 3 satellite-based data set. In addition, we assess the sensitivity of the model to the meteorological forcing and to the spatial variability of a number of fire relevant model parameters. A first comparison of model results with burned area observations showed a strong correlation of the residuals with wind speed. Further analysis revealed that the response of the fire spread to wind speed was too strong for the application on global scale. Therefore, we developed an improved parametrization to account for this effect. The evaluation of the improved model shows that the model is able to capture the global gradients and the seasonality of burned area. Some areas of model-data mismatch can be explained by differences in vegetation cover compared to observations. We achieve benchmarking scores comparable to other state-of-the-art fire models. The global total burned area is sensitive to the meteorological forcing. Adjustment of parameters leads to similar model results for both forcing data sets with respect to spatial and seasonal patterns. This article was corrected on 29 SEP 2014. See the end of the full text for details.

  15. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  16. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  17. Magnetic Local Time dependency in modeling of the Earth radiation belts

    NASA Astrophysics Data System (ADS)

    Herrera, Damien; Maget, Vincent; Bourdarie, Sébastien; Rolland, Guy

    2017-04-01

    For many years, ONERA has been at the forefront of the modeling of the Earth radiation belts thanks to the Salammbô model, which accurately reproduces their dynamics over a time scale of the particles' drift period. This implies that we implicitly assume an homogeneous repartition of the trapped particles along a given drift shell. However, radiation belts are inhomogeneous in Magnetic Local Time (MLT). So, we need to take this new coordinate into account to model rigorously the dynamical structures, particularly induced during a geomagnetic storm. For this purpose, we are working on both the numerical resolution of the Fokker-Planck diffusion equation included in the model and on the MLT dependency of physic-based processes acting in the Earth radiation belts. The aim of this talk is first to present the 4D-equation used and the different steps we used to build Salammbô 4D model before focusing on physical processes taken into account in the Salammbô code, specially transport due to convection electric field. Firstly, we will briefly introduce the Salammbô 4D code developped by talking about its numerical scheme and physic-based processes modeled. Then, we will focus our attention on the impact of the outer boundary condition (localisation and spectrum) at lower L∗ shell by comparing modeling performed with geosynchronous data from LANL-GEO satellites. Finally, we will discuss the prime importance of the convection electric field to the radial and drift transport of low energy particles around the Earth.

  18. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  19. Technical Note: The Modular Earth Submodel System (MESSy) - a new approach towards Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Sander, R.; Kerkweg, A.; Tost, H.; Lelieveld, J.

    2005-02-01

    The development of a comprehensive Earth System Model (ESM) to study the interactions between chemical, physical, and biological processes, requires coupling of the different domains (land, ocean, atmosphere, ...). One strategy is to link existing domain-specific models with a universal coupler, i.e. an independent standalone program organizing the communication between other programs. In many cases, however, a much simpler approach is more feasible. We have developed the Modular Earth Submodel System (MESSy). It comprises (1) a modular interface structure to connect to a , (2) an extendable set of such for miscellaneous processes, and (3) a coding standard. MESSy is therefore not a coupler in the classical sense, but exchanges data between a and several within one comprehensive executable. The internal complexity of the is controllable in a transparent and user friendly way. This provides remarkable new possibilities to study feedback mechanisms (by two-way coupling). Note that the MESSy and the coupler approach can be combined. For instance, an atmospheric model implemented according to the MESSy standard could easily be coupled to an ocean model by means of an external coupler. The vision is to ultimately form a comprehensive ESM which includes a large set of submodels, and a base model which contains only a central clock and runtime control. This can be reached stepwise, since each process can be included independently. Starting from an existing model, process submodels can be reimplemented according to the MESSy standard. This procedure guarantees the availability of a state-of-the-art model for scientific applications at any time of the development. In principle, MESSy can be implemented into any kind of model, either global or regional. So far, the MESSy concept has been applied to the general circulation model ECHAM5 and a number of process boxmodels.

  20. Report of the panel on earth structure and dynamics, section 6

    NASA Technical Reports Server (NTRS)

    Dziewonski, Adam M.; Mcadoo, David C.; Oconnell, Richard J.; Smylie, Douglas E.; Yoder, Charles F.

    1991-01-01

    The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics.

  1. Challenges to modeling the Sun-Earth System: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  2. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality

  3. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute

  4. Advanced analysis of complex seismic waveforms to characterize the subsurface Earth structure

    NASA Astrophysics Data System (ADS)

    Jia, Tianxia

    2011-12-01

    in seismic active zones. SPAC analysis of microtremors provides an efficient way to estimate Vs structure. Compared with other Vs estimating methods, SPAC is noninvasive and does not require any active sources, and therefore, it is especially useful in big cities. I applied SPAC method in two urban areas. The first is the historic city, Charleston, South Carolina, where high levels of seismic hazard lead to great public concern. Accurate Vs information, therefore, is critical for seismic site classification and site response studies. The second SPAC study is in Manhattan, New York City, where depths of high velocity contrast and soil-to-bedrock are different along the island. The two experiments show that Vs structure could be estimated with good accuracy using SPAC method compared with borehole and other techniques. SPAC is proved to be an effective technique for Vs estimation in urban areas. One important issue in seismology is the inversion of subsurface structures from surface recordings of seismograms. My third project focuses on solving this complex geophysical inverse problems, specifically, surface wave phase velocity dispersion curve inversion for shear wave velocity. In addition to standard linear inversion, I developed advanced inversion techniques including joint inversion using borehole data as constrains, nonlinear inversion using Monte Carlo, and Simulated Annealing algorithms. One innovative way of solving the inverse problem is to make inference from the ensemble of all acceptable models. The statistical features of the ensemble provide a better way to characterize the Earth model.

  5. Recent results on modelling the spatial and temporal structure of the Earth's gravity field.

    PubMed

    Moore, P; Zhang, Q; Alothman, A

    2006-04-15

    The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.

  6. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  7. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  8. Earth system modelling: a GAIM perspective

    NASA Astrophysics Data System (ADS)

    Prentice, C.

    2003-04-01

    For over a decade the IGBP Task Force on Global Analysis, Integration (formerly Interepretation) and Modelling (GAIM) has facilitated international, interdisciplinary research. The focus has been development, comparison and evaluation of models describing Earth system components, especially terrestrial and ocean carbon cycling and atmospheric transport. GAIM also sponsored the BIOME 6000 project, which produced snapshots of world vegetation patterns for the last glacial maximum (LGM) and mid-Holocene, and experiments in coupled atmosphere-biosphere modelling that used these results. The most successful achievements have brought together modellers and data experts so that model comparisons could be made “with open eyes”. The need to bring together different communities (such as data experts and modellers; ecologists and atmospheric scientists; economists and ecologists...) only increases, and is a major rationale for the continuation of GAIM. GAIM has recently set out 23 overarching questions which could define future directions in Earth system science. Many have a “human dimension”, reflecting the fact that the societal context is poorly defined. Natural scientists often appeal to societal reasons to study global change, but typically don’t incorporate human science perspectives in their research strategies. Other questions have a “physical dimension” as biogeochemistry, atmospheric chemistry and physical climate science merge. As IGBP II begins, GAIM faces the challenge of tackling large gaps in our knowledge of how the coupled Earth system works, with and without human interfence. On the natural science side, the Vostok ice-core record dramatically illustrates our current state of ignorance. Vostok established that the Earth system’s response to orbital forcing is characterized by strong non-linear interactions between atmospheric greenhouse-gas and aerosol constituents and climate. The problem is that we don’t understand most of these

  9. Learning from History: A Lesson on the Model of the Earth

    ERIC Educational Resources Information Center

    Liu, Shu-Chiu

    2006-01-01

    It is suggested that historical material concerning the model of the earth be utilised in the science classroom to construct narrative explanations. The article includes the various ancient models of the earth, the discovery of the spherical earth model, and the arguments and experiments coupled with it. Its instructional gain may lie in the…

  10. A proposed-standard format to represent and distribute tomographic models and other earth spatial data

    NASA Astrophysics Data System (ADS)

    Postpischl, L.; Morelli, A.; Danecek, P.

    2009-04-01

    Formats used to represent (and distribute) tomographic earth models differ considerably and are rarely self-consistent. In fact, each earth scientist, or research group, uses specific conventions to encode the various parameterizations used to describe, e.g., seismic wave speed or density in three dimensions, and complete information is often found in related documents or publications (if available at all) only. As a consequence, use of various tomographic models from different authors requires considerable effort, is more cumbersome than it should be and prevents widespread exchange and circulation within the community. We propose a format, based on modern web standards, able to represent different (grid-based) model parameterizations within the same simple text-based environment, easy to write, to parse, and to visualise. The aim is the creation of self-describing data-structures, both human and machine readable, that are automatically recognised by general-purpose software agents, and easily imported in the scientific programming environment. We think that the adoption of such a representation as a standard for the exchange and distribution of earth models can greatly ease their usage and enhance their circulation, both among fellow seismologists and among a broader non-specialist community. The proposed solution uses semantic web technologies, fully fitting the current trends in data accessibility. It is based on Json (JavaScript Object Notation), a plain-text, human-readable lightweight computer data interchange format, which adopts a hierarchical name-value model for representing simple data structures and associative arrays (called objects). Our implementation allows integration of large datasets with metadata (authors, affiliations, bibliographic references, units of measure etc.) into a single resource. It is equally suited to represent other geo-referenced volumetric quantities — beyond tomographic models — as well as (structured and unstructured

  11. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that

  12. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  13. Alternative Models for Large-Group Introductory Earth Science Courses: Dual-Structured Model

    ERIC Educational Resources Information Center

    Carpenter, John R.; And Others

    1978-01-01

    An introductory college course in which both the instructional staff and students have input into the content has been successfully implemented into a spectrum of instructor-centered to student-centered introductory earth science courses. Grading by point accumulation method reduced the grade threat and induced student responsibility for learning.…

  14. Modeling the Round Earth through Diagrams

    NASA Astrophysics Data System (ADS)

    Padalkar, Shamin; Ramadas, Jayashree

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.

  15. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, Daniel; Holmes, Simon; Factor, John; Ingalls, Sarah; Presicci, Manny; Beale, James

    2017-04-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and ship borne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners. Approved for Public Release

  16. Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D.; Factor, J. K.; Holmes, S. A.; Ingalls, S.; Presicci, M. R.; Beale, J.; Fecher, T.

    2015-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners.

  17. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  18. Marine Aerosol Precursor Emissions for Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maltrud, Mathew Einar

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  19. Geodynamic models of the deep structure of the natural disaster regions of the Earth

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.

    2012-04-01

    center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.

  20. Goddard earth models (5 and 6)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Wagner, C. A.; Richardson, J. A.; Brownd, J. E.

    1974-01-01

    A comprehensive earth model has been developed that consists of two complementary gravitational fields and center-of-mass locations for 134 tracking stations on the earth's surface. One gravitational field is derived solely from satellite tracking data. This data on 27 satellite orbits is the most extensive used for such a solution. A second solution uses this data with 13,400 simultaneous events from satellite camera observations and surface gravimetric anomalies. The satellite-only solution as a whole is accurate to about 4.5 milligals as judged by the surface gravity data. The majority of the station coordinates are accurate to better than 10 meters as judged by independent results from geodetic surveys and by Doppler tracking of both distant space probes and near earth orbits.

  1. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    NASA Astrophysics Data System (ADS)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the

  2. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  3. Improving the representation of photosynthesis in Earth system models

    NASA Astrophysics Data System (ADS)

    Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.

    2015-12-01

    Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.

  4. Rotational modes of a simple Earth model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogister, Y. J. G.

    2017-12-01

    We study the tilt-over mode (TOM), the spin-over mode (SOM), the free core nutation (FCN), and their relationships to each other using a simple Earth model with a homogeneous and incompressible liquid core and a rigid mantle. Analytical solutions for the periods of these modes as well as that of the Chandler wobble is found for the Earth model. We show that the FCN is the same mode as the SOM of a wobbling Earth. The reduced pressure, in terms of which the vector momentum equation is known to reduce to a scalar second order differential equation (the so called Poincaŕe equation), is used as the independent variable. Analytical solutions are then found for the displacement eigenfucntions in a meridional plane of the liquid core for the aforementioned modes. We show that the magnitude of motion in the mantle during the FCN is comparable to that in the liquid core, hence very small. The displacement eigenfunctions for these aforementioned modes as well as those for the free inner core nutation (FICN), computed numerically, are also given for a three layer Earth model which also includes a rigid but capable of wobbling inner core. We will discuss the slow convergence of the period of the FICN in terms of the characteristic surfaces of the Poincare equation.

  5. Modeling seismic wave propagation across the European plate: structural models and numerical techniques, state-of-the-art and prospects

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria

    2010-05-01

    Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies

  6. CISM: Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.; Team, T. C.

    2003-12-01

    The Center for Integrated SpaceWeather Modeling (CISM), an NSF Science and Technology Center that is a consortium of ten institutions headed by Boston University, has as its primary goal the development of a series of ever improving versions of a comprehensive physics-based simulation model that describes the space environment from the Sun to the Earth. CISM will do this by coupling existing models of components of the system. In this paper we review our progress to date and summarize our plans. We discuss results of initial coupling of MHD models of the corona and solar wind, and of a global magnetospheric MHD model with a global ionosphere/thermosphere model, a radiation belt model, and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere. Including the Dartmouth radiation belt model shows how the radiation belts evolve in a realistic magnetosphere.

  7. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    PubMed Central

    Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.

    2018-01-01

    The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632

  8. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE PAGES

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...

    2018-04-25

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  9. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  10. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    NASA Astrophysics Data System (ADS)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which

  11. Probabilistic safety analysis of earth retaining structures during earthquakes

    NASA Astrophysics Data System (ADS)

    Grivas, D. A.; Souflis, C.

    1982-07-01

    A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.

  12. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE PAGES

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; ...

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  13. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.

    When appropriately activated, alkali rare-earth double phosphates of the form: M 3RE(PO 4) 2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K 3RE(PO 4) 2 with RE = Lu, Er, Ho,more » Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A 3Lu(PO 4) 2, with A = Rb, and Cs. The double phosphate K 3Lu(PO 4) 2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K 3Lu(PO 4) 2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K 3Lu(PO 4) 2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K 3Yb(PO 4) 2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated

  14. Run Environment and Data Management for Earth System Models

    NASA Astrophysics Data System (ADS)

    Widmann, H.; Lautenschlager, M.; Fast, I.; Legutke, S.

    2009-04-01

    The Integrating Model and Data Infrastructure (IMDI) developed and maintained by the Model and Data Group (M&D) comprises the Standard Compile Environment (SCE) and the Standard Run Environment (SRE). The IMDI software has a modular design, which allows to combine and couple a suite of model components and as well to execute the tasks independently and on various platforms. Furthermore the modular structure enables the extension to new model combinations and new platforms. The SRE presented here enables the configuration and performance of earth system model experiments from model integration up to storage and visualization of data. We focus on recently implemented tasks such as synchronous data base filling, graphical monitoring and automatic generation of meta data in XML forms during run time. As well we address the capability to run experiments in heterogeneous IT environments with different computing systems for model integration, data processing and storage. These features are demonstrated for model configurations and on platforms used in current or upcoming projects, e.g. MILLENNIUM or IPCC AR5.

  15. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  16. Angular radiation models for earth-atmosphere system. Volume 2: Longwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Smith, G. L.; Wielicki, B. A.; Walker, I. J.; Taylor, V. R.; Stowe, L. L.

    1989-01-01

    The longwave angular radiation models that are required for analysis of satellite measurements of Earth radiation, such as those from the Earth Radiation Budget Experiment (ERBE) are presented. The models contain limb-darkening characteristics and mean fluxes. Limb-darkening characteristics are the longwave anisotropic factor and the standard deviation of the longwave radiance. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) data set is described. Tabulated values and computer-generated plots are included for the limb-darkening and mean-flux models.

  17. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative

  18. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure

  19. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  20. An optimum organizational structure for a large earth-orbiting multidisciplinary space base. Ph.D. Thesis - Fla. State Univ., 1973

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1975-01-01

    An optimum hypothetical organizational structure was studied for a large earth-orbiting, multidisciplinary research and applications space base manned by a crew of technologists. Because such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than with the empirical testing of the model. The essential finding of this research was that a four-level project type total matrix model will optimize the efficiency and effectiveness of space base technologists.

  1. A radiogenic heating evolution model for cosmochemically Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Frank, Elizabeth A.; Meyer, Bradley S.; Mojzsis, Stephen J.

    2014-11-01

    Discoveries of rocky worlds around other stars have inspired diverse geophysical models of their plausible structures and tectonic regimes. Severe limitations of observable properties require many inexact assumptions about key geophysical characteristics of these planets. We present the output of an analytical galactic chemical evolution (GCE) model that quantitatively constrains one of those key properties: radiogenic heating. Earth's radiogenic heat generation has evolved since its formation, and the same will apply to exoplanets. We have fit simulations of the chemical evolution of the interstellar medium in the solar annulus to the chemistry of our Solar System at the time of its formation and then applied the carbonaceous chondrite/Earth's mantle ratio to determine the chemical composition of what we term ;cosmochemically Earth-like; exoplanets. Through this approach, predictions of exoplanet radiogenic heat productions as a function of age have been derived. The results show that the later a planet forms in galactic history, the less radiogenic heat it begins with; however, due to radioactive decay, today, old planets have lower heat outputs per unit mass than newly formed worlds. The long half-life of 232Th allows it to continue providing a small amount of heat in even the most ancient planets, while 40K dominates heating in young worlds. Through constraining the age-dependent heat production in exoplanets, we can infer that younger, hotter rocky planets are more likely to be geologically active and therefore able to sustain the crustal recycling (e.g. plate tectonics) that may be a requirement for long-term biosphere habitability. In the search for Earth-like planets, the focus should be made on stars within a billion years or so of the Sun's age.

  2. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  3. EarthLabs: A National Model for Earth Science Lab Courses

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2008-12-01

    As a response to the need for more rigorous, inquiry-based high school Earth science courses, a coalition of scientists, educators, and five states have created EarthLabs, a set of pilot modules that can serve as a national model for lab-based science courses. The content of EarthLabs chapters focuses on Earth system science and environmental literacy and conforms to the National Science Education Standards as well as the states' curriculum frameworks. The effort is funded by NOAA's Environmental Literacy program. The pilot modules present activities on Corals, Drought, Fisheries, and Hurricanes. The Fisheries and Hurricanes units were reviewed and field-tested by educators in Texas and Arizona. The feedback from this evaluation led to revisions of these units and guided development of the Corals and Drought chapters. Each module consists of activities that use online data sets, satellite imagery, web-based readings, and hands-on laboratory experiments. The project comprises two separate websites, one for the instructor and one for students. The instructor's site contains the pedagogical underpinnings for each lab including teaching materials, assessment strategies, and the alignment of activities with state and national science standards. The student site provides access to all materials that students need to complete the activities or, in the case of the hands-on labs, where they access additional information to help extend their learning. There are also formative and summative questions embedded in the student webpages to help scaffold learning through the activities.

  4. Unique magnetism and structural transformation in rare earth dialumindes

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Mudryk, Yaroslav; Paudyal, Durga; Pecharsky, Vitalij

    Rare earth metallic alloys play a critical yet often obscure role in numerous technological applications, including but not limited to sensors, actuators, permanent magnets, and rechargeable batteries; therefore, understanding their fundamental properties is of utmost importance. We study structural behavior, specific heat, and magnetism of various binary and pseudobinary rare earth dialumindes by means of temperature-dependent x-ray powder diffraction, heat capacity and magnetization measurements, and first principles calculations. Here, we focus on our recent understanding of low temperature magnetism, and crystal structure of DyAl2, TbAl2, PrAl2, ErAl2, and discuss magnetic and structural instabilities in the pseudobinary PrAl2 - ErAl2 system. Unique among other mixed heavy lanthanide dialumindes, the substitution of Er in Pr1-xErxAl2 results in unusual ferrimagnetic behavior, and the ferrimagnetic interactions become strongest around x = 0.25. The Ames Laboratory is operated for the U. S. DOE by Iowa State University of Science and Technology under contract No. DE-AC02-07CH11358. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division.

  5. A new model for early Earth: heat-pipe cooling

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Moore, W. B.

    2013-12-01

    In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the

  6. Advancing User Supports with Structured How-To Knowledge Base for Earth Science Data

    NASA Astrophysics Data System (ADS)

    Shen, S.; Acker, J. G.; Lynnes, C.; Lighty, L.; Beaty, T.; Kempler, S.

    2016-12-01

    It is a challenge to access and process fast growing Earth science data from satellites and numerical models, which may be archived in very different data format and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and/or formats. A type of structured online document, "data recipe", were created in beginning 2013 by Goddard Earth Science Data and Information Services Center (GES DISC). A data recipe is the "How-To" document created by using the fixed template, containing step-by-step instructions with screenshots and examples of accessing and working with real data. The recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant to some recipes. In 2014, the NASA Earth Science Data System Working Group (ESDSWG) for data recipes was established, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group started with inventory and analysis of existing EOSDIS-wide online help documents, and provided recommendations and guidelines and for writing and grouping data recipes. This presentation will overview activities of creating How-To documents at GES DISC and ESDSWG. We encourage feedback and contribution from users for improving the data How-To knowledge base.

  7. A Compound Model for the Origin of Earth's Water

    NASA Astrophysics Data System (ADS)

    Izidoro, A.; de Souza Torres, K.; Winter, O. C.; Haghighipour, N.

    2013-04-01

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.

  8. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  9. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  10. Simulating modern-day cropland and pasture burning in an Earth system model

    NASA Astrophysics Data System (ADS)

    Rabin, Sam; Malyshev, Sergey; Shevliakova, Elena; Magi, Brian; Pacala, Steve

    2015-04-01

    Throughout the Holocene, humans have extended our influence across a larger and larger fraction of ecosystems, even creating some new ones in the process. Herds of livestock grazing either native vegetation (rangeland) or specially planted species (pasture) have modified huge areas of land. We have even developed new plant species and cultivated them as crops. The extent of our ecosystem modification intensified dramatically with the advent of industrialized agriculture, to the point where cropland and pasture (which will henceforth encompass rangeland as well) now cover over a third of the Earth's land area. One way we have altered the terrestrial biosphere is by intentionally and unintentionally altering fire's frequency, intensity, and seasonal timing. This is especially true for agricultural ecosystems. Because their maintenance and use require a level of human control, cropland and pasture often experience fire regimes substantially different from those of the ecosystems they replaced or what would occur in the absence of active fire management. For example, farmers might burn to prepare land for planting or to dispose of crop residues, and pastoralists often use fire to prevent encroachment of unpalatable woody plants. Due to the vast global extent of agriculture, and considering the myriad ways fire affects the Earth system, it is critical that we understand (a) the ways people manage fire on cropland and pasture and (b) the effects of this management on the Earth system. Earth system models are an ideal tool for examining this kind of question. By simulating the processes within and interactions among the atmosphere, oceans, land, and terrestrial ecosystems, Earth system models allow phenomena such as fire to be examined in their global context. However, while the past fifteen years have seen great progress in the simulation of vegetation fire within Earth system models, the direct human influence via cropland and pasture management burning has been mostly

  11. Track structure in biological models.

    PubMed

    Curtis, S B

    1986-01-01

    High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.

  12. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  13. The Prospect of using Three-Dimensional Earth Models To Improve Nuclear Explosion Monitoring and Ground Motion Hazard Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zucca, J J; Walter, W R; Rodgers, A J

    2008-11-19

    The last ten years have brought rapid growth in the development and use of three-dimensional (3D) seismic models of Earth structure at crustal, regional and global scales. In order to explore the potential for 3D seismic models to contribute to important societal applications, Lawrence Livermore National Laboratory (LLNL) hosted a 'Workshop on Multi-Resolution 3D Earth Models to Predict Key Observables in Seismic Monitoring and Related Fields' on June 6 and 7, 2007 in Berkeley, California. The workshop brought together academic, government and industry leaders in the research programs developing 3D seismic models and methods for the nuclear explosion monitoring andmore » seismic ground motion hazard communities. The workshop was designed to assess the current state of work in 3D seismology and to discuss a path forward for determining if and how 3D Earth models and techniques can be used to achieve measurable increases in our capabilities for monitoring underground nuclear explosions and characterizing seismic ground motion hazards. This paper highlights some of the presentations, issues, and discussions at the workshop and proposes two specific paths by which to begin quantifying the potential contribution of progressively refined 3D seismic models in critical applied arenas. Seismic monitoring agencies are tasked with detection, location, and characterization of seismic activity in near real time. In the case of nuclear explosion monitoring or seismic hazard, decisions to further investigate a suspect event or to launch disaster relief efforts may rely heavily on real-time analysis and results. Because these are weighty decisions, monitoring agencies are regularly called upon to meticulously document and justify every aspect of their monitoring system. In order to meet this level of scrutiny and maintain operational robustness requirements, only mature technologies are considered for operational monitoring systems, and operational technology necessarily lags

  14. An OpenEarth Framework (OEF) for Integrating and Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Moreland, J. L.; Nadeau, D. R.; Baru, C.; Crosby, C. J.

    2009-12-01

    The integration of data is essential to make transformative progress in understanding the complex processes operating at the Earth’s surface and within its interior. While our current ability to collect massive amounts of data, develop structural models, and generate high-resolution dynamics models is well developed, our ability to quantitatively integrate these data and models into holistic interpretations of Earth systems is poorly developed. We lack the basic tools to realize a first-order goal in Earth science of developing integrated 4D models of Earth structure and processes using a complete range of available constraints, at a time when the research agenda of major efforts such as EarthScope demand such a capability. Among the challenges to 3D data integration are data that may be in different coordinate spaces, units, value ranges, file formats, and data structures. While several file format standards exist, they are infrequently or incorrectly used. Metadata is often missing, misleading, or relegated to README text files along side the data. This leaves much of the work to integrate data bogged down by simple data management tasks. The OpenEarth Framework (OEF) being developed by GEON addresses these data management difficulties. The software incorporates file format parsers, data interpretation heuristics, user interfaces to prompt for missing information, and visualization techniques to merge data into a common visual model. The OEF’s data access libraries parse formal and de facto standard file formats and map their data into a common data model. The software handles file format quirks, storage details, caching, local and remote file access, and web service protocol handling. Heuristics are used to determine coordinate spaces, units, and other key data features. Where multiple data structure, naming, and file organization conventions exist, those heuristics check for each convention’s use to find a high confidence interpretation of the data. When

  15. Livingstone Model-Based Diagnosis of Earth Observing One Infusion Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.

    2004-01-01

    The Earth Observing One satellite, launched in November 2000, is an active earth science observation platform. This paper reports on the progress of an infusion experiment in which the Livingstone 2 Model-Based Diagnostic engine is deployed on Earth Observing One, demonstrating the capability to monitor the nominal operation of the spacecraft under command of an on-board planner, and demonstrating on-board diagnosis of spacecraft failures. Design and development of the experiment, specification and validation of diagnostic scenarios, characterization of performance results and benefits of the model- based approach are presented.

  16. Near Earth Asteroid Scout Solar Sail Thrust and Torque Model

    NASA Technical Reports Server (NTRS)

    Heaton, Andy; Ahmad, Naeem; Miller, Kyle

    2017-01-01

    The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust; a flat plate model could potentially model thrust well enough to close mission design studies, but a three-dimensional solar sail is essential to control system design. The three-dimensional solar sail model revealed that thermal deformations of unshielded booms would create unacceptably large solar disturbance torques. The original large FEM model was used in control and mission simulations, but was resulted in simulations with prohibitive run times. This led us to adapt the Generalized Sail Model (GSM) of Rios-Reyes. A design reference sail model has been baselined for NEA Scout and has been used to design the mission and control system for the sailcraft. Additionally, since NEA Scout uses reaction wheels for attitude pointing and control, the solar torque model is

  17. A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; De Souza Torres, K.

    2013-04-10

    One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In viewmore » of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.« less

  18. Modeling Earth system changes of the past

    NASA Technical Reports Server (NTRS)

    Kutzbach, John E.

    1992-01-01

    This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.

  19. An Evolving Model for Capacity Building with Earth Observation Imagery

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E. J.

    2015-12-01

    For the first forty years of Earth observation satellite imagery, all imagery was collected by civilian or military governmental satellites. Over this timeframe, countries without observation satellite capabilities had very limited access to Earth observation data or imagery. In response to the limited access to Earth observation systems, capacity building efforts were focused on satellite manufacturing. Wood and Weigel (2012) describe the evolution of satellite programs in developing countries with a technology ladder. A country moves up the ladder as they move from producing satellites with training services to building satellites locally. While the ladder model may be appropriate if the goal is to develop autonomous satellite manufacturing capability, in the realm of Earth observation, the goal is generally to derive societal benefit from the use of Earth observation-derived information. In this case, the model for developing Earth observation capacity is more appropriately described by a hub-and-spoke model in which the use of Earth observation imagery is the "hub," and the "spokes" describe the various paths to achieving that imagery: the building of a satellite (either independently or with assistance), the purchase of a satellite, participation in a constellation of satellites, and the use of freely available or purchased satellite imagery. We discuss the different capacity-building activities that are conducted in each of these pathways, such as the "Know-How Transfer and Training" program developed by Surrey Satellite Technology Ltd. , Earth observation imagery training courses run by SERVIR in developing countries, and the use of national or regional remote sensing centers (such as those in Morocco, Malaysia, and Kenya) to disseminate imagery and training. In addition, we explore the factors that determine through which "spoke" a country arrives at the ability to use Earth observation imagery, and discuss best practices for achieving the capability to use

  20. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    DOE PAGES

    Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; ...

    2014-04-24

    Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less

  1. Modelling of Tethered Space-Web Structures

    NASA Astrophysics Data System (ADS)

    McKenzie, D. J.; Cartnell, M. P.

    Large structures in space are an essential milestone in the path of many projects, from solar power collectors to space stations. In space, as on Earth, these large projects may be split up into more manageable sections, dividing the task into multiple replicable parts. Specially constructed spider robots could assemble these structures piece by piece over a membrane or space- web, giving a method for building a structure while on orbit. The modelling and applications of these space-webs are discussed, along with the derivation of the equations of motion of the structure. The presentation of some preliminary results from the solution of these equations will show that space-webs can take a variety of different forms, and give some guidelines for configuring the space-web system.

  2. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  3. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE PAGES

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...

    2016-08-22

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  4. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less

  5. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  6. Precession, Nutation and Wobble of the Earth

    NASA Astrophysics Data System (ADS)

    Dehant, V.; Mathews, P. M.

    2015-04-01

    Covering both astronomical and geophysical perspectives, this book describes changes in the Earth's orientation, specifically precession and nutation, and how they are observed and computed in terms of tidal forcing and models of the Earth's interior. Following an introduction to key concepts and elementary geodetic theory, the book describes how precise measurements of the Earth's orientation are made using observations of extra-galactic radio-sources by Very Long Baseline Interferometry techniques. It demonstrates how models are used to accurately pinpoint the location and orientation of the Earth with reference to the stars and how to determine variations in its rotation speed. A theoretical framework is also presented that describes the role played by the structure and properties of the Earth's deep interior. Incorporating suggestions for future developments in nutation theory for the next generation models, this book is ideal for advanced-level students and researche! rs in solid Earth geophysics, planetary science and astronomy.

  7. A Field-Based Curriculum Model for Earth Science Teacher-Preparation Programs.

    ERIC Educational Resources Information Center

    Dubois, David D.

    1979-01-01

    This study proposed a model set of cognitive-behavioral objectives for field-based teacher education programs for earth science teachers. It describes field experience integration into teacher education programs. The model is also applicable for evaluation of earth science teacher education programs. (RE)

  8. The mosaic structure of plasma bulk flows in the Earth's magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.

    1995-01-01

    Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the

  9. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems

  10. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  11. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE PAGES

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita; ...

    2017-04-28

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  12. 2012 Community Earth System Model (CESM) Tutorial - Proposal to DOE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Marika; Bailey, David A

    2013-03-18

    The Community Earth System Model (CESM) is a fully-coupled, global climate model that provides state-of-the-art computer simulations of the Earth's past, present, and future climate states. This document provides the agenda and list of participants for the conference. Web materials for all lectures and practical sessions available from: http://www.cesm.ucar.edu/events/tutorials/073012/ .

  13. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  14. Necessity of using heterogeneous ellipsoidal Earth model with terrain to calculate co-seismic effect

    NASA Astrophysics Data System (ADS)

    Cheng, Huihong; Zhang, Bei; Zhang, Huai; Huang, Luyuan; Qu, Wulin; Shi, Yaolin

    2016-04-01

    Co-seismic deformation and stress changes, which reflect the elasticity of the earth, are very important in the earthquake dynamics, and also to other issues, such as the evaluation of the seismic risk, fracture process and triggering of earthquake. Lots of scholars have researched the dislocation theory and co-seismic deformation and obtained the half-space homogeneous model, half-space stratified model, spherical stratified model, and so on. Especially, models of Okada (1992) and Wang (2003, 2006) are widely applied in the research of calculating co-seismic and post-seismic effects. However, since both semi-infinite space model and layered model do not take the role of the earth curvature or heterogeneity or topography into consideration, there are large errors in calculating the co-seismic displacement of a great earthquake in its impacted area. Meanwhile, the computational methods of calculating the co-seismic strain and stress are different between spherical model and plane model. Here, we adopted the finite element method which could well deal with the complex characteristics (such as anisotropy, discontinuities) of rock and different conditions. We use the mash adaptive technique to automatically encrypt the mesh at the fault and adopt the equivalent volume force replace the dislocation source, which can avoid the difficulty in handling discontinuity surface with conventional (Zhang et al., 2015). We constructed an earth model that included earth's layered structure and curvature, the upper boundary was set as a free surface and the core-mantle boundary was set under buoyancy forces. Firstly, based on the precision requirement, we take a testing model - - a strike-slip fault (the length of fault is 500km and the width is 50km, and the slippage is 10m) for example. Because of the curvature of the Earth, some errors certainly occur in plane coordinates just as previous studies (Dong et al., 2014; Sun et al., 2012). However, we also found that: 1) the co

  15. Earth survey applications division: Research leading to the effective use of space technology in applications relating to the Earth's surface and interior

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1980-01-01

    Accomplishments and future plans are described for the following areas: (1) geology - geobotanical indicators and geopotential data; (2) modeling magnetic fields; (3) modeling the structure, composition, and evolution of the Earth's crust; (4) global and regional motions of the Earth's crust and earthquake occurrence; (5) modeling geopotential from satellite tracking data; (6) modeling the Earth's gravity field; (7) global Earth dynamics; (8) sea surface topography, ocean dynamics; and geophysical interpretation; (9) land cover and land use; (10) physical and remote sensing attributes important in detecting, measuring, and monitoring agricultural crops; (11) prelaunch studies using LANDSAT D; (12) the multispectral linear array; (13) the aircraft linear array pushbroom radiometer; and (14) the spaceborne laser ranging system.

  16. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine

  17. Advancing User Supports with a Structured How-To Knowledge Base for Earth Science Data

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Acker, James G.; Lynnes, Christopher S.; Beaty, Tammy; Lighty, Luther; Kempler, Steven J.

    2016-01-01

    It is a challenge to access and process fast growing Earth science data from satellites and numerical models, which may be archived in very different data format and structures. NASA data centers, managed by the Earth Observing System Data and Information System (EOSDIS), have developed a rich and diverse set of data services and tools with features intended to simplify finding, downloading, and working with these data. Although most data services and tools have user guides, many users still experience difficulties with accessing or reading data due to varying levels of familiarity with data services, tools, and/or formats. A type of structured online document, data recipe, were created in beginning 2013 by Goddard Earth Science Data and Information Services Center (GES DISC). A data recipe is the How-To document created by using the fixed template, containing step-by-step instructions with screenshots and examples of accessing and working with real data. The recipes has been found to be very helpful, especially to first-time-users of particular data services, tools, or data products. Online traffic to the data recipe pages is significant to some recipes. In 2014, the NASA Earth Science Data System Working Group (ESDSWG) for data recipes was established, aimed to initiate an EOSDIS-wide campaign for leveraging the distributed knowledge within EOSDIS and its user communities regarding their respective services and tools. The ESDSWG data recipe group started with inventory and analysis of existing EOSDIS-wide online help documents, and provided recommendations and guidelines and for writing and grouping data recipes. This presentation will overview activities of creating How-To documents at GES DISC and ESDSWG. We encourage feedback and contribution from users for improving the data How-To knowledge base.

  18. Parallel Optimization of an Earth System Model (100 Gigaflops and Beyond?)

    NASA Technical Reports Server (NTRS)

    Drummond, L. A.; Farrara, J. D.; Mechoso, C. R.; Spahr, J. A.; Chao, Y.; Katz, S.; Lou, J. Z.; Wang, P.

    1997-01-01

    We are developing an Earth System Model (ESM) to be used in research aimed to better understand the interactions between the components of the Earth System and to eventually predict their variations. Currently, our ESM includes models of the atmosphere, oceans and the important chemical tracers therein.

  19. Considering bioactivity in modelling continental growth and the Earth's evolution

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2013-09-01

    The complexity of planetary evolution increases with the number of interacting reservoirs. On Earth, even the biosphere is speculated to interact with the interior. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. Through plate tectonics, the surface biosphere can impact deep subduction zone processes and the interior of the Earth. Subducted sediments are particularly important, because they influence the Earth's interior in several ways, and in turn are strongly influenced by the Earth's biosphere. In our model, we use the assumption that a thick sedimentary layer of low permeability on top of the subducting oceanic crust, caused by a biologically enhanced weathering rate, can suppress shallow dewatering. This in turn leads to greater vailability of water in the source region of andesitic partial melt, resulting in an enhanced rate of continental production and regassing rate into the mantle. Our model includes (i) mantle convection, (ii) continental erosion and production, and (iii) mantle water degassing at mid-ocean ridges and regassing at subduction zones. The mantle viscosity of our model depends on (i) the mantle water concentration and (ii) the mantle temperature, whose time dependency is given by radioactive decay of isotopes in the Earth's mantle. Boundary layer theory yields the speed of convection and the water outgassing rate of the Earth's mantle. Our results indicate that present day values of continental surface area and water content of the Earth's mantle represent an attractor in a phase plane spanned by both parameters. We show that the biologic enhancement of the continental erosion rate is important for the system to reach this fixed point. An abiotic Earth tends to reach an alternative stable fixed point with a smaller

  20. Ambient Seismic Source Inversion in a Heterogeneous Earth: Theory and Application to the Earth's Hum

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Sager, Korbinian; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-11-01

    The sources of ambient seismic noise are extensively studied both to better understand their influence on ambient noise tomography and related techniques, and to infer constraints on their excitation mechanisms. Here we develop a gradient-based inversion method to infer the space-dependent and time-varying source power spectral density of the Earth's hum from cross correlations of continuous seismic data. The precomputation of wavefields using spectral elements allows us to account for both finite-frequency sensitivity and for three-dimensional Earth structure. Although similar methods have been proposed previously, they have not yet been applied to data to the best of our knowledge. We apply this method to image the seasonally varying sources of Earth's hum during North and South Hemisphere winter. The resulting models suggest that hum sources are localized, persistent features that occur at Pacific coasts or shelves and in the North Atlantic during North Hemisphere winter, as well as South Pacific coasts and several distinct locations in the Southern Ocean in South Hemisphere winter. The contribution of pelagic sources from the central North Pacific cannot be constrained. Besides improving the accuracy of noise source locations through the incorporation of finite-frequency effects and 3-D Earth structure, this method may be used in future cross-correlation waveform inversion studies to provide initial source models and source model updates.

  1. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  2. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    Flat-Earth and spherical-Earth geopotential modeling of crustal anomaly sources at satellite elevations are compared by computing gravity and scalar magnetic anomalies perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Results indicate that the error caused by the flat-Earth approximation is less than 10% in most geometric conditions. Generally, error increase with larger and wider anomaly sources at higher altitudes. For most crustal source modeling applications at conventional satellite altitudes, flat-Earth modeling can be justified and is numerically efficient.

  3. First-principles study of crystal and electronic structure of rare-earth cobaltites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M.

    Using density functional theory plus self-consistent Hubbard U (DFT + U{sub sc}) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO{sub 3} (R = Pr – Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO{sub 3} with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (d{sub Co–O}), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (Δ{sub CF}) and band gap energy (E{sub g}). Agreement with experiment for the latter improves considerably with the use of DFT + U{sub sc}more » and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO{sub 3} where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.« less

  4. Angular radiation models for Earth-atmosphere system. Volume 1: Shortwave radiation

    NASA Technical Reports Server (NTRS)

    Suttles, J. T.; Green, R. N.; Minnis, P.; Smith, G. L.; Staylor, W. F.; Wielicki, B. A.; Walker, I. J.; Young, D. F.; Taylor, V. R.; Stowe, L. L.

    1988-01-01

    Presented are shortwave angular radiation models which are required for analysis of satellite measurements of Earth radiation, such as those fro the Earth Radiation Budget Experiment (ERBE). The models consist of both bidirectional and directional parameters. The bidirectional parameters are anisotropic function, standard deviation of mean radiance, and shortwave-longwave radiance correlation coefficient. The directional parameters are mean albedo as a function of Sun zenith angle and mean albedo normalized to overhead Sun. Derivation of these models from the Nimbus 7 ERB (Earth Radiation Budget) and Geostationary Operational Environmental Satellite (GOES) data sets is described. Tabulated values and computer-generated plots are included for the bidirectional and directional modes.

  5. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  6. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  7. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    NASA Astrophysics Data System (ADS)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment

  8. A stand-alone tree demography and landscape structure module for Earth system models: integration with global forest data

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-02-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESM). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first generation Dynamic Vegetation Models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second generation DVMs, that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to a range of forest types around the globe, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 yr. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents a preferable alternative to large-area parameterisations of woody biomass turnover, typically used in current ESMs.

  9. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  10. Modeling the Round Earth through Diagrams

    ERIC Educational Resources Information Center

    Padalkar, Shamin; Ramadas, Jayashree

    2008-01-01

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students…

  11. Calculation of the 3D density model of the Earth

    NASA Astrophysics Data System (ADS)

    Piskarev, A.; Butsenko, V.; Poselov, V.; Savin, V.

    2009-04-01

    The study of the Earth's crust is a part of investigation aimed at extension of the Russian Federation continental shelf in the Sea of Okhotsk Gathered data allow to consider the Sea of Okhotsk' area located outside the exclusive economic zone of the Russian Federation as the natural continuation of Russian territory. The Sea of Okhotsk is an Epi-Mesozoic platform with Pre-Cenozoic heterogeneous folded basement of polycyclic development and sediment cover mainly composed of Paleocene - Neocene - Quaternary deposits. Results of processing and complex interpretation of seismic, gravity, and aeromagnetic data along profile 2-DV-M, as well as analysis of available geological and geophysical information on the Sea of Okhotsk region, allowed to calculate of the Earth crust model. 4 layers stand out (bottom-up) in structure of the Earth crust: granulite-basic (density 2.90 g/cm3), granite-gneiss (limits of density 2.60-2.76 g/cm3), volcanogenic-sedimentary (2.45 g/cm3) and sedimentary (density 2.10 g/cm3). The last one is absent on the continent; it is observed only on the water area. Density of the upper mantle is taken as 3.30 g/cm3. The observed gravity anomalies are mostly related to the surface relief of the above mentioned layers or to the density variations of the granite-metamorphic basement. So outlining of the basement blocks of different constitution preceded to the modeling. This operation is executed after Double Fourier Spectrum analysis of the gravity and magnetic anomalies and following compilation of the synthetic anomaly maps, related to the basement density and magnetic heterogeneity. According to bathymetry data, the Sea of Okhotsk can be subdivided at three mega-blocks. Taking in consideration that central Sea of Okhotsk area is aseismatic, i.e. isostatic compensated, it is obvious that Earth crust structure of these three blocks is different. The South-Okhotsk depression is characteristics by 3200-3300 m of sea depths. Moho surface in this area is at

  12. The earth and the moon /Harold Jeffreys Lecture/.

    NASA Technical Reports Server (NTRS)

    Press, F.

    1971-01-01

    The internal structures of the earth and the moon are compared in the light of the latest extensive data on the earth structure, mobility of the earth outer layers, and the properties of lunar crust. The Monte Carlo method is applied to develop an earth model by a stepwise process beginning with a random distribution of two elastic velocities and the density as a function of de pth. Lunar seismic, magnetic, and rock analysis data are used to infer the properties of the moon. The marked planetological contrast between the earth and the moon is shown to consist in that the earth is highly differentiated and still undergoes a large-scale differentiation, while the moon has lost its volatiles in its early history and has a cold dynamically inactive shell which has been without basic changes for three billion years.

  13. Rivers on Titan - numerical modelling of sedimentary structures

    NASA Astrophysics Data System (ADS)

    Misiura, Katarzyna; Czechowski, Leszek

    2016-07-01

    flow and of the sedimentation on Titan and on the Earth. Our preliminary results indicate that suspended load is the main way of transport in simulated Titan's conditions. We also indicate that braided rivers appears for larger range of slope on Titan (e.g. S=0.01-0.04) than on Earth (e.g. S=0.004-0.009). Also, for the same type of river, the grain size on Titan is at least 10 times larger than on Earth (1 cm for Titan versus 1 mm for the Earth). It is very interesting that on Titan braided rivers appear even for very little discharge (e.g. Q=30m3/s) and for very large grain size (e.g. 10 cm). In the future we plan the experimental modelling in sediment basin to confirm results from computer modelling. Acknowledgements We are very grateful to Yaoxin Zhang and Yafei Jia from National Center for Computational Hydroscience and Engineering for providing their program - CCHE2D. References [1] Misiura, K., Czechowski, L., 2015. Numerical modelling of sedimentary structures in rivers on Earth and Titan. Geological Quarterly, 59(3): 565-580. [2] Witek, P., Czechowski, L., 2015. Dynamical modeling of river deltas on Titan and Earth. Planet. Space. Sci., 105: 65-79.

  14. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    NASA Astrophysics Data System (ADS)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  15. Modeling dilute pyroclastic density currents on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Brand, B. D.; De'Michieli Vitturi, M.

    2013-12-01

    The surface of Mars has been shaped extensively by volcanic activity, including explosive eruptions that may have been heavily influenced by water- or ice-magma interaction. However, the dynamics of associated pyroclastic density currents (PDCs) under Martian atmospheric conditions and controls on deposition and runout from such currents are poorly understood. This work combines numerical modeling with terrestrial field measurements to explore the dynamics of dilute PDC dynamics on Earth and Mars, especially as they relate to deposit characteristics. We employ two numerical approaches. Model (1) consists of simulation of axi-symmetric flow and sedimentation from a steady-state, depth-averaged density current. Equations for conservation of mass, momentum, and energy are solved simultaneously, and the effects of atmospheric entrainment, particle sedimentation, basal friction, temperature changes, and variations in current thickness and density are explored. The Rouse number and Brunt-Väisälä frequency are used to estimate the wavelength of internal gravity waves in a density-stratified current, which allows us to predict deposit dune wavelengths. The model predicts realistic runout distances and bedform wavelengths for several well-documented field cases on Earth. The model results also suggest that dilute PDCs on Mars would have runout distances up to three times that of equivalent currents on Earth and would produce longer-wavelength bedforms. In both cases results are heavily dependent on source conditions, grain-size characteristics, and entrainment and friction parameters. Model (2) relaxes several key simplifications, resulting in a fully 3D, multiphase, unsteady model that captures more details of propagation, including density stratification, and depositional processes. Using this more complex approach, we focus on the role of unsteady or pulsatory vent conditions typically associated with phreatomagmatic eruptions. Runout distances from Model (2) agree

  16. Energy Exascale Earth System Model (E3SM) Project Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, D.

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Rudolph, Maxwell L.

    2015-05-01

    The seismic structure of the Earth's lower mantle is characterized by a dominantly degree-2 pattern with the African and Pacific large low shear velocity provinces (i.e., LLSVP) that are separated by circum-Pacific seismically fast anomalies. It is important to understand the origin of such a degree-2 mantle structure and its temporal evolution. In this study, we investigated the effects of plate motion history and mantle viscosity on the temporal evolution of the lower mantle structure since the early Paleozoic by formulating 3-D spherical shell models of thermochemical convection. For convection models with realistic mantle viscosity and no initial structure, it takes about ˜50 Myr to develop dominantly degree-2 lower mantle structure using the published plate motion models for the last either 120 Ma or 250 Ma. However, it takes longer time to develop the mantle structure for more viscous mantle. While the circum-Pangea subduction in plate motion history models promotes the formation of degree-2 mantle structure, the published pre-Pangea plate motions before 330 Ma produce relatively cold lower mantle in the African hemisphere and significant degree-1 structure in the early Pangea (˜300 Ma) or later times, even if the lower mantle has an initially degree-2 structure and a viscosity as high as 1023 Pas. This suggests that the African LLSVP may not be stationary since the early Paleozoic. With the published plate motion models and lower mantle viscosity of 1022 Pas, our mantle convection models suggest that the present-day degree-2 mantle structure may have largely been formed by ˜200 Ma.

  19. Numerical Modeling in Problems of Near-Earth Object Dynamics

    NASA Astrophysics Data System (ADS)

    Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.

    2017-05-01

    A method of numerical modeling is used to solve three most interesting problems of artificial Earth satellite (AES) dynamics. Orbital evolution of an ensemble of near-Earth objects at altitudes in the range from 1 500 to 60 000 km is considered, chaoticity of motion of objects in the geosynchronous zone is studied by the MEGNOanalysis, the parameters of AES motion are determined, and the models of forces are considered from measurements for GLONASS satellites. The recent versions of algorithms and programs used to perform investigations are briefly described.

  20. 2017 Updates: Earth Gravitational Model 2020

    NASA Astrophysics Data System (ADS)

    Barnes, D. E.; Holmes, S. A.; Ingalls, S.; Beale, J.; Presicci, M. R.; Minter, C.

    2017-12-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new `Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and shipborne) of gravimetric data over specific geographical areas (Antarctica, Greenland …), will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors. Public release number 15-564

  1. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  2. Models of the Origin of the Moon; Early History of Earth and Venus (The Role of Tidal Friction in the Formation of Structure of the Planets)

    NASA Astrophysics Data System (ADS)

    Pechernikova, G. V.; Ruskol, E. L.

    2017-05-01

    An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.

  3. NASA Sun-Earth Connections Theory Program: The Structure and Dynamics of the Solar Corona and Inner Heliosphere

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)

    2001-01-01

    This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.

  4. Tectonic Structure, Solid Earth and Cryosphere Interactions in the Casey-Davis Region of East Antarctica

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; King, M. A.; Halpin, J.; Whittaker, J. M.; White, D.; Cook, S.; Staal, T.

    2016-12-01

    The region of inland East Antarctica between Casey and Davis stations (Wilkes Land to Princess Elizabeth Land) is one of the least investigated parts of the continent with respect to its tectonic and solid Earth structure. This is difficult to estimate because the conjugate margin in plate reconstructions has been lost in the collision between India and Eurasia. The region is also host to some of the greatest uncertainties in Antarctica in glacial-isostatic adjustment observations and models, and where the contribution of heat from underlying rocks is difficult to estimate due to the limited available rock samples. We investigate the solid Earth structure and its interactions with the East Antarctic ice sheet through a new campaign including GPS and seismic instrument deployments, and field measurements to constrain ice retreat history. This presentation provides an overview of the new, multi-year Casey-Davis Glacial Isostatic Adjustment campaign including station locations and deployment progress. The campaign is being supported by Australian Antarctic Division and uses a combination of fixed-wing and helicopter support to access station locations in both coastal locations and the continental interior. A primary long-term objective of the campaign is to remove bias from estimates of East Antarctica's contribution to past and present sea level changes. We also seek to better constrain the geothermal influences on the East Antarctic ice sheet. The GPS determinations of vertical plate motion and the detailed seismic structure await data downloads in future field seasons, however, we are able to present new findings from preliminary studies. We show candidate ancient tectonic reconstructions for this part of East Antarctica and make use of our knowledge of structure of continental regions with a similar evolution to infer the likely structures for the Casey-Davis region. We add these new constraints to the structure currently inferred from a very small number of

  5. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    NASA Technical Reports Server (NTRS)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.; hide

    2016-01-01

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.

  6. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability

    PubMed Central

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.

    2017-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125

  7. THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.

    PubMed

    Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R

    2016-07-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  8. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    NASA Technical Reports Server (NTRS)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  9. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  10. GeoTess: A generalized Earth model software utility

    DOE PAGES

    Ballard, Sanford; Hipp, James; Kraus, Brian; ...

    2016-03-23

    GeoTess is a model parameterization and software support library that manages the construction, population, storage, and interrogation of data stored in 2D and 3D Earth models. Here, the software is available in Java and C++, with a C interface to the C++ library.

  11. Towards a comprehensive model of Earth's disk-integrated Stokes vector

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.

    2015-07-01

    at three wavelengths (0.48, 0.56 and 0.63 μm) during a flyby in 2005. The light curves show distinct structure associated with the varying aspect of the Earth's visible disk (phases of 98-107°) as the planet undergoes a full 24 h rotation; the structure is reasonably well reproduced with model simulations.

  12. Gravity effects on sediment sorting: limitations of models developed on Earth for Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2015-04-01

    Most studies on surface processes on planetary bodies assume that the use of empirical models developed for Earth is possible if the mathematical equations include all the relevant factors, such as gravity, viscosity and the density of water and sediment. However, most models for sediment transport on Earth are at least semi-empirical, using coefficients to link observed sediment movement to controlling factors such as flow velocity, slope and channel dimensions. However, using roughness and drag coefficients, as well as parameters describing incipient motion of particles, observed on Earth on another planet, violates, strictly speaking, the boundary conditions set for their application by fluid dynamics because the coefficienst describe a flow condition, not a particle property. Reduced gravity affects the flow around a settling partcile or over the bed of a watercourse, therefore data and models from Earth do not apply to another planet. Comparing observations from reduced gravity experiments and model results obtained on Earth confirm the significance of this error, e.g. by underestimating settling velocities of sandy particles by 10 to 50% for Mars when using models from Earth. In this study, the relevance of this error is examined by simulating the sorting of sediment deposited from water flowing on Mars. The results indicate that sorting on Mars is less pronounced than models calibrated on Earth suggest. This has implications for the selection of landing sites and, more importantly, the identification of strata potentially bearing traces of past life during rover missions on Mars.

  13. A conceptual model of oceanic heat transport in the Snowball Earth scenario

    NASA Astrophysics Data System (ADS)

    Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.

    2016-12-01

    Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.

  14. Modelling the isotopic evolution of the Earth.

    PubMed

    Paul, Debajyoti; White, William M; Turcotte, Donald L

    2002-11-15

    We present a flexible multi-reservoir (primitive lower mantle, depleted upper mantle, upper continental crust, lower continental crust and atmosphere) forward-transport model of the Earth, incorporating the Sm-Nd, Rb-Sr, U-Th-Pb-He and K-Ar isotope-decay systematics. Mathematically, the model consists of a series of differential equations, describing the changing abundance of each nuclide in each reservoir, which are solved repeatedly over the history of the Earth. Fluxes between reservoirs are keyed to heat production and further constrained by estimates of present-day fluxes (e.g. subduction, plume flux) and current sizes of reservoirs. Elemental transport is tied to these fluxes through 'enrichment factors', which allow for fractionation between species. A principal goal of the model is to reproduce the Pb-isotope systematics of the depleted upper mantle, which has not been done in earlier models. At present, the depleted upper mantle has low (238)U/(204)Pb (mu) and (232)Th/(238)U (kappa) ratios, but Pb-isotope ratios reflect high time-integrated values of these ratios. These features are reproduced in the model and are a consequence of preferential subduction of U and of radiogenic Pb from the upper continental crust into the depleted upper mantle. At the same time, the model reproduces the observed Sr-, Nd-, Ar- and He-isotope ratios of the atmosphere, continental crust and mantle. We show that both steady-state and time-variant concentrations of incompatible-element concentrations and ratios in the continental crust and upper mantle are possible. Indeed, in some cases, incompatible-element concentrations and ratios increase with time in the depleted mantle. Hence, assumptions of a progressively depleting or steady-state upper mantle are not justified. A ubiquitous feature of this model, as well as other evolutionary models, is early rapid depletion of the upper mantle in highly incompatible elements; hence, a near-chondritic Th/U ratio in the upper mantle

  15. Electronic and structural properties of Lu under pressure: Relation to structural phases of the rare-earth metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, B.I.; Oguchi, T.; Jansen, H.J.F.

    1986-07-15

    Ground-state electronic and structural properties of Lu under pressure are investigated with use of the self-consistent all-electron total-energy linear muffin-tin orbital band-structure method within a local-density-functional approximation. Pressure-induced structural transitions are found to occur in the following sequence: hcp--(Sm-type)--dhcp--fcc, which is the same as that observed in the crystal structures of the trivalent rare-earth metals with decreasing atomic number. This structural transition is correlated with the increase in the number of d-italic electrons under pressure.

  16. A comparative study of spherical and flat-Earth geopotential modeling at satellite elevations

    NASA Technical Reports Server (NTRS)

    Parrott, M. H.; Hinze, W. J.; Braile, L. W.; Vonfrese, R. R. B.

    1985-01-01

    Flat-Earth modeling is a desirable alternative to the complex spherical-Earth modeling process. These methods were compared using 2 1/2 dimensional flat-earth and spherical modeling to compute gravity and scalar magnetic anomalies along profiles perpendicular to the strike of variably dimensioned rectangular prisms at altitudes of 150, 300, and 450 km. Comparison was achieved with percent error computations (spherical-flat/spherical) at critical anomaly points. At the peak gravity anomaly value, errors are less than + or - 5% for all prisms. At 1/2 and 1/10 of the peak, errors are generally less than 10% and 40% respectively, increasing to these values with longer and wider prisms at higher altitudes. For magnetics, the errors at critical anomaly points are less than -10% for all prisms, attaining these magnitudes with longer and wider prisms at higher altitudes. In general, in both gravity and magnetic modeling, errors increase greatly for prisms wider than 500 km, although gravity modeling is more sensitive than magnetic modeling to spherical-Earth effects. Preliminary modeling of both satellite gravity and magnetic anomalies using flat-Earth assumptions is justified considering the errors caused by uncertainties in isolating anomalies.

  17. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    NASA Astrophysics Data System (ADS)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  18. New land surface digital elevation model covers the Earth

    USGS Publications Warehouse

    Gesch, Dean B.; Verdin, Kristine L.; Greenlee, Susan K.

    1999-01-01

    Land surface elevation around the world is reaching new heights—as far as its description and measurement goes. A new global digital elevation model (DEM) is being cited as a significant improvement in the quality of topographic data available for Earth science studies.Land surface elevation is one of the Earth's most fundamental geophysical properties, but the accuracy and detail with which it has been measured and described globally have been insufficient for many large-area studies. The new model, developed at the U.S. Geological Survey's (USGS) EROS Data Center (EDC), has changed all that.

  19. Structural Response of the Earth's Crust to an Extra-Terrestrial Source of Stress by Identifying its Characteristic Pattern

    NASA Astrophysics Data System (ADS)

    Dasgupta, B.

    2016-12-01

    The earth's crust is a geodynamic realm, which is constantly evolving. Due to its dynamic nature, the crust is constantly being subjected to remodelling. The earth's crustal response to stress is a result of isostatic compensation. The crust is also a living proof of yesteryears' dynamics. Extra-terrestrial agents of deformation refers to meteorites, asteroids etc. These are catastrophic events that influence a larger area (considering larger impact bodies). They effect the crust from outside, hence leave behind very specific structural signatures.Consider an extra-terrestrial object impacting the earth's crust. The problem can be broken down into 3 parts: Pre Impact (kinematics of the object and nature of surface of impact); Syn Impact (dissipation of energy and formation of crater); and Post Impact (structural response, geophysical anomalies and effect on biota)Upon impact, the projectile penetrates the earth's crust to a depth of twice its diameter. Shock waves generated due impact propagate in all possible directions. The reflected waves cause complete melting and vaporization of the impact body. At the same time, increased internal energy of the system melts the target rock. Depending on the thickness and density of crustal matter, its' interaction with the mantle is determined. Data collection from such impact sites is the first step towards its theoretical modeling. Integrating geophysical (seismic, magnetic), paleomagnetic, geochemical and geo-chronological data one can determine the kinematic parameters that governed the event. A working model that illustrates the crustal responses to extraterrestrial stress of extreme magnitude cannot be qualitative. Hence the most fundamental thing at this point is quantification of these parameters. The variables form a `mass-energy equation', a simple theorem in Classical Physics. This project is directed to give the equation its shape. The equation will be the foundation on which the simulation model will rest. Mass

  20. The integrated Earth system model version 1: formulation and functionality

    DOE PAGES

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.; ...

    2015-07-23

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  1. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II

  2. Gravity effects on sediment sorting: limitations of models developed on Earth for Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-10-01

    Most studies on surface processes on planetary bodies assume that the use of empirical models developed for Earth is possible if the mathematical equations include all the relevant factors, such as gravity, viscosity and the density of water and sediment. However, most models for sediment transport on Earth are at least semi-empirical, using coefficients to link observed sediment movement to controlling factors such as flow velocity, slope and channel dimensions. However, using roughness and drag coefficients, as well as parameters describing incipient motion of particles, observed on Earth on another planet, violates, strictly speaking, the boundary conditions set for their application by fluid dynamics because the coefficienst describe a flow condition, not a particle property. Reduced gravity affects the flow around a settling partcile or over the bed of a watercourse, therefore data and models from Earth do not apply to another planet. Comparing observations from reduced gravity experiments and model results obtained on Earth confirm the significance of this error, e.g. by underestimating settling velocities of sandy particles by 10 to 50% for Mars when using models from Earth. In this study, the relevance of this error is examined by simulating the sorting of sediment deposited from water flowing on Mars. The results indicate that sorting on Mars is less pronounced than models calibrated on Earth suggest. This has implications for the selection of landing sites and,more importantly, the identification of strata potentially bearing traces of past life during rover missions on Mars. try, 2001

  3. The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.

    PubMed

    Tackley, Paul J; Xie, Shunxing

    2002-11-15

    Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.

  4. A Nonequilibrium Finite-Rate Carbon Ablation Model for Radiating Earth Re-entry Flows

    DTIC Science & Technology

    2015-09-17

    model was a short half-cylinder made of isomolded graphite and was tested in 8.6 km/ s Earth entry ow. The model surface was heated within a temperature...capsule [98, 49, 112]. For the Star- dust return capsule that had an Earth entry velocity of 12 km/ s , equilibrium surface recession was over predicted...was tested at 8.6 km/ s Earth entry ow monitored by ultraviolet (UV) spec- trometry. The experiments pre-heated the model to high temperatures to

  5. An improved model of the Earth's gravitational field: GEM-T1

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F. J.; Christodoulidis, D. C.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Smith, D. E.; Klosko, S. M.; Martin, T. V.; Pavlis, E. C.

    1987-01-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested.

  6. Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia

    2016-07-01

    This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.

  7. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  8. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    NASA Astrophysics Data System (ADS)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  9. The Development of Scientific Knowledge of the Earth

    ERIC Educational Resources Information Center

    Nobes, Gavin; Martin, Alan E.; Panagiotaki, Georgia

    2005-01-01

    Investigation of children's knowledge of the Earth can reveal much about the origins, content and structure of scientific knowledge, and the processes of conceptual change and development. Vosniadou and Brewer (1992, claim that children construct coherent mental models of a flat, flattened, or hollow Earth based on a framework theory and intuitive…

  10. An improved model for the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.

    1989-01-01

    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.

  11. Magneto-structural correlations in rare-earth cobalt pnictides

    NASA Astrophysics Data System (ADS)

    Thompson, Corey Mitchell

    Magnetic materials are used in many applications such as credit cards, hard drives, electric motors, sensors, etc. Although a vast range of magnetic solids is available for these purposes, our ability to improve their efficiency and discover new materials remains paramount to the sustainable progress and economic profitability in many technological areas. The search for magnetic solids with improved performance requires fundamental understanding of correlations between the structural, electronic, and magnetic properties of existing materials, as well as active exploratory synthesis that targets the development of new magnets. Some of the strongest permanent magnets, Nd 2Fe14B, SmCo5, and Sm2Co17, combine transition and rare-earth metals, benefiting from the strong exchange between the 4f and 3d magnetic sublattices. Although these materials have been studied in great detail, the development of novel magnets requires thorough investigation of other 3d-4 f intermetallics, in order to gain further insights into correlations between their crystal structures and magnetic properties. Among many types of intermetallic materials, ternary pnictides RCo 2Pn2 (R = La, Ce, Pr, Nd; Pn = P, As) are of interest because, despite their simple crystal structures, they contain two magnetic sublattices, exchange interactions between which may lead to rich and unprecedented magnetic behavior. Nevertheless, magnetism of these materials was studied only to a limited extent, especially as compared to the extensive studies of their silicide and germanide analogues. The ThCr2Si2 structure type, to which these ternary pnictides belong, is one of the most ubiquitous atomic arrangements encountered among intermetallic compounds. It accounts for over 1000 known intermetallics and has received increased attention due to the recently discovered FeAs-based superconductors. This dissertation is devoted to the investigation of

  12. An 1-2-1 Cyclic Model for the Evolution of Mantle Structure

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Zhang, N.

    2006-12-01

    The present-day Earth`s mantle is predominated by long-wavelength structures including circum-Pacific subducted slabs and Africa and Pacific super-plumes. These long-wavelength structures are largely controlled by the history of plate tectonic motion. Although it dictates the evolution of mantle structure, global plate tectonic history prior to 120 Ma is poorly constrained except for continental motions that can be reliably traced back to >1 Ga. An important observation of continental motions in the last 1 Ga is the two episodes of formation and breakup of super-continents Pangea and Rodinia. We formulated 3D global models of mantle convection with temperature- and depth-dependent viscosity to study the formation of mantle structure. We found that for the upper mantle with 30 times smaller viscosity than the lower mantle, in the absence of continents, mantle convection is characterized by a hemispherically asymmetric structure in which one hemisphere is largely upwellings, while the other hemisphere contains downwellings (i.e., degree-1 convection). This is the first study in which degree-1 mantle convection is observed in mobile-lid/plate-tectonic convection regime at high Rayleigh number. This result suggests that degree-1 convection is a dynamically preferred state for the Earth`s mantle. We suggest that the evolution of mantle structure is controlled by a cyclic process of formation and breakdown of degree-1 convection modulated strongly by continents. The formation and breakup of supercontinents are surface manifestation of this cyclic process. During the degree-1 convection state, the upwellings in one hemisphere push all continents into the other hemisphere with the downwellings to form a supercontinent. The non-subducting nature of continents dictates that subduction in the downwelling hemisphere occurs along the edge of the supercontinent upon its formation. The insulating effect of a supercontinent and return flow from the circum-supercontinent subduction

  13. Coarse-grained component concurrency in Earth system modeling: parallelizing atmospheric radiative transfer in the GFDL AM3 model using the Flexible Modeling System coupling framework

    NASA Astrophysics Data System (ADS)

    Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac

    2016-10-01

    Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of

  14. An improved empirical model for diversity gain on Earth-space propagation paths

    NASA Technical Reports Server (NTRS)

    Hodge, D. B.

    1981-01-01

    An empirical model was generated to estimate diversity gain on Earth-space propagation paths as a function of Earth terminal separation distance, link frequency, elevation angle, and angle between the baseline and the path azimuth. The resulting model reproduces the entire experimental data set with an RMS error of 0.73 dB.

  15. Seismic generated infrasounds on Telluric Planets: Modeling and comparisons between Earth, Venus and Mars

    NASA Astrophysics Data System (ADS)

    Lognonne, P. H.; Rolland, L.; Karakostas, F. G.; Garcia, R.; Mimoun, D.; Banerdt, W. B.; Smrekar, S. E.

    2015-12-01

    Earth, Venus and Mars are all planets in which infrasounds can propagate and interact with the solid surface. This leads to infrasound generation for internal sources (e.g. quakes) and to seismic waves generations for atmospheric sources (e.g. meteor, impactor explosions, boundary layer turbulences). Both the atmospheric profile, surface density, atmospheric wind and viscous/attenuation processes are however greatly different, including major differences between Mars/Venus and Earth due to the CO2 molecular relaxation. We present modeling results and compare the seismic/acoustic coupling strength for Earth, Mars and Venus. This modeling is made through normal modes modelling for models integrating the interior, atmosphere, both with realistic attenuation (intrinsic Q for solid part, viscosity and molecular relaxation for the atmosphere). We complete these modeling, made for spherical structure, by integration of wind, assuming the later to be homogeneous at the scale of the infrasound wavelength. This allows us to compute either the Seismic normal modes (e.g. Rayleigh surface waves), or the acoustic or the atmospheric gravity modes. Comparisons are done, for either a seismic source or an atmospheric source, on the amplitude of expected signals as a function of distance and frequency. Effects of local time are integrated in the modeling. We illustrate the Rayleigh waves modelling by Earth data (for large quakes and volcanoes eruptions). For Venus, very large coupling can occur at resonance frequencies between the solid part and atmospheric part of the planet through infrasounds/Rayleigh waves coupling. If the atmosphere reduced the Q (quality coefficient) of Rayleigh waves in general, the atmosphere at these resonance soffers better propagation than Venus crust and increases their Q. For Mars, Rayleigh waves excitations by atmospheric burst is shown and discussed for the typical yield of impacts. The new data of the Nasa INSIGHT mission which carry both seismic and

  16. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  17. Bayesian inference of Earth's radial seismic structure from body-wave traveltimes using neural networks

    NASA Astrophysics Data System (ADS)

    de Wit, Ralph W. L.; Valentine, Andrew P.; Trampert, Jeannot

    2013-10-01

    How do body-wave traveltimes constrain the Earth's radial (1-D) seismic structure? Existing 1-D seismological models underpin 3-D seismic tomography and earthquake location algorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying uncertainties in seismological models is challenging and thus often ignored. Ideally, quality assessment should be an integral part of the inverse method. Our aim in this study is twofold: (i) we show how to solve a general Bayesian non-linear inverse problem and quantify model uncertainties, and (ii) we investigate the constraint on spherically symmetric P-wave velocity (VP) structure provided by body-wave traveltimes from the EHB bulletin (phases Pn, P, PP and PKP). Our approach is based on artificial neural networks, which are very common in pattern recognition problems and can be used to approximate an arbitrary function. We use a Mixture Density Network to obtain 1-D marginal posterior probability density functions (pdfs), which provide a quantitative description of our knowledge on the individual Earth parameters. No linearization or model damping is required, which allows us to infer a model which is constrained purely by the data. We present 1-D marginal posterior pdfs for the 22 VP parameters and seven discontinuity depths in our model. P-wave velocities in the inner core, outer core and lower mantle are resolved well, with standard deviations of ˜0.2 to 1 per cent with respect to the mean of the posterior pdfs. The maximum likelihoods of VP are in general similar to the corresponding ak135 values, which lie within one or two standard deviations from the posterior means, thus providing an independent validation of ak135 in this part of the radial model. Conversely, the data contain little or no information on P-wave velocity in the D'' layer, the upper mantle and the homogeneous crustal layers. Further, the data do not constrain the depth of the discontinuities in our model. Using additional

  18. Comparison of Meteoroid Flux Models for Near Earth Space

    NASA Technical Reports Server (NTRS)

    Drolshagen, G.; Liou, J.-C.; Dikarev, V.; Landgraf, M.; Krag, H.; Kuiper, W.

    2007-01-01

    Over the last decade several new models for the sporadic interplanetary meteoroid flux have been developed. These include the Meteoroid Engineering Model (MEM), the Divine-Staubach model and the Interplanetary Meteoroid Engineering Model (IMEM). They typically cover mass ranges from 10-12 g (or lower) to 1 g and are applicable for model specific sun distance ranges between 0.2 A.U. and 10 A.U. Near 1 A.U. averaged fluxes (over direction and velocities) for all these models are tuned to the well established interplanetary model by Gr?n et. al. However, in many respects these models differ considerably. Examples are the velocity and directional distributions and the assumed meteoroid sources. In this paper flux predictions by the various models to Earth orbiting spacecraft are compared. Main differences are presented and analysed. The persisting differences even for near Earth space can be seen as surprising in view of the numerous ground based (optical, radar) and in-situ (captured IDPs, in-situ detectors and analysis of retrieved hardware) measurements and simulations. Remaining uncertainties and potential additional studies to overcome the existing model discrepancies are discussed.

  19. Discovering Communicable Models from Earth Science Data

    NASA Technical Reports Server (NTRS)

    Schwabacher, Mark; Langley, Pat; Potter, Christopher; Klooster, Steven; Torregrosa, Alicia

    2002-01-01

    This chapter describes how we used regression rules to improve upon results previously published in the Earth science literature. In such a scientific application of machine learning, it is crucially important for the learned models to be understandable and communicable. We recount how we selected a learning algorithm to maximize communicability, and then describe two visualization techniques that we developed to aid in understanding the model by exploiting the spatial nature of the data. We also report how evaluating the learned models across time let us discover an error in the data.

  20. The Effect of Rare Earth on the Structure and Performance of Laser Clad Coatings

    NASA Astrophysics Data System (ADS)

    Bao, Ruiliang; Yu, Huijun; Chen, Chuanzhong; Dong, Qing

    Laser cladding is one kind of advanced surface modification technology and has the abroad prospect in making the wear-resistant coating on metal substrates. However, the application of laser cladding technology does not achieve the people's expectation in the practical production because of many defects such as cracks, pores and so on. The addiction of rare earth can effectively reduce the number of cracks in the clad coating and enhance the coating wear-resistance. In the paper, the effects of rare earth on metallurgical quality, microstructure, phase structure and wear-resistance are analyzed in turns. The preliminary discussion is also carried out on the effect mechanism of rare earth. At last, the development tendency of rare earth in the laser cladding has been briefly elaborated.

  1. A new stomatal paradigm for earth system models? (Invited)

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.

    2013-12-01

    The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress

  2. A Comprehensive Model of the Near-Earth Magnetic Field. Phase 3

    NASA Technical Reports Server (NTRS)

    Sabaka, Terence J.; Olsen, Nils; Langel, Robert A.

    2000-01-01

    The near-Earth magnetic field is due to sources in Earth's core, ionosphere, magnetosphere, lithosphere, and from coupling currents between ionosphere and magnetosphere and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have been modeled simultaneously, and fields from other sources modeled separately. Such a scheme, however, can introduce spurious features. A new model, designated CMP3 (Comprehensive Model: Phase 3), has been derived from quiet-time Magsat and POGO satellite measurements and observatory hourly and annual means measurements as part of an effort to coestimate fields from all of these sources. This model represents a significant advancement in the treatment of the aforementioned field sources over previous attempts, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of ionospheric and magnetospheric influence on Earth-induced fields, and an explicit parameterization and estimation of the lithospheric field. The result of this effort is a model whose fits to the data are generally superior to previous models and whose parameter states for the various constituent sources are very reasonable.

  3. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  4. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  5. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Humanmore » System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  6. Modeling Sustainability: Population, Inequality, Consumption, and Bidirectional Coupling of the Earth and Human Systems

    DOE PAGES

    Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; ...

    2016-12-11

    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less

  7. CIM-EARTH: Community Integrated Model of Economic and Resource Trajectories for Humankind

    NASA Astrophysics Data System (ADS)

    Foster, I.; Elliott, J.; Munson, T.; Judd, K.; Moyer, E. J.; Sanstad, A. H.

    2010-12-01

    We report here on the development of an open source software framework termed CIM-EARTH that is intended to aid decision-making in climate and energy policy. Numerical modeling in support of evaluating policies to address climate change is difficult not only because of inherent uncertainties but because of the differences in scale and modeling approach required for various subcomponents of the system. Economic and climate models are structured quite differently, and while climate forcing can be assumed to be roughly global, climate impacts and the human response to them occur on small spatial scales. Mitigation policies likewise can be applied on scales ranging from the better part of a continent (e.g. a carbon cap-and-trade program for the entire U.S.) to a few hundred km (e.g. statewide renewable portfolio standards and local gasoline taxes). Both spatial and time resolution requirements can be challenging for global economic models. CIM-EARTH is a modular framework based around dynamic general equilibrium models. It is designed as a community tool that will enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of both mitigation policies and unchecked climate change. Modularity enables both integration of highly resolved component sub-models for energy and other key systems and also user-directed choice of tradeoffs between e.g. spatial, sectoral, and time resolution. This poster describes the framework architecture, the current realized version, and plans for future releases. As with other open-source models familiar to the climate community (e.g. CCSM), deliverables will be made publicly available on a regular schedule, and community input is solicited for development of new features and modules.

  8. Numerical Results of Earth's Core Accumulation 3-D Modelling

    NASA Astrophysics Data System (ADS)

    Khachay, Yurie; Anfilogov, Vsevolod

    2013-04-01

    For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in

  9. Crystal structure of Earth's inner core: A first-principles study

    NASA Astrophysics Data System (ADS)

    Moustafa, S. G.; Schultz, A. J.; Zurek, E.; Kofke, D. A.

    2017-12-01

    Since the detection of the Earth's solid inner core (IC) by Lehmann in 1936, its composition and crystal structure (which are essential to understand Earth's evolution) have been controversial. While seismological measurements (e.g. PREM) can give a robust estimation of the density, pressure, and elasticity of the IC, they cannot be directly used to determine its composition and/or crystal structure. Experimentally, reaching the extreme IC conditions ( 330 GPa and 6000 K) and getting reliable measurements is very challenging. First-principles calculations provide a viable alternative that can work as a powerful investigative tool. Although several attempts have been made to assess phase stability at IC conditions computationally, they often use a low level of theory for electronic structure (e.g., classical force-field), adopt approximate methods (e.g., quasiharmonic approximation, fixed hcp-c/a), or do not consider finite-size effects. The study of phase stability using accurate first-principles methods is hampered in part by the difficulty of computing the free energy (FE), the central thermodynamic quantity that determines stability, while including anharmonic and finite-size effects. Additional difficulty related to the IC in particular is introduced by the dynamical instability of one of the IC candidate structures (bcc) at low temperature. Recently [1-3], we introduced a novel method (denoted as "harmonically mapped averaging", or HMA) to efficiently measure anharmonic properties (e.g. FE, pressure, elastic modulus) by molecular simulation, yielding orders of magnitude CPU speedup compared to conventional methods. We have applied this method to the hcp candidate phase of iron at the IC conditions, obtaining first-principles anharmonic FE values with unprecedented accuracy and precision [4]. We have now completed and report HMA calculations to assess the phase stability of all IC candidate phases (fcc/hcp/bcc). This knowledge is the prerequisite for

  10. Fresh approaches to Earth surface modeling

    NASA Astrophysics Data System (ADS)

    Kopylova, N. S.; Starikov, I. P.

    2018-05-01

    The paper considers modelling of the surface when fixing objects in the geocentric coordinate systems in the course of GLONASS satellite system development. The authors revealed new approaches to presentation of geographical data to a user, transformation of map properties and the leading role of ERS (Earth remote sensing) as a source of mapping information; change of scientific paradigms aimed at improvement of high-accuracy cartographic objects representation in the plane.

  11. Satellite Gravity Drilling the Earth

    NASA Technical Reports Server (NTRS)

    vonFrese, R. R. B.; Potts, L. V.; Leftwich, T. E.; Kim, H. R.; Han, S.-H.; Taylor, P. T.; Ashgharzadeh, M. F.

    2005-01-01

    Analysis of satellite-measured gravity and topography can provide crust-to-core mass variation models for new insi@t on the geologic evolution of the Earth. The internal structure of the Earth is mostly constrained by seismic observations and geochemical considerations. We suggest that these constraints may be augmented by gravity drilling that interprets satellite altitude free-air gravity observations for boundary undulations of the internal density layers related to mass flow. The approach involves separating the free-air anomalies into terrain-correlated and -decorrelated components based on the correlation spectrum between the anomalies and the gravity effects of the terrain. The terrain-decorrelated gravity anomalies are largely devoid of the long wavelength interfering effects of the terrain gravity and thus provide enhanced constraints for modeling mass variations of the mantle and core. For the Earth, subcrustal interpretations of the terrain-decorrelated anomalies are constrained by radially stratified densities inferred from seismic observations. These anomalies, with frequencies that clearly decrease as the density contrasts deepen, facilitate mapping mass flow patterns related to the thermodynamic state and evolution of the Earth's interior.

  12. AxiSEM3D: a new fast method for global wave propagation in 3-D Earth models with undulating discontinuities

    NASA Astrophysics Data System (ADS)

    Leng, K.; Nissen-Meyer, T.; van Driel, M.; Al-Attar, D.

    2016-12-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models with laterally heterogeneous media and finite boundary perturbations. Our method is a hybrid of pseudo-spectral and spectral element methods (SEM). We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridional equations, which can be solved by a 2-D spectral element method (based on www.axisem.info). Computational efficiency of our method stems from lateral smoothness of global Earth models (with respect to wavelength) as well as axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. All boundary perturbations that violate geometric spherical symmetry, including Earth's ellipticity, topography and bathymetry, undulations of internal discontinuities such as Moho and CMB, are uniformly considered by means of a Particle Relabeling Transformation.The MPI-based high performance C++ code AxiSEM3D, is now available for forward simulations upon 3-D Earth models with fluid outer core, ellipticity, and both mantle and crustal structures. We show novel benchmarks for global wave solutions in 3-D mantle structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period going down to 5s. It is shown that our method runs up to two orders of magnitude faster than the 3-D SEM for such settings, and such computational advantage scales favourably with seismic frequency. By examining wavefields passing through hypothetical Gaussian plumes of varying sharpness, we identify in model-wavelength space the limits where our method may lose its advantage.

  13. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanromá, E.; Pallé, E.; López, R.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At thatmore » time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.« less

  14. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    NASA Astrophysics Data System (ADS)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  15. Modelling the near-Earth space environment using LDEF data

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  16. The Earth Microbiome Project and modeling the planets microbial potential (Invited)

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.

    2013-12-01

    The understanding of Earth's climate and ecology requires multiscale observations of the biosphere, of which microbial life are a major component. However, to acquire and process physical samples of soil, water and air that comprise the appropriate spatial and temporal resolution to capture the immense variation in microbial dynamics, would require a herculean effort and immense financial resources dwarfing even the most ambitious projects to date. To overcome this hurdle we created the Earth Microbiome Project, a crowd-sourced effort to acquire physical samples from researchers around the world that are, importantly, contextualized with physical, chemical and biological data detailing the environmental properties of that sample in the location and time it was acquired. The EMP leverages these existing efforts to target a systematic analysis of microbial taxonomic and functional dynamics across a vast array of environmental parameter gradients. The EMP captures the environmental gradients, location, time and sampling protocol information about every sample donated by our valued collaborators. Physical samples are then processed using a standardized DNA extraction, PCR, and shotgun sequencing protocol to generate comparable data regarding the microbial community structure and function in each sample. To date we have processed >17,000 samples from 40 different biomes. One of the key goals of the EMP is to map the spatiotemporal variability of microbial communities to capture the changes in important functional processes that need to be appropriately expressed in models to provide reliable forecasts of ecosystem phenotype across our changing planet. This is essential if we are to develop economically sound strategies to be good stewards of our Earth. The EMP recognizes that environments are comprised of complex sets of interdependent parameters and that the development of useful predictive computational models of both terrestrial and atmospheric systems requires

  17. Earth's structure and evolution inferred from topography, gravity, and seismicity.

    NASA Astrophysics Data System (ADS)

    Watkinson, A. J.; Menard, J.; Patton, R. L.

    2016-12-01

    Earth's wavelength-dependent response to loading, reflected in observed topography, gravity, and seismicity, can be interpreted in terms of a stack of layers under the assumption of transverse isotropy. The theory of plate tectonics holds that the outermost layers of this stack are mobile, produced at oceanic ridges, and consumed at subduction zones. Their toroidal motions are generally consistent with those of several rigid bodies, except in the world's active mountain belts where strains are partitioned and preserved in tectonite fabrics. Even portions of the oceanic lithosphere exhibit non-rigid behavior. Earth's gravity-topography cross-spectrum exhibits notable variations in signal amplitude and character at spherical harmonic degrees l=13, 116, 416, and 1389. Corresponding Cartesian wavelengths are approximately equal to the respective thicknesses of Earth's mantle, continental mantle lithosphere, oceanic thermal lithosphere, and continental crust, all known from seismology. Regional variations in seismic moment release with depth, derived from the global Centroid Moment Tensor catalog, are also evident in the crust and mantle lithosphere. Combined, these observations provide powerful constraints for the structure and evolution of the crust, mantle lithosphere, and mantle as a whole. All that is required is a dynamically consistent mechanism relating wavelength to layer thickness and shear-strain localization. A statistically-invariant 'diharmonic' relation exhibiting these properties appears as the leading order approximation to toroidal motions on a self-gravitating body of differential grade-2 material. We use this relation, specifically its predictions of weakness and rigidity, and of folding and shear banding response as a function of wavelength-to-thickness ratio, to interpret Earth's gravity, topography, and seismicity in four-dimensions. We find the mantle lithosphere to be about 255-km thick beneath the Himalaya and the Andes, and the long

  18. Modernizing Earth and Space Science Modeling Workflows in the Big Data Era

    NASA Astrophysics Data System (ADS)

    Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.

    2017-12-01

    Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and

  19. A New Comprehensive Model for Crustal and Upper Mantle Structure of the European Plate

    NASA Astrophysics Data System (ADS)

    Morelli, A.; Danecek, P.; Molinari, I.; Postpischl, L.; Schivardi, R.; Serretti, P.; Tondi, M. R.

    2009-12-01

    We present a new comprehensive model of crustal and upper mantle structure of the whole European Plate — from the North Atlantic ridge to Urals, and from North Africa to the North Pole — describing seismic speeds (P and S) and density. Our description of crustal structure merges information from previous studies: large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness and seismic parameters. Most original information refers to P-wave speed, from which we derive S speed and density from scaling relations. This a priori crustal model by itself improves the overall fit to observed Bouguer anomaly maps, as derived from GRACE satellite data, over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. In the inversion for transversely isotropic mantle structure, we use group speed measurements made on European event-to-station paths, and use a global a priori model (S20RTS) to ensure fair rendition of earth structure at depth and in border areas with little coverage from our data. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies beneath the Alpine mobile belt, and fast lithospheric signatures under the two main Mediterranean subduction systems (Aegean and Tyrrhenian). We map compressional wave speed inverting ISC travel times (reprocessed by Engdahl et al.) with a non linear inversion scheme making use of finite-difference travel time calculation. The inversion is based on an a priori model obtained by scaling the 3D mantle S-wave speed to P. The new model substantially confirms images of descending lithospheric slabs and back-arc shallow asthenospheric regions, shown in

  20. Climate modeling. [for use in understanding earth's radiation budget

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.

  1. An Earth-based Model of Microgravity Pulmonary Physiology

    NASA Technical Reports Server (NTRS)

    Hirschl, Ronald B.; Bull, Joseph L.; Grotberg, James B.

    2004-01-01

    There are currently only two practical methods of achieving microgravity for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in microgravity. We propose to develop an earth-based animal model of microgravity by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of microgravity on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventillation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching and pleural pressures and flows. We expect that this earth-based model of microgravity will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.

  2. Structural Elements in a Persistent Identifier Infrastructure and Resulting Benefits for the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Weigel, T.; Toussaiant, F.; Stockhause, M.; Höck, H.; Kindermann, S.; Lautenschlager, M.; Ludwig, T.

    2012-12-01

    We propose a wide adoption of structural elements (typed links, collections, trees) in the Handle System to improve identification and access of scientific data, metadata and software as well as traceability of data provenance. Typed links target the issue of data provenance as a means to assess the quality of scientific data. Data provenance is seen here as a directed acyclic graph with nodes representing data and vertices representing derivative operations (Moreau 2010). Landing pages can allow a human user to explore the provenance graph back to the primary unprocessed data, thereby also giving credit to the original data producer. As in Earth System Modeling no single infrastructure with complete data lifecycle coverage exists, we propose to split the problem domain in two parts. Project-specific infrastructures such as the German project C3-Grid or the Earth System Grid Federation (ESGF) for CMIP5 data are aware of data and data operations (Toussaint et al. 2012) and can thus detect and accumulate single nodes and vertices in the provenance graph, assigning Handles to data, metadata and software. With a common schema for typed links, the provenance graph is established as downstream infrastructures refer incoming Handles. Data in this context is for example hierarchically structured Earth System model output data, which receives DataCite DOIs only for the most coarse-granular elements. Using Handle tree structures, the lower levels of the hierarchy can also receive Handles, allowing authors to more precisely identify the data they used (Lawrence et al. 2011). We can e.g. define a DOI for just the 2m-temperature variable of CMIP5 data across many CMIP5 experiments or a DOI for model and observational data coming from different sources. The structural elements should be implemented through Handle values at the Handle infrastructure level for two reasons. Handle values are more durable than downstream websites or databases, and thus the provenance chain does not

  3. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  4. Radon in earth-sheltered structures

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    Radon concentration in the indoor air of six residential and three non-residential earth-sheltered buildings in eastern Colorado was monitored quarterly over a nine-month period using passive, integrating detectors. Average radon concentrations during the three-month sampling periods ranged from about 1 to 9 pCi/L, although one building, a poorly ventilated storage bunker, had concentrations as high as 39 pCi/L. These radon concentrations are somewhat greater than those typically reported for conventional buildings (around 1 pCi/L); but they are of the same order of magnitude as radon concentrations reported for energy-efficient buildings which are not earth-sheltered. ?? 1984.

  5. A seismologically consistent compositional model of Earth's core.

    PubMed

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  6. Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldhaber, Steve; Holland, Marika

    The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less

  7. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  8. Noise model for low-frequency through-the-Earth communication

    NASA Astrophysics Data System (ADS)

    Raab, Frederick H.

    2010-12-01

    Analysis and simulation of through-the-Earth communication links and signal processing techniques require a more complete noise model than is needed for the analysis of conventional communication systems. This paper presents a multicomponent noise model that includes impulsive characteristics, direction-of-arrival characteristics, and effects of local geology. The noise model is derived from theoretical considerations and confirmed by field tests.

  9. Floor-fractured crater models of the Sudbury structure, Canada

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury.

  10. Improving the Representation of Estuarine Processes in Earth System Models

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Whitney, M. M.; Bryan, F.; Tseng, Y. H.

    2016-12-01

    The exchange of freshwater between the rivers and estuaries and the open ocean represents a unique form of scale-interaction in the climate system. The local variability in the terrestrial hydrologic cycle is integrated by rivers over potentially large drainage basins (up to semi-continental scales), and is then imposed on the coastal ocean at the scale of a river mouth. Appropriately treating riverine freshwater discharge into the oceans in Earth system models is a challenging problem. Commonly, the river runoff is discharged into the ocean models with zero salinity and arbitrarily distributed either horizontally or vertically over several grid cells. Those approaches entirely neglect estuarine physical processes that modify river inputs before they reach the open ocean. A physically based Estuary Box Model (EBM) is developed to parameterize the mixing processes in estuaries. The EBM has a two-layer structure representing the mixing processes driven by tides and shear flow within the estuaries. It predicts the magnitude of the mixing driven exchange flow, bringing saltier lower-layer shelf water into the estuary to mix with river water prior to discharge to the upper-layer open ocean. The EBM has been tested against observations and high-resolution three-dimensional simulations of the Columbia River estuary, showing excellent agreement in the predictions of the strength of the exchange flow and the salinity of the discharged water, including modulation with the spring-neap tidal cycle. The EBM is implemented globally at every river discharge point of the Community Earth System Model (CESM). In coupled ocean-sea ice experiments driven by CORE surface forcing, the sea surface salinity (SSS) in the coastal ocean is increased globally compared to the standard model, contributing to a decrease in coastal stratification. The SSS near the mouths of some of the largest rivers is decreased due to the reduction in the area over which riverine fresh water is discharged. The

  11. A generic biogeochemical module for earth system models

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Huang, M.; Liu, C.; Li, H.-Y.; Leung, L. R.

    2013-06-01

    Physical and biogeochemical processes regulate soil carbon dynamics and CO2 flux to and from the atmosphere, influencing global climate changes. Integration of these processes into earth system models (e.g. community land models - CLM), however, currently faces three major challenges: (1) extensive efforts are required to modify modeling structures and to rewrite computer programs to incorporate new or updated processes as new knowledge is being generated, (2) computational cost is prohibitively expensive to simulate biogeochemical processes in land models due to large variations in the rates of biogeochemical processes, and (3) various mathematical representations of biogeochemical processes exist to incorporate different aspects of fundamental mechanisms, but systematic evaluation of the different mathematical representations is difficult, if not impossible. To address these challenges, we propose a new computational framework to easily incorporate physical and biogeochemical processes into land models. The new framework consists of a new biogeochemical module with a generic algorithm and reaction database so that new and updated processes can be incorporated into land models without the need to manually set up the ordinary differential equations to be solved numerically. The reaction database consists of processes of nutrient flow through the terrestrial ecosystems in plants, litter and soil. This framework facilitates effective comparison studies of biogeochemical cycles in an ecosystem using different conceptual models under the same land modeling framework. The approach was first implemented in CLM and benchmarked against simulations from the original CLM-CN code. A case study was then provided to demonstrate the advantages of using the new approach to incorporate a phosphorus cycle into the CLM model. To our knowledge, the phosphorus-incorporated CLM is a new model that can be used to simulate phosphorus limitation on the productivity of terrestrial

  12. Sensitivity of grounding line dynamics to viscoelastic deformation of the solid Earth: Inferences from a fully coupled ice sheet - solid Earth model

    NASA Astrophysics Data System (ADS)

    Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.

    2013-12-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  13. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  14. Elasticity of Deep-Earth Materials at High P and T: Implication for Earths Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bass, Jay; Sinogeikin, S. V.; Mattern, Estelle; Jackson, J. M.; Matas, J.; Wang, J.; Ricard, Y.

    2005-03-01

    Brillouin spectroscopy allows measurements of sound velocities and elasticity on phases of geophysical interest at high Pressures and Temperatures. This technique was used to measure the properties of numerous important phases of Earths deep interior. Emphasis is now on measurements at elevated P-T conditions, and measurements on dense polycrystals. Measurements to 60 GPa were made using diamond anvil cells. High temperature is achieved by electrical resistance and laser heating. Excellent results are obtained for polycrystalline samples of dense oxides such as silicate spinels, and (Mg,Al)(Si,Al)O3 --perovskites. A wide range of materials can now be characterized. These and other results were used to infer Earths average lower mantle composition and thermal structure by comparing mineral properties at lower mantle P-T conditions to global Earth models. A formal inversion procedure was used. Inversions of density and bulk sound velocity do not provide robust compositional and thermal models. Including shear properties in the inversions is important to obtain unique solutions. We discuss the range of models consistent with present lab results, and data needed to further refine lower mantle models.

  15. Ion Acceleration at Earth, Saturn and Jupiter and its Global Impact on Magnetospheric Structure

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2016-07-01

    The ion plasma pressures at Earth, Saturn and Jupiter are significant players in the electrodynamic force-balance that governs the structure and dynamics of these magnetospheres. There are many similarities between the physical mechanisms that are thought to heat the ion plasma to temperatures that even exceed those of the solar corona. In this presentation we compare the ion acceleration mechanisms at the three planetary magnetospheres and discuss their global impacts on magnetopsheric structure. At Earth, bursty-bulk flows, or "bubbles", have been shown to accelerate protons and O+ to high energies by the earthward moving magnetic dipolarization fronts. O+ ions display a more non-adiabatic energization in response to these fronts than protons do as they are energized and transported in to the ring-current region where they reach energies of several 100's keV. We present both in-situ measurements from the NASA Van Allen Probes Mission and global Energetic Neutral (ENA) images from the High-Energy Neutral Atom (HENA) Camera on board the IMAGE Mission, that illustrate these processes. The global impact on the magnetospheric structure is explored by comparing the empirical magnetic field model TS07d for given driving conditions with global plasma pressure distributions derived from the HENA images. At Saturn, quasi-periodic energization events, or large-scale injections, occur beyond about 9 RS around the post-midnight sector, clearly shown by the Ion and Neutral Atom Camera (INCA) on board the Cassini mission. In contrast to Earth, the corotational drift dominates even the energetic ion distributions. The large-scale injections display similar dipolarization front features can be found and there are indications that like at Earth the O+ responds more non-adiabatically than protons do. However, at Saturn there are also differences in that there appears to be energization events deep in the inner magnetosphere (6-9 RS) preferentially occurring in the pre

  16. Mental Models and other Misconceptions in Children's Understanding of the Earth

    ERIC Educational Resources Information Center

    Panagiotaki, Georgia; Nobes, Gavin; Potton, Anita

    2009-01-01

    This study investigated the claim (e.g., Vosniadou & Brewer's, 1992) that children have naive ''mental models'' of the earth and believe, for example, that the earth is flat or hollow. It tested the proposal that children appear to have these misconceptions because they find the researchers' tasks and questions to be confusing and ambiguous.…

  17. Seismic velocity and attenuation structures in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Yu, Wen-Che

    2007-12-01

    I study seismic velocity and attenuation structures in the top 400 km of the Earth's inner core along equatorial paths, velocity-attenuation relationship, and seismic anisotropy in the top of the inner core beneath Africa. Seismic observations exhibit "east-west" hemispheric differences in seismic velocity, attenuation, and anisotropy. Joint modeling of the PKiKP-PKIKP and PKPbc-PKIKP phases is used to constrain seismic velocity and attenuation structures in the top 400 km of the inner core for the eastern and western hemispheres. The velocity and attenuation models for the western hemisphere are simple, having a constant velocity gradient and a Q value of 600 in the top 400 km of the inner core. The velocity and attenuation models for the eastern hemisphere appear complex. The velocity model for the eastern hemisphere has a small velocity gradient in the top 235 km, a steeper velocity gradient at the depth range of 235 - 375 km, and a gradient similar to PREM in the deeper portion of the inner core. The attenuation model for the eastern hemisphere has a Q value of 300 in the top 300 km and a Q value of 600 in the deeper portion of the inner core. The study of velocity-attenuation relationship reveals that inner core is anisotropic in both velocity and attenuation, and the direction of high attenuation corresponding to that of high velocity. I hypothesize that the hexagonal close packed (hcp) iron crystal is anisotropic in attenuation, with the axis of high attenuation corresponding to that of high velocity. Anisotropy in the top of the inner core beneath Africa is complex. Beneath eastern Africa, the thickness of the isotropic upper inner core is about 0 km. Beneath central and western Africa, the thickness of the isotropic upper inner core increases from 20 to 50 km. The velocity increase across the isotropic upper inner core and anisotropic lower inner core boundary is sharp, laterally varying from 1.6% - 2.2%. The attenuation model has a Q value of 600 for the

  18. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  19. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  20. The European Alps as an interrupter of the Earth's conductivity structures

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, D.

    2013-07-01

    Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.

  1. Research and Teaching About the Deep Earth

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Mogk, David W.; McDaris, John

    2010-08-01

    Understanding the Deep Earth: Slabs, Drips, Plumes and More; Virtual Workshop, 17-19 February and 24-26 February 2010; Images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring new excitement about deep-Earth processes and connections between Earth's internal systems and plate tectonics. The new results and the steady progress of Earthscope's USArray across the country are also providing a special opportunity to reach students and the general public. The pace of discoveries about the deep Earth is accelerating due to advances in experimental, modeling, and sensing technologies; new data processing capabilities; and installation of new networks, especially the EarthScope facility. EarthScope is an interdisciplinary program that combines geology and geophysics to study the structure and evolution of the North American continent. To explore the current state of deep-Earth science and ways in which it can be brought into the undergraduate classroom, 40 professors attended a virtual workshop given by On the Cutting Edge, a program that strives to improve undergraduate geoscience education through an integrated cooperative series of workshops and Web-based resources. The 6-day two-part workshop consisted of plenary talks, large and small group discussions, and development and review of new classroom and laboratory activities.

  2. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  3. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  4. MS PHD'S: A Synergistic Model for Diversifying the Earth Science Community

    NASA Astrophysics Data System (ADS)

    Ricciardi, L.; Johnson, A.; Williamson Whitney, V.; Ithier-Guzman, W.; Braxton, L.; Johnson, A.

    2013-05-01

    The Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S) program focuses on increasing the number of underrepresented minorities (URM) receiving advanced degrees in Earth system sciences (ESS). Subscribing to Aristotle's philosophy that the "whole is greater than the sum of its parts", MS PHD'S uses a synergistic model of tiered mentoring practices, successful minority scientist role models, peer-to-peer community building activities, professional development training techniques, networking opportunities, and state of the art virtual communication tools to facilitate the retention and advancement of underrepresented ESS scientists. Using a three-phase program structure supported by a virtual community, URM students in ESS are afforded opportunities to establish mentoring relationships with successful scientists, build meaningful ties with URM peers and future colleagues, strengthen oral and written communication skills, engage in networking opportunities within premier scientific venues, and maintain continuity of networks formed through program participation. Established in 2003, MS PHD'S is now in its ninth cohort. From the original cohort of 24 participants, the program has grown to support 213 participants. Of these 213 participants, 42 have obtained the doctorate and are employed within the ESS workforce. Another 71 are enrolled in doctoral programs. Looking to the future with the purpose of continually furthering its synergistic philosophy, MS PHD'S has developed a new initiative, Beyond the PhD, designed to support and advance the representation of URM scientists within a global workforce.

  5. Oil, Earth mass and gravitational force.

    PubMed

    Moustafa, Khaled

    2016-04-01

    Fossil fuels are intensively extracted from around the world faster than they are renewed. Regardless of direct and indirect effects of such extractions on climate change and biosphere, another issue relating to Earth's internal structure and Earth mass should receive at least some interest. According to the Energy Information Administration (EIA), about 34 billion barrels of oil (~4.7 trillion metric tons) and 9 billion tons of coal have been extracted in 2014 worldwide. Converting the amounts of oil and coal extracted over the last 3 decades and their respective reserves, intended to be extracted in the future, into mass values suggests that about 355 trillion tons, or ~5.86∗10(-9) (~0.0000000058)% of the Earth mass, would be 'lost'. Although this is a tiny percentage, modeling the potential loss of Earth mass may help figuring out a critical threshold of mass loss that should not be exceeded. Here, I briefly discuss whether such loss would have any potential consequences on the Earth's internal structure and on its gravitational force based on the Newton's law of gravitation that links the attraction force between planets to their respective masses and the distance that separate them. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Low-energy Structural Dynamics of Multiferroic Domain Walls in Hexagonal Rare-earth Manganites

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Petralanda, Urko; Zheng, Lu; Ren, Yuan; Hu, Rongwei; Cheong, Sang-Wook; Artyukhin, Sergey; Lai, Keji

    Multiferroic domain walls (DWs), the natural interfaces between domains with different order parameters, usually exhibit unconventional functionalities. For instance, recent discovery of the ferroelectric DW conduction highlights its extraordinary electronic structure that is absent in bulk domains. The structural dynamics of individual DWs in the microwave regime, however, have not been fully explored due to the lack of spatially resolved studies. Here, we report the broadband (106-1010 Hz) scanning impedance microscopy results on the interlocked anti-phase boundaries and ferroelectric DWs in hexagonal rare-earth manganites. Surprisingly, the effective conductivity of the (001) DWs displays a 106-fold increase from dc to GHz frequencies, while the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This DW acoustic-wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.

  7. An Earth-Based Model of Microgravity Pulmonary Physiology

    NASA Technical Reports Server (NTRS)

    Hirschl, Ronald B.; Bull, Joseph L.; Grothberg, James B.

    2004-01-01

    There are currently only two practical methods of achieving micro G for experimentation: parabolic flight in an aircraft or space flight, both of which have limitations. As a result, there are many important aspects of pulmonary physiology that have not been investigated in micro G. We propose to develop an earth-based animal model of micro G by using liquid ventilation, which will allow us to fill the lungs with perfluorocarbon, and submersing the animal in water such that the density of the lungs is the same as the surrounding environment. By so doing, we will eliminate the effects of gravity on respiration. We will first validate the model by comparing measures of pulmonary physiology, including cardiac output, central venous pressures, lung volumes, and pulmonary mechanics, to previous space flight and parabolic flight measurements. After validating the model, we will investigate the impact of micro G on aspects of lung physiology that have not been previously measured. These will include pulmonary blood flow distribution, ventilation distribution, pulmonary capillary wedge pressure, ventilation-perfusion matching, and pleural pressures and flows. We expect that this earth-based model of micro G will enhance our knowledge and understanding of lung physiology in space which will increase in importance as space flights increase in time and distance.

  8. Modeling the Infrared Spectra of Earth-Analog Exoplanets

    NASA Astrophysics Data System (ADS)

    Nixon, C.

    2014-04-01

    As a preparation for future observations with the James Webb Space Telescope (JWST) and other facilities, we have undertaken to model the infrared spectra of Earth-like exoplanets. Two atmospheric models were used: the modern (low CO2) and archean (high CO2) predictive models of the Kasting group at Penn state. Several model parameters such as distance to star, and stellar type (visible-UV spectrum spectrum) were adjusted, and the models reconverged. Subsequently, the final model atmospheres were input to a radiative transfer code (NEMESIS) and the results intercompared to search for the most significant spectral changes. Implications for exoplanet spectrum detectivity will be discussed.

  9. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  10. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    ERIC Educational Resources Information Center

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  11. Parametric Structural Model for a Mars Entry Concept

    NASA Technical Reports Server (NTRS)

    Lane, Brittney M.; Ahmed, Samee W.

    2017-01-01

    This paper outlines the process of developing a parametric model for a vehicle that can withstand Earth launch and Mars entry conditions. This model allows the user to change a variety of parameters ranging from dimensions and meshing to materials and atmospheric entry angles to perform finite element analysis on the model for the specified load cases. While this work focuses on an aeroshell for Earth launch aboard the Space Launch System (SLS) and Mars entry, the model can be applied to different vehicles and destinations. This specific project derived from the need to deliver large payloads to Mars efficiently, safely, and cheaply. Doing so requires minimizing the structural mass of the body as much as possible. The code developed for this project allows for dozens of cases to be run with the single click of a button. The end result of the parametric model gives the user a sense of how the body reacts under different loading cases so that it can be optimized for its purpose. The data are reported in this paper and can provide engineers with a good understanding of the model and valuable information for improving the design of the vehicle. In addition, conclusions show that the frequency analysis drives the design and suggestions are made to reduce the significance of normal modes in the design.

  12. Representing Reservoir Stratification in Land Surface and Earth System Models

    NASA Astrophysics Data System (ADS)

    Yigzaw, W.; Li, H. Y.; Leung, L. R.; Hejazi, M. I.; Voisin, N.; Payn, R. A.; Demissie, Y.

    2017-12-01

    A one-dimensional reservoir stratification modeling has been developed as part of Model for Scale Adaptive River Transport (MOSART), which is the river transport model used in the Accelerated Climate Modeling for Energy (ACME) and Community Earth System Model (CESM). Reservoirs play an important role in modulating the dynamic water, energy and biogeochemical cycles in the riverine system through nutrient sequestration and stratification. However, most earth system models include lake models that assume a simplified geometry featuring a constant depth and a constant surface area. As reservoir geometry has important effects on thermal stratification, we developed a new algorithm for deriving generic, stratified area-elevation-storage relationships that are applicable at regional and global scales using data from Global Reservoir and Dam database (GRanD). This new reservoir geometry dataset is then used to support the development of a reservoir stratification module within MOSART. The mixing of layers (energy and mass) in the reservoir is driven by eddy diffusion, vertical advection, and reservoir inflow and outflow. Upstream inflow into a reservoir is treated as an additional source/sink of energy, while downstream outflow represented a sink. Hourly atmospheric forcing from North American Land Assimilation System (NLDAS) Phase II and simulated daily runoff by ACME land component are used as inputs for the model over the contiguous United States for simulations between 2001-2010. The model is validated using selected observed temperature profile data in a number of reservoirs that are subject to various levels of regulation. The reservoir stratification module completes the representation of riverine mass and heat transfer in earth system models, which is a major step towards quantitative understanding of human influences on the terrestrial hydrological, ecological and biogeochemical cycles.

  13. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  14. Collisionless shock structures of Earth and other planets

    NASA Technical Reports Server (NTRS)

    Greenstadt, Eugene W.; Moses, Stewart L.

    1993-01-01

    This report summarizes the closing segment of our multi-spacecraft, multi-instrument study of collisionless shock structure. In this last year of our study, we have necessarily concentrated on subjects that limited time and remaining resources could be expected to bring to reasonable stopping points, if not full conclusions. Our attention has been focused therefore on matters that were either well underway when the year began or that could be expected to yield rapidly completed reports publishable quickly in abbreviated versions. Contemporary publication delays prevent any new initiatives from reaching the literature within the year in the best of circumstances. The topics that fell into these categories were detailed plasma wave (pw) phenomenology in slow shocks in the Earth's distant geomagnetic tail, instantaneous orientations of theta(sub Bn) in quasiparallel (Q(sub parallel)) shock structure, and a comprehensive overview of the relationship between structural ULF waves in the Qll shock environment and waves in the magnetosphere, i.e. geomagnetic ULF pulsations. The remainder of this report describes our freshly completed results, discusses two related investigations of pw waves in the foreshock and magnetosheath, and appends the abstracts of published papers and the texts of papers in press.

  15. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  16. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data

    USGS Publications Warehouse

    Bedrosian, Paul A.; Feucht, Daniel W.

    2014-01-01

    The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca–Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath–Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.

  17. Sustainability, collapse and oscillations in a simple World-Earth model

    NASA Astrophysics Data System (ADS)

    Nitzbon, Jan; Heitzig, Jobst; Parlitz, Ulrich

    2017-07-01

    The Anthropocene is characterized by close interdependencies between the natural Earth system and the global human society, posing novel challenges to model development. Here we present a conceptual model describing the long-term co-evolution of natural and socio-economic subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society. A well-being-dependent parametrization of fertility and mortality governs human population dynamics. Our analysis focuses on assessing possible asymptotic states of the Earth system for a qualitative understanding of its complex dynamics rather than quantitative predictions. Low dimension and simple equations enable a parameter-space analysis allowing us to identify preconditions of several asymptotic states and hence fates of humanity and planet. These include a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations. We consider different scenarios corresponding to different socio-cultural stages of human history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted by the finding that carbon stocks during the past centuries evolved opposing to what would ‘naturally’ be expected on a planet without humans. The intensity of biomass use and the contribution of ecosystem services to human well-being are found to be crucial determinants of the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation. The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different asymptotic states might still be almost indistinguishable during even a centuries-long transient phase. Given current human population levels, our study also supports the claim that besides reducing the global demand for energy, only the extensive use of renewable energies may pave the way into a

  18. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    PubMed Central

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2015-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency. PMID:26213457

  19. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    PubMed

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  20. Physics and Chemistry of Earth Materials

    NASA Astrophysics Data System (ADS)

    Navrotsky, Alexandra

    1994-11-01

    Stressing the fundamental solid state behavior of minerals, and emphasizing both theory and experiment, this text surveys the physics and chemistry of earth materials. The author begins with a systematic tour of crystal chemistry of both simple and complex structures (with completely new structural drawings) and discusses how to obtain structural and thermodynamic information experimentally. Dr. Navrotsky also reviews the quantitative concepts of chemical bonding--band theory, molecular orbit and ionic models. She then covers physical properties and relates microscopic features to macroscopic thermodynamic behavior and treats high pressure phase transitions, amorphous materials and solid state reactions. The author concludes with a look at the interface between mineral physics and materials science. Highly illustrated throughout, this book fills the gap between undergraduate texts and specialized review volumes and is appropriate for students and researchers in earth science and materials science.

  1. Structural, electronic, mechanical and magnetic properties of rare earth nitrides REN (RE= Pm, Eu and Yb)

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.

    2015-07-01

    The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.

  2. Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.

    PubMed

    Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R

    2016-04-07

    We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.

  3. Soil warming response: field experiments to Earth system models

    NASA Astrophysics Data System (ADS)

    Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.

    2017-12-01

    The soil carbon response to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature response. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature response using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the Earth system model simulations to integrate the field with the simulated temperature response. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these Earth system models to inform emissions targets.

  4. Development and application of earth system models.

    PubMed

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  5. Structure and dynamics of Earth's lower mantle.

    PubMed

    Garnero, Edward J; McNamara, Allen K

    2008-05-02

    Processes within the lowest several hundred kilometers of Earth's rocky mantle play a critical role in the evolution of the planet. Understanding Earth's lower mantle requires putting recent seismic and mineral physics discoveries into a self-consistent, geodynamically feasible context. Two nearly antipodal large low-shear-velocity provinces in the deep mantle likely represent chemically distinct and denser material. High-resolution seismological studies have revealed laterally varying seismic velocity discontinuities in the deepest few hundred kilometers, consistent with a phase transition from perovskite to post-perovskite. In the deepest tens of kilometers of the mantle, isolated pockets of ultralow seismic velocities may denote Earth's deepest magma chamber.

  6. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-04-15

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compoundsmore » with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications. - Graphical abstract: Rare earth based quaternary intermetallic compounds crystallize in complex novel crystal structures. The diversity in the crystal structure may induce unique properties and can be considered them as future materials. - Highlights: • Crystal growth and crystal structure of quaternary rare earth based intermetallics. • Structural complexity of quaternary compounds in comparison to the parent compounds. • Novel quaternary compounds display unique crystal structure.« less

  7. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include

  8. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  9. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  10. Assessing global climate-terrestrial vegetation feedbacks on carbon and nitrogen cycling in the earth system model EC-Earth

    NASA Astrophysics Data System (ADS)

    Wårlind, David; Miller, Paul; Nieradzik, Lars; Söderberg, Fredrik; Anthoni, Peter; Arneth, Almut; Smith, Ben

    2017-04-01

    There has been great progress in developing an improved European Consortium Earth System Model (EC-Earth) in preparation for the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the next Assessment Report of the IPCC. The new model version has been complemented with ocean biogeochemistry, atmospheric composition (aerosols and chemistry) and dynamic land vegetation components, and has been configured to use the recommended CMIP6 forcing data sets. These new components will give us fresh insights into climate change. This study focuses on the terrestrial biosphere component Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) that simulates vegetation dynamics and compound exchange between the terrestrial biosphere and the atmosphere in EC-Earth. LPJ-GUESS allows for vegetation to dynamically evolve, depending on climate input, and in return provides the climate system and land surface scheme with vegetation-dependent fields such as vegetation types and leaf area index. We present the results of a study to examine the feedbacks between the dynamic terrestrial vegetation and the climate and their impact on the terrestrial ecosystem carbon and nitrogen cycles. Our results are based on a set of global, atmosphere-only historical simulations (1870 to 2014) with and without feedback between climate and vegetation and including or ignoring the effect of nitrogen limitation on plant productivity. These simulations show to what extent the addition degree of freedom in EC-Earth, introduced with the coupling of interactive dynamic vegetation to the atmosphere, has on terrestrial carbon and nitrogen cycling, and represent contributions to CMIP6 (C4MIP and LUMIP) and the EU Horizon 2020 project CRESCENDO.

  11. A Study Of Undergraduate Students' Alternative Conceptions Of Earth's Interior Using Drawing Tasks

    NASA Astrophysics Data System (ADS)

    McAllister, Meredith L.

    2014-12-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience curriculum, surprisingly little research related to this complex idea exists in the discipline-based science education research literature. To better understand non-science-majoring undergraduates' conceptual models of Earth's interior, student-generated drawings and interviews were used to probe student understanding of the Earth. Ninety-two semi-structured interviews were conducted with non-science-major college students at the beginning of an entry-level geology course at a large Midwestern university. Students were asked to draw a picture of Earth's interior and provide think-aloud explanations of their drawings. The results reveal that students hold a wide range of alternative conceptions about Earth, with only a small fraction having scientifically accurate ideas. Students' understandings ranged from conceptualizing Earth's interior as consisting of horizontal layers of rock and dirt, to more sophisticated views with Earth's interior being composed of concentric layers with unique physical and chemical characteristics. Processes occurring within Earth, such as "convection," were rarely mentioned or explained. These results provide a first-steps basis from which to further explore college students' thinking and contribute to the growing body of knowledge on earth science teaching and geoscience education research.

  12. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  13. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    NASA Astrophysics Data System (ADS)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  14. Current Development Status of an Integrated Tool for Modeling Quasi-static Deformation in the Solid Earth

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Dicaprio, C.; Simons, M.

    2003-12-01

    With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.

  15. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    NASA Technical Reports Server (NTRS)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  16. Light-weight Parallel Python Tools for Earth System Modeling Workflows

    NASA Astrophysics Data System (ADS)

    Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.

    2015-12-01

    With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.

  17. LITHO1.0: An Updated Crust and Lithosphere Model of the Earth

    NASA Astrophysics Data System (ADS)

    Masters, G.; Ma, Z.; Laske, G.; Pasyanos, M. E.

    2011-12-01

    We are developing LITHO1.0: an updated crust and lithosphere model of the Earth. The overall plan is to take the popular CRUST2.0 model - a global model of crustal structure with a relatively poor representation of the uppermost mantle - and improve its nominal resolution to 1 degree and extend the model to include lithospheric structure. The new model, LITHO1.0, will be constrained by many different datasets including extremely large new datasets of relatively short period group velocity data. Other data sets include (but are not limited to) compilations of receiver function constraints and active source studies. To date, we have completed the compilation of extremely large global datasets of group velocity for Rayleigh and Love waves from 10mHz to 40mHz using a cluster analysis technique. We have also extended the method to measure phase velocity and are complementing the group velocity with global data sets of longer period phase data that help to constrain deep lithosphere properties. To model these data, we require a starting model for the crust at a nominal resolution of 1 degree. This has been developed by constructing a map of crustal thickness using data from receiver function and active source experiments where available, and by using CRUST2.0 where other constraints are not available. Particular care has been taken to make sure that the locations of sharp changes in crustal thickness are accurately represented. This map is then used as a template to extend CRUST2.0 to 1 degree nominal resolution and to develop starting maps of all crustal properties. We are currently modeling the data using two techniques. The first is a linearized inversion about the 3D crustal starting model. Note that it is important to use local eigenfunctions to compute Frechet derivatives due to the extreme variations in crustal structure. Another technique uses a targeted grid search method. A preliminary model for the crustal part of the model will be presented.

  18. A space-time multiscale modelling of Earth's gravity field variations

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric

    2017-04-01

    The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.

  19. Acceleration of Particles Near Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Sandroos, A.

    2012-12-01

    Collisionless shock waves, for example, near planetary bodies or driven by coronal mass ejections, are a key source of energetic particles in the heliosphere. When the solar wind hits Earth's bow shock, some of the incident particles get reflected back towards the Sun and are accelerated in the process. Reflected ions are responsible for the creation of a turbulent foreshock in quasi-parallel regions of Earth's bow shock. We present first results of foreshock macroscopic structure and of particle distributions upstream of Earth's bow shock, obtained with a new 2.5-dimensional self-consistent diffusive shock acceleration model. In the model particles' pitch angle scattering rates are calculated from Alfvén wave power spectra using quasilinear theory. Wave power spectra in turn are modified by particles' energy changes due to the scatterings. The new model has been implemented on massively parallel simulation platform Corsair. We have used an earlier version of the model to study ion acceleration in a shock-shock interaction event (Hietala, Sandroos, and Vainio, 2012).

  20. Simultaneous Modeling of Gradual SEP Events at the Earth and the Mars

    NASA Astrophysics Data System (ADS)

    Hu, J.; Li, G.

    2017-12-01

    Solar Energetic Particles (SEP) event is the number one space hazard for spacecraft instruments and astronauts' safety. Recent studies have shown that both longitudinal and radial extent of SEP events can be very significant. In this work, we use the improved Particle Acceleration and Transport in the Heliosphere (iPATH) model to simulate gradual SEP events that have impacts upon both the Earth and the Mars. We follow the propagation of a 2D CME-driven shock. Particles are accelerated at the shock via the diffusive shock acceleration (DSA) mechanism. Transport of the escaped particles to the Earth and the Mars is then followed using a backward stochastic differential equation method. Perpendicular diffusion is considered in both the DSA and the transport process. Model results such as time intensity profile and energetic particle spectrum at the two locations are compared to understand the spatial extent of an SEP event. Observational data at the Earth and the Mars are also studied to validate the model.

  1. Development, Deployment, and Assessment of Dynamic Geological and Geophysical Models Using the Google Earth APP and API: Implications for Undergraduate Education in the Earth and Planetary Sciences

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.; Whitmeyer, S. J.; Gobert, J.

    2009-12-01

    We previously reported on innovative techniques for presenting data on virtual globes such as Google Earth using emergent Collada models that reveal subsurface geology and geophysics. We here present several new and enhanced models and linked lesson plans to aid deployment in undergraduate geoscience courses, along with preliminary results from our assessment of their effectiveness. The new Collada models are created with Google SketchUp, Bonzai3D, and MeshLab software, and are grouped to cover (i) small scale field mapping areas; (ii) regional scale studies of the North Atlantic Ocean Basin, the Appalachian Orogen, and the Pacific Ring of Fire; and (iii) global scale studies of terrestrial planets, moons, and asteroids. Enhancements include emergent block models with three-dimensional surface topography; models that conserve structural orientation data; interactive virtual specimens; models that animate plate movements on the virtual globe; exploded 3-D views of planetary mantles and cores; and server-generated dynamic KML. We tested volunteer students and professors using Silverback monitoring software, think-aloud verbalizations, and questionnaires designed to assess their understanding of the underlying geo-scientific phenomena. With the aid of a cohort of instructors across the U.S., we are continuing to assess areas in which users encounter difficulties with both the software and geoscientific concepts. Preliminary results suggest that it is easy to overestimate the computer expertise of novice users even when they are content knowledge experts (i.e., instructors), and that a detailed introduction to virtual globe manipulation is essential before moving on to geoscience applications. Tasks that seem trivial to developers may present barriers to non-technical users and technicalities that challenge instructors may block adoption in the classroom. We have developed new models using the Google Earth API which permits enhanced interaction and dynamic feedback and

  2. Comparative Study of Three Reconnection X-Line Models at the Earth's Dayside Magnetopause Using In Situ Observations

    NASA Astrophysics Data System (ADS)

    Souza, V. M. C. E. S.; Gonzalez, W.; Sibeck, D. G.; Koga, D.; Walsh, B.; Mendes, O., Jr.

    2017-12-01

    This work examines the large-scale aspects of magnetic field reconnection at the Earth's dayside magnetopause. We use two sets of reconnection events, which are identified mostly by the in situ detection of accelerated and Alfvénic plasma flows. We intercompare three analytical models that predict the reconnection X-line location and orientation, namely the Trattner et al., (2007) and Swisdak and Drake (2007) models, and also a modified version of the component merging model (Gonzalez and Mozer 1974, Sonnerup 1974). In the first set of reconnection observations, we show three fortuitous, quasi-simultaneous dayside magnetopause crossing events where two widely separated spacecraft detect reconnection signatures, and the X-line location and orientation can be inferred from the observations. We compare X-line model predictions to those inferred from observations. These three reconnection events indicate the presence of an extended (>7 Earth radii in length), component-type reconnection X-line on Earth's dayside magnetopause connecting and structuring the reconnection signatures at locations far apart. In the second set of reconnection events, we analyze the X-line models' performance in predicting the observed reconnection outflow direction, i.e., its north-south and/or east-west senses, in a total of 75 single, rather than multiple and quasi-simultaneous, magnetopause crossing events, where reconnection-associated plasma flows were clearly present. We found that the Swisdak and Drake's (2007) X-line model performs slightly better, albeit not statistically significant, when predicting both accelerated plasma flow north-south and east-west components in 73% and 53% of the cases, respectively, as compared to the Trattner et al., (2007) model (70% north-south, 42% east-west), and the modified component merging model (66% north-south, 50% east-west).

  3. A New Cyber-enabled Platform for Scale-independent Interoperability of Earth Observations with Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Rajib, A.; Zhao, L.; Merwade, V.; Shin, J.; Smith, J.; Song, C. X.

    2017-12-01

    Despite the significant potential of remotely sensed earth observations, their application is still not full-fledged in water resources research, management and education. Inconsistent storage structures, data formats and spatial resolution among different platforms/sources of earth observations hinder the use of these data. Available web-services can help bulk data downloading and visualization, but they are not sufficiently tailored to meet the degree of interoperability required for direct application of earth observations in hydrologic modeling at user-defined spatio-temporal scales. Similarly, the least ambiguous way for educators and watershed managers is to instantaneously obtain a time-series at any watershed of interest without spending time and computational resources on data download and post-processing activities. To address this issue, an open access, online platform, named HydroGlobe, is developed that minimizes all these processing tasks and delivers ready-to-use data from different earth observation sources. HydroGlobe can provide spatially-averaged time series of earth observations by using the following inputs: (i) data source, (ii) temporal extent in the form of start/end date, and (iii) geographic units (e.g., grid cell or sub-basin boundary) and extent in the form of GIS shapefile. In its preliminary version, HydroGlobe simultaneously handles five data sources including the surface and root zone soil moisture from SMAP (Soil Moisture Active Passive Mission), actual and potential evapotranspiration from MODIS (Moderate Resolution Imaging Spectroradiometer), and precipitation from GPM (Global Precipitation Measurements). This presentation will demonstrate the HydroGlobe interface and its applicability using few test cases on watersheds from different parts of the globe.

  4. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  5. Superposition-model analysis of rare-earth doped BaY2F8

    NASA Astrophysics Data System (ADS)

    Magnani, N.; Amoretti, G.; Baraldi, A.; Capelletti, R.

    The energy level schemes of four rare-earth dopants (Ce3+ , Nd3+ , Dy3+ , and Er3+) in BaY2 F-8 , as determined by optical absorption spectra, were fitted with a single-ion Hamiltonian and analysed within Newman's Superposition Model for the crystal field. A unified picture for the four dopants was obtained, by assuming a distortion of the F- ligand cage around the RE site; within the framework of the Superposition Model, this distortion is found to have a marked anisotropic behaviour for heavy rare earths, while it turns into an isotropic expansion of the nearest-neighbours polyhedron for light rare earths. It is also inferred that the substituting ion may occupy an off-center position with respect to the original Y3+ site in the crystal.

  6. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  7. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  8. Development and application of earth system models

    PubMed Central

    Prinn, Ronald G.

    2013-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645

  9. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  10. The TOPOMOD-ITN project: unravel the origin of Earth's topography from modelling deep-surface processes

    NASA Astrophysics Data System (ADS)

    Faccenna, C.; Funiciello, F.

    2012-04-01

    EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to

  11. Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre

    2006-02-01

    Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.

  12. [Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela].

    PubMed

    Li, Guiting; Jiang, Junqi; Chen, Jie; Zou, Yunding; Zhang, Xincai

    2006-01-01

    By the method of OECD filter paper contact, this paper studied the effects of applied rare earth elements on soil fauna community structure and their ecological toxicity to Holotrichia parallela in bean field. The results showed that there were no significant differences between the treatments and the control in soil fauna species, quantity of main species, and diversity index. Urgent and chronic toxic test showed that the differences between the treatments and the control were not significant. It was suggested that within the range of test dosages, rare earth elements had little ecological toxicity to Holotrichia parallela, and did not change the soil fauna community structure.

  13. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413

  14. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  15. Model-Based Trade Space Exploration for Near-Earth Space Missions

    NASA Technical Reports Server (NTRS)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  16. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    NASA Astrophysics Data System (ADS)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  18. Evaluating atmospheric blocking in the global climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    Hartung, Kerstin; Hense, Andreas; Kjellström, Erik

    2013-04-01

    Atmospheric blocking is a phenomenon of the midlatitudal troposphere, which plays an important role in climate variability. Therefore a correct representation of blocking in climate models is necessary, especially for evaluating the results of climate projections. In my master's thesis a validation of blocking in the coupled climate model EC-Earth is performed. Blocking events are detected based on the Tibaldi-Molteni Index. At first, a comparison with the reanalysis dataset ERA-Interim is conducted. The blocking frequency depending on longitude shows a small general underestimation of blocking in the model - a well known problem. Scaife et al. (2011) proposed the correction of model bias as a way to solve this problem. However, applying the correction to the higher resolution EC-Earth model does not yield any improvement. Composite maps show a link between blocking events and surface variables. One example is the formation of a positive surface temperature anomaly north and a negative anomaly south of the blocking anticyclone. In winter the surface temperature in EC-Earth can be reproduced quite well, but in summer a cold bias over the inner-European ocean is present. Using generalized linear models (GLMs) I want to study the connection between regional blocking and global atmospheric variables further. GLMs have the advantage of being applicable to non-Gaussian variables. Therefore the blocking index at each longitude, which is Bernoulli distributed, can be analysed statistically with GLMs. I applied a logistic regression between the blocking index and the geopotential height at 500 hPa to study the teleconnection of blocking events at midlatitudes with global geopotential height. GLMs also offer the possibility of quantifying the connections shown in composite maps. The implementation of the logistic regression can even be expanded to a search for trends in blocking frequency, for example in the scenario simulations.

  19. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  20. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  1. Estimation of the Lithospheric Component Share in the Earth Natural Pulsed Electromagnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Malyshkov, S. Y.; Gordeev, V. F.; Polyvach, V. I.; Shtalin, S. G.; Pustovalov, K. N.

    2017-04-01

    Article describes the results of the atmosphere and Earth’s crust climatic and ecological parameters integrated monitoring. The estimation is made for lithospheric component share in the Earth natural pulsed electromagnetic field structure. To estimate lithospheric component we performed a round-the-clock monitoring of the Earth natural pulsed electromagnetic field background variations at the experiment location and measured the Earth natural pulsed electromagnetic field under electric shields. Natural materials in a natural environment were used for shielding, specifically lakes with varying parameters of water conductivity. Skin effect was used in the experiment - it is the tendency of electromagnetic waves amplitude to decrease with greater depths in the conductor. Atmospheric and lithospheric component the Earth natural pulsed electromagnetic field data recorded on terrain was compared against the recorded data with atmosphere component decayed by an electric shield. In summary we have demonstrated in the experiment that thunderstorm discharge originating electromagnetic field decay corresponds to the decay calculated using Maxwell equations. In the absence of close lightning strikes the ratio of field intensity recorded on terrain to shielded field intensity is inconsistent with the ratio calculated for atmospheric sources, that confirms there is a lithospheric component present to the Earth natural pulsed electromagnetic field.

  2. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  3. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  4. A Community Framework for Integrative, Coupled Modeling of Human-Earth Systems

    NASA Astrophysics Data System (ADS)

    Barton, C. M.; Nelson, G. C.; Tucker, G. E.; Lee, A.; Porter, C.; Ullah, I.; Hutton, E.; Hoogenboom, G.; Rogers, K. G.; Pritchard, C.

    2017-12-01

    We live today in a humanized world, where critical zone dynamics are driven by coupled human and biophysical processes. First generation modeling platforms have been invaluable in providing insight into dynamics of biophysical systems and social systems. But to understand today's humanized planet scientifically and to manage it sustainably, we need integrative modeling of this coupled human-Earth system. To address both scientific and policy questions, we also need modeling that can represent variable combinations of human-Earth system processes at multiple scales. Simply adding more code needed to do this to large, legacy first generation models is impractical, expensive, and will make them even more difficult to evaluate or understand. We need an approach to modeling that mirrors and benefits from the architecture of the complexly coupled systems we hope to model. Building on a series of international workshops over the past two years, we present a community framework to enable and support an ecosystem of diverse models as components that can be interconnected as needed to facilitate understanding of a range of complex human-earth systems interactions. Models are containerized in Docker to make them platform independent. A Basic Modeling Interface and Standard Names ontology (developed by the Community Surface Dynamics Modeling System) is applied to make them interoperable. They are then transformed into RESTful micro-services to allow them to be connected and run in a browser environment. This enables a flexible, multi-scale modeling environment to help address diverse issues with combinations of smaller, focused, component models that are easier to understand and evaluate. We plan to develop, deploy, and maintain this framework for integrated, coupled modeling in an open-source collaborative development environment that can democratize access to advanced technology and benefit from diverse global participation in model development. We also present an initial

  5. Rare Earth Polyoxometalates.

    PubMed

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  6. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  7. A stand-alone tree demography and landscape structure module for Earth system models: integration with inventory data from temperate and boreal forests

    NASA Astrophysics Data System (ADS)

    Haverd, V.; Smith, B.; Nieradzik, L. P.; Briggs, P. R.

    2014-08-01

    Poorly constrained rates of biomass turnover are a key limitation of Earth system models (ESMs). In light of this, we recently proposed a new approach encoded in a model called Populations-Order-Physiology (POP), for the simulation of woody ecosystem stand dynamics, demography and disturbance-mediated heterogeneity. POP is suitable for continental to global applications and designed for coupling to the terrestrial ecosystem component of any ESM. POP bridges the gap between first-generation dynamic vegetation models (DVMs) with simple large-area parameterisations of woody biomass (typically used in current ESMs) and complex second-generation DVMs that explicitly simulate demographic processes and landscape heterogeneity of forests. The key simplification in the POP approach, compared with second-generation DVMs, is to compute physiological processes such as assimilation at grid-scale (with CABLE (Community Atmosphere Biosphere Land Exchange) or a similar land surface model), but to partition the grid-scale biomass increment among age classes defined at sub-grid-scale, each subject to its own dynamics. POP was successfully demonstrated along a savanna transect in northern Australia, replicating the effects of strong rainfall and fire disturbance gradients on observed stand productivity and structure. Here, we extend the application of POP to wide-ranging temporal and boreal forests, employing paired observations of stem biomass and density from forest inventory data to calibrate model parameters governing stand demography and biomass evolution. The calibrated POP model is then coupled to the CABLE land surface model, and the combined model (CABLE-POP) is evaluated against leaf-stem allometry observations from forest stands ranging in age from 3 to 200 year. Results indicate that simulated biomass pools conform well with observed allometry. We conclude that POP represents an ecologically plausible and efficient alternative to large-area parameterisations of woody

  8. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    USGS Publications Warehouse

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  9. Study on multi-satellite, multi-measurement of the structure of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The pulsation model of the earth's bow shock proposed a nonuniform shock having both perpendicular (abrupt, monotonic) and oblique (oscillatory, multigradient) properties simultaneously, depending on local orientation of the shock surface to the interplanetary field B sub sw in parallel planes defined by B sub sw and solar wind velocity. Multiple, concurrent, satellite observations of the shock and solar wind conditions were used. Twenty-six potentially useful intervals of concurrent Explorer 33 and 35 data acquisition were examined, of which six were selected for closer study. In addition, two years of OGO-5 and HEOS 1 magnetometer data were examined for possible conjunctions to these spacecraft having applicable data. One case of clear nonuniformity and several of field-dependent structure were documented. A computational aid, called pulsation index, was developed.

  10. Mineralogical modeling of the anisotropic inner core based on the phase relations and elasticity of iron and iron alloys under the Earth's core condition

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Tsuchiya, T.; Ohishi, Y.

    2011-12-01

    The inner-core and the outer-core, which make up the center of the Earth, are thought to be composed predominantly of a solid and liquid iron alloying with 5 to 15 % nickel, respectively. Determination of the physical properties of iron alloy at extremely high pressures found in the deep Earth's core (>300 GPa) is a fundamental issue for understanding the thermal and dynamical state of the Earth's core. According to seismological observations, it is widely accepted that the Earth's inner-core is elastically anisotropic; the compressional wave in the inner-core propagates 3~4 % faster along its rotational axis than in the equatorial direction. A number of models on core dynamics have been proposed to explain the origin of the inner-core anisotropy, but all of them are based on the idea of the crystal preferred orientation of iron. The phase relation of iron at high pressures has been extensively studied using LH-DACs. At relatively low temperatures, around room temperature, the phase relations are already well established; a low pressure phase with a bcc structure transforms into an hcp structure above ~10 GPa and it persists above 300 GPa. In contrast, the phase relations of iron at high temperatures are highly controversial. Some experiments assigned different crystal structures including orthorhombic, dhcp, fcc, and bcc as candidate stable crystal structures, whereas others suggested that the hcp structure remains stable at high temperatures. Despite considerable attention on these new phases, there is, however, no experimental reproducibility. The lack of plausible data is mainly because of the substantial difficulties associated with high-temperature experiments at multimegabar pressures. In order to overcome these difficulties, we have developed experimental techniques using a laser-heated diamond-anvil cell for the past decade and succeeded in obtaining excellent quality data under extremely high-pressure and high-temperature conditions. In order to

  11. Forward modeling of the Earth's lithospheric field using spherical prisms

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2014-05-01

    The ESA satellite mission Swarm consists of three satellites that measure the magnetic field of the Earth at average flight heights of about 450 km and 530 km above surface. Realistic forward modeling of the expected data is an indispensible first step for both, evaluation and inversion of the real data set. This forward modeling requires a precise definition of the spherical geometry of the magnetic sources. At satellite height only long wavelengths of the magnetic anomalies are reliably measured. Because these are very sensitive to the modeling error in case of a local flat Earth approximation, conventional magnetic modeling tools cannot be reliably used. For an improved modeling approach, we start from the existing gravity modeling code "tesseroids" (http://leouieda.github.io/tesseroids/), which calculates gravity gradient tensor components for any collection of spherical prisms (tesseroids). By Poisson's relation the magnetic field is mathematically equivalent to the gradient of a gravity field. It is therefore directly possible to apply "tesseroids" for magnetic field modeling. To this end, the Earth crust is covered by spherical prisms, each with its own prescribed magnetic susceptibility and remanent magnetization. Induced magnetizations are then derived from the products of the local geomagnetic fields for the chosen main field model (such as the International Geomagnetic Reference Field), and the corresponding tesseroid susceptibilities. Remanent magnetization vectors are directly set. This method inherits the functionality of the original "tesseroids" code and performs parallel computation of the magnetic field vector components on any given grid. Initial global calculations for a simplified geometry and piecewise constant magnetization for each tesseroid show that the method is self-consistent and reproduces theoretically expected results. Synthetic induced crustal magnetic fields and total field anomalies of the CRUST1.0 model converted to magnetic

  12. Sensitivity Analysis of earth and environmental models: a systematic review to guide scientific advancement

    NASA Astrophysics Data System (ADS)

    Wagener, Thorsten; Pianosi, Francesca

    2016-04-01

    Sensitivity Analysis (SA) investigates how the variation in the output of a numerical model can be attributed to variations of its input factors. SA is increasingly being used in earth and environmental modelling for a variety of purposes, including uncertainty assessment, model calibration and diagnostic evaluation, dominant control analysis and robust decision-making. Here we provide some practical advice regarding best practice in SA and discuss important open questions based on a detailed recent review of the existing body of work in SA. Open questions relate to the consideration of input factor interactions, methods for factor mapping and the formal inclusion of discrete factors in SA (for example for model structure comparison). We will analyse these questions using relevant examples and discuss possible ways forward. We aim at stimulating the discussion within the community of SA developers and users regarding the setting of good practices and on defining priorities for future research.

  13. PanEurasian Experiment (PEEX): Modelling Platform for Earth System Observations and Forecasting

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Mahura, Alexander; Penenko, Vladimir; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    models, analysing scenarios, inverse modelling, modelling based on measurement needs and processes; • Model validation by remote sensing data and assimilation of satellite observations to constrain models to better understand processes, e.g., emissions and fluxes with top-down modelling; • Geophysical/ chemical model validation with experiments at various spatial and temporal scales. Added value of the comprehensive multi-platform observations and modeling; network of monitoring stations with the capacity to quantify those interactions between neighboring areas ranging from the Arctic and the Mediterranean to the Chinese industrial areas and the Asian steppes is needed. For example, apart from development of Russian stations in the PEEX area a strong co-operation with surrounding research infrastructures in the model of ACTRIS network needs to be established in order to obtain a global perspective of the emissions transport, transformation and ageing of pollutants incoming and exiting the PEEX area. The PEEX-MP aims to simulate and predict the physical aspects of the Earth system and to improve understanding of the bio-geochemical cycles in the PEEX domain, and beyond. The environmental change in this region implies that, from the point-of-view of atmospheric flow, the lower boundary conditions are changing. This is important for applications with immediate relevance for society, such as numerical weather prediction. The PEEX infrastructure will provide a unique view to the physical properties of the Earth surface, which can be used to improve assessment and prediction models. This will directly benefit citizens of the North in terms of better early warning of hazardous events, for instance. On longer time-scales, models of the bio-geochemical cycles in the PEEX domain absolutely need support from the new monitoring infra-structure to better measure and quantify soil and vegetation properties. In the most basic setup, the atmospheric and oceanic Global Circulation

  14. Advanced NASA Earth Science Mission Concept for Vegetation 3D Structure, Biomass and Disturbance

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon

    2007-01-01

    Carbon in forest canopies represents about 85% of the total carbon in the Earth's aboveground biomass (Olson et al., 1983). A major source of uncertainty in global carbon budgets derives from large errors in the current estimates of these carbon stocks (IPCC, 2001). The magnitudes and distributions of terrestrial carbon storage along with changes in sources and sinks for atmospheric C02 due to land use change remain the most significant uncertainties in Earth's carbon budget. These uncertainties severely limit accurate terrestrial carbon accounting; our ability to evaluate terrestrial carbon management schemes; and the veracity of atmospheric C02 projections in response to further fossil fuel combustion and other human activities. Measurements of vegetation three-dimensional (3D) structural characteristics over the Earth's land surface are needed to estimate biomass and carbon stocks and to quantify biomass recovery following disturbance. These measurements include vegetation height, the vertical profile of canopy elements (i.e., leaves, stems, branches), andlor the volume scattering of canopy elements. They are critical for reducing uncertainties in the global carbon budget. Disturbance by natural phenomena, such as fire or wind, as well as by human activities, such as forest harvest, and subsequent recovery, complicate the quantification of carbon storage and release. The resulting spatial and temporal heterogeneity of terrestrial biomass and carbon in vegetation make it very difficult to estimate terrestrial carbon stocks and quantify their dynamics. Vegetation height profiles and disturbance recovery patterns are also required to assess ecosystem health and characterize habitat. The three-dimensional structure of vegetation provides habitats for many species and is a control on biodiversity. Canopy height and structure influence habitat use and specialization, two fundamental processes that modify species richness and abundance across ecosystems. Accurate and

  15. Mantle Circulation Models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, H.; Hagelberg, C.; Travis, B.

    2002-12-01

    EarthScope will deliver data on structure and dynamics of continental North America and the underlying mantle on an unprecedented scale. Indeed, the scope of EarthScope makes its mission comparable to the large remote sensing efforts that are transforming the oceanographic and atmospheric sciences today. Arguably the main impact of new solid Earth observing systems is to transform our use of geodynamic models increasingly from conditions that are data poor to an environment that is data rich. Oceanographers and meteorologists already have made substantial progress in adapting to this environment, by developing new approaches of interpreting oceanographic and atmospheric data objectively through data assimilation methods in their models. However, a similarly rigorous theoretical framework for merging EarthScope derived solid Earth data with geodynamic models has yet to be devised. Here we explore the feasibility of data assimilation in mantle convection studies in an attempt to fit global geodynamic model calculations explicitly to tomographic and tectonic constraints. This is an inverse problem not quite unlike the inverse problem of finding optimal seismic velocity structures faced by seismologists. We derive the generalized inverse of mantle convection from a variational approach and present the adjoint equations of mantle flow. The substantial computational burden associated with solutions to the generalized inverse problem of mantle convection is made feasible using a highly efficient finite element approach based on the 3-D spherical fully parallelized mantle dynamics code TERRA, implemented on a cost-effective topical PC-cluster (geowulf) dedicated specifically to large-scale geophysical simulations. This dedicated geophysical modeling computer allows us to investigate global inverse convection problems having a spatial discretization of less than 50 km throughout the mantle. We present a synthetic high-resolution modeling experiment to demonstrate that mid

  16. A New Model of the Earth System Nitrogen Cycle: How Plates and Life Affect the Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, B. W.; Goldblatt, C.

    2017-11-01

    We have developed an Earth system N cycle model, including biologic and geologic fluxes and key nutrients such as phosphorus. The atmosphere can change mass significantly over Earth history, and the solid Earth contains most of the planet's N.

  17. Is Jupiter's magnetosphere like a pulsar's or earth's?

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1974-01-01

    The application of pulsar physics to determine the magnetic structure in the planet Jupiter outer magnetosphere is discussed. A variety of theoretical models are developed to illuminate broad areas of consistency and conflict between theory and experiment. Two possible models of Jupiter's magnetosphere, a pulsar-like radial outflow model and an earth-like convection model, are examined. A compilation of the simple order of magnitude estimates derivable from the various models is provided.

  18. Major modes of short-term climate variability in the newly developed NUIST Earth System Model (NESM)

    NASA Astrophysics Data System (ADS)

    Cao, Jian; Wang, Bin; Xiang, Baoqiang; Li, Juan; Wu, Tianjie; Fu, Xiouhua; Wu, Liguang; Min, Jinzhong

    2015-05-01

    A coupled earth system model (ESM) has been developed at the Nanjing University of Information Science and Technology (NUIST) by using version 5.3 of the European Centre Hamburg Model (ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean (NEMO), and version 4.1 of the Los Alamos sea ice model (CICE). The model is referred to as NUIST ESM1 (NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring-fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific (CP)-ENSO and eastern Pacific (EP)-ENSO; however, the equatorial SST variability, biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden-Julian Oscillation (MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version (T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon-ENSO lead-lag correlation, spatial structures of the leading mode of the Asian-Australian monsoon rainfall variability, and the eastward propagation of the MJO.

  19. Phase transitions in MgSiO3 post-perovskite in super-Earth mantles

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Wentzcovitch, Renata M.; Wu, Shunqing; Ji, Min; Wang, Cai-Zhuang; Ho, Kai-Ming

    2017-11-01

    The highest pressure form of the major Earth-forming mantle silicate is MgSiO3 post-perovskite (PPv). Understanding the fate of PPv at TPa pressures is the first step for understanding the mineralogy of super-Earths-type exoplanets, arguably the most interesting for their similarities with Earth. Modeling their internal structure requires knowledge of stable mineral phases, their properties under compression, and major element abundances. Several studies of PPv under extreme pressures support the notion that a sequence of pressure induced dissociation transitions produce the elementary oxides SiO2 and MgO as the ultimate aggregation form at ∼3 TPa. However, none of these studies have addressed the problem of mantle composition, particularly major element abundances usually expressed in terms of three main variables, the Mg/Si and Fe/Si ratios and the Mg#, as in the Earth. Here we show that the critical compositional parameter, the Mg/Si ratio, whose value in the Earth's mantle is still debated, is a vital ingredient for modeling phase transitions and internal structure of super-Earth mantles. Specifically, we have identified new sequences of phase transformations, including new recombination reactions that depend decisively on this ratio. This is a new level of complexity that has not been previously addressed, but proves essential for modeling the nature and number of internal layers in these rocky mantles.

  20. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  1. Modelling the Climate - Greenland Ice Sheet Interaction in the Coupled Ice-sheet/Climate Model EC-EARTH - PISM

    NASA Astrophysics Data System (ADS)

    Yang, S.; Madsen, M. S.; Rodehacke, C. B.; Svendsen, S. H.; Adalgeirsdottir, G.

    2014-12-01

    Recent observations show that the Greenland ice sheet (GrIS) has been losing mass with an increasing speed during the past decades. Predicting the GrIS changes and their climate consequences relies on the understanding of the interaction of the GrIS with the climate system on both global and local scales, and requires climate model systems with an explicit and physically consistent ice sheet module. A fully coupled global climate model with a dynamical ice sheet model for the GrIS has recently been developed. The model system, EC-EARTH - PISM, consists of the EC-EARTH, an atmosphere, ocean and sea ice model system, and the Parallel Ice Sheet Model (PISM). The coupling of PISM includes a modified surface physical parameterization in EC-EARTH adapted to the land ice surface over glaciated regions in Greenland. The PISM ice sheet model is forced with the surface mass balance (SMB) directly computed inside the EC-EARTH atmospheric module and accounting for the precipitation, the surface evaporation, and the melting of snow and ice over land ice. PISM returns the simulated basal melt, ice discharge and ice cover (extent and thickness) as boundary conditions to EC-EARTH. This coupled system is mass and energy conserving without being constrained by any anomaly correction or flux adjustment, and hence is suitable for investigation of ice sheet - climate feedbacks. Three multi-century experiments for warm climate scenarios under (1) the RCP85 climate forcing, (2) an abrupt 4xCO2 and (3) an idealized 1% per year CO2 increase are performed using the coupled model system. The experiments are compared with their counterparts of the standard CMIP5 simulations (without the interactive ice sheet) to evaluate the performance of the coupled system and to quantify the GrIS feedbacks. In particular, the evolution of the Greenland ice sheet under the warm climate and its impacts on the climate system are investigated. Freshwater fluxes from the Greenland ice sheet melt to the Arctic

  2. Lunar shadow eclipse prediction models for the Earth orbiting spacecraft: Comparison and application to LEO and GEO spacecrafts

    NASA Astrophysics Data System (ADS)

    Srivastava, Vineet K.; Kumar, Jai; Kulshrestha, Shivali; Srivastava, Ashutosh; Bhaskar, M. K.; Kushvah, Badam Singh; Shiggavi, Prakash; Vallado, David A.

    2015-05-01

    A solar eclipse occurs when the Sun, Moon and Earth are aligned in such a way that shadow of the Moon falls on the Earth. The Moon's shadow also falls on the Earth orbiting spacecraft. In this case, the alignment of the Sun, Moon, and spacecraft is similar to that of the Sun, Moon, and Earth but this phenomenon is often referred as a lunar eclipse falling on the spacecraft. Lunar eclipse is not as regular in terms of times of occurrence, duration, and depth as the Earth shadow eclipse and number of its occurrence per orbital location per year ranges from zero to four with an average of two per year; a spacecraft may experience two to three lunar eclipses within a twenty-four hour period [2]. These lunar eclipses can cause severe spacecraft operational problems. This paper describes two lunar shadow eclipse prediction models using a projection map approach and a line of intersection method by extending the Earth shadow eclipse models described by Srivastava et al. [10,11] for the Earth orbiting spacecraft. The attractive feature of both models is that they are much easier to implement. Both mathematical models have been simulated for two Indian low Earth orbiting spacecrafts: Oceansat-2, Saral-1, and two geostationary spacecrafts: GSAT-10, INSAT-4CR. Results obtained by the models compare well with lunar shadow model given by Escobal and Robertson [12], and high fidelity commercial software package, Systems Tool Kit (STK) of AGI.

  3. Features of the impact of the solar wind diamagnetic structure on Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Parhomov, Vladimir; Borodkova, Natalia; Eselevich, Viktor; Eselevich, Maxim; Dmitriev, Aleksey; Chilikin, Vitaliy

    2017-12-01

    At Earth's orbit on June 28, 1999, there was a diamagnetic structure (DS) representing a filament with a uniquely high speed (about 900 km/s). We show that the filament is a part of the specific sporadic solar wind (SW) stream, which is characterized as a small interplanetary transient. We report the results of studies on the interaction between such a fast filament (DS) and Earth's magnetosphere. Around noon hours at daytime cusp latitudes, we recorded a powerful aurora in the UV band (shock aurora), which rapidly spread to the west and east. Ground-based observations of geo-magnetic field variations, auroral absorption, and auroras on the midnight meridian have shown the development of a powerful substorm-like disturbance (SLD) (AE∼1000 nT), whose origin is associated with the impact of the SW diamagnetic structure on the magnetosphere. The geostationary satellite GOES-8, which was in the midnight sector of the outer quasi capture region during SLD, recorded variations of the Bz and Bx geomagnetic components corresponding to the dipolization process.

  4. Starship Earth: A Model for Advising Environmental Discussions on College Radio.

    ERIC Educational Resources Information Center

    Rosengrant, Kim

    Because college radio offers a less structured environment, a natural habitat is created which provides for broadcasting experimental shows such as Starship Earth, an environmental radio show on East Stroudsburg University's (Pennsylvania) college radio station, WESS 90.3 FM. Environmental problems, issues, and solutions are discussed on the show.…

  5. A simple 3-D numerical model of thermal convection in Earth's growing inner core: on the possibility of the formation of the degree-one structure with lateral viscosity variations

    NASA Astrophysics Data System (ADS)

    Yoshida, M.

    2015-12-01

    An east-west hemispherically asymmetric structure for Earth's inner core has been suggested by various seismological evidence, but its origin is not clearly understood. Here, to investigate the possibility of an "endogenic origin" for the degree-one thermal/mechanical structure of the inner core, I performed new numerical simulations of thermal convection in the growing inner core. A setup value that controls the viscosity contrast between the inner core boundary and the interior of the inner core, ΔηT, was taken as a free parameter. Results show that the degree-one structure only appeared for a limited range of ΔηT; such a scenario may be possible but is not considered probable for the real Earth. The degree-one structure may have been realized by an "exogenous factor" due to the planetary-scale thermal coupling among the lower mantle, the outer core, and the inner core, not by an endogenic factor due to the internal rheological heterogeneity.

  6. Modeling and characterization of the Earth Radiation Budget Experiment (ERBE) nonscanner and scanner sensors

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Pandey, Dhirendra K.; Taylor, Deborah B.

    1989-01-01

    The Earth Radiation Budget Experiment (ERBE) is making high-absolute-accuracy measurements of the reflected solar and Earth-emitted radiation as well as the incoming solar radiation from three satellites: ERBS, NOAA-9, and NOAA-10. Each satellite has four Earth-looking nonscanning radiometers and three scanning radiometers. A fifth nonscanner, the solar monitor, measures the incoming solar radiation. The development of the ERBE sensor characterization procedures are described using the calibration data for each of the Earth-looking nonscanners and scanners. Sensor models for the ERBE radiometers are developed including the radiative exchange, conductive heat flow, and electronics processing for transient and steady state conditions. The steady state models are used to interpret the sensor outputs, resulting in the data reduction algorithms for the ERBE instruments. Both ground calibration and flight calibration procedures are treated and analyzed. The ground and flight calibration coefficients for the data reduction algorithms are presented.

  7. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-09-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  8. Earth Rings for Planetary Environment Control

    NASA Astrophysics Data System (ADS)

    Pearson, Jerome; Oldson, John; Levin, Eugene; Carroll, Joseph

    2002-01-01

    For most of its past, large parts of the Earth have experienced subtropical climates, with high sea levels and no polar icecaps. This warmer environment was punctuated 570, 280, and 3 million years ago with periods of glaciation that covered temperate regions with thick ice for millions of years. At the end of the current ice age, a warmer climate could flood coastal cities, even without human-caused global warming. In addition, asteroids bombard the Earth periodically, with impacts large enough to destroy most life on Earth, and the sun is warming inexorably. This paper proposes a concept to solve these problems simultaneously, by creating an artificial planetary ring about the Earth to shade it. Past proposals for space climate control have depended on gigantic engineering structures launched from Earth and placed in Earth orbit or at the Earth-Sun L1 libration point, requiring fabrication, large launch masses and expense, constant control, and repair. Our solution is to begin by using lunar material, and then mine and remove Earth-orbit-crossing asteroids and discard the tailings into Earth orbit, to form a broad, flat ring like those of Saturn. This solution is evaluated and compared with other alternatives. Such ring systems can persist for thousands of years, and can be maintained by shepherding satellites or by continual replenishment from new asteroids to replace the edges of the ring lost by diffusion. An Earth ring at R = 1.3-1.83 RE would shade only the equatorial regions, moderating climate extremes, and could reverse a century of global warming. It could also absorb particles from the radiation belts, making trips to high Earth orbit and GEO safer for humans and for electronics. It would also light the night many times as bright as the full moon. A preliminary design of the ring is developed, including its location, mass, composition, stability, and timescale required. A one-dimensional climate model is used to evaluate the Earth ring performance

  9. An assessment of crater erosional histories on the Earth and Mars using digital terrain models.

    NASA Astrophysics Data System (ADS)

    Paul, R. L.; Muller, J.-P.; Murray, J. B.

    The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and

  10. Hazard Mitigation Potential of Earth-Sheltered Residences

    DTIC Science & Technology

    1983-11-01

    the Unitld Stat ..Govetrnment Neither thu Unised Stfates Government nor any agency thereof, nor any of their employees, makes any warranty. expres or...of companies (Earth Shelter Corporation; Terra-Dome Corporation; Trn-Steel Structures) are providing franchise services including: (1) Construction...ABOVEGROUND VS EARTH-SHELTERED The assertion that earth-sheltered structures cost less or only a little more than above ground structures is often

  11. Spherical-earth Gravity and Magnetic Anomaly Modeling by Gauss-legendre Quadrature Integration

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J. (Principal Investigator)

    1981-01-01

    The anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical Earth for an arbitrary body represented by an equivalent point source distribution of gravity poles or magnetic dipoles were calculated. The distribution of equivalent point sources was determined directly from the coordinate limits of the source volume. Variable integration limits for an arbitrarily shaped body are derived from interpolation of points which approximate the body's surface envelope. The versatility of the method is enhanced by the ability to treat physical property variations within the source volume and to consider variable magnetic fields over the source and observation surface. A number of examples verify and illustrate the capabilities of the technique, including preliminary modeling of potential field signatures for Mississippi embayment crustal structure at satellite elevations.

  12. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  13. Dynamical modelling of river deltas on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Witek, Piotr P.; Czechowski, Leszek

    2015-01-01

    The surface of Titan hosts a unique Earth-like environment with lakes and rivers, and active 'hydrologic' cycle of methane. We investigate sediment transport in Titanian rivers and deposition in Titanian lakes with particular attention to formation of river deltas. The obtained results are compared with analogous terrestrial processes. The numerical model based on Navier-Stokes equations for depth-integrated two dimensional turbulent flow and additional equations for bed-load and suspended-load sediment transport was used in our research. It is found that transport of icy grains in Titanian rivers is more effective than silicate grains of the same size in terrestrial rivers for the same assumed total discharge. This effect is explained theoretically using dimensionless form of equations or comparing forces acting on the grains. Our calculations confirm previous results (Burr et al., 2006. Icarus. 181, 235-242). We calculate also models with organic sediments of different densities, namely 1500 and 800 kg m-3. We found substantial differences between materials of varying densities on Titan, but they are less pronounced than differences between Titan and Earth.

  14. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU

    1987-01-01

    Earth terrain covers were modeled as random media characterized by different dielectric constants and correlation functions. In order to model sea ice with brine inclusions and vegetation with row structures, the random medium is assumed to be anisotropic. A three layer model is used to simulate a vegetation field or a snow covered ice field with the top layer being snow or leaves, the middle layer being ice or trunks, and the bottom layer being sea water or ground. The strong fluctuation theory with the distorted Born approximation is applied to the solution of the radar backscattering coefficients.

  15. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  16. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  17. Structure and Magnetic Properties of Rare Earth Doped Transparent Alumina

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Neupane, Mahesh; Chantawansri, Tanya

    Recent experimental studies of rare earth (RE) doped alumina suggest that the RE induced novel phase-dependent structural and magnetic properties. Motivated by these efforts, the effects of RE doping of alpha and theta alumina on the local structure, magnetic properties, and phase stability have been examined in this first principles study. Although a direct correlation between the magnetic field dependent materials properties observed experimentally and calculated from first principles is not feasible because of the applied field and the scale, the internal magnetic properties and other properties of the doped materials are evaluated. The RE dopants are shown to increase the substitutional site volume as well as increasingly distort the site structure as a function of ionic radii. Doping both the alpha (stable) and theta (metastable) phases enhanced the relative stability of the theta phase. The energetic doping cost and internal magnetic moment were shown to be a function of the electronic configuration of the RE-dopant, with magnetic moment directly proportional to the number of unpaired electrons and doping cost being inversely related.

  18. Modelling the core magnetic field of the earth

    NASA Technical Reports Server (NTRS)

    Harrison, C. G. A.; Carle, H. M.

    1982-01-01

    It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.

  19. Effects of Earth's curvature in full-wave modeling of VLF propagation

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Lehtinen, N. G.; Inan, U. S.; Stanford VLF Group

    2011-12-01

    We show how to include curvature in the full-wave finite element approach to calculate ELF/VLF wave propagation in horizontally stratified earth-ionosphere waveguide. A general curvilinear stratified system is considered, and the numerical solutions of full-wave method in curvilinear system are compared with the analytic solutions in the cylindrical and spherical waveguides filled with an isotropic medium. We calculate the attenuation and height gain for modes in the Earth-ionosphere waveguide, taking into account the anisotropicity of ionospheric plasma, for different assumptions about the Earth's curvature, and quantify the corrections due to the curvature. The results are compared with the results of previous models, such as LWPC, as well as with ground and satellite observations, and show improved accuracy compared with full-wave method without including the curvature effect.

  20. A long time span relativistic precession model of the Earth

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Soffel, Michael H.; Tao, Jin-He; Han, Wen-Biao; Tang, Zheng-Hong

    2015-04-01

    A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic integrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with corresponding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ±1 Myr around J2000.0 are provided. In the interval ±2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. Supported by the National Natural Science Foundation of China.

  1. An improved model of the Earth's gravity field - GEM-T3

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Lerch, F. J.; Putney, B. H.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Pavlis, E. C.

    1992-01-01

    An improved model of the Earth's gravitational field is developed from a combination of conventional satellite tracking, satellite altimeter measurements, and surface gravimetric data (GEM-T3). This model gives improved performance for the computation of satellite orbital effects as well as a superior representation of the geoid from that achieved in any previous Goddard Earth Model. The GEM-T3 model uses altimeter data directly to define the orbits, geoid, and dynamic height fields. Altimeter data acquired during the GEOS-3 (1975-1976), SEASAT (1978), and GEOSAT (1986-1987) missions were used to compute GEM-T3. In order to accommodate the non-gravitational signal mapped by these altimeters, spherical harmonic models of the dynamic height of the ocean surface were recovered for each mission simultaneously with the gravitational field. The tracking data utilized in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The observational data base is highly dependent on SLR, but also includes TRANET Doppler, optical, S-Band average range-rate and satellite-to-satellite tracking acquired between ATS-6 and GEOS-3. The GEM-T3 model has undergone extensive error calibration.

  2. Developing an EarthCube Governance Structure for Big Data Preservation and Access

    NASA Astrophysics Data System (ADS)

    Leetaru, H. E.; Leetaru, K. H.

    2012-12-01

    The underlying vision of the NSF EarthCube initiative is of an enduring resource serving the needs of the earth sciences for today and the future. We must therefore view this effort through the lens of what the earth sciences will need tomorrow and on how the underlying processes of data compilation, preservation, and access interplay with the scientific processes within the communities EarthCube will serve. Key issues that must be incorporated into the EarthCube governance structure include authentication, retrieval, and unintended use cases, the emerging role of whole-corpus data mining, and how inventory, citation, and archive practices will impact the ability of scientists to use EarthCube's collections into the future. According to the National Academies, the US federal government spends over $140 billion dollars a year in support of the nation's research base. Yet, a critical issue confronting all of the major scientific disciplines in building upon this investment is the lack of processes that guide how data are preserved for the long-term, ensuring that studies can be replicated and that experimental data remains accessible as new analytic methods become available or theories evolve. As datasets are used years or even decades after their creation, far richer metadata is needed to describe the underlying simulation, smoothing algorithms or bounding parameters of the data collection process. This is even truer as data are increasingly used outside their intended disciplines, as geoscience researchers apply algorithms from one discipline to datasets from another, where their analytical techniques may make extensive assumptions about the data. As science becomes increasingly interdisciplinary and emerging computational approaches begin applying whole-corpus methodologies and blending multiple archives together, we are facing new data access modalities distinct from the needs of the past, drawing into focus the question of centralized versus distributed

  3. Adjoint-Based Sensitivity Kernels for Glacial Isostatic Adjustment in a Laterally Varying Earth

    NASA Astrophysics Data System (ADS)

    Crawford, O.; Al-Attar, D.; Tromp, J.; Mitrovica, J. X.; Austermann, J.; Lau, H. C. P.

    2017-12-01

    We consider a new approach to both the forward and inverse problems in glacial isostatic adjustment. We present a method for forward modelling GIA in compressible and laterally heterogeneous earth models with a variety of linear and non-linear rheologies. Instead of using the so-called sea level equation, which must be solved iteratively, the forward theory we present consists of a number of coupled evolution equations that can be straightforwardly numerically integrated. We also apply the adjoint method to the inverse problem in order to calculate the derivatives of measurements of GIA with respect to the viscosity structure of the Earth. Such derivatives quantify the sensitivity of the measurements to the model. The adjoint method enables efficient calculation of continuous and laterally varying derivatives, allowing us to calculate the sensitivity of measurements of glacial isostatic adjustment to the Earth's three-dimensional viscosity structure. The derivatives have a number of applications within the inverse method. Firstly, they can be used within a gradient-based optimisation method to find a model which minimises some data misfit function. The derivatives can also be used to quantify the uncertainty in such a model and hence to provide understanding of which parts of the model are well constrained. Finally, they enable construction of measurements which provide sensitivity to a particular part of the model space. We illustrate both the forward and inverse aspects with numerical examples in a spherically symmetric earth model.

  4. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Sun, Ying; Pickard, Chris J.; Needs, Richard J.; Wu, Qiang; Ma, Yanming

    2017-09-01

    Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H24 , H29 , and H32 , in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H32 clathrate structure of stoichiometry YH10 is predicted to be a potential room-temperature superconductor with an estimated Tc of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.

  5. Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity.

    PubMed

    Peng, Feng; Sun, Ying; Pickard, Chris J; Needs, Richard J; Wu, Qiang; Ma, Yanming

    2017-09-08

    Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H_{24}, H_{29}, and H_{32}, in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H_{32} clathrate structure of stoichiometry YH_{10} is predicted to be a potential room-temperature superconductor with an estimated T_{c} of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.

  6. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  7. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    ERIC Educational Resources Information Center

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  8. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  9. Earth system sensitivity inferred from Pliocene modelling and data

    USGS Publications Warehouse

    Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.

    2010-01-01

    Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  10. An improved Rosetta pedotransfer function and evaluation in earth system models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Schaap, M. G.

    2017-12-01

    Soil hydraulic parameters are often difficult and expensive to measure, leading to the pedotransfer functions (PTFs) an alternative to predict those parameters. Rosetta (Schaap et al., 2001, denoted as Rosetta1) are widely used PTFs, which is based on artificial neural network (ANN) analysis coupled with the bootstrap re-sampling method, allowing the estimation of van Genuchten water retention parameters (van Genuchten, 1980, abbreviated here as VG), saturated hydraulic conductivity (Ks), as well as their uncertainties. We present an improved hierarchical pedotransfer functions (Rosetta3) that unify the VG water retention and Ks submodels into one, thus allowing the estimation of uni-variate and bi-variate probability distributions of estimated parameters. Results show that the estimation bias of moisture content was reduced significantly. Rosetta1 and Posetta3 were implemented in the python programming language, and the source code are available online. Based on different soil water retention equations, there are diverse PTFs used in different disciplines of earth system modelings. PTFs based on Campbell [1974] or Clapp and Hornberger [1978] are frequently used in land surface models and general circulation models, while van Genuchten [1980] based PTFs are more widely used in hydrology and soil sciences. We use an independent global scale soil database to evaluate the performance of diverse PTFs used in different disciplines of earth system modelings. PTFs are evaluated based on different soil characteristics and environmental characteristics, such as soil textural data, soil organic carbon, soil pH, as well as precipitation and soil temperature. This analysis provides more quantitative estimation error information for PTF predictions in different disciplines of earth system modelings.

  11. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    NASA Astrophysics Data System (ADS)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  12. Climate Science: How Earth System Models are Reshaping the Science Policy Interface.

    NASA Technical Reports Server (NTRS)

    Ruane, Alex

    2015-01-01

    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  13. Earth-mass dark-matter haloes as the first structures in the early Universe.

    PubMed

    Diemand, J; Moore, B; Stadel, J

    2005-01-27

    The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).

  14. Mental models and other misconceptions in children's understanding of the earth.

    PubMed

    Panagiotaki, Georgia; Nobes, Gavin; Potton, Anita

    2009-09-01

    This study investigated the claim (e.g., Vosniadou & Brewer's, 1992) that children have naive "mental models" of the earth and believe, for example, that the earth is flat or hollow. It tested the proposal that children appear to have these misconceptions because they find the researchers' tasks and questions to be confusing and ambiguous. Participants were 6- and 7-year-olds (N=127) who were given either the mental model theorists' original drawing task or a new version in which the same instructions and questions were rephrased to minimize ambiguity and, thus, possible misinterpretation. In response to the new version, children gave substantially more indication of having scientific understanding and less of having naive mental models, suggesting that the misconceptions reported by the mental model theorists are largely methodological artifacts. There were also differences between the responses to the original version and those reported by Vosniadou and Brewer, indicating that other factors, such as cohort and cultural effects, are also likely to help explain the discrepant findings of previous research.

  15. Giant Impacts and Earth's Primordial Atmosphere

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2002-09-01

    Estimates of Earth's accretion timescale based on modeling (e.g. Wetherill 1990) and isotopic evidence (Halliday and Porcelli 2000) indicate that the Earth formed in 25-100 Myr. At least a portion of this accretion took place in the presence of the solar nebula. While the problem of nailing down the nebular lifetime remains open, observations of dust disks surrounding young stars and meteoritic evidence suggest that the gas disk existed and was involved in making planetary material for 10 Myr (e.g. Podosek & Cassen 1994, Trilling et al. 2001). The persistence of a remnant of the nebula's original gas disk during terrestrial planet accretion is certainly plausible. The existence of this remnant nebula has dynamical (Agnor & Ward 2002, Kominami & Ida 2002) and geochemical (Porcelli & Pepin 2000) implications for terrestrial planet formation. Nakazawa et al. (1985) explored the structure of Earth's primordial atmosphere as the solar nebula was dissipating. They found that even for low surface densities of nebular gas ( σ gas ~ 1 g cm-2 or ~0.1% of the minimum mass nebula), Earth can capture a significant primordial atmosphere directly from the nebula (i.e. total mass up to a few lunar masses, or ~ 105 times the current atmosphere). Such a massive primordial atmosphere may have played a dynamical role in the formation of the Moon (e.g. models of lunar capture have employed aerodynamic drag in Earth's atmosphere as the primary mechanism for reducing the Moon's orbital energy, Nakazawa et al. 1983). Conversely, the formation of the Moon may have played a role in removing Earth's primordial atmosphere. Giant impacts have been suggested as one possible mechanism that could accomplish global atmospheric removal (Ahrens 1993). We are using smooth particle hydrodynamics (SPH) to model the removal of Earth's primordial atmosphere via giant impact. We employ initial conditions similar to recent works on lunar formation (e.g. Canup & Asphaug 2001) but also include ideal gas

  16. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using

  17. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the

  18. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borgogno, D.; Califano, F.; Pegoraro, F.

    2015-03-15

    In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated doublemore » magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere.« less

  19. GrowYourIC: A Step Toward a Coherent Model of the Earth's Inner Core Seismic Structure

    NASA Astrophysics Data System (ADS)

    Lasbleis, Marine; Waszek, Lauren; Day, Elizabeth A.

    2017-11-01

    A complex inner core structure has been well established from seismic studies, showing radial and lateral heterogeneities at various length scales. Yet no geodynamic model is able to explain all the features observed. One of the main limits for this is the lack of tools to compare seismic observations and numerical models successfully. We use here a new Python tool called GrowYourIC to compare models of inner core structure. We calculate properties of geodynamic models of the inner core along seismic raypaths, for random or user-specified data sets. We test kinematic models which simulate fast lateral translation, superrotation, and differential growth. We explore first the influence on a real inner core data set, which has a sparse coverage of the inner core boundary. Such a data set is however able to successfully constrain the hemispherical boundaries due to a good sampling of latitudes. Combining translation and rotation could explain some of the features of the boundaries separating the inner core hemispheres. The depth shift of the boundaries, observed by some authors, seems unlikely to be modeled by a fast translation but could be produced by slow translation associated with superrotation.

  20. Toward an in-situ analytics and diagnostics framework for earth system models

    NASA Astrophysics Data System (ADS)

    Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen

    2017-04-01

    The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones

  1. A volatile rich Earth's core?

    NASA Astrophysics Data System (ADS)

    Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.

    2017-12-01

    The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.

  2. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  3. Interferometric Water Level Tilt Meter Development in Finland and Comparison with Combined Earth Tide and Ocean Loading Models

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Hannu

    2018-05-01

    A modern third-generation interferometric water level tilt meter was developed at the Finnish Geodetic Institute in 2000. The tilt meter has absolute scale and can do high-precision tilt measurements on earth tides, ocean tide loading and atmospheric loading. Additionally, it can be applied in various kinds of geodynamic and geophysical research. The principles and results of the historical 100-year-old Michelson-Gale tilt meter, as well as the development of interferometric water tube tilt meters of the Finnish Geodetic Institute, Finland, are reviewed. Modern Earth tide model tilt combined with Schwiderski ocean tide loading model explains the uncertainty in historical tilt observations by Michelson and Gale. Earth tide tilt observations in Lohja2 geodynamic station, southern Finland, are compared with the combined model earth tide and four ocean tide loading models. The observed diurnal and semidiurnal harmonic constituents do not fit well with combined models. The reason could be a result of the improper harmonic modelling of the Baltic Sea tides in those models.

  4. 3D climate-carbon modelling of the early Earth

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Le Hir, G.; Fluteau, F.; Forget, F.; Catling, D.

    2017-09-01

    We revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. Our resultsfavor cold or temperate climates with global mean temperatures between around 8°C (281 K) and 30°C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean.

  5. Rotationally driven 'zebra stripes' in Earth's inner radiation belt.

    PubMed

    Ukhorskiy, A Y; Sitnov, M I; Mitchell, D G; Takahashi, K; Lanzerotti, L J; Mauk, B H

    2014-03-20

    Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt.

  6. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa

  7. Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure

    NASA Astrophysics Data System (ADS)

    Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten

    2017-04-01

    A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.

  8. Eratosthenes Visits Middle School: Assessing the Ability of Students to Work with Models of the Earth

    ERIC Educational Resources Information Center

    Torres, Sergio; Powers, Judith L.

    2009-01-01

    In the exciting, "out of this world" activity described here, students measure the Earth using meter sticks while measuring their shadows in two distant locations. To obtain the size of the Earth, students discover the connection between the measurements of the shadows and a model of the spherical Earth following the method developed by…

  9. Comparisons of global topographic/isostatic models to the Earth's observed gravity field

    NASA Technical Reports Server (NTRS)

    Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian

    1988-01-01

    The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.

  10. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.; Thorbecke, J. W.

    2016-07-01

    We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.

  11. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  12. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  13. EarthRef.org: Exploring aspects of a Cyber Infrastructure in Earth Science and Education

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A.; Tauxe, L.; Constable, C.; Helly, J.

    2004-12-01

    EarthRef.org is the common host and (co-) developer of a range of earth science databases and IT resources providing a test bed for a Cyberinfrastructure in Earth Science and Education (CIESE). EarthRef.org data base efforts include in particular the Geochemical Earth Reference Model (GERM), the Magnetics Information Consortium (MagIC), the Educational Resources for Earth Science Education (ERESE) project, the Seamount Catalog, the Mid-Ocean Ridge Catalog, the Radio-Isotope Geochronology (RiG) initiative for CHRONOS, and the Microbial Observatory for Fe oxidizing microbes on Loihi Seamount (FeMO; the most recent development). These diverse databases are developed under a single database umbrella and webserver at the San Diego Supercomputing Center. All the data bases have similar structures, with consistent metadata concepts, a common database layout, and automated upload wizards. Shared resources include supporting databases like an address book, a reference/publication catalog, and a common digital archive making database development and maintenance cost-effective, while guaranteeing interoperability. The EarthRef.org CIESE provides a common umbrella for synthesis information as well as sample-based data, and it bridges the gap between science and science education in middle and high schools, validating the potential for a system wide data infrastructure in a CIESE. EarthRef.org experiences have shown that effective communication with the respective communities is a key part of a successful CIESE facilitating both utility and community buy-in. GERM has been particularly successful at developing a metadata scheme for geochemistry and in the development of a new electronic journal (G-cubed) that has made much progress in data publication and linkages between journals and community data bases. GERM also has worked, through editors and publishers, towards interfacing databases with the publication process, to accomplish a more scholarly and database friendly data

  14. ESPC Common Model Architecture Earth System Modeling Framework (ESMF) Software and Application Development

    DTIC Science & Technology

    2015-09-30

    originate from NASA , NOAA , and community modeling efforts, and support for creation of the suite was shared by sponsors from other agencies. ESPS...Framework (ESMF) Software and Application Development Cecelia Deluca NESII/CIRES/ NOAA Earth System Research Laboratory 325 Broadway Boulder, CO...Capability (NUOPC) was established between NOAA and Navy to develop a common software architecture for easy and efficient interoperability. The

  15. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  16. Nonlinear whistler wave model for lion roars in the Earth's magnetosheath

    NASA Astrophysics Data System (ADS)

    Dwivedi, N. K.; Singh, S.

    2017-09-01

    In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.

  17. Learning to Map the Earth and Planets using a Google Earth - based Multi-student Game

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Wild, S. C.; Dordevic, M.

    2011-12-01

    We report on progress in developing an interactive geological and geophysical mapping game employing the Google Earth, Google Moon, and Goole Mars virtual globes. Working in groups of four, students represent themselves on the Google Earth surface by selecting an avatar. One of the group drives to each field stop in a model vehicle using game-like controls. When they arrive at a field stop and get out of their field vehicle, students can control their own avatars' movements independently and can communicate with one another by text message. They are geo-fenced and receive automatic messages if they wander off target. Individual movements are logged and stored in a MySQL database for later analysis. Students collaborate on mapping decisions and submit a report to their instructor through a Javascript interface to the Google Earth API. Unlike real mapping, students are not restricted by geographic access and can engage in comparative mapping on different planets. Using newly developed techniques, they can also explore and map the sub-surface down to the core-mantle boundary. Virtual specimens created with a 3D scanner, Gigapan images of outcrops, and COLLADA models of mantle structures such as subducted lithospheric slabs all contribute to an engaging learning experience.

  18. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  19. Modelling of charged satellite motion in Earth's gravitational and magnetic fields

    NASA Astrophysics Data System (ADS)

    Abd El-Bar, S. E.; Abd El-Salam, F. A.

    2018-05-01

    In this work Lagrange's planetary equations for a charged satellite subjected to the Earth's gravitational and magnetic force fields are solved. The Earth's gravity, and magnetic and electric force components are obtained and expressed in terms of orbital elements. The variational equations of orbit with the considered model in Keplerian elements are derived. The solution of the problem in a fully analytical way is obtained. The temporal rate of changes of the orbital elements of the spacecraft are integrated via Lagrange's planetary equations and integrals of the normalized Keplerian motion obtained by Ahmed (Astron. J. 107(5):1900, 1994).

  20. Seismic Structures in the Earth's Inner Core Below Southeastern Asia

    NASA Astrophysics Data System (ADS)

    Krasnoshchekov, Dmitry; Kaazik, Petr; Kozlovskaya, Elena; Ovtchinnikov, Vladimir

    2016-05-01

    Documenting seismic heterogeneities in the Earth's inner core (IC) is important in terms of getting an insight into its history and dynamics. A valuable means for studying properties and spatial structure of such heterogeneities is provided by measurements of body waves refracted in the vicinity of the inner core boundary (ICB). Here, we investigate eastern hemisphere of the solid core by means of PKPBC-PKPDF differential travel times that sample depths from 140 to 360 km below its boundary. We study 292 polar and 133 equatorial residuals measured over the traces that probe roughly the same volume of the IC in both planes. Equatorial residuals show slight spatial variations in the sampled IC volume mostly below the level of 0.5 %, whereas polar residuals are up to three times as big, direction dependent and can exhibit higher local variations. The measurements reveal fast changes in seismic velocity within a restricted volume of the IC. We interpret the observations in terms of anisotropy and check against several anisotropy models few of which have been found capable of fitting the residuals scatter. We particularly quantify the model where a dipping discontinuity separates fully isotropic roof of the IC from its anisotropic body, whereas the depth of isotropy-anisotropy transition increases in southeast direction from 190 km below Southeastern Asia (off the coast of China) to 350 km beneath Australia. Another acceptable model cast in terms of localized anisotropic heterogeneities is valid if 33 largest polar measurements over the rays sampling a small volume below Southeastern Asia and the rest of polar data are treated separately. This model envisages almost isotropic eastern hemisphere of the IC at least down to the depth of 360 km below the ICB and constrains the anisotropic volume only to the ranges of North latitudes from 18° to 23°, East longitudes from 125° to 135° and depths exceeding 170 km. The anisotropy strength in either model is about 2

  1. Removal of lead from aqueous solutions with a treated spent bleaching earth.

    PubMed

    Mana, Mohamed; Ouali, Mohand Said; Lindheimer, Marc; Menorval, Louis Charles de

    2008-11-30

    A spent bleaching earth from an edible oil refinery has been treated by impregnation with a normal sodium hydroxide solution followed by mild thermal treatment (100 degrees C). The obtained material (TSBE) was washed, dried and characterized by X-ray diffraction, FTIR, SEM, BET and thermal analysis. The clay structure was not apparently affected by the treatment and the impregnated organic matter was quantitatively removed. We have investigated the sorption of lead on this material, the spent bleaching earth (SBE) and the virgin bleaching earth (VBE). The kinetic results fit the pseudo second-order kinetic model and the Weber & Morris, intraparticle diffusion model. The pH had effect on the sorption efficiency. The sorption isotherms followed the Langmuir model for various sorbent concentrations with good values of determination coefficient. A comparison between the results obtained with this material and those of the literature highlighted a good removal capacity of the treated spent bleaching earth at low cost.

  2. Model for the formation of the earth's core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.A.; Ringwood, A.E.; Jackson, I.

    1983-02-15

    The recent discovery of a phase transformation in Fe/sub 0.94/O by Jeanloz and Ahrens has allowed a more detailed development of a model for core formation involving oxygen as the principal light alloying element in the core. It is predicted, based on calculations, that an increasing pressure in the system FeO-MgO will result in a gradual exsolution of an almost pure high-pressure phase FeO(hpp), leaving an iron-depleted (Fe,Mg)O rocksalt (B1) phase. We also predict that FeO(hhp) will form a low-melting point alloy with Fe at high temperature and high pressure. On the basis of our interpretations, we have constructed amore » model for core segregation. Assuming the earth to have accreted from the primordial solar nebula as a relatively homogeneous mixture of metallic iron and silicate-oxide phases, core segregation involving oxygen would commence at a depth where pressure is sufficiently high to cause exsolution of FeO(hpp) from the rocksalt phase, and temperature is sufficiently high to allow formation of an Fe-FeO(hpp) melt. A gravitational instability arises, leading to vertical differentiation of the earth as molten blobs of the metal sink downwards to form the core and the residual depleted silicate material coalesces to form large bodies which rise diapirically upwards to form the mantle.« less

  3. Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris

    2001-01-01

    Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.

  4. Models of protocellular structures, functions and evolution

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; New, Michael H.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The central step in the origin of life was the emergence of organized structures from organic molecules available on the early earth. These predecessors to modern cells, called 'proto-cells,' were simple, membrane bounded structures able to maintain themselves, grow, divide, and evolve. Since there is no fossil record of these earliest of life forms, it is a scientific challenge to discover plausible mechanisms for how these entities formed and functioned. To meet this challenge, it is essential to create laboratory models of protocells that capture the main attributes associated with living systems, while remaining consistent with known, or inferred, protobiological conditions. This report provides an overview of a project which has focused on protocellular metabolism and the coupling of metabolism to energy transduction. We have assumed that the emergence of systems endowed with genomes and capable of Darwinian evolution was preceded by a pre-genomic phase, in which protocells functioned and evolved using mostly proteins, without self-replicating nucleic acids such as RNA.

  5. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    NASA Astrophysics Data System (ADS)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  6. A New Discrete Element Sea-Ice Model for Earth System Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Adrian Keith

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooledmore » water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).« less

  7. Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?

    NASA Astrophysics Data System (ADS)

    Cobden, L. J.

    2017-12-01

    Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.

  8. Mode and Intermediate Waters in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnanadesikan, Anand; Sarmiento, Jorge L.

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  9. Double-reconnected magnetic structures driven by Kelvin-Helmholtz vortices at the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco

    2015-11-01

    In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.

  10. Outgassing on stagnant-lid super-Earths

    NASA Astrophysics Data System (ADS)

    Dorn, C.; Noack, L.; Rozel, A. B.

    2018-06-01

    Aims: We explore volcanic CO2-outgassing on purely rocky, stagnant-lid exoplanets of different interior structures, compositions, thermal states, and age. We focus on planets in the mass range of 1-8 M⊕ (Earth masses). We derive scaling laws to quantify first- and second-order influences of these parameters on volcanic outgassing after 4.5 Gyr of evolution. Methods: Given commonly observed astrophysical data of super-Earths, we identify a range of possible interior structures and compositions by employing Bayesian inference modeling. The astrophysical data comprise mass, radius, and bulk compositional constraints; ratios of refractory element abundances are assumed to be similar to stellar ratios. The identified interiors are subsequently used as input for two-dimensional (2D) convection models to study partial melting, depletion, and outgassing rates of CO2. Results: In total, we model depletion and outgassing for an extensive set of more than 2300 different super-Earth cases. We find that there is a mass range for which outgassing is most efficient ( 2-3 M⊕, depending on thermal state) and an upper mass where outgassing becomes very inefficient ( 5-7 M⊕, depending on thermal state). At small masses (below 2-3 M⊕) outgassing positively correlates with planet mass, since it is controlled by mantle volume. At higher masses (above 2-3 M⊕), outgassing decreases with planet mass, which is due to the increasing pressure gradient that limits melting to shallower depths. In summary, depletion and outgassing are mainly influenced by planet mass and thermal state. Interior structure and composition only moderately affect outgassing rates. The majority of outgassing occurs before 4.5 Gyr, especially for planets below 3 M⊕. Conclusions: We conclude that for stagnant-lid planets, (1) compositional and structural properties have secondary influence on outgassing compared to planet mass and thermal state, and (2) confirm that there is a mass range for which

  11. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    NASA Astrophysics Data System (ADS)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  12. A geostationary Earth orbit satellite model using Easy Java Simulation

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.

  13. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  14. A laboratory model for solidification of Earth's core

    NASA Astrophysics Data System (ADS)

    Bergman, Michael I.; Macleod-Silberstein, Marget; Haskel, Michael; Chandler, Benjamin; Akpan, Nsikan

    2005-11-01

    To better understand the influence of rotating convection in the outer core on the solidification of the inner core we have constructed a laboratory model for solidification of Earth's core. The model consists of a 15 cm radius hemispherical acrylic tank concentric with a 5 cm radius hemispherical aluminum heat exchanger that serves as the incipient inner core onto which we freeze ice from salt water. Long exposure photographs of neutrally buoyant particles in illuminated planes suggest reduction of flow parallel to the rotation axis. Thermistors in the tank near the heat exchanger show that in experiments with rotation the temperature near the pole is lower than near the equator, unlike for control experiments without rotation or with a polymer that increases the fluid viscosity. The photographs and thermistors suggest that our observation that ice grows faster near the pole than near the equator for experiments with rotation is a result of colder water not readily convecting away from the pole. Because of the reversal of the thermal gradient, we expect faster equatorial solidification in the Earth's core. Such anisotropy in solidification has been suggested as a cause of inner core elastic (and attenuation) anisotropy, though the plausibility of this suggestion will depend on the core Nusselt number and the slope of the liquidus, and the effects of post-solidification deformation. Previous experiments on hexagonal close-packed alloys such as sea ice and zinc-tin have shown that fluid flow in the melt can result in a solidification texture transverse to the solidification direction, with the texture depending on the nature of the flow. A comparison of the visualized flow and the texture of columnar ice crystals in thin sections from these experiments confirms flow-induced transverse textures. This suggests that the convective pattern at the base of the outer core is recorded in the texture of the inner core, and that outer core convection might contribute to the

  15. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    NASA Astrophysics Data System (ADS)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  16. The EarthCARE Simulator (Invited)

    NASA Astrophysics Data System (ADS)

    Donovan, D. P.; van Zadellhoff, G.; Lajas, D.; Eisinger, M.; Franco, R.

    2009-12-01

    stored) and the relevant wavelength dependent optical properties are stored in a separate database. This helps insure that all the instruments involved in the simulation are treated in a consistent fashion and that the physical relationships between the various measurements are realistically captured (something that using instrument specific parameterizations relationships can not guarantee). As a consequence, ECSIM's modular structure makes it straightforward to add new instruments (thus expanding ECSIM beyond the EarthCARE instrument suite) and also makes ECSIM well-suited for physically based retrieval algorithm development. In this talk, we will introduce ECSIM and emphasize the philosophy behind its design. We will also give a brief overview on the various default models. Finally, we will present several examples of how ECSIM can and is being used for purposes ranging from general radiative transfer calculations to instrument performance estimation and synergistic algorithm development and characterization.

  17. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalizationmore » in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)« less

  18. Alkaline earth metallocenes coordinated with ester pendants: synthesis, structural characterization, and application in metathesis reactions.

    PubMed

    Li, Heng; Zhang, Wen-Xiong; Xi, Zhenfeng

    2013-09-16

    A variety of ester-substituted cyclopentadiene derivatives have been synthesized by one-pot reactions of 1,4-dilithio-1,3-butadienes, CO, and acid chlorides. Direct deprotonation of the ester-substituted cyclopentadienes with Ae[N(SiMe3 )2 ]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single-crystal X-ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply-substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half-sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply-substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition-metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Particle packing from an earth science viewpoint

    NASA Astrophysics Data System (ADS)

    Rogers, C. D. F.; Dijkstra, T. A.; Smalley, I. J.

    1994-04-01

    Particle packings are relevant to many aspects of the Earth sciences, and there is a long history of the study of packings from an Earth science viewpoint. Packings have also been studied in connection with other subjects and disciplines. Allen (1982) produced a major review which provides a solid base for Earth science related studies. This review complements Allen's work and in particular focuses on advances in the study of random packings over the last ten years. Transitions from packing to packing may be as important as the packings themselves, and possibly easier to model. This paper places emphasis on certain neglected works, in particular Morrow and Graves (1969) and the packing transition envelope, Kahn (1956) and the measurement of packing parameters, Griffiths (1962) on packings in one-dimension, and Getis and Boots (1978) on packings in two dimensions. Certain packing problems are relevant to current areas of study including structure collapse in loess (hydroconsolidation), flowslides in very sensitive soils, wind erosion, jewel quality in opals and the structure and functions of sand dunes. The region where interparticle forces become active (particles < 200 μm) is considered and the implications for packing are examined.

  20. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Charlotte Anne

    We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combiningmore » gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.« less

  1. Imaging the Earth's anisotropic structure with Bayesian Inversion of fundamental and higher mode surface-wave dispersion data

    NASA Astrophysics Data System (ADS)

    Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas

    2017-04-01

    We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.

  2. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  3. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  4. Development of a model to compute the extension of life supporting zones for Earth-like exoplanets.

    PubMed

    Neubauer, David; Vrtala, Aron; Leitner, Johannes J; Firneis, Maria G; Hitzenberger, Regina

    2011-12-01

    A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.

  5. Thermal evolution of the earth

    NASA Technical Reports Server (NTRS)

    Spohn, T.

    1984-01-01

    The earth's heat budget and models of the earth's thermal evolution are discussed. Sources of the planetary heat are considered and modes of heat transport are addressed, including conduction, convection, and chemical convection. Thermal and convectional models of the earth are covered, and models of thermal evolution are discussed in detail, including changes in the core, the influence of layered mantle convection on the thermal evolution, and the effect of chemical differentiation on the continents.

  6. Spherical-earth gravity and magnetic anomaly modeling by Gauss-Legendre quadrature integration

    NASA Technical Reports Server (NTRS)

    Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.; Luca, A. J.

    1981-01-01

    Gauss-Legendre quadrature integration is used to calculate the anomalous potential of gravity and magnetic fields and their spatial derivatives on a spherical earth. The procedure involves representation of the anomalous source as a distribution of equivalent point gravity poles or point magnetic dipoles. The distribution of equivalent point sources is determined directly from the volume limits of the anomalous body. The variable limits of integration for an arbitrarily shaped body are obtained from interpolations performed on a set of body points which approximate the body's surface envelope. The versatility of the method is shown by its ability to treat physical property variations within the source volume as well as variable magnetic fields over the source and observation surface. Examples are provided which illustrate the capabilities of the technique, including a preliminary modeling of potential field signatures for the Mississippi embayment crustal structure at 450 km.

  7. Radially fractured domes: A comparison of Venus and the Earth

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1993-01-01

    Radially fractured domes are large, tectonic and topographic features discovered on the surface of Venus by the Magellan spacecraft. They are thought to be due to uplift over mantle diapirism, and to date are known to occur only on Venus. Since Venus and the Earth are grossly similar in size, composition and structure, we seek to understand why these features have not been seen on the Earth. We model the uplift and fracturing over a mantle diapir as functions of lithospheric thickness and diapir size and depth. We find that lithospheres of the same thickness on the Earth and Venus should respond similarly to the same sized diapir, and that radially fractured domes should form most readily in thin oceanic lithospheres on Earth if diapiric activity is similar on the two planets. However, our current knowledge of the Earth's oceanic floors is insufficient to confirm or deny the presence of radially fractured domes. We compute the expected dimensions for these features on the Earth and suggest a search for them to determine whether mantle diapirism operates similarly on the Earth and Venus.

  8. Effective Coulomb force modeling for spacecraft in Earth orbit plasmas

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.; Stiles, Laura A.; Schaub, Hanspeter

    2014-07-01

    Coulomb formation flight is a concept that utilizes electrostatic forces to control the separations of close proximity spacecraft. The Coulomb force between charged bodies is a product of their size, separation, potential and interaction with the local plasma environment. A fast and accurate analytic method of capturing the interaction of a charged body in a plasma is shown. The Debye-Hückel analytic model of the electrostatic field about a charged sphere in a plasma is expanded to analytically compute the forces. This model is fitted to numerical simulations with representative geosynchronous and low Earth orbit (GEO and LEO) plasma environments using an effective Debye length. This effective Debye length, which more accurately captures the charge partial shielding, can be up to 7 times larger at GEO, and as great as 100 times larger at LEO. The force between a sphere and point charge is accurately captured with the effective Debye length, as opposed to the electron Debye length solutions that have errors exceeding 50%. One notable finding is that the effective Debye lengths in LEO plasmas about a charged body are increased from centimeters to meters. This is a promising outcome, as the reduced shielding at increased potentials provides sufficient force levels for operating the electrostatically inflated membrane structures concept at these dense plasma altitudes.

  9. Role of structure imperfection in the formation of the magnetotransport properties of rare-earth manganites with a perovskite structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashchenko, A. V., E-mail: alpash@mail.ru; Pashchenko, V. P.; Prokopenko, V. K.

    2017-01-15

    The structure, the structure imperfection, and the magnetoresistance, magnetotransport, and microstructure properties of rare-earth perovskite La{sub 0.3}Ln{sub 0.3}Sr{sub 0.3}Mn{sub 1.1}O{sub 3–δ} manganites are studied by X-ray diffraction, thermogravimetry, electrical resistivity measurement, magnetic, {sup 55}Mn NMR, magnetoresistance measurement, and scanning electron microscopy. It is found that the structure imperfection increases, and the symmetry of a rhombohedrally distorted R3̅c perovskite structure changes into its pseudocubic type during isovalent substitution for Ln = La{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, or Eu{sup 3+} when the ionic radius of an A cation decreases. Defect molar formulas are determined for a real perovskite structure,more » which contains anion and cation vacancies. The decrease in the temperatures of the metal–semiconductor (T{sub ms}) and ferromagnet–paramagnet (T{sub C}) phase transitions and the increase in electrical resistivity ρ and activation energy E{sub a} with increasing serial number of Ln are caused by an increase in the concentration of vacancy point defects, which weaken the double exchange 3d{sup 4}(Mn{sup 3+})–2p{sup 6}(O{sup 2–})–3d{sup 3}(Mn{sup 4+})–V{sup (a)}–3d{sup 4}(Mn{sup 3+}). The crystal structure of the compositions with Ln = La contains nanostructured planar clusters, which induce an anomalous magnetic hysteresis at T = 77 K. Broad and asymmetric {sup 55}Mn NMR spectra support the high-frequency electronic double exchange Mn{sup 3+}(3d{sup 4}) ↔ O{sup 2–}(2p{sup 6}) ↔ Mn{sup 4+}(3d{sup 3}) and indicate a heterogeneous surrounding of manganese by other ions and vacancies. A correlation is revealed between the tunneling magnetoresistance effect and the crystallite size. A composition–structure imperfection–property experimental phase diagram is plotted. This diagram supports the conclusion about a strong influence of structure imperfection on the formation of the

  10. Snow in Earth System Models: Recent Progress and Future Challenges

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Slater, A. G.

    2016-12-01

    Snow is the most variable of terrestrial boundary conditions. Some 50 million km^2 of the Northern Hemisphere typically sees periods of accumulation and ablation in the annual cycle. The wonderous properties of snow, such as high albedo, thermal insulation and its ability to act as a water store make it an integral part of the global climate system. Earliest inclusions of snow within climate models were simple adjustments to albedo and a moisture store. Modern Earth Syetem Models now represent snow through a myriad of model architectures and parameterizations that span a broad range of complexity. Understanding the impacts of modeling decisions upon simulation of snow and other Earth System components (either directly or via feedbacks) is an ongoing area of research. Snow models are progressing with multi-layer representations and capabilities such as complex albedo schemes that include contaminants. While considerable advances have been made, numerous challenges also remain. Simply getting a grasp on the mass of snow (seasonal or permanent) has proved more difficult than expected over the past 30 years. Snow interactions with vegetation has improved but the details of vegetation masking and emergence are still limited. Inclusion of blowing snow processes, in terms of transport and sublimation, is typically rare and sublimation remains a difficult quantity to measure. Contemplation of snow crystal form within models and integration with radiative transfer schemes for better understanding of full spectrum interations (from UV to long microwave) may simultaneously advance simulation and remote sensing. A series of international modeling experiments and directed field campaigns are planned in the near future with the aim of pushing our knowledge forward.

  11. The Computation of Global Viscoelastic Co- and Post-seismic Displacement in a Realistic Earth Model by Straightforward Numerical Inverse Laplace Integration

    NASA Astrophysics Data System (ADS)

    Tang, H.; Sun, W.

    2016-12-01

    The theoretical computation of dislocation theory in a given earth model is necessary in the explanation of observations of the co- and post-seismic deformation of earthquakes. For this purpose, computation theories based on layered or pure half space [Okada, 1985; Okubo, 1992; Wang et al., 2006] and on spherically symmetric earth [Piersanti et al., 1995; Pollitz, 1997; Sabadini & Vermeersen, 1997; Wang, 1999] have been proposed. It is indicated that the compressibility, curvature and the continuous variation of the radial structure of Earth should be simultaneously taken into account for modern high precision displacement-based observations like GPS. Therefore, Tanaka et al. [2006; 2007] computed global displacement and gravity variation by combining the reciprocity theorem (RPT) [Okubo, 1993] and numerical inverse Laplace integration (NIL) instead of the normal mode method [Peltier, 1974]. Without using RPT, we follow the straightforward numerical integration of co-seismic deformation given by Sun et al. [1996] to present a straightforward numerical inverse Laplace integration method (SNIL). This method is used to compute the co- and post-seismic displacement of point dislocations buried in a spherically symmetric, self-gravitating viscoelastic and multilayered earth model and is easy to extended to the application of geoid and gravity. Comparing with pre-existing method, this method is relatively more straightforward and time-saving, mainly because we sum associated Legendre polynomials and dislocation love numbers before using Riemann-Merlin formula to implement SNIL.

  12. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  13. Soil Structure - A Neglected Component of Land-Surface Models

    NASA Astrophysics Data System (ADS)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  14. Mesoscale weather and climate modeling with the global non-hydrostatic Goddard Earth Observing System Model (GEOS-5) at cloud-permitting resolutions

    NASA Astrophysics Data System (ADS)

    Putman, W. M.; Suarez, M.

    2009-12-01

    The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.

  15. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling

    NASA Astrophysics Data System (ADS)

    Baatz, Roland; Sullivan, Pamela L.; Li, Li; Weintraub, Samantha R.; Loescher, Henry W.; Mirtl, Michael; Groffman, Peter M.; Wall, Diana H.; Young, Michael; White, Tim; Wen, Hang; Zacharias, Steffen; Kühn, Ingolf; Tang, Jianwu; Gaillardet, Jérôme; Braud, Isabelle; Flores, Alejandro N.; Kumar, Praveen; Lin, Henry; Ghezzehei, Teamrat; Jones, Julia; Gholz, Henry L.; Vereecken, Harry; Van Looy, Kris

    2018-05-01

    Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.

  16. Progress in Earth System Modeling since the ENIAC Calculation

    NASA Astrophysics Data System (ADS)

    Fung, I.

    2009-05-01

    The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.

  17. Making interdisciplinary solid Earth modeling and analysis tools accessible in a diverse undergraduate and graduate classroom

    NASA Astrophysics Data System (ADS)

    Becker, T. W.

    2011-12-01

    class has been taught several times at USC to a broad audience of Earth science students with very diverse levels of exposure to math and physics. It is our goal to bring everyone up to speed and empower students, and we have seen structural geology students with very little exposure to math go on to construct their own numerical models of pTt-paths in a core-complex setting. This exemplifies the goal of teaching students to both be able to put together simple numerical models from scratch, and, perhaps more importantly, to truly understand the basic concepts, capabilities, and pitfalls of the more powerful community codes that are being increasingly used. SEATREE and the Numerical Methods class material are freely available at geodynamics.usc.edu/~becker.

  18. Active earth pressure model tests versus finite element analysis

    NASA Astrophysics Data System (ADS)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  19. Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography

    NASA Astrophysics Data System (ADS)

    Bunge, Hans-Peter

    2002-08-01

    Earth's mantle overturns itself about once every 200 Million years (myrs). Prima facie evidence for this overturn is the motion of tectonic plates at the surface of the Earth driving the geologic activity of our planet. Supporting evidence also comes from seismic tomograms of the Earth's interior that reveal the convective currents in remarkable clarity. Much has been learned about the physics of solid state mantle convection over the past two decades aided primarily by sophisticated computer simulations. Such simulations are reaching the threshold of fully resolving the convective system globally. In this talk we will review recent progress in mantle dynamics studies. We will then turn our attention to the fundamental question of whether it is possible to explicitly reconstruct mantle flow back in time. This is a classic problem of history matching, amenable to control theory and data assimilation. The technical advances that make such approach feasible are dramatically increasing compute resources, represented for example through Beowulf clusters, and new observational initiatives, represented for example through the US-Array effort that should lead to an order-of-magnitude improvement in our ability to resolve Earth structure seismically below North America. In fact, new observational constraints on deep Earth structure illustrate the growing importance of of improving our data assimilation skills in deep Earth models. We will explore data assimilation through high resolution global adjoint models of mantle circulation and conclude that it is feasible to reconstruct mantle flow back in time for at least the past 100 myrs.

  20. The distribution of seismic velocities and attenuation in the earth. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hart, R. S.

    1977-01-01

    Estimates of the radial distribution of seismic velocities and density and of seismic attenuation within the earth are obtained through inversion of body wave, surface wave, and normal mode data. The effect of attenuation related dispersion on gross earth structure, and on the reliability of eigenperiod identifications is discussed. The travel time baseline discrepancies between body waves and free oscillation models are examined and largely resolved.

  1. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  2. Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit

    DTIC Science & Technology

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a

  3. Using Google Earth to Explore Strain Rate Models of Southern California

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Bell, E. A.; Holt, W. E.

    2007-12-01

    A series of strain rate models for the Transverse Ranges of southern California were developed based on Quaternary fault slip data and geodetic data from high precision GPS stations in southern California. Pacific-North America velocity boundary conditions are applied for all models. Topography changes are calculated using the model dilatation rates, which predict crustal thickness changes under the assumption of Airy isostasy and a specified rate of crustal volume loss through erosion. The models were designed to produce graphical and numerical output representing the configuration of the region from 3 million years ago to 3 million years into the future at intervals of 50 thousand years. Using a North American reference frame, graphical output for the topography and faults and numerical output for locations of faults and points on the crust marked by the locations on cities were used to create data in KML format that can be used in Google Earth to represent time intervals of 50 thousand years. As markers familiar to students, the cities provide a geographic context that can be used to quantify crustal movement, using the Google Earth ruler tool. By comparing distances that markers for selected cities have moved in various parts of the region, students discover that the greatest amount of crustal deformation has occurred in the vicinity of the boundary between the North American and Pacific plates. Students can also identify areas of compression or extension by finding pairs of city markers that have converged or diverged, respectively, over time. The Google Earth layers also reveal that faults that are not parallel to the plate boundary have tended to rotate clockwise due to the right lateral motion along the plate boundary zone. KML TimeSpan markup was added to two versions of the model, enabling the layers to be displayed in an automatic sequenced loop for a movie effect. The data is also available as QuickTime (.mov) and Graphics Interchange Format (.gif

  4. Hands On Earth Science.

    ERIC Educational Resources Information Center

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  5. Modeling the blockage of Lg waves from 3-D variations in crustal structure

    NASA Astrophysics Data System (ADS)

    Sanborn, Christopher J.; Cormier, Vernon F.

    2018-05-01

    Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.

  6. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Truncation effects in computing free wobble/nutation modes explored using a simple Earth model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, Behnam; Rochester, Michael G.; Rogers, Christopher M.

    2017-06-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincaré problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode is found to excellent accuracy. The computed periods of the Chandler wobble and free core nutation are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 ± 1 sd, as more terms are included, with no guarantee that its proximity to earlier values is other than fortuitous

  8. Truncation Effects in Computing Free Wobble/Nutation Modes Explored Using a Simple Earth Model

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Rochester, M. G.; Rogers, C. M.

    2016-12-01

    The displacement field accompanying the wobble/nutation of the Earth is conventionally represented by an infinite chain of toroidal and spheroidal vector spherical harmonics, coupled by rotation and ellipticity. Numerical solutions for the eigenperiods require truncation of that chain, and the standard approaches using the linear momentum description (LMD) of deformation during wobble/nutation have truncated it at very low degrees, usually degree 3 or 4, and at most degree 5. The effects of such heavy truncation on the computed eigenperiods have hardly been examined. We here investigate the truncation effects on the periods of the free wobble/nutation modes using a simplified Earth model consisting of a homogeneous incompressible inviscid liquid outer core with a rigid (but not fixed) inner core and mantle. A novel Galerkin method is implemented using a Clairaut coordinate system to solve the classic Poincare problem in the liquid core and, to close the problem, we use the Lagrangean formulation of the Liouville equation for each of the solid parts of the Earth model. We find that, except for the free inner core nutation (FICN), the periods of the free rotational modes converge rather quickly. The period of the tiltover mode (TOM) is found to excellent accuracy. The computed periods of the Chandler wobble (CW) and free core nutation (FCN) are nearly identical to the values cited in the literature for similar Earth models, but that for the inner core wobble (ICW) is slightly different. Truncation at low-degree harmonics causes the FICN period to fluctuate over a range as large as 90 sd, with different values at different truncation levels. For example, truncation at degree 6 gives a period of 752 sd (almost identical with the value cited in the literature for such an Earth model) but truncation at degree 24 is required to obtain convergence, and the resulting period is 746 sd, with no guarantee that its proximity to earlier values is other than fortuitous. We

  9. Ground-state properties of rare-earth metals: an evaluation of density-functional theory.

    PubMed

    Söderlind, Per; Turchi, P E A; Landa, A; Lordi, V

    2014-10-15

    The rare-earth metals have important technological applications due to their magnetic properties, but are scarce and expensive. Development of high-performance magnetic materials with less rare-earth content is desired, but theoretical modeling is hampered by complexities of the rare earths electronic structure. The existence of correlated (atomic-like) 4f electrons in the vicinity of the valence band makes any first-principles theory challenging. Here, we apply and evaluate the efficacy of density-functional theory for the series of lanthanides (rare earths), investigating the influence of the electron exchange and correlation functional, spin-orbit interaction, and orbital polarization. As a reference, the results are compared with those of the so-called 'standard model' of the lanthanides in which electrons are constrained to occupy 4f core states with no hybridization with the valence electrons. Some comparisons are also made with models designed for strong electron correlations. Our results suggest that spin-orbit coupling and orbital polarization are important, particularly for the magnitude of the magnetic moments, and that calculated equilibrium volumes, bulk moduli, and magnetic moments show correct trends overall. However, the precision of the calculated properties is not at the level of that found for simpler metals in the Periodic Table of Elements, and the electronic structures do not accurately reproduce x-ray photoemission spectra.

  10. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  11. Earth Global Reference Atmospheric Model (GRAM99): Short Course

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2007-01-01

    Earth-GRAM is a FORTRAN software package that can run on a variety of platforms including PC's. For any time and location in the Earth's atmosphere, Earth-GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc.. Dispersions (perturbations) of these parameters are also provided and have realistic correlations, means, and variances - useful for Monte Carlo analysis. Earth-GRAM is driven by observations including a tropospheric database available from the National Climatic Data Center. Although Earth-GRAM can be run in a "stand-alone" mode, many users incorporate it into their trajectory codes. The source code is distributed free-of-charge to eligible recipients.

  12. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    ERIC Educational Resources Information Center

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  13. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in

  14. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    NASA Astrophysics Data System (ADS)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  15. Comparative Analysis of Models of the Earth's Gravity: 3. Accuracy of Predicting EAS Motion

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. D.; Berland, V. E.; Wiebe, Yu. S.; Glamazda, D. V.; Kajzer, G. T.; Kolesnikov, V. I.; Khremli, G. P.

    2002-05-01

    This paper continues a comparative analysis of modern satellite models of the Earth's gravity which we started in [6, 7]. In the cited works, the uniform norms of spherical functions were compared with their gradients for individual harmonics of the geopotential expansion [6] and the potential differences were compared with the gravitational accelerations obtained in various models of the Earth's gravity [7]. In practice, it is important to know how consistently the EAS motion is represented by various geopotential models. Unless otherwise stated, a model version in which the equations of motion are written using the classical Encke scheme and integrated together with the variation equations by the implicit one-step Everhart's algorithm [1] was used. When calculating coordinates and velocities on the integration step (at given instants of time), the approximate Everhart formula was employed.

  16. Ancient and Medieval Earth in Armenia

    NASA Astrophysics Data System (ADS)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  17. The Effects of Earth Science Programs on Student Knowledge and Interest in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, A.

    2016-12-01

    Ariana Wilson, Chris Skinner, Chris Poulsen Abstract For many years, academic programs have been in place for the instruction of young students in the earth sciences before they undergo formal training in high school or college. However, there has been little formal assessment of the impacts of these programs on student knowledge of the earth sciences and their interest in continuing with earth science. On August 6th-12th 2016 I will attend the University of Michigan's annual Earth Camp, where I will 1) ascertain high school students' knowledge of earth science-specifically atmospheric structure and wind patterns- before and after Earth Camp, 2) record their opinions about earth science before and after Earth Camp, and 3) record how the students feel about how the camp was run and what could be improved. I will accomplish these things through the use of surveys asking the students questions about these subjects. I expect my results will show that earth science programs like Earth Camp deepen students' knowledge of and interest in earth science and encourage them to continue their study of earth science in the future. I hope these results will give guidance on how to conduct future learning programs and how to recruit more students to become earth scientists in the future.

  18. Expected Improvements in VLBI Measurements of the Earth's Orientation

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    Measurements of the Earth s orientation since the 1970s using space geodetic techniques have provided a continually expanding and improving data set for studies of the Earth s structure and the distribution of mass and angular momentum. The accuracy of current one-day measurements is better than 100 microarcsec for the motion of the pole with respect to the celestial and terrestrial reference frames and better than 3 microsec for the rotation around the pole. VLBI uniquely provides the three Earth orientation parameters (nutation and UTI) that relate the Earth to the extragalactic celestial reference frame. The accuracy and resolution of the VLBI Earth orientation time series can be expected to improve substantially in the near future because of refinements in the realization of the celestial reference frame, improved modeling of the troposphere and non-linear station motions, larger observing networks, optimized scheduling, deployment of disk-based Mark V recorders, full use of Mark IV capabilities, and e-VLBI. More radical future technical developments will be discussed.

  19. Researche of the Earth's crust structure with powerful vibrational controlled sources

    NASA Astrophysics Data System (ADS)

    Alekseev, A.; Glinsky, B.; Kovalevsky, V.

    2003-04-01

    The paper presents the results of experimental researches of the Earth's structure, geodynamic processes and physical phenomena carried out using vibrational sources in Institutes of Siberian Branch RAS. Powerful seismic vibrators are the large mechanical devises and are installed stationary on the vibroseismic test site near Novosibirsk (Russia). The vibro-DSS experiments were carried out on 100 km-long profile from Novosibirsk to Kuzbass region and on 620 km profile between Novosibirsk and Semipalatinsk test site. Specially developed field recording systems based on multichannel three component seismic arrays were used. It allowed us to observe the main crustal waves and waves refracted on Moho boundary. In the experiments on the 620 km profile the comparison of the seismic vibrator and special 100 tons calibration explosion wave fields was made. The possibility to detect small changes of wave velocities by vibroseismic methods were shown in the experiments on the setoff 356 and 430 km, where the relative variations of velocities of seismic waves about 10-5 - 10-6 caused by the Earth's tides deformations of the crust were defined. Some new physical phenomena connected with resonance mechanism of radiation of seismic energy in low-frequency range, the radiation of acoustic waves simultaneously with seismic waves and their interaction on long distances from vibrators were detected.

  20. Modeling stream temperature in the Anthropocene: An earth system modeling approach

    DOE PAGES

    Li, Hong -Yi; Leung, L. Ruby; Tesfa, Teklu; ...

    2015-10-29

    A new large-scale stream temperature model has been developed within the Community Earth System Model (CESM) framework. The model is coupled with the Model for Scale Adaptive River Transport (MOSART) that represents river routing and a water management model (WM) that represents the effects of reservoir operations and water withdrawals on flow regulation. The coupled models allow the impacts of reservoir operations and withdrawals on stream temperature to be explicitly represented in a physically based and consistent way. The models have been applied to the Contiguous United States driven by observed meteorological forcing. It is shown that the model ismore » capable of reproducing stream temperature spatiotemporal variation satisfactorily by comparison against the observed streamflow from over 320 USGS stations. Including water management in the models improves the agreement between the simulated and observed streamflow at a large number of stream gauge stations. Both climate and water management are found to have important influence on the spatiotemporal patterns of stream temperature. More interestingly, it is quantitatively estimated that reservoir operation could cool down stream temperature in the summer low-flow season (August – October) by as much as 1~2oC over many places, as water management generally mitigates low flow, which has important implications to aquatic ecosystems. In conclusion, sensitivity of the simulated stream temperature to input data and reservoir operation rules used in the WM model motivates future directions to address some limitations in the current modeling framework.« less

  1. Impact of a Cosmic Body into Earth's Ocean and the Generation of Large Tsunami Waves: Insight from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Wünnemann, K.; Collins, G. S.; Weiss, R.

    2010-12-01

    The strike of a cosmic body into a marine environment differs in several respects from impact on land. Oceans cover approximately 70% of the Earth's surface, implying not only that oceanic impact is a very likely scenario for future impacts but also that most impacts in Earth's history must have happened in marine environments. Therefore, the study of oceanic impact is imperative in two respects: (1) to quantify the hazard posed by future oceanic impacts, including the potential threat of large impact-generated tsunami-like waves, and (2) to reconstruct Earth's impact record by accounting for the large number of potentially undiscovered crater structures in the ocean crust. Reconstruction of the impact record is of crucial importance both for assessing the frequency of collision events in the past and for better predicting the probability of future impact. We summarize the advances in the study of oceanic impact over the last decades and focus in particular on how numerical models have improved our understanding of cratering in the oceanic environment and the generation of waves by impact. We focus on insight gleaned from numerical modeling studies into the deceleration of the projectile by the water, cratering of the ocean floor, the late stage modification of the crater due to gravitational collapse, and water resurge. Furthermore, we discuss the generation and propagation of large tsunami-like waves as a result of a strike of a cosmic body in marine environments.

  2. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  3. Representing spatial structure through maps and language: Lord of the Rings encodes the spatial structure of middle Earth.

    PubMed

    Louwerse, Max M; Benesh, Nick

    2012-01-01

    Spatial mental representations can be derived from linguistic and non-linguistic sources of information. This study tested whether these representations could be formed from statistical linguistic frequencies of city names, and to what extent participants differed in their performance when they estimated spatial locations from language or maps. In a computational linguistic study, we demonstrated that co-occurrences of cities in Tolkien's Lord of the Rings trilogy and The Hobbit predicted the authentic longitude and latitude of those cities in Middle Earth. In a human study, we showed that human spatial estimates of the location of cities were very similar regardless of whether participants read Tolkien's texts or memorized a map of Middle Earth. However, text-based location estimates obtained from statistical linguistic frequencies better predicted the human text-based estimates than the human map-based estimates. These findings suggest that language encodes spatial structure of cities, and that human cognitive map representations can come from implicit statistical linguistic patterns, from explicit non-linguistic perceptual information, or from both. Copyright © 2012 Cognitive Science Society, Inc.

  4. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  5. A Study of Undergraduate Students' Alternative Conceptions of Earth's Interior Using Drawing Tasks

    ERIC Educational Resources Information Center

    McAllister, Meredith L.

    2014-01-01

    Learning fundamental geoscience topics such as plate tectonics, earthquakes, and volcanoes requires students to develop a deep understanding of the conceptual models geologists use when describing the structure and dynamics of Earth's interior. Despite the importance of these mental models underlying much of the undergraduate geoscience…

  6. Towards Big Earth Data Analytics: The EarthServer Approach

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  7. Remote sensing of Earth terrain

    NASA Technical Reports Server (NTRS)

    Kong, Jin AU; Shin, Robert T.; Nghiem, Son V.; Yueh, Herng-Aung; Han, Hsiu C.; Lim, Harold H.; Arnold, David V.

    1990-01-01

    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images.

  8. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  9. An Earth Albedo Model: A Mathematical Model for the Radiant Energy Input to an Orbiting Spacecraft Due to the Diffuse Reflectance of Solar Radiation from the Earth Below

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Moore, Wendy A.

    1994-01-01

    Past missions have shown that the earth's albedo can have a significant effect on the sun sensors used for spacecraft attitude control information. In response to this concern, an algorithm was developed to simulate this phenomenon, consisting of two parts, the physical model of albedo and its effect on the sun sensors. This paper contains the theoretical development of this model, practical operational notes, and its implementation in a FORTRAN subroutine.

  10. Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan

    2010-05-01

    There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.

  11. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  12. The Earth's radiation belts modelling : main issues and key directions for improvement

    NASA Astrophysics Data System (ADS)

    Maget, Vincent; Boscher, Daniel

    The Earth's radiation belts can be considered as an opened system covering a wide part of the inner magnetosphere which closely interacts with the surrounding cold plasma. Although its population constitutes only the highly energetic tail of the global inner magnetosphere plasma (electrons from a few tens of keV to more than 5 MeV and protons up to 500MeV), their modelling is of prime importance for satellite robustness design. They have been modelled at ONERA for more than 15 years now through the Salammbˆ code, which models the dynamic of the Earth's radiation belts at the drift timescale (order of the hour). It takes into accounts the main processes acting on the trapped particles, which depends on the electromagnetic configuration and on the characteristics of the surrounding cold plasma : the ionosphere as losses terms, the plasmasheet as sources ones and the plasmasphere through interactions (waves-particles interactions, coulomb scattering, electric fields shielding, . . . ). Consequently, a fine knowledge of these environments and their interactions with the radiation belts is of prime importance in their modelling. Issues in the modelling currently exist, but key directions for improvements can also be highlighted. This talk aims at presenting both of them according to recent developments performed at ONERA besides the Salammbˆ code. o

  13. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  14. Viscosity structure of Earth's mantle inferred from rotational variations due to GIA process and recent melting events

    NASA Astrophysics Data System (ADS)

    Nakada, Masao; Okuno, Jun'ichi; Lambeck, Kurt; Purcell, Anthony

    2015-08-01

    We examine the geodetically derived rotational variations for the rate of change of degree-two harmonics of Earth's geopotential, skew5dot J_2, and true polar wander, combining a recent melting model of glaciers and the Greenland and Antarctic ice sheets taken from the IPCC 2013 Report (AR5) with two representative GIA ice models describing the last deglaciation, ICE5G and the ANU model developed at the Australian National University. Geodetically derived observations of skew4dot J_2 are characterized by temporal changes of -(3.7 ± 0.1) × 10-11 yr-1 for the period 1976-1990 and -(0.3 ± 0.1) × 10-11 yr-1 after ˜2000. The AR5 results make it possible to evaluate the recent melting of the major ice sheets and glaciers for three periods, 1900-1990, 1991-2001 and after 2002. The observed skew4dot J_2 and the component of skew4dot J_2 due to recent melting for different periods indicate a long-term change in skew4dot J_2-attributed to the Earth's response to the last glacial cycle-of -(6.0-6.5) × 10-11 yr-1, significantly different from the values adopted to infer the viscosity structure of the mantle in most previous studies. This is a main conclusion of this study. We next compare this estimate with the values of skew4dot J_2 predicted by GIA ice models to infer the viscosity structure of the mantle, and consequently obtain two permissible solutions for the lower mantle viscosity (ηlm), ˜1022 and (5-10) × 1022 Pa s, for both adopted ice models. These two solutions are largely insensitive to the lithospheric thickness and upper mantle viscosity as indicated by previous studies and relatively insensitive to the viscosity structure of the D″ layer. The ESL contributions from the Antarctic ice sheet since the last glacial maximum (LGM) for ICE5G and ANU are about 20 and 30 m, respectively, but glaciological reconstructions of the Antarctic LGM ice sheet have suggested that its ESL contribution may have been less than ˜10 m. The GIA-induced skew4dot J_2 for GIA

  15. Unique Moon Formation Model: Two Impacts of Earth and After Moon's Birth

    NASA Astrophysics Data System (ADS)

    Miura, Y.

    2018-04-01

    The Moon rocks are mixed with two impact-processes of Earth's impact breccias and airless Moon's impact breccias; discussed voids-rich texture and crust-like composition. The present model might be explained as cave-rich interior on the airless-and waterless Moon.

  16. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-09-08

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Copyright © 2014 John Wiley & Sons, Inc.

  17. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  18. Extended X-ray Absorption Fine Structure (EXAFS) Analysis of Vitreous Rare Earth Sodium Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon; Marasinghe, Kanishka; Segre, Carlo; Shibata, Tomohiro

    2015-03-01

    The local structure around rare-earth ions (RE3+) in rare-earth ultraphosphate (REUP) glasses has been studied using RE LIII edge (RE = Nd, Er, Dy, and Eu) and K edge (RE = Nd, Pr, Dy, and Eu) extended X-ray absorption fine structure (EXAFS) spectroscopy. (RE2O3)x (Na2O)y(P2O5) 1 - x - y glasses in the compositional range 0 <= x <= 0.14 and x + y = 0.3 and 0.4 were studied. RE-oxygen (RE-O) coordination number decreases from ~ 10 to ~ 7.5 with increasing RE-content for Nd, Pr, Eu, and Dy. For Er, RE-O coordination number increases from ~ 8.7 to ~ 10 with increasing RE-content. For the first oxygen shell, the RE-O distance ranges between 2.41-2.43 Å, 2.44-2.46 Å, 2.24-2.26 Å, 2.28-2.32 Å, and 2.32-2.36 Å for Nd, Pr, Er, Dy, and EU glasses, respectively. Second shell around RE ions consists of phosphorus atoms, with RE-P distance about 3.0-3.5 Å and coordination number ranging from 1 to 3. The third shell primarily contains oxygen and is at a distance about 4.0-4.1 Å from RE ions.

  19. A model for the enantiomeric enrichment of polypeptides on the primitive earth

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Bonner, W. A.

    1981-01-01

    A potential model is presented for the origin of optical activity in polypeptides on the primitive earth due to enantiomeric enrichment in succeeding polymerization-hydrolysis cycles. The model was developed in experiments with the polymerization of a DL-leucine N-carboxyanhydride mixture with a 31.2% enantiomeric excess of the L isomer with sodium methoxide initiator to yield a polyleucine product which was in turn partially hydrolyzed by acid. The polymerization-hydrolysis was found to produce a net 23.8% increase in the enantiomeric excess of the remaining unhydrolyzed polypeptide (14.2% from the polymerization and 9.6% from the partial hydrolysis). On the basis of these results, it is suggested that a slight excess produced by an appropriate chiral physical process may be enhanced by cycles of stereoselective polymerization and hydrolysis driven by fluctuating wet and dry environmental cycles on the primitive earth.

  20. Rare earth niobate coordination polymers

    NASA Astrophysics Data System (ADS)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.