Sample records for earth surface observations

  1. Observation duration analysis for Earth surface features from a Moon-based platform

    NASA Astrophysics Data System (ADS)

    Ye, Hanlin; Guo, Huadong; Liu, Guang; Ren, Yuanzhen

    2018-07-01

    Earth System Science is a discipline that performs holistic and comprehensive research on various components of the Earth. One of a key issue for the Earth monitoring and observation is to enhance the observation duration, the time intervals during which the Earth surface features can be observed by sensors. In this work, we propose to utilise the Moon as an Earth observation platform. Thanks to the long distance between the Earth and the Moon, and the vast space on the lunar surface which is suitable for sensor installation, this Earth observation platform could have large spatial coverage, long temporal duration, and could perform multi-layer detection of the Earth. The line of sight between a proposed Moon-based platform and the Earth will change with different lunar surface positions; therefore, in this work, the position of the lunar surface was divided into four regions, including one full observation region and three incomplete observation regions. As existing methods are not able to perform global-scale observations, a Boolean matrix method was established to calculate the necessary observation durations from a Moon-based platform. Based on Jet Propulsion Laboratory (JPL) ephemerides and Earth Orientation Parameters (EOP), a formula was developed to describe the geometrical relationship between the Moon-based platform and Earth surface features in the unified spatial coordinate system and the unified time system. In addition, we compared the observation geometries at different positions on the lunar surface and two parameters that are vital to observation duration calculations were considered. Finally, an analysis method was developed. We found that the observation duration of a given Earth surface feature shows little difference regardless of sensor position within the full observation region. However, the observation duration for sensors in the incomplete observation regions is reduced by at least half. In summary, our results demonstrate the suitability of a Moon-based platform located in the full observation region.

  2. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.

  3. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  4. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  5. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  6. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  7. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  8. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen (Schwieterman et al., 2014) may provide an alternative means to determine terrestrial atmospheric pressure for both transit transmission and direct imaging observations.

  9. A Dynamic Earth: 50 Years of Observations from Space

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  10. Quantifying sources and sinks of trace gases using space-borne measurements: current and future science.

    PubMed

    Palmer, Paul I

    2008-12-28

    We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.

  11. Promise and Capability of NASA's Earth Observing System to Monitor Human-Induced Climate Variations

    NASA Technical Reports Server (NTRS)

    King, M. D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. This sensor and multi-platform observing system is especially well suited to observing detailed interdisciplinary components of the Earth s surface and atmosphere in and around urban environments, including aerosol optical properties, cloud optical and microphysical properties of both liquid water and ice clouds, land surface reflectance, fire occurrence, and many other properties that influence the urban environment and are influenced by them. In this presentation I will summarize the current capabilities of MODIS and other EOS sensors currently in orbit to study human-induced climate variations.

  12. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  13. The esa earth explorer land surface processes and interactions mission

    NASA Astrophysics Data System (ADS)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  14. An overview of the web-based Google Earth coincident imaging tool

    USGS Publications Warehouse

    Chander, Gyanesh; Kilough, B.; Gowda, S.

    2010-01-01

    The Committee on Earth Observing Satellites (CEOS) Visualization Environment (COVE) tool is a browser-based application that leverages Google Earth web to display satellite sensor coverage areas. The analysis tool can also be used to identify near simultaneous surface observation locations for two or more satellites. The National Aeronautics and Space Administration (NASA) CEOS System Engineering Office (SEO) worked with the CEOS Working Group on Calibration and Validation (WGCV) to develop the COVE tool. The CEOS member organizations are currently operating and planning hundreds of Earth Observation (EO) satellites. Standard cross-comparison exercises between multiple sensors to compare near-simultaneous surface observations and to identify corresponding image pairs are time-consuming and labor-intensive. COVE is a suite of tools that have been developed to make such tasks easier.

  15. The Montaguto earth flow: nine years of observation and analysis

    USGS Publications Warehouse

    Guerriero, L.; Revellino, R; Grelle, G.; Diodato, N; Guadagno, F.M.; Coe, Jeffrey A.

    2016-01-01

    This paper summarizes the methods, results, and interpretation of analyses carried out between 2006 and 2015 at the Montaguto earth flow in southern Italy. We conducted a multi-temporal analysis of earth-flow activity to reconstruct the morphological and structural evolution of the flow. Data from field mapping were combined with a geometric reconstruction of the basal slip surface in order to investigate relations between basal-slip surface geometry and deformation styles of earth-flow material. Moreover, we reconstructed the long-term pattern of earth-flow movement using both historical observations and modeled hydrologic and climatic data. Hydrologic and climatic data were used to develop a Landslide Hydrological Climatological (LHC) indicator model.

  16. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  17. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  18. The Earth Observing System. [instrument investigations for flight on EOS-A satellite

    NASA Technical Reports Server (NTRS)

    Wilson, Stan; Dozier, Jeff

    1991-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  19. The Earth Gravitational Model 1996: The NCCS: Resource for Development, Resource for the Future

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For centuries, men have attempted to understand the climate system through observations obtained from Earth's surface. These observations yielded preliminary understanding of the ocean currents, tides, and prevailing winds using visual observation and simple mechanical tools as their instruments. Today's sensitive, downward-looking radar systems, called altimeters, onboard satellites can measure globally the precise height of the ocean surface. This surface is largely that of the equipotential gravity surface, called the geoid - the level surface to which the oceans would conform if there were no forces acting on them apart from gravity, as well as having a significant 1-2- meter-level signal arising from the motion of the ocean's currents.

  20. Spectroscopy from Space

    NASA Astrophysics Data System (ADS)

    Clark, R. N.; Swayze, G. A.; Carlson, R.; Grundy, W.; Noll, K.

    2014-01-01

    This chapter reviews detection of materials on solid and liquid (lakes and ocean) surfaces in the solar system using ultraviolet to infrared spectroscopy from space, or near space (high altitude aircraft on the Earth), or in the case of remote objects, earth-based and earth-orbiting telescopes. Point spectrometers and imaging spectrometers have been probing the surfaces of our solar system for decades. Spacecraft carrying imaging spectrometers are currently in orbit around Mercury, Venus, Earth, Mars, and Saturn, and systems have recently visited Jupiter, comets, asteroids, and one spectrometer-carrying spacecraft is on its way to Pluto. Together these systems are providing a wealth of data that will enable a better understanding of the composition of condensed matter bodies in the solar system. Minerals, ices, liquids, and other materials have been detected and mapped on the Earth and all planets and/or their satellites where the surface can be observed from space, with the exception of Venus whose thick atmosphere limits surface observation. Basaltic minerals (e.g., pyroxene and olivine) have been detected with spectroscopy on the Earth, Moon, Mars and some asteroids. The greatest mineralogic diversity seen from space is observed on the Earth and Mars. The Earth, with oceans, active tectonic and hydrologic cycles, and biological processes, displays the greatest material diversity including the detection of amorphous and crystalline inorganic materials, organic compounds, water and water ice. Water ice is a very common mineral throughout the Solar System and has been unambiguously detected or inferred in every planet and/or their moon(s) where good spectroscopic data has been obtained. In addition to water ice, other molecular solids have been observed in the solar system using spectroscopic methods. Solid carbon dioxide is found on all systems beyond the Earth except Pluto, although CO2 sometimes appears to be trapped in other solids rather than as an ice on some objects. The largest deposits of carbon dioxide ice are found on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn's moon Titan probably has the most complex active extra-terrestrial surface chemistry involving organic compounds. Some of the observed or inferred compounds include ices of benzene (C6H6), cyanoacetylene (HC3N), toluene (C7H8), cyanogen (C2N2), acetonitrile (CH3CN), water (H2O), carbon dioxide (CO2), and ammonia (NH3). Confirming compounds on Titan is hampered by its thick smoggy atmosphere, where in relative terms the atmospheric interferences that hamper surface characterization lie between that of Venus and Earth. In this chapter we exclude discussion of the planets Jupiter, Saturn, Uranus, and Neptune because their thick atmospheres preclude observing the surface, even if surfaces exist. However, we do discuss spectroscopic observations on a number of the extra-terrestrial satellite bodies. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with possible exceptions on Charon and possible trace amounts on some of the Saturnian satellites. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces from spectroscopy. Only two asteroids have had a direct detection of surface water ice, although its presence can be inferred in others.

  1. Earth Observing System (EOS) advanced altimetry

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.; Walsh, E. J.

    1988-01-01

    In the post-TOPEX era, satellite radar altimeters will be developed with the capability of measuring the earth's surface topography over a wide swath of coverage, rather than just at the satellite's nadir. The identification of potential spacecraft flight missions in the future was studied. The best opportunity was found to be the Earth Observing System (EOS). It is felt that an instrument system that has a broad appeal to the earth sciences community stands a much better chance of being selected as an EOS instrument. Consequently, the Topography and Rain Radar Imager (TARRI) will be proposed as a system that has the capability to profile the Earth's topography regardless of the surface type. The horizontal and height resolutions of interest are obviously significantly different over land, ice, and water; but, the use of radar to provide an all-weather observation capability is applicable to the whole earth. The scientific guidance for the design and development of this instrument and the eventual scientific utilization of the data produced by the TARRI will be provided by seven science teams. The teams are formed around scientific disciplines and are titled: Geology/Geophysics, Hydrology/Rain, Oceanography, Ice/Snow, Geodesy/Orbit/Attitude, Cartography, and Surface Properties/Techniques.

  2. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  3. Short-period variability in terrestrial water storage from GNSS observations of Earth surface deformation

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Adusumilli, S.; Agnew, D. C.; Silverii, F.; Small, E. E.

    2017-12-01

    Modern geodetic observations of Earth surface deformation, initially targeted at processes such as tectonics and volcanism, also record the subtle signature of mass movements within Earth's atmosphere and hydrosphere. These observations, which track the elastic response of the solid earth to changing surface mass loads, are clearly evident in position time series from permanent Global Navigation Satellite System (GNSS) stations, which recent work has used to recover changes in terrestrial water storage (TWS) over seasonal and multi-annual time scales. Earth's elastic reponse is nearly instantaneous, which suggests the possibility of observing TWS changes at much shorter periods, limited only by the 24 hour resolution of standard GNSS data products and noise in the GNSS position estimates. We present results showing that TWS increases from individual storms can be recovered using the GNSS network in the United States, and that the water mass changes are similar to gridded precipitation estimates from the National Centers for Environmental Prediction (NCEP). The gradual decline we observe in TWS following each storm is diagnostic of runoff and local evapotranspiration, and varies by location. By greatly increasing the temporal resolution of GNSS-derived estimates of TWS, we hope to provide constraints on integrated water fluxes from hydrological models on all relevant timescales.

  4. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  5. Going Through Changes

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    Earth's surface is always changing. Much of that change happens because of air, wind, water, and temperature differences. If you have ever observed mud and rocks being carried along by a stream of water after a heavy rain, you have observed the Earth being changed. This month's Science Shorts will investigate how the Earth changes through a…

  6. Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  7. Canopies to Continents: What spatial scales are needed to represent landcover distributions in earth system models?

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Duhl, T.

    2011-12-01

    Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.

  8. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the impact anisotropy correction has on observation - model bias, and is of critical importance for CERES.

  9. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  10. Seismic anisotropy and large-scale deformation of the Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bokelmann, Götz; Qorbani, Ehsan; Bianchi, Irene

    2013-12-01

    Mountain chains at the Earth's surface result from deformation processes within the Earth. Such deformation processes can be observed by seismic anisotropy, via the preferred alignment of elastically anisotropic minerals. The Alps show complex deformation at the Earth's surface. In contrast, we show here that observations of seismic anisotropy suggest a relatively simple pattern of internal deformation. Together with earlier observations from the Western Alps, the SKS shear-wave splitting observations presented here show one of the clearest examples yet of mountain chain-parallel fast orientations worldwide, with a simple pattern nearly parallel to the trend of the mountain chain. In the Eastern Alps, the fast orientations do not connect with neighboring mountain chains, neither the present-day Carpathians, nor the present-day Dinarides. In that region, the lithosphere is thin and the observed anisotropy thus resides within the asthenosphere. The deformation is consistent with the eastward extrusion toward the Pannonian basin that was previously suggested based on seismicity and surface geology.

  11. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  12. Geomorphology: Perspectives on observation, history, and the field tradition

    NASA Astrophysics Data System (ADS)

    Vitek, John D.

    2013-10-01

    Other than a common interest in form and process, current geomorphologists have little in common with those who established the foundations of this science. Educated people who had an interest in Earth processes during the nineteenth century cannot be compared to the scholars who study geomorphology in the twenty-first century. Whereas Earth has undergone natural change from the beginning of time, the human record of observing and recording processes and changes in the surface Is but a recent phenomena. Observation is the only thread, however, that connects all practitioners of geomorphology through time. As people acquired knowledge related to all aspects of life, technological revolutions, such as the Iron Age, Bronze Age, agricultural revolution, the atomic age, and the digital age, shaped human existence and thought. Technology has greatly changed the power of human observation, including inward to the atomic scale and outward into the realm of space.Books and articles describe how to collect and analyze data but few references document the field experience. Each of us, however, has experienced unique circumstances during field work and we learned from various mentors how to observe. The surface of Earth on which we practice the vocation of geomorphology may not be much different from a hundred years ago but many things about how we collect data, analyze it and disseminate the results have changed. How we function in the field, including what we wear, what we eat, how we get there, and where we choose to collect data, clearly reflects the complexity of the human system on Earth and the processes and forms that arouse our interest. Computers, miniaturization of electronics, satellite communications and observation platforms in space provide access to data to aid in our quest to understand Earth surface processes. Once, people lived closer to nature in primitive shelters in contrast with life in urban environments. But as urban life continues to expand and people need to know how Earth operates, geomorphologists, therefore, serve humanity today as the primary observers and reporters in the realm of Earth surface processes.

  13. Cloud Forcing and the Earth's Radiation Budget: New Ideas and New Observations

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.

    1997-01-01

    1. NEW PERSPECTIVES ON CLOUD-RADIATIVE FORCING. When the Earth Radiation Budget Experiment (ERBE) produced the first measurements of cloud-radiative forcing, the climate community interpreted the results from a context in which the atmosphere was a single column, strongly coupled to the Earth's surface. 2. NEW PERSPECTIVES ON CLOUD-RADIATION OBSERVATIONS. The climate community is also on the verge of adding a new dimension to its observational capability. In classic thinking about atmospheric circulation and climate, surface pressure was a readily available quantity. As meteorology developed, it was possible to develop quantitative predictions of future weather by bringing together a network of surface pressure observations and then of profiles of temperature and humidity obtained from balloons. 3. ON COMBINING OBSERVATIONS AND THE - ORY. With this new capability, it is natural to seek recognizable features in the observations we make of the Earth. There are techniques we can use to group the remotely sensed data in the individual footprints into objects that we can track. We will present one such image-processing application to radiation budget data, showing how we can interpret the radiation budget data in terms of cloud systems that are organized into systematic patterns of behavior - an ecosystem-like view of cloud behavior.

  14. The Contribution of GGOS to Understanding Dynamic Earth Processes

    NASA Astrophysics Data System (ADS)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements of continental and basin-scale water masses; loading and unloading of the land surface due to seasonal changes of groundwater; measurement of water level of major lakes and rivers by satellite altimetry; and improved digital terrain models as basis for flux modeling of surface water and flood modeling. Geodesy is crucial for cryospheric studies because of its ability to measure the motions of ice masses and changes in their volumes. Ice sheets, glaciers, and sea ice are intricately linked to the Earth's climate system. They store a record of past climate; they strongly affect surface energy budget, global water cycle, and sea-level change; and they are sensitive indicators of climate change. Geodesy is at the heart of all present-day ocean studies. Geodetic observations uniquely produce accurate, quantitative, and integrated observations of gravity, ocean circulation, sea surface height, ocean bottom pressure, and mass exchanges among the ocean, cryosphere, and land. Geodetic observations have made fundamental contributions to monitoring and understanding physical ocean processes. In particular, geodesy is the basic technique used to determine an accurate geoid model, allowing for the determination of absolute surface geostrophic currents, which are necessary to quantify heat transport of the ocean. Geodesy also provides the absolute reference for tide gauge measurements, allowing those measurements to be merged with satellite altimetric measurements to provide a coherent worldwide monitoring system for sea level change. In this presentation, selected examples of the contribution of geodetic observations to understanding the dynamic Earth system will be presented.

  15. The New IERS Special Bureau for Loading (SBL)

    NASA Technical Reports Server (NTRS)

    vanDam, Tonie; Plag, Hans-Peter; Blewitt, Geoffrey; Boy, Jean-Paul; Francis, Olivier; Gegout, Pascal; Kierulf, Halfdan Pascal; Sato, Tadahiro; Scherneck, Hans-Georg; Wahr, John

    2002-01-01

    Currently, the establishment of the International Earth Rotation Service (IERS) Special Bureau for Loading (SBL) is in progress as part of the IERS Global Geophysical Fluids Center (GGFC). The main purpose of the SBL is to provide reliable, consistent model predictions of loading signals that have been thoroughly tested and validated. The products will describe at least the surface deformation, gravity signal and geo-center variations due to the various surface loading processes in reference frames relevant for direct comparison with existing geodetic observing techniques. To achieve these goals, major scientific advances are required with respect to the Earth model, the theory and algorithms used to model deformations of the Earth as well as improvements in the observational data related to surface loading.

  16. Estimating surface soil moisture from SMAP observations using a neural network technique

    USDA-ARS?s Scientific Manuscript database

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to June 2016 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observ...

  17. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  18. Skylab

    NASA Image and Video Library

    1972-01-01

    This concept illustrates Skylab Earth observation studies, an Earth Resources Experiment Package (EREP). EREP was designed to explore the use of the widest possible portion of the electromagnetic spectrum for Earth resource investigations with sensors that recorded data in the visible, infrared, and microwave spectral regions. Resources subject to this study included a capability of mapping Earth resources and land uses, crop and forestry cover, health of vegetation, types of soil, water storage in snow pack, surface or near-surface mineral deposits, sea surface temperature, and the location of likely feeding areas for fish, etc. A significant feature of EREP was the ability of man to operate the sensors in a laboratory fashion.

  19. Optical characteristics of the earth's surface and atmosphere from the point of view of the remote sensing of natural resources: Review of the contemporary status of the problem

    NASA Technical Reports Server (NTRS)

    Tarnopolskiy, V. I.

    1978-01-01

    Widely used remote probing methods, and especially the multispectral method, for studying the earth from aerospace platforms necessitate the systematization and accumulation of data on the relationships between remote observations and measured parameters and characteristic properties and conditions of phenomena on the earth's surface. Data were presented on the optical characteristics of natural objects which arise during observations of these objects over a wide spectral interval which encompasses solar radiation reflected by the object as well as the object's inherent thermal radiation. The influence of the earth's atmosphere on remote measurements and several problems in simulation and calculation are discussed.

  20. Modeling Earth's Disk-Integrated, Time-Dependent Spectrum: Applications to Directly Imaged Habitable Planets

    NASA Astrophysics Data System (ADS)

    Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'

    2016-10-01

    Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.

  1. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to establish periodicity in the light curve and deduce Earth's diurnal period and the existence of fixed surface units.

  2. Observing Climate with Satellites - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton

    2012-01-01

    The Earth s climate is determined by irradiance from the Sun and properties of the atmosphere, oceans, and land that determine the reflection, absorption, and emission of energy within our atmosphere and at the Earth s surface. Since the 1970s, Earth-viewing satellites have complimented non-satellite geophysical observations with consistent, quantitative, and spatially-continuous measurements that have led to an unprecedented understanding of the Earth s climate system. I will describe the Earth s climate system as elaborated by satellite and in situ observations, review arguments against global warming, and show the convergence of evidence for human-caused warming of our planet.

  3. Surface and atmosphere parameter maps from earth-orbiting radiometers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.

    1976-01-01

    Earlier studies have shown that an earth-orbiting electrically scanned microwave radiometer (ESMR) is capable of inferring the extent, concentration, and age of sea ice; the extent, concentration, and thickness of lake ice; rainfall rates over oceans; surface wind speeds over open water; particle size distribution in the deep snow cover of continental ice sheets; and soil moisture content in unvegetated fields. Most other features of the surface of the earth and its atmosphere require multispectral imaging techniques to unscramble the combined contributions of the atmosphere and the surface. Multispectral extraction of surface parameters is analyzed on the basis of a pertinent equation in terms of the observed brightness temperature, the emissivity of the surface which depends on wavelength and various parameters, the sensible temperature of the surface, and the total atmospheric opacity which is also wavelength dependent. Implementation of the multispectral technique is examined. Properties of the surface of the earth and its atmosphere to be determined from a scanning multichannel microwave radiometer are tabulated.

  4. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  5. New measurements quantify atmospheric greenhouse effect

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.

  6. Earth Observations taken by Expedition 34 crewmember

    NASA Image and Video Library

    2013-02-14

    ISS034-E-48455 (14 Feb. 2013) --- Looking out at Earth?s surface from the International Space Station (ISS), astronauts and cosmonauts frequently observe sunglint highlighting both ocean and inland water surfaces. The Atlantic Ocean, including Cape Cod Bay and Buzzards Bay, along the coastlines of Massachusetts and Rhode Island, has a burnished, mirror-like appearance in this image. This is due to sunlight reflected off the water surface back towards the station crew member who took the photo. The peak reflection point is towards the right side of the image, lending the waters of Long Island Sound and the upper Massachusetts coastline an even brighter appearance. Sunglint also illuminates the surface waters of Chesapeake Bay, located over 400 kilometers (250 miles) to the southwest of the tip of Long Island. This suggests that the Sun was low on the horizon due to the observed extent of the sunglint effect. The time of image acquisition, approximately 4:26 p.m. Eastern Standard Time, was about one hour before local sunset. There is little in this image to indicate that the region was still recovering from a major winter storm that dropped almost one meter (three feet) of snow over much of the northeastern USA less than a week earlier. The high viewing angle from the space station also allows Earth?s curvature, or limb, to be seen; blue atmospheric layers gradually fade into the darkness of space across the top part of the image. Low clouds near Cape Cod, Long Island, and further down the Atlantic coastline cast shadows over the water surfaces, reducing the sunglint in some areas.

  7. CONSTRUCTION OF AN EARTH MODEL: ANALYSIS OF EXOPLANET LIGHT CURVES AND MAPPING THE NEXT EARTH WITH THE NEW WORLDS OBSERVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakley, P. H. H.; Cash, W.

    2009-08-01

    The orbital light curve of a terrestrial exoplanet will likely contain valuable information about the surface and atmospheric features of the planet, both in its overall shape and hourly variations. We have constructed an empirically based code capable of simulating observations of the Earth from any orientation, at any time of year with continuously updated cloud and snow coverage with a New Worlds Observatory. By simulating these observations over a full orbital revolution at a distance of 10 pc we determine that the detection of an obliquity or seasonal terrain change is possible at low inclinations. In agreement with othermore » studies, a 4 m New Worlds Observer can accurately determine the rotation rate of the planet at a success rate from {approx}30% to 80% with only 5 days of observations depending on the signal to noise of the observations. We also attempt simple inversions of these diurnal light curves to sketch a map of the reflecting planet's surface features. This mapping technique is only successful with highly favorable systems and in particular requires that the cloud coverage must be lower than the Earth's average. Our test case of a 2 M {sub +} planet at 7 pc distance with low exo-zodiacal light and 25% cloud coverage produced crude, but successful results. Additionally, with these highly favorable systems NWO may be able to discern the presence of liquid surface water (or other smooth surfaces) though it requires a complex detection available only at crescent phases in high inclination systems.« less

  8. Interactive Computing and Processing of NASA Land Surface Observations Using Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Burks, Jason; Bell, Jordan

    2016-01-01

    Google's Earth Engine offers a "big data" approach to processing large volumes of NASA and other remote sensing products. h\\ps://earthengine.google.com/ Interfaces include a Javascript or Python-based API, useful for accessing and processing over large periods of record for Landsat and MODIS observations. Other data sets are frequently added, including weather and climate model data sets, etc. Demonstrations here focus on exploratory efforts to perform land surface change detection related to severe weather, and other disaster events.

  9. The effect of surface anisotropy on the accuracy of total ozone estimates from satellite observations

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Ahmad, Z.

    1978-01-01

    The total amount of ozone in a vertical column of the earth's atmosphere is being derived from satellite measurements of the intensity of ultraviolet sunlight scattered by the earth-atmosphere system. The algorithm for deriving the ozone amount utilizes the assumption that the earth's surface reflects the incident light isotropically according to Lambert's law. Natural surface reflection deviates more or less from this law. Two extreme examples of anisotropic reflection from dark ocean and from bright snow are analyzed by means of models for their effects on the derived values of ozone.

  10. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  11. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  12. Investigation of Seasonal Landscape Freeze/Thaw Cycles in Relation to Cloud Structure in the High Northern Latitudes

    NASA Technical Reports Server (NTRS)

    Smith, Cosmo

    2011-01-01

    The seasonal freezing and thawing of Earth's cryosphere (the portion of Earth's surface permanently or seasonally frozen) has an immense impact on Earth's climate as well as on its water, carbon and energy cycles. During the spring, snowmelt and the transition between frozen and non-frozen states lowers Earth's surface albedo. This change in albedo causes more solar radiation to be absorbed by the land surface, raising surface soil and air temperatures as much as 5 C within a few days. The transition of ice into liquid water not only raises the surface humidity, but also greatly affects the energy exchange between the land surface and the atmosphere as the phase change creates a latent energy dominated system. There is strong evidence to suggest that the thawing of the cryosphere during spring and refreezing during autumn is correlated to local atmospheric conditions such as cloud structure and frequency. Understanding the influence of land surface freeze/thaw cycles on atmospheric structure can help improve our understanding of links between seasonal land surface state and weather and climate, providing insight into associated changes in Earth's water, carbon, and energy cycles that are driven by climate change.Information on both the freeze/thaw states of Earth's land surface and cloud characteristics is derived from data sets collected by NOAA's Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer on NASA's Earth Observing System(AMSR-E), NASA's CloudSat, and NASA's SeaWinds-on-QuickSCAT Earth remote sensing satellite instruments. These instruments take advantage of the microwave spectrum to collect an ensemble of atmospheric and land surface data. Our analysis uses data from radars (active instruments which transmit a microwave signal toward Earth and measure the resultant backscatter) and radiometers (passive devices which measure Earth's natural microwave emission) to accurately characterize salient details on Earth's surface and atmospheric states. By comparing the cloud measurements and the surface freeze-thaw data sets, a correlation between the two phenomena can be developed.

  13. Declassified intelligence satellite photographs

    USGS Publications Warehouse

    ,

    1998-01-01

    Recently declassified photographs from spy satellites are an important addition to the record of the Earth?s land surface held by the U.S. Geological Survey (USGS). More than 800,000 high-resolution photos taken between 1959 through 1972 were made available by Executive Order of the President. The collection is held at the USGS EROS Data Center, near Sioux Falls, S. Dak., and are offered for public sale. For some purposes in earth science studies, these photos extend the record of changes in the land surface another decade back in time from the advent of the Landsat earth-observing satellite program.

  14. Development of a Graphical User Interface to Visualize Surface Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.L.

    1998-07-13

    Thousands of worldwide observing stations provide meteorological information near the earth's surface as often as once each hour. This surface data may be plotted on geographical maps to provide the meteorologist useful information regarding weather patterns for a region of interest. This report describes the components and applications of a graphical user interface which have been developed to visualize surface observations at any global location and time of interest.

  15. Goddard earth models (5 and 6)

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Wagner, C. A.; Richardson, J. A.; Brownd, J. E.

    1974-01-01

    A comprehensive earth model has been developed that consists of two complementary gravitational fields and center-of-mass locations for 134 tracking stations on the earth's surface. One gravitational field is derived solely from satellite tracking data. This data on 27 satellite orbits is the most extensive used for such a solution. A second solution uses this data with 13,400 simultaneous events from satellite camera observations and surface gravimetric anomalies. The satellite-only solution as a whole is accurate to about 4.5 milligals as judged by the surface gravity data. The majority of the station coordinates are accurate to better than 10 meters as judged by independent results from geodetic surveys and by Doppler tracking of both distant space probes and near earth orbits.

  16. Historical Landsat data comparisons: illustrations of the Earth's changing surface

    USGS Publications Warehouse

    ,

    1995-01-01

    The U.S. Geological Survey's (USGS) EROS Data Center (EDC) has managed the Landsat data archive for more than two decades. This archive provides a rich collection of information about the Earth's land surface. Major changes to the surface of the planet can be detected, measured, and analyzed using Landsat data. The effects of desertification, deforestation, pollution, cataclysmic volcanic activity, and other natural and anthropogenic events can be examined using data acquired from the Landsat series of Earth-observing satellites. The information obtainable from the historical and current Landsat data play a key role in studying surface changes through time. This document provides an overview of the Landsat program and illustrates the application of the data to monitor changes occurring on the surface of the Earth. To reveal changes that have taken place within the past 20 years, pairs and triplicates of images were constructed from the Landsat multispectral scanner (MSS) and thematic mapper (TM) sensors. Landsat MSS data provide a historical record of the Earth's land surface from the early 1970's to the early 1990's. Landsat TM data provide land surface information from the early 1980's to the present.

  17. Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Lustig-Yaeger, Jacob; Cowan, Nicolas B.

    2017-11-01

    Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.

  18. Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuka; Lustig-Yaeger, Jacob; Cowan, Nicolas B., E-mail: yuka.fujii.ebihara@gmail.com

    Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock datamore » based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.« less

  19. Rotational Spectral Unmixing of Exoplanets: Degeneracies Between Surface Colors and Geography

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Lustig-Yaeger, Jacob; Cowan, Nicolas B.

    2017-01-01

    Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.

  20. Some observations on the greenhouse effect at the Earth's surface.

    PubMed

    Akitt, J W

    2018-01-05

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50km altitude where the temperature is about correct, near 255K. Doubling the CO 2 concentration increases the surface temperature by about 0.9°C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Some observations on the greenhouse effect at the Earth's surface

    NASA Astrophysics Data System (ADS)

    Akitt, J. W.

    2018-01-01

    It is shown that the greenhouse gases carbon dioxide and water vapour reflect back to the surface, all IR radiation originating at the surface within their respective spectral bands. This reflection occurs in a very thin layer at the surface, not much over 12 cm in thickness. Heat is lost from the surface by heat exchange with the atmosphere and by loss of radiation. About 52% of radiation leaves the surface in two principal window regions but this is not enough to account for the earth's equilibrium temperature. This window radiation seems to disappear quite quickly and is replaced by black body radiation. It is this which eventually contributes to the earth's radiation balance, and has to originate approximately between 40 and 50 km altitude where the temperature is about correct, near 255 K. Doubling the CO2 concentration increases the surface temperature by about 0.9 °C and this need not have any influence higher up in the atmosphere. The surface temperature seems indeed to have no direct influence on the earth's external radiation balance.

  2. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  3. Crew Earth Observations: Twelve Years of Documenting Earth from the International Space Station

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Stefanov, William L.; Willis, Kimberley; Runco, Susan; Wilkinson, M. Justin; Dawson, Melissa; Trenchard, Michael

    2012-01-01

    The Crew Earth Observations (CEO) payload was one of the initial experiments aboard the International Space Station, and has been continuously collecting data about the Earth since Expedition 1. The design of the experiment is simple: using state-of-the-art camera equipment, astronauts collect imagery of the Earth's surface over defined regions of scientific interest and also document dynamic events such as storms systems, floods, wild fires and volcanic eruptions. To date, CEO has provided roughly 600,000 images of Earth, capturing views of features and processes on land, the oceans, and the atmosphere. CEO data are less rigorously constrained than other remote sensing data, but the volume of data, and the unique attributes of the imagery provide a rich and understandable view of the Earth that is difficult to achieve from the classic remote sensing platforms. In addition, the length-of-record of the imagery dataset, especially when combined with astronaut photography from other NASA and Russian missions starting in the early 1960s, provides a valuable record of changes on the surface of the Earth over 50 years. This time period coincides with the rapid growth of human settlements and human infrastructure.

  4. Understanding our Changing Planet: NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Forehand, Lon; Griner, Charlotte (Editor); Greenstone, Renny (Editor)

    1999-01-01

    NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow and their influence on climate and weather since the agency's creation. This study has lead to a new approach to understanding the interaction of the Earth's systems, Earth System Science. The Earth Science Enterprise, NASA's comprehensive program for Earth System Science, uses satellites and other tools to intensively study the Earth. The Earth Science Enterprise has three main components: (1) a series of Earth-observing satellites, (2) an advanced data system and (3) teams of scientist who study the data. Key areas of study include: (1) clouds, (2) water and energy cycles, (3) oceans, (4) chemistry of the atmosphere, (5) land surface, water and ecosystems processes; (6) glaciers and polar ice sheets, and (7) the solid earth.

  5. Biosignatures as revealed by spectropolarimetry of Earthshine.

    PubMed

    Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric

    2012-02-29

    Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.

  6. Applications of Future NASA Decadal Missions for Observing Earth's Land and Water Processes

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Hook, Simon; Brown, Molly E.; Tzortziou, Maria A.; Carroll, Mark; Escobar, Vanessa M.; Omar, Ali

    2013-01-01

    Misson Objective: To collect altimetry data of the Earth's surface optimized to measure ice sheet elevation change and sea ice thickness, while also generating an estimate of global vegetation biomass.

  7. EPIC Radiance Simulator for Deep Space Climate ObserVatoRy (DSCOVR)

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Marshak, Alexander; Wang, Yujie; Korkin, Sergey; Herman, Jay

    2011-01-01

    The Deep Space Climate ObserVatoRy (DSCOVR) is a planned space weather mission for the Sun and Earth observations from the Lagrangian L1 point. Onboard of DSCOVR is a multispectral imager EPIC designed for unique observations of the full illuminated disk of the Earth with high temporal and 10 km spatial resolution. Depending on latitude, EPIC will observe the same Earth surface area during the course of the day in a wide range of solar and view zenith angles in the backscattering view geometry with the scattering angle of 164-172 . To understand the information content of EPIC data for analysis of the Earth clouds, aerosols and surface properties, an EPIC radiance Simulator was developed covering the UV -VIS-NIR range including the oxygen A and B-bands (A=340, 388, 443, 555, 680, 779.5, 687.7, 763.3 nm). The Simulator uses ancillary data (surface pressure/height, NCEP wind speed) as well as MODIS-based geophysical fields such as spectral surface bidirectional reflectance, column water vapor, and properties of aerosols and clouds including optical depth, effective radius, phase and cloud top height. The original simulations are conducted at 1 km resolution using the look-up table approach and then are averaged to 10 km EPIC radiances. This talk will give an overview of the EPIC Simulator with analysis of results over the continental USA and northern Atlantic.

  8. Rapid, High-Resolution Detection of Environmental Change over Continental Scales from Satellite Data - the Earth Observation Data Cube

    NASA Technical Reports Server (NTRS)

    Lewis, Adam; Lymburner, Leo; Purss, Matthew B. J.; Brooke, Brendan; Evans, Ben; Ip, Alex; Dekker, Arnold G.; Irons, James R.; Minchin, Stuart; Mueller, Norman

    2015-01-01

    The effort and cost required to convert satellite Earth Observation (EO) data into meaningful geophysical variables has prevented the systematic analysis of all available observations. To overcome these problems, we utilise an integrated High Performance Computing and Data environment to rapidly process, restructure and analyse the Australian Landsat data archive. In this approach, the EO data are assigned to a common grid framework that spans the full geospatial and temporal extent of the observations - the EO Data Cube. This approach is pixel-based and incorporates geometric and spectral calibration and quality assurance of each Earth surface reflectance measurement. We demonstrate the utility of the approach with rapid time-series mapping of surface water across the entire Australian continent using 27 years of continuous, 25 m resolution observations. Our preliminary analysis of the Landsat archive shows how the EO Data Cube can effectively liberate high-resolution EO data from their complex sensor-specific data structures and revolutionise our ability to measure environmental change.

  9. A new multi-angle remote sensing framework for scaling vegetation properties from tower-based spectro-radiometers to next generation "CubeSat"-satellites.

    NASA Astrophysics Data System (ADS)

    Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.

    2014-12-01

    Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.

  10. Land observation from geosynchronous earth orbit (LOGEO): Mission concept and preliminary engineering analysis

    NASA Astrophysics Data System (ADS)

    Román-Colón, Miguel O.; Strahler, Alan H.

    2007-06-01

    We propose an Earth-observation mission Land Observation from Geosynchronous Earth Orbit (LOGEO) to place two spin-scan-stabilized 500-m resolution 9-band VNIR-SWIR imagers in a near-geosynchronous inclined orbit, allowing 15 min observations with a full range of daily sun angles and 30∘ variations in view angle. LOGEO drifts westward at about 4∘ per day, providing geostationary-style coverage for all points on the globe eight times per year. This unique imaging geometry allows accurate retrievals of daily changes in surface bidirectional reflectance, which in turn enhances direct retrieval of biophysical properties, as well as long term and consistent land surface parameters for modeling studies that seek to understand the Earth system and its interactions. For studies of climate and environmental dynamics, LOGEO provides accurate observations of atmospheric aerosols, clouds, as well as other atmospheric constituents across a diverse number of spatial and temporal scales. This collection of land, atmospheric, and climate data products are directly applicable to seven of the nine GEOSS societal benefits areas, providing great opportunities for international collaboration. We also present an overview of LOGEO's systems architecture, as well as top-level design-trade studies and orbital scenarios.

  11. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    NASA Technical Reports Server (NTRS)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  12. Searching for Water Earths in the Near-infrared

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Kasting, J. F.; Williams, D. M.; Kane, T. J.; Philbrick, C. R.

    2011-09-01

    Over 500 extrasolar planets (exoplanets) have now been discovered, but only a handful are small enough that they might be rocky terrestrial planets like Venus, Earth, and Mars. Recently, it has been proposed that observations of variability in scattered light (both polarized and total flux) from such terrestrial-sized exoplanets could be used to determine if they possess large surface oceans, an important indicator of potential habitability. Observing such oceans at visible wavelengths would be difficult, however, in part because of obscuration by atmospheric scattering. Here, we investigate whether observations performed in the near-infrared (NIR), where Rayleigh scattering is reduced, could improve the detectability of exoplanet oceans. We model two wavebands of the NIR which are "window regions" for an Earth-like atmosphere: 1.55-1.75 μm and 2.1-2.3 μm. Our model confirms that obscuration in these bands from Rayleigh scattering is very low, but aerosols are generally the limiting factor throughout the wavelength range for Earth-like atmospheres. As a result, observations at NIR wavelengths are significantly better at detecting oceans than those at visible wavelengths only when aerosols are very thin by Earth standards. Clouds further dilute the ocean reflection signature. Hence, other techniques, e.g., time-resolved color photometry, may be more effective in the search for liquid water on exoplanet surfaces. Observing an exo-Earth at NIR wavelengths does open the possibility of detecting water vapor or other absorbers in the atmosphere, by comparing scattered light in window regions to that in absorption bands.

  13. OSTA-3 Shuttle payload

    NASA Technical Reports Server (NTRS)

    Dillman, R. D.; Eav, B. B.; Baldwin, R. R.

    1984-01-01

    The Office of Space and Terrestrial Applications-3 payload, scheduled for flight on STS Mission 17, consists of four earth-observation experiments. The Feature Identification and Location Experiment-1 will spectrally sense and numerically classify the earth's surface into water, vegetation, bare earth, and ice/snow/cloud-cover, by means of spectra ratio techniques. The Measurement of Atmospheric Pollution from Satellite experiment will measure CO distribution in the middle and upper troposphere. The Imaging Camera-B uses side-looking SAR to create two-dimensional images of the earth's surface. The Large Format Camera/Attitude Reference System will collect metric quality color, color-IR, and black-and-white photographs for topographic mapping.

  14. Chemistry of atmosphere-surface interactions on Venus and Mars

    NASA Astrophysics Data System (ADS)

    Fegley, Bruce, Jr.; Treiman, Allan H.

    Earth-based, earth-orbital, and spacecraft observational data are used in the present evaluation of Venus atmosphere-surface interactions to quantitatively characterize the reactions between C, H, S, Cl, F, and N gases and plausible surface minerals. Calculation results are used to predict stable minerals and mineral assemblages on the Venus surface, in order to ascertain which (if any) of the atmospheric gases are buffeted by mineral assemblages. Chemical equilibrium calculations using extant thermodynamic data on scapolite minerals predict that carbonate-bearing scapolite and sulfate meionite are unstable on the surface of Venus, while chloride-bearing scapolite is stable.

  15. Large scale mass redistribution and surface displacement from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  16. Combining nutation and surface gravity observations to estimate the Earth's core and inner core resonant frequencies

    NASA Astrophysics Data System (ADS)

    Ziegler, Yann; Lambert, Sébastien; Rosat, Séverine; Nurul Huda, Ibnu; Bizouard, Christian

    2017-04-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have been shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the intermediate results of the ongoing project of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by the International VLBI Service for geodesy and astrometry (IVS) as the result of a combination of inputs from various IVS analysis centers, and surface gravity data from about 15 SG stations. We address here the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting for nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package, the preliminary estimates of the resonant periods, and the correlations between parameters.

  17. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  18. MEaSUREs Land Surface Temperature from GOES Satellites

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  19. Progress in remote sensing of global land surface heat fluxes and evaporations with a turbulent heat exchange parameterization method

    NASA Astrophysics Data System (ADS)

    Chen, Xuelong; Su, Bob

    2017-04-01

    Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.

  20. Automated protocols for spaceborne sub-meter resolution "Big Data" products for Earth Science

    NASA Astrophysics Data System (ADS)

    Neigh, C. S. R.; Carroll, M.; Montesano, P.; Slayback, D. A.; Wooten, M.; Lyapustin, A.; Shean, D. E.; Alexandrov, O.; Macander, M. J.; Tucker, C. J.

    2017-12-01

    The volume of available remotely sensed data has grown exceeding Petabytes per year and the cost for data, storage systems and compute power have both dropped exponentially. This has opened the door for "Big Data" processing systems with high-end computing (HEC) such as the Google Earth Engine, NASA Earth Exchange (NEX), and NASA Center for Climate Simulation (NCCS). At the same time, commercial very high-resolution (VHR) satellites have grown into a constellation with global repeat coverage that can support existing NASA Earth observing missions with stereo and super-spectral capabilities. Through agreements with the National Geospatial-Intelligence Agency NASA-Goddard Space Flight Center is acquiring Petabytes of global sub-meter to 4 meter resolution imagery from WorldView-1,2,3 Quickbird-2, GeoEye-1 and IKONOS-2 satellites. These data are a valuable no-direct cost for the enhancement of Earth observation research that supports US government interests. We are currently developing automated protocols for generating VHR products to support NASA's Earth observing missions. These include two primary foci: 1) on demand VHR 1/2° ortho mosaics - process VHR to surface reflectance, orthorectify and co-register multi-temporal 2 m multispectral imagery compiled as user defined regional mosaics. This will provide an easy access dataset to investigate biodiversity, tree canopy closure, surface water fraction, and cropped area for smallholder agriculture; and 2) on demand VHR digital elevation models (DEMs) - process stereo VHR to extract VHR DEMs with the NASA Ames stereo pipeline. This will benefit Earth surface studies on the cryosphere (glacier mass balance, flow rates and snow depth), hydrology (lake/water body levels, landslides, subsidence) and biosphere (forest structure, canopy height/cover) among others. Recent examples of products used in NASA Earth Science projects will be provided. This HEC API could foster surmounting prior spatial-temporal limitations while providing broad benefits to Earth Science.

  1. Nimbus earth resources observations

    NASA Technical Reports Server (NTRS)

    Sabatini, R. R.; Rabchevsky, G. A.; Sissala, J. E.

    1971-01-01

    The potential for utilizing data gathered by Nimbus satellites to study the earth surface and its physical properties is illustrated. The Nimbus data applicable to investigations of the earth and its resources, and to the problems of resolution and cloud cover are described. Geological, hydrological, and oceanographic applications are discussed. Applications of the data to other fields, such as cartography, agriculture, forestry, and urban analysis are presented. Relevant information is also given on the Nimbus orbit and experiments; surface and atmospheric effects on HRIR and THIR radiation measurements; and noise problems in the AVCS, IDCS, HRIR, and THIR data.

  2. Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives.

    PubMed

    Lognonné, Philippe; Karakostas, Foivos; Rolland, Lucie; Nishikawa, Yasuhiro

    2016-08-01

    Acoustic coupling between solid Earth and atmosphere has been observed since the 1960s, first from ground-based seismic, pressure, and ionospheric sensors and since 20 years with various satellite measurements, including with global positioning system (GPS) satellites. This coupling leads to the excitation of the Rayleigh surface waves by local atmospheric sources such as large natural explosions from volcanoes, meteor atmospheric air-bursts, or artificial explosions. It contributes also in the continuous excitation of Rayleigh waves and associated normal modes by atmospheric winds and pressure fluctuations. The same coupling allows the observation of Rayleigh waves in the thermosphere most of the time through ionospheric monitoring with Doppler sounders or GPS. The authors review briefly in this paper observations made on Earth and describe the general frame of the theory enabling the computation of Rayleigh waves for models of telluric planets with atmosphere. The authors then focus on Mars and Venus and give in both cases the atmospheric properties of the Rayleigh normal modes and associated surface waves compared to Earth. The authors then conclude on the observation perspectives especially for Rayleigh waves excited by atmospheric sources on Mars and for remote ionospheric observations of Rayleigh waves excited by quakes on Venus.

  3. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  4. Earth Observations from the International Space Station: Benefits for Humanity

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2015-01-01

    The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.

  5. Terrestrial water storage variations and surface vertical deformation derived from GPS and GRACE observations in Nepal and Himalayas

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Shen, W.; Hwang, C.

    2015-12-01

    As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  6. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  7. Skylab earth resources experiment package /EREP/ - Sea surface topography experiment

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.; Marsh, J. G.; Mcgoogan, J. T.; Leitao, C. D.; Vincent, S.; Wells, W. T.

    1976-01-01

    The S-193 Skylab radar altimeter was operated in a round-the-world pass on Jan. 31, 1974. The main purpose of this experiment was to test and 'measure' the variation of the sea surface topography using the Goddard Space Flight Center (GSFC) geoid model as a reference. This model is based upon 430,000 satellite and 25,000 ground gravity observations. Variations of the sea surface on the order of -40 to +60 m were observed along this pass. The 'computed' and 'measured' sea surfaces have an rms agreement on the order of 7 m. This is quite satisfactory, considering that this was the first time the sea surface has been observed directly over a distance of nearly 35,000 km and compared to a computed model. The Skylab orbit for this global pass was computed using the Goddard Earth Model (GEM 6) and S-band radar tracking data, resulting in an orbital height uncertainty of better than 5 m over one orbital period.

  8. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  9. The Radio Frequency Environment at 240-270 MHz with Application to Signal-of-Opportunity Remote Sensing

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James

    2017-01-01

    Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.

  10. Quantized Advantages to a Proposed Satellite at L5 from Simulated Synoptic Magnetograms

    NASA Astrophysics Data System (ADS)

    Schwarz, A. M.; Petrie, G. J. D.

    2017-12-01

    The dependency the Earth and its inhabitants have on the Sun is delicate and complex and sometimes dangerous. At the NSO, we provide 24/7 coverage of the full-disk solar magnetic field used in solar forecasting, however this only includes data from the Sun's Earth facing side. Ideally we would like to have constant coverage of the entire solar surface, however we are limited in our solar viewing angle. Our project attempts to quantify the advantages of full-disk magnetograms from a proposed satellite at L5. With instrumentation at L5 we would have an additional 60 degrees of solar surface coverage not seen from Earth. These 60 degrees crucially contain the solar longitudes that are about to rotate towards Earth. Using a full-surface flux-transport model of the evolving solar photospheric field, I created a simulation of full-disk observations from Earth and L5. Using standard solar forecasting tools we quantify the relative accuracy of the Earth-Only and Earth plus L5 forecasts relative to the "ground truth" of the full surface field model, the ideal case. My results gauge exactly how much polar coverage is improved, contrast the spherical multipoles of each model, and use a Potential-Field Source-Surface (PFSS) magnetic field analysis model to find comparisons in the neutral lines and open field coverage.

  11. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  12. Planning for the Global Earth Observation System of Systems (GEOSS)

    USGS Publications Warehouse

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Arecibo Radar Observations of Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Virkki, Anne; Saran Bhiravarasu, Sriram; Venditti, Flaviane; Zambrano-Marin, Luisa Fernanda; Aponte-Hernandez, Betzaida

    2017-10-01

    The Arecibo S-Band (2.38 GHz, 12.6 cm; 1 MW) planetary radar system at the 305-m William E. Gordon Telescope in Arecibo, Puerto Rico is the most active, most powerful, and most sensitive planetary radar facility in the world. As such, Arecibo is vital for post-discovery characterization and orbital refinement of near-Earth asteroids. Since August 2016, the program has observed 100 near-Earth asteroids (NEAs), of which 38 are classified as potentially hazardous to Earth and 31 are compliant with the NASA Near-Earth Object Human Space Flight Accessible Targets Study (NHATS). Arecibo observations are critical for identifying NEAs that may be on a collision course with Earth in addition to providing detailed physical characterization of the objects themselves in terms of size, shape, spin, and surface properties, which are valuable for assessing impact mitigation strategies. Here, we will present a sampling of the asteroid zoo observed by Arecibo, including press-noted asteroids 2014 JO25 and the (163693) Atira binary system.

  14. Global deformation of the Earth, surface mass anomalies, and the geodetic infrastructure required to study these processes

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Rietbroek, R.; Gunter, B.; Mark-Willem, J.

    2008-12-01

    Global deformation of the Earth can be linked to loading caused by mass changes in the atmosphere, the ocean and the terrestrial hydrosphere. World-wide geodetic observation systems like GPS, e.g., the global IGS network, can be used to study the global deformation of the Earth directly and, when other effects are properly modeled, provide information regarding the surface loading mass (e.g., to derive geo-center motion estimates). Vice versa, other observing systems that monitor mass change, either through gravitational changes (GRACE) or through a combination of in-situ and modeled quantities (e.g., the atmosphere, ocean or hydrosphere), can provide indirect information on global deformation. In the framework of the German 'Mass transport and mass distribution' program, we estimate surface mass anomalies at spherical harmonic resolution up to degree and order 30 by linking three complementary data sets in a least squares approach. Our estimates include geo-center motion and the thickness of a spatially uniform layer on top of the ocean surface (that is otherwise estimated from surface fluxes, evaporation and precipitation, and river run-off) as a time-series. As with all current Earth observing systems, each dataset has its own limitations and do not realize homogeneous coverage over the globe. To assess the impact that these limitations might have on current and future deformation and loading mass solutions, a sensitivity study was conducted. Simulated real-case and idealized solutions were explored in which the spatial distribution and quality of GPS, GRACE and OBP data sets were varied. The results show that significant improvements, e.g., over the current GRACE monthly gravity fields, in particular at the low degrees, can be achieved when these solutions are combined with present day GPS and OBP products. Our idealized scenarios also provide quantitative implications on how much surface mass change estimates may improve in the future when improved observing systems become available.

  15. Biological effects of high ultraviolet radiation on early earth--a theoretical evaluation.

    PubMed

    Cockell, C S

    1998-08-21

    The surface of early Earth was exposed to both UVC radiation (< 280 nm) and higher doses of UVB (280-315 nm) compared with the surface of present day Earth. The degree to which this radiation environment acted as a selection pressure on organisms and biological systems has rarely been theoretically examined with respect to the biologically effective irradiances that ancient organisms would receive. Here action spectra for DNA inactivation and isolated chloroplast inhibition are used to estimate biologically effective irradiances on archean Earth. Comparisons are made with present day Earth. The theoretical estimations on the UV radiation screening required to protect DNA on archean Earth compare well with field and laboratory observations on protection strategies found in present day microbial communities. They suggest that many physical and biological methods may have been effective and would have allowed for the radiation of life even under the high UV radiation regimes of archean Earth. Such strategies would also have provided effective reduction of photoinhibition by UV radiation. The data also suggest that the UV regime on the surface of Mars is not a life limiting factor per se, although other environmental factors such as desiccation and low temperatures may contribute towards the apparent lack of a surface biota.

  16. Earth radiation budget measurements from satellites and their interpretation for climate modeling and studies

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Stephens, G. L.; Campbell, G. G.

    1980-01-01

    The annual and seasonal averaged Earth atmosphere radiation budgets derived from the most complete set of satellite observations available are presented. The budgets were derived from a composite of 48 monthly mean radiation budget maps. Annually and seasonally averaged radiation budgets are presented as global averages and zonal averages. The geographic distribution of the various radiation budget quantities is described. The annual cycle of the radiation budget was analyzed and the annual variability of net flux was shown to be largely dominated by the regular semi and annual cycles forced by external Earth-Sun geometry variations. Radiative transfer calculations were compared to the observed budget quantities and surface budgets were additionally computed with particular emphasis on discrepancies that exist between the present computations and previous surface budget estimates.

  17. The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)

    NASA Technical Reports Server (NTRS)

    Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.; hide

    2009-01-01

    X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.

  18. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-01-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  19. Effects on optical systems from interactions with oxygen atoms in low earth orbits

    NASA Astrophysics Data System (ADS)

    Peters, P. N.; Swann, J. T.; Gregory, J. C.

    1986-04-01

    Modifications of material surface properties due to interactions with ambient atomic oxygen have been observed on surfaces facing the orbital direction in low earth orbits. Some effects are very damaging to surface optical properties while some are more subtle and even beneficial. Most combustible materials are heavily etched, and some coatings, such as silver and osmium, are seriously degraded or removed as volatile oxides. The growth of oxide films on metals and semiconductors considered stable in dry air was measured. Material removal, surface roughness, reflectance, and optical densities are reported. Effects of temperature, contamination, and overcoatings are noted.

  20. Ocean Surface Topography Mission/Jason 2 Artist Concept

    NASA Image and Video Library

    2008-09-23

    An artist concept of the Ocean Surface Topography Mission/Jason 2 Earth satellite. The Ocean Surface Topography Mission/Jason 2 is an Earth satellite designed to make observations of ocean topography for investigations into sea-level rise and the relationship between ocean circulation and climate change. The satellite also provides data on the forces behind such large-scale climate phenomena as El Niño and La Niña. The mission is a follow-on to the French-American Jason 1 mission, which began collecting data on sea-surface levels in 1992. http://photojournal.jpl.nasa.gov/catalog/PIA18158

  1. Examining Environmental Gradients with satellite data in permafrost regions - the current state of the ESA GlobPermafrost initative

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Bartsch, A.; Kääb, A.; Westermann, S.; Strozzi, T.; Wiesmann, A.; Duguay, C. R.; Seifert, F. M.; Obu, J.; Nitze, I.; Heim, B.; Haas, A.; Widhalm, B.

    2017-12-01

    Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with spaceborne Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014, hdl:10013/epic.45648.d001). These transects have been revised and adjusted within the DUE GlobPermafrost initiative of the European Space Agency. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The status of the Permafrost Information System and first results will be presented. Prototypes of GlobPermafrost datasets include: Modelled mean annual ground temperature by use of land surface temperature and snow water equivalent from satellites Land surface characterization including shrub height, land cover and parameters related to surface roughness Trends from Landsat time-series over selected transects For selected sites: subsidence, ground fast lake ice, land surface features and rock glacier monitoring

  2. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    NASA Technical Reports Server (NTRS)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  3. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    NASA Astrophysics Data System (ADS)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  4. The airborne infrared scanner as a geophysical research tool

    USGS Publications Warehouse

    Friedman, Jules D.

    1970-01-01

    The infrared scanner is proving to be an effective anomaly-mapping tool, albeit one which depicts surface emission directly and heat mass transfer from depths only indirectly and at a threshold level 50 to 100 times the normal conductive heat flow of the earth. Moreover, successive terrain observations are affected by time-dependent variables such as the diurnal and seasonal warming and cooling cycle of a point on the earth's surface. In planning precise air borne surveys of radiant flux from the earth's surface, account must be taken of background noise created by variations in micrometeorological factors and emissivity of surface materials, as well as the diurnal temperature cycle. The effect of the diurnal cycle may be minimized by planning predawn aerial surveys. In fact, the diurnal change is very small for most water bodies and the emissivity factor for water (e) =~ 1 so a minimum background noise is characteristic of scanner records of calm water surfaces.

  5. New Estimates of Hydrological and Oceanic Excitations of Variations of Earth's Rotation, Geocenter and Gravitational Field

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Chen, J. L.; Johnson, T.; Au, A. Y.

    1998-01-01

    Hydrological mass transport in the geophysical fluids of the atmosphere-hydrosphere-solid Earth surface system can excite Earth's rotational variations in both length-of-day and polar motion. These effects can be computed in terms of the hydrological angular momentum by proper integration of global meteorological data. We do so using the 40-year NCEP data and the 18-year NASA GEOS-1 data, where the precipitation and evapotranspiration budgets are computed via the water mass balance of the atmosphere based on Oki et al.'s (1995) algorithm. This hydrological mass redistribution will also cause geocenter motion and changes in Earth's gravitational field, which are similarly computed using the same data sets. Corresponding geodynamic effects due to the oceanic mass transports (i.e. oceanic angular momentum and ocean-induced geocenter/gravity changes) have also been computed in a similar manner. We here compare two independent sets of the result from: (1) non-steric ocean surface topography observations based on Topex/Poseidon, and (2) the model output of the mass field by the Parallel Ocean Climate Model. Finally, the hydrological and the oceanic time series are combined in an effort to better explain the observed non-atmospheric effects. The latter are obtained by subtracting the atmospheric angular momentum from Earth rotation observations, and the atmosphere- induced geocenter/gravity effects from corresponding geodetic observations, both using the above-mentioned atmospheric data sets.

  6. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    NASA Astrophysics Data System (ADS)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  7. Land Cover/Land Use Classification and Change Detection Analysis with Astronaut Photography and Geographic Object-Based Image Analysis

    NASA Technical Reports Server (NTRS)

    Hollier, Andi B.; Jagge, Amy M.; Stefanov, William L.; Vanderbloemen, Lisa A.

    2017-01-01

    For over fifty years, NASA astronauts have taken exceptional photographs of the Earth from the unique vantage point of low Earth orbit (as well as from lunar orbit and surface of the Moon). The Crew Earth Observations (CEO) Facility is the NASA ISS payload supporting astronaut photography of the Earth surface and atmosphere. From aurora to mountain ranges, deltas, and cities, there are over two million images of the Earth's surface dating back to the Mercury missions in the early 1960s. The Gateway to Astronaut Photography of Earth website (eol.jsc.nasa.gov) provides a publically accessible platform to query and download these images at a variety of spatial resolutions and perform scientific research at no cost to the end user. As a demonstration to the science, application, and education user communities we examine astronaut photography of the Washington D.C. metropolitan area for three time steps between 1998 and 2016 using Geographic Object-Based Image Analysis (GEOBIA) to classify and quantify land cover/land use and provide a template for future change detection studies with astronaut photography.

  8. Climate modeling. [for use in understanding earth's radiation budget

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.

  9. The age of the Venusian surface - Estimates using terrestrial crater data

    NASA Technical Reports Server (NTRS)

    Schaber, G. G.; Shoemaker, E. N.; Kozak, R. C.

    1987-01-01

    It is hypothesized that the age of the Venusian northern hemisphere surface studied thus far could be as great as the average age of the earth's crust (450 Myr). This possibility arises because of the uncertainty of the role of active and inactive cometary nuclei in the crateral history of the earth. If the observed Venusian surface were 1 Byr old, then there would be traces of the impacts of a half dozen or more large cometary nuclei which penetrated the atmosphere and formed craters over 100 km in diameter.

  10. Earth Observing System: Information on NASA’s Incorporation of Existing Data Into EOSDIS

    DTIC Science & Technology

    1992-09-25

    oceanography, and marine resources can be derived from this data set. The Landsat Pathfinder Project comprises three separate activities, two of which...contain informnation about atmospheric properties such as water vapor and rain rate, ocean surface properties such as surface wind speed, and land...Ferrari, Assignment Manager anagement and Elizabeth L. Johnston, Evaluator-in-Charge ,chnology Division, ashington, D.C. Page 11 GAO/ AMTEC -92-79 Earth

  11. Optimal Inflatable Space Towers with 3 - 100 km Height

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Theory and computations are provided for building inflatable space towers up to one hundred kilometers in height. These towers can be used for tourism, scientific observation of space, observation of the Earth's surface, weather and upper atmosphere, and for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. The towers can be built using present technology. The towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the Earth's surface. The transport system for a tower consists of a small engine (used only for friction compensation) located at the Earth's surface. The tower is separated into sections and has special protection mechanisms in case of damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in other publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  12. The first Earth Resources Technology Satellite (ERTS-1)

    NASA Technical Reports Server (NTRS)

    Nordberg, W.

    1973-01-01

    The first Earth Resources Technology Satellite (ERTS-1) makes images of the earth's surface in four portions of the electromagnetic spectrum with sufficient spatial resolution and with a minimum of geometric distortions, so that these images may be applied experimentally to the study of geophysical processes relating to earth resources, to the exploration and conservation of these resources, and to the assessments of environmental stresses. During the first six months of operation, ERTS-1 has imaged 6.5 million square kilometers of the earth's surface every day, covering most major land masses and coastal zones as well as both polar regions of this planet. These images as well as the results of their analyses are available to all people throughout the world. Scientific investigators of all countries have been invited to participate in the utilization of ERTS-1 observations. Many of them have already demonstrated the great efficiency, economy, and reliability of making earth surveys from space.

  13. Blue Marble Eastern Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  14. Blue Marble Western Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  15. Hydrogen Fluxes from Photosynthetic Communities: Implications for Early Earth Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    More than half the history of life on Earth was dominated by photosynthetic microbial mats, which must have represented the preeminent biological influence on global geochemical cycling during that time. In modem analogs of then ancient communities, hypersaline microbial mats from Guerrero Negro, Mexico, we have observed a large flux of molecular hydrogen originating in the cyanobacteria-dominated surface layers. Hydrogen production follows a distinct diel pattern and is sensitive to both oxygen tension and microbial species composition within the mat. On an early Earth dominated by microbial mats, the observed H2 fluxes would scale to global levels far in excess of geothermal emissions. A hydrogen flux of this magnitude represents a profound transmission of reducing power from oxygenic photosynthesis, both to the anaerobic biosphere, where H2 is an almost universally-utilized substrate and regulator of microbial redox chemistry, and to the atmosphere, where subsequent escape to space could provide an important mechanism for the net oxidation of Earth's surface.

  16. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  17. Dielectric properties of Asteroid Vesta's surface as constrained by Dawn VIR observations

    NASA Astrophysics Data System (ADS)

    Palmer, Elizabeth M.; Heggy, Essam; Capria, Maria T.; Tosi, Federico

    2015-12-01

    Earth and orbital-based radar observations of asteroids provide a unique opportunity to characterize surface roughness and the dielectric properties of their surfaces, as well as potentially explore some of their shallow subsurface physical properties. If the dielectric and topographic properties of asteroid's surfaces are defined, one can constrain their surface textural characteristics as well as potential subsurface volatile enrichment using the observed radar backscatter. To achieve this objective, we establish the first dielectric model of asteroid Vesta for the case of a dry, volatile-poor regolith-employing an analogy to the dielectric properties of lunar soil, and adjusted for the surface densities and temperatures deduced from Dawn's Visible and InfraRed mapping spectrometer (VIR). Our model suggests that the real part of the dielectric constant at the surface of Vesta is relatively constant, ranging from 2.3 to 2.5 from the night- to day-side of Vesta, while the loss tangent shows slight variation as a function of diurnal temperature, ranging from 6 × 10-3 to 8 × 10-3. We estimate the surface porosity to be ∼55% in the upper meter of the regolith, as derived from VIR observations. This is ∼12% higher than previous estimation of porosity derived from previous Earth-based X- and S-band radar observation. We suggest that the radar backscattering properties of asteroid Vesta will be mainly driven by the changes in surface roughness rather than potential dielectric variations in the upper regolith in the X- and S-band.

  18. Earth Observations

    NASA Image and Video Library

    2010-06-16

    ISS024-E-006136 (16 June 2010) --- Polar mesospheric clouds, illuminated by an orbital sunrise, are featured in this image photographed by an Expedition 24 crew member on the International Space Station. Polar mesospheric, or noctilucent (?night shining?), clouds are observed from both Earth?s surface and in orbit by crew members aboard the space station. They are called night-shining clouds as they are usually seen at twilight. Following the setting of the sun below the horizon and darkening of Earth?s surface, these high clouds are still briefly illuminated by sunlight. Occasionally the ISS orbital track becomes nearly parallel to Earth?s day/night terminator for a time, allowing polar mesospheric clouds to be visible to the crew at times other than the usual twilight due to the space station altitude. This unusual photograph shows polar mesospheric clouds illuminated by the rising, rather than setting, sun at center right. Low clouds on the horizon appear yellow and orange, while higher clouds and aerosols are illuminated a brilliant white. Polar mesospheric clouds appear as light blue ribbons extending across the top of the image. These clouds typically occur at high latitudes of both the Northern and Southern Hemispheres, and at fairly high altitudes of 76?85 kilometers (near the boundary between the mesosphere and thermosphere atmospheric layers). The ISS was located over the Greek island of Kos in the Aegean Sea (near the southwestern coastline of Turkey) when the image was taken at approximately midnight local time. The orbital complex was tracking northeastward, nearly parallel to the terminator, making it possible to observe an apparent ?sunrise? located almost due north. A similar unusual alignment of the ISS orbit track, terminator position, and seasonal position of Earth?s orbit around the sun allowed for striking imagery of polar mesospheric clouds over the Southern Hemisphere earlier this year.

  19. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  20. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    NASA Astrophysics Data System (ADS)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity. Timelapse videos - as a global, zoomable and explorable web map across time as well as curated locations hosted on YouTube - can be effective at conveying large and medium scale land surface changes over time to diverse audiences.

  1. Multi-angle Imaging SpectroRadiometer

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our planet, and the reasons for these changes, so we are better equipped to anticipate and prepare for the future. The MISR instrument is a part of EOS. Its role is to measure the amount of sunlight scattered in different directions under natural conditions. These measurements will help quantify the amount of solar energy that heats the Earth's surface and atmosphere, and the changes that occur in them over the lifetime of the MISR instrument. From the MISR observations, we are also learning more about those components of the Earth's environment that scatter sunlight: particles in the atmosphere, the planet's surface, and clouds. MISR monitors changes in surface reflection properties, in atmospheric aerosol content and composition, and in cloudiness. Scientists use these data to study land use changes, air pollution, volcanic eruptions, as well as processes such as desertification, deforestation, and soil erosion. As part of the EOS program, computer models that predict future climate will be improved by the results of these studies. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  2. Photometric variability in earthshine observations.

    PubMed

    Langford, Sally V; Wyithe, J Stuart B; Turner, Edwin L

    2009-04-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23% per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.

  3. Variable optical filters for earth-observation imaging minispectrometers

    NASA Astrophysics Data System (ADS)

    Piegari, A.; Bulir, J.; Krasilnikova, A.; Dami, M.; Harnisch, B.

    2017-11-01

    Small-dimension, low-mass spectrometers are useful for both Earth observation and planetary missions. A very compact multi-spectral mini-spectrometer that contains no moving parts, can be constructed combining a graded-thickness filter, having a spatially variable narrow-band transmission, to a CCD array detector. The peak wavelength of the transmission filter is moving along one direction of the filter surface, such that each line of a two-dimensional array detector, equipped with this filter, will detect radiation in a different pass band. The spectrum of interest for image spectrometry of the Earth surface is very wide, 400-1000nm. This requirement along with the need of a very small dimension, makes this filter very difficult to manufacture. Preliminary results on metal-dielectric wedge filters, with a gradient of the transmission peak wavelength equal to 60nm/mm, are reported.

  4. Main Geomagnetic Field Models from Oersted and Magsat Data Via a Rigorous General Inverse Theory with Error Bounds

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1999-01-01

    The purpose of the grant was to study how prior information about the geomagnetic field can be used to interpret surface and satellite magnetic measurements, to generate quantitative descriptions of prior information that might be so used, and to use this prior information to obtain from satellite data a model of the core field with statistically justifiable error estimates. The need for prior information in geophysical inversion has long been recognized. Data sets are finite, and faithful descriptions of aspects of the earth almost always require infinite-dimensional model spaces. By themselves, the data can confine the correct earth model only to an infinite-dimensional subset of the model space. Earth properties other than direct functions of the observed data cannot be estimated from those data without prior information about the earth. Prior information is based on what the observer already knows before the data become available. Such information can be "hard" or "soft". Hard information is a belief that the real earth must lie in some known region of model space. For example, the total ohmic dissipation in the core is probably less that the total observed geothermal heat flow out of the earth's surface. (In principle, ohmic heat in the core can be recaptured to help drive the dynamo, but this effect is probably small.) "Soft" information is a probability distribution on the model space, a distribution that the observer accepts as a quantitative description of her/his beliefs about the earth. The probability distribution can be a subjective prior in the sense of Bayes or the objective result of a statistical study of previous data or relevant theories.

  5. Multi-temporal maps of the Montaguto earth flow in southern Italy from 1954 to 2010

    USGS Publications Warehouse

    Guerriero, Luigi; Revellino, Paola; Coe, Jeffrey A.; Focareta, Mariano; Grelle, Gerardo; Albanese, Vincenzo; Corazza, Angelo; Guadagno, Francesco M.

    2013-01-01

    Historical movement of the Montaguto earth flow in southern Italy has periodically destroyed residences and farmland, and damaged the Italian National Road SS90 and the Benevento-Foggia National Railway. This paper provides maps from an investigation into the evolution of the Montaguto earth flow from 1954 to 2010. We used aerial photos, topographic maps, LiDAR data, satellite images, and field observations to produce multi-temporal maps. The maps show the spatial and temporal distribution of back-tilted surfaces, flank ridges, and normal, thrust, and strike-slip faults. Springs, creeks, and ponds are also shown on the maps. The maps provide a basis for interpreting how basal and lateral boundary geometries influence earth-flow behavior and surface-water hydrology.

  6. Availability of Earth observations data from the U.S. Geological Survey's EROS data center

    USGS Publications Warehouse

    Holm, Thomas M.; Draeger, William C.; Risty, Ronald R.

    1993-01-01

    For decades federal and state agencies have been collecting regional, continental, and global Earth observations data acquired by satellites, aircraft, and other information-gathering systems. These data include photographic and digital remotely sensed images of the Earth's surface, as well as earth science, cartographic, and geographic data. Since 1973, the U.S. Geological Survey's Earth Resources Observation Systems (EROS) Data Center (EDC) in Sioux Falls, South Dakota, has been a data management, production, dissemination, and research center for these data. Currently, the Data Center holds over 10 million satellite images and aerial photographs, in photographic and digital formats. Users are able to place inquiries and orders for these holdings via a nationwide computer network. In addition to cataloging the data stored in its archives, the Data Center provides users with rapid access to information on many data collections held by other facilities.

  7. Improving the detection of tectonic transients in Japan by accounting for Earth's deformation response to surface mass loading

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Moore, A. W.; Owen, S. E.; Rivera, L. A.

    2016-12-01

    We explore the contributions of oceanic, atmospheric, and hydrologic mass loading to Global Navigation Satellite System (GNSS)-inferred observations of surface displacements in Japan. Surface mass loading (SML) generates mm- to cm-level deformation of the solid Earth on time scales of hours to years, which exceeds the measurement uncertainties of most GNSS position estimates. By improving the efficiency and accuracy of the prediction and empirical estimation of SML response, we aim to reduce the variance of GNSS time series and therefore enhance the ability to resolve subtle tectonic signals, such as aseismic transients associated with subduction zone processes. Using the GIPSY software in precise point positioning mode, we estimate time series of sub-daily receiver positions for the GNSS Earth Observation Network System (GEONET) in Japan. We also model the Earth's elastic deformation response to a variety of surface mass loads, including loads of atmospheric (e.g., ECMWF) and oceanic (e.g., TPXO8-Atlas, ECCO2) origin. We extract periodic signals, such as the ocean tides and seasonal variations in hydrological loading, using harmonic analysis. Deformation caused by non-periodic loads, such as non-tidal oceanic and atmospheric loads, can be predicted and removed to further reduce the variance. We seek to streamline the workflow for estimating SML-induced surface displacements from a variety of sources in order to account for loading signals in routine GNSS data processing, thereby improving the ability to assess the mechanics of plate boundaries.

  8. Effects of selective fusion on the thermal history of the earth's mantle

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.

  9. The Blue Marble

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team

  10. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John

    2014-05-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017), which aims to support the wider uptake of global-scale satellite LST by the research and operational user communities, will be a particularly important element in the development and subsequent provision of global diurnal LST. References Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R., & Perdigao, R., 2013, Land surface temperature from multiple geostationary satellites, International Journal of Remote Sensing, 34, 3051-3068.

  11. Earth's gravity field to the eighteenth degree and geocentric coordinates for 104 stations from satellite and terrestrial data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1973-01-01

    Geodetic parameters describing the earth's gravity field and the positions of satellite-tracking stations in a geocentric reference frame were computed. These parameters were estimated by means of a combination of five different types of data: routine and simultaneous satellite observations, observations of deep-space probes, measurements of terrestrial gravity, and surface-triangulation data. The combination gives better parameters than does any subset of data types. The dynamic solution used precision-reduced Baker-Nunn observations and laser range data of 25 satellites. Data from the 49-station National Oceanic and Atmospheric Administration BC-4 network, the 19-station Smithsonian Astrophysical Observatory Baker-Nunn network, and independent camera stations were employed in the geometrical solution. Data from the tracking of deep-space probes were converted to relative longitudes and distances to the earth's axis of rotation of the tracking stations. Surface-gravity data in the form of 550-km squares were derived from 19,328 1 deg X 1 deg mean gravity anomalies.

  12. Rapid response tools and datasets for post-fire modeling: Linking Earth Observations and process-based hydrological models to support post-fire remediation

    Treesearch

    M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud

    2015-01-01

    Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...

  13. Monitoring Surface Climate With its Emissivity Derived From Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Satellite thermal infrared (IR) spectral emissivity data have been shown to be significant for atmospheric research and monitoring the Earth fs environment. Long-term and large-scale observations needed for global monitoring and research can be supplied by satellite-based remote sensing. Presented here is the global surface IR emissivity data retrieved from the last 5 years of Infrared Atmospheric Sounding Interferometer (IASI) measurements observed from the MetOp-A satellite. Monthly mean surface properties (i.e., skin temperature T(sub s) and emissivity spectra epsilon(sub v) with a spatial resolution of 0.5x0.5-degrees latitude-longitude are produced to monitor seasonal and inter-annual variations. We demonstrate that surface epsilon(sub v) and T(sub s) retrieved with IASI measurements can be used to assist in monitoring surface weather and surface climate change. Surface epsilon(sub v) together with T(sub s) from current and future operational satellites can be utilized as a means of long-term and large-scale monitoring of Earth 's surface weather environment and associated changes.

  14. An interactive ocean surface albedo scheme (OSAv1.0): formulation and evaluation in ARPEGE-Climat (V6.1) and LMDZ (V5A)

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Baek, Sunghye; Boucher, Olivier; Dufresne, Jean-Louis; Decharme, Bertrand; Saint-Martin, David; Roehrig, Romain

    2018-01-01

    Ocean surface represents roughly 70 % of the Earth's surface, playing a large role in the partitioning of the energy flow within the climate system. The ocean surface albedo (OSA) is an important parameter in this partitioning because it governs the amount of energy penetrating into the ocean or reflected towards space. The old OSA schemes in the ARPEGE-Climat and LMDZ models only resolve the latitudinal dependence in an ad hoc way without an accurate representation of the solar zenith angle dependence. Here, we propose a new interactive OSA scheme suited for Earth system models, which enables coupling between Earth system model components like surface ocean waves and marine biogeochemistry. This scheme resolves spectrally the various contributions of the surface for direct and diffuse solar radiation. The implementation of this scheme in two Earth system models leads to substantial improvements in simulated OSA. At the local scale, models using the interactive OSA scheme better replicate the day-to-day distribution of OSA derived from ground-based observations in contrast to old schemes. At global scale, the improved representation of OSA for diffuse radiation reduces model biases by up to 80 % over the tropical oceans, reducing annual-mean model-data error in surface upwelling shortwave radiation by up to 7 W m-2 over this domain. The spatial correlation coefficient between modeled and observed OSA at monthly resolution has been increased from 0.1 to 0.8. Despite its complexity, this interactive OSA scheme is computationally efficient for enabling precise OSA calculation without penalizing the elapsed model time.

  15. NASA's Earth science flight program status

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019-2020 timeframe. NASA will begin refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2013 and will initiate a Gravity Recovery and Climate Experiment (GRACE) Follow-on mission for launch in 2016.

  16. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  17. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various Earth surfaces giving good agreement, suggesting that the lidar efficiency, and thus a lidar calibration factor for detection, can be estimated fairly well using Earth's surface signal.

  18. Multi-temporal mapping of a large, slow-moving earth flow for kinematic interpretation

    USGS Publications Warehouse

    Guerriero, Luigi; Coe, Jeffrey A.; Revellino, Paola; Guadagno, Francesco M.

    2014-01-01

    Periodic movement of large, thick landslides on discrete basal surfaces produces modifications of the topographic surface, creates faults and folds, and influences the locations of springs, ponds, and streams (Baum, et al., 1993; Coe et al., 2009). The geometry of the basal-slip surface, which can be controlled by geological structures (e.g., fold axes, faults, etc.; Revellino et al., 2010; Grelle et al., 2011), and spatial variation in the rate of displacement, are responsible for differential deformation and kinematic segmentation of the landslide body. Thus, large landslides are often composed of several distinct kinematic elements. Each element represents a discrete kinematic domain within the main landslide that is broadly characterized by stretching (extension) of the upper part of the landslide and shortening (compression) near the landslide toe (Baum and Fleming, 1991; Guerriero et al., in review). On the basis of this knowledge, we used photo interpretive and GPS field mapping methods to map structures on the surface of the Montaguto earth flow in the Apennine Mountains of southern Italy at a scale of 1:6,000. (Guerriero et al., 2013a; Fig.1). The earth flow has been periodically active since at least 1954. The most extensive and destructive period of activity began on April 26, 2006, when an estimated 6 million m3 of material mobilized, covering and closing Italian National Road SS90, and damaging residential structures (Guerriero et al., 2013b). Our maps show the distribution and evolution of normal faults, thrust faults, strike-slip faults, flank ridges, and hydrological features at nine different dates (October, 1954; June, 1976; June, 1991; June, 2003; June, 2005; May, 2006; October, 2007; July, 2009; and March , 2010) between 1954 and 2010. Within the earth flow we recognized several kinematic elements and associated structures (Fig.2a). Within each kinematic element (e.g. the earth flow neck; Fig.2b), the flow velocity was highest in the middle, and lowest in the upper and lower parts. As the velocity of movement initiated and increased, stretching of the earth flow body induced the formation of normal faults. Conversely, decreasing velocity and shortening of the earth flow induced the formation of thrust faults. A zone with relatively few structures, bounded by strike-slip faults, was located between stretching and shortening areas. These kinematic elements indicate that the overall earth flow was actually composed of numerous linked internal earth flows, with each internal flow having a distinct pattern of structures representative of stretching and shortening (Guerriero et al., in review). These observations indicated that the spatial variation in movement velocity associated with each internal earth flow, mimicked the pattern of movement for the overall earth flow. That is, the earth flow displayed a self-similar pattern at different scales. Furthermore, the presence of other structures such as back-tilted surfaces, flank-ridges, and hydrological elements provide specific information about the shape of the basal topographic surface. Our multi-temporal maps provided a basis for interpretation of the long-term kinematic evolution of the earth flow and the influence of the basal-slip surface on the earth flow movement. Our maps showed that main faults remained stationary through time, despite extensive mobilization and movement of material. This observation indicated that the slip-surface has remained relatively stationary since at least 1954.

  19. Earth observing system. Data and information system. Volume 2A: Report of the EOS Data Panel

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose of this report is to provide NASA with a rationale and recommendations for planning, implementing, and operating an Earth Observing System data and information system that can evolve to meet the Earth Observing System's needs in the 1990s. The Earth Observing System (Eos), defined by the Eos Science and Mission Requirements Working Group, consists of a suite of instruments in low Earth orbit acquiring measurements of the Earth's atmosphere, surface, and interior; an information system to support scientific research; and a vigorous program of scientific research, stressing study of global-scale processes that shape and influence the Earth as a system. The Eos data and information system is conceived as a complete research information system that would transcend the traditional mission data system, and include additional capabilties such as maintaining long-term, time-series data bases and providing access by Eos researchers to relevant non-Eos data. The Working Group recommends that the Eos data and information system be initiated now, with existing data, and that the system evolve into one that can meet the intensive research and data needs that will exist when Eos spacecraft are returning data in the 1990s.

  20. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  1. Terrestrial reference standard sites for postlaunch sensor calibration

    USGS Publications Warehouse

    Teillet, P.M.; Chander, G.

    2010-01-01

    In an era when the number of Earth observation satellites is rapidly growing and measurements from satellite sensors are used to address increasingly urgent global issues, often through synergistic and operational combinations of data from multiple sources, it is imperative that scientists and decision-makers are able to rely on the accuracy of Earth observation data products. The characterization and calibration of these sensors, particularly their relative biases, are vital to the success of the developing integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of the Earth. This can only reliably be achieved in the postlaunch environment through the careful use of observations by multiple sensor systems over common, well-characterized terrestrial targets (i.e., on or near the Earth's surface). Through greater access to and understanding of these vital reference standard sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. This paper provides a brief overview of the use of reference standard sites for postlaunch sensor radiometric calibration from historical, current, and future perspectives. Emphasis is placed on optical sensors operating in the visible, near-infrared, and shortwave infrared spectral regions.

  2. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    NASA Astrophysics Data System (ADS)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the processes involved in observational research. Through EOL's Education and Outreach Program, we strive to inspire and develop the next generation of observational scientists and engineers by offering a range of educational, experiential, and outreach opportunities, including engineering internships.

  3. The Soil Moisture Active and Passive (SMAP) Mission

    USDA-ARS?s Scientific Manuscript database

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  4. Metallic rare-earth silicide nanowires on silicon surfaces.

    PubMed

    Dähne, Mario; Wanke, Martina

    2013-01-09

    The formation, atomic structure, and electronic properties of self-assembled rare-earth silicide nanowires on silicon surfaces were studied by scanning tunneling microscopy and angle-resolved photoelectron spectroscopy. Metallic dysprosium and erbium silicide nanowires were observed on both the Si(001) and Si(557) surfaces. It was found that they consist of hexagonal rare-earth disilicides for both surface orientations. On Si(001), the nanowires are characterized by a one-dimensional band structure, while the electronic dispersion is two-dimensional for the nanowires formed on Si(557). This behavior is explained by the different orientations of the hexagonal c axis of the silicide leading to different conditions for the carrier confinement. By considering this carrier confinement it is demonstrated how the one-dimensional band structure of the nanowires on Si(001) can be derived from the two-dimensional one of the silicide monolayer on Si(111).

  5. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  6. Geomagnetic inverse problem and data assimilation: a progress report

    NASA Astrophysics Data System (ADS)

    Aubert, Julien; Fournier, Alexandre

    2013-04-01

    In this presentation I will present two studies recently undertaken by our group in an effort to bring the benefits of data assimilation to the study of Earth's magnetic field and the dynamics of its liquid iron core, where the geodynamo operates. In a first part I will focus on the geomagnetic inverse problem, which attempts to recover the fluid flow in the core from the temporal variation of the magnetic field (known as the secular variation). Geomagnetic data can be downward continued from the surface of the Earth down to the core-mantle boundary, but not further below, since the core is an electrical conductor. Historically, solutions to the geomagnetic inverse problem in such a sparsely observed system were thus found only for flow immediately below the core mantle boundary. We have recently shown that combining a numerical model of the geodynamo together with magnetic observations, through the use of Kalman filtering, now allows to present solutions for flow throughout the core. In a second part, I will present synthetic tests of sequential geomagnetic data assimilation aiming at evaluating the range at which the future of the geodynamo can be predicted, and our corresponding prospects to refine the current geomagnetic predictions. Fournier, Aubert, Thébault: Inference on core surface flow from observations and 3-D dynamo modelling, Geophys. J. Int. 186, 118-136, 2011, doi: 10.1111/j.1365-246X.2011.05037.x Aubert, Fournier: Inferring internal properties of Earth's core dynamics and their evolution from surface observations and a numerical geodynamo model, Nonlinear Proc. Geoph. 18, 657-674, 2011, doi:10.5194/npg-18-657-2011 Aubert: Flow throughout the Earth's core inverted from geomagnetic observations and numerical dynamo models, Geophys. J. Int., 2012, doi: 10.1093/gji/ggs051

  7. Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models

    NASA Technical Reports Server (NTRS)

    Bryan, Frank

    2001-01-01

    Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.

  8. The detection of climate change due to the enhanced greenhouse effect

    NASA Technical Reports Server (NTRS)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  9. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  10. Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow

    PubMed Central

    Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio

    2012-01-01

    Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473

  11. Some unique surface patterns on ignimbrites on Earth: A "bird's eye" view as a guide for planetary mappers

    NASA Astrophysics Data System (ADS)

    de Silva, Shanaka L.; Bailey, John E.

    2017-08-01

    Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.

  12. Lunar far side surface navigation using Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON)

    NASA Astrophysics Data System (ADS)

    Hesar, Siamak G.; Parker, Jeffrey S.; Leonard, Jason M.; McGranaghan, Ryan M.; Born, George H.

    2015-12-01

    We study the application of Linked Autonomous Interplanetary Satellite Orbit Navigation (LiAISON) to track vehicles on the far side of the lunar surface. The LiAISON architecture is demonstrated to achieve accurate orbit determination solutions for various mission scenarios in the Earth-Moon system. Given the proper description of the force field, LiAISON is capable of producing absolute orbit determination solutions using relative satellite-to-satellite tracking observations alone. The lack of direct communication between Earth-based tracking stations and the far side of the Moon provides an ideal opportunity for implementing LiAISON. This paper presents a novel approach to use the LiAISON architecture to perform autonomous navigation of assets on the lunar far side surface. Relative measurements between a spacecraft placed in an EML-2 halo orbit and lunar surface asset(s) are simulated and processed. Comprehensive simulation results show that absolute states of the surface assets are observable with an achieved accuracy of the position estimate on the order of tens of meters.

  13. Earth radiation balance as observed and represented in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; König-Langlo, Gert

    2014-05-01

    The genesis and evolution of Earth's climate is largely regulated by the Earth radiation balance. Despite of its key role in the context of climate change, substantial uncertainties still exist in the quantification of the magnitudes of its different components, and its representation in climate models. While the net radiative energy flows in and out of the climate system at the top of atmosphere are now known with considerable accuracy from new satellite programs such as CERES and SORCE, the energy distribution within the climate system and at the Earth's surface is less well determined. Accordingly, the magnitudes of the components of the surface energy balance have recently been controversially disputed, and potential inconsistencies between the estimated magnitudes of the global energy and water cycle have been emphasized. Here we summarize this discussion as presented in Chapter 2.3 of the 5th IPCC assessment report (AR5). In this context we made an attempt to better constrain the magnitudes of the surface radiative components with largest uncertainties. In addition to satellite observations, we thereby made extensive use of the growing number of surface observations to constrain the radiation balance not only from space, but also from the surface. We combined these observations with the latest modeling efforts performed for AR5 (CMIP5) to infer best estimates for the global mean surface radiative components. Our analyses favor global mean values of downward surface solar and thermal radiation near 185 and 342 Wm-2, respectively, which are most compatible with surface observations (Wild et al. 2013). These estimates are on the order of 10 Wm-2 lower and higher, respectively, than in some of the previous global energy balance assessments, including those presented in previous IPCC reports. It is encouraging that these estimates, which make full use of the information contained in the surface networks, coincide within 2 Wm-2 with the latest satellite-derived estimates (Kato et al. 2013), which are completely independently determined. This enhances confidence in these recent surface flux estimates. IPCC AR5 further presents increasing evidence from direct observations that the surface radiative fluxes undergo significant changes on decadal timescales, not only in their thermal components as expected from the increasing greenhouse effect, but also in the amount of solar radiation that reaches the Earth surface. In the thermal range, surface observations suggest an overall increase of downward thermal radiation in line with latest projections from the CMIP5 models and expectations from an increasing greenhouse effect. On the other hand the strong decadal changes in surface solar radiation seen in the observations ("dimming/brightening") are not fully captured by current climate models. These decadal changes in surface solar radiation may largely affect various aspects of climate change. Selected related references: Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L. Alexander, S. Brönnimann, Y. Charabi, F. Dentener, E. Dlugokencky, D. Easterling, A. Kaplan, B. Soden, P. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L.S, and Weller, R.A., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate 26 (9):2719-2740. doi:Doi 10.1175/Jcli-D-12-00436.1 Wild, M., 2012: New Directions: A facelift for the picture of the global energy balance. Atmospheric Environment, 55, 366-367. Wild, M. 2012: Enlightening Global Dimming and Brightening. Bull. Amer. Meteor. Soc., 93, 27-37, doi:10.1175/BAMS-D-11-00074.1 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134, Doi:10.1007/s00382-012-1569-8.

  14. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  15. VenSAR on EnVision: Taking earth observation radar to Venus

    NASA Astrophysics Data System (ADS)

    Ghail, Richard C.; Hall, David; Mason, Philippa J.; Herrick, Robert R.; Carter, Lynn M.; Williams, Ed

    2018-02-01

    Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part? EnVision is a proposed ESA Medium class mission designed to take Earth Observation technology to Venus to measure its current rate of geological activity, determine its geological history, and the origin and maintenance of its hostile atmosphere, to understand how Venus and Earth could have evolved so differently. EnVision will carry three instruments: the Venus Emission Mapper (VEM); the Subsurface Radar Sounder (SRS); and VenSAR, a world-leading European phased array synthetic aperture radar that is the subject of this article. VenSAR will obtain images at a range of spatial resolutions from 30 m regional coverage to 1 m images of selected areas; an improvement of two orders of magnitude on Magellan images; measure topography at 15 m resolution vertical and 60 m spatially from stereo and InSAR data; detect cm-scale change through differential InSAR, to characterise volcanic and tectonic activity, and estimate rates of weathering and surface alteration; and characterise of surface mechanical properties and weathering through multi-polar radar data. These data will be directly comparable with Earth Observation radar data, giving geoscientists unique access to an Earth-sized planet that has evolved on a radically different path to our own, offering new insights on the Earth-sized exoplanets across the galaxy.

  16. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  17. Constraining the Sensitivity of Amazonian Rainfall with Observations of Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dolman, A. J.; von Randow, C.; de Oliveira, G. S.; Martins, G.; Nobre, C. A.

    2016-12-01

    Earth System models generally do a poor job in predicting Amazonian rainfall, necessitating the need to look for observational constraints on their predictability. We use observed surface temperature and precipitation of the Amazon and a set of 21 CMIP5 models to derive an observational constraint of the sensitivity of rainfall to surface temperature (dP/dT). From first principles such a relation between the surface temperature of the earth and the amount of precipitation through the surface energy balance should exist, particularly in the tropics. When de-trended anomalies in surface temperature and precipitation from a set of datasets are plotted, a clear linear relation between surface temperature and precipitation appears. CMIP5 models show a similar relation with relatively cool models having a larger sensitivity, producing more rainfall. Using the ensemble of models and the observed surface temperature we were able to derive an emerging constraint, reducing the dPdt sensitivity of the CMIP5 model from -0.75 mm day-1 0C-1 (+/- 0.54 SD) to -0.77 mm day-1 0C-1 with a reduced uncertainty of about a factor 5. dPdT from the observation is -0.89 mm day-1 0C-1 . We applied the method to wet and dry season separately noticing that in the wet season we shifted the mean and reduced uncertainty, while in the dry season we very much reduced uncertainty only. The method can be applied to other model simulations such as specific deforestation scenarios to constrain the sensitivity of rainfall to surface temperature. We discuss the implications of the constrained sensitivity for future Amazonian predictions.

  18. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  19. Retrieval of land parameters by multi-sensor information using the Earth Observation Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chernetskiy, Maxim; Gobron, Nadine; Gomez-Dans, Jose; Disney, Mathias

    2016-07-01

    Upcoming satellite constellations will substantially increase the amount of Earth Observation (EO) data, and presents us with the challenge of consistently using all these available information to infer the state of the land surface, parameterised through Essential Climate Variables (ECVs). A promising approach to this problem is the use of physically based models that describe the processes that generate the images, using e.g. radiative transfer (RT) theory. However, these models need to be inverted to infer the land surface parameters from the observations, and there is often not enough information in the EO data to satisfactorily achieve this. Data assimilation (DA) approaches supplement the EO data with prior information in the form of models or prior parameter distributions, and have the potential for solving the inversion problem. These methods however are computationally expensive. In this study, we show the use of fast surrogate models of the RT codes (emulators) based on Gaussian Processes (Gomez-Dans et al, 2016) embedded with the Earth Observation Land Data Assimilation System (EO-LDAS) framework (Lewis et al 2012) in order to estimate the surface of the land surface from a heterogeneous set of optical observations. The study uses time series of moderate spatial resolution observations from MODIS (250 m), MERIS (300 m) and MISR (275 m) over one site to infer the temporal evolution of a number of land surface parameters (and associated uncertainties) related to vegetation: leaf area index (LAI), leaf chlorophyll content, etc. These parameter estimates are then used as input to an RT model (semidiscrete or PROSAIL, for example) to calculate fluxes such as broad band albedo or fAPAR. The study demonstrates that blending different sensors in a consistent way using physical models results in a rich and coherent set of land surface parameters retrieved, with quantified uncertainties. The use of RT models also allows for the consistent prediction of fluxes, with a simple mechanism for propagating the uncertainty in the land surface parameters to the flux estimates.

  20. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and suitable models to allow studies of finer-scale processes governing land-atmosphere interactions. Addressing observational challenges through the development of novel observational products and networks.

  1. LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lario, D.; Kwon, R.-Y.; Vourlidas, A.

    2016-03-01

    We investigate the solar phenomena associated with the origin of the solar energetic particle (SEP) event observed on 2014 February 25 by a number of spacecraft distributed in the inner heliosphere over a broad range of heliolongitudes. These include spacecraft located near Earth; the twin Solar TErrestrial RElations Observatory spacecraft, STEREO-A and STEREO-B, located at ∼1 au from the Sun 153° west and 160° east of Earth, respectively; the MErcury Surface Space ENvironment GEochemistry and Ranging mission (at 0.40 au and 31° west of Earth); and the Juno spacecraft (at 2.11 au and 48° east of Earth). Although the footpointsmore » of the field lines nominally connecting the Sun with STEREO-A, STEREO-B and near-Earth spacecraft were quite distant from each other, an intense high-energy SEP event with Fe-rich prompt components was observed at these three locations. The extent of the extreme-ultraviolet wave associated with the solar eruption generating the SEP event was very limited in longitude. However, the white-light shock accompanying the associated coronal mass ejection extended over a broad range of longitudes. As the shock propagated into interplanetary space it extended over at least ∼190° in longitude. The release of the SEPs observed at different longitudes occurred when the portion of the shock magnetically connected to each spacecraft was already at relatively high altitudes (≳2 R{sub ⊙} above the solar surface). The expansion of the shock in the extended corona, as opposite to near the solar surface, determined the SEP injection and SEP intensity-time profiles at different longitudes.« less

  2. Titan's Exotic Weather

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.

    2006-09-01

    Images of Titan, taken during the joint NASA and European Space Agency Cassini-Huygens mission, invoke a feeling of familiarity: washes wind downhill to damp lakebeds; massive cumuli form and quickly dissipate, suggestive of rain; and dark oval regions resemble lakes. These features arise from Titan's unique similarity with Earth: both cycle liquid between their surfaces and atmospheres, but in Titan's cool atmosphere it is methane that exists as a gas, liquid, and ice. While Titan enticingly resembles Earth, its atmosphere is 10 times thicker, so that its radiative time constant near the surface exceeds a Titan year, and prohibits large thermal gradients and seasonal surface temperature variations exceeding 3K. Titan also lacks oceans - central to Earth's climate - and instead stores much of its condensible in its atmosphere. As a result, Titan's weather differs remarkably from Earth's. Evidence for this difference appears in the location of Titan's large clouds, which frequent a narrow band at 40S latitude and a region within 30 latitude of the S. Pole. Ground-based and Cassini observations, combined with thermodynamic considerations, indicate that we are seeing large convective cloud systems. Detailed cloud models and general circulation models further suggest that these are severe rain storms, which will migrate with the change in season. Outside these migrating "gypsy" cloud bands, the atmosphere appears to be calm, humid and thus frequented by thin stratiform clouds. An intriguingly alien environment is predicted. Yet, the combined effects of Titan's patchy wet surface, atmospheric tides, possible ice volcanoes, and detailed seasonal variations remain unclear as we have witnessed only one season so far. This talk will review observations of Titan's lower atmosphere and modeling efforts to explain the observations, and explore the questions that still elude us.

  3. Developing Initial Response Products Using Data from Optical and SAR Earth Observing Platforms for Natural Disaster Response

    NASA Astrophysics Data System (ADS)

    Bell, J. R.; Molthan, A.; Dabboor, M.

    2016-12-01

    After a disaster occurs, decision makers require timely information to assist decision making and support. Earth observing satellites provide tools including optical remote sensors that sample in various spectral bands within the visible, near-infrared, and thermal infrared. However, views from optical sensors can be blocked when clouds are present, and cloud-free observations can be significantly delayed depending upon on their repeat cycle. Synthetic aperture radar (SAR) offers several advantages over optical sensors in terms of spatial resolution and the ability to map the Earth's surface whether skies are clear or cloudy. In cases where both SAR and cloud-free optical data are available, these instruments can be used together to provide additional confidence in what is being observed at the surface. This presentation demonstrates cases where SAR imagery can enhance the usefulness for mapping natural disasters and their impacts to the land surface, specifically from severe weather and flooding. The Missouri and Mississippi River flooding from early in 2016 and damage from hail swath in northwestern Iowa on 17 June 2016 are just two events that will be explored. Data collected specifically from the EO-1 (optical), Landsat (optical) and Sentinel 1 (SAR) missions are used to explore several applicable methodologies to determine which products and methodologies may provide decision makers with the best information to provide actionable information in a timely manner.

  4. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.; Roman, Miguel O.; Wanik, David W.

    2016-01-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes.However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre-and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  5. Improvements to Lunar BRDF-Corrected Nighttime Satellite Imagery: Uses and Applications

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.; Roman, M. O.; Wanik, D. W.

    2016-12-01

    Observations made by the VIIRS day/night band (DNB) provide daily, nighttime measurements to monitor Earth surface processes. However, these observations are impacted by variations in reflected solar radiation on the moon's surface. As the moon transitions from new to full phase, increasing radiance is reflected to the Earth's surface and contributes additional reflected moonlight from clouds and land surface, in addition to emissions from other light sources observed by the DNB. The introduction of a bi-directional reflectance distribution function (BRDF) algorithm serves to remove these lunar variations and normalize observed radiances. Provided by the Terrestrial Information Systems Laboratory at Goddard Space Flight Center, a 1 km gridded lunar BRDF-corrected DNB product and VIIRS cloud mask can be used for a multitude of nighttime applications without influence from the moon. Such applications include the detection of power outages following severe weather events using pre- and post-event DNB imagery, as well as the identification of boat features to curtail illegal fishing practices. This presentation will provide context on the importance of the lunar BRDF correction algorithm and explore the aforementioned uses of this improved DNB product for applied science applications.

  6. Titan's inventory of organic surface materials

    USGS Publications Warehouse

    Lorenz, R.D.; Mitchell, K.L.; Kirk, R.L.; Hayes, A.G.; Aharonson, O.; Zebker, H.A.; Paillou, P.; Radebaugh, J.; Lunine, J.I.; Janssen, M.A.; Wall, S.D.; Lopes, R.M.; Stiles, B.; Ostro, S.; Mitri, Giuseppe; Stofan, E.R.

    2008-01-01

    Cassini RADAR observations now permit an initial assessment of the inventory of two classes, presumed to be organic, of Titan surface materials: polar lake liquids and equatorial dune sands. Several hundred lakes or seas have been observed, of which dozens are each estimated to contain more hydrocarbon liquid than the entire known oil and gas reserves on Earth. Dark dunes cover some 20% of Titan's surface, and comprise a volume of material several hundred times larger than Earth's coal reserves. Overall, however, the identified surface inventories (>3 ?? 104 km3 of liquid, and >2 ?? 105 km3 of dune sands) are small compared with estimated photochemical production on Titan over the age of the solar system. The sand volume is too large to be accounted for simply by erosion in observed river channels or ejecta from observed impact craters. The lakes are adequate in extent to buffer atmospheric methane against photolysis in the short term, but do not contain enough methane to sustain the atmosphere over geologic time. Unless frequent resupply from the interior buffers this greenhouse gas at exactly the right rate, dramatic climate change on Titan is likely in its past, present and future. Copyright 2008 by the American Geophysical Union.

  7. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  8. GlobTemperature

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John; Bruniquel, Jerome; Sardou, Olivier; Trigo, Isabel; Merchant, Chris; Bulgin, Claire; Goettsche, Frank; Olesen, Folke; Prigent, Catherine; Pinnock, Simon

    2014-05-01

    Land surface temperature (LST) is the mean radiative skin temperature of an area of land resulting from the mean balance of solar heating and land-atmosphere cooling fluxes. It is a basic determinant of the terrestrial thermal behaviour, as it controls the effective radiating temperature of the Earth's surface. The sensitivity of LST to soil moisture and vegetation cover means it is an important component in numerous applications. For instance, LST is a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within General Circulation Models. Changes in land-surface cover can affect global climate, and also can be identified by changes in their surface temperatures. With the demand of LST data from Earth Observation currently experiencing considerable growth it is important that the users of this data are appropriately engaged by the LST community. The GlobTemperature project under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017) aims to promote the wider uptake of global-scale satellite LST by the research and operational user communities. As such, the programme of work is focussed on achieving some innovative milestones for LST data which include: detailed global merged geostationary (GEO) and low earth orbit (LEO) data sets with estimates of both clear-sky and under-cloud LST; a first Climate Data Record for LST for the ATSR series of instruments; and the provision of a globally representative and consistent in-situ validation and intercomparison matchup database. Furthermore, the strength of such a venture lies in the coherence and openness of the interactions with the LST and user communities. For instance: detailed user input into the specifications and subsequent testing of the LST data sets; sustained access to data in a user-friendly manner through common data formats; and the establishment of an LST working group (LST-WG) involving strong guidance of key international experts. GlobTemperature is thus a timely initiative to both enhance the portfolio of LST products from Earth Observation, while concurrently breaking down the barriers to successful application of such data through a programme of dialogue between the data providers and data users. This will require activities at a range of national facilities. For example, GlobTemperature is supported by the National Centre for Earth Observation (NCEO) in the UK with significant data processing and archiving to be performed on the Climate and Environmental Monitoring from Space (CEMS) facility. The project will have a very beneficial impact on global measurements of LST and will meet a critical need amongst users of LST data. Here we present the key challenges of such a programme of work and the methods to be employed in order to overcome them.

  9. Cubesats and drones: bridging the spatio-temporal divide for enhanced earth observation

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.; Aragon, B.; Parkes, S. D.; Mascaro, J.; Houborg, R.

    2017-12-01

    In just the last few years, a range of advances in remote sensing technologies have enabled an unprecedented opportunity in earth observation. Parallel developments in cubesats and unmanned aerial vehicles (UAVs) have overcome one of the outstanding challenges in observing the land surface: the provision of timely retrievals at a spatial resolution that is sufficiently detailed to make field-level decisions. Planet cubesats have revolutionized observing capacity through their objective of near daily global retrieval. These nano-satellite systems provide high resolution (approx. 3 m) retrievals in red-green-blue and near-infrared wavelengths, offering capacity to develop vegetation metrics for both hydrological and precision agricultural applications. Apart from satellite based advances, nearer to earth technology is being exploited for a range of observation needs. UAVs provide an adaptable platform from which a variety of sensing systems can be deployed. Combinations of optical, thermal, multi- and hyper-spectral systems allow for the estimation of a range of land surface variables, including vegetation structure, vegetation health, land surface temperature and evaporation. Here we explore some of these exciting developments in the context of agricultural hydrology, providing examples of cubesat and UAV imagery that has been used to inform upon crop health and water use. An investigation of the spatial and temporal advantage of these complementary systems is undertaken, with examples of multi-day high-resolution vegetation dynamics from cubesats presented alongside diurnal-cycle responses derived from multiple within-day UAV flights.

  10. Convectively driven decadal zonal accelerations in Earth's fluid core

    NASA Astrophysics Data System (ADS)

    More, Colin; Dumberry, Mathieu

    2018-04-01

    Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.

  11. The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks

    USGS Publications Warehouse

    Brett, R.

    1992-01-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the Earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the Earth's surface. Finally, the aerosol would fall back to Earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary. ?? 1992.

  12. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  13. Russian Arctic

    Atmospheric Science Data Center

    2013-04-16

    ... faint greenish hue in the multi-angle composite. This subtle effect suggests that the nadir camera is observing more of the brighter ... energy and water at the Earth's surface, and for preserving biodiversity. The Multi-angle Imaging SpectroRadiometer observes the daylit ...

  14. An analysis of the moon's surface using reflected illumination from the earth during a waning crescent lunar phase

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Linton-Petza, Maggie

    1989-01-01

    There have been many articles written concerning the lunar after-glow, the spectacular reflection from the moon's surface, and the possible observation of luminescence on the dark side of the moon. The researcher, using a 600 mm cassegrain telescope lense and Kodak 400 ASA T-Max film, photographed the crescent moon whose dark side was clearly visible by the reflected light from earth. The film was digitized to a Perkin-Elmer 1010M microdensitometer for enhancement and enlargement. The resulting pictures indicate a completely different land pattern formation than observed during a full moon. An attempt is made to analyze the observed structures and to compare them to the pictures observed during the normal full moon. There are boundaries on the digitized dark section of the moon that can be identified with structures seen during the normal full moon. But, these variations do change considerably under enhancement.

  15. Video observations, atmospheric path, orbit and fragmentation record of the fall of the Peekskill meteorite.

    PubMed

    Ceplecha, Z; Brown, P; Hawkes, R L; Wetherill, G; Beech, M; Mossman, K

    1996-02-01

    Large Near-Earth-Asteroids have played a role in modifying the character of the surface geology of the Earth over long time scales through impacts. Recent modeling of the disruption of large meteoroids during atmospheric flight has emphasized the dramatic effects that smaller objects may also have on the Earth's surface. However, comparison of these models with observations has not been possible until now. Peekskill is only the fourth meteorite to have been recovered for which detailed and precise data exist on the meteoroid atmospheric trajectory and orbit. Consequently, there are few constraints on the position of meteorites in the solar system before impact on Earth. In this paper, the preliminary analysis based on 4 from all 15 video recordings of the fireball of October 9, 1992 which resulted in the fall of a 12.4 kg ordinary chondrite (H6 monomict breccia) in Peekskill, New York, will be given. Preliminary computations revealed that the Peekskill fireball was an Earth-grazing event, the third such case with precise data available. The body with an initial mass of the order of 10(4) kg was in a pre-collision orbit with a = 1.5 AU, an aphelion of slightly over 2 AU and an inclination of 5 degrees. The no-atmosphere geocentric trajectory would have lead to a perigee of 22 km above the Earth's surface, but the body never reached this point due to tremendous fragmentation and other forms of ablation. The dark flight of the recovered meteorite started from a height of 30 km, when the velocity dropped below 3 km/s, and the body continued 50 km more without ablation, until it hit a parked car in Peekskill, New York with a velocity of about 80 m/s. Our observations are the first video records of a bright fireball and the first motion pictures of a fireball with an associated meteorite fall.

  16. Drought-induced uplift in the western United States as observed by the EarthScope Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2014-12-01

    The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.

  17. Repeated sharp flux dropouts observed at 6.6 earth radii during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Fritz, T. A.; Konradi, A.

    1976-01-01

    A number of repeated rapid flux dropouts have been observed at 6.6 earth radii by the low-energy proton detectors on board the ATS 6 satellite during the July 4-6, 1974, geomagnetic storm period. These rapid flux changes are caused by the fact that the outer boundary of the trapped radiation region moves back and forth past the satellite. Although a tilting field line configuration can cause the boundary to pass the satellite, as has frequently been reported in the literature, the boundary is shown to be distorted by a large surface wave traveling eastward around the earth. The maximum velocity of the wave was observed to be about 40 km/s.

  18. CEV Trajectory Design Considerations for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Condon, Gerald L.; Dawn, Timothy; Merriam, Robert S.; Sostaric, Ronald; Westhelle, Carlos H.

    2007-01-01

    The Crew Exploration Vehicle (CEV) translational maneuver Delta-V budget must support both the successful completion of a nominal lunar mission and an "anytime" emergency crew return with the potential for much more demanding orbital maneuvers. This translational Delta-V budget accounts for Earth-based LEO rendezvous with the lunar surface access module (LSAM)/Earth departure stage (EDS) stack, orbit maintenance during the lunar surface stay, an on-orbit plane change to align the CEV orbit for an in-plane LSAM ascent, and the Moon-to-Earth trans-Earth injection (TEI) maneuver sequence as well as post-TEI TCMs. Additionally, the CEV will have to execute TEI maneuver sequences while observing Earth atmospheric entry interface objectives for lunar high-latitude to equatorial sortie missions as well as near-polar sortie and long duration missions. The combination of these objectives places a premium on appropriately designed trajectories both to and from the Moon to accurately size the translational V and associated propellant mass in the CEV reference configuration and to demonstrate the feasibility of anytime Earth return for all lunar missions. This report examines the design of the primary CEV translational maneuvers (or maneuver sequences) including associated mission design philosophy, associated assumptions, and methodology for lunar sortie missions with up to a 7-day surface stay and with global lunar landing site access as well as for long duration (outpost) missions with up to a 210-day surface stay at or near the polar regions. The analyses presented in this report supports the Constellation Program and CEV project requirement for nominal and anytime abort (early return) by providing for minimum wedge angles, lunar orbit maintenance maneuvers, phasing orbit inclination changes, and lunar departure maneuvers for a CEV supporting an LSAM launch and subsequent CEV TEI to Earth return, anytime during the lunar surface stay.

  19. Enchancement of the Ionosphere Alfvén Resonance caused by earthquake: experiment and model

    NASA Astrophysics Data System (ADS)

    Kotsarenko, A.; Grimalsky, V.; Pulinets, S.; Koshevaya, S.; Perez-Enriquez, R.; Cruz Abeyro, J. A. L.

    2009-04-01

    Analysis of geomagnetic and telluric data, measured at the station PRK (Parkfield, ULF flux-gate 3-axial magnetometer) 1 week before (including) the day of major EQ (EarthQuake, Ms=6.0, 28-SEP-2004, 17:15:24) near Parkfield, California, USA, are presented. Spectral analysis reveals enhancement the IAR (Ionosphere Alfvén Resonance) modes, localized in the frequency range 0.25-1 Hz, observed the day before the event, Sep 27, at 15:00-20:00 by UT, and at the day of the EQ, Sep 28, at 11:00-19:00 (9 hours before the event). Estimations of the amplitudes of the signals give following values: up to 20 pT for the magnetic channels and 1.5 mkV/km for the telluric ones. Observed phenomena occurs under quiet geomagnetic conditions (|Dst|< 20 nT). We have calculated the efficiency of the modulation of the Alfvén wave at frequencies f = 0.1 - 10 Hz, which passes from the magnetosphere (z > 600 km) to the ionosphere and the to the Earth's surface and the lithosphere. The set of equations for the both magnetic and electric field components has been solved numerically. It has been obtained that the 20% modulation of the concentration of the ion and electron concentrations (which is also observed experimentally) at the heights z = 200 km can lead to the same (or higher) modulation of the amplitude of the variable magnetic field at the Earth's surface (z = 0) at f = 0.1 - 10 Hz. Moreover, the effect depends weakly on the conductivity of the lithosphere. Therefore, an influence of the coupling mechanisms on the F-layer of the ionosphere could lead to observable effects at the Earth's surface.

  20. Simultaneous observations of solar MeV particles in a magnetic cloud and in the earth's northern tail lobe - Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage

    NASA Technical Reports Server (NTRS)

    Farrugia, C. J.; Richardson, I. G.; Burlaga, L. F.; Lepping, R. P.; Osherovich, V. A.

    1993-01-01

    Simultaneous ISEE 3 and IMP 8 spacecraft observations of magnetic fields and flow anisotropies of solar energetic protons and electrons during the passage of an interplanetary magnetic cloud show various particle signature differences at the two spacecraft. These differences are interpretable in terms of the magnetic line topology of the cloud, the connectivity of the cloud field lines to the solar surface, and the interconnection between the magnetic fields of the magnetic clouds and of the earth. These observations are consistent with a magnetic cloud model in which these mesoscale configurations are curved magnetic flux ropes attached at both ends to the sun's surface, extending out to 1 AU.

  1. EOSDIS: The Ultimate Earth Science Data Source for Research and Education

    NASA Astrophysics Data System (ADS)

    Agbu, P. A.; Chang, C.; Corprew, F. E.

    2002-12-01

    Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rates of global changes. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. To assemble long-term information needed to construct accurate computer models that will enable forecasting of the causes and effects of climate change, the use of space-based Earth observing platforms is the only feasible way. Consequently, NASA's Earth Observing System (EOS) has begun an international study of planet Earth that is comprised of three main components: 1) a series of satellites specially designed to study the complexities of global change; 2) an advanced computer network for processing, storing, and distributing data (EOS Data and Information System); and 3) teams of scientists all over the world who will study the data. Recent launches of Landsat 7 in April 15, 1999 to continue the flow of global change information to users worldwide, and Terra the EOS flagship in December 18, 1999 to monitor climate and environmental change on Earth over the next 15 years, has tremendously expanded the sources of valuable Earth science data for research and education. These data and others from focused campaigns, e.g., FIFE and BOREAS designed to study surface-atmospheric interactions will be presented.

  2. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine the habitability of Earth for more extended periods. The evolution of terrestrial habitability may be used to recognize and characterize similar features on future observations of Earth-like exoplanets. Habitability of Earth during the Phanerozoic as measured by two methods, the Relative Vegetation Density (RVD) and the Standard Primary Habitability (SPH). Future observations of exoplanets might provide estimates of the SPH that could be compared to Earth.

  3. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to estimate 1) the total precipitation load from the storm, 2) the spatial distribution of flooding, and 3) the runoff/ET component of water storage changes (incorporating independent estimates of precipitation).

  4. Celebrate with SATELLITES: An International Polar Year Partnership to Study Earth's Materials

    ERIC Educational Resources Information Center

    Hedley, Mikell Lynne; Czajkowski, Kevin; Struble, Janet; Benko, Terri; Shellito, Brad; Sheridan, Scott; Stasiuk, Mandy Munroe

    2009-01-01

    The SATELLITES program uses geospatial technologies to study surface temperatures of Earth's materials, such as sand, soil, grass, and water. Data are collected using Global Learning and Observations to Benefit the Environment (GLOBE) protocols, which are then used in research projects that are a part of the International Polar Year (IPY).…

  5. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2004-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.

  6. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  7. Characterization of the Surface Properties of MUSES-C/Hayabusa Spacecraft Target Asteroid 25143 Itokawa (1998 SF36)

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Domingue, D. L.; Vilas, F.; Abe, M.; Farnham, T. L.; Jarvis, K. S.; Lowry, S. C.; Ohba, Y.; Weissman, P. R.; French, L. M.

    2004-01-01

    Several spacecraft missions have recently targeted asteroids to study their morphologies and physical properties (e.g. Galileo, NEAR Shoemaker), and more are planned. MUSES-C is a Japanese mission designed to rendezvous with a near-Earth asteroid (NEA). The MUSES-C spacecraft, Hayabusa, was launched successfully in May 2003. It will rendezvous with its target asteroid in 2005, and return samples to the Earth in 2007. Its target, 25143 Itokawa (1998 SF36), made a close approach to the Earth in 2001. We collected an extensive ground-based database of broadband photometry obtained during this time, which maximized the phase angle coverage, to characterize this target in preparation for the mission. Our project was designed to capitalize on the broadband UBVRI photometric observations taken with a series of telescopes, instrumentation, and observers. Photometry and spectrophotometry of Itokawa were acquired at Lowell, McDonald, Steward, Palomar, Table Mountain and Kiso Observatories. The photometric data sets were combined to calculate Hapke model parameters of the surface material of Itokawa, and examine the solar-corrected broadband color characteristics of the asteroid. Broadband photometry of an object can be used to: (1) determine its colors and thereby contribute to the understanding of its surface composition and taxonomic class, and (2) infer global physical surface properties of the target body. We present both colors from UBVRI observations of the MUSES-C target Itokawa, and physical properties derived by applying a Hapke model to the broadband BVRI photometry.

  8. Optical aperture synthesis: limitations and interest for the earth observation

    NASA Astrophysics Data System (ADS)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  9. Global Warming - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2007-01-01

    The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.

  10. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  11. Water ball collision

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.

    1986-01-01

    What happens if a stainless steel ball hits a water ball in the weightless space ot the Universe? In other words, it was the objective of our experiments in the Space to observe the surface tension of liquid by means of making a solid collide with a liquid. Place a small volume of water between 2 glass sheets to make a thin water membrane: the 2 glass sheets cannot be separated unless an enormous force is applied. It is obvious from this phenomenom that the surface tension of water is far greater than presumed. On Earth, however, it is impossible in most cases to observe only the surface tension of liquid, because gravity always acts on the surface tension. Water and stainless steel balls were chosen the liquid and solids for the experiments. Because water is the liquid most familiar to us, its properties are well known. And it is also of great interest to compare its properties on the Earth with those in the weightless space.

  12. Conceptual study of Earth observation missions with a space-borne laser scanner

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takashi; Sato, Yohei; Yamakawa, Shiro

    2017-11-01

    The Japan Aerospace Exploration Agency (JAXA) has started a conceptual study of earth observation missions with a space-borne laser scanner (GLS, as Global Laser Scanner). Laser scanners are systems which transmit intense pulsed laser light to the ground from an airplane or a satellite, receive the scattered light, and measure the distance to the surface from the round-trip delay time of the pulse. With scanning mechanisms, GLS can obtain high-accuracy three-dimensional (3D) information from all over the world. High-accuracy 3D information is quite useful in various areas. Currently, following applications are considered. 1. Observation of tree heights to estimate the biomass quantity. 2. Making the global elevation map with high resolution. 3. Observation of ice-sheets. This paper aims at reporting the present state of our conceptual study of the GLS. A prospective performance of the GLS for earth observation missions mentioned above.

  13. Powerful non-geoeffective interplanetary disturbance of July 2012 observed by muon hodoscope URAGAN

    NASA Astrophysics Data System (ADS)

    Astapov, I. I.; Barbashina, N. S.; Petrukhin, A. A.; Shutenko, V. V.; Veselovsky, I. S.

    2015-12-01

    The most powerful coronal mass ejection of the 24th solar cycle took place on the opposite side of the Sun on July 23, 2012 and had no geomagnetic consequences. Nevertheless, as a result of passing of the ejection through the heliosphere, variations of galactic cosmic rays flux were observed on the Earth. These variations were registered by the muon hodoscope URAGAN (MEPhI, Moscow). Muon flux angular distributions on the Earth's surface are reported and analyzed.

  14. The earth's radiation budget and its relation to atmospheric hydrology. III - Comparison of observations over the oceans with a GCM

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Randall, David A.; Wittmeyer, Ian L.; Dazlich, Donald A.; Tjemkes, Stephen

    1993-01-01

    The ability of the Colorado State University general circulation model (GCM) to simulate interactions between the hydrological cycle and the radiative processes on earth was examined by comparing various sensitivity relationships established by the model with those observed on earth, and the observed and calculated seasonal cycles of the greenhouse effect and cloud radiative forcing. Results showed that, although the GCM model used was able to simulate well some aspects of the observed sensitivities, there were many serious quantitative differences, including problems in the simulation of the column vapor in the tropics and an excessively strong clear-sky greenhouse effect in the mid-latitudes. These differences led to an underestimation by the model of the sensitivity of the clear-sky greenhouse to changes in sea surface temperature.

  15. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2016-04-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  16. On retrodictions of global mantle flow with assimilated surface velocities

    NASA Astrophysics Data System (ADS)

    Colli, Lorenzo; Bunge, Hans-Peter; Schuberth, Bernhard S. A.

    2015-10-01

    Modeling past states of Earth's mantle and relating them to geologic observations such as continental-scale uplift and subsidence is an effective method for testing mantle convection models. However, mantle convection is chaotic and two identical mantle models initialized with slightly different temperature fields diverge exponentially in time until they become uncorrelated, thus limiting retrodictions (i.e., reconstructions of past states of Earth's mantle obtained using present information) to the recent past. We show with 3-D spherical mantle convection models that retrodictions of mantle flow can be extended significantly if knowledge of the surface velocity field is available. Assimilating surface velocities produces in some cases negative Lyapunov times (i.e., e-folding times), implying that even a severely perturbed initial condition may evolve toward the reference state. A history of the surface velocity field for Earth can be obtained from past plate motion reconstructions for time periods of a mantle overturn, suggesting that mantle flow can be reconstructed over comparable times.

  17. Influence of Partial Solar Eclipse 2016 on the surface gravity acceleration using photogate sensor on Kater's reversible pendulum

    NASA Astrophysics Data System (ADS)

    Nugraha, M. G.; Saepuzaman, D.; Sholihat, F. N.; Ramayanti, S.; Setyadin, A. H.; Ferahenki, A. R.; Samsudin, A.; Utama, J. A.; Susanti, H.; Kirana, K. H.

    2016-11-01

    This study was conducted to determine the Earth's surface gravitational acceleration (g) prior to, during, and after a partial solar eclipse. Data was collected in Basic Physics Laboratory Universitas Pendidikan Indonesia, Bandung with coordinates S 6°51'48", E 107°35'40" for three days on March 8 - 10, 2016, in time interval measurement from 6 a.m. to 9 a.m. This research used a standard pendulum, Kater's reversible pendulum, which deviated less than 3° so that the motion can be regarded harmonics oscillation. The period of pendulum oscillation motion is measured by a light sensor (photogate sensor) with accuracy until 10-13 seconds. The data analysis shows that there is small difference value of gravity acceleration at the Earth's surface from three days of observation, i.e. in the order of 10-3 ms-2. It means, there is a changes in the Earth's surface gravitational acceleration (g) due to the partial solar eclipse but not significant.

  18. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    NASA Technical Reports Server (NTRS)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  19. Airglow studies using observations made with the GLO instrument on the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Alfaro Suzan, Ana Luisa

    2009-12-01

    Our understanding of Earth's upper atmosphere has advanced tremendously over the last few decades due to our enhanced capacity for making remote observations from space. Space based observations of Earth's daytime and nighttime airglow emissions are very good examples of such enhancements to our knowledge. The terrestrial nighttime airglow, or nightglow, is barely discernible to the naked eye as viewed from Earth's surface. However, it is clearly visible from space - as most astronauts have been amazed to report. The nightglow consists of emissions of ultraviolet, visible and near-infrared radiation from electronically excited oxygen molecules and atoms and vibrationally excited OH molecules. It mostly emanates from a 10 km thick layer located about 100 km above Earth's surface. Various photochemical models have been proposed to explain the production of the emitting species. In this study some unique observations of Earth's nightglow made with the GLO instrument on NASA's Space Shuttle, are analyzed to assess the proposed excitation models. Previous analyses of these observations by Broadfoot and Gardner (2001), performed using a 1-D inversion technique, have indicated significant spatial structures and have raised serious questions about the proposed nightglow excitation models. However, the observation of such strong spatial structures calls into serious question the appropriateness of the adopted 1-D inversion technique and, therefore, the validity of the conclusions. In this study a more rigorous 2-D tomographic inversion technique is developed and applied to the available GLO data to determine if some of the apparent discrepancies can be explained by the limitations of the previously applied 1-D inversion approach. The results of this study still reveal some potentially serious inadequacies in the proposed photochemical models. However, alternative explanations for the discrepancies between the GLO observations and the model expectations are suggested. These include upper atmospheric tidal effects and possible errors in the pointing of the GLO instrument.

  20. Solar energy microclimate as determined from satellite observations

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.; Ellis, J. S.

    1975-01-01

    A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.

  1. Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.

    PubMed

    Cockell, Charles S; Kaltenegger, Lisa; Raven, John A

    2009-09-01

    On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.

  2. NASA ARIA Project Provides New Look at Earth Surface Deformation from Nepal Quake

    NASA Image and Video Library

    2015-05-04

    NASA and its partners are contributing important observations and expertise to the ongoing response to the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal. The quake was the strongest to occur in that area since the 1934 Nepal-Bihar magnitude 8.0 event and caused significant regional damage and a humanitarian crisis. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and the California Institute of Technology in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate a map of the deformation of Earth's surface caused by the quake. This false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 70-day interval between two ALOS-2 images, acquired February 21 and May 2, 2015. In the map, surface displacements are seen as color contours (or "fringes"), where each color cycle represents 4.7 inches (11.9 centimeters) of surface motion. The contours show the land around Kathmandu has moved toward the satellite by up to 4.6 feet (1.4 meter), or 5.2 feet (1.6 meters) if we assume purely vertical motion. Areas without the color contours have snow or heavy vegetation that affects the radar measurements. Scientists use these maps to build detailed models of the fault and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellite (CEOS) in support of the response effort. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA19383

  3. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  4. Torque balance, Taylor's constraint and torsional oscillations in a numerical model of the geodynamo

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2003-11-01

    Theoretical considerations and observations suggest that, to a first approximation, the Earth's dynamo is in a quasi-Taylor state, where the axial Lorentz torque on cylindrical surfaces co-axial with the rotation axis vanishes, except for the part involved in torsional oscillations. The latter are rigid azimuthal accelerations of cylindrical surfaces which oscillate with typical periods of decades. We present a solution of a numerical model of the geodynamo in which rigid accelerations of cylinder surfaces are observed. The underlying dynamic state in the model is not a Taylor state because the Reynolds stresses and viscous torque remain large and provide an effective way to balance a large Lorentz torque. This is a consequence of the limited parameter regime which can be attained numerically. Nevertheless, departures in the torque equilibrium are primarily counterbalanced by rigid accelerations of cylindrical surfaces, which, in turn, excite rigid azimuthal oscillations of the surfaces. We show that the azimuthal motion is indeed quasi-rigid, though the torsional oscillations that are produced in the model probably differ from those in the Earth's core because of the large influence of the Reynolds stresses on their dynamics. We also show that the continual excitation of rigid cylindrical accelerations is produced by the advection of the non-axisymmetric structure of the fields by a mean differential rotation of the cylindrical surfaces which produces disconnections and reconnections and continual fluctuations in the Lorentz torque and Reynolds stresses. We propose that the torque balance in Earth's core may evolve in a similar chaotic fashion, except that the influence of the Reynolds stresses is probably weaker. If this is the case, the Lorentz torque on a cylindrical surface is continually fluctuating, even though its time-averaged value vanishes and satisfies Taylor's constraint. Rigid accelerations of cylindrical surfaces are continually excited by the fluctuations in the Lorentz torque, and the torsional oscillations observed in the geomagnetic data are a mixture of forced and free oscillations.

  5. Solar Atmosphere to Earth's Surface: Long Lead Time dB/dt Predictions with the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Manchester, W.; Savani, N.; Sokolov, I.; van der Holst, B.; Jin, M.; Toth, G.; Liemohn, M. W.; Gombosi, T. I.

    2017-12-01

    The future of space weather prediction depends on the community's ability to predict L1 values from observations of the solar atmosphere, which can yield hours of lead time. While both empirical and physics-based L1 forecast methods exist, it is not yet known if this nascent capability can translate to skilled dB/dt forecasts at the Earth's surface. This paper shows results for the first forecast-quality, solar-atmosphere-to-Earth's-surface dB/dt predictions. Two methods are used to predict solar wind and IMF conditions at L1 for several real-world coronal mass ejection events. The first method is an empirical and observationally based system to estimate the plasma characteristics. The magnetic field predictions are based on the Bz4Cast system which assumes that the CME has a cylindrical flux rope geometry locally around Earth's trajectory. The remaining plasma parameters of density, temperature and velocity are estimated from white-light coronagraphs via a variety of triangulation methods and forward based modelling. The second is a first-principles-based approach that combines the Eruptive Event Generator using Gibson-Low configuration (EEGGL) model with the Alfven Wave Solar Model (AWSoM). EEGGL specifies parameters for the Gibson-Low flux rope such that it erupts, driving a CME in the coronal model that reproduces coronagraph observations and propagates to 1AU. The resulting solar wind predictions are used to drive the operational Space Weather Modeling Framework (SWMF) for geospace. Following the configuration used by NOAA's Space Weather Prediction Center, this setup couples the BATS-R-US global magnetohydromagnetic model to the Rice Convection Model (RCM) ring current model and a height-integrated ionosphere electrodynamics model. The long lead time predictions of dB/dt are compared to model results that are driven by L1 solar wind observations. Both are compared to real-world observations from surface magnetometers at a variety of geomagnetic latitudes. Metrics are calculated to examine how the simulated solar wind drivers impact forecast skill. These results illustrate the current state of long-lead-time forecasting and the promise of this technology for operational use.

  6. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  7. The dynamical control of subduction parameters on surface topography

    NASA Astrophysics Data System (ADS)

    Crameri, F.; Lithgow-Bertelloni, C. R.; Tackley, P. J.

    2017-04-01

    The long-wavelength surface deflection of Earth's outermost rocky shell is mainly controlled by large-scale dynamic processes like isostasy or mantle flow. The largest topographic amplitudes are therefore observed at plate boundaries due to the presence of large thermal heterogeneities and strong tectonic forces. Distinct vertical surface deflections are particularly apparent at convergent plate boundaries mostly due to the convergence and asymmetric sinking of the plates. Having a mantle convection model with a free surface that is able to reproduce both realistic single-sided subduction and long-wavelength surface topography self-consistently, we are now able to better investigate this interaction. We separate the topographic signal into distinct features and quantify the individual topographic contribution of several controlling subduction parameters. Results are diagnosed by splitting the topographic signal into isostatic and residual components, and by considering various physical aspects like viscous dissipation during plate bending. Performing several systematic suites of experiments, we are then able to quantify the topographic impact of the buoyancy, rheology, and geometry of the subduction-zone system to each and every topographic feature at a subduction zone and to provide corresponding scaling laws. We identify slab dip and, slightly less importantly, slab buoyancy as the major agents controlling surface topography at subduction zones on Earth. Only the island-arc high and the back-arc depression extent are mainly controlled by plate strength. Overall, his modeling study sets the basis to better constrain deep-seated mantle structures and their physical properties via the observed surface topography on present-day Earth and back through time.

  8. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Ruf, C. S.; Chew, C.; Lang, T.; Morris, M. G.; Kyle, K.; Ridley, A.; Balasubramaniam, R.

    2018-01-01

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean and soil moisture and flooding over land. The satellites are distributed around the globe so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars’ transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  9. STS-57 Earth observation of King Sound in northwest Australia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of King Sound in northwest Australia. Roebuck Bay with the city of Broom on its northern shore is south of King Sound. Sediment in the sound is deposited by the Fitzroy River, which is the major body draining the Kimberley Plateau about 200 miles to the west. The extent of the tidal flats around the Sound is indicated by the large white areas covered with a salty residue. According to NASA scientists studying the STS-57 Earth photos, northwest wind gusts are ruffling areas of the water's surface at the mouth of King Sound and in neighboring Collier Bay. Therefore the water is less reflective and dark. The higher reflectance on the brightest areas is caused by biological oils floating on the surface and reducing the capillary wave action. The scientists point out that the oils take the forms of the currents and eddies in the picture. These eddies indicate that the water offshore is moving at a different speed

  10. Asteroid surface mineralogy: Evidence from earth-based telescope observations

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.

    1978-01-01

    The interpretation of asteroid reflectance spectrophotometry in terms of mineralogical types gives inferred mineral assemblages for about 60 asteroids. Asteroid surface materials are compared with similar materials that make up many meteorites. The absence of asteroids with spectra that match identically the ordinary chondrites is noted.

  11. Surface-Atmosphere Connections on Titan: A New Window into Terrestrial Hydroclimate

    NASA Astrophysics Data System (ADS)

    Faulk, Sean

    This dissertation investigates the coupling between the large-scale atmospheric circulation and surface processes on Titan, with a particular focus on methane precipitation and its influence on surface geomorphology and hydrology. As the only body in the Solar System with an active hydrologic cycle other than Earth, Titan presents a valuable laboratory for studying principles of hydroclimate on terrestrial planets. Idealized general circulation models (GCMs) are used here to test hypotheses regarding Titan's surface-atmosphere connections. First, an Earth-like GCM simulated over a range of rotation rates is used to evaluate the effect of rotation rate on seasonal monsoon behavior. Slower rotation rates result in poleward migration of summer rain, indicating a large-scale atmospheric control on Titan's observed dichotomy of dry low latitudes and moist high latitudes. Second, a Titan GCM benchmarked against observations is used to analyze the magnitudes and frequencies of extreme methane rainstorms as simulated by the model. Regional patterns in these extreme events correlate well with observed geomorphic features, with the most extreme rainstorms occurring in mid-latitude regions associated with high alluvial fan concentrations. Finally, a planetary surface hydrology scheme is developed and incorporated into a Titan GCM to evaluate the roles of surface flow, subsurface flow, infiltration, and groundmethane evaporation in Titan's climate. The model reproduces Titan's observed surface liquid and cloud distributions, and reaches an equilibrium state with limited interhemispheric transport where atmospheric transport is approximately balanced by subsurface transport. The equilibrium state suggests that Titan's current hemispheric surface liquid asymmetry, favoring methane accumulation in the north, is stable in the modern climate.

  12. Artist concept of Galileo with inertial upper stage (IUS) in low Earth orbit

    NASA Image and Video Library

    1989-08-25

    S89-42940 (April 1989) --- In this artist's rendition, the Galileo spacecraft is being boosted into its inter-planetary trajectory by the Inertial Upper Stage (IUS) rocket. The Space Shuttle Atlantis, which is scheduled to take Galileo and the IUS from Earth's surface into space, is depicted against the curve of Earth. Galileo will be placed on a trajectory to Venus, from which it will return to Earth at higher velocity and then gain still more energy in two gravity-assist passes, until it has enough velocity to reach Jupiter. Passing Venus, it will take scientific data using instruments designed for observing Jupiter; later, it will make measurements at Earth and the moon, crossing above the moon's north pole in the second pass. Between the two Earth passes, it will edge into the asteroid belt, beyond Mars' orbit; there, the first close-up observation of an asteroid is planned. Crossing the belt later, another asteroid flyby is possible.

  13. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  14. A search for life on Earth from the Galileo spacecraft

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Carlson, R.; Gurnett, D.; Hord, C.

    1993-01-01

    In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrow-band, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the serach for extraterrestrial life by modern interplanetary spacecraft.

  15. A search for life on Earth from the Galileo spacecraft.

    PubMed

    Sagan, C; Thompson, W R; Carlson, R; Gurnett, D; Hord, C

    1993-10-21

    In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrow-band, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the serach for extraterrestrial life by modern interplanetary spacecraft.

  16. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced moistening of the upper troposphere through active convection. That convection itself may be initiated by the changes to the atmospheric optical depth and consequent need for adjustment of the surface energy budget.Refs: Goldblatt et al., 2013, Nature Geoscience, 6, 661-667, doi:10.1038/NGEO1892.

  17. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  18. The role of the space station in earth science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaye, Jack A.

    1999-01-22

    The International Space Station (ISS) has the potential to be a valuable platform for earth science research. By virtue of its being in a mid-inclination orbit (51.5 deg.), ISS provides the opportunity for nadir viewing of nearly 3/4 of the Earth's surface, and allows viewing to high latitudes if limb-emission or occultation viewing techniques are used. ISS also provides the opportunity for viewing the Earth under a range of lighting conditions, unlike the polar sun-synchronous satellites that are used for many earth observing programs. The ISS is expected to have ample power and data handling capability to support Earth-viewing instruments,more » provide opportunities for external mounting and retrieval of instruments, and be in place for a sufficiently long period that long-term data records can be obtained. On the other hand, there are several questions related to contamination, orbital variations, pointing knowledge and stability, and viewing that are of concern in consideration of ISS for earth science applications. The existence of an optical quality window (the Window Observational Research Facility, or WORF), also provides the opportunity for Earth observations from inside the pressurized part of ISS. Current plans by NASA for earth science research from ISS are built around the Stratospheric Aerosol and Gas Experiment (SAGE III) instrument, planned for launch in 2002.« less

  19. Surveys of the earth's resources and environment by satellites

    NASA Technical Reports Server (NTRS)

    Nordberg, W.; Tiedemann, H.; Bohn, C.

    1975-01-01

    The potential and promise of observing the earth from the vantage point of space is discussed. The systematic surveying of processes and phenomena occurring on the surface of the earth by Landsat 1 and Nimbus 5 is considered to be useful in the following areas: assessment of water resources; mineral and petroleum exploration; land use planning; crop, forest, and rangeland inventory; assessment of flood, earthquake, and other environmental hazards; monitoring coastal processes; environmental effects of industrial effluents and of air pollution; mapping the distribution and types of ice covering the earth's polar caps and global soil moisture distributions.

  20. Cross-calibration of Medium Resolution Earth Observing Satellites by Using EO-1 Hyperion-derived Spectral Surface Reflectance from "Lunar Cal Sites"

    NASA Astrophysics Data System (ADS)

    Ungar, S.

    2017-12-01

    Over the past 3 years, the Earth Observing-one (EO-1) Hyperion imaging spectrometer was used to slowly scan the lunar surface at a rate which results in up to 32X oversampling to effectively increase the SNR. Several strategies, including comparison against the USGS RObotic Lunar Observatory (ROLO) mode,l are being employed to estimate the absolute and relative accuracy of the measurement set. There is an existing need to resolve discrepancies as high as 10% between ROLO and solar based calibration of current NASA EOS assets. Although the EO-1 mission was decommissioned at the end of March 2017, the development of a well-characterized exoatmospheric spectral radiometric database, for a range of lunar phase angles surrounding the fully illuminated moon, continues. Initial studies include a comprehensive analysis of the existing 17-year collection of more than 200 monthly lunar acquisitions. Specific lunar surface areas, such as a lunar mare, are being characterized as potential "lunar calibration sites" in terms of their radiometric stability in the presence of lunar nutation and libration. Site specific Hyperion-derived lunar spectral reflectance are being compared against spectrographic measurements made during the Apollo program. Techniques developed through this activity can be employed by future high-quality orbiting imaging spectrometers (such as HyspIRI and EnMap) to further refine calibration accuracies. These techniques will enable the consistent cross calibration of existing and future earth observing systems (spectral and multi-spectral) including those that do not have lunar viewing capability. When direct lunar viewing is not an option for an earth observing asset, orbiting imaging spectrometers can serve as transfer radiometers relating that asset's sensor response to lunar values through near contemporaneous observations of well characterized stable CEOS test sites. Analysis of this dataset will lead to the development of strategies to ensure more accurate cross calibrations when employing the more capable, future imaging spectrometers.

  1. The importance of ground truth data in remote sensing

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1972-01-01

    Surface observation data is discussed as an essential part of remote sensing research. One of the most important aspects of ground truth is the collection of measurements and observations about the type, size, condition and other physical or chemical properties of importance concerning the materials on the earth's surface that are being sensed remotely. The use of a variety of sensor systems in combination at different altitudes is emphasized.

  2. Flood warnings, flood disaster assessments, and flood hazard reduction: the roles of orbital remote sensing

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.; Anderson, E.; Nghiem, S. V.; Caquard, S.; Shabaneh, T. B.

    2003-01-01

    Orbital remote sensing of the Earth is now poised to make three fundamental contributions towards reducing the detrimental effects of extreme floods. Effective Flood warning requires frequent radar observation of the Earth's surface through cloud cover. In contrast, both optical and radar wavelengths will increasingly be used for disaster assessment and hazard reduction.

  3. Earth Core and Inner Core: What Can We Learn From a Bayesian Inversion of Combined Nutation and Surface Gravimetry Data?

    NASA Astrophysics Data System (ADS)

    Lambert, S. B.; Ziegler, Y.; Rosat, S.; Bizouard, C.

    2017-12-01

    Nutation time series derived from very long baseline interferometry (VLBI) and time varying surface gravity data recorded by superconducting gravimeters (SG) have long been used separately to assess the Earth's interior via the estimation of the free core and inner core resonance effects on nutation or tidal gravity. The results obtained from these two techniques have shown recently to be consistent, making relevant the combination of VLBI and SG observables and the estimation of Earth's interior parameters in a single inversion. We present here the results of combining nutation and surface gravity time series to improve estimates of the Earth's core and inner core resonant frequencies. We use VLBI nutation time series spanning 1984-2016 derived by several analysis centers affiliated to the International VLBI Service for Geodesy and Astrometry, together with surface gravity data from about 15 SG stations. We address the resonance model used for describing the Earth's interior response to tidal excitation, the data preparation consisting of the error recalibration and amplitude fitting to nutation data, and processing of SG time-varying gravity to remove any gaps, spikes, steps and other disturbances, followed by the tidal analysis with the ETERNA 3.4 software package. New estimates of the resonant periods are proposed and correlations between the parameters are investigated.

  4. Normal and Tangential Momentum Accommodation for Earth Satellite Conditions

    NASA Technical Reports Server (NTRS)

    Knechtel, Earl D.; Pitts, William C.

    1973-01-01

    Momentum accommodation was determined experimentally for gas-surface interactions simulating in a practical way those of near-earth satellites. Throughout the ranges of gas energies and incidence angles of interest for earth-conditions, two components of force were measured by means of a vacuum microbalance to determine the normal and tangential momentum-accommodation coefficients for nitrogen ions on technical-quality aluminum surfaces. For these experimental conditions, the electrodynamics of ion neutralization near the surface indicate that results for nitrogen ions should differ relatively little from those for nitrogen molecules, which comprise the largest component of momentum flux for near-earth satellites. The experimental results indicated that both normal and tangential momentum-accommodation coefficients varied widely with energy, tending to be relatively well accommodated at the higher energies, but becoming progressively less accommodated as the energy was reduced to and below that for earth-satellite speeds. Both coefficients also varied greatly with incidence angle, the normal momentum becoming less accommodated as the incidence angle became more glancing, whereas the tangential momentum generally became more fully accommodated. For each momentum coefficient, an empirical correlation function was obtained which closely approximated the experimental results over the ranges of energy and incidence angle. Most of the observed variations of momentum accommodation with energy and incidence angle were qualitatively indicated by a calculation using a three-dimensional model that simulated the target surface by a one-dimensional attractive potential and hard sphere reflectors.

  5. A map of the large day-night temperature gradient of a super-Earth exoplanet.

    PubMed

    Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier

    2016-04-14

    Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.

  6. Impact of Interactive Energy-Balance Modeling on Student Learning in a Core-Curriculum Earth Science Course

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.

    2008-12-01

    An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.

  7. Assessment of radiative feedback in climate models using satellite observations of annual flux variation.

    PubMed

    Tsushima, Yoko; Manabe, Syukuro

    2013-05-07

    In the climate system, two types of radiative feedback are in operation. The feedback of the first kind involves the radiative damping of the vertically uniform temperature perturbation of the troposphere and Earth's surface that approximately follows the Stefan-Boltzmann law of blackbody radiation. The second kind involves the change in the vertical lapse rate of temperature, water vapor, and clouds in the troposphere and albedo of the Earth's surface. Using satellite observations of the annual variation of the outgoing flux of longwave radiation and that of reflected solar radiation at the top of the atmosphere, this study estimates the so-called "gain factor," which characterizes the strength of radiative feedback of the second kind that operates on the annually varying, global-scale perturbation of temperature at the Earth's surface. The gain factor is computed not only for all sky but also for clear sky. The gain factor of so-called "cloud radiative forcing" is then computed as the difference between the two. The gain factors thus obtained are compared with those obtained from 35 models that were used for the fourth and fifth Intergovernmental Panel on Climate Change assessment. Here, we show that the gain factors obtained from satellite observations of cloud radiative forcing are effective for identifying systematic biases of the feedback processes that control the sensitivity of simulated climate, providing useful information for validating and improving a climate model.

  8. Assessment of Mars Pathfinder landing site predictions

    USGS Publications Warehouse

    Golombek, M.P.; Moore, H.J.; Haldemann, A.F.C.; Parker, T.J.; Schofield, J.T.

    1999-01-01

    Remote sensing data at scales of kilometers and an Earth analog were used to accurately predict the characteristics of the Mars Pathfinder landing site at a scale of meters. The surface surrounding the Mars Pathfinder lander in Ares Vallis appears consistent with orbital interpretations, namely, that it would be a rocky plain composed of materials deposited by catastrophic floods. The surface and observed maximum clast size appears similar to predictions based on an analogous surface of the Ephrata Fan in the Channeled Scabland of Washington state. The elevation of the site measured by relatively small footprint delay-Doppler radar is within 100 m of that determined by two-way ranging and Doppler tracking of the spacecraft. The nearly equal elevations of the Mars Pathfinder and Viking Lander 1 sites allowed a prediction of the atmospheric conditions with altitude (pressure, temperature, and winds) that were well within the entry, descent, and landing design margins. High-resolution (~38 m/pixel) Viking Orbiter 1 images showed a sparsely cratered surface with small knobs with relatively low slopes, consistent with observations of these features from the lander. Measured rock abundance is within 10% of that expected from Viking orbiter thermal observations and models. The fractional area covered by large, potentially hazardous rocks observed is similar to that estimated from model rock distributions based on data from the Viking landing sites, Earth analog sites, and total rock abundance. The bulk and fine-component thermal inertias measured from orbit are similar to those calculated from the observed rock size-frequency distribution. A simple radar echo model based on the reflectivity of the soil (estimated from its bulk density), and the measured fraction of area covered by rocks was used to approximate the quasi-specular and diffuse components of the Earth-based radar echos. Color and albedo orbiter data were used to predict the relatively dust free or unweathered surface around the Pathfinder lander compared to the Viking landing sites. Comparisons with the experiences of selecting the Viking landing sites demonstrate the enormous benefit the Viking data and its analyses and models had on the successful predictions of the Pathfinder site. The Pathfinder experience demonstrates that, in certain locations, geologic processes observed in orbiter data can be used to infer surface characteristics where those processes dominate over other processes affecting the Martian surface layer. Copyright 1999 by the American Geophysical Union.

  9. Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.

    1978-01-01

    Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.

  10. Magnetohydrodynamic Convection in the Outer Core and its Geodynamic Consequences

    NASA Technical Reports Server (NTRS)

    Kuang, Weijia; Chao, Benjamin F.; Fang, Ming

    2004-01-01

    The Earth's fluid outer core is in vigorous convection through much of the Earth's history. In addition to generating and maintaining Earth s time-varying magnetic field (geodynamo), the core convection also generates mass redistribution in the core and a dynamical pressure field on the core-mantle boundary (CMB). All these shall result in various core-mantle interactions, and contribute to surface geodynamic observables. For example, electromagnetic core-mantle coupling arises from finite electrically conducting lower mantle; gravitational interaction occurs between the cores and the heterogeneous mantle; mechanical coupling may also occur when the CMB topography is aspherical. Besides changing the mantle rotation via the coupling torques, the mass-redistribution in the core shall produce a spatial-temporal gravity anomaly. Numerical modeling of the core dynamical processes contributes in several geophysical disciplines. It helps explain the physical causes of surface geodynamic observables via space geodetic techniques and other means, e.g. Earth's rotation variation on decadal time scales, and secular time-variable gravity. Conversely, identification of the sources of the observables can provide additional insights on the dynamics of the fluid core, leading to better constraints on the physics in the numerical modeling. In the past few years, our core dynamics modeling efforts, with respect to our MoSST model, have made significant progress in understanding individual geophysical consequences. However, integrated studies are desirable, not only because of more mature numerical core dynamics models, but also because of inter-correlation among the geophysical phenomena, e.g. mass redistribution in the outer core produces not only time-variable gravity, but also gravitational core-mantle coupling and thus the Earth's rotation variation. They are expected to further facilitate multidisciplinary studies of core dynamics and interactions of the core with other components of the Earth.

  11. Earth and space science - Oceans

    NASA Technical Reports Server (NTRS)

    Stewart, R. H.

    1983-01-01

    Satellite observations of the oceans are now being used to obtain new information about the oceanic geoid, currents, winds, tides and the interaction of the ocean with the atmosphere. In addition, satellites routinely relay information from the sea surface to laboratories on land, and determine the position of instruments drifting on the sea surface.

  12. Observation and integrated Earth-system science: A roadmap for 2016-2025

    NASA Astrophysics Data System (ADS)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.

  13. Observation and integrated Earth-system science: A roadmap for 2016–2025

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, V.

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types ofmore » observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organized on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation.« less

  14. Putting Technology to Work in Science - How to Select Unmanned Aerial Vehicles (UAV) and their Instrumentation for Atmospheric and Earth Surface Observations

    NASA Astrophysics Data System (ADS)

    Teller, Amit; Lange, Manfred; Ioannou, Stelios; Keleshis, Christos

    2010-05-01

    The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO platforms will offer the unique potential to determine physical, chemical and radiative atmospheric properties, aerosol and dust concentrations, atmospheric dynamics, surface morphology, vegetation and land use patterns as well as ocean surface properties (biology, waves, currents) and to carry out archaeological site reconnaissance and contaminant detection at high spatial resolution. The first phase of APAESO was dedicated to the preliminary design and the selection of an Unmanned Aerial Vehicle (UAV) as the backbone of the APAESO infrastructure. Selection of a UAV suitable for the many research objectives as outlined above is challenging because the UAV technology is new and rapidly evolving. This notwithstanding, a very large number of systems, mostly utilized for defense purposes, are currently available. The major challenge in the selection process lies in considering the trade-off between different platform characteristics (e.g. payload weight, endurance, max. altitude for operation and price) and in optimizing the potential performance of the UAV. Based on the required characteristics for the UAV platform, a survey of possible UAVs and suitable sensors was prepared based on various data sources. We used an elimination process in order to consider only a few models for the final selection process out of about 1000 commercially available UAV models that were initially investigated. The presentation will discuss the main scientific objectives that determine the specification of the UAV platform, major considerations in selecting best available technology for our needs and will briefly describe the next phases of the project.

  15. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.

  16. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; hide

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  17. Global land-atmosphere coupling associated with cold climate processes

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel

    This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.

  18. Observing and Modeling Earth's Energy Flows

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

  19. The surface roughness of (433) Eros as measured by thermal-infrared beaming

    NASA Astrophysics Data System (ADS)

    Rozitis, B.

    2017-01-01

    In planetary science, surface roughness is regarded to be a measure of surface irregularity at small spatial scales, and causes the thermal-infrared beaming effect (I.e. re-radiation of absorbed sunlight back towards to the Sun). Typically, surface roughness exhibits a degeneracy with thermal inertia when thermophysical models are fitted to disc-integrated thermal-infrared observations of asteroids because of this effect. In this work, it is demonstrated how surface roughness can be constrained for near-Earth asteroid (433) Eros (I.e. the target of NASA's NEAR Shoemaker mission) when using the Advanced Thermophysical Model with thermal-infrared observations taken during an `almost pole-on' illumination and viewing geometry. It is found that the surface roughness of (433) Eros is characterized by an rms slope of 38 ± 8° at the 0.5-cm spatial scale associated with its thermal-infrared beaming effect. This is slightly greater than the rms slope of 25 ± 5° implied by the NEAR Shoemaker laser ranging results when extrapolated to this spatial scale, and indicates that other surface shaping processes might operate, in addition to collisions and gravity, at spatial scales under one metre in order to make asteroid surfaces rougher. For other high-obliquity asteroids observed during `pole-on' illumination conditions, the thermal-infrared beaming effect allows surface roughness to be constrained when the sub-solar latitude is greater than 60°, and if the asteroids are observed at phase angles of less than 40°. They will likely exhibit near-Earth asteroid thermal model beaming parameters that are lower than expected for a typical asteroid at all phase angles up to 100°.

  20. Characterization of Properties of Earth Atmosphere from Multi-Angular Polarimetric Observations of Polder/Parasol Using GRASP Algorithm

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Ducos, F.; Fuertes, D.; Huang, X.; Torres, B.; Aspetsberger, M.; Federspiel, C.

    2014-12-01

    The POLDER imager on board of the PARASOL micro-satellite is the only satellite polarimeter provided ~ 9 years extensive record of detailed polarmertic observations of Earth atmosphere from space. POLDER / PARASOL registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. Such observations have very high sensitivity to the variability of the properties of atmosphere and underlying surface and can not be adequately interpreted using look-up-table retrieval algorithms developed for analyzing mono-viewing intensity only observations traditionally used in atmospheric remote sensing. Therefore, a new enhanced retrieval algorithm GRASP (Generalized Retrieval of Aerosol and Surface Properties) has been developed and applied for processing of PARASOL data. GRASP relies on highly optimized statistical fitting of observations and derives large number of unknowns for each observed pixel. The algorithm uses elaborated model of the atmosphere and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are implemented during inversion and no look-up tables are used. The algorithm is very flexible in utilization of various types of a priori constraints on the retrieved characteristics and in parameterization of surface - atmosphere system. It is also optimized for high performance calculations. The results of the PARASOL data processing will be presented with the emphasis on the discussion of transferability and adaptability of the developed retrieval concept for processing polarimetric observations of other planets. For example, flexibility and possible alternative in modeling properties of aerosol polydisperse mixtures, particle composition and shape, reflectance of surface, etc. will be discussed.

  1. MMS observations and hybrid simulations of rippled and reforming quasi-parallel shocks

    NASA Astrophysics Data System (ADS)

    Gingell, I.; Schwartz, S. J.; Burgess, D.; Johlander, A.; Russell, C. T.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gershman, D. J.; Giles, B. L.; Goodrich, K.; Khotyaintsev, Y. V.; Lavraud, B.; Lindqvist, P. A.; Strangeway, R. J.; Trattner, K. J.; Torbert, R. B.; Wilder, F. D.

    2017-12-01

    Surface ripples, i.e. deviations in the nominal local shock orientation, are expected to propagate in the ramp and overshoot of collisionless shocks. These ripples have typically been associated with observations and simulations of quasi-perpendicular shocks. We present observations of a crossing of Earth's marginally quasi-parallel (θBn ˜ 45°) bow shock by the MMS spacecraft on 2015-11-27 06:01:44 UTC, for which we identify signatures consistent with a propagating surface ripple. In order to demonstrate the differences between ripples at quasi-perpendicular and quasi-parallel shocks, we also present two-dimensional hybrid simulations over a range of shock normal angles θBn under the observed solar wind conditions. We show that in the quasi-parallel cases surface ripples are transient phenomena modulated by the cyclic reformation of the shock front. These ripples develop faster than an ion gyroperiod and only during the period of the reformation cycle when a newly developed shock ramp is unaffected by turbulence in the foot. We conclude that the change of properties of the surface ripple observed by MMS while crossing Earth's quasi-parallel bow shock are consistent with the influence of cyclic reformation on shock structure. Given that both surface ripples and cyclic reformation are expected to affect the acceleration of electrons within the shock, the interaction of these phenomena and any other sources of shock non-stationary are important for models of particle acceleration. We therefore discuss signatures of electron heating and acceleration in several rippled shocks observed by MMS.

  2. Evaluating Land-Atmosphere Moisture Feedbacks in Earth System Models With Spaceborne Observations

    NASA Astrophysics Data System (ADS)

    Levine, P. A.; Randerson, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-12-01

    We have developed a set of metrics for measuring the feedback loop between the land surface moisture state and the atmosphere globally on an interannual time scale. These metrics consider both the forcing of terrestrial water storage (TWS) on subsequent atmospheric conditions as well as the response of TWS to antecedent atmospheric conditions. We designed our metrics to take advantage of more than one decade's worth of satellite observations of TWS from the Gravity Recovery and Climate Experiment (GRACE) along with atmospheric variables from the Atmospheric Infrared Sounder (AIRS), the Global Precipitation Climatology Project (GPCP), and Clouds and the Earths Radiant Energy System (CERES). Metrics derived from spaceborne observations were used to evaluate the strength of the feedback loop in the Community Earth System Model (CESM) Large Ensemble (LENS) and in several models that contributed simulations to Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop were generally stronger in tropical and temperate regions in CMIP5 models and even more so in LENS compared to satellite observations. Our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere, which is consistent with previous studies conducted across different spatial and temporal scales.

  3. National Satellite Land Remote Sensing Data Archive

    USGS Publications Warehouse

    Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.

    2013-01-01

    The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.

  4. Linking the Observation of Essential Variables to Societal Benefits

    NASA Astrophysics Data System (ADS)

    Sylak-Glassman, E.

    2017-12-01

    Different scientific communities have established sets of commonly agreed upon essential variables to help coordinate data collection in a variety of Earth observation areas. As an example, the World Meteorological Organization Global Climate Observing System has identified 50 Essential Climate Variables (ECVs), such as sea-surface temperature and carbon dioxide, which are required to monitoring the climate and detect and attribute climate change. In addition to supporting climate science, measuring these ECVs deliver many types of societal benefits, ranging from disaster mitigation to agricultural productivity to human health. While communicating the value in maintaining and improving observational records for these variables has been a challenge, quantifying how the measurement of these ECVs results in the delivery of many different societal benefits may help support their continued measurement. The 2016 National Earth Observation Assessment (EOA 2016) quantified the impact of individual Earth observation systems, sensors, networks, and surveys (or Earth observation systems, for short) on the achievement of 217 Federal objectives in 13 societal benefit areas (SBAs). This study will demonstrate the use of the EOA 2016 dataset to show the different Federal objectives and SBAs that are impacted by the Earth observation systems used to measure ECVs. Describing how the measurements from these Earth observation systems are used not only to maintain the climate record but also to meet additional Federal objectives may help articulate the continued measurement of the ECVs. This study will act as a pilot for the use of the EOA 2016 dataset to map between the measurements required to observe additional sets of variables, such as the Essential Ocean Variables and Essential Biodiversity Variables, and the ability to achieve a variety of societal benefits.

  5. An age-colour relationship for main-belt S-complex asteroids.

    PubMed

    Jedicke, Robert; Nesvorný, David; Whiteley, Robert; Ivezić Z, Zeljko; Jurić, Mario

    2004-05-20

    Asteroid collisions in the main belt eject fragments that may eventually land on Earth as meteorites. It has therefore been a long-standing puzzle in planetary science that laboratory spectra of the most populous class of meteorite (ordinary chondrites, OC) do not match the remotely observed surface spectra of their presumed (S-complex) asteroidal parent bodies. One of the proposed solutions to this perplexing observation is that 'space weathering' modifies the exposed planetary surfaces over time through a variety of processes (such as solar and cosmic ray bombardment, micro-meteorite bombardment, and so on). Space weathering has been observed on lunar samples, in Earth-based laboratory experiments, and there is good evidence from spacecraft data that the process is active on asteroid surfaces. Here, we present a measurement of the rate of space weathering on S-complex main-belt asteroids using a relationship between the ages of asteroid families and their colours. Extrapolating this age-colour relationship to very young ages yields a good match to the colour of freshly cut OC meteorite samples, lending strong support to a genetic relationship between them and the S-complex asteroids.

  6. Scintillation of rare earth doped fluoride nanoparticles

    NASA Astrophysics Data System (ADS)

    Jacobsohn, L. G.; McPherson, C. L.; Sprinkle, K. B.; Yukihara, E. G.; DeVol, T. A.; Ballato, J.

    2011-09-01

    The scintillation response of rare earth (RE) doped core/undoped (multi-)shell fluoride nanoparticles was investigated under x-ray and alpha particle irradiation. A significant enhancement of the scintillation response was observed with increasing shells due: (i) to the passivation of surface quenching defects together with the activation of the REs on the surface of the core nanoparticle after the growth of a shell, and (ii) to the increase of the volume of the nanoparticles. These results are expected to reflect a general aspect of the scintillation process in nanoparticles, and to impact radiation sensing technologies that make use of nanoparticles.

  7. Remote visual detection of impacts on the lunar surface

    NASA Technical Reports Server (NTRS)

    Melosh, H. Jay; Artemjeva, N. A.; Golub, A. P.; Nemchinov, I. V.; Shuvalov, V. V.; Trubetskaya, I. A.

    1993-01-01

    We propose a novel method of remotely observing impacts on the airless Moon that may extend the present data base on meteoroids down to 1 m in diameter. Meteorites or comets of radius approximately 1-100 m are burnt away or dispersed in the atmospheres of the Earth and Venus. However, when such objects strike the Moon they deposit their energy in a small initial volume, forming a plasma plume whose visible and infrared radiation may be visible from the Earth. We consider impacts of model SiO2 projectiles on the surface of an SiO2 model Moon.

  8. Monitoring global climate change using SLR data from LARES and other geodetic satellites

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Paris, Claudio; Pavlis, Erricos C.; Sindoni, Giampiero; Ciufolini, Ignazio

    2016-04-01

    The Earth Orientation Parameters (EOP), i.e. the spin axis of the Earth, is influenced by the mass redistribution inside and on the surface of the Earth. On the Earth surface, global ice melting, sea level change and atmospheric circulation are the prime contributors. Recent studies have unraveled the majority of the mysteries behind the Chandler wobble, the annual motion and the secular motion of the pole. The differences from the motion of a pole for a rigid Earth is indeed due to the mass redistribution and transfer of angular momentum among the atmosphere, the oceans and solid Earth. The technique of laser ranging and the use of laser ranged satellites such as LARES along with other techniques such Very Long Baseline Interferometry (VLBI) allow to measure the EOP with accuracies at the level of ~200 μas which correspond to few millimeters at the Earth's surface, while the use of Global Navigation Satellite System (GNSS) data can reach an accuracy even below 100 μas. At these unprecedented high levels of accuracy, even tiny anomalous behavior in EOP can be observed and thus correlated to global environmental changes such as ice melting on Greenland and the polar caps, and extreme events that involve strong ocean-atmosphere coupling interactions such as the El Niño. The contribution of Satellite Laser Ranging (SLR) data such as from the LARES mission and similar satellites to this area is outlined in this paper.

  9. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars.

    PubMed

    Segura, Antígona; Krelove, Kara; Kasting, James F; Sommerlatt, Darrell; Meadows, Victoria; Crisp, David; Cohen, Martin; Mlawer, Eli

    2003-01-01

    Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.

  10. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Remedios, J.; Pinnock, S.

    2013-12-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013-2017), which aims to support the wider uptake of global-scale satellite LST by the research and operational user communities, will be a particularly important element in the development and subsequent provision of global diurnal LST. This new project, with its emphasis on promoting the coherence and openness of interactions within the LST and user communities, will be well placed to deliver appropriate data, engage a wide audience and hence be a key promoter of LST research and development for the LST community. References Freitas, S.C., Trigo, I.F., Macedo, J., Barroso, C., Silva, R., & Perdigao, R., 2013, Land surface temperature from multiple geostationary satellites, International Journal of Remote Sensing, 34, 3051-3068.

  11. Detectability of Boulders on Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Miller, Kevin J.; Taylor, Patrick A.; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.

    2014-11-01

    Boulders are seen on spacecraft images of near-Earth asteroids Eros and Itokawa. Radar images often show bright pixels or groups of pixels that travel consistently across the surface as the object rotates, which may be indicative of similar boulders on other near-Earth asteroids. Examples of these bright pixels were found on radar observations of 2005 YU55 and 2006 VV2 (Benner et al. 2014). Nolan et al. (2013) also identify one large possible boulder on the surface of Bennu, target of the OSIRIS-REx sample return mission. We explore the detectability of boulders by adding synthetic features on asteroid models, and then simulating radar images. These synthetic features were added using BLENDER ver. 2.70, a free open-source 3-D animation suite. Starting with the shape model for Bennu (diameter ~500 m), spherical 'boulders' of 10 m, 20 m, and 40 m diameter were placed at latitudes between 0 and 90 deg. Simulated radar observations of these models indicated that spherical boulders smaller than 10 m may not be visible in observations but that larger ones should be readily seen. Boulders near the sub-Earth point can be hidden in the bright region near the leading edge, but as the asteroid's rotation moves them towards the terminator, they become visible again, with no significant dependence on the latitude of the boulder. These simulations suggest that we should detect large boulders under most circumstances in high-quality radar images, and we have a good estimate of the occurrence of such features on near-Earth objects. Results of these simulations will be presented.

  12. Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Davila, Joseph M.; SaintCyr, O. C.

    2003-01-01

    The solar magnetic field is constantly generated beneath the surface of the Sun by the solar dynamo. To balance this flux generation, there is constant dissipation of magnetic flux at and above the solar surface. The largest phenomenon associated with this dissipation is the Coronal Mass Ejection (CME). The Solar and Heliospheric Observatory (SOHO) has provided remarkable views of the corona and CMEs, and served to highlight how these large interplanetary disturbances can have terrestrial consequences. STEREO is the next logical step to study the physics of CME origin, propagation, and terrestrial effects. Two spacecraft with identical instrument complements will be launched on a single launch vehicle in November 2007. One spacecraft will drift ahead and the second behind the Earth at a separation rate of 22 degrees per year. Observation from these two vantage points will for the first time allow the observation of the three-dimensional structure of CMEs and the coronal structures where they originate. Each STEREO spacecraft carries a complement of 10 instruments, which include (for the first time) an extensive set of both remote sensing and in-situ instruments. The remote sensing suite is capable of imaging CMEs from the solar surface out to beyond Earth's orbit (1 AU), and in-situ instruments are able to measure distribution functions for electrons, protons, and ions over a broad energy range, from the normal thermal solar wind plasma to the most energetic solar particles. It is anticipated that these studies will ultimately lead to an increased understanding of the CME process and provide unique observations of the flow of energy from the corona to the near-Earth environment. An international research program, the International Heliophysical Year (IHY) will provide a framework for interpreting STEREO data in the context of global processes in the Sun-Earth system.

  13. The Earth Observation Technology Cluster

    NASA Astrophysics Data System (ADS)

    Aplin, P.; Boyd, D. S.; Danson, F. M.; Donoghue, D. N. M.; Ferrier, G.; Galiatsatos, N.; Marsh, A.; Pope, A.; Ramirez, F. A.; Tate, N. J.

    2012-07-01

    The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1) Unpiloted Aerial Vehicles, (2) Terrestrial Laser Scanning, (3) Field-Based Fourier Transform Infra-Red Spectroscopy, (4) Hypertemporal Image Analysis, and (5) Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  14. The use of radar and visual observations to characterize the surface structure of the planet Mercury

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Kobrick, M.; Jurgens, R. F.

    1985-01-01

    An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.

  15. What we could learn from observations of terrestrial exoplanets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Schwieterman, Edward; Arney, Giada; Lustig-Yaeger, Jacob; Lincowski, Andrew; Robinson, Tyler D.; Deming, Drake; NASA Astrobiology Institute - Virtual Planetary Laboratory

    2016-10-01

    Observations of terrestrial exoplanet environments remain an important frontier in comparative planetology. Studies of habitable zone terrestrial planets will set our own Earth in a broader context. Hot, post-runaway terrestrial exoplanets can provide insights into terrestrial planet evolution - and may reveal planetary processes that could mimic signs of life, such as photochemically-produced oxygen. While transmission spectroscopy observations of terrestrial planet atmospheres with JWST will be extremely challenging, they will afford our first chance to characterize the atmospheres of planets orbiting in the habitable zone of M dwarfs. However, due to the effects of refraction, clouds and hazes, JWST will likely sample the stratospheres of habitable zone terrestrial planets, and will not be able to observe the planetary surface or near-surface atmosphere. These limitations will hamper the search for signs of habitability and life, by precluding detection of water vapor in the deep atmosphere, and confining biosignature searches to gases that are prevalent in the stratosphere, such as evenly-mixed O2, or photochemical byproducts of biogenic gases. In contrast, direct imaging missions can potentially probe the entire atmospheric column and planetary surface, and can typically obtain broader wavelength coverage for habitable zone planets orbiting more Sun-like stars, complementing the M dwarf planet observations favored by transmission spectroscopy. In this presentation we will show results from theoretical modeling of terrestrial exoplanet environments for habitable Earth-like, early Earth and highly-evolved hot terrestrial planets - with photochemistry and climates that are driven by host stars of different spectral types. We will also present simulated observations of these planets for both transmission (JWST) and direct imaging (LUVOIR-class) observations. These photometric measurements and spectra help us identify the most - and least - observable features of these planetary environments, and illuminate the strengths and limitations of each class of observation for future terrestrial planet characterization studies.

  16. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David, E-mail: robinson@astro.washington.ed

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability ofmore » glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.« less

  17. Detecting Oceans on Extrasolar Planets Using the Glint Effect

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-01

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  18. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    USGS Publications Warehouse

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  19. Global MHD Simulations of the Earth's Bow Shock Shape and Motion Under Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Mejnertsen, L.; Eastwood, J. P.; Hietala, H.; Schwartz, S. J.; Chittenden, J. P.

    2018-01-01

    Empirical models of the Earth's bow shock are often used to place in situ measurements in context and to understand the global behavior of the foreshock/bow shock system. They are derived statistically from spacecraft bow shock crossings and typically treat the shock surface as a conic section parameterized according to a uniform solar wind ram pressure, although more complex models exist. Here a global magnetohydrodynamic simulation is used to analyze the variability of the Earth's bow shock under real solar wind conditions. The shape and location of the bow shock is found as a function of time, and this is used to calculate the shock velocity over the shock surface. The results are compared to existing empirical models. Good agreement is found in the variability of the subsolar shock location. However, empirical models fail to reproduce the two-dimensional shape of the shock in the simulation. This is because significant solar wind variability occurs on timescales less than the transit time of a single solar wind phase front over the curved shock surface. Empirical models must therefore be used with care when interpreting spacecraft data, especially when observations are made far from the Sun-Earth line. Further analysis reveals a bias to higher shock speeds when measured by virtual spacecraft. This is attributed to the fact that the spacecraft only observes the shock when it is in motion. This must be accounted for when studying bow shock motion and variability with spacecraft data.

  20. Comparative Habitable Planet Signatures in Polarized Light

    NASA Astrophysics Data System (ADS)

    Bott, K.; Bailey, J.; Meadows, V.; Kedziora-Chudczer, L.; Cotton, D.; Crisp, D.

    2017-11-01

    VSTAR polarized light models of terrestrial worlds are compared for varying cloud, atmospheric, and surface conditions. Archetypal "Earth-like" planets are compared and the observability of their combined polarimetric effects assessed.

  1. Global warming: Clouds cooled the Earth

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  2. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  3. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  4. Incorporation of multiple cloud layers for ultraviolet radiation modeling studies

    NASA Technical Reports Server (NTRS)

    Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.

    1994-01-01

    Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.

  5. Role of light satellites in the high-resolution Earth observation domain

    NASA Astrophysics Data System (ADS)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  6. Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere

    NASA Astrophysics Data System (ADS)

    Hedlin, M. A. H.; Walker, K.; Drob, D. P.; de Groot-Hedlin, C. D.

    2012-05-01

    The recently reinvigorated field of infrasonics is poised to provide insight into atmospheric structure and the physics of large atmospheric phenomena, just as seismology has shed considerable light on the workings and structure of Earth's solid interior. Although a natural tool to monitor the atmosphere and shallow Earth for nuclear explosions, it is becoming increasingly apparent that infrasound also provides another means to monitor a suite of natural hazards. The frequent observation of geophysical sources—such as the unsteady sea surface, volcanoes, and earthquakes—that radiate energy both up into the atmosphere and down into the liquid or solid Earth and transmission of energy across Earth's boundaries reminds us that Earth is an interconnected system. This review details the rich history of the unheard sound in the atmosphere and the role that infrasonics plays in helping us understand the Earth system.

  7. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    PubMed

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  8. Earth Science

    NASA Image and Video Library

    2004-08-13

    This panoramic view of Hurricane Charley was photographed by the Expedition 9 crew aboard the International Space Station (ISS) on August 13, 2004, at a vantage point just north of Tampa, Florida. The small eye was not visible in this view, but the raised cloud tops near the center coincide roughly with the time that the storm began to rapidly strengthen. The category 2 hurricane was moving north-northwest at 18 mph packing winds of 105 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  9. Earth Science

    NASA Image and Video Library

    2004-09-11

    This image hosts a look at the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm topped the western Caribbean Sea on Saturday, September 11, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, the category 5 storm sustained winds in the eye of the wall that were reported at about 160 mph. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  10. Radiative Energy Budget Studies Using Observations from the Earth Radiation Budget Experiment (ERBE)

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Frey, R.; Shie, M.; Olson, R.; Collimore, C.; Friedman, M.

    1997-01-01

    Our research activities under this NASA grant have focused on two broad topics associated with the Earth Radiation Budget Experiment (ERBE): (1) the role of clouds and the surface in modifying the radiative balance; and (2) the spatial and temporal variability of the earth's radiation budget. Each of these broad topics is discussed separately in the text that follows. The major points of the thesis are summarized in section 3 of this report. Other dissertation focuses on deriving the radiation budget over the TOGA COARE region.

  11. Black Marble - Americas

    NASA Image and Video Library

    2017-12-08

    NASA image acquired April 18 - October 23, 2012 This image of North and South America at night is a composite assembled from data acquired by the Suomi NPP satellite in April and October 2012. The new data was mapped over existing Blue Marble imagery of Earth to provide a realistic view of the planet. The nighttime view was made possible by the new satellite’s “day-night band” of the Visible Infrared Imaging Radiometer Suite. VIIRS detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires, and reflected moonlight. In this case, auroras, fires, and other stray light have been removed to emphasize the city lights. “Artificial lighting is a excellent remote sensing observable and proxy for human activity,” says Chris Elvidge, who leads the Earth Observation Group at NOAA’s National Geophysical Data Center. Social scientists and demographers have used night lights to model the spatial distribution of economic activity, of constructed surfaces, and of populations. Planners and environmental groups have used maps of lights to select sites for astronomical observatories and to monitor human development around parks and wildlife refuges. Electric power companies, emergency managers, and news media turn to night lights to observe blackouts. Named for satellite meteorology pioneer Verner Suomi, NPP flies over any given point on Earth's surface twice each day at roughly 1:30 a.m. and p.m. The polar-orbiting satellite flies 824 kilometers (512 miles) above the surface, sending its data once per orbit to a ground station in Svalbard, Norway, and continuously to local direct broadcast users distributed around the world. The mission is managed by NASA with operational support from NOAA and its Joint Polar Satellite System, which manages the satellite's ground system. NASA Earth Observatory image by Robert Simmon, using Suomi NPP VIIRS data provided courtesy of Chris Elvidge (NOAA National Geophysical Data Center). Suomi NPP is the result of a partnership between NASA, NOAA, and the Department of Defense. Caption by Mike Carlowicz. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. STS-44 Earth observation shows purplish twilight over the Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Earth observation taken aboard Atlantis, Orbiter Vehicle (OV) 104, shows twilight over the Atlantic Ocean. OV-104 was at a point in the north Atlantic located at 28 degrees north latitude and 37 degrees west longitude. The spacecraft has just passed sundown on the Earth's surface, but it was still daylight at an altitude of 195 nautical miles. During the mission, the astronauts noted that the limb of the Earth displayed a more purplish tint instead of its normal blue. This effect, according to NASA scientists, is attributed to the high altitude residue (mostly sulfuric acid particles) from the Mount Pinatubo eruptions of mid June 1991. Note the broad band of twilight in the center of the image. This band is another indicator of the upper atmospheric scattering of sunlight caused by this layer of haze that exists between 20 and 30 kilometers above Earth. Sunlight highlights the empty payload bay (PLB), the vertical tail, and orbital maneuvering system (OMS) pods against the black

  13. Earth's core-mantle boundary - Results of experiments at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (above 2.4 x 10 to the 10th Pa) and temperatures. In particular, (Mg,Fe)SiO3 perovskite, the most abundant mineral of earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO2 stishovite and MgSiO3 perovskite) at the pressures of the core-mantle boundary, 14 x 10 to the 10th Pa. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 km of earth's mantle, the D-double-prime layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence earth's magnetic field observed at the surface.

  14. Indexing of exoplanets in search for potential habitability: application to Mars-like worlds

    NASA Astrophysics Data System (ADS)

    Kashyap Jagadeesh, Madhu; Gudennavar, Shivappa B.; Doshi, Urmi; Safonova, Margarita

    2017-08-01

    Study of exoplanets is one of the main goals of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth—the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity, it is difficult to determine its value. Using the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures to devise an effective way to estimate the value of the surface temperature of exoplanets. ESI is a first step in determining potential exo-habitability that may not be very similar to a terrestrial life. A new approach, called Mars Similarity Index (MSI), is introduced to identify planets that may be habitable to the extreme forms of life. MSI is defined in the range between 1 (present Mars) and 0 (dissimilar to present Mars) and uses the same physical parameters as ESI. We are interested in Mars-like planets to search for planets that may host the extreme life forms, such as the ones living in extreme environments on Earth; for example, methane on Mars may be a product of the methane-specific extremophile life form metabolism.

  15. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  16. SMAP Level 4 Surface and Root Zone Soil Moisture

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.; Kimball, J.; Koster, R.

    2017-01-01

    The SMAP Level 4 soil moisture (L4_SM) product provides global estimates of surface and root zone soil moisture, along with other land surface variables and their error estimates. These estimates are obtained through assimilation of SMAP brightness temperature observations into the Goddard Earth Observing System (GEOS-5) land surface model. The L4_SM product is provided at 9 km spatial and 3-hourly temporal resolution and with about 2.5 day latency. The soil moisture and temperature estimates in the L4_SM product are validated against in situ observations. The L4_SM product meets the required target uncertainty of 0.04 m(exp. 3)m(exp. -3), measured in terms of unbiased root-mean-square-error, for both surface and root zone soil moisture.

  17. Understanding the Cryosphere of Europa Using Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Green, R. O.; Hibbitts, C.; Clark, R. N.; Dalton, J. B.; Davies, A. G.; Langevin, Y.; Hedman, M.; Lunine, J. I.; McCord, T. B.; Murchie, S. L.; Paranicas, C.; Seelos, F. P.; Soderblom, J. M.; Diniega, S.

    2017-12-01

    Europa's surface expresses a complex interplay of geologic processes driven by the ocean beneath the cryosphere that are subsequently modified by the Jovian environment once exposed on the surface. Several recent Earth-based observations of Europa's tenuous atmosphere suggest that there may in fact be active plumes [1,2,3]. However, the frequency and the duration of activity at any specific location cannot be precisely determined by these observations, but could be with spacecraft observations. For instance, recently active areas on Europa from plumes or other processes may result in distinctive spectral signatures on the surface. Possible spectral signatures that may indicate recent activity include: differences in ice grain size or ice crystallinity; the lack of radiolytic signatures (e.g. a deficit in species due to implantation, radiation darkening of salts, degradation of organic compounds); and thermal anomalies. The Mapping Imaging Spectrometer for Europa (MISE) on NASA's Europa Clipper Mission will be able to map these species thus enabling the identification of these deposits and other young and/or least processed areas. These signatures may also enable a relative geochronology for Europa to be developed. For example, recent work by Proctor et al [4] finds that bands of different stratigraphic ages have different spectral features potentially due to radiation effects on the deposits. We will explore borrowing analyses techniques from earth observing missions of the Arctic. On Earth, data from the Airborne Visible / Infrared Imaging Spectrometer Next Generation (AVRIS-NG) (https://avirisng.jpl.nasa.gov/aviris-ng.html) is being used to explore Earth's cryosphere. AVRIS-NG data collected from the Greenland ice sheet and high latitude sea ice is being used to map of key ice properties such as grain size and contaminants. These data and processing approaches will be used to explore and validate imaging spectroscopy approaches which MISE might use on Europa.

  18. Effects of the low Earth orbit space environment on the surface chemistry of Kapton polyimide film: An XPS study

    NASA Technical Reports Server (NTRS)

    Lee, Myung; Rooney, William; Whiteside, James

    1992-01-01

    Kapton H (DuPont Trademark) polyimide specimens exposed to the low earth (LEO) space environment suffered significant weathering with surface erosions of approximately 8.0 microns. Despite these effects, no significant changes in bulk chemistry were observed. X-ray photoelectron spectroscopy (XPS) was used to determine local changes induced from approximately 25 percent in 1980 vintage ground control specimens to nearly 53 percent in space exposed specimens. The greatest increase was observed for the divalent oxygen moieties, although a slight increase in carbonyl oxygen was also measured. Furthermore, the chemical shifts of all XPS peaks of space-exposed Kapton are shifted to higher energy. This is consistent with a higher oxidation state of the space exposed surface. Finally, space exposed specimens had distinct silicon peaks (2p 100 eV and 2s 149 eV) in their XPS spectra in agreement with widespread reports of silicon contamination throughout the LDEF satellite. These results are discussed in terms of surface reactivity of the polyimide exposed to the LEO environment and the chemical nature of contaminants deposited on flight surfaces due to satellite outgassing.

  19. STS-55 Earth observation of the Timor Sea

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level

  20. Global water cycle and the coevolution of the Earth's interior and surface environment.

    PubMed

    Korenaga, Jun; Planavsky, Noah J; Evans, David A D

    2017-05-28

    The bulk Earth composition contains probably less than 0.3% of water, but this trace amount of water can affect the long-term evolution of the Earth in a number of different ways. The foremost issue is the occurrence of plate tectonics, which governs almost all aspects of the Earth system, and the presence of water could either promote or hinder the operation of plate tectonics, depending on where water resides. The global water cycle, which circulates surface water into the deep mantle and back to the surface again, could thus have played a critical role in the Earth's history. In this contribution, we first review the present-day water cycle and discuss its uncertainty as well as its secular variation. If the continental freeboard has been roughly constant since the Early Proterozoic, model results suggest long-term net water influx from the surface to the mantle, which is estimated to be 3-4.5×10 14  g yr -1 on the billion years time scale. We survey geological and geochemical observations relevant to the emergence of continents above the sea level as well as the nature of Precambrian plate tectonics. The global water cycle is suggested to have been dominated by regassing, and its implications for geochemical cycles and atmospheric evolution are also discussed.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  1. Colors of extreme exo-Earth environments.

    PubMed

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  2. Atmospheric and oceanic excitation of decadal-scale Earth orientation variations

    NASA Astrophysics Data System (ADS)

    Gross, Richard S.; Fukumori, Ichiro; Menemenlis, Dimitris

    2005-09-01

    The contribution of atmospheric wind and surface pressure and oceanic current and bottom pressure variations during 1949-2002 to exciting changes in the Earth's orientation on decadal timescales is investigated using an atmospheric angular momentum series computed from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project and an oceanic angular momentum series computed from a near-global ocean model that was forced by surface fluxes from the NCEP/NCAR reanalysis project. Not surprisingly, since decadal-scale variations in the length of day are caused mainly by interactions between the mantle and core, the effect of the atmosphere and oceans is found to be only about 14% of that observed. More surprisingly, it is found that the effect of atmospheric and oceanic processes on decadal-scale changes in polar motion is also only about 20% (x component) and 38% (y component) of that observed. Therefore redistribution of mass within the atmosphere and oceans does not appear to be the main cause of the Markowitz wobble. It is also found that on timescales between 10 days and 4 years the atmospheric and oceanic angular momentum series used here have very little skill in explaining Earth orientation variations before the mid to late 1970s. This is attributed to errors in both the Earth orientation observations prior to 1976 when measurements from the accurate space-geodetic techniques became available and to errors in the modeled atmospheric fields prior to 1979 when the satellite era of global weather observing systems began.

  3. Titan and habitable planets around M-dwarfs.

    PubMed

    Lunine, Jonathan I

    2010-01-01

    The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

  4. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation.

    PubMed

    Ruf, Christopher S; Chew, Clara; Lang, Timothy; Morris, Mary G; Nave, Kyle; Ridley, Aaron; Balasubramaniam, Rajeswari

    2018-06-08

    A constellation of small, low-cost satellites is able to make scientifically valuable measurements of the Earth which can be used for weather forecasting, disaster monitoring, and climate studies. Eight CYGNSS satellites were launched into low Earth orbit on December 15, 2016. Each satellite carries a science radar receiver which measures GPS signals reflected from the Earth surface. The signals contain information about the surface, including wind speed over ocean, and soil moisture and flooding over land. The satellites are distributed around their orbit plane so that measurements can be made more often to capture extreme weather events. Innovative engineering approaches are used to reduce per satellite cost, increase the number in the constellation, and improve temporal sampling. These include the use of differential drag rather than propulsion to adjust the spacing between satellites and the use of existing GPS signals as the science radars' transmitter. Initial on-orbit results demonstrate the scientific utility of the CYGNSS observations, and suggest that a new paradigm in spaceborne Earth environmental monitoring is possible.

  5. Biogenic oxygen from Earth transported to the Moon by a wind of magnetospheric ions

    NASA Astrophysics Data System (ADS)

    Terada, Kentaro; Yokota, Shoichiro; Saito, Yoshifumi; Kitamura, Naritoshi; Asamura, Kazushi; Nishino, Masaki N.

    2017-01-01

    For five days of each lunar orbit, the Moon is shielded from solar wind bombardment by the Earth's magnetosphere, which is filled with terrestrial ions. Although the possibility of the presence of terrestrial nitrogen and noble gases in lunar soil has been discussed based on their isotopic composition 1 , complicated oxygen isotope fractionation in lunar metal 2,3 (particularly the provenance of a 16O-poor component) re­mains an enigma 4,5 . Here, we report observations from the Japanese spacecraft Kaguya of significant numbers of 1-10 keV O+ ions, seen only when the Moon was in the Earth's plasma sheet. Considering the penetration depth into metal of O+ ions with such energy, and the 16O-poor mass-independent fractionation of the Earth's upper atmosphere 6 , we conclude that biogenic terrestrial oxygen has been transported to the Moon by the Earth wind (at least 2.6 × 104 ions cm-2 s-1) and implanted into the surface of the lunar regolith, at around tens of nanometres in depth 3,4 . We suggest the possibility that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar surface.

  6. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  7. Earthquake Signal Visible in GRACE Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure1

    This figure shows the effect of the December 2004 great Sumatra earthquake on the Earth's gravity field as observed by GRACE. The signal is expressed in terms of the relative acceleration of the two GRACE satellites, in this case a few nanometers per second squared, or about 1 billionth of the acceleration we experience everyday at the Earth's surface.GRACE observations show comparable signals in the region of the earthquake.

    Other natural variations are also apparent in the expected places, whereas no other significant change would be expected in the region of the earthquake

    GRACE, twin satellites launched in March 2002, are making detailed measurements of Earth's gravity field which will lead to discoveries about gravity and Earth's natural systems. These discoveries could have far-reaching benefits to society and the world's population.

  8. A new Ellipsoidal Gravimetric-Satellite Altimetry Boundary Value Problem; Case study: High Resolution Geoid of Iran

    NASA Astrophysics Data System (ADS)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    A new ellipsoidal gravimetric-satellite altimetry boundary value problem has been developed and successfully tested. This boundary value problem has been constructed for gravity observables of the type (i) gravity potential (ii) gravity intensity (iii) deflection of vertical and (iv) satellite altimetry data. The developed boundary value problem is enjoying the ellipsoidal nature and as such can take advantage of high precision GPS observations in the set-up of the problem. The highlights of the solution are as follows: begin{itemize} Application of ellipsoidal harmonic expansion up to degree/order and ellipsoidal centrifugal field for the reduction of global gravity and isostasy effects from the gravity observable at the surface of the Earth. Application of ellipsoidal Newton integral on the equal area map projection surface for the reduction of residual mass effects within a radius of 55 km around the computational point. Ellipsoidal harmonic downward continuation of the residual observables from the surface of the earth down to the surface of reference ellipsoid using the ellipsoidal height of the observation points derived from GPS. Restore of the removed effects at the application points on the surface of reference ellipsoid. Conversion of the satellite altimetry derived heights of the water bodies into potential. Combination of the downward continued gravity information with the potential equivalent of the satellite altimetry derived heights of the water bodies. Application of ellipsoidal Bruns formula for converting the potential values on the surface of the reference ellipsoid into the geoidal heights (i.e. ellipsoidal heights of the geoid) with respect to the reference ellipsoid. Computation of the high-resolution geoid of Iran has successfully tested this new methodology!

  9. Surface Photometry of Celestial Sources from a Space Vehicle: Introduction and Observational Procedures*

    PubMed Central

    Roach, Franklin E.; Carroll, Benjamin; Aller, Lawrence H.; Smith, Leroi

    1972-01-01

    Diffuse celestial sources of relatively low surface brightness such as the Milky Way, zodiacal light, and gegenschein (or contre lumière) can be studied most reliably from above the earth's atmosphere with equipment flown in artificial satellites. We review the techniques used and some of the difficulties encountered in day-time observations from satellites by the use of a special photometer and polarimeter flown in the orbiting skylab observatory, OSO-6. PMID:16591970

  10. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  11. MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.

    2013-09-01

    Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.

  12. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  13. On the tidal effects in the motion of earth satellites and the love parameters of the earth

    NASA Technical Reports Server (NTRS)

    Musen, P.; Estes, R.

    1972-01-01

    The tidal effects in the motion of artificial satellites are studied to determine the elastic properties of the earth as they are observed from extraterrestrial space. Considering Love numbers, the disturbing potential is obtained as the analytical continuation of the tidal potential from the surface of the earth into-outer space, with parameters which characterize the earth's elastic response to tidal attraction by the moon and the sun. It is concluded that the tidal effects represent a superposition of a large number of periodic terms, and the rotation of the lunar orbital plane produces a term of 18 years period in tidal perturbations of the ascending node of the satellite's orbit.

  14. EROS: A space program for Earth resources

    USGS Publications Warehouse

    Metz, G.G.; Wiepking, P.J.

    1980-01-01

    Within the technology of the space age lies a key to increased knowledge about the resources and environment of the Earth. This key is remote sensing detecting the nature of an object without actually touching it. Although the photographic camera is the most familiar remote-sensing device, other instrument systems, such as scanning radiometers and radar, also can produce photographs and images. On the basis of the potential of this technology, and in response to the critical need for greater knowledge of the Earth and its resources, the Department of the Interior established the Earth Resources Observation Systems (EROS) Program to gather and use remotely sensed data collected by satellite and aircraft of natural and manmade features on the Earth's surface.

  15. Science at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2012-01-01

    The Sciences and Exploration Directorate of the NASA Goddard Space Flight Center (GSFC) is the largest Earth and space science research organization in the world. Its scientists advance understanding of the Earth and its life-sustaining environment, the Sun, the solar system, and the wider universe beyond. Researchers in the Sciences and Exploration Directorate work with engineers, computer programmers, technologists, and other team members to develop the cutting-edge technology needed for space-based research. Instruments are also deployed on aircraft, balloons, and Earth's surface. I will give an overview of the current research activities and programs at GSFC including the James Web Space Telescope (JWST), future Earth Observing programs, experiments that are exploring our solar system and studying the interaction of the Sun with the Earth's magnetosphere.

  16. MODELING THE INFRARED SPECTRUM OF THE EARTH-MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D., E-mail: robinson@astro.washington.edu

    2011-11-01

    The Moon maintains large surface temperatures on its illuminated hemisphere and can contribute significant amounts of flux to spatially unresolved thermal infrared (IR) observations of the Earth-Moon system, especially at wavelengths where Earth's atmosphere is absorbing. In this paper we investigate the effects of an unresolved companion on IR observations of Earthlike exoplanets. For an extrasolar twin Earth-Moon system observed at full phase at IR wavelengths, the Moon consistently comprises about 20% of the total signal, approaches 30% of the signal in the 9.6 {mu}m ozone band and the 15 {mu}m carbon dioxide band, makes up as much as 80%more » of the signal in the 6.3 {mu}m water band, and more than 90% of the signal in the 4.3 {mu}m carbon dioxide band. These excesses translate to inferred brightness temperatures for Earth that are too large by 20-40 K and demonstrate that the presence of undetected satellites can have significant impacts on the spectroscopic characterization of exoplanets. The thermal flux contribution from an airless companion depends strongly on phase, implying that observations of exoplanets should be taken when the star-planet-observer angle (i.e., phase angle) is as large as feasibly possible if contributions from companions are to be minimized. We show that, by differencing IR observations of an Earth twin with a companion taken at both gibbous and crescent phases, Moonlike satellites may be detectable by future exoplanet characterization missions for a wide range of system inclinations.« less

  17. A New Cyber-enabled Platform for Scale-independent Interoperability of Earth Observations with Hydrologic Models

    NASA Astrophysics Data System (ADS)

    Rajib, A.; Zhao, L.; Merwade, V.; Shin, J.; Smith, J.; Song, C. X.

    2017-12-01

    Despite the significant potential of remotely sensed earth observations, their application is still not full-fledged in water resources research, management and education. Inconsistent storage structures, data formats and spatial resolution among different platforms/sources of earth observations hinder the use of these data. Available web-services can help bulk data downloading and visualization, but they are not sufficiently tailored to meet the degree of interoperability required for direct application of earth observations in hydrologic modeling at user-defined spatio-temporal scales. Similarly, the least ambiguous way for educators and watershed managers is to instantaneously obtain a time-series at any watershed of interest without spending time and computational resources on data download and post-processing activities. To address this issue, an open access, online platform, named HydroGlobe, is developed that minimizes all these processing tasks and delivers ready-to-use data from different earth observation sources. HydroGlobe can provide spatially-averaged time series of earth observations by using the following inputs: (i) data source, (ii) temporal extent in the form of start/end date, and (iii) geographic units (e.g., grid cell or sub-basin boundary) and extent in the form of GIS shapefile. In its preliminary version, HydroGlobe simultaneously handles five data sources including the surface and root zone soil moisture from SMAP (Soil Moisture Active Passive Mission), actual and potential evapotranspiration from MODIS (Moderate Resolution Imaging Spectroradiometer), and precipitation from GPM (Global Precipitation Measurements). This presentation will demonstrate the HydroGlobe interface and its applicability using few test cases on watersheds from different parts of the globe.

  18. Earth Observations taken by the Expedition 23 Crew

    NASA Image and Video Library

    2010-04-28

    ISS023-E-029061 (28 April 2010) --- City lights at night along the France-Italy border, Europe are featured in this image photographed by an Expedition 23 crew member on the International Space Station (ISS). The brightly lit metropolitan areas of Torino (Italy), Lyon, and Marseille (both in France) stand out amidst numerous smaller urban areas in this dramatic photograph. The image captures the night time appearance of the France-Italy border area between the mountainous Alps to the north (not shown) and the island of Corsica in the Ligurian Sea to the south (top). The full moon reflects brightly on the water surface and also illuminates the tops of low patchy clouds over the border (center). This image was taken by an ISS crew member at approximately 11:55 p.m. local time when the station was located over the France-Belgium border near Luxembourg. Crew members orbiting Earth frequently collect images that include sunglint, or sunlight that reflects off a water surface at such an angle that it travels directly back towards the observer. Sunglint typically lends a mirror-like appearance to the water surface. During clear sky conditions reflected light from the moon can produce the same effect (moon glint) as illustrated in this view. The observer was looking towards the southeast at an oblique viewing angle at the time the image was taken; in other words, looking outwards from the ISS, not straight down towards Earth.

  19. Analysis of orbit determination from Earth-based tracking for relay satellites in a perturbed areostationary orbit

    NASA Astrophysics Data System (ADS)

    Romero, P.; Pablos, B.; Barderas, G.

    2017-07-01

    Areostationary satellites are considered a high interest group of satellites to satisfy the telecommunications needs of the foreseen missions to Mars. An areostationary satellite, in an areoequatorial circular orbit with a period of 1 Martian sidereal day, would orbit Mars remaining at a fixed location over the Martian surface, analogous to a geostationary satellite around the Earth. This work addresses an analysis of the perturbed orbital motion of an areostationary satellite as well as a preliminary analysis of the aerostationary orbit estimation accuracy based on Earth tracking observations. First, the models for the perturbations due to the Mars gravitational field, the gravitational attraction of the Sun and the Martian moons, Phobos and Deimos, and solar radiation pressure are described. Then, the observability from Earth including possible occultations by Mars of an areostationary satellite in a perturbed areosynchronous motion is analyzed. The results show that continuous Earth-based tracking is achievable using observations from the three NASA Deep Space Network Complexes in Madrid, Goldstone and Canberra in an occultation-free scenario. Finally, an analysis of the orbit determination accuracy is addressed considering several scenarios including discontinuous tracking schedules for different epochs and different areoestationary satellites. Simulations also allow to quantify the aerostationary orbit estimation accuracy for various tracking series durations and observed orbit arc-lengths.

  20. Bouncing Continents: Insights into the Physics of the Polar Regions of the Earth from the POLENET Project in the International Polar Year

    ERIC Educational Resources Information Center

    Reading, Anya M.

    2008-01-01

    When ice sheets melt, and reduce the load on the surface of the Earth, the land areas beneath them bounce back up. New, accurate observations are needed to investigate this uplift and its implications effectively. This article provides a topical starting point for investigating some applications of physics applied to the polar regions of the…

  1. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  2. A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Brian E.; Wu, Chin-Chun; Howard, Russell A.

    We identify coronal mass ejections (CMEs) associated with magnetic clouds (MCs) observed near Earth by the Wind spacecraft from 2008 to mid-2012, a time period when the two STEREO spacecraft were well positioned to study Earth-directed CMEs. We find 31 out of 48 Wind MCs during this period can be clearly connected with a CME that is trackable in STEREO imagery all the way from the Sun to near 1 au. For these events, we perform full 3D reconstructions of the CME structure and kinematics, assuming a flux rope (FR) morphology for the CME shape, considering the full complement ofmore » STEREO and SOHO imaging constraints. We find that the FR orientations and sizes inferred from imaging are not well correlated with MC orientations and sizes inferred from the Wind data. However, velocities within the MC region are reproduced reasonably well by the image-based reconstruction. Our kinematic measurements are used to provide simple prescriptions for predicting CME arrival times at Earth, provided for a range of distances from the Sun where CME velocity measurements might be made. Finally, we discuss the differences in the morphology and kinematics of CME FRs associated with different surface phenomena (flares, filament eruptions, or no surface activity).« less

  3. Mini-Magnetospheres at the Moon in the Solar Wind and the Earth's Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Futaana, Y.; Barabash, S. V.; Wieser, M.; Wurz, P.; Bhardwaj, A.; Asamura, K.; Saito, Y.; Yokota, S.; Tsunakawa, H.; Machida, S.

    2014-12-01

    Lunar mini-magnetospheres are formed as a consequence of solar-wind interaction with remanent crustal magnetization on the Moon. A variety of plasma and field perturbations have been observed in a vicinity of the lunar magnetic anomalies, including electron energization, ion reflection/deflection, magnetic field enhancements, electrostatic and electromagnetic wave activities, and low-altitude ion deceleration and electron acceleration. Recent Chandrayaan-1 observations of the backscattered energetic neutral atoms (ENAs) from the Moon in the solar wind revealed upward ENA flux depletion (and thus depletion of the proton flux impinging on the lunar surface) in association with strongly magnetized regions. These ENA observations demonstrate that the lunar surface is shielded from the solar wind protons by the crustal magnetic fields. On the other hand, when the Moon was located in the Earth's plasma sheet, no significant depletion of the backscattered ENA flux was observed above the large and strong magnetic anomaly. It suggests less effective magnetic shielding of the surface from the plasma sheet protons than from the solar wind protons. We conduct test-particle simulations showing that protons with a broad velocity distribution are more likely to reach a strongly magnetized surface than those with a beam-like velocity distribution. The ENA observations together with the simulation results suggest that the lunar crustal magnetic fields are no longer capable of standing off the ambient plasma when the Moon is immersed in the hot magnetospheric plasma.

  4. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  5. Comparison of Continuous Wave CO2 Doppler Lidar Calibration Using Earth Surface Targets in Laboratory and Airborne Measurements

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1999-01-01

    Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.

  6. Topography of Venus and earth - A test for the presence of plate tectonics

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Yuter, S. E.; Solomon, S. C.

    1981-01-01

    Comparisons of earth and Venus topography by use of Pioneer/Venus radar altimetry are examined. Approximately 93% of the Venus surface has been mapped with a horizontal resolution of 200 km and a vertical resolution of 200 m. Tectonic troughs have been indicated in plains regions which cover 65% of Venus, and hypsometric comparisons between the two planets' elevation distributions revealed that while the earth has a bimodal height distribution, Venus displays a unimodal configuration, with 60% of the planet surface within 500 m of the modal planet radius. The effects of mapping the earth at the same resolution as the Venus observations were explored. Continents and oceans were apparent, and although folded mountains appeared as high spots, no indications of tectonic activity were discernible. A NASA Venus Orbiting Imaging radar is outlined, which is designed to detect volcanoes, folded mountain ranges, craters, and faults, and thereby allow definition of possible plate-tectonic activity on Venus.

  7. Earth's Rotation: A Challenging Problem in Mathematics and Physics

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Navarro, Juan F.; Escapa, Alberto; Getino, Juan

    2015-01-01

    A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.

  8. Most Amazing High Definition Image of Earth - Blue Marble 2012

    NASA Image and Video Library

    2017-12-08

    January 25, 2012 *Updated February 2, 2012: According to Flickr, "The western hemisphere Blue Marble 2012 image has rocketed up to over 3.1 million views making it one of the all time most viewed images on the site after only one week." A 'Blue Marble' image of the Earth taken from the VIIRS instrument aboard NASA's most recently launched Earth-observing satellite - Suomi NPP. This composite image uses a number of swaths of the Earth's surface taken on January 4, 2012. The NPP satellite was renamed 'Suomi NPP' on January 24, 2012 to honor the late Verner E. Suomi of the University of Wisconsin. Suomi NPP is NASA's next Earth-observing research satellite. It is the first of a new generation of satellites that will observe many facets of our changing Earth. Suomi NPP is carrying five instruments on board. The biggest and most important instrument is The Visible/Infrared Imager Radiometer Suite or VIIRS. To read more about NASA's Suomi NPP go to: www.nasa.gov/npp Credit: NASA/NOAA/GSFC/Suomi NPP/VIIRS/Norman Kuring NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. On the ratio of dynamic topography and gravity anomalies in a dynamic Earth

    NASA Astrophysics Data System (ADS)

    Colli, L.; Ghelichkhan, S.; Bunge, H. P.

    2016-12-01

    Growing evidence from a variety of geologic indicators points to significant topography maintained convectively by viscous stresses in the mantle. However, while gravity is sensitive to dynamically supported topography, there are only small free-air gravity anomalies (<30 mGal) associated with Earth's long-wavelength topography. This has been used to suggest that surface heights computed assuming a complete isostatic equilibrium provide a good approximation to observed topography. Here we show that the apparent paradox is resolved by the well-established formalism of global, self-gravitating, viscously stratified Earth models. The models predict a complex relation between dynamic topography, mass, and gravity anomalies that is not summarized by a constant admittance—i.e., ratio of gravity anomalies to surface deflections—as one would infer from analytic flow solutions formulated in a half-space.

  10. MODIS land data at the EROS data center DAAC

    USGS Publications Warehouse

    Jenkerson, Calli B.; Reed, B.C.

    2001-01-01

    The US Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in Sioux Falls, SD, USA, is the primary national archive for land processes data and one of the National Aeronautics and Space Administration's (NASA) Distributed Active Archive Centers (DAAC) for the Earth Observing System (EOS). One of EDC's functions as a DAAC is the archival and distribution of Moderate Resolution Spectroradiometer (MODIS) Land Data collected from the Earth Observing System (EOS) satellite Terra. More than 500,000 publicly available MODIS land data granules totaling 25 Terabytes (Tb) are currently stored in the EDC archive. This collection is managed, archived, and distributed by EOS Data and Information System (EOSDIS) Core System (ECS) at EDC. EDC User Services support the use of MODIS Land data, which include land surface reflectance/albedo, temperature/emissivity, vegetation characteristics, and land cover, by responding to user inquiries, constructing user information sites on the EDC web page, and presenting MODIS materials worldwide.

  11. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    NASA Technical Reports Server (NTRS)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  12. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  13. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-04-02

    ISS027-E-009771 (2 April 2011) --- Bassas da India is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The vantage point of crew members onboard the space station provides many dramatic views of Earth?s surface. This detailed photograph of the Bassas da India, an uninhabited atoll in the Indian Ocean (between the Mozambique coast of Africa and the island of Madagascar) has an almost surreal quality due to varying degrees of sunglint. Sunglint is an optical phenomena caused by light reflecting off of a water surface directly back towards the observer. Variations in the roughness of the water surface?presence or absence of waves due to wind and water currents?will cause differences in the intensity of the sunglint. The presence of other materials, such as oils or surfactants, can also change the properties of the water surface. Here the presence of currents is highlighted as darker patches or streaks (left and upper right). In contrast, shallow water in the lagoon (center) presents a more uniform, mirror-like appearance in sunglint suggesting that there are no subsurface currents present. Wave crests visible around the atoll are likely the result of both surface winds and subsurface currents. The Bassas da India atoll is part of the French Southern and Antarctic Lands. It is uninhabited due to its complete submergence during high tide ? there is no vegetation established on the atoll for the same reason. The atoll is approximately 10 kilometers in diameter, and covers an area (including the lagoon) of approximately 80 square kilometers.

  14. Possibilities of lunar polar orbiter

    NASA Astrophysics Data System (ADS)

    Iwata, T.; Nagatomo, M.

    This paper describes the concept of a lunar polar orbiter (LPO), which will map the surface of the moon, especially its polar region and the far side, and send precise images of various wave lengths to earth. The primary purpose of the LPO is to identify global and local structures of lunar resources and topography and to search for a suitable site for the manned lunar base projected for next century. The concept of the LPO is based on the H-II rocket (which has a launch capability to send a rover/lander of one metric ton to the lunar surface) and earth observation technology of Japan.

  15. Mechanics of aeolian processes: Soil erosion and dust production

    NASA Technical Reports Server (NTRS)

    Mehrabadi, M. M.

    1989-01-01

    Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.

  16. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine geophysicists, and planetary scientists. The strength of our system is that it combines interactive rendering with interactive mapping and measurement of features observed in topographic and texture data. Comparison with commercially available software indicates that our system improves mapping accuracy and efficiency. More importantly, it enables Earth scientists to rapidly achieve a deeper level of understanding of remotely sensed data, as observations can be made that are not possible with existing systems.

  17. Field spectroscopy sampling strategies for improved measurement of Earth surface reflectance

    NASA Astrophysics Data System (ADS)

    Mac Arthur, A.; Alonso, L.; Malthus, T. J.; Moreno, J. F.

    2013-12-01

    Over the last two decades extensive networks of research sites have been established to measure the flux of carbon compounds and water vapour between the Earth's surface and the atmosphere using eddy covariance (EC) techniques. However, contributing Earth surface components cannot be determined and (as the ';footprints' are spatially constrained) these measurements cannot be extrapolated to regional cover using this technique. At many of these EC sites researchers have been integrating spectral measurements with EC and ancillary data to better understand light use efficiency and carbon dioxide flux. These spectroscopic measurements could also be used to assess contributing components and provide support for imaging spectroscopy, from airborne or satellite platforms, which can provide unconstrained spatial cover. Furthermore, there is an increasing interest in ';smart' database and information retrieval systems such as that proposed by EcoSIS and OPTIMISE to store, analyse, QA and merge spectral and biophysical measurements and provide information to end users. However, as Earth surfaces are spectrally heterogeneous and imaging and field spectrometers sample different spatial extents appropriate field sampling strategies require to be adopted. To sample Earth surfaces spectroscopists adopt either single; random; regular grid; transect; or 'swiping' point sampling strategies, although little comparative work has been carried out to determine the most appropriate approach; the work by Goetz (2012) is a limited exception. Mac Arthur et al (2012) demonstrated that, for two full wavelength (400 nm to 2,500 nm) field spectroradiometers, the measurement area sampled is defined by each spectroradiometer/fore optic system's directional response function (DRF) rather than the field-of-view (FOV) specified by instrument manufacturers. Mac Arthur et al (2012) also demonstrated that each reflecting element within the sampled area was not weighted equally in the integrated measurement recorded. There were non-uniformities of spectral response with the spectral ';weighting' per wavelength interval being positionally dependent and unique to each spectroradiometer/fore optic system investigated. However, Mac Arthur et al (2012) did not provide any advice on how to compensate for these systematic errors or advise on appropriate sampling strategies. The work reported here will provide the first systematic study of the effect of field spectroscopy sampling strategies for a range of different Earth surface types. Synthetic Earth surface hyperspectral data cubes for each surface type were generated and convolved with a range of the spectrometer/fore optic system directional response functions generated by Mac Arthur et al 2013, to simulate spectroscopic measurements of Earth surfaces. This has enabled different field sampling strategies to be directly compared and their suitability for each measurement purpose and surface type to be assessed and robust field spectroscopy sampling strategy recommendations to be made. This will be particularly of interest to the carbon and water vapour flux communities and assist the development of sampling strategies for field spectroscopy from rotary-wing Unmanned Aerial Vehicles, which will aid acquiring measurements in the spatial domain, and generally further the use of field spectroscopy for quantitative Earth observation.

  18. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters.

    PubMed

    Tyler, Andrew N; Hunter, Peter D; Spyrakos, Evangelos; Groom, Steve; Constantinescu, Adriana Maria; Kitchen, Jonathan

    2016-12-01

    The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea systems including the Danube-Black Sea is considerable. Copyright © 2016. Published by Elsevier B.V.

  19. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  20. Gravity effects on sediment sorting: limitations of models developed on Earth for Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Gartmann, Andres

    2015-04-01

    Most studies on surface processes on planetary bodies assume that the use of empirical models developed for Earth is possible if the mathematical equations include all the relevant factors, such as gravity, viscosity and the density of water and sediment. However, most models for sediment transport on Earth are at least semi-empirical, using coefficients to link observed sediment movement to controlling factors such as flow velocity, slope and channel dimensions. However, using roughness and drag coefficients, as well as parameters describing incipient motion of particles, observed on Earth on another planet, violates, strictly speaking, the boundary conditions set for their application by fluid dynamics because the coefficienst describe a flow condition, not a particle property. Reduced gravity affects the flow around a settling partcile or over the bed of a watercourse, therefore data and models from Earth do not apply to another planet. Comparing observations from reduced gravity experiments and model results obtained on Earth confirm the significance of this error, e.g. by underestimating settling velocities of sandy particles by 10 to 50% for Mars when using models from Earth. In this study, the relevance of this error is examined by simulating the sorting of sediment deposited from water flowing on Mars. The results indicate that sorting on Mars is less pronounced than models calibrated on Earth suggest. This has implications for the selection of landing sites and, more importantly, the identification of strata potentially bearing traces of past life during rover missions on Mars.

  1. Gravity effects on sediment sorting: limitations of models developed on Earth for Mars

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Kuhn, B.; Gartmann, A.

    2015-10-01

    Most studies on surface processes on planetary bodies assume that the use of empirical models developed for Earth is possible if the mathematical equations include all the relevant factors, such as gravity, viscosity and the density of water and sediment. However, most models for sediment transport on Earth are at least semi-empirical, using coefficients to link observed sediment movement to controlling factors such as flow velocity, slope and channel dimensions. However, using roughness and drag coefficients, as well as parameters describing incipient motion of particles, observed on Earth on another planet, violates, strictly speaking, the boundary conditions set for their application by fluid dynamics because the coefficienst describe a flow condition, not a particle property. Reduced gravity affects the flow around a settling partcile or over the bed of a watercourse, therefore data and models from Earth do not apply to another planet. Comparing observations from reduced gravity experiments and model results obtained on Earth confirm the significance of this error, e.g. by underestimating settling velocities of sandy particles by 10 to 50% for Mars when using models from Earth. In this study, the relevance of this error is examined by simulating the sorting of sediment deposited from water flowing on Mars. The results indicate that sorting on Mars is less pronounced than models calibrated on Earth suggest. This has implications for the selection of landing sites and,more importantly, the identification of strata potentially bearing traces of past life during rover missions on Mars. try, 2001

  2. STS-70 Flight: Day 7

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The seventh day of the STS-70 Space Shuttle Discovery mission is featured on this video. The astronauts obtained a successful alignment of the Hercules geo-locating camera and evaluated the manual setup procedures for the rotating wall Bioreactor. Specialist Don Thomas activated and deactivated the Microencapsulation in Space experiment, using a device that produces a timed-release of an antibiotic medication in a weightlessness environment. The Discovery crew begins to wrap up their experiments after a week of gathering data, ranging from observations of Earth's surface and atmosphere to biological studies. There are several minutes of Shuttle observations of Earth included.

  3. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows a 50 by 120 kilometer (30 by 75 mile) area of the Mediterranean Sea and the eastern coast of Central Sardinia (left). The city of Arbatose is seen as a bright area along the coast in the lower part of the image, and the star-like spot off the coast is a ship's reflection. The Gulf of Orsei is near the top of the image. Bright, mottled features in the sea (right) represent surface choppiness.

  4. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    2008-06-01

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955 997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  5. Updated Review of Planetary Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Fischer, G.; Simões, F.; Renno, N.; Zarka, P.

    This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955-997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.

  6. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  7. Earth Observation

    NASA Image and Video Library

    2011-06-27

    ISS028-E-009979 (27 June 2011) --- The Massachusetts coastline is featured in this image photographed by an Expedition 28 crew member on the International Space Station. The Crew Earth Observations team at NASA Johnson Space Center sends specific ground targets for photography up to the station crew on a daily basis, but sometimes the crew takes imagery on their own of striking displays visible from orbit. One such display, often visible to the ISS crew due to their ability to look outwards at angles between 0 and 90 degrees, is sunglint on the waters of Earth. Sunglint is caused by sunlight reflecting off of a water surface?much as light reflects from a mirror?directly towards the observer. Roughness variations of the water surface scatter the light, blurring the reflection and producing the typical silvery sheen of the sunglint area. The point of maximum sunglint is centered within Cape Cod Bay, the body of water partially enclosed by the ?hook? of Cape Cod in Massachusetts (bottom). Cape Cod was formally designated a National Seashore in 1966. Sunglint off the water provides sharp contrast with the coastline and the nearby islands of Martha?s Vineyard and Nantucket (lower left), both popular destinations for tourists and summer residents. To the north, rocky Cape Ann extends out into the Atlantic Ocean; the border with New Hampshire is located approximately 30 kilometers up the coast. Further to the west, the eastern half of Long Island, New York is visible emerging from extensive cloud cover over the mid-Atlantic and Midwestern States. Persistent storm tracks had been contributing to record flooding along rivers in the Midwest at the time this image was taken in late June 2011. Thin blue layers of the atmosphere, contrasted against the darkness of space, are visible extending along the Earth?s curvature at top.

  8. NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    NASA Technical Reports Server (NTRS)

    Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal

    2011-01-01

    In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)

  9. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  10. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  11. GGFC Special Bureau for Loading: current status and plans

    NASA Astrophysics Data System (ADS)

    van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.

    The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.

  12. ATLAS-3 correlative measurement opportunities with UARS and surface observations

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.

    1995-01-01

    The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.

  13. Commercial Earth Observation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.

  14. Apollo-Soyuz pamphlet no. 5: The earth from orbit. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    Astronaut training in the recognition of various geological features from space is described as well as the cameras, lenses and film used in experiment MA-136 to measure their effectiveness in photographing earth structural features from orbit. Aerosols that affect climate and weather are discussed in relation to experiment Ma-007 which relied on infrared observations of the setting or rising sun, as seen from Apollo, to measure the amount of dust and droplets in the lower 150 km of earth's atmosphere. The line spectra of atomic oxygen and nitrogen and their densities at 22 km above the earth's surface are examined along with experiment MA-059 which measured ultraviolet absorption at that altitude.

  15. NASA Tech Helps Better Understand Our Home Planet

    NASA Image and Video Library

    2018-04-20

    NASA’s Earth observations are critical for understanding our home planet and how it is changing. For Earth Day NASA is spotlighting some of the agency’s work with the latest technologies that have the potential to transform how we see our Blue Marble. Join us as we speak with NASA Ames scientist Ved Chirayath, who has developed cameras that can image marine environments below the ocean’s surface; Shayna Skolnik, founder and CEO of Navteca, a company that’s working to bring NASA Earth data to life through virtual reality; and Brian Campbell, senior education and outreach specialist for ICESat-2 satellite, which is set to launch this fall to measure polar ice and other important Earth features.

  16. Calibration Image of Earth by Mars Color Imager

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils.

    The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results.

    The images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to Earth was about 1,170,000 kilometers (about 727,000 miles).

    This image shows a color composite view of Mars Color Imager's image of Earth. As expected, it covers only five pixels. This color view has been enlarged five times. The Sun was illuminating our planet from the left, thus only one quarter of Earth is seen from this perspective. North America was in daylight and facing toward the camera at the time the picture was taken; the data from the camera were being transmitted in real time to the Deep Space Network antennas in Goldstone, California.

  17. Observing the Spectra of MEarth and TRAPPIST Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler D.; Fortney, Jonathan J.

    2017-10-01

    During the past two years, nine planets close to Earth in radius have been discovered around nearby M dwarfs cooler than 3300 K. These planets include the 7 planets in the TRAPPIST-1 system and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b (Dittmann et al. 2017; Berta-Thompson et al. 2015; Gillon et al. 2017). These planets are the smallest planets discovered to date that will be amenable to atmospheric characterization with JWST. They span equilibrium temperatures from ˜130 K to >500 K, and radii from 0.7 to 1.43 Earth radii. Some of these planets orbit as distances potentially amenable to surface liquid water, though the actual surface temperatures will depend strongly on the albedo of the planet and the thickness and composition of its atmosphere. The stars they orbit also vary in activity levels, from the quiet LHS 1140b host star to the more active TRAPPIST-1 host star. This set of planets will form the testbed for our first chance to study the diversity of atmospheres around Earth-sized planets. Here, we will present model spectra of these 9 planets, varying the composition and the surface pressure of the atmosphere. We base our elemental compositions on three outcomes of planetary atmosphere evolution in our own solar system: Earth, Titan, and Venus. We calculate the molecular compositions in chemical equilibrium. We present both thermal emission spectra and transmission spectra for each of these objects, and make predictions for the observability of these spectra with different instrument modes with JWST.

  18. Life as a planetary phenomenon: the colonization of Mars

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Guerrero, R.

    1995-01-01

    Life is a planet-wide phenomenon in which its components incessantly move and interact. Life imperatively recycles its parts at the surface of the Earth in a chemical transformation and physical transport that depends utterly on the energy from a recent star, the Sun. Humanity, entirely dependent on other beings, plays a recent and relatively small part in the great phenomenon of life that transports and transforms the surface of the Earth. Our species accelerates but does not dominate the metabolism of the Earth system. Ironically, during the Apollo days of the sixties, fears were rampant that Martian or other extraterrestrial "germs" might "contaminate" our planet. After Viking, such fears are seen as the manifestation of cultural paranoia. The Viking missions complemented ground-based astronomical observation and yielded definitive evidence for the lack of life on the red planet. The Gaia hypothesis states that the surface temperature, composition of the reactive gases, oxidation state, alkalinity-acidity on today's Earth are kept homeorrhetically at values set by the sum of the activities of the current biota. Life, in other words, not only produces and maintains its immediate environment, but appears on Earth only as a planetary phenomenon. Since the natural tendency of all life is to grow exponentially to fill proximal volume, the question now "can life ecopoietically expand to Mars?" is entirely equivalent to the query of "can Gaia reproduce?".

  19. Surface morphologies and oddities for ices under temperature and pressure conditions extending from Earth to ocean worlds of the outer solar system: Do penitentes and suncups form on Europa and Enceladus?

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Berisford, D. F.; Foster, J.; Furst, B.; Poston, M.; Kosberg, J.; Hofmann, A.; Lang, M.

    2017-12-01

    In cold, low-pressure, high-irradiance environments on Earth extraordinary formations of penitentes and suncups are observed. These morphologies emerge, in part, as a result of radiative feedback in ice and snow at temperatures and pressures near the vapor pressure sublimation curve of water. For ice covered ocean worlds of the outer solar system, such as Europa and Enceladus, the 100 K surfaces lack atmospheres (<1e-8 torr) and thus exist in a physical regime for water where the physics of penitente formation, as known from Earth, may not apply. Thus, we predict that those surfaces are unlikely to evolve to penitente and suncup morphologies, at least as they are known and formed on Earth. To investigate the range of possible morphologies and formation mechanisms under Earth and extraterrestrial conditions our team has constructed several temperature-, pressure-, and irradiance-controlled chambers. Results to date indicate that with even modest reduction in temperature and pressure toward Europa or Enceladus conditions leads to inhibition of penitente formation. Furthermore, addition of salts, as would be expected in ocean-derived waters of Europa and Enceladus, also inhibits penitente and suncup formation. During this talk we will present results from these experiments and discuss application of these results to the future exploration of ocean worlds.

  20. Life as a planetary phenomenon: the colonization of Mars.

    PubMed

    Margulis, L; Guerrero, R

    1995-01-01

    Life is a planet-wide phenomenon in which its components incessantly move and interact. Life imperatively recycles its parts at the surface of the Earth in a chemical transformation and physical transport that depends utterly on the energy from a recent star, the Sun. Humanity, entirely dependent on other beings, plays a recent and relatively small part in the great phenomenon of life that transports and transforms the surface of the Earth. Our species accelerates but does not dominate the metabolism of the Earth system. Ironically, during the Apollo days of the sixties, fears were rampant that Martian or other extraterrestrial "germs" might "contaminate" our planet. After Viking, such fears are seen as the manifestation of cultural paranoia. The Viking missions complemented ground-based astronomical observation and yielded definitive evidence for the lack of life on the red planet. The Gaia hypothesis states that the surface temperature, composition of the reactive gases, oxidation state, alkalinity-acidity on today's Earth are kept homeorrhetically at values set by the sum of the activities of the current biota. Life, in other words, not only produces and maintains its immediate environment, but appears on Earth only as a planetary phenomenon. Since the natural tendency of all life is to grow exponentially to fill proximal volume, the question now "can life ecopoietically expand to Mars?" is entirely equivalent to the query of "can Gaia reproduce?"

  1. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  2. Estimating network effect in geocenter motion: Applications

    NASA Astrophysics Data System (ADS)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    The network effect is the error associated with the subsampling of the Earth surface by space geodetic networks. It is an obstacle toward the precise measurement of geocenter motion, that is, the relative motion between the center of mass of the Earth system and the center of figure of the Earth surface. In a complementary paper, we proposed a theoretical approach to estimate the magnitude of this effect from the displacement fields predicted by geophysical models. Here we evaluate the effectiveness of our estimate for two illustrative physical processes: coseismic displacements inducing instantaneous changes in the Helmert parameters and elastic deformation due to surface water movements causing secular drifts in those parameters. For the first, we consider simplified models of the 2004 Sumatra-Andaman and the 2011 Tōhoku-Oki earthquakes, and for the second, we use the observations of the Gravity Recovery and Climate Experiment, complemented by an ocean model. In both case studies, it is found that the magnitude of the network effect, even for a large global network, is often as large as the magnitude of the changes in the Helmert parameters themselves. However, we also show that our proposed modification to the definition of the center of network frame to include weights proportional to the area of the Earth surface that the stations represent can significantly reduce the network effect in most cases.

  3. NASA/Caltech Team Images Nepal Quake Fault Rupture, Surface Movements

    NASA Image and Video Library

    2015-05-04

    Using a combination of GPS-measured ground motion data, satellite radar data, and seismic observations from instruments distributed around the world, scientists have constructed preliminary estimates of how much the fault responsible for the April 25, 2015, magnitude 7.8 Gorkha earthquake in Nepal moved below Earth's surface (Figure 1). This information is useful for understanding not only what happened in the earthquake but also the potential for future events. It can also be used to infer a map of how Earth's surface moved due to the earthquake over a broader region (Figure 2). The maps created from these data can be viewed at PIA19384. In the first figure, the modeled slip on the fault is shown as viewed from above and indicated by the colors and contours within the rectangle. The peak slip in the fault exceeds 19.7 feet (6 meters). The ground motion measured with GPS is shown by the red and purple arrows and was used to develop the fault slip model. In the second figure, color represents vertical movement and the scaled arrows indicate direction and magnitude of horizontal movement. In both figures, aftershocks are indicated by red dots. Background color and shaded relief reflect regional variations in topography. The barbed lines show where the main fault reaches Earth's surface. The main fault dives northward into the Earth below the Himalaya. http://photojournal.jpl.nasa.gov/catalog/PIA19384

  4. Earth observations taken during STS-41D mission.

    NASA Image and Video Library

    2009-06-25

    41D-41-062 (30 Aug-5 Sept 1984) --- An example of the surface details on the Earth seen by orbiting astronauts is provided by this Hasselblad 500 EL/M photograph made with a 250mm lens over Brisbane, Australia. Urban areas and the airport complex lie along the Brisbane River which empties into Moreton Bay. The photograph was shown during the STS-41D postflight press conference held on September 12, 1984.

  5. Infrasound in the middle stratosphere measured with a free-flying acoustic array

    NASA Astrophysics Data System (ADS)

    Bowman, Daniel C.; Lees, Jonathan M.

    2015-11-01

    Infrasound recorded in the middle stratosphere suggests that the acoustic wavefield above the Earth's surface differs dramatically from the wavefield near the ground. In contrast to nearby surface stations, the balloon-borne infrasound array detected signals from turbulence, nonlinear ocean wave interactions, building ventilation systems, and other sources that have not been identified yet. Infrasound power spectra also bore little resemblance to spectra recorded on the ground at the same time. Thus, sensors on the Earth's surface likely capture a fraction of the true diversity of acoustic waves in the atmosphere. Future studies building upon this experiment may quantify the acoustic energy flux from the surface to the upper atmosphere, extend the capability of the International Monitoring System to detect nuclear explosions, and lay the observational groundwork for a recently proposed mission to detect earthquakes on Venus using free-flying microphones.

  6. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  7. Earth Science

    NASA Image and Video Library

    2004-09-15

    Except for a small portion of the International Space Station (ISS) in the foreground, Hurricane Ivan, one of the strongest hurricanes on record, fills this image over the northern Gulf of Mexico. As the downgraded category 4 storm approached landfall on the Alabama coast Wednesday afternoon on September 15, 2004, sustained winds in the eye of the wall were reported at about 135 mph. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the ISS at an altitude of approximately 230 miles. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  8. Earth Science

    NASA Image and Video Library

    2004-09-15

    This image hosts a look into the eye of Hurricane Ivan, one of the strongest hurricanes on record, as the storm approached landfall on the central Gulf coast Wednesday afternoon on September 15, 2004. The hurricane was photographed by astronaut Edward M. (Mike) Fincke from aboard the International Space Station (ISS) at an altitude of approximately 230 miles. At the time, sustained winds in the eye of the wall were reported at about 135 mph as the downgraded category 4 storm approached the Alabama coast. Crew Earth Observations record Earth surface changes over time, as well as more fleeting events such as storms, floods, fires, and volcanic eruptions.

  9. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA using Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.; Yao, Y.; Jiang, B.; Cheng, J.

    2016-12-01

    Solar radiation incident at the Earth's surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses [NCEP-NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55] using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth's Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from -2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 was obtained over land, ocean, and the globe, respectively.

  10. Earth Surface Processes, Landforms and Sediment Deposits

    NASA Astrophysics Data System (ADS)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  11. Mars Express Bistatic Radar Observations 2016

    NASA Astrophysics Data System (ADS)

    Andert, Tom; Simpson, Richard A.; Pätzold, Martin; Kahan, Daniel S.; Remus, Stefan; Oudrhiri, Kamal

    2017-04-01

    One objective of the Mars Express Radio Science Experiment (MaRS) is to address the dielectric properties and surface roughness of Mars, which can be determined by means of a surface scattering experiment, also known as bistatic radar (BSR). The radio subsystem transmitter located on board the Mars Express spacecraft beams right circularly polarized (RCP) radio signals at two wavelengths - 3.6 cm (X-Band) and 13 cm (S-Band) - toward Mars' surface. Part of the impinging radiation is then scattered toward a receiver at a ground station on Earth and both the right and left circularly polarized echo components (RCP and LCP, respectively) are recorded. The dielectric constant can be derived in this configuration from the RCP-to-LCP power ratio. This approach eliminates the need for absolute end-to-end calibration in favor of relative calibration of the RCP and LCP ground receiver channels. Nonetheless, accurate relative calibration of the two receiving channels remains challenging. The most favorable configuration for bistatic radar experiments is around Earth-Mars opposition, which occurs approximately every two years. In 2016 the minimum distance of about 0.5 AU was reached on May 30th; eleven BSR experiments were successfully conducted between the end of April and mid-June. The specular point tracks during two experiments over the Syrtis Major region were very similar on April 27th and June 2nd, and the data were collected using the same Earth-based antenna. The separation in time and the different observing angles provide an opportunity to check reproducibility of the calibrations and analysis methods. The paper will illustrate the general spacecraft-to-ground BSR observation technique and describe in detail the calibration procedures at the ground station needed to perform the relative calibration of the two receiving channels. Results from the calibrations and the surface observations will be shown for the two MaRS experiments over Syrtis Major.

  12. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  13. Backscattered energetic neutral atoms from the Moon in the Earth's plasma sheet observed by Chandarayaan-1/Sub-keV Atom Reflecting Analyzer instrument

    NASA Astrophysics Data System (ADS)

    Harada, Yuki; Futaana, Yoshifumi; Barabash, Stas; Wieser, Martin; Wurz, Peter; Bhardwaj, Anil; Asamura, Kazushi; Saito, Yoshifumi; Yokota, Shoichiro; Tsunakawa, Hideo; Machida, Shinobu

    2014-05-01

    We present the observations of energetic neutral atoms (ENAs) produced at the lunar surface in the Earth's magnetotail. When the Moon was located in the terrestrial plasma sheet, Chandrayaan-1 Energetic Neutrals Analyzer (CENA) detected hydrogen ENAs from the Moon. Analysis of the data from CENA together with the Solar Wind Monitor (SWIM) onboard Chandrayaan-1 reveals the characteristic energy of the observed ENA energy spectrum (the e-folding energy of the distribution function) ˜100 eV and the ENA backscattering ratio (defined as the ratio of upward ENA flux to downward proton flux) <˜0.1. These characteristics are similar to those of the backscattered ENAs in the solar wind, suggesting that CENA detected plasma sheet particles backscattered as ENAs from the lunar surface. The observed ENA backscattering ratio in the plasma sheet exhibits no significant difference in the Southern Hemisphere, where a large and strong magnetized region exists, compared with that in the Northern Hemisphere. This is contrary to the CENA observations in the solar wind, when the backscattering ratio drops by ˜50% in the Southern Hemisphere. Our analysis and test particle simulations suggest that magnetic shielding of the lunar surface in the plasma sheet is less effective than in the solar wind due to the broad velocity distributions of the plasma sheet protons.

  14. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...

  15. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...

  16. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...

  17. 30 CFR 717.15 - Disposal of excess rock and earth materials on surface areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess rock and earth materials on surface areas. 717.15 Section 717.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS § 717.15 Disposal of excess rock and earth materials on surface areas. Excess rock and earth...

  18. Specular Reflection of Sunlight from Earth

    NASA Astrophysics Data System (ADS)

    Varnai, T.; Marshak, A.

    2018-02-01

    The Deep Space Gateway vantage point offers advantages in observing specular reflection from water surfaces or ice crystals in clouds. Such data can give information on clouds and atmospheric aerosols, and help test algorithms of future exoplanet characterization.

  19. Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Snyder, Aaron; Miller, Sharon K.; Demko, Rikako

    2002-01-01

    Hydrocarbon based polymers that are exposed to atomic oxygen in low Earth orbit are slowly oxidized which results in recession of their surface. Atomic oxygen protective coatings have been developed which are both durable to atomic oxygen and effective in protecting underlying polymers. However, scratches, pin window defects, polymer surface roughness and protective coating layer configuration can result in erosion and potential failure of protected thin polymer films even though the coatings are themselves atomic oxygen durable. This paper will present issues that cause protective coatings to become ineffective in some cases yet effective in others due to the details of their specific application. Observed in-space examples of failed and successfully protected materials using identical protective thin films will be discussed and analyzed. Proposed approaches to prevent the failures that have been observed will also be presented.

  20. The distribution of hot spots

    NASA Technical Reports Server (NTRS)

    Stefanick, M.; Jurdy, D. M.

    1984-01-01

    Statistical analyses are compared for two published hot spot data sets, one minimal set of 42 and another larger set of 117, using three different approaches. First, the earths surface is divided into 16 equal-area fractions and the observed distribution of hot spots among them is analyzed using chi-square tests. Second, cumulative distributions about the principal axes of the hot spot inertia tensor are used to describe hot spot distribution. Finally, a hot spot density function is constructed for each of the two hot spot data sets. The methods all indicate that hot spots have a nonuniform distribution, even when statistical fluctuations are considered. To the first order, hot spots are concentrated on one half of of the earth's surface area; within that portion, the distribution is consistent with a uniform distribution. The observed hot spot densities for neither data set are explained solely by plate speed.

  1. Silica Deposition on the Leaves of Mir- and Earth-Grown Super Dwarf Wheat

    NASA Technical Reports Server (NTRS)

    Campbell, William F.; Bubenheim, David L.; Salisbury, Frank B.; Bingham, Gail E.; McManus, William R.; Biesinger, H. D.; Strickland, D. T.; Levinskikh, Maragarita; Sytchev, Vladimir N.; Podolsky, Igor

    2000-01-01

    Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis were used to investigate the nature of crystals deposited on leaves of Mir- and Earth-grown Super Dwarf wheat (Triticum aestivum L.) plants. Leaves from these plants exhibited dense and uniformly distributed crystals on leaf abaxial surfaces when viewed by SEM. Young leaves showed that crystals initially accumulated around the stomata on the adaxial surface, but became more dense and uniformly distributed as the leaves aged. EDX microanalyses of the Balkanine (a nutrient charged clinoptilolite zeolite) medium in which the wheat plants were grown showed an elemental pattern similar to that observed on the wheat leaves. The absence of N and P in the Balkanine suggests that they were completely utilized by the plants. Only Si and O were evident in the drying agent, Sorb-it-Silica (trademark), and perhaps could have accounted for some of the Si observed on the plant tissue.

  2. Evaluating the Utility of Satellite Soil Moisture Retrievals over Irrigated Areas and the Ability of Land Data Assimilation Methods to Correct for Unmodeled Processes

    NASA Technical Reports Server (NTRS)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J. A.; Reichle, R. H.; Draper, C. S.; Koster, R. D.; Nearing, G.; Jasinski, M. F.

    2015-01-01

    Earth's land surface is characterized by tremendous natural heterogeneity and human-engineered modifications, both of which are challenging to represent in land surface models. Satellite remote sensing is often the most practical and effective method to observe the land surface over large geographical areas. Agricultural irrigation is an important human-induced modification to natural land surface processes, as it is pervasive across the world and because of its significant influence on the regional and global water budgets. In this article, irrigation is used as an example of a human-engineered, often unmodeled land surface process, and the utility of satellite soil moisture retrievals over irrigated areas in the continental US is examined. Such retrievals are based on passive or active microwave observations from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), the Advanced Microwave Scanning Radiometer 2 (AMSR2), the Soil Moisture Ocean Salinity (SMOS) mission, WindSat and the Advanced Scatterometer (ASCAT). The analysis suggests that the skill of these retrievals for representing irrigation effects is mixed, with ASCAT-based products somewhat more skillful than SMOS and AMSR2 products. The article then examines the suitability of typical bias correction strategies in current land data assimilation systems when unmodeled processes dominate the bias between the model and the observations. Using a suite of synthetic experiments that includes bias correction strategies such as quantile mapping and trained forward modeling, it is demonstrated that the bias correction practices lead to the exclusion of the signals from unmodeled processes, if these processes are the major source of the biases. It is further shown that new methods are needed to preserve the observational information about unmodeled processes during data assimilation.

  3. High Performance Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System at NASA/GSFC

    NASA Astrophysics Data System (ADS)

    Peters-Lidard, C. D.; Kumar, S. V.; Santanello, J. A.; Tian, Y.; Rodell, M.; Mocko, D.; Reichle, R.

    2008-12-01

    The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters-Lidard et al., 2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. The LIS software was the co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts - North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell et al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of these systems, now use specific configurations of the LIS software in their current implementations. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through 'plugins'. In addition to these capabilities, LIS has also been demonstrated for parameter estimation (Peters-Lidard et al., 2008; Santanello et al., 2007) and data assimilation (Kumar et al., 2008). Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, land data assimilation and parameter estimation will be presented.

  4. What causes the trends in Geocenter motion estimates?

    NASA Astrophysics Data System (ADS)

    Rietbroek, Roelof; Schrama, Ernst

    2015-04-01

    Over time, the geometrical center of figure of the Earth (CF) and the center of mass of the Earth system (CM) exhibit small changes. This phenomena, generally referred to as 'geocenter motion', is mainly caused by present-day and past surface loading and (visco)-elastic deformation processes occurring near the surface of the Earth. It is now well known that the computation of surface loading variations from the GRACE product requires the application of geocenter corrections, and not doing so introduce significant errors in estimates of, for example, melt-rates of the cryosphere. But, to understand observed geocenter motion more closely, one can also ask how much the different surface loading phenomena contribute to it. In this study, we compare different estimates of the geocenter motion, and discuss the underlying causes, with a special focus on trends. Using a 'fingerprint' inversion approach, where predefined patterns are fitted to GRACE and altimetry data, we can now consistently break down the geocenter estimates into different contributions. We find that the present day melting in Antarctica and Greenland shift the CM-CF offset with 0.1 mm/yr and -0.3 mm/yr in the Z-direction respectively, while GIA additionally contributes with roughly -0.3 mm/yr.

  5. Pancam multispectral imaging results from the Spirit Rover at Gusev crater

    USGS Publications Warehouse

    Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  6. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.

    PubMed

    Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A

    2004-08-06

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  7. Pancam multispectral imaging results from the Spirit Rover at Gusev Crater

    NASA Technical Reports Server (NTRS)

    Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; hide

    2004-01-01

    Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.

  8. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying

    2016-01-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and details of how data from the multi-satellite measurements are selected.

  9. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    NASA Astrophysics Data System (ADS)

    Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.

    2016-12-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and details of how data from the multi-satellite measurements are selected.

  10. Inflatable antenna for earth observing systems

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Jian; Guan, Fu-ling; Xu, Yan; Yi, Min

    2010-09-01

    This paper describe mechanical design, dynamic analysis, and deployment demonstration of the antenna , and the photogrammetry detecting RMS of inflatable antenna surface, the possible errors results form the measurement are also analysed. Ticra's Grasp software are used to predict the inflatable antenna pattern based on the coordinates of the 460 points on the parabolic surface, the final results verified the whole design process.

  11. NOAA Photo Library - About the Collection

    Science.gov Websites

    from the surface of the sun to the bottom of the sea, whose concern for life in the sea extends from Antarctic. They might observe features as diverse as fish stocks, ozone content of the atmosphere, sun spots world from the center of the Earth to the surface of the Sun. Because of this broad base of scientific

  12. Earthquakes & Tsunamis flirting with the Ionosphere: the Sumatra gossip !!

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Coïsson, P.; Rolland, L. M.; Lognonne, P.

    2009-12-01

    The December 26, 2004 Sumatra Earthquake and the related Indian Ocean Tsunami generated the largest remote sensing data-set observing natural hazards. The observations showed both, ground motion and ocean sea surface displacement, as well as the related strong ionospheric anomalies. Total electron content (TEC) perturbations have been observed on a global scale, using ground-based GPS receivers [DasGupta et al., 2006, Liu et al., 2006b] and dual-frequency altimeters (e.g., Jason-1 and Topex/Poseidon [Artru et al., 2005]); plasma velocity perturbation has been observed by Doppler soundings [Liu et al., 2006b, Occhipinti et al., 2009]. The observed perturbations may be characterized as two different waves: the first one is an atmospheric wave in the acoustic domain induced by propagation of Rayleigh waves on the Earth surface; the second one is a slower atmospheric wave in the gravity domain strongly coupled with the generated tsunami. Both waves are reproduced by our accurate modeling taking into account the earthquake/tsunami-neutral atmosphere coupling at the base of the atmosphere, as well as the neutral-plasma coupling in the overlying ionosphere [Occhipinti et al., 2006, 2006, 2009]. Here we present a review of the ionospheric observations related to the Sumatra event in the light of modeling to deeply investigate the coupling mechanism between Solid-Earth/Ocean/Atmosphere/Ionosphere. The matching between data and modeling opens new perspectives in the solid earth research as well as in the tsunami detection providing a new insight into the role of the remote sensing in the monitoring of natural hazard. [Artru et al., 2005] Geophys. J. Int., 160, 2005 [DasGupta et al., 2006] Earth Planet. Space, 35, 929-959. [Liu et al., 2006a] Geophys. Res. Lett., 33, L02103, 2006. [Liu et al., 2006b] J. Geophys. Res., 111, A05303. [Occhipinti et al., 2006] Geophys. Res. Lett., 33, L20104, 2006 [Occhipinti et al., 2008] Geophys. J. Int., 173, 3, 753-1135, 2008. [Occhipinti et al., 2009] Geophys. Res. Lett., under review

  13. Heat-pipe planets

    NASA Astrophysics Data System (ADS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2017-09-01

    Observations of the surfaces of all terrestrial bodies other than Earth reveal remarkable but unexplained similarities: endogenic resurfacing is dominated by plains-forming volcanism with few identifiable centers, magma compositions are highly magnesian (mafic to ultra-mafic), tectonic structures are dominantly contractional, and ancient topographic and gravity anomalies are preserved to the present. Here we show that cooling via volcanic heat pipes may explain these observations and provide a universal model of the way terrestrial bodies transition from a magma-ocean state into subsequent single-plate, stagnant-lid convection or plate tectonic phases. In the heat-pipe cooling mode, magma moves from a high melt-fraction asthenosphere through the lithosphere to erupt and cool at the surface via narrow channels. Despite high surface heat flow, the rapid volcanic resurfacing produces a thick, cold, and strong lithosphere which undergoes contractional strain forced by downward advection of the surface toward smaller radii. We hypothesize that heat-pipe cooling is the last significant endogenic resurfacing process experienced by most terrestrial bodies in the solar system, because subsequent stagnant-lid convection produces only weak tectonic deformation. Terrestrial exoplanets appreciably larger than Earth may remain in heat-pipe mode for much of the lifespan of a Sun-like star.

  14. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  15. Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation

    NASA Astrophysics Data System (ADS)

    Chanard, Kristel; Fleitout, Luce; Calais, Eric; Barbot, Sylvain; Avouac, Jean-Philippe

    2018-03-01

    We discuss the constraints on short-term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300-4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average.

  16. Lunar magnetic field measurements with a cubesat

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Lin, Robert P.; Sanchez, Hugo; Jaroux, Belgacem A.; Bester, Manfred; Brown, Patrick; Cosgrove, Daniel; Dougherty, Michele K.; Halekas, Jasper S.; Hemingway, Doug; Lozano, Paulo C.; Martel, Francois; Whitlock, Caleb W.

    2013-05-01

    We have developed a mission concept that uses 3-unit cubesats to perform new measurements of lunar magnetic fields, less than 100 meters above the Moon's surface. The mission calls for sending the cubesats on impact trajectories to strongly magnetic regions on the surface, and transmitting measurements in real-time to a nearby spacecraft, or directly to the Earth, up until milliseconds before impact. The cubesats and their instruments are partly based on the NSF-funded CINEMA cubesat now in Earth orbit. Two methods of reaching the Moon as a secondary payload are discussed: 1) After launching into geostationary transfer orbit with a communication satellite, a small mother-ship travels into lunar orbit and releases the cubesats on impact trajectories, and 2) The cubesats travel to the Moon using their own propulsion after release into geosynchronous orbit. This latter version would also enable other near-Earth missions, such as constellations for studying magnetospheric processes, and observations of close-approaching asteroids.

  17. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  18. On the diffraction pattern of bundled rare-earth silicide nanowires on Si(0 0 1).

    PubMed

    Timmer, F; Bahlmann, J; Wollschläger, J

    2017-11-01

    Motivated by the complex diffraction pattern observed for bundled rare-earth silicide nanowires on the Si(0 0 1) surface, we investigate the influence of the width and the spacing distribution of the nanowires on the diffraction pattern. The diffraction pattern of the bundled rare-earth silicide nanowires is analyzed by the binary surface technique applying a kinematic approach to diffraction. Assuming a categorical distribution for the (individual) nanowire size and a Poisson distribution for the size of the spacing between adjacent nanowire-bundles, we are able to determine the parameters of these distributions and derive an expression for the distribution of the nanowire-bundle size. Additionally, the comparison of our simulations to the experimental diffraction pattern reveal that a (1  ×  1)-periodicity on top of the nanowires has to be assumed for a good match.

  19. Hydrogen-nitrogen greenhouse warming in Earth's early atmosphere.

    PubMed

    Wordsworth, Robin; Pierrehumbert, Raymond

    2013-01-04

    Understanding how Earth has sustained surface liquid water throughout its history remains a key challenge, given that the Sun's luminosity was much lower in the past. Here we show that with an atmospheric composition consistent with the most recent constraints, the early Earth would have been significantly warmed by H(2)-N(2) collision-induced absorption. With two to three times the present-day atmospheric mass of N(2) and a H(2) mixing ratio of 0.1, H(2)-N(2) warming would be sufficient to raise global mean surface temperatures above 0°C under 75% of present-day solar flux, with CO(2) levels only 2 to 25 times the present-day values. Depending on their time of emergence and diversification, early methanogens may have caused global cooling via the conversion of H(2) and CO(2) to CH(4), with potentially observable consequences in the geological record.

  20. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have retreated worldwide in a response to global change. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  1. The development of a wide field UV imager for planetary space missions

    NASA Astrophysics Data System (ADS)

    Molyneux, Philippa Mary

    2012-03-01

    This thesis describes experimental work carried out on bilayer manganites with the general composition R{2-2x}A{1+2x}Mn2O7, where R is a trivalent rare earth cation and A is a divalent alkaline-earth cation. Experiments have been carried out primarily using Scanning Tunnelling Microscopy (STM) and Spectroscopy (STS); bulk electrical transport, MPMS and LEED measurements have also been made. The primary results are obtained from single crystal samples of PrSr2Mn2O7. This compound provides a surface suitable for STM study when cleaved at low temperature in ultra-high vacuum: atomic resolution can be readily achieved. The expected square lattice is observed, together with a larger scale surface modulation which is not presently explained. In some areas of the PrSr2Mn2O7 surface a population of adatoms and surface vacancies is observed. STS data indicate that adatoms carry a negative charge compared to the rest of the surface, and vacancies a positive charge: the adatoms and vacancies are interpreted as oxygen adatoms and oxygen vacancies. A detailed study is made of the oxygen adatoms and vacancies: this is believed to be the firrst such study made on a manganite surface. Oxygen adatoms on the PrSr2Mn2O7 surface are found to be mobile: hopping and adatom-vacancy recombination are observed. Additional results are reported on the layered manganite compound La{2-2x}Sr{1+2x}Mn2O7 at a range of cation doping x. For the LaSr2Mn2O7 compound (x = 0.5) spectroscopic variation has been identified in a variable-temperature STS survey. This indicates the coexistence of two surface electronic phases, possibly the charge ordered and antiferromagnetic phases.

  2. 3D Visualization of near real-time remote-sensing observation for hurricanes field campaign using Google Earth API

    NASA Astrophysics Data System (ADS)

    Li, P.; Turk, J.; Vu, Q.; Knosp, B.; Hristova-Veleva, S. M.; Lambrigtsen, B.; Poulsen, W. L.; Licata, S.

    2009-12-01

    NASA is planning a new field experiment, the Genesis and Rapid Intensification Processes (GRIP), in the summer of 2010 to better understand how tropical storms form and develop into major hurricanes. The DC-8 aircraft and the Global Hawk Unmanned Airborne System (UAS) will be deployed loaded with instruments for measurements including lightning, temperature, 3D wind, precipitation, liquid and ice water contents, aerosol and cloud profiles. During the field campaign, both the spaceborne and the airborne observations will be collected in real-time and integrated with the hurricane forecast models. This observation-model integration will help the campaign achieve its science goals by allowing team members to effectively plan the mission with current forecasts. To support the GRIP experiment, JPL developed a website for interactive visualization of all related remote-sensing observations in the GRIP’s geographical domain using the new Google Earth API. All the observations are collected in near real-time (NRT) with 2 to 5 hour latency. The observations include a 1KM blended Sea Surface Temperature (SST) map from GHRSST L2P products; 6-hour composite images of GOES IR; stability indices, temperature and vapor profiles from AIRS and AMSU-B; microwave brightness temperature and rain index maps from AMSR-E, SSMI and TRMM-TMI; ocean surface wind vectors, vorticity and divergence of the wind from QuikSCAT; the 3D precipitation structure from TRMM-PR and vertical profiles of cloud and precipitation from CloudSAT. All the NRT observations are collected from the data centers and science facilities at NASA and NOAA, subsetted, re-projected, and composited into hourly or daily data products depending on the frequency of the observation. The data products are then displayed on the 3D Google Earth plug-in at the JPL Tropical Cyclone Information System (TCIS) website. The data products offered by the TCIS in the Google Earth display include image overlays, wind vectors, clickable placemarks with vertical profiles for temperature and water vapors and curtain plots along the satellite tracks. Multiple products can be overlaid with individual adjustable opacity control. The time sequence visualization is supported by calendar and Google Earth time animation. The work described here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. GRACE, time-varying gravity, Earth system dynamics and climate change

    NASA Astrophysics Data System (ADS)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  4. GRACE, time-varying gravity, Earth system dynamics and climate change.

    PubMed

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data-provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)-can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  5. Earthquake precursory events around epicenters and local active faults

    NASA Astrophysics Data System (ADS)

    Valizadeh Alvan, H.; Mansor, S. B.; Haydari Azad, F.

    2013-05-01

    The chain of underground events which are triggered by seismic activities and physical/chemical interactions prior to a shake in the earth's crust may produce surface and above surface phenomena. During the past decades many researchers have been carried away to seek the possibility of short term earthquake prediction using remote sensing data. Currently, there are several theories about the preparation stages of earthquakes most of which stress on raises in heat and seismic waves as the main signs of an impending earthquakes. Their differences only lie in the secondary phenomena which are triggered by these events. In any case, with the recent advances in remote sensing sensors and techniques now we are able to provide wider, more accurate monitoring of land, ocean and atmosphere. Among all theoretical factors, changes in Surface Latent Heat Flux (SLHF), Sea & Land Surface Temperature (SST & LST) and surface chlorophyll-a are easier to record from earth observing satellites. SLHF is the amount of energy exchange in the form of water vapor between the earth's surface and atmosphere. Abnormal variations in this factor have been frequently reported as an earthquake precursor during the past years. The accumulated stress in the earth's crust during the preparation phase of earthquakes is said to be the main cause of temperature anomalies weeks to days before the main event and subsequent shakes. Chemical and physical interactions in the presence of underground water lead to higher water evaporation prior to inland earthquakes. In case of oceanic earthquakes, higher temperature at the ocean beds may lead to higher amount of Chl-a on the sea surface. On the other hand, it has been also said that the leak of Radon gas which occurs as rocks break during earthquake preparation causes the formation of airborne ions and higher Air Temperature (AT). We have chosen to perform a statistical, long-term, and short-term approach by considering the reoccurrence intervals of past shakes, mapping foreshocks and aftershocks, and following changes in the above-mentioned precursors prior to past earthquake instances all over the globe. Our analyses also encompass the geographical location and extents of local and regional faults which are considered as important factors during earthquakes. The co-analysis of direct and indirect observation for precursory events is considered as a promising method for possible future successful earthquake predictions. With proper and thorough knowledge about the geological setting, atmospheric factors and geodynamics of the earthquake-prone regions we will be able to identify anomalies due to seismic activity in the earth's crust.

  6. From Titan to the primitive Earth

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Gpcos Team

    Our knowledge of the conditions prevailing in the environment of the primitive Earth is still very limited, due to the lack of geological data. Fortunately, there are a few planetary objects in the solar system which present similarities with our planet, including during its early history. Titan is one of these. With a diameter of more than 5100 km, Titan, the largest moon of Saturn, is also the only one to have a dense atmosphere. This atmosphere, clearly evidenced by the presence of haze layers, extends to approximately 1500 km. Like the Earth, Titan's atmosphere is mainly composed of dinitrogen, N2 . The other main constituents are methane, CH4 , about 1.6% to 2.0% in the stratosphere, as measured by CIRS on Cassini and GC-MS on Huygens and dihydrogen (H2 , approximate 0.1%). With surface temperatures of approximately 94 K, and an average surface pressure of 1.5 bar, Titan's atmosphere is nearly five times denser than the Earth's. Despite of these differences between Titan and the Earth there are several analogies that can be drawn between the two planetary bodies. The first resemblances concern the vertical atmospheric structure. Although Titan is much colder, with a troposphere (˜94-˜70 K), a tropopause (70.4 K) and a stratosphere (˜70-175 K) its atmosphere presents a similar complex structure to that of the Earth. These analogies are linked to the presence in both atmospheres of greenhouse gases: CH4 and H2 on Titan, equivalent respectively to terrestrial condensable H2 O and non-condensable CO2 . In addition the haze particles and clouds in Titan's atmosphere play an antigreenhouse effect similar to that of the terrestrial atmospheric aerosols and clouds. Indeed, methane on Titan seems to play the role of water on the Earth, with a complex cycle, which still has to be understood. The possibility that Titan is covered with hydrocarbon oceans is now ruled out, but it is still possible that Titan's surface include lakes of methane and ethane. Moreover, the DISR instrument on Huygens has provided pictures of Titan's surface which clearly shows dentritic structures strongly suggesting recent liquid flow on the surface of Titan. In addition, the Huygens GCMS data show that methane mole fraction increases in the low troposphere (up to 5%) and reaches the saturation level at approximately 8 km altitude, allowing the possible formation of clouds and rain. Furthermore, GC-MS analyses recorded a 50% increase 1 in the methane mole fraction at Titan's surface, suggesting the presence of condensed methane on the surface near the lander. Other observations from the Cassini instruments clearly show the presence of various surface features of different origins indicative of volcanic, tectonic, sedimentological and meteorological processes.as we find on Earth .INMS on Cassini and GC-MS on Huygens have detected the presence of argon in the atmosphere. Similarly to the Earth atmosphere, the most abundant argon isotope is 40 Ar, which comes from the radioactive decay of 40 K. This strongly suggests that Titan's atmosphere is a secondary atmosphere, produced by the degassing of trapped gases. Analogies can also be made between the organic chemistry which is very active now on Titan and the prebiotic chemistry which was active on primitive Earth. In spite of the absence of permanent bodies of liquid water on Titan's surface, several of the organic processes which are occurring today on Titan imply some of the organic compounds which are considered as key molecules in the terrestrial prebiotic chemistry, such as hydrogen cyanide (HCN), cyanoacetylene (HC3 N) and cyanogen (C2 N2 ). A complex organic chemistry seems to be present in the three components of what one can call, always by analogy with our planet, the "geofluids" of Titan: air (gas atmosphere), aerosols (solid atmosphere) and surface (oceans). A recent study on the hydrogen escape from the primitive atmosphere of the Earth suggests that it may have been more reducing that we thought. If this is correct, the chemical processes involved in Titan's atmospheric chemistry may be even closer to those on the primitive Earth. References. Feng T., Owen B. T., Pavlov, A.A, and De Sterck, H. 2005. `A Hydrogen-Rich Early Earth Atmosphere'. Science 308, 1014-1017. Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 2

  7. The International Space Station: A Unique Platform For Terrestrial Remote Sensing

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Evans, Cynthia A.

    2012-01-01

    The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.

  8. Climate mitigation from vegetation biophysical feedbacks during the past three decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhenzhong; Piao, Shilong; Li, Laurent Z. X.

    The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening). We isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. Furthermore, we found that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling frommore » increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (-29%) and decreased albedo (-6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, but, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.« less

  9. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational, managerial and regulatory activities (i.e. weather forecasting, deforestation, flooding, etc.) essential to the safe exploitation of global resources, conservation of sustainable ecosystems, and the compliance with numerous international treaties and conventions, depend absolutely on continuity of satellite missions to maximise socio-economic and environmental benefits. This presentation will highlight some of the multidisciplinary Earth science achievements and operational applications using ESA satellite missions. It will also address some of the key scientific challenges and need for operational monitoring services in the years to come. It capitalizes on the knowledge and awareness outlined in "The Changing Earth - New scientific challenges for ESÁs Living Planet Programme" issued in 2006 together with updated views and approved plans expressed during ESÁs Earth Sciences Advisory Committee (ESAC) meetings and agreed at the recent User Consultation meeting in January 2009.

  10. Mass Redistribution in the Core and Time-varying Gravity at the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Fang, Ming

    2003-01-01

    The Earth's liquid outer core is in convection, as suggested by the existence of the geomagnetic field in much of the Earth's history. One consequence of the convection is the redistribution of mass resulting from relative motion among fluid parcels with slightly different densities. This time dependent mass redistribution inside the core produces a small perturbation on the gravity field of the Earth. With our numerical dynamo solutions, we find that the mass redistribution (and the resultant gravity field) symmetric about the equator is much stronger than that anti-symmetric about the equator. In particular, J(sub 2) component is the strongest. In addition, the gravity field variation increases with the Rayleigh number that measures the driving force for the geodynamo in the core. With reasonable scaling from the current dynamo solutions, we could expect that at the surface of the Earth, the J(sub 2) variation from the core is on the order of l0(exp -16)/year relative to the mean (i.e. spherically symmetric) gravity field of the Earth. The possible shielding effect due to core-mantle boundary pressure variation loading is likely much smaller and is therefore negligible. Our results suggest that time-varying gravity field perturbation due to core mass redistribution may be measured with modem space geodetic observations, which will result a new means of detecting dynamical processes in the Earth's deep interior.

  11. THE ALBEDOS OF KEPLER'S CLOSE-IN SUPER-EARTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demory, Brice-Olivier, E-mail: bod21@cam.ac.uk

    Exoplanet research focusing on the characterization of super-Earths is currently limited to the handful of targets orbiting bright stars that are amenable to detailed study. This Letter proposes to look at alternative avenues to probe the surface and atmospheric properties of this category of planets, known to be ubiquitous in our galaxy. I conduct Markov Chain Monte Carlo light-curves analyses for 97 Kepler close-in R{sub P} ≲ 2.0 R {sub ⊕} super-Earth candidates with the aim of detecting their occultations at visible wavelengths. Brightness temperatures and geometric albedos in the Kepler bandpass are constrained for 27 super-Earth candidates. A hierarchicalmore » Bayesian modeling approach is then employed to characterize the population-level reflective properties of these close-in super-Earths. I find median geometric albedos A{sub g} in the Kepler bandpass ranging between 0.16 and 0.30, once decontaminated from thermal emission. These super-Earth geometric albedos are statistically larger than for hot Jupiters, which have medians A{sub g} ranging between 0.06 and 0.11. A subset of objects, including Kepler-10b, exhibit significantly larger albedos (A{sub g} ≳ 0.4). I argue that a better understanding of the incidence of stellar irradation on planetary surface and atmospheric processes is key to explain the diversity in albedos observed for close-in super-Earths.« less

  12. Earth from Space: The Power of Perspective

    NASA Astrophysics Data System (ADS)

    Abdalati, W.

    2016-12-01

    Throughout history, humans have always valued the view from above, seeking high ground to survey the land, find food, assess threats, and understand their immediate environment. The advent of aircraft early in the 20th century took this capability literally to new levels, as aerial photos of farm lands, hazards, military threats, etc. provided new opportunities for security and prosperity. And in 1960, with the launch of the first weather satellite, TIROS, we came to know our world in ways that were not possible before, as we saw the Earth as a system of interacting components. In the decades since, our ability to understand the Earth System and its dynamic components has been transformed profoundly and repeatedly by satellite observations. From examining changes in sea level, to deformation of the Earth surface, to ozone depletion, to the Earth's energy balance, satellites have helped us understand our changing planet in ways that would not have otherwise been possible. The challenge moving forward is to continue to evolve beyond watching Earth processes unfold and understanding the underlying mechanisms of change, to anticipating future conditions, more comprehensively than we do today, for the benefit of society. The capabilities to do so are well within our reach, and with appropriate investments in observing systems, research, and activities that support translating observations into societal value, we can realize the full potential of this tremendous space-based perspective. Doing so will not just change our views of the Earth, but will improve our relationship with it.

  13. Solar Irradiance Variability and Its Impacts on the Earth Climate System

    NASA Astrophysics Data System (ADS)

    Harder, J. W.; Woods, T. N.

    The Sun plays a vital role in the evolution of the climates of terrestrial planets. Observations of the solar spectrum are now routinely made that span the wavelength range from the X-ray portion of the spectrum (5 nm) into the infrared to about 2400 nm. Over this very broad wavelength range, accounting for about 97% of the total solar irradiance, the intensity varies by more than 6 orders of magnitude, requiring a suite of very different and innovative instruments to determine both the spectral irradiance and its variability. The origins of solar variability are strongly linked to surface magnetic field changes, and analysis of solar images and magnetograms show that the intensity of emitted radiation from solar surface features in active regions has a very strong wavelength and magnetic field strength dependence. These magnetic fields produce observable solar surface features such as sunspots, faculae, and network structures that contribute in different ways to the radiated output. Semi-empirical models of solar spectral irradiance are able to capture much of the Sun's output, but this topic remains an active area of research. Studies of solar structures in both high spectral and spatial resolution are refining this understanding. Advances in Earth observation systems and high-quality three-dimensional chemical climate models provide a sound methodology to study the mechanisms of the interaction between Earth's atmosphere and the incoming solar radiation. Energetic photons have a profound effect on the chemistry and dynamics of the thermosphere and ionosphere, and these processes are now well represented in upper atmospheric models. In the middle and lower atmosphere the effects of solar variability enter the climate system through two nonexclusive pathways referred to as the top-down and bottom-up mechanisms. The top-down mechanism proceeds through the alteration of the photochemical rates that establish the middle atmospheric temperature structure and circulation patterns. In the bottom-up mechanism, the increased solar cycle forcing at Earth's surface increases the latent heat flux and evaporation processes, thereby altering the tropical wind patterns.

  14. Low-cost Tools for Aerial Video Geolocation and Air Traffic Analysis for Delay Reduction Using Google Earth

    NASA Astrophysics Data System (ADS)

    Zetterlind, V.; Pledgie, S.

    2009-12-01

    Low-cost, low-latency, robust geolocation and display of aerial video is a common need for a wide range of earth observing as well as emergency response and security applications. While hardware costs for aerial video collection systems, GPS, and inertial sensors have been decreasing, software costs for geolocation algorithms and reference imagery/DTED remain expensive and highly proprietary. As part of a Federal Small Business Innovative Research project, MosaicATM and EarthNC, Inc have developed a simple geolocation system based on the Google Earth API and Google's 'built-in' DTED and reference imagery libraries. This system geolocates aerial video based on platform and camera position, attitude, and field-of-view metadata using geometric photogrammetric principles of ray-intersection with DTED. Geolocated video can be directly rectified and viewed in the Google Earth API during processing. Work is underway to extend our geolocation code to NASA World Wind for additional flexibility and a fully open-source platform. In addition to our airborne remote sensing work, MosaicATM has developed the Surface Operations Data Analysis and Adaptation (SODAA) tool, funded by NASA Ames, which supports analysis of airport surface operations to optimize aircraft movements and reduce fuel burn and delays. As part of SODAA, MosaicATM and EarthNC, Inc have developed powerful tools to display national airspace data and time-animated 3D flight tracks in Google Earth for 4D analysis. The SODAA tool can convert raw format flight track data, FAA National Flight Data (NFD), and FAA 'Adaptation' airport surface data to a spatial database representation and then to Google Earth KML. The SODAA client provides users with a simple graphical interface through which to generate queries with a wide range of predefined and custom filters, plot results, and export for playback in Google Earth in conjunction with NFD and Adaptation overlays.

  15. ISSM-SESAW v1.0: mesh-based computation of gravitationally consistent sea-level and geodetic signatures caused by cryosphere and climate driven mass change

    NASA Astrophysics Data System (ADS)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric

    2016-03-01

    A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.

  16. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  17. STRONTIUM 90: ESTIMATION OF WORLDWIDE DEPOSITION.

    PubMed

    VOLCHOK, H L

    1964-09-25

    The relation between the worldwide deposition of strontium-90, as calculated by many investigators over the last decade, and that observed in rainfall in New York City has been relatively constant. On the average, for each millicurie of strontium-90 per square mile deposited in New York City, 0.055 megacurie has been deposited on the earth's total surface. Cumulative deposits of strontium-90 on the earth's surface at various intervals over the last 10 years have been computed from this ratio. From the mean quarterly fraction of the annual strontium-90 fallout in New York City for the last 9 years, the worldwide deposition of this nuclide, equal to 2.48 megacuries, is predicted for 1964.

  18. Astrobiology and the Chemistry of the Early Solar System

    NASA Technical Reports Server (NTRS)

    Cook, Jamie Elsila

    2011-01-01

    The field of astrochemistry investigates the origin of the chemicals necessary for the formation of life. Astrochemists use remote observations, laboratory simulations, and analysis of extraterrestrial samples to understand the inventory of pre biotic chemicals present on the early Earth. Among the problems investigated by astrochemists is the origin of homo chirality in terrestrial life. Analysis of meteorites shows that they may have delivered an excess of L-amino acids to the Earth's surface, perhaps leading to homochirality.

  19. Airborne Observation of Ocean Surface Roughness Variations Using a Combination of Microwave Radiometer and Reflectometer Systems: The Second Virginia Offshore (Virgo II) Experiment

    DTIC Science & Technology

    2014-03-06

    from scattered satellite transmissions, was first demonstrated using Global Navigation Satellite System ( GNSS ) reflections. Recently, reflectometry has...Earth’s atmosphere. The 2012 GNSS +R workshop provided an opportunity for engineers and Earth scientists to assess the state of the art, demonstrate new...bi-static radar technique utilizes signals of opportunity transmitted from existing L-band Global Navigation Satellite Systems ( GNSS ), including GPS

  20. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    NASA Astrophysics Data System (ADS)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated that the products from earth observations and the surface water mapping tool could detect dynamic changes of river morphology in the Ayeyarwady River. This information is useful to support navigation and riverbank protection planning and formulating mitigation measures for local communities that are affecting by riverbank erosion.

  1. NASA's future Earth observation plans

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Paules, Granville E.; McCuistion Ramesh, J. D.

    2004-11-01

    NASA's Science Mission Directorate, working with its domestic and international partners, provides accurate, objective scientific data and analysis to advance our understanding of Earth system processes. Learning more about these processes will enable improved prediction capability for climate, weather, and natural hazards. Earth interactions occur on a continuum of spatial and temporal scales ranging from short-term weather to long-term climate, and from local and regional to global. Quantitatively describing these changes means precisely measuring from space scores of biological and geophysical parameters globally. New missions that SMD will launch in the coming decade will complement the first series of the Earth Observing System. These next generation systematic measurement missions are being planned to extend or enhance the record of science-quality data necessary for understanding and predicting global change. These missions include the NPOESS Preparatory Project, Ocean Surface Topography Mission, Global Precipitation Measurement, Landsat Data Continuity Mission, and an aerosol polarimetry mission called Glory. New small explorer missions will make first of a kind Earth observations. The Orbiting Carbon Observatory will measure sources and sinks of carbon to help the Nation and the world formulate effective strategies to constrain the amount of this greenhouse gas in the atmosphere. Aquarius will measure ocean surface salinity which is key to ocean circulation in the North Atlantic that produces the current era's mild climate in northern Europe. HYDROS will measure soil moisture globally. Soil moisture is critical to agriculture and to managing fresh water resources. NASA continues to design, develop and launch the Nation's civilian operational environmental satellites, in both polar and geostationary orbits, by agreement with the National Oceanic and Atmospheric Administration (NOAA). NASA plans to develop an advanced atmospheric sounder, GIFTS, for geostationary orbit to facilitate continuous measurements of weather-related phenomena, improve "nowcasting" of extreme weather events, and measure important atmospheric gases. NASA is currently developing with its partners the National Polar-orbiting Operational Environmental Satellite System (NPOESS) and the next-generation geostationary system, GOES-R. Future missions will migrate today's capabilities in low Earth orbit to higher orbits such as L1 and L2 to enable more continuous monitoring of changes in the Earth system with a smaller number of satellites.

  2. Integrated Instrument Simulator Suites for Earth Science

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, Johnathan; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  3. Displacements of the earth's surface due to atmospheric loading - Effects of gravity and baseline measurements

    NASA Technical Reports Server (NTRS)

    Van Dam, T. M.; Wahr, J. M.

    1987-01-01

    Atmospheric mass loads and deforms the earth's crust. By performing a convolution sum between daily, global barometric pressure data and mass loading Green's functions, the time dependent effects of atmospheric loading, including those associated with short-term synoptic storms, on surface point positioning measurements and surface gravity observations are estimated. The response for both an oceanless earth and an earth with an inverted barometer ocean is calculated. Load responses for near-coastal stations are significantly affected by the inclusion of an inverted barometer ocean. Peak-to-peak vertical displacements are frequently 15-20 mm with accompanying gravity perturbations of 3-6 micro Gal. Baseline changes can be as large as 20 mm or more. The perturbations are largest at higher latitudes and during winter months. These amplitudes are consistent with the results of Rabbel and Zschau (1985), who modeled synoptic pressure disturbances as Gaussian functions of radius around a central point. Deformation can be adequately computed using real pressure data from points within about 1000 km of the station. Knowledge of local pressure, alone, is not sufficient. Rabbel and Zschau's hypothesized corrections for these displacements, which use local pressure and the regionally averaged pressure, prove accurate at points well inland but are, in general, inadequate within a few hundred kilometers of the coast.

  4. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  5. The distribution of particulate material on Mars

    NASA Technical Reports Server (NTRS)

    Christensen, Philip R.

    1991-01-01

    The surface materials on Mars were extensively studied using a variety of spacecraft and Earth-based remote sensing observations. These measurements include: (1) diurnal thermal measurements, used to determine average particle size, rock abundance, and the presence of crusts; (2) radar observations, used to estimate the surface slope distributions, wavelength scale roughness, and density; (3) radio emission observations, used to estimate subsurface density; (4) broadband albedo measurements, used to study the time variation of surface brightness and dust deposition and removal; and (5) color observations, used to infer composition, mixing, and the presence of crusts. Remote sensing observations generally require some degree of modeling to interpret, making them more difficult to interpret than direct observations from the surface. They do, however, provide a means for examining the surface properties over the entire planet and a means of sampling varying depths within the regolith. Albedo and color observations only indicate the properties of the upper-most few microns, but are very sensitive to thin, sometimes emphemeral dust coatings. Thermal observations sample the upper skin depth, generally 2 to 10 cm. Rock abundance measurements give an indirect indication of surface mantling, where the absence of rocks suggests mantles of several meters. Finally, radar and radio emission data can penetrate several meters into the surface, providing an estimate of subsurface density and roughness.

  6. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    NASA Technical Reports Server (NTRS)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  7. A Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2001-05-01

    New observatories such as TPF (NASA) and Darwin (ESA) are being designed to detect light directly from terrestrial-mass planets. Such observations will provide new data to constrain theories of planet formation and may identify the possible presence of liquid water and even spectroscopic signatures suggestive of life. We model the light scattered by Earth-like planets focusing on temporal variability due to planetary rotation and weather. Since a majority of the scattered light comes from only a small fraction of the planet's surface, significant variations in brightness are possible. The variations can be as large as a factor of two for a cloud-free planet which has a range of albedos similar to those of the different surfaces found on Earth. If a significant fraction of the observed light is scattered by the planet's atmosphere, including clouds, then the amplitude of variations due to surface features will be diluted. Atmospheric variability (e.g. clouds) itself is extremely interesting because it provides evidence for weather. The planet's rotation period, fractional ice and cloud cover, gross distribution of land and water on the surface, large scale weather patterns, large regions of unusual reflectivity or color (such as major desserts or vegetation's "red edge") as well as the geometry of its spin, orbit, and illumination relative to the observer all have substantial effects on the planet's rotational light curve.

  8. Planetary lightning - Earth, Jupiter, and Venus

    NASA Astrophysics Data System (ADS)

    Williams, M. A.; Krider, E. P.; Hunten, D. M.

    1983-05-01

    The principal characteristics of lightning on earth are reviewed, and the evidence for lightning on Venus and Jupiter is examined. The mechanisms believed to be important to the electrification of terrestrial clouds are reviewed, with attention given to the applicability of some of these mechanisms to the atmospheres of Venus and Jupiter. The consequences of the existence of lightning on Venus and Jupiter for their atmospheres and for theories of cloud electrification on earth are also considered. Since spacecraft observations do not conclusively show that lightning does occur on Venus, it is suggested that alternative explanations for the experimental results be explored. Since Jupiter has no true surface, the Jovian lightning flashes are cloud dischargaes. Observations suggest that Jovian lightning emits, on average, 10 to the 10 J of optical energy per flash, whereas on earth lightning radiates only about 10 to the 6th J per flash. Estimates of the average planetary lightning rate on Jupiter range from 0.003 per sq km per yr to 40 per sq km per yr.

  9. A septet of Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  10. ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro

    2015-10-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.

  11. The Representation of Tropical Cyclones Within the Global William Putman Non-Hydrostatic Goddard Earth Observing System Model (GEOS-5) at Cloud-Permitting Resolutions

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).

  12. What Lies Beneath: Surface Patterns of Glacier-Like Landforms

    NASA Image and Video Library

    2016-09-21

    The rotational axis of Mars is currently tilted by about 25 degrees, very similar to that of the Earth (at 23.4 degrees). However, while Earth's axial tilt (also known as "obliquity") tends to change very slightly over time (almost 3 degrees in 40,000 year-cycles), the obliquity of Mars is much more chaotic and varies widely from 0 to almost 60 degrees! The fact that it is currently similar to that of the Earth is merely a coincidence. Currently, water-ice is stable on the Martian surface only in the polar regions. However, during times of "high obliquity," that stability shifts towards the equatorial regions. We see evidence for recent periods of high obliquity on Mars in the form of features common in the mid-latitude regions, which planetary scientists call "viscous flow features," "lobate debris aprons," or "lineated valley fills." These are all scientifically conservative ways of describing features on Mars that resemble mountain glaciers on Earth. We now know from radar observations, particularly using the SHARAD instrument on board the Mars Reconnaissance Orbiter, that these features are really composed of mixtures of pure ice and dust, and as a result, many scientists have started using the term "glacier-like forms" (GLF) to describe some of them. The main reason that these feature are still present for us to observe nowadays-despite the inhospitable conditions for water ice in these latitudes-is that these "glaciers" are covered by thin layers of dust, which protect them from the atmosphere of Mars and prevents, or significantly slows down, the loss of ice through sublimation to the atmosphere. However, if we were to take a look at this image of a "lobate debris apron," we will see that some areas show numerous depressions, which suggests that these areas have lost some of the ice creating these "deflation features." In addition, if we zoom in on one of these depressions, we will see surface polygonal patterns, which are common in cold regions on Earth (such as Alaska, northern Canada, and Siberia) and are indicators of shallow sub-surface water-ice. http://photojournal.jpl.nasa.gov/catalog/PIA21065

  13. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  14. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  15. Use of EO-1 Hyperion Data for Inter-Sensor Calibration of Vegetation Indices

    NASA Technical Reports Server (NTRS)

    Huete, Alfredo; Miura, Tomoaki; Kim, HoJin; Yoshioka, Hiroki

    2004-01-01

    Numerous satellite sensor systems useful in terrestrial Earth observation and monitoring have recently been launched and their derived products are increasingly being used in regional and global vegetation studies. The increasing availability of multiple sensors offer much opportunity for vegetation studies aimed at understanding the terrestrial carbon cycle, climate change, and land cover conversions. Potential applications include improved multiresolution characterization of the surface (scaling); improved optical-geometric characterization of vegetation canopies; improved assessments of surface phenology and ecosystem seasonal dynamics; and improved maintenance of long-term, inter-annual, time series data records. The Landsat series of sensors represent one group of sensors that have produced a long-term, archived data set of the Earth s surface, at fine resolution and since 1972, capable of being processed into useful information for global change studies (Hall et al., 1991).

  16. Seasonal Surface Loading Helps Constrain Short-Term Viscosity of the Asthenosphere

    NASA Astrophysics Data System (ADS)

    Clarke, Peter J.

    2018-03-01

    Earth materials may display a range of rheological behaviors at different depths and over different timescales. The situation is particularly complex for postseismic relaxation in the uppermost mantle and lower crust, where it can be difficult to distinguish widespread viscous behavior from earthquake afterslip or localized deformation in shear zones over timescales of weeks to decades. By analyzing geodetic observations of seasonal surface mass loads and Earth's surface deformation in response, Chanard et al. (2018, https://doi.org/10.1002/2017GL076451) have established a globally averaged lower bound of 5 × 1017 Pa s for the transient viscosity of a Burgers-rheology asthenosphere. This implies that lower viscosities inferred by some studies of postseismic relaxation must result from local departures from this global value, or be an artifact of additional afterslip or shear zone deformation.

  17. Developing Consistent Earth System Data Records for the Global Terrestrial Water Cycle: Focus on Shortwave and Longwave Radiative Fluxes

    NASA Astrophysics Data System (ADS)

    Pinker, R. T.; Ma, Y.; Nussbaumer, E. A.

    2012-04-01

    The overall goal of the MEaSUREs activity titled: "Developing Consistent Earth System Data Records for the Global Terrestrial Water Cycle" is to develop consistent, long-term Earth System Data Records (ESDRs) for the major components of the terrestrial water cycle at a climatic time scale. The shortwave (SW) and longwave (LW) radiative fluxes at the Earth's surface determine the exchange of energy between the land and the atmosphere are the focus of this presentation. During the last two decades, significant progress has been made in assessing the Earth Radiation Balance from satellite observations. Yet, satellite based estimates differ from each other and long term satellite observations at global scale are not readily available. There is a need to utilize existing records of satellite observations and to improve currently available estimates. This paper reports on improvements introduced to an existing methodology to estimate shortwave (SW) radiative fluxes within the atmospheric system, on the development of a new inference scheme for deriving LW fluxes, the implementation of the approach with the ISCCP DX observations and improved atmospheric inputs for the period of 1983-2007, evaluation against ground observations, and comparison with independent satellite methods and numerical models. The resulting ESDRs from the entire MEaSUREs Project are intended to provide a consistent basis for estimating the mean state and variability of the land surface water cycle at a spatial scale relevant to major global river basins. MEaSUREs Project "Developing Consistent Earth System Data Records for the Global Terrestrial Water Cycle" Team Members: E. F. Wood (PI)1, T. J Bohn2, J. L Bytheway3, X. Feng4, H. Gao2, P. R.Houser4 (CO-I), C. D Kummerow3 (CO-I), D. P Lettenmaier2 (CO-I), C. Li5, Y. Ma5, R. F MacCracken4, M. Pan1, R. T Pinker5 (CO-I), A. K. Sahoo1, J. Sheffield1 1. Dept of CEE, Princeton University, Princeton, NJ, USA. 2. Dept of CEE, University of Washington, Seattle, WA, USA. 3. Dept of Atmospheric Science, Fort Collins, CO, USA. 4. Dept of Geography and GeoInformation Scie., George Mason University, Fairfax, VA, USA. 5. Dept of Meteorology, University of Maryland, College Park, MD, USA.

  18. A synthetic high fidelity, high cadence spectral Earth database

    NASA Astrophysics Data System (ADS)

    Schwieterman, Edward; Meadows, Victoria; Robinson, Tyler D.; Lustig-Yaeger, Jacob; Sparks, William B.; Cracraft, Misty

    2016-10-01

    Earth is currently our only, and will always be our best, example of a living planet. While Earth data model comparisons have been effectively used in recent years to validate spectral models, observations by interplanetary spacecraft are limited to "snapshots" in terms of viewing geometry and Earth's dynamic surface and atmosphere state. We use the well-validated Virtual Planetary Laboratory 3D spectral Earth model to generate both simulated disk-averaged spectra and high resolution, spatially resolved spectral data cubes of Earth at a viewing geometry consistent with Lunar viewing angles at wavelengths from the far UV (0.1 μm) the to the far IR (200 μm). The database includes disk-averaged spectra from dates 03/19/2008 to 04/23/2008 at one-hour cadence and fully spectral data cubes for a subset of those times. These spectral products have a wide range of applications including calibration of spacecraft instrumentation (Robinson et al. 2014), modeling the radiation environment of permanently shadowed Lunar craters due to Earthshine (Glenar et al., in prep), and testing the detectability of atmospheric and surface features of an Earth-like planet orbiting a distant star with a large space-based telescope mission concepts such as LUVOIR. These data include the phase and time-dependent changes in spectral biosignatures (O2, O3, CH4, VRE) and habitability markers (N2, H2O, CO2, ocean glint). The advantages of the VPL Earth model data products over 1D spectra traditionally used for testing instrument architectures include accurate modeling of Earth's surface inhomogeneity (continental distribution and ice caps), cloud cover and variability, pole to equator temperature gradients, obliquity, phase-dependent scattering effects, and rotation. We present a subset of this spectral data including anticipated signal-to-noise calculations of an exoEarth twin at different phases using a coronagraph instrument model (Robinson et al. 2015). We also calculate time-dependent UBVRIJHK absolute magnitudes of Earth and binned intensities (W m-2 sr-1) in wavelength ranges (0.4-1 μm, 0.2-2 μm, 5-25 μm, and > 10 μm) relevant for planet detection with proposed space telescope missions.

  19. Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface

    NASA Astrophysics Data System (ADS)

    Eltsov, Anatoli V.; Karasev, Vladimir I.; Kolotkov, Vjacheslav V.; Kondranin, Timothy V.

    1997-06-01

    The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter how large the space (from several meters to hundreds of kilometers) and time (from an hour to several months) scales of the above monitoring might be there is a common dominating factor which could favor creation of a general- purpose observation and control system based on passive optoelectronic instrumentation of different levels of sophistication. This dominating factor refers to the possibility of obtaining information about the state of objects by way to recording parameters of radiation emitted by them in wavelengths of 250 nm to tens of microns. The fact that phenomena and processes occurring in the atmosphere are closely interrelated gives implications as to the structure of such a system which is supposed to be a common information network basically consisting of an orbiting constellation of a number of small-size spacecraft equipped with optoelectronic instrumentation of different complexity, and a ground segment to provide acquisition and processing of information about the status of every ecosphere shell including comprehensive thematic analysis. The existing domestic (based on the `Meteor', `Resurs-O', `Okean', etc. spacecraft) and foreign (NOAA, SPOT, LANDSAT, ERS, etc.) space systems are designed for solution of only a limited number of atmosphere monitoring issues, namely those related to meteorology and studies of natural resources. As for the near-Earth space there are at present only ground facilities whose monitoring capabilities are also limited. It should be noted that in recent years in the USA similar activities have been in full swing targeted at creation of a system like the one mentioned above (the Earth Observation System). A system comprising four spacecraft of the NOAA series and a distributed ground network for receiving analog (with 4 km spatial resolution) and digital (with 1 km spatial resolution) multispectral data pertaining to the status of the atmosphere and the underlying surface is currently operational. This system presents some unique features which make it in several applications superior to existing counterparts. The issue of creation and use of similar systems is complex and costly and it can be solved under today's Russian circumstances only at government level by joint efforts of multiple scientific and production organizations. One advantageous approach consists in building the above-mentioned systems using space complexes which have been already developed or are under development.

  20. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  1. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society, science, commerce and education.

  2. Optical radiation from the interaction of energetic atoms, ions, electrons, and photons with surfaces

    NASA Technical Reports Server (NTRS)

    Tolk, N. H.; Albridge, R. G.; Haglund, R. F., Jr.; Mendenhall, M. H.

    1985-01-01

    Heavy particle, electron, and UV photon bombardment of solid surfaces has been recently observed to result in the emission of infrared, visible, and ultraviolet radiation. This effect occurs over a wide range of incident projectile energies. Line radiation arising from transitions between discrete atomic or molecular levels may be attributed to the decay of excited particles which have been sputtered or electronically/chemically desorbed from the surface. Broadband continuum radiation, which is also observed, is believed to arise either from fluorescence of the near surface bulk or from the radiative decay of desorbed excited clusters. Spacecraft, in the ambient near Earth environment, are subject to such bombardment. The dynamics of energetic particle and photon beam interactions with surfaces which lead to surface erosion and glow phenomena will be treated. In addition, projected experimental and theoretical studies of oxygen and nitrogen beam surface interactions on materials characteristic of spacecraft surfaces will be discussed.

  3. Between a rock and a hot place: the core-mantle boundary.

    PubMed

    Wookey, James; Dobson, David P

    2008-12-28

    The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.

  4. Observed increase in local cooling effect of deforestation at higher latitudes

    Treesearch

    Xuhui Lee; Michael L. Goulden; David Y. Hollinger; Alan Barr; T. Andrew Black; Gil Bohrer; Rosvel Bracho; Bert Drake; Allen Goldstein; Lianhong Gu; Gabriel Katul; Thomas Kolb; Beverly E. Law; Hank Margolis; Tilden Meyers; Russell Monson; William Munger; Ram Oren; Kyaw Tha Paw U; Andrew D. Richardson; Hans Peter Schmid; Ralf Staebler; Steven Wofsy; Lei Zhao

    2011-01-01

    Deforestation in mid- to high latitudes is hypothesized to have the potential to cool the Earth's surface by altering biophysical processes. In climate models of continental-scale land clearing, the cooling is triggered by increases in surface albedo and is reinforced by a land albedo–sea ice feedback. This feedback is crucial in the model predictions; without it...

  5. Size Dependence of Dust Distribution around the Earth Orbit

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro

    2017-05-01

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.

  6. Size Dependence of Dust Distribution around the Earth Orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi

    In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less

  7. Terra MODIS Band 27 Electronic Crosstalk Effect and Its Removal

    NASA Technical Reports Server (NTRS)

    Sun, Junqiang; Xiong, Xiaoxiong; Madhavan, Sriharsha; Wenny, Brian

    2012-01-01

    The MODerate-resolution Imaging Spectroradiometer (MODIS) is one of the primary instruments in the NASA Earth Observing System (EOS). The first MODIS instrument was launched in December, 1999 on-board the Terra spacecraft. MODIS has 36 bands, covering a wavelength range from 0.4 micron to 14.4 micron. MODIS band 27 (6.72 micron) is a water vapor band, which is designed to be insensitive to Earth surface features. In recent Earth View (EV) images of Terra band 27, surface feature contamination is clearly seen and striping has become very pronounced. In this paper, it is shown that band 27 is impacted by electronic crosstalk from bands 28-30. An algorithm using a linear approximation is developed to correct the crosstalk effect. The crosstalk coefficients are derived from Terra MODIS lunar observations. They show that the crosstalk is strongly detector dependent and the crosstalk pattern has changed dramatically since launch. The crosstalk contributions are positive to the instrument response of band 27 early in the mission but became negative and much larger in magnitude at later stages of the mission for most detectors of the band. The algorithm is applied to both Black Body (BB) calibration and MODIS L1B products. With the crosstalk effect removed, the calibration coefficients of Terra MODIS band 27 derived from the BB show that the detector differences become smaller. With the algorithm applied to MODIS L1B products, the Earth surface features are significantly removed and the striping is substantially reduced in the images of the band. The approach developed in this report for removal of the electronic crosstalk effect can be applied to other MODIS bands if similar crosstalk behaviors occur.

  8. STUDY OF TURBULENT ENERGY OVER COMPLEX TERRAIN: STATE, 1978

    EPA Science Inventory

    The complex structure of the earth's surface influenced atmospheric parameters pertinent to modeling the diffusion process during the 1978 'STATE' field study. The Information Theory approach of statistics proved useful for analyzing the complex structures observed in the radiome...

  9. Space Photography 1977 Index

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.

  10. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-03-20

    ISS027-E-006501 (20 March 2011) --- A low pressure system in the eastern North Pacific Ocean is featured in this image photographed by an Expedition 27 crew member in the Cupola of the International Space Station. This vigorous low pressure system has started to occlude?a process associated with separation of warm air from the cyclone?s center at the Earth?s surface. This view shows the arc of strong convection beyond the center of the low pressure, formed as the low occludes when the cold front overtakes the warm front. This occurs around more mature low pressure areas, later in the process of the system?s life-cycle.

  11. A complex of meteorite-forming bodies (the Innisfree - Ridgedale family).

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    For the first time a swarm of meteorite-forming bodies was identified. Yearly this swarm's orbit approaches the Earth's orbit in early February. This swarm contains the Innisfree and Ridgedale fireballs, 9 small meteoric swarms, several asteroids and 12 fireballs photographed by the cameras of the Prairie Network and Canadian Meteorite Observation and Discovery Project. The discovery of this complex, intensive bombardments of the Moon's surface recorded by means of seismographs left on the Moon, the analysis of the time distributions of meteorite falls on the Earth and other established facts confirm the existence of swarms of meteorite-forming bodies which are crossing the Earth's orbit.

  12. Ground-Based Network and Supersite Observations to Complement and Enrich EOS Research

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.

    2011-01-01

    Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System (EOS) - to intensively study, and gain a better understanding of, the Earth as an integrated system. Space-borne remote sensing observations, however, are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite datasets. Through numerous participations, particularly but not limited to the EOS remote-sensing/retrieval and validation projects over the years, NASA/GSFC has developed and continuously refined ground-based networks and mobile observatories that proved to be vital in providing high temporal measurements, which complement and enrich the satellite observations. These are: the AERO NET (AErosol RObotic NETwork) a federation of ground-based globally distributed network of spectral sun-sky photometers; the MPLNET (Micro-Pulse Lidar NETwork, a similarly organized network of micro-pulse lidar systems measuring aerosol and cloud vertical structure continuously; and the SMART-COMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere, mobile observatories, a suite of spectral radiometers and in-situ probes acquiring supersite measurements. Most MPLNET sites are collocated with those of AERONET, and both networks always support the deployment of SMART-COMMIT worldwide. These data products follow the data structure of EOS conventions: Level-0, instrument archived raw data; Level-1 (or 1.5), real-time data with no (or limited) quality assurance; Level-2, not real high temporal and spectral resolutions. In this talk, we will present NASA/GSFC groundbased facilities, serving as network or supersite observations, which have been playing key roles in major international research projects over diverse aerosol regimes to complement and enrich the EOS scientific research.

  13. Evidences of Shear Deformations and Faulting on Comet 67P/ Churyumov-Gerasimenko: a Driving Force for the Mechanical Erosion of the Nucleus?

    NASA Astrophysics Data System (ADS)

    Matonti, C.; Auger, A. T.; Groussin, O.; Jorda, L.; Attree, N.; Viseur, S.; El Maarry, M. R.

    2016-12-01

    Fractures and faults are widespread and pervasive in Earth crustal and sedimentary rocks. They result from deviatoric stresses applied on brittle materials. In various contexts, their geometry often allows one to infer the direction and sometimes the magnitude of the stress that led to their formation. The Rosetta spacecraft has orbited comet 67P for two years and has acquired images of the nucleus surface with an unprecedented spatial resolution, down to 20 cm/px. These data open the way for entirely new geological interpretations of the structures observed at the surface of cometary nuclei. In this work, we focus on the structural interpretations of the meter to hectometer scale lineaments observed on the surface from the OSIRIS-NAC images. To improve interpretations, we performed the digitalization of lineaments in selected zones. In brittle material regions (essentially Atum and Khonsu), we observed structures that nicely match fault splay, duplexes blocks and anastomosing or "en-échelon" patterns. Such structures strongly suggest the occurrence of sheared zones and "strike-slip fault" arrays, which are observed here for the first time at the surface of a comet nucleus. Despite the large differences in the gravity magnitude and nucleus material strength compared to Earth, the observation of such structures seems to confirm comparable gravity to strength ratio between 67P and the Earth (Groussin et al., 2015). Most of these shear structures are sub-parallel and located inside or near the nucleus neck regions (Hapi, Sobek and Wosret), which is consistent with an increased relative shear stress at the boundary of the two lobes (Hirabayashi et al., 2016). These results emphasize mechanisms that may have important implications on the nucleus strength estimation and how it is eroded. Indeed, considering the fault propagation laws along with multiple angles views of structures, the observed faults likely propagate inside the nucleus over several tenths to hundreds of meters. Moreover, possible "faults offsets" observations suggest that relatively important/durable "tectonic-like" processes happened or are still happening in the nucleus. Further comparative analyses of successive images from pre-to-post perihelion phases might allow quantifying the timescale at which these processes occur.

  14. Thermally-Driven Mantle Plumes Reconcile Hot-spot Observations

    NASA Astrophysics Data System (ADS)

    Davies, D.; Davies, J.

    2008-12-01

    Hot-spots are anomalous regions of magmatism that cannot be directly associated with plate tectonic processes (e.g. Morgan, 1972). They are widely regarded as the surface expression of upwelling mantle plumes. Hot-spots exhibit variable life-spans, magmatic productivity and fixity (e.g. Ito and van Keken, 2007). This suggests that a wide-range of upwelling structures coexist within Earth's mantle, a view supported by geochemical and seismic evidence, but, thus far, not reproduced by numerical models. Here, results from a new, global, 3-D spherical, mantle convection model are presented, which better reconcile hot-spot observations, the key modification from previous models being increased convective vigor. Model upwellings show broad-ranging dynamics; some drift slowly, while others are more mobile, displaying variable life-spans, intensities and migration velocities. Such behavior is consistent with hot-spot observations, indicating that the mantle must be simulated at the correct vigor and in the appropriate geometry to reproduce Earth-like dynamics. Thermally-driven mantle plumes can explain the principal features of hot-spot volcanism on Earth.

  15. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    NASA Astrophysics Data System (ADS)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  16. Collisional desorption of NO by fast O atoms

    NASA Technical Reports Server (NTRS)

    Sonnenfroh, David M.; Caledonia, George E.

    1993-01-01

    Surface-adsorbed NO figures largely in the mechanism that produces visible glow around spacecraft in low Earth orbit (LEO). In view of the potential interference to optical observations such a glow represents, we have investigated the collision-induced desorption of NO from Al, Ni, and Z306 Chemglaze-coated surfaces at 96 K by hyperthermal (8 km/s) oxygen atoms. The removal of surface NO was followed by the monitoring of the visible fluorescence of electronically excited NO2 produced through the surface-mediated reaction O + NO. A variability in collisional desorption rate with material was observed. The limited data suggest a removal efficiency of 4 to 8% of the impinging O atom flux. Implications for the atmospheric scouring of contaminants from external surfaces of LEO spacecraft are discussed.

  17. Development of a real time bistatic radar receiver using signals of opportunity

    NASA Astrophysics Data System (ADS)

    Rainville, Nicholas

    Passive bistatic radar remote sensing offers a novel method of monitoring the Earth's surface by observing reflected signals of opportunity. The Global Positioning System (GPS) has been used as a source of signals for these observations and the scattering properties of GPS signals from rough surfaces are well understood. Recent work has extended GPS signal reflection observations and scattering models to include communications signals such as XM radio signals. However the communication signal reflectometry experiments to date have relied on collecting raw, high data-rate signals which are then post-processed after the end of the experiment. This thesis describes the development of a communication signal bistatic radar receiver which computes a real time correlation waveform, which can be used to retrieve measurements of the Earth's surface. The real time bistatic receiver greatly reduces the quantity of data that must be stored to perform the remote sensing measurements, as well as offering immediate feedback. This expands the applications for the receiver to include space and bandwidth limited platforms such as aircraft and satellites. It also makes possible the adjustment of flight plans to the observed conditions. This real time receiver required the development of an FGPA based signal processor, along with the integration of commercial Satellite Digital Audio Radio System (SDARS) components. The resulting device was tested both in a lab environment as well on NOAA WP-3D and NASA WB-57 aircraft.

  18. Google Earth Engine derived areal extents to infer elevation variation of lakes and reservoirs

    NASA Astrophysics Data System (ADS)

    Nguy-Robertson, Anthony; May, Jack; Dartevelle, Sebastien; Griffin, Sean; Miller, Justin; Tetrault, Robert; Birkett, Charon; Lucero, Eileen; Russo, Tess; Zentner, Matthew

    2017-04-01

    Monitoring water supplies is important for identifying potential national security issues before they begin. As a means to estimate lake and reservoir storage for sites without reliable water stage data, this study defines correlations between water body levels from hypsometry curves based on in situ gauge station and altimeter data (i.e. TOPEX/Poseidon, Jason series) and sensor areal extents observed in historic multispectral (i.e. MODIS and Landsat TM/ETM+/OLI) imagery. Water levels measured using in situ observations and altimeters, when in situ data were unavailable, were used to estimate the relationship between water elevation and surface area for 18 sites globally. Altimeters were generally more accurate (RMSE: 0.40 - 0.49 m) for estimating in situ lake elevations from Iraq and Afghanistan than the modeled elevation data using multispectral sensor areal extents: Landsat (RMSE: 0.25 - 1.5 m) and MODIS (RMSE 0.53 - 3.0 m). Correlations between altimeter data and Landsat imagery processed with Google Earth Engine confirmed similar relationships exists for a broader range of lakes without reported in situ data across the globe (RMSE: 0.24 - 1.6 m). Thus, while altimetry is still preferred to an areal extent model, lake surface area derived with Google Earth Engine can be used as a reasonable proxy for lake storage, expanding the number of observable lakes beyond the current constellation of altimeters and in situ gauges.

  19. HARPS-N OBSERVES THE SUN AS A STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumusque, Xavier; Glenday, Alex; Phillips, David F.

    Radial velocity (RV) perturbations induced by stellar surface inhomogeneities including spots, plages and granules currently limit the detection of Earth-twins using Doppler spectroscopy. Such stellar noise is poorly understood for stars other than the Sun because their surface is unresolved. In particular, the effects of stellar surface inhomogeneities on observed stellar radial velocities are extremely difficult to characterize, and thus developing optimal correction techniques to extract true stellar radial velocities is extremely challenging. In this paper, we present preliminary results of a solar telescope built to feed full-disk sunlight into the HARPS-N spectrograph, which is in turn calibrated with anmore » astro-comb. This setup enables long-term observation of the Sun as a star with state-of-the-art sensitivity to RV changes. Over seven days of observing in 2014, we show an average 50 cm s{sup −1} RV rms over a few hours of observation. After correcting observed radial velocities for spot and plage perturbations using full-disk photometry of the Sun, we lower by a factor of two the weekly RV rms to 60 cm s{sup −1}. The solar telescope is now entering routine operation, and will observe the Sun every clear day for several hours. We will use these radial velocities combined with data from solar satellites to improve our understanding of stellar noise and develop optimal correction methods. If successful, these new methods should enable the detection of Venus over the next two to three years, thus demonstrating the possibility of detecting Earth-twins around other solar-like stars using the RV technique.« less

  20. Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1991-01-01

    The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  1. Preliminary Results From Observing The Fast Stardust Sample Return Capsule Entry In Earth's Atmosphere On January 15, 2006.

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.

    2006-08-01

    In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.

  2. Science Writers' Guide to TERRA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The launch of NASA's Terra spacecraft marks a new era of comprehensive monitoring of the Earth's atmosphere, oceans, and continents from a single space-based platform. Data from the five Terra instruments will create continuous, long-term records of the state of the land, oceans, and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. The science objectives of NASAs Earth Observing System (EOS) program are to provide global observations and scientific understanding of land cover change and global productivity, climate variability and change, natural hazards, and atmospheric ozone. Observations by the Terra instruments will: provide the first global and seasonal measurements of the Earth system, including such critical functions as biological productivity of the land and oceans, snow and ice, surface temperature, clouds, water vapor, and land cover; improve our ability to detect human impacts on the Earth system and climate, identify the "fingerprint" of human activity on climate, and predict climate change by using the new global observations in climate models; help develop technologies for disaster prediction, characterization, and risk reduction from wildfires, volcanoes, floods, and droughts, and start long-term monitoring of global climate change and environmental change.

  3. Report of the panel on the land surface: Process of change, section 5

    NASA Technical Reports Server (NTRS)

    Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.

    1991-01-01

    The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.

  4. The NASA Earth Science Flight Program: an update

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some examples are the NASA-ISRO Synthetic Aperture Radar (NISAR), Surface Water and Ocean Topography (SWOT), ICESat-2, SAGE III on ISS, Gravity Recovery and Climate Experiment Follow On (GRACE FO), Tropospheric Emissions: Monitoring of Pollution (TEMPO), Cyclone Global Navigation Satellite System (CYGNSS), ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), and Global Ecosystem Dynamics Investigation (GEDI) Lidar missions. An overview of plans and current status will be presented.

  5. Modeling Lunar Borehole Temperature in order to Reconstruct Historical Total Solar Irradiance and Estimate Surface Temperature in Permanently Shadowed Regions

    NASA Astrophysics Data System (ADS)

    Wen, G.; Cahalan, R. F.; Miyahara, H.; Ohmura, A.

    2007-12-01

    The Moon is an ideal place to reconstruct historical total solar irradiance (TSI). With undisturbed lunar surface albedo and the very low thermal diffusivity of lunar regolith, changes in solar input lead to changes in lunar surface temperature that diffuse downward to be recorded in the temperature profile in the near-surface layer. Using regolith thermal properties from Apollo, we model the heat transfer in the regolith layer, and compare modeled surface temperature to Apollo observations to check model performance. Using as alternative input scenarios two reconstructed TSI time series from 1610 to 2000 (Lean, 2000; Wang, Lean, and Sheeley 2005), we conclude that the two scenarios can be distinguished by detectable differences in regolith temperature, with the peak difference of about 10 mK occuring at a depth of about 10 m (Miyahara et al., 2007). The possibility that water ice exists in permanently shadowed areas near the lunar poles (Nozette et al., 1997; Spudis et al, 1998), makes it of interest to estimate surface temperature in such dark regions. "Turning off" the Sun in our time dependent model, we found it would take several hundred years for the surface temperature to drop from ~~100K immediately after sunset down to a nearly constant equilibrium temperature of about 24~~38 K, with the range determined by the range of possible input from Earth, from 0 W/m2 without Earth visible, up to about 0.1 W/m2 at maximum Earth phase. A simple equilibrium model (e.g., Huang 2007) is inappropriate to relate the Apollo-observed nighttime temperature to Earth's radiation budget, given the long multi- centennial time scale needed for equilibration of the lunar surface layer after sunset. Although our results provide the key mechanisms for reconstructing historical TSI, further research is required to account for topography of lunar surfaces, and new measurements of regolith thermal properties will also be needed once a new base of operations is established. References Huang, S., (2007), Surface Temperatures at the Nearside of the Moon as a Record of the Radiation Budget of Earth's Climate System, Advances in Space Research, doi:10.1016/j.asr.2007.04.093. Lean, J., Geophys. Res. Lett., (2000), 27(16), 2425-2428. Miyahara, H., G. Wen, R. F. Cahalan, and A. Ohmura, (2007), Deriving Historical Total Solar Irradiance from Lunar Borehole Temperatures, submitted to Geophy. Res. Lett. Nozette, S., E. M. Shoemaker, P. D. Spudis, and C. L. Lichtenberg, The possibility of ice on the Moon, Science, 278, 144-145, 1997. Spudis, P.D., T. Cook, M. Robinson, B. Bussey, and B. Fessler, Topography of the southe polar region from Clementine stereo imaging, New views of the Moon, Integrated remotely sensed, geophysical, and sample datasets, Lunar Planet. Inst., [CD-ROM], abstract 6010, 1998. Wang, Y. M., J. L. Lean and N. R. Sheeley (2005), Astrophys. J., 625, 522-538.

  6. Evaluation and Improvement of Earth Radiation Budget Data Sets

    NASA Technical Reports Server (NTRS)

    Haeffelin, Martial P. A.

    2001-01-01

    The tasks performed during this grant are as follows: (1) Advanced scan patterns for enhanced spatial and angular sampling of ground targets; (2) Inter-calibration of polar orbiter in low Earth orbits (LEO) and geostationary (GEO) broadband radiance measurements; (3) Synergism between CERES on TRMM and Terra; (4) Improved surface solar irradiance measurements; (5) SW flux observations from Ultra Long Duration Balloons at 35 km altitude; (6) Nighttime cloud property retrieval algorithm; (7) Retrievals of overlapped and mixed-phase clouds.

  7. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  8. City Lights of South America’s Atlantic Coast

    NASA Image and Video Library

    2017-12-08

    This image of part of the Atlantic coast of South America was acquired by the Suomi NPP satellite on the night of July 20, 2012. The image was made possible by the “day-night band” of the Visible Infrared Imaging Radiometer Suite (VIIRS), which detects light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim signals such as city lights, gas flares, auroras, wildfires, and reflected moonlight. “Nothing tells us more about the spread of humans across the Earth than city lights,” says Chris Elvidge, who leads the Earth Observation Group at NOAA’s National Geophysical Data Center. Named for satellite meteorology pioneer Verner Suomi, NPP flies over any given point on Earth's surface twice each day at roughly 1:30 a.m. and p.m. The polar-orbiting satellite flies 824 kilometers (512 miles) above the surface, sending its data once per orbit to a ground station in Svalbard, Norway, and continuously to local direct broadcast users distributed around the world. Suomi NPP is managed by NASA with operational support from NOAA and its Joint Polar Satellite System, which manages the satellite's ground system. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using VIIRS Day-Night Band data from the Suomi National Polar-orbiting Partnership. Suomi NPP is the result of a partnership between NASA, the National Oceanic and Atmospheric Administration, and the Department of Defense. Caption by Mike Carlowicz. Instrument: Suomi NPP - VIIRS Credit: NASA Earth Observatory Click here to view all of the Earth at Night 2012 images Click here to read more about this image NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Region Spherical Harmonic Magnetic Modeling from Near-Surface and Satellite-Altitude Anomlaies

    NASA Technical Reports Server (NTRS)

    Kim, Hyung Rae; von Frese, Ralph R. B.; Taylor, Patrick T.

    2013-01-01

    The compiled near-surface data and satellite crustal magnetic measured data are modeled with a regionally concentrated spherical harmonic presentation technique over Australia and Antarctica. Global crustal magnetic anomaly studies have used a spherical harmonic analysis to represent the Earth's magnetic crustal field. This global approach, however is best applied where the data are uniformly distributed over the entire Earth. Satellite observations generally meet this requirement, but unequally distributed data cannot be easily adapted in global modeling. Even for the satellite observations, due to the errors spread over the globe, data smoothing is inevitable in the global spherical harmonic presentations. In addition, global high-resolution modeling requires a great number of global spherical harmonic coefficients for the regional presentation of crustal magnetic anomalies, whereas a lesser number of localized spherical coefficients will satisfy. We compared methods in both global and regional approaches and for a case where the errors were propagated outside the region of interest. For observations from the upcoming Swarm constellation, the regional modeling will allow the production a lesser number of spherical coefficients that are relevant to the region of interest

  10. The Results of Complex Research of GSS "SBIRS-Geo 2" Behavior in the Orbit

    NASA Astrophysics Data System (ADS)

    Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Karpenko, G. F.; Motrunich, I. I.

    2017-04-01

    The new generation of geosynchronous satellites SBIRS of US Air Force early warning system series (Satellite Early Warning System) replaced the previous DSP-satellite series (Defense Support Program). Currently from the territory of Ukraine, several GSS of DSP series and one "SBIRS-Geo 2" are available to observation. During two years of observations, we have received and analyzed for two satellites more than 30 light curves in B, V, R photometric system. As a result of complex research, we propose a model of "SBIRS-Geo" 2 orbital behavior compared with the same one of the DSP-satellite. To control the entire surface of the Earth with 15-16 sec interval, including the polar regions, 4 SBIRS satellites located every 90 deg. along the equator are enough in GEO orbit. Since DSP-satellites provide the coverage of the Earth's surface to 83 deg. latitudes with a period of 50 sec, DSP-satellites should be 8. All the conclusions were made based on an analysis of photometric and coordinate observations using the simulation of the dynamics of their orbital behavior.

  11. Near-Earth Asteroid Physical Observations: 1993-1995

    NASA Astrophysics Data System (ADS)

    Skiff, B. A.; Buie, M. W.; Bowell, E.

    1996-09-01

    In September 1993, we initiated a regular program of photometric observations of Near-Earth objects. Since that time we have been allocated 5-7 nights per month at the 42'' Hall telescope at Anderson Mesa. There are three goals of our observing program for each asteroid: (1) to obtain an accurate rotation period and characterization of the lightcurve, (2) to obtain the surface color, and (3) to measure the photometric parameters, H and G. All of the lightcurve observations are made in Kron-Cousins R and we always obtain a V-R color. Limited ECAS colors are also obtained when the objects are bright enough. We have secured periods for 9 asteroids, 1864 Daedalus, 1866 Sisyphus, 3200 Phaethon, 4954 Eric, 5693 (1993 EA), 5836 (1993 MF), 6489 (1991 JX), 1993 QP, and 1993 WD. Some of these periods are a confimation of an earlier result but most are new. We obtained colors for all these objects as well as four additional asteroids, 5407 (1992 AX), 1993 UC, 1993 VW, and 1994 LW. We have additional (as yet unreduced) observations of 2062 Aten, 2212 Hephaistos, 3752 Camillo, 5143 Heracles, 5863 (1983 RB), 6053 (1993 BW3), 7025 (1993 QA), 7092 (1992 LC), 1989 VA, 1992 TC, 1994 RC, and 1995 YA3. The fastest rotation period we find is 2.402 hours for 1866 Sisyphus and the slowest is 93QP at ~ 24 hours. The colors for these objects range from V-R=0.34 for 3200 Phaethon to V-R=0.49 for 1866 Sisyphus and 4954 Eric. Most colors fall near V-R=0.43. These observations should help to provide a more complete understanding of the surface properties and rotational states of the Near-Earth asteroids. This work was supported by NASA Grant NAGW-1470.

  12. Status and Plans for Reanalysis at NASA/GMAO

    NASA Technical Reports Server (NTRS)

    Gelaro, Ron

    2017-01-01

    Reanalysis plays a critical role in GMAOs goal to enhance NASA's program of Earth observations, providing vital data sets for climate research and the development of future missions. As the breadth of NASAs observations expands to include multiple components of the Earth system, so does the need to assimilate observations from currently uncoupled components of the system in a more physically consistent manner. GMAOs most recent reanalysis of the satellite era, MERRA-2, has completed the period 1980-present, and is now running as a continuing global climate analysis with two- to three-week latency. MERRA-2 assimilates meteorological and aerosol observations as a weakly coupled assimilation system as a first step toward GMAOs longer term goal of developing an integrated Earth system analysis (IESA) capability that will couple assimilation systems for the atmosphere, ocean, land and chemistry. The GMAO strategy is to progress incrementally toward an IESA through an evolving combination of coupled systems and offline component reanalyses driven by, for example, MERRA-2 atmospheric forcing. Most recently, the GMAO has implemented a weakly coupled assimilation scheme for analyzing ocean skin temperature within the existing atmospheric analysis. The scheme uses background fields from a near-surface ocean diurnal layer model to assimilate surface-sensitive radiances plus in-situ observations along with all other observations in the atmospheric assimilation system. In addition, MERRA-2-driven simulations of the ocean (plus sea ice) and atmospheric chemistry (for the EOS period) are currently underway, as is the development of a coupled atmosphere-ocean assimilation system. This talk will describe the status of these ongoing efforts and the planned steps toward an IESA capability for climate research.

  13. Spaceborne imaging radar - Geologic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1980-01-01

    Synoptic, large-area radar images of the earth's land and ocean surface, obtained from the Seasat orbiting spacecraft, show the potential for geologic mapping and for monitoring of ocean surface patterns. Structural and topographic features such as lineaments, anticlines, folds and domes, drainage patterns, stratification, and roughness units can be mapped. Ocean surface waves, internal waves, current boundaries, and large-scale eddies have been observed in numerous images taken by the Seasat imaging radar. This article gives an illustrated overview of these applications.

  14. Worldwide complete spherical Bouguer and isostatic anomaly maps

    NASA Astrophysics Data System (ADS)

    Bonvalot, S.; Balmino, G.; Briais, A.; Peyrefitte, A.; Vales, N.; Biancale, R.; Gabalda, G.; Reinquin, F.

    2011-12-01

    We present here a set of digital maps of the Earth's gravity anomalies (surface "free air", Bouguer and isostatic), computed at Bureau Gravimetric International (BGI) as a contribution to the Global Geodetic Observing Systems (GGOS) and to the global geophysical maps published by the Commission for the Geological Map of the World (CGMW). The free air and Bouguer anomaly concept is extensively used in geophysical interpretation to investigate the density distributions in the Earth's interior. Complete Bouguer anomalies (including terrain effects) are usually computed at regional scales by integrating the gravity attraction of topography elements over and beyond a given area (under planar or spherical approximations). Here, we developed and applied a worldwide spherical approach aimed to provide a set of homogeneous and high resolution gravity anomaly maps and grids computed at the Earth's surface, taking into account a realistic Earth model and reconciling geophysical and geodetic definitions of gravity anomalies. This first version (1.0) has been computed by spherical harmonics analysis / synthesis of the Earth's topography-bathymetry up to degree 10800. The detailed theory of the spherical harmonics approach is given in Balmino et al., (Journal of Geodesy, submitted). The Bouguer and terrain corrections have thus been computed in spherical geometry at 1'x1' resolution using the ETOPO1 topography/bathymetry, ice surface and bedrock models from the NOAA (National Oceanic and Atmospheric Administration) and taking into account precise characteristics (boundaries and densities) of major lakes, inner seas, polar caps and of land areas below sea level. Isostatic corrections have been computed according to the Airy Heiskanen model in spherical geometry for a constant depth of compensation of 30km. The gravity information given here is provided by the Earth Geopotential Model (EGM2008), developed at degree 2160 by the National Geospatial Intelligence Agency (NGA) (Pavlis et al., 2008), which represents the best up-to-date global gravity model (including surface gravity measurements from land, marine and airborne surveys as well as gravity and altimetry satellite measurements). The surface gravity anomaly (free air) is computed at the Earth's surface in the context of Molodensky theory and includes corrections from the mass of the atmosphere. The way gravity anomalies are computed on a worldwide basis slightly differs from the classical usage, but meets modern concerns which tend to take the real Earth into account. The resulting anomaly maps and grids will be distributed for scientific and education purposes by the Commission for the Geological Map of the World (CGMW) with support of UNESCO and other institutions. Upgraded versions might be done as soon as new global gravity model is available (including satellite GOCE and new surface measurements: ground, airborne). Visit / contact BGI (http://bgi.omp.obs-mip.fr) and CCMW (http://ccgm.free.fr) for more information.

  15. Influence of Agricultural Practice on Surface Temperature

    NASA Astrophysics Data System (ADS)

    Czajkowski, K.; Ault, T.; Hayase, R.; Benko, T.

    2006-12-01

    Changes in land uses/covers can have a significant effect on the temperature of the Earth's surface. Agricultural fields exhibit a significant change in land cover within a single year and from year to year as different crops are planted. These changes in agricultural practices including tillage practice and crop type influence the energy budget as reflected in differences in surface temperature. In this project, Landsat 5 and 7 imagery were used to investigate the influence of crop type and tillage practice on surface temperature in Iowa and NW Ohio. In particular, the three crop rotation of corn, soybeans and wheat, as well as no-till, conservation tillage and tradition tillage methods, were investigated. Crop type and conservation tillage practices were identified using supervised classification. Student surface temperature observations from the GLOBE program were used to correct for the effects of the atmosphere for some of the satellite thermal observations. Students took surface temperature observations in field sites near there schools using hand- held infrared thermometers.

  16. Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions

    NASA Technical Reports Server (NTRS)

    Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.

    2011-01-01

    The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.

  17. Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes

    NASA Astrophysics Data System (ADS)

    Bordbar, Mohammad Hadi; Martin, Thomas; Latif, Mojib; Park, Wonsun

    2017-05-01

    While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.Plain Language SummaryWhile the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds. Here we show that climate models simulate a high level of internal variability, so that the recent changes in the tropical Pacific could still be due to natural processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EOSTr..94R.512S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EOSTr..94R.512S"><span>Interpreting the strongest deep earthquake ever observed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2013-12-01</p> <p>Massive earthquakes that strike deep within the Earth may be more efficient at dissipating pent-up energy than similar quakes near the surface, according to new research by Wei et al. The authors analyzed the rupture of the most powerful deep earthquake ever recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.4833P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.4833P"><span>Measuring the greenhouse effect and radiative forcing through the atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel</p> <p>2013-04-01</p> <p>In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990071202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990071202"><span>Comparison of Continuous-Wave CO2 Lidar Calibration by use of Earth-Surface Targets in Laboratory and Airborne Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jarzembski, Maurice A.; Srivastava, Vandana</p> <p>1998-01-01</p> <p>Backscatter of several Earth surfaces was characterized in the laboratory as a function of incidence angle with a focused continuous-wave 9.1 micro meter CO2 Doppler lidar for use as possible calibration targets. Some targets showed negligible angular dependence, while others showed a slight increase with decreasing angle. The Earth-surface signal measured over the complex Californian terrain during a 1995 NASA airborne mission compared well with laboratory data. Distributions of the Earth's surface signal shows that the lidar efficiency can be estimated with a fair degree of accuracy, preferably with uniform Earth-surface targets during flight for airborne or space-based lidar.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020090258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020090258"><span>The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atlas, Robert; Bloom, Stephen; Otterman, Joseph</p> <p>2000-01-01</p> <p>Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015spre.conf..172S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015spre.conf..172S"><span>Photometrical research geostationary satellite "SBIRS GEO-2"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sukhov, P. P.; Epishev, V. P; Sukhov, K. P; Kudak, V. I.</p> <p></p> <p>The multicolor photometrical observations GSS "Sbirs Geo-2" were carried in B,V,R filters out during the autumn equinox 2014 and spring 2015 y. Periodic appearance of many light curves and dips of mirror reflections suggests that the GSS was not in orbit in a static position, predetermined three-axis orientation and in dynamic motion. On the basis of computer modeling suggests the following dynamics GSS "Sbirs Geo-2" in orbit. Helically scanning the visible Earth's surface infrared satellite sensors come with period P1 = 15.66 sec. and the rocking of the GSS about the direction of the motion vector of the satellite in orbit with P2 = 62.64 sec., most likely with the purpose to survey the greatest possible portion of the earth's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913407W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913407W"><span>Inversion of the Earth spherical albedo from radiation-pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri</p> <p>2017-04-01</p> <p>We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.P44A..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.P44A..01T"><span>Exploring the Surface of Titan with Cassini-Huygens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turtle, E. P.; Barnes, J.; Buratti, B. J.; Collins, G.; Fussner, S.; Lopes, R.; Lorenz, R. D.; Lunine, J. I.; McCord, T. B.; McEwen, A. S.; Nelson, R.; Perry, J.; Porco, C. C.; Soderblom, L.; Sotin, C.; Wall, S. D.</p> <p>2005-12-01</p> <p>Over the past year, the Cassini-Huygens mission has returned a wealth of data about the surface of Saturn's satellite Titan. Cassini's Imaging Science Subsystem (ISS), RADAR, and Visual and Infrared Mapping Spectrometer (VIMS), and Huygens' Descent Imaging Spectral Radiometer (DISR) have revealed an intriguing surface that is at once familiar and alien. Although water-ice and liquid hydrocarbons play the roles that rock and water play on Earth, the surface appears to have been worked by a wide variety of processes resulting in a seemingly Earth-like balance of fluvial, aeolian, and volcanic features, with relatively few impact craters. There seem to be at least two classes of surface material: dark areas (at visible-IR wavelengths) that are spectrally consistent with contaminated water ice, and brighter areas of unknown composition which show greater variations. The expected bodies of liquids have yet to be definitively identified; however, circumstantial evidence for liquids having acted upon the surface in Titan's past is abundant, primarily in the form of channels, and possible ponds or lakes, which have been observed by multiple instruments. Other features suggest that wind redistributes some surface materials, most likely the detritus of the complex atmospheric chemistry, creating diffuse IR-bright deposits and long, narrow, radar-dark (2.2-cm) stripes, all of which trend generally east-west. Only two impact structures have been identified to date, although several other suspiciously circular features have been documented. A variety of the morphologies observed bear strong resemblances to volcanic structures. A number of other features remain mysterious and further co-analysis of these data sets, as well as the anticipated acquisition of more data, will be needed to fully understand the nature of Titan's surface, the albedo variations observed at different wavelengths, and the processes that have acted upon it (and may continue to). In addition to the Huygens descent, the Cassini orbiter has observed Titan on six close passes to date, and two more are planned for Fall 2005 which will increase both the spatial coverage, at various wavelengths, and the time base over which observations have been made as northern-hemisphere spring approaches. We will present observations of Titan's surface acquired by the complementary suite of instruments on board Cassini-Huygens, the combination of which is proving essential to interpreting Titan's geology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.7385B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.7385B"><span>Explanation of observable secular variations of gravity and alternative methods of determination of drift of the center of mass of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barkin, Yury</p> <p>2010-05-01</p> <p>The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be conditionally corresponded to the geocenter of the Earth approximately determined by position of stations of satellite observations, as the center of certain mantle systems of coordinates Oxyz. For an explanation of such significant drift of the center of mass of the Earth the mechanism of the unidirectional displacement of the core of the Earth (and its center of mass) relatively to a viscoelastic mantle [1, 2] has been offered. The next years attempts of determination of velocity of secular drift of the center of mass in the mantle reference frame by methods of a space geodesy on the basis of precision satellite observations were repeatedly undertaken. In our work [3] for determination of a trend of the center of mass the data of the International Service of Rotation of the Earth (IERS) for satellite observations of system DORIS have been used. For components of velocity of drift in geocentric Greenwich system of coordinates for period 1999-2007 estimations have been obtained: on coordinate x) -1.46 mm/yr, y) 0.79 mm/yr and z) 5.29 mm/yr (errors of the specified estimations make 5-10 %). The velocity of trend of the center of mass of the Earth and its direction are characterized by values: 5.54 mm/yr; latitude 72°6 N and a longitude 118°4 E. The direction of displacement of the center of mass will well be coordinated with a direction predicted earlier theoretically [2]: latitude 70° N and a longitude 104° E. We shall emphasize, that observable redistributions of superficial masses of the Earth explain only small part of observable displacement of the center of mass. It testifies in favour of a reality of secular relative displacement of the core and the mantle of the Earth. 2 Secular drift of the core to the North and variations of a gravity on the Earth surface. The displaced core of the Earth is characterized by the large superfluous mass approximately in 16.7 masses of the Moon. The superfluous mass is ditermined by contrast values of average densities of the core and the mantle and makes 19.32 % of mass of full the Earth. At displacement of the core relatively to the viscous-elastic mantle its superfluous mass causes observable drift of the center of mass, and also leads to changes of a gravity on the surface of the planet. Except for it the gravitational attraction of a displaced core causes deformations of all layers of the mantle, including a superficial layer. The deformed mantle produses some additional gravitational potential which gives the additional contribution to value of a gravity. Thus, noted factors lead to a secular variation of a gravity which is described by the simple formula [2]: dot g = 2gμmc-(1- h-2- 0.5k-2)ρdot-sin?, μmc = 0.1932m ⊙, g = 9.82022 m -s2 m ⊙ r⊙ (1) Here μmc = 0.1932m⊙ is a superflous mass of the Earth core in the masses of the Earth m⊙. g is an acceleration of free falling. k-2 and h-2 are Love numbers of the order (-2). ρdot is a velocity of the secular drift of the center of mass of the core relatively to the center of mass of the mantle. ?is an angle between dirtection to the pole P (in a direction to which the core of the Earth or its center of mass drifts), and direction to gravimetric station. For rough estimates of gravimetric effects as pole P the North Pole of the Earth has been accepted. Thus ? = ?-2 - φis a co-latitude. At more exact description of the core drift (or the center of mass drift) an angle? is determined by formula: cos? = cosφP cosφcos(λP - λ) + sinφP sinφ, where φP and λP is a latitude and longitude of pole P; φ and λ is a latitude and longitude of station. The Love numbers of the order (-2) in first have been evaluated in the paper [4] and have small values: k-2=-0.005004 and h-2=0.0062154. Approximately we can put ρdot m⊙ = μmcṙC, where ṙC is a velocity of the drift of the center of mass of the Earth. Then, neglecting small effects, for a variation of gravity (1) we obtain a following expression: ? r = 2ṙCg cos?-r⊙. Leaning on results of works [2], [3], we shall accept the following values of parameters of drift of the center of mass: ṙC=5.54 mm/yr, φP=70°0 N, λP=104°3 E. On the other hand a displacement of the center of mass of the Earth leads to effect of slow change of heights of gravimetric station: ḣ = -?dotC cos? = -5.54 × cos? mm/yr. Errors in determination of the specified characteristics in the given work we shall neglect. Besides the gravitational attraction of a displaced core leads also to effect of increase of horizontal component of gravitational force of an attraction of the Earth on its surface directed to the North along the corresponding meridian with pole P. For any point of a surface of the Earth this component of force is determined by the formula ?φ = ṙCg sin?-r⊙ and has positive values. And the maximal values ?φ are reached on equator, which plane is orthogonal to axes of drift of the core OP. Thus, final working formulas for studying of secular variations of components of force of a gravitational attraction of the Earth and for a variation of the heights caused by a drift of the center of mass of the Earth become: ?r = 1.74cos?-r⊙ ?Gal/yr, ?φ = 0.87sin?-r⊙ ?Gal/yr, ḣ = -5.54cos?-r⊙ mm/yr. Calculated values of mentioned gravimetric characteristics (2) for the wide list of gravimetry stations are resulted in work [5] and used in the given work. 3 Explanation of observable secular variations of a gravity and heights on gravimetric stations. We have been analysed observed variations of a gravity and heights available and accessible to us, namely their secular changes, for 8 known gravimetry stations. The periods of observations at mentioned stations make the order of 5-10 years, i.e. are not greater, but nevertheless the obtained results unequivocally testify in favour of that the basic contribution to secular variations of a gravity gives the drifting core of the Earth (by means of direct gravitational influence and due to a contribution to corresponding variations of heights). In the given work we did not consider other factors influencing on gravimetric measurements (superficial redistributions of fluid masses, variations of coefficients of the second and higher harmonics of a geopotential, etc.). As an example here we shall analyse secular variations of a gravity and heights at Ny-Alesund station (geographical coordinates: 78°93 N, 11°87 E, ? =23°16). Linear trends of a gravity and height observable at this station make -2.5±0.9 ?Gal/yr and + (6.9±0.9) mm/yr, accordingly, during 1998-2002 (Sato et.al., 2006). On our model a slow closing of the core to the Ny-Alesund station causes a positive variation of a gravity in 1.60 ?Gal/yr and a negative variation of height of station in -5.09 mm/yr [5]. These data testify a deformation of a surface of the Earth in area of station with a velocity +11.99±0.9 mm/yr owing to which the gravity tests a negative variation -3.74±0.28 ?Gal/yr. Putting effects of a variation of a gravity because of displacement of the core and from deformation of a surface, we obtain negative value for secular trend of gravity in - (2.14±0.28) ?Gal/yr, that within the limits of errors it will be coordinated with observable value - (2.5±0.9) ?Gal/yr. Similar results we have obtained for 7 another's gravimetric stations. All results are summarized in the table 1. Here we have used known data about observable secular trends of gravity and GPS heights at considered here stations of the following authors: Ny-Alesund (Sato et al., 2006); Churchill (Larson et al., 2000); Medicine (Zerbini et al., 2001); Syowa (Fukuda et.al., 2007); Strastburg (Almavict et. al., 2004); Membach (Francis et al., 2004); Wuhan (Xu et al., 2008); Metsahovi (Gitlein et. al., 2009). Table 1. Theoretical and observable values of secular variations of a gravity. Stations Core attractionSurface deformation Theory Observations Ny-Alesund+1.60 ?Gal/yr -(3.77±0.09) ?Gal/yr -(2.17±0.03) ?Gal/yr -(2.5±0.9) ?Gal/yr Churchill +1.11 ?Gal/yr -(3.38±0.28) ?Gal/yr -(2.22±0.28) ?Gal/yr -(2.13±0.23) ?Gal/yr Medicina +1.13 ?Gal/yr +(1.07±0.20) ?Gal/yr+(2.20±0.20) ?Gal/yr+(1.90±0.20) ?Gal/yr Syowa -1.44 ?Gal/yr +(0.63±0.08) ?Gal/yr-(0.81±0.08) ?Gal/yr -0.56 ?Gal/yr Strastburg +1.18 ?Gal/yr +(0.71±0.02) ?Gal/yr+(1.89±0.02) ?Gal/yr+(1.90±0.20) ?Gal/yr Membach +1.21 ?Gal/yr -(1.98±0.16) ?Gal/yr -(0.77±0.16) ?Gal/yr -(0.6±0.1) ?Gal/yr Wuhan +1.34 ?Gal/yr -(0.17±0.05) ?Gal/yr +(1.17±0.05) ?Gal/yr+(1.39±0.02) ?Gal/yr Metsahovi +1.47 ?Gal/yr -(2.82±0.06) ?Gal/yr +(1.35±0.06) ?Gal/yr-(0.88±0.52) ?Gal/yr</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850..121M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850..121M"><span>Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.</p> <p>2017-12-01</p> <p>Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820011744','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820011744"><span>Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hermance, J. F. (Principal Investigator)</p> <p>1981-01-01</p> <p>An algorithm was developed to address the problem of electromagnetic coupling of ionospheric current systems to both a homogeneous Earth having finite conductivity, and to an Earth having gross lateral variations in its conductivity structure, e.g., the ocean-land interface. Typical results from the model simulation for ionospheric currents flowing parallel to a representative geologic discontinuity are shown. Although the total magnetic field component at the satellite altitude is an order of magnitude smaller than at the Earth's surface (because of cancellation effects from the source current), the anomalous behavior of the satellite observations as the vehicle passes over the geologic contact is relatively more important pronounced. The results discriminate among gross lithospheric structures because of difference in electrical conductivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167741','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167741"><span>Chromium on Eros: Further Evidence of Ordinary Chondrite Composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Foley, C. N.; Nittler, L. R.; Brown, M. R. M.; McCoy, T. J.; Lim, L. F.</p> <p>2005-01-01</p> <p>The surface major element composition of the near-earth asteroid 433-Eros has been determined by x-ray fluorescence spectroscopy (XRS) on the NEAR-Shoemaker spacecraft [1]. The abundances of Mg, Al, Si, Ca and Fe match those of ordinary chondrites [1]. However, the observation that Eros appears to have a sulfur abundance at least a factor of two lower than ordinary chondrites, suggests either sulfur loss from the surface of Eros by impact and/or radiation processes (space weathering) or that its surface is comprised of a somewhat more differentiated type of material than an ordinary chondrite [1]. A definitive match for an ordinary chondrite parent body has very rarely been made, despite the conundrum that ordinary chondrites are the most prevalent type of meteorite found on Earth. Furthermore, Eros is classified as an S(IV) type asteroid [2] and being an S, it is the second most prevalent type of asteroid in the asteroid belt [3].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920069853&hterms=Net+Present+Value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DNet%2BPresent%2BValue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920069853&hterms=Net+Present+Value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DNet%2BPresent%2BValue"><span>A technique for global monitoring of net solar irradiance at the ocean surface. I - Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frouin, Robert; Chertock, Beth</p> <p>1992-01-01</p> <p>An accurate long-term (84-month) climatology of net surface solar irradiance over the global oceans from Nimbus-7 earth radiation budget (ERB) wide-field-of-view planetary-albedo data is generated via an algorithm based on radiative transfer theory. Net surface solar irradiance is computed as the difference between the top-of-atmosphere incident solar irradiance (known) and the sum of the solar irradiance reflected back to space by the earth-atmosphere system (observed) and the solar irradiance absorbed by atmospheric constituents (modeled). It is shown that the effects of clouds and clear-atmosphere constituents can be decoupled on a monthly time scale, which makes it possible to directly apply the algorithm with monthly averages of ERB planetary-albedo data. Compared theoretically with the algorithm of Gautier et al. (1980), the present algorithm yields higher solar irradiance values in clear and thin cloud conditions and lower values in thick cloud conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Metro..51S.314J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Metro..51S.314J"><span>Gonioreflectometric properties of metal surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaanson, P.; Manoocheri, F.; Mäntynen, H.; Gergely, M.; Widlowski, J.-L.; Ikonen, E.</p> <p>2014-12-01</p> <p>Angularly resolved measurements of scattered light from surfaces can provide useful information in various fields of research and industry, such as computer graphics, satellite based Earth observation etc. In practice, empirical or physics-based models are needed to interpolate the measurement results, because a thorough characterization of the surfaces under all relevant conditions may not be feasible. In this work, plain and anodized metal samples were prepared and measured optically for bidirectional reflectance distribution function (BRDF) and mechanically for surface roughness. Two models for BRDF (Torrance-Sparrow model and a polarimetric BRDF model) were fitted to the measured values. A better fit was obtained for plain metal surfaces than for anodized surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5913L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5913L"><span>Short wavelength abedo, contrasts and micro-organisms on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Limaye, Sanjay; Słowik, Grzegorgz; Ansari, Arif; Smith, David; Mogul, Rakesh; Vaishampayan, Parag</p> <p>2017-04-01</p> <p>The decrease in the amount of sunlight reflected by Venus at wavelengths below 500 nm, and the presence of contrast features prominent at ultraviolet wavelengths (270 - 410 nm) are two properties of the Venus clouds that despite numerous attempts, remain unexplained. Additional uncertainties include why the contrasts exist at all, and why the substance responsible for the contrasts does not appear well mixed. Nearly a century after the ultraviolet contrasts were discovered using Earth-based photographs, the substance or mechanisms responsible for the lower albedo and contrast patterns are still unknown. Many physical and chemical explanations have been proposed, but none of the hypotheses explain decrease of albedo below 500 nm, the spectral dependence of contrasts, and plausible mechanisms for presence or transport of those substances - transport from surface if the absorber is a condensation nuclei or transformations if in dissolved form due to photochemistry and the observed rapid changes in the contrasts. Considering the ultraviolet absorption shown by some terrestrial microorganisms, we speculate whether airborne bacteria (indigenous or introduced through meteoritic impact debris transported from Earth) could explain the mysterious contrast or the absorption cloud features on Venus. Plumes of cloud-borne aeroplankton, analogous to phytoplankton in Earth's oceans which are in dense enough concentrations to be observed from space, may have evolved on Venus when the planet had liquid water on its early surface, eventually migrating to a habitable zone in the clouds 50-70 km above the inhospitably hot surface today.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009692','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009692"><span>Slope effects on shortwave radiation components and net radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walter-Shea, Elizabeth A.; Blad, Blaine L.; Hays, Cynthia J.; Mesarch, Mark A.</p> <p>1992-01-01</p> <p>The main objective of the International Satellite Land Surface Climatology Project (ISLSCP) has been stated as 'the development of techniques that may be applied to satellite observations of the radiation reflected and emitted from the Earth to yield quantitative information concerning land surface climatological conditions.' The major field study, FIFE (the First ISLSCP Field Experiment), was conducted in 1978-89 to accomplish this objective. Four intensive field campaigns (IFC's) were carried out in 1987 and one in 1989. Factors contributing to observed reflected radiation from the FIFE site must be understood before the radiation observed by satellites can be used to quantify surface processes. Analysis since our last report has focused on slope effects on incoming and outgoing shortwave radiation and net radiation from data collected in 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800014267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800014267"><span>Estimation of effective hydrologic properties of soils from observations of vegetation density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tellers, T. E.; Eagleson, P. S.</p> <p>1980-01-01</p> <p>A one-dimensional model of the annual water balance is reviewed. Improvements are made in the method of calculating the bare soil component of evaporation, and in the way surface retention is handled. A natural selection hypothesis, which specifies the equilibrium vegetation density for a given, water limited, climate soil system, is verified through comparisons with observed data. Comparison of CDF's of annual basin yield derived using these soil properties with observed CDF's provides verification of the soil-selection procedure. This method of parameterization of the land surface is useful with global circulation models, enabling them to account for both the nonlinearity in the relationship between soil moisture flux and soil moisture concentration, and the variability of soil properties from place to place over the Earth's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770051040&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770051040&hterms=Saunders&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DSaunders%252C%2BM"><span>Surface of Venus - Evidence of diverse landforms from radar observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malin, M. C.; Saunders, R. S.</p> <p>1977-01-01</p> <p>Radar images seem to indicate that some regions of Venus have remained little altered since a period of intense bombardment similar to that recorded by the many large impact craters on the moon. On the other hand, there is evidence in other regions that Venus has been a geologically active planet, forming diverse landforms, and perhaps rivaling the earth in the breadth of features portrayed on its surface</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920017856&hterms=robert+mendenhall&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drobert%2Bmendenhall','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920017856&hterms=robert+mendenhall&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drobert%2Bmendenhall"><span>Contamination of optical surfaces in Earth orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.</p> <p>1992-01-01</p> <p>Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/gip/0161/gip161.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/gip/0161/gip161.pdf"><span>Earth as art 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,</p> <p>2016-03-29</p> <p>Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820013805','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820013805"><span>Electromagnetic deep-probing (100-1000 KMS) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hermance, J. F. (Principal Investigator)</p> <p>1981-01-01</p> <p>Model simulations show that induction in a spherical Earth by distant magnetospheric sources can contribute magnetic field fluctuations at MAGSAT altitudes which are 30 to 40 percent of the external field amplitudes. When the characteristic dimensions (e.g. depth of penetration, etc) of a particular situations are small compared with the Earth's radius, the Earth can be approximated by a plane horizontal half space. In this case, electromagnetic energy is reflected with close to 100 percent efficiency from the Earth's surface. This implies that the total horizontal field is twice the source field when the source is above the satellite, but is reduced to values which are much smaller than the source field when the source is below the satellite. This latter effect tends to enhance the signature of gross electrical discontinuities in the lithosphere when observed at satellite altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830021503','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830021503"><span>Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hermance, J. F.</p> <p>1983-01-01</p> <p>The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA05551.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA05551.html"><span>Stars and Cosmic Rays Observed from Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-03-12</p> <p>In this five-minute exposure taken from the surface of Mars by NASA Spirit rover, stars appear as streaks due to the rotation of the planet, and instantaneous cosmic-ray hits appear as points of light. Spirit took the image with its panoramic camera on March 11, 2004, after waking up during the martian night for a communication session with NASA's Mars Global Surveyor orbiter. Other exposures were also taken. The images tested the capabilities of the rover for night-sky observations. Scientists will use the results to aid planning for possible future astronomical observations from Mars. The difference in Mars' rotation, compared to Earth's, gives the star trails in this image a different orientation than they would have in a comparable exposure taken from Earth. http://photojournal.jpl.nasa.gov/catalog/PIA05551</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29523302','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29523302"><span>Sleep and gravity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gonfalone, Alain A</p> <p>2018-04-01</p> <p>What is known about sleep results from years of observation at the surface of the Earth. Since a few decade man has been able to reach space, escape from the earth attraction and spend days and nights in a weightless condition. Some major physiological changes have been observed during long stays and in particular the sleep duration in space is shorter than on ground. This paper reviews a novel hypothesis proposing that sleep is partly due to gravity. Gravity is a fundamental part of our environment, but is elusive and difficult to apprehend. At the same time, all creatures on Earth undergo cycles of activity and periods of rest (although not always sleep). Careful analysis of previous research on sleep, on Earth, in space and in water, shows that gravity differs in these three situations, and sleep also varies, at least in its duration. On Earth, Rapid Eye Movement (REM) sleep is conditioned by gravity; in space, astronauts have a shorter sleep duration and this is even more striking when a test subject is immersed in water for a week. In conclusion, sleep is partly due to gravity, which acts on our body and brain during the wake period. Copyright © 2018 The Author. Published by Elsevier Ltd.. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9701B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9701B"><span>Examining Environmental Gradients with Remotely Sensed Data - the ESA GlobPermafrost project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin; Obu, Jaroslav; Nitze, Ingmar; Heim, Birgit; Haas, Antoni; Widhalm, Barbara</p> <p>2017-04-01</p> <p>Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution at various wavelengths. In addition, landscape dynamics associated with permafrost changes and geophysical variables relevant for characterizing the state of permafrost, such as land surface temperature or freeze-thaw state can be observed with space-based Earth Observation. Suitable regions to examine environmental gradients across the Arctic have been defined in a community white paper (Bartsch et al. 2014). These transects have been updated within the ESA DUE GlobPermafrost project. The ESA DUE GlobPermafrost project develops, validates and implements Earth Observation (EO) products to support research communities and international organisations in their work on better understanding permafrost characteristics and dynamics. Prototype product cases will cover different aspects of permafrost by integrating in situ measurements of subsurface properties and surface properties, Earth Observation, and modelling to provide a better understanding of permafrost today. The project will extend local process and permafrost monitoring to broader spatial domains, support permafrost distribution modelling, and help to implement permafrost landscape and feature mapping in a GIS framework. It will also complement active layer and thermal observing networks. Both lowland (latitudinal) and mountain (altitudinal) permafrost issues are addressed. The selected transects and first results will be presented. This includes identified needs from the user requirements survey, a review of existing land surface products available for the Arctic as well as prototypes of GlobPermafrost datasets, and the permafrost information system through which they can be accessed. Bartsch, Annett; Allard, Michel; Biskaborn, Boris Kolumban; Burba, George; Christiansen, Hanne H; Duguay, Claude R; Grosse, Guido; Günther, Frank; Heim, Birgit; Högström, Elin; Kääb, Andreas; Keuper, Frida; Lanckman, Jean-Pierre; Lantuit, Hugues; Lauknes, Tom Rune; Leibman, Marina O; Liu, Lin; Morgenstern, Anne; Necsoiu, Marius; Overduin, Pier Paul; Pope, Allen; Sachs, Torsten; Séjourné, Antoine; Streletskiy, Dmitry A; Strozzi, Tazio; Ullmann, Tobias; Ullrich, Matthias S; Vieira, Goncalo; Widhalm, Barbara (2014): Requirements for monitoring of permafrost in polar regions - A community white paper in response to the WMO Polar Space Task Group (PSTG), Version 4, 2014-10-09. Austrian Polar Research Institute, Vienna, Austria, 20 pp, hdl:10013/epic.45648.d001</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012036"><span>The cometary and asteroidal impactor flux at the earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weissman, Paul R.</p> <p>1988-01-01</p> <p>The cratering records on the Earth and the lunar maria provide upper limits on the total impactor flux at the Earth's orbit over the past 600 Myr and the past 3.3 Gyr, respectively. These limits can be compared with estimates of the expected cratering rate from observed comets and asteroids in Earth-crossing orbits, corrected for observational selection effects and incompleteness, and including expected temporal variations in the impactor flux. Both estimates can also be used to calculate the probability of large impacts which may result in biological extinction events on the Earth. The estimated cratering rate on the Earth for craters greater than 10 km-diameter, based on counted craters on dated surfaces is 2.2 + or - 1.1 x 10 to the minus 14th power km(-2) yr(-1) (Shoemaker et al., 1979). Using a revised mass distribution for cometary nuclei based on the results of the spacecraft flybys of Comet Halley in 1986, and other refinements in the estimate of the cometary flux in the terrestrial planets zone, it is now estimated that long-period comets account for 11 percent of the cratering on the Earth (scaled to the estimate above), and short-period comets account for 4 pct (Weissman, 1987). However, the greatest contribution is from large but infrequent, random cometary showers, accounting for 22 pct of the terrestrial cratering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS054-72-056&hterms=ships+location&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dships%2Blocation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS054-72-056&hterms=ships+location&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dships%2Blocation"><span>STS-54 Earth observation of a ship wake in the Bay of Bengal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>STS-54 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of a ship wake in the Bay of Bengal. The sun glint pattern on the ocean reveals many patterns of sea surface roughness related to currents, waves, wind roughening, and biology that and are not apparent when the ocean is viewed away from the sun's reflection. In this view of the Bay of Bengal, southeast of Madras, India, sun glint highlights convergence zones between ocean currents (bright, linear features), a eddy, and the wake of a ship. In several locations where the ship has passed areas of current shear, the ship wake is distorted, indicating the relative current direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=STS065-96-007&hterms=pearl+harbor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpearl%2Bharbor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=STS065-96-007&hterms=pearl+harbor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dpearl%2Bharbor"><span>STS-65 Earth observation of island wake at Oahu, Hawaii, taken from OV-102</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, shows Oahu, Hawaii. The island wake emerging to the lower left side of Oahu is caused by wind currents blowing from the northeast being obstructed by the northwest-southeast trending, cloud covered, Koolau mountain range. The lighter colored water indicates a more smooth surface with a slower water current that the darker, rougher, faster moving water current. Pearl Harbor is visible to the south of the Koolau Range. To the right, or east, of Pearl Harbor is the city of Honolulu. The circular, brown feature to the east of Honolulu is the dormant volcano Diamond Head.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930054395&hterms=acid+rain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dacid%2Brain','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930054395&hterms=acid+rain&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dacid%2Brain"><span>Tropospheric Emission Spectrometer for the Earth Observing System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glavich, Thomas A.; Beer, Reinhard</p> <p>1991-01-01</p> <p>A Tropospheric Emission Spectrometer (TES) for the Earth Observing System (EOS) series of polar-orbiting platforms is described. TES is aimed at studying tropospheric chemistry, in particular, the exchange of gases between the surface and the atmosphere, urban and regional pollution, acid rain precursors, sources and sinks of greenhouse gases, and the interchange of gases between the troposphere and the stratosphere. TES is a high-resolution (0.025/cm) infrared Fourier transform spectrometer operating in the passive thermal-emission mode in a very wide spectral range (600 to 4350/cm; 2.3 to 16.7 microns). TES has 32 spatial pixels in each of four optically conjugated linear detector arrays, each optimized for a different spectral region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhTea..54..404K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhTea..54..404K"><span>Einstein's Elevator in Class: A Self-Construction by Students for the Study of the Equivalence Principle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kapotis, Efstratios; Kalkanis, George</p> <p>2016-10-01</p> <p>According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him toward the opposite direction. The same holds for a person in a stationary elevator located in Earth's gravitational field. No experiment enables us to distinguish between the accelerating elevator in space and the motionless elevator near Earth's surface. Strictly speaking, when the gravitational field is non-uniform (like Earth's), the equivalence principle holds only for experiments in elevators that are small enough and that take place over a short enough period of time (Fig. 1). However, performing an experiment in an elevator in space is impractical. On the other hand, it is easy to combine both forces on the same observer, i.e., gravity and a fictitious inertial force due to acceleration. Imagine an observer in an elevator that falls freely within Earth's gravitational field. The observer experiences gravity pulling him down while it might be said that the inertial force due to gravity acceleration g pulls him up. Gravity and inertial force cancel each other, (mis)leading the observer to believe there is no gravitational field. This study outlines our implementation of a self-construction idea that we have found useful in teaching introductory physics students (undergraduate, non-majors).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A52D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A52D..01S"><span>Quantifying Atmospheric Moist Processes from Earth Observations. Really?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shepson, P. B.; Cambaliza, M. O. L.; Salmon, O. E.; Heimburger, A. M. F.; Davis, K. J.; Lauvaux, T.; McGowan, L. E.; Miles, N.; Richardson, S.; Sarmiento, D. P.; Hardesty, M.; Karion, A.; Sweeney, C.; Iraci, L. T.; Hillyard, P. W.; Podolske, J. R.; Gurney, K. R.; Patarasuk, R.; Razlivanov, I. N.; Song, Y.; O'Keeffe, D.; Turnbull, J. C.; Vimont, I.; Whetstone, J. R.; Possolo, A.; Prasad, K.; Lopez-Coto, I.</p> <p>2014-12-01</p> <p>The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A52D..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A52D..01S"><span>Quantifying Atmospheric Moist Processes from Earth Observations. Really?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephens, G. L.</p> <p>2015-12-01</p> <p>The amount of water in the Earth's atmosphere is tiny compared to all other sources of water on our planet, fresh or otherwise. However, this tiny amount of water is fundamental to most aspects of human life. The tiny amount of water that cycles from the Earth's surface, through condensation into clouds in the atmosphere returning as precipitation falling is not only natures way of delivering fresh water to land-locked human societies but it also exerts a fundamental control on our climate system producing the most important feedbacks in the system. The representation of these processes in Earth system models contain many errors that produce well now biases in the hydrological cycle. Surprisingly the parameterizations of these important processes are not well validated with observations. Part of the reason for this situation stems from the fact that process evaluation is difficult to achieve on the global scale since it has commonly been assumed that the static observations available from snap-shots of individual parameters contain little information on processes. One of the successes of the A-Train has been the development of multi-parameter analysis based on the multi-sensor data produced by the satellite constellation. This has led to new insights on how water cycles through the Earth's atmosphere. Examples of these insights will be highlighted. It will be described how the rain formation process has been observed and how this has been used to constrain this process in models, with a huge impact. How these observations are beginning to reveal insights on deep convection and examples of the use these observations applied to models will also be highlighted as will the effects of aerosol on clouds on radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP42A..01A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP42A..01A"><span>The Earth on the Other Side of Life (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amundson, R.; Ewing, S. A.; Owen, J. J.</p> <p>2010-12-01</p> <p>There are important reasons for examining the role of life on Earth surface processes, including better understanding the long term feedbacks between the geosphere and biosphere that maintain Earth habitability, and bracing for the cumulative impact of the Earth’s most invasive species (Homo sapiens) on the earth system. Coming to grips with the importance of life is simply a matter of recognizing the obvious: life mantles most of the planet’s surface and the planet’s climatic boundary conditions would be profoundly different if life on Earth had not evolved. Nearly every process on this planet is mediated in some way by biology . The most difficult aspect of deciphering the exact role of life on Earth surface processes is observationally identifying a “control experiment”- e.g. one where life does not exist. Planetary habitability is linked to the presence of liquid water. Thus, there are two regions on Earth that largely fall outside the rainfall limits of life and that have maintained nearly abiotic conditions for millions of years: the Atacama Desert of northern Chile (warm and very dry) and the Dry Valleys of Antarctica (very cold and dry). Here, we examine the Atacama Desert for the reason that it is the dry end of a continuous decline in rainfall with decreasing latitude in western South America, such that (almost imperceptibly) one eventually crosses a rainfall threshold beyond which most life ceases to exist. The consequence of soil and geomorphic studies along this rainfall gradient have revealed that several important earth surface processes vary montonically with declining rainfall up to the point where vascular plants disappear. At this point, the rates or types of key processes appear to undergo fundamental changes. Geomorphically, soil production/hillslope denudation rates vary within a window of rates over broad ranges in rainfall. However, at the biotic abiotic boundary, erosion rates decline in concert with rainfall. This pattern appears to be related to the feedbacks between soil thickness and soil production rates, and the impact of biology on both reducing surface erosion, and in enhancing the conversion of saprolite to soil. Once plants no longer exist, soil is rapidly stripped as the biological controls are removed. As aridity increases further, soils reappear on the hillslopes due to dust/salt accumulation, but the processes of both soil production and transport shift to slow abiotic mechanisms. Geochemically, N content in soils declines monotonically with rainfall up to the point that plants diappear. At that point, N cycling shifts to entirely abiotic mechanisms, allowing the accumulation of the unusal nitrate deposits that characterize this desert. While the parts of earth without life are unusually dry and/or cold, they offer unique, but also complex, perspectives into the sometimes overwhelming role that life plays on the earth surface. The true challenge to the geosciences is to rapidly acquire this knowledge in order to predict the trajectory of a changing world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4921507B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4921507B"><span>Radio Thermal Emission from Pluto and Charon during the New Horizons Encounter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bird, Michael; Linscott, Ivan; Hinson, David; Tyler, G. L.; Strobel, Darrell F.; New Horizons Science Team</p> <p>2017-10-01</p> <p>As part of the New Horizons Radio-Science Experiment REX, radio thermal emission from Pluto and Charon (wavelength: 4.2 cm) was observed during the encounter on 14 July 2015. The primary REX measurement, a determination of the atmospheric height profile from the surface up to about 100 km, was conducted during an uplink radio occultation at both ingress and egress (Hinson et al., Icarus 290, 96-111, 2017). During the interval between ingress and egress, when the Earth and the REX uplink signals were occulted by the Pluto disk, the spacecraft antenna continued to point toward Earth and thus scanned diametrically across the Pluto nightside. The average diameter of the HGA 3 dB beam was ≈1100 km at the surface during this opportunity, thereby providing crudely resolved measurements of the radio brightness temperature across Pluto. The best resolution for the REX radiometry observations occurred shortly after closest approach, when the HGA was scanned twice across Pluto. These observations will be reported elsewhere (Linscott et al., Icarus, submitted, 2017). In addition to the resolved observations, full disk brightness temperature measurements of both bodies were performed during the approach (dayside) and departure (nightside) phases of the encounter. We present the results of these observations and provide a preliminary interpretation of the measured brightness temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A44A..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A44A..03S"><span>Disentangling Greenhouse Warming and Aerosol Cooling to Reveal Earth's Transient Climate Sensitivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Storelvmo, T.</p> <p>2015-12-01</p> <p>Earth's climate sensitivity has been the subject of heated debate for decades, and recently spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of the most likely range of climate sensitivities. Here, we present an observation-based study based on the time period 1964 to 2010, which is unique in that it does not rely on global climate models (GCMs) in any way. The study uses surface observations of temperature and incoming solar radiation from approximately 1300 surface sites, along with observations of the equivalent CO2 concentration (CO2,eq) in the atmosphere, to produce a new best estimate for the transient climate sensitivity of 1.9K (95% confidence interval 1.2K - 2.7K). This is higher than other recent observation-based estimates, and is better aligned with the estimate of 1.8K and range (1.1K - 2.5K) derived from the latest generation of GCMs. The new estimate is produced by incorporating the observations in an energy balance framework, and by applying statistical methods that are standard in the field of Econometrics, but less common in climate studies. The study further suggests that about a third of the continental warming due to increasing CO2,eq was masked by aerosol cooling during the time period studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24145398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24145398"><span>Earth-viewing satellite perspectives on the Chelyabinsk meteor event.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miller, Steven D; Straka, William C; Bachmeier, A Scott; Schmit, Timothy J; Partain, Philip T; Noh, Yoo-Jeong</p> <p>2013-11-05</p> <p>Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20110015535&hterms=colors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcolors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20110015535&hterms=colors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcolors"><span>Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis</p> <p>2011-01-01</p> <p>The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020010583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020010583"><span>Resolution Enhancement of Spaceborne Radiometer Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krim, Hamid</p> <p>2001-01-01</p> <p>Our progress over the last year has been along several dimensions: 1. Exploration and understanding of Earth Observatory System (EOS) mission with available data from NASA. 2. Comprehensive review of state of the art techniques and uncovering of limitations to be investigated (e.g. computational, algorithmic ...). and 3. Preliminary development of resolution enhancement algorithms. With the advent of well-collaborated satellite microwave radiometers, it is now possible to obtain long time series of geophysical parameters that are important for studying the global hydrologic cycle and earth radiation budget. Over the world's ocean, these radiometers simultaneously measure profiles of air temperature and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface parameters such as the near surface wind speed, the sea surface temperature, and the sea ice type and concentration can be retrieved. The special sensor microwaves imager SSM/I has wide application in atmospheric remote sensing over the ocean and provide essential inputs to numerical weather-prediction models. SSM/I data has also been used for land and ice studies, including snow cover classification measurements of soil and plant moisture contents, atmospheric moisture over land, land surface temperature and mapping polar ice. The brightness temperature observed by SSM/I is function of the effective brightness temperature of the earth's surface and the emission scattering and attenuation of the atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's ocean, it will be possible to retrieve the four important geographical parameters SST, wind speed, vertically integrated water vapor, vertically integrated cloud liquid water L.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060042633&hterms=interferometry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinterferometry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060042633&hterms=interferometry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dinterferometry"><span>An examination of along-track interferometry for detecting ground moving targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott</p> <p>2005-01-01</p> <p>Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010405','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010405"><span>Comparing the Atmospheres of Mercury and the Earth's Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Morgan, Thomas H.; Killen, Rosemary M.; Hurley, Dana M.</p> <p>2012-01-01</p> <p>The exospheres of Mercury and the Earth's Moon are fundamentally similar, but the differences that do exist between them can help us to develop a better understanding of the processes at work on the two bodies that produce and remove volatiles. The major differences are derived from (1) the different compositions of the two surfaces, (2) the different particle and field em'ironments above the surface of each body (particularly the presence of intrinsic magnetic field of Mercury), and (3) the larger flux of interplanetary dust incident at the orbit of Mercury. The first difference, surface composition, is the most intractable problem, but the most challenging part of that problem, the composition of the Hermean regolith, may be at least partially addressed as the MESSENGER mission completes work over the next year. Much progress has been made with respect to exploring the second difference above--spacecraft such as Helios, Ulysses, WIND, and ACE have measured the solar wind and its composition both in Earth orbit and at distances encompassing the orbit of Mercury. While our knowledge of the solar wind is incomplete, again it is far more detailed than a simple 1/R(sup 2) law would predict. Another problem is that of the flux of charged particles to the surfaces. While Mercury's magnetosphere is the subject of current study with MESSENGER, the influx of charged particles on the Moon has gone beyond a cos (psi) picture, where psi is the solar zenith angle. We know that the influx of ions at the Moon is affected by magnetic anomalies, by craters, and by surface charging. The third external difference is the differing flux of interplanetary dust incident on the two surfaces. In this talk we will consider: (1) the species that one can compare now for these two exospheres (Na, K, and He); (2) the species that you might be able to compare with future measurements (Ca and Mg); arid (3) how intensive ground-based observations of the easiest lunar species to observe from the ground, Na and K, might help us address source processes at work on both surfaces. We will discuss current and planned modeling efforts for both the lunar and Hermean exospheres, and some current and planned observations, both ground-based and space-based.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23F..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23F..07H"><span>UV Signatures of Ices: Moons in the Solar System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendrix, A. R.; Hansen, C. J.; Retherford, K. D.; Vilas, F.</p> <p>2017-12-01</p> <p>Using Earth-orbiting telescopes such as the International Ultraviolet Explorer and the Hubble Space Telescope, significant advances have been made in the area of ultraviolet observations of solar system objects. More in-depth studies have been made using interplanetary probes such as Galileo, Cassini and Lunar Reconnaissance Orbiter (LRO). While the UV spectral range has traditionally been used to study atmospheric and auroral processes, there is much to be learned by examining solid surfaces in the UV, including surface composition, weathering processes and effects, and the generation of thin atmospheres. Here we focus on moons in the solar system, including Earth's moon and the Saturnian satellites. The diagnostic UV signature of H2O is used to study ice in the lunar polar regions as well as hydration at lower latitudes, in observations from LRO LAMP. The water ice signature is nearly ubiquitous in the Saturn system; Cassini UVIS datasets are used to study grain sizes, exogenic processes/effects and non-ice species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatSD...580014D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatSD...580014D"><span>A dataset mapping the potential biophysical effects of vegetation cover change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro</p> <p>2018-02-01</p> <p>Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880001514','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880001514"><span>Degradation mechanisms of materials for large space systems in low Earth orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gordon, William L.; Hoffman, R. W.</p> <p>1987-01-01</p> <p>Degradation was explored of various materials used in aerospace vehicles after severe loss of polymeric material coatings (Kapton) was observed on an early shuttle flight in low Earth orbit. Since atomic oxygen is the major component of the atmosphere at 300 km, and the shuttle's orbital velocity produced relative motion corresponding to approx. 5 eV of oxygen energy, it was natural to attribute much of this degradation to oxygen interaction. This assumption was tested using large volume vacuum systems and ion beam sources, in an exploratory effort to produce atomic oxygen of the appropriate energy, and to observe mass loss from various samples as well as optical radiation. Several investigations were initiated and the results of these investigations are presented in four papers. These papers are summarized. They are entitled: (1) The Space Shuttle Glow; (2) Laboratory Degradation of Kapton in a Low Energy Oxygen Ion Beam; (3) The Energy Dependence and Surface Morphology of Kapton Degradation Under Atomic Oxygen Bombardment; and (4) Surface Analysis of STS 8 Samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5819485','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5819485"><span>A dataset mapping the potential biophysical effects of vegetation cover change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro</p> <p>2018-01-01</p> <p>Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>