Sample records for earth tide response

  1. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  2. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions

    USGS Publications Warehouse

    Rojstaczer, Stuart; Riley, Francis S.

    1990-01-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q′u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q′u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q′u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q′u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  3. Response of the Water Level in a Well to Earth Tides and Atmospheric Loading Under Unconfined Conditions

    NASA Astrophysics Data System (ADS)

    Rojstaczer, Stuart; Riley, Francis S.

    1990-08-01

    The response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions can be explained if the water level is controlled by the aquifer response averaged over the saturated depth of the well. Because vertical averaging tends to diminish the influence of the water table, the response is qualitatively similar to the response of a well under partially confined conditions. When the influence of well bore storage can be ignored, the response to Earth tides is strongly governed by a dimensionless aquifer frequency Q'u. The response to atmospheric loading is strongly governed by two dimensionless vertical fluid flow parameters: a dimensionless unsaturated zone frequency, R, and a dimensionless aquifer frequency Qu. The differences between Q'u and Qu are generally small for aquifers which are highly sensitive to Earth tides. When Q'u and Qu are large, the response of the well to Earth tides and atmospheric loading approaches the static response of the aquifer under confined conditions. At small values of Q'u and Qu, well response to Earth tides and atmospheric loading is strongly influenced by water table drainage. When R is large relative to Qu, the response to atmospheric loading is strongly influenced by attenuation and phase shift of the pneumatic pressure signal in the unsaturated zone. The presence of partial penetration retards phase advance in well response to Earth tides and atmospheric loading. When the theoretical response of a phreatic well to Earth tides and atmospheric loading is fit to the well response inferred from cross-spectral estimation, it is possible to obtain estimates of the pneumatic diffusivity of the unsaturated zone and the vertical hydraulic conductivity of the aquifer.

  4. Nonlinearity in rock - Evidence from earth tides

    NASA Technical Reports Server (NTRS)

    Agnew, D. C.

    1981-01-01

    The earth is sinusoidally stressed by tidal forces; if the stress-strain relation for rock is nonlinear, energy should appear in an earth tide record at frequencies which are multiples of those of the larger tidal lines. An examination of the signals to be expected for different nonlinear deformation laws shows that for a nonlinear response without dissipation, the largest anomalous signal should occur at twice the forcing frequency, whereas for nonlinear laws involving dissipation (cusped hysteresis loops) the anomalous signal will be greatest at three times this frequency. The size of the signal in the dissipative case depends on the amount by which dissipation affects the particular response being measured. For measurements of strain tides this depends on whether dissipation is assumed to be present throughout the earth or localized around the point of measurement. An analysis of 5.7 years of strain tide records from Pinon Flat, California, shows a small signal at twice the frequency of the largest (M2) tide.

  5. Dynamic ocean-tide effects on Earth's rotation

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1993-01-01

    This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.

  6. What can earth tide measurements tell us about ocean tides or earth structure?

    NASA Technical Reports Server (NTRS)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  7. Propagation Velocity of Solid Earth Tides

    NASA Astrophysics Data System (ADS)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  8. Fortnightly Ocean Tides, Earth Rotation, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard; Egbert, Gary

    2012-01-01

    The fortnightly Mf ocean tide is the largest of the long-period tides (periods between 1 week and 18.6 years), but Mf is still very small, generally 2 cm or less. All long-period tides are thought to be near equilibrium with the astronomical tidal potential, with an almost pure zonal structure. However, several lines of evidence point to Mf having a significant dynamic response to forcing. We use a combination of numerical modeling, satellite altimetry, and observations of polar motion to determine the Mf ocean tide and to place constraints on certain global properties, such as angular momentum. Polar motion provides the only constraints on Mf tidal currents. With a model of the Mf ocean tide in hand, we use it to remove the effects of the ocean from estimates of fortnightly variations in length-of-day. The latter is dominated by the earth's body tide, but a small residual allows us to place new constraints on the anelasticity of the earth's mantle. The result gives the first experimental confirmation of theoretical predictions made by Wahr and Bergen in 1986.

  9. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  10. The Earth Tides.

    ERIC Educational Resources Information Center

    Levine, Judah

    1982-01-01

    In addition to oceans, the earth is subjected to tidal stresses and undergoes tidal deformations. Discusses origin of tides, tidal stresses, and methods of determining tidal deformations (including gravity, tilt, and strain meters). (JN)

  11. A diurnal resonance in the ocean tide and in the earth's load response due to the resonant free 'core nutation'

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Sasao, T.

    1981-01-01

    The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.

  12. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Y.S.; Dickman, S.R.

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less

  13. Response of well aquifer systems to Earth tides: Problem revisited

    USGS Publications Warehouse

    Hsieh, Paul A.; Bredehoeft, John D.; Rojstaczer, Stuart

    1988-01-01

    Two recent works cause us to reexamine Bredehoeft's (1967) analysis of earthtide response of water wells. Narasimhan et al. (1984) raise several questions regarding Bredehoeft's (1967) analysis and suggest that the analysis is internally inconsistent. They argue that one cannot directly estimate the specific storage, which characterizes the drained behavior of a porous medium, from earth tide response, which is an undrained phenomenon. We resolve the questions raised by Narasimhan et al. (1984) and show that Bredehoeft's analysis is internally consistent. In addition, we show that it is possible to determine the specific storage from undrained loading. While Bredehoeft's analysis is somewhat heuristic and neglects grain compressibility, Van der Kamp and Gale (1983) present a more rigorous analysis that is based on Biot's (1941) constitutive relationships and accounts for grain compressibility. However, their results reduce to Bredehoeft's results when grains are assumed incompressible. This suggests that Bredehoeft's analysis has incorporated all the essential features of Biot's relationships except for grain compressibility. Upon reexamining Bredehoeft's analysis we find that this is indeed the case.

  14. A normal mode treatment of semi-diurnal body tides on an aspherical, rotating and anelastic Earth

    NASA Astrophysics Data System (ADS)

    Lau, Harriet C. P.; Yang, Hsin-Ying; Tromp, Jeroen; Mitrovica, Jerry X.; Latychev, Konstantin; Al-Attar, David

    2015-08-01

    Normal mode treatments of the Earth's body tide response were developed in the 1980s to account for the effects of Earth rotation, ellipticity, anelasticity and resonant excitation within the diurnal band. Recent space-geodetic measurements of the Earth's crustal displacement in response to luni-solar tidal forcings have revealed geographical variations that are indicative of aspherical deep mantle structure, thus providing a novel data set for constraining deep mantle elastic and density structure. In light of this, we make use of advances in seismic free oscillation literature to develop a new, generalized normal mode theory for the tidal response within the semi-diurnal and long-period tidal band. Our theory involves a perturbation method that permits an efficient calculation of the impact of aspherical structure on the tidal response. In addition, we introduce a normal mode treatment of anelasticity that is distinct from both earlier work in body tides and the approach adopted in free oscillation seismology. We present several simple numerical applications of the new theory. First, we compute the tidal response of a spherically symmetric, non-rotating, elastic and isotropic Earth model and demonstrate that our predictions match those based on standard Love number theory. Second, we compute perturbations to this response associated with mantle anelasticity and demonstrate that the usual set of seismic modes adopted for this purpose must be augmented by a family of relaxation modes to accurately capture the full effect of anelasticity on the body tide response. Finally, we explore aspherical effects including rotation and we benchmark results from several illustrative case studies of aspherical Earth structure against independent finite-volume numerical calculations of the semi-diurnal body tide response. These tests confirm the accuracy of the normal mode methodology to at least the level of numerical error in the finite-volume predictions. They also demonstrate

  15. The effects of the solid inner core and nonhydrostatic structure on the earth's forced nutations and earth tides

    NASA Technical Reports Server (NTRS)

    De Vries, Dan; Wahr, John M.

    1991-01-01

    This paper computes the effects of the solid inner core (IC) on the forced nutations and earth tides, and on certain of the earth's rotational normal modes. The theoretical results are extended to include the effects of a solid IC and of nonhydrostatic structure. The presence of the IC is responsible for a new, almost diurnal, prograde normal mode which involves a relative rotation between the IC and fluid outer core about an equatorial axis. It is shown that the small size of the IC's effects on both nutations and tides is a consequence of the fact that the IC's moments of inertia are less than 1/1000 of the entire earth's.

  16. Fortnightly Earth Rotation, Ocean Tides, and Mantle Anelasticity

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2011-01-01

    Sustained accurate measurements of earth rotation are one of the prime goals of Global Geodetic Observing System (GGOS). We here concentrate on the fortnightly (Mf) tidal component of earth-rotation data to obtain new results concerning anelasticity of the mantle at this period. The study comprises three parts: (1) a new determination of the Mf component of polar motion and length-of-day from a multi-decade time series of space-geodetic data; (2) the use of the polar-motion determination as one constraint in the development of a hydrodynamic ocean model of the Mf tide; and (3) the use of these results to place new constraints on mantle anelasticity. Our model of the Mf ocean tide assimilates more than fourteen years of altimeter data from the Topex/Poseidon and Jason-1 satellites. The polar motion data, plus tide-gauge data and independent altimeter data, give useful additional information, with only the polar motion putting constraints on tidal current velocities. The resulting ocean-tide model, plus the dominant elastic body tide, leaves a small residual in observed length-of-day caused by mantle anelasticity. The inferred effective tidal 0 of the anelastic body tide is 90 and is in line with a omega-alpha frequency dependence with alpha in the range 0.2--0.3.

  17. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the

  18. (abstract) Effect of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and extensively examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported.

  19. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurisin, D.

    1980-11-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic andmore » tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.« less

  20. Influence of fortnightly earth tides at Kilauea Volcano, Hawaii.

    USGS Publications Warehouse

    Dzurisin, D.

    1980-01-01

    Analysis of 52 historic eruptions confirms the premise that fortnightly earth tides play a significant role in triggering activity at Kilauea Volcano, Hawaii. Since January 1832, nearly twice as many eruptions have occurred nearer fortnightly tidal maximum than tidal minimum (34 vs. 18). A straightforward significance test indicates that the likelihood of a fortnightly tidal influence on Kilauea eruptions is roughly 90%. This is not the case for Mauna Loa Volcano, where 37 historic eruptions have been distributed randomly with respect to the fortnightly tide. At Kilauea, stresses induced by fortnightly earth tides presumably act in concert with volcanic and tectonic stresses to trigger shallow magma movements along preexisting zones of weakness. Differences in structure or internal plumbing may limit the effectiveness of this mechanism at Mauna Loa. Tidal effects seem to be less marked at shields than at some island-arc volcanoes, possibly because higher average volcanic stress rates in Hawaii more often override the effects of tidal stresses.-Author

  1. Ocean tide models for satellite geodesy and Earth rotation

    NASA Technical Reports Server (NTRS)

    Dickman, Steven R.

    1991-01-01

    A theory is presented which predicts tides in turbulent, self-gravitating, and loading oceans possessing linearized bottom friction, realistic bathymetry, and continents (at coastal boundaries no-flow conditions are imposed). The theory is phrased in terms of spherical harmonics, which allows the tide equations to be reduced to linear matrix equations. This approach also allows an ocean-wide mass conservation constraint to be applied. Solutions were obtained for 32 long and short period luni-solar tidal constituents (and the pole tide), including the tidal velocities in addition to the tide height. Calibrating the intensity of bottom friction produces reasonable phase lags for all constituents; however, tidal amplitudes compare well with those from observation and other theories only for long-period constituents. In the most recent stage of grant research, traditional theory (Liouville equations) for determining the effects of angular momentum exchange on Earth's rotation were extended to encompass high-frequency excitations (such as short-period tides).

  2. The study of using earth tide response of groundwater level and rainfall recharge to identify groundwater aquifer

    NASA Astrophysics Data System (ADS)

    Huang, W. J.; Hsu, C. H.; Chang, L. C.; Chiang, C. J.; Wang, Y. S.; Lu, W. C.

    2017-12-01

    Hydrogeological framework is the most important basis for groundwater analysis and simulation. Conventionally, the core drill is a most commonly adopted skill to acquire the core's data with the help of other research methods to artificially determine the result. Now, with the established groundwater station network, there are a lot of groundwater level information available. Groundwater level is an integrated presentation of the hydrogeological framework and the external pumping and recharge system. Therefore, how to identify the hydrogeological framework from a large number of groundwater level data is an important subject. In this study, the frequency analysis method and rainfall recharge mechanism were used to identify the aquifer where the groundwater level's response frequency and amplitude react to the earth tide. As the earth tide change originates from the gravity caused by the paths of sun and moon, it leads to soil stress and strain changes, which further affects the groundwater level. The scale of groundwater level's change varies with the influence of aquifer pressure systems such as confined or unconfined aquifers. This method has been applied to the identification of aquifers in the Cho-Shui River Alluvial Fan. The results of the identification are compared to the records of core drill and they both are quite consistent. It is shown that the identification methods developed in this study can considerably contribute to the identification of hydrogeological framework.

  3. Interferometric Water Level Tilt Meter Development in Finland and Comparison with Combined Earth Tide and Ocean Loading Models

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Hannu

    2018-05-01

    A modern third-generation interferometric water level tilt meter was developed at the Finnish Geodetic Institute in 2000. The tilt meter has absolute scale and can do high-precision tilt measurements on earth tides, ocean tide loading and atmospheric loading. Additionally, it can be applied in various kinds of geodynamic and geophysical research. The principles and results of the historical 100-year-old Michelson-Gale tilt meter, as well as the development of interferometric water tube tilt meters of the Finnish Geodetic Institute, Finland, are reviewed. Modern Earth tide model tilt combined with Schwiderski ocean tide loading model explains the uncertainty in historical tilt observations by Michelson and Gale. Earth tide tilt observations in Lohja2 geodynamic station, southern Finland, are compared with the combined model earth tide and four ocean tide loading models. The observed diurnal and semidiurnal harmonic constituents do not fit well with combined models. The reason could be a result of the improper harmonic modelling of the Baltic Sea tides in those models.

  4. Effects of Long Period Ocean Tides on the Earth's Rotation

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Chao, Ben F.; Desai, Shailen D.

    1996-01-01

    The spectra of polar motion excitation functions exhibit enhanced power in the fortnightly tidal band. This enhanced power is attributed to ocean tidal excitation. Ocean tide models predict polar motion excitation effects that differ with each other, and with observations, by factors as large as 2-3. There is a need for inproved models for the effect of long-period ocean tides on Earth's rotation.

  5. An objective frequency domain method for subsurface characterisation using Earth and atmospheric tides

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Acworth, I. R.; Halloran, L. J. S.; Rau, G. C.; Bernadi, T. L.

    2017-12-01

    It has long been recognised that hydraulic properties can be derived from the response of piezometric heads to tidal loadings. However, there is a degree of subjectivity in existing graphical approaches most commonly used to calculate barometric efficiency leading to uncertainties in derived values of compressible storage. Here we demonstrate a novel approach to remove these uncertainties by objectively deriving the barometric efficiency from groundwater hydraulic head responses using a frequency domain method. We take advantage of the presence of worldwide and ubiquitous atmospheric tide fluctuations which occur at 2 cycles per day (cpd). First we use a Fourier transform to calculate the amplitudes of the 2 cpd signals from co-located atmospheric pressure and hydraulic head time series measurements. Next we show how the Earth tide response at the same frequency can be quantified and removed so that this effect does not interfere with the calculation of the barometric efficiency. Finally, the ratio of the amplitude of the response at 2 cpd of hydraulic head to atmospheric pressure is used to quantify the barometric efficiency. This new method allows an objective quantification using `passive' in situ monitoring rather than resorting to aquifer pumping or laboratory tests. The minimum data requirements are 15 days duration of 6-hourly hydraulic head and atmospheric pressure measurements, and modelled Earth tide records which are readily conducted using freely available software. The new approach allows for a rapid and cost-effective alternative to traditional methods of estimating aquifer compressible storage properties without the subjectivity of existing approaches, and will be of importance to improving the spatial coverage of subsurface characterisation for groundwater resource evaluation and land subsidence assessment.

  6. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  7. Lunisolar Tides Influence on Electrical Conductivity of the Earth's Crust in the Territory of Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.

    2018-05-01

    The results of studying the influence of lunisolar tides on the electrical conductivity of the Earth's crust in the territory of the Kola Peninsula are presented. Along with the results obtained by the authors, the data of other researchers are also considered. All the studies are based on the analysis of the field produced by the Zevs facility transmitting extremely low frequency (ELF) signals at 82-83 Hz. The measurements were carried out in different years at the Avva-Guba (1998), Lovozero (2009), and Imandra-Varzuga polygon (IVP) monitoring sites (2013) located 180, 90, and 160 km from the transmitter, respectively. The negative correlation between the tides and crustal electrical resistivity is revealed at all the points. This means that tidal rises of the Earth's surface are accompanied by a decrease in resistivity and vice versa. The overview shows that the higher the resistivity of separate Earth's crustal blocks the higher the relative amplitudes of the corresponding tidal responses that are observed.

  8. Why earthquakes correlate weakly with the solid Earth tides: Effects of periodic stress on the rate and probability of earthquake occurrence

    USGS Publications Warehouse

    Beeler, N.M.; Lockner, D.A.

    2003-01-01

    We provide an explanation why earthquake occurrence does not correlate well with the daily solid Earth tides. The explanation is derived from analysis of laboratory experiments in which faults are loaded to quasiperiodic failure by the combined action of a constant stressing rate, intended to simulate tectonic loading, and a small sinusoidal stress, analogous to the Earth tides. Event populations whose failure times correlate with the oscillating stress show two modes of response; the response mode depends on the stressing frequency. Correlation that is consistent with stress threshold failure models, e.g., Coulomb failure, results when the period of stress oscillation exceeds a characteristic time tn; the degree of correlation between failure time and the phase of the driving stress depends on the amplitude and frequency of the stress oscillation and on the stressing rate. When the period of the oscillating stress is less than tn, the correlation is not consistent with threshold failure models, and much higher stress amplitudes are required to induce detectable correlation with the oscillating stress. The physical interpretation of tn is the duration of failure nucleation. Behavior at the higher frequencies is consistent with a second-order dependence of the fault strength on sliding rate which determines the duration of nucleation and damps the response to stress change at frequencies greater than 1/tn. Simple extrapolation of these results to the Earth suggests a very weak correlation of earthquakes with the daily Earth tides, one that would require >13,000 earthquakes to detect. On the basis of our experiments and analysis, the absence of definitive daily triggering of earthquakes by the Earth tides requires that for earthquakes, tn exceeds the daily tidal period. The experiments suggest that the minimum typical duration of earthquake nucleation on the San Andreas fault system is ???1 year.

  9. Spin evolution of Earth-sized exoplanets, including atmospheric tides and core-mantle friction

    NASA Astrophysics Data System (ADS)

    Cunha, Diana; Correia, Alexandre C. M.; Laskar, Jacques

    2015-04-01

    Planets with masses between 0.1 and 10 M ⊕ are believed to host dense atmospheres. These atmospheres can play an important role on the planet's spin evolution, since thermal atmospheric tides, driven by the host star, may counterbalance gravitational tides. In this work, we study the long-term spin evolution of Earth-sized exoplanets. We generalize previous works by including the effect of eccentric orbits and obliquity. We show that under the effect of tides and core-mantle friction, the obliquity of the planets evolves either to 0° or 180°. The rotation of these planets is also expected to evolve into a very restricted number of equilibrium configurations. In general, none of these equilibria is synchronous with the orbital mean motion. The role of thermal atmospheric tides becomes more important for Earth-sized planets in the habitable zones of their systems; so they cannot be neglected when we search for their potential habitability.

  10. Constraints on Energy Dissipation in the Earth's Body Tide From Satellite Tracking and Altimetry

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Eanes, Richard J.; Lemoine, Frank G.

    1992-01-01

    The phase lag by which the earth's body tide follows the tidal potential is estimated for the principal lunar semidiurnal tide M(sub 2). The estimate results from combining recent tidal solutions from satellite tracking data and from Topex/Poseidon satellite altimeter data. Each data type is sensitive to the body-tide lag: gravitationally for the tracking data, geometrically for the altimetry. Allowance is made for the lunar atmospheric tide. For the tidal potential Love number kappa(sub 2) we obtain a lag epsilon of 0.20 deg +/- 0.05 deg, implying an effective body-tide Q of 280 and body-tide energy dissipation of 110 +/- 25 gigawatts.

  11. Numerical study of the effect of earth tides on recurring short-term slow slip events

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2017-12-01

    Short-term slow slip events (SSEs) in the Nankai region are affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The effect of tidal stress on the SSEs is also examined numerically (e.g., Hawthorne and Rubin, 2013). In our previous study (Matsuzawa et al., 2017, JpGU-AGU), we numerically simulated SSEs in the Shikoku region, and reported that tidal stress makes the variance of recurrence intervals of SSEs smaller in relatively isolated SSE regions. However, the reason of such stable recurrence was not clear. In this study, we examine the tidal effect on short-term SSEs based on a flat plate and a realistic plate model (e.g., Matsuzawa et al., 2013, GRL). We adopt a rate- and state-dependent friction law (RS-law) with cutoff velocities as in our previous studies (Matsuzawa et al., 2013). We assume that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. In a flat plate model, the short-term SSE region is a circular patch with the radius of 6 km. In a realistic plate model, the short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we examine the stress perturbation by two different earth tides with the period of semidiurnal (M2) and fortnight (Mf) tide in this study. In the result of a flat plate case, amplitude of SSEs becomes smaller just after the slip at whole simulated area. Recurring SSEs become clear again within one year in the case with tides (M2 or Mf), while the recurrence becomes clear after seven years in the case without tides. Interestingly, the effect of the Mf tide is similar to the case with the M2 tide, even though the amplitude of the Mf tide (0.01 kPa) is two-order smaller than that of the M2 tide. In the realistic plate model of Shikoku, clear recurrence of short-term SSEs is found earlier than the

  12. The inverse problem: Ocean tides derived from earth tide observations

    NASA Technical Reports Server (NTRS)

    Kuo, J. T.

    1978-01-01

    Indirect mapping ocean tides by means of land and island-based tidal gravity measurements is presented. The inverse scheme of linear programming is used for indirect mapping of ocean tides. Open ocean tides were measured by the numerical integration of Laplace's tidal equations.

  13. What Causes Tides?

    ERIC Educational Resources Information Center

    Donovan, Deborah

    2004-01-01

    The phenomenon of tides has a faraway source. This rise and fall of the water level over a period of several hours is a result of the gravitational pull of the Moon and the Sun on Earth's oceans. Tides exhibit predictable cycles on daily, monthly, and yearly scales. The magnitude of the tides is dependent on the position of the Earth and Moon in…

  14. Ocean tides

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  15. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  16. Kingdom of the Tides.

    ERIC Educational Resources Information Center

    Carter, Samuel, III

    Areas of discussion are the history of tides, the forces which exert an influence upon the earth's tides, the behavior of tides as modified by terrestrial features, "freak" behavior of tides, the marine life which inhabits tidal areas, the manner in which tides have helped to shape the course of history, how tides affect our lives on a…

  17. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  18. Revisiting the pole tide for and from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Desai, Shailen; Wahr, John; Beckley, Brian

    2015-12-01

    Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.

  19. Triggering and modulation of geyser eruptions in Yellowstone National Park by earthquakes, earth tides, and weather

    USGS Publications Warehouse

    Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael

    2014-01-01

    We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.

  20. The Data Base of the International Geodynamics and Earth Tide Service (IGETS)

    NASA Astrophysics Data System (ADS)

    Voigt, Christian; Förste, Christoph; Wziontek, Hartmut; Crossley, David; Meurers, Bruno; Pálinkáš, Vojtech; Hinderer, Jacques; Boy, Jean-Paul; Barriot, Jean-Pierre; Sun, Heping

    2017-04-01

    The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter data within the context of an international network. The primary objective of IGETS is to provide a service for continuous ground based measurements to monitor temporal variations of the Earth's gravity field and deformation of the Earth's surface by long term records from ground gravimeters, tiltmeters, strainmeters and other geodynamic sensors. IGETS also continues the activities of the International Center for Earth Tides (ICET), in particular, in collecting, archiving and distributing Earth tide records from long series of the various geodynamic sensors. This presentation introduces the IGETS data base hosted by GFZ and accessible via http://igets.gfz-potsdam.de to the geodetic and geodynamics community as well as to all other interested data producers and users. At present, records from superconducting gravimeters at 34 stations worldwide are available. Level 1 products are raw gravity and local pressure records decimated at 1 minute samples. As a new feature, records with 1 or 2 seconds samples are already provided for a few stations. Level 2 products consist of gravity and pressure data corrected for instrumental perturbations and ready for tidal analysis, which are derived from Level 1 datasets and computed by the University of French Polynesia (Tahiti, French Polynesia). Gravity residuals after particular geophysical corrections (including solid Earth tides, polar motion, tidal and non-tidal loading effects) considered as Level 3 products are derived from Level 2 datasets and computed by EOST (Ecole et Observatoire des Sciences de la Terre, Strasbourg, France). The IGETS data sets are stored by GFZ on a FTP server and are freely available after

  1. High-frequency Earth rotation variations deduced from altimetry-based ocean tides

    NASA Astrophysics Data System (ADS)

    Madzak, Matthias; Schindelegger, Michael; Böhm, Johannes; Bosch, Wolfgang; Hagedoorn, Jan

    2016-11-01

    A model of diurnal and semi-diurnal variations in Earth rotation parameters (ERP) is constructed based on altimetry-measured tidal heights from a multi-mission empirical ocean tide solution. Barotropic currents contributing to relative angular momentum changes are estimated for nine major tides in a global inversion algorithm that solves the two-dimensional momentum equations on a regular 0.5° grid with a heavily weighted continuity constraint. The influence of 19 minor tides is accounted for by linear admittance interpolation of ocean tidal angular momentum, although the assumption of smooth admittance variations with frequency appears to be a doubtful concept for semi-diurnal mass terms in particular. A validation of the newly derived model based on post-fit corrections to polar motion and universal time (Δ UT1) from the analysis of Very Long Baseline Interferometry (VLBI) observations shows a variance reduction for semi-diurnal Δ UT1 residuals that is significant at the 0.05 level with respect to the conventional ERP model. Improvements are also evident for the explicitly modeled K_1, Q_1, and K_2 tides in individual ERP components, but large residuals of more than 15 μ as remain at the principal lunar frequencies of O_1 and M_2. We attribute these shortcomings to uncertainties in the inverted relative angular momentum changes and, to a minor extent, to violation of mass conservation in the empirical ocean tide solution. Further dedicated hydrodynamic modeling efforts of these anomalous constituents are required to meet the accuracy standards of modern space geodesy.

  2. Perigean Spring Tides and Apogean Neap Tides in History

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2012-01-01

    On January 4, 1912 - almost exactly 100 years ago - both a full Moon and a lunar perigee occurred, with these two events separated by only a few minutes of time and with the Earth near perihelion. The resulting lunar distance (356,375 km) on that date stands as the closest approach of the Moon to the Earth in an interval of more than 1400 years. The centennial of this extreme lunar perigee is an appropriate time to consider the effect of lunar distance on the range of ocean tides. At most ocean ports, spring tides of increased range occur near new and full Moon. If a lunar perigee falls near new or full Moon, then perigean spring tides of even greater range are possible. Conversely, if a lunar apogee falls near first quarter or last quarter Moon, then apogean neap tides of unusually reduced range can occur. Examples of perigean spring tides include a near-coincidence of lunar perigee and new Moon in December 1340 that may be related to a plot device in Chaucer's "The Franklin's Tale,” a Canterbury tale that describes an extreme high tide covering the rocks on the coast of Brittany in "the cold and frosty season of December.” Another example, the disaster known as the Bristol Channel Flood, occurred shortly after a lunar perigee and new Moon in January 1607. A German U-boat employed an exceptionally high perigean spring tide shortly after the new Moon of October 1939 to enter Scapa Flow by an unexpected route and sink the HMS Royal Oak. An apogean neap tide prevailed during the amphibious assault of the U. S. Marines at Tarawa in November 1943, making the eventual victory more costly because the landing craft were unable to reach the island and instead grounded on the surrounding reef.

  3. The harmonic development of the Earth tide generating potential due to the direct effect of the planets

    NASA Astrophysics Data System (ADS)

    Hartmann, Torsten; Wenzel, Hans-Georg

    1994-09-01

    The time-harmonic development of the Earth tide generating potential due to the direct effect of the planets Venus, Jupiter, Mars, Mercury and Saturn has been computed. The catalog of the fully normalized potential coefficients contains 1483 waves. It is based on the DE102 numerical ephemeris of the planets between years 1900 and 2200. Gravity tides due to the planets computed from the catalog at the surface of the Earth have an accuracy of about 0.027 pm/sq s (1 pm/sq s = 10(exp -12) m/sq s = 0.1 ngal) rms and 0.160 / 0.008 pm/sq s at maximum in time / frequency domain using the new benchmark tidal gravity series (Wenzel 1994).

  4. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  5. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  6. The effect of ocean tides on the earth's rotation as predicted by the results of an ocean tide model

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1993-01-01

    The published ocean tidal angular momentum results of Seiler (1991) are used to predict the effects of the most important semidiurnal, diurnal, and long period ocean tides on the earth's rotation. The separate, as well as combined, effects of ocean tidal currents and sea level height changes on the length-of-day, UT1, and polar motion are computed. The predicted polar motion results reported here account for the presence of the free core nutation and are given in terms of the motion of the celestial ephemeris pole so that they can be compared directly to the results of observations. Outside the retrograde diurnal tidal band, the summed effect of the semidiurnal and diurnal ocean tides studied here predict peak-to-peak polar motion amplitudes as large as 2 mas. Within the retrograde diurnal tidal band, the resonant enhancement caused by the free core nutation leads to predicted polar motion amplitudes as large as 9 mas.

  7. The IERS Special Bureau for Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, B. F.; Desai, S. D.

    2002-01-01

    The Global Geophysical Fluids Center of the International Earth Rotation Service (IERS) comprises 8 special bureaus, one of which is the Special Bureau for Tides. Its purpose is to facilitate studies related to tidal effects in earth rotation. To that end it collects various relevant datasets and distributes them, primarily through its website at bowie.gsfc.nasa.gov/ggfc/tides. Example datasets include tabulations of tidal variations in angular momentum and in earth rotation as estimated from numerical ocean tide models and from meteorological reanalysis products. The web site also features an interactive tidal prediction "machine" which generates tidal predictions (e.g., of UT1) from lists of harmonic constants. The Special Bureau relies on the tidal and earth-rotation communities to build and enlarge its datasets; further contributions from this community are most welcome.

  8. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  9. Absence of earthquake correlation with Earth tides: An indication of high preseismic fault stress rate

    USGS Publications Warehouse

    Vidale, J.E.; Agnew, D.C.; Johnston, M.J.S.; Oppenheimer, D.H.

    1998-01-01

    Because the rate of stress change from the Earth tides exceeds that from tectonic stress accumulation, tidal triggering of earthquakes would be expected if the final hours of loading of the fault were at the tectonic rate and if rupture began soon after the achievement of a critical stress level. We analyze the tidal stresses and stress rates on the fault planes and at the times of 13,042 earthquakes which are so close to the San Andreas and Calaveras faults in California that we may take the fault plane to be known. We find that the stresses and stress rates from Earth tides at the times of earthquakes are distributed in the same way as tidal stresses and stress rates at random times. While the rate of earthquakes when the tidal stress promotes failure is 2% higher than when the stress does not, this difference in rate is not statistically significant. This lack of tidal triggering implies that preseismic stress rates in the nucleation zones of earthquakes are at least 0.15 bar/h just preceding seismic failure, much above the long-term tectonic stress rate of 10-4 bar/h.

  10. Fish community responses to green tides in shallow estuarine and coastal areas

    NASA Astrophysics Data System (ADS)

    Le Luherne, E.; Réveillac, E.; Ponsero, A.; Sturbois, A.; Ballu, S.; Perdriau, M.; Le Pape, O.

    2016-06-01

    All over the world, numerous bays and estuarine systems that are known to shelter essential fish habitats are experiencing proliferations of green macroalgae known as green tides. Although the processes that enhance green tides in response to nutrient enrichment are well known, their consequences for ecological communities -especially for ichthyofauna- remain poorly studied. To estimate these consequences, this analysis focused on the two types of shallow systems that are experiencing green tides: sandy beaches and estuarine mudflats. In these two systems, macroalgae proliferation and fish community were surveyed along seasonal cycles at control and impacted sites that shared similar physico-chemical parameters and sediment structure. To analyse the consequences of green tides on the fish community, a Before-After Control-Impact approach was used. This approach reveals no difference between fish communities at the control and impacted sites before the macroalgal bloom. Then, it underlines an influence of green tides on the fish community, and this influence varies according to the composition, density and duration of the macroalgal bloom. Indeed, when intertidal systems experienced short proliferation and/or weak density, green tides did not seem to impact the fish community. However, when green macroalgae proliferated in large quantities and/or when the proliferation lasted for long periods, the fish community was significantly affected. These modifications in the fish community led to a significant decrease in fish species diversity and density until fish disappeared from impacted sites at high proliferations. Furthermore, the response of fish species to green tides differed according to their functional guilds. Negative consequences for benthic and marine juvenile fish species were beginning at low proliferations, whereas for pelagic fish species they occurred only at high proliferations. Thus, green tides significantly affect fish habitat suitability because

  11. High precision tide spectroscopy. [using the superconducting gravimeter

    NASA Technical Reports Server (NTRS)

    Goodkind, J. M.

    1978-01-01

    Diurnal and long period earth tides were measured to high accuracy and precision with the superconducting gravimeter. The results provide new evidence on the geophysical questions which have been attacked through earth tide measurements in the past. In addition, they raise new questions of potential interest. Slow fluctuations in gravity of order 10 micron gal over periods of 3 to 5 months were observed and are discussed.

  12. The magnetic tides of Honolulu

    USGS Publications Warehouse

    Love, Jeffrey J.; Rigler, Erin Joshua

    2013-01-01

    We review the phenomenon of time-stationary, periodic quiet-time geomagnetic tides. These are generated by the ionospheric and oceanic dynamos, and, to a lesser-extent, by the quiet-time magnetosphere, and they are affected by currents induced in the Earth's electrically conducting interior. We examine historical time series of hourly magnetic-vector measurements made at the Honolulu observatory. We construct high-resolution, frequency-domain Lomb-periodogram and maximum-entropy power spectra that reveal a panorama of stationary harmonics across periods from 0.1 to 10000.0-d, including harmonics that result from amplitude and phase modulation. We identify solar-diurnal tides and their annual and solar-cycle sideband modulations, lunar semi-diurnal tides and their solar-diurnal sidebands, and tides due to precession of lunar eccentricity and nodes. We provide evidence that a method intended for separating the ionospheric and oceanic dynamo signals by midnight subsampling of observatory data time series is prone to frequency-domain aliasing. The tidal signals we summarize in this review can be used to test our fundamental understanding of the dynamics of the quiet-time ionosphere and magnetosphere, induction in the ocean and in the electrically conducting interior of the Earth, and they are useful for defining a quiet-time baseline against which magnetospheric-storm intensity is measured.

  13. Numerical modeling of short-term slow slip events in the Shikoku region considering the effect of earth tides and plate configuration

    NASA Astrophysics Data System (ADS)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2016-12-01

    Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of

  14. Global response of the ionosphere to atmospheric tides forced from below: Comparison between COSMIC measurements and simulations by atmosphere-ionosphere coupled model GAIA

    NASA Astrophysics Data System (ADS)

    Pancheva, D.; Miyoshi, Y.; Mukhtarov, P.; Jin, H.; Shinagawa, H.; Fujiwara, H.

    2012-07-01

    This paper for the first time presents a detailed comparison between simulated and observed global electron density responses to different atmospheric tides forced from below. The recently developed Earth's whole atmospheric model from the troposphere to the ionosphere, called GAIA, has been used for the simulation of the electron density tidal responses. They have been compared with the extracted from the COSMIC electron density data tidal responses for the period of time October 2007 to March 2009. Particular attention has been paid to the nonmigrating DE3/DE2 and migrating DW1, SW2 and TW3 electron density responses. The GAIA model reproduced quite well the COSMIC DE3/DE2 responses. Both simulations and observations revealed three altitude regions of enhanced electron density responses: (1) an upper level response, above 300 km height, apparently shaped mainly by the “fountain effect” (2) a response located near altitudes of ˜200-270 km, and (3) a lower thermospheric response situated near 120-150 km height. A possible mechanism is suggested for explaining the two lower level responses. For the first time the GAIA model simulations supported the observational evidence found in the COSMIC measurements that the ionospheric WN4 (WN3) longitude structure is not generated only by the DE3 (DE2) tide as it has been often assumed. As regards the comparison of the migrating DW1, SW2 and TW3 responses the obtained results clearly demonstrate that the GAIA model reproduce very well of the SW2 and TW3 COSMIC electron density responses. The only main discrepancy is seen in the migrating DW1 response; the observation does not support the splitting of the simulated response at both sides of the equator. This is due mainly to the difference between the SABER and GAIA SW2 tide in the lower thermosphere as it turned out that the DW1 electron density response strongly depends on the mean features of the lower thermospheric SW2 tide.

  15. Weight, gravitation, inertia, and tides

    NASA Astrophysics Data System (ADS)

    Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe

    2015-11-01

    This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.

  16. Love numbers for the long-period tides estimated by VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Haas, Rüdiger; Schuh, Harald

    2013-04-01

    Love and Shida numbers are proportionality factors characterizing the deformation of the anelastic Earth which arises as a response to external forces from the Moon and Sun. The increasing precision and quality of the Very Long Baseline Interferometry (VLBI) measurements allow determining those parameters. In particular, the long history of the VLBI data enables the estimation of Love and Shida numbers at the low frequencies of the tidal waves including the periods from 14 days to 18.6 years. In this study we analyse 27 years of VLBI measurements (1984.0 - 2011.0) following the recent IERS Conventions 2010. In several global solutions, we estimate the complex Love and Shida numbers of the solid Earth tides for the main long-period tidal waves. Furthermore, we determine the Love and Shida numbers of the rotational deformation due to polar motion, the so-called pole tide. We also focus on station displacement where still some deficiencies in the long-period signal modelling can be seen.

  17. Internal Tide Generation by Tall Ocean Ridges

    DTIC Science & Technology

    2009-09-01

    Earth - sun and the Earth -moon orbits . As the earth and the moon rotate, so does the alignment of the tidal forces, such...tidal periods. It has since become recognized that internal tides are part of important global energy systems: the orbits of the moon around the Earth ...and the Earth around the sun , and the energy budget of the ocean. For instance, the energy in the moon- Earth system is decreasing, such that every

  18. Lunar and Solar Torques on the Oceanic Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Bills, Bruce G.; Chao, Benjamin F.

    1998-01-01

    Brosche and Seiler recently suggested that direct lunar and solar tidal torques on the oceanic tides play a significant role in the earth's short-period angular momentum balance ("short-period" here meaning daily and sub-daily). We reexamine that suggestion here, concentrating on axial torques and hence on variations in rotation rate. Only those spherical harmonic components of the ocean tide having the same degree and order as the tidal potential induce nonzero torques. Prograde components (those moving in the same direction as the tide-generating body) produce the familiar secular braking of the earth's rotation. Retrograde components, however, produce rapid variations in UTI at twice the tidal frequency. There also exist interaction torques between tidal constituents, e.g. solar torques on lunar tides. They generate UTI variations at frequencies equal to the sums and differences of the original tidal frequencies. We give estimates of the torques and angular momentum variations for each of the important regimes, secular to quarter-diurnal. For the M(sub 2) potential acting on the M(sub 2) ocean tide, we find an associated angular momentum variation of amplitude 3 x 10(exp 19) N m. This is 5 to 6 orders of magnitude smaller than the angular momentum variations associated with tidal currents. We conclude that these torques do not play a significant role in the short-period angular momentum balance.

  19. Europa Tide Movie

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for Europa Tide Movie

    In this movie Europa is seen in a cutaway view through two cycles of its 3.5 day orbit about the giant planet Jupiter. Like Earth, Europa is thought to have an iron core, a rocky mantle and a surface ocean of salty water. Unlike on Earth, however, this ocean is deep enough to cover the whole moon, and being far from the sun, the ocean surface is globally frozen over. Europa's orbit is eccentric, which means as it travels around Jupiter, large tides, raised by Jupiter, rise and fall. Jupiter's position relative to Europa is also seen to librate, or wobble, with the same period. This tidal kneading causes frictional heating within Europa, much in the same way a paper clip bent back and forth can get hot to the touch, as illustrated by the red glow in the interior of Europa's rocky mantle and in the lower, warmer part of its ice shell. This tidal heating is what keeps Europa's ocean liquid and could prove critical to the survival of simple organisms within the ocean, if they exist.

  20. The self-consistent dynamic pole tide in non-global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1988-01-01

    The dynamic pole tide is determined by solving Laplace tide equations which take into account the presence of continents in oceans, oceanic self-gravitation and loading, and mantle elasticity. Dynamical effects are found to be only mild. It is shown that the dynamical pole tide contributes about one day more to the Chandler period than a static pole tide would, and dissipates wobble energy at a very weak rate. It is noted that, depending on the wobble period predicted for an oceanless elastic earth, mantle anelasticity at low frequencies may nevertheless contribute negligibly to the Chandler period.

  1. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    NASA Astrophysics Data System (ADS)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  2. Ocean science. Enhanced: internal tides and ocean mixing.

    PubMed

    Garrett, Chris

    2003-09-26

    Recent satellite and in situ observations have shown that at ocean ridges and other seafloor topographic features, a substantial amount of energy is transferred from the main ocean tides into "internal tides." In his Perspective, Garrett explains how these internal waves with tidal periods propagate through the density-stratified deep ocean and eventually break down into turbulence. The resulting mixing affects ocean stratification and ocean circulation. It thus influences climate as well as biological production. The energy for the internal tides is derived from the rotational energy of the Earth-Moon system changes of the length of the day and the distance to the Moon.

  3. Groundwater response to the tide in wetlands: Observations from the Gillman Marshes, South Australia

    NASA Astrophysics Data System (ADS)

    Bye, John A. T.; Narayan, Kumar A.

    2009-09-01

    We present results from a series of piezometers installed in the foreshore flat and mangrove environments of the Gillman Marshes, South Australia in an interdisciplinary study of the propagation of the ocean tide into the coastal aquifers. A unique feature of the analysis is that all water level records were harmonically analysed so that the behaviour of the four major tidal constituents could be independently examined. The main findings were that: (1) the decay of the groundwater tide in the coastal aquifers was greater than that predicted by the Ferris solution. A theoretical model has been developed and applied to the study site. The model suggests that this behaviour is due to the occurrence of a time delay in the Darcian response in the shelly and muddy sand substrate; (2) when the tide is incident over a gently sloping bank, the time delay in response gives rise to a spiked signal in which high water is confined to a small fraction of the tidal cycle; and (3) at the coastal interface tidal propagation across a sloping bank causes a rise in the water table relative to mean sea level which is proportional to the variance of tidal elevation and inversely proportional to the decay constant of the groundwater tide. The model developed in this study is also applicable to other coastal groundwater systems with tidal influence.

  4. Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida

    USGS Publications Warehouse

    Merritt, Michael L.

    2004-01-01

    Aquifers are subjected to mechanical stresses from natural, non-anthropogenic, processes such as pressure loading or mechanical forcing of the aquifer by ocean tides, earth tides, and pressure fluctuations in the atmosphere. The resulting head fluctuations are evident even in deep confined aquifers. The present study was conducted for the purpose of reviewing the research that has been done on the use of these phenomena for estimating the values of aquifer properties, and determining which of the analytical techniques might be useful for estimating hydraulic properties in the dissolved-carbonate hydrologic environment of southern Florida. Fifteen techniques are discussed in this report, of which four were applied.An analytical solution for head oscillations in a well near enough to the ocean to be influenced by ocean tides was applied to data from monitor zones in a well near Naples, Florida. The solution assumes a completely non-leaky confining unit of infinite extent. Resulting values of transmissivity are in general agreement with the results of aquifer performance tests performed by the South Florida Water Management District. There seems to be an inconsistency between results of the amplitude ratio analysis and independent estimates of loading efficiency. A more general analytical solution that takes leakage through the confining layer into account yielded estimates that were lower than those obtained using the non-leaky method, and closer to the South Florida Water Management District estimates. A numerical model with a cross-sectional grid design was applied to explore additional aspects of the problem.A relation between specific storage and the head oscillation observed in a well provided estimates of specific storage that were considered reasonable. Porosity estimates based on the specific storage estimates were consistent with values obtained from measurements on core samples. Methods are described for determining aquifer diffusivity by comparing the time

  5. Galalctic Tides & the Sinusoidal Potential

    NASA Astrophysics Data System (ADS)

    Bartlett, David F.

    2011-05-01

    The sinusoidal potential is a nonNewtonian alternative to dark matter. Instead of φ = -GM/r we write φ = -(GM/r) cos kor, where ko= 2π/ λo and λo = Ro/20= 400 pc. Evidence for this choice for the "wavelength” λo has been given in one article and many previous meetings of the AAS & DDA. The solar system and nearby stars are trapped in a local groove of width Δr < 400 pc. The rapid alternation of attraction and repulsion within the groove gives very strong Galactic radial tides. The epicyclic period is only 7 Myr . The Keplerian period for comets in the middle of the Oort cloud is also 7 Myr. The 1:1 resonance between material in the groove and the cloud provides a new mechanism for filling the Oort cloud. The Oort cloud is emptied by the same strong radial tides. Evidence is found in the 499 comets with calculated 1/aoriginal in the latest Catalogue of Cometary Orbits (Marsden & Williams 2008). . I separate the comets into 12 classes on the basis of Quality (4 types) and semi-major axis aoriginal . For 10 of the 12 classes radial tides dominate Z-tides. The classic Oort cloud comets (1851-1996) have a particularly strong modulation with galactic longitude. This modulation is exactly in those directions where a radial tide would be important. The equally numerous recent Oort comets (1996-2008) show a different evidence for strong radial tides. The recent comets generally have much larger perihelion distances q than the classic ones. Here the evidence is that a radial tide is removing angular momentum from the orbit and thus bringing the perihelion closer to the earth and to observers.

  6. Tides and Decadal Variability

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  7. Geodynamic Effects of Ocean Tides: Progress and Problems

    NASA Technical Reports Server (NTRS)

    Richard, Ray

    1999-01-01

    Satellite altimetry, particularly Topex/Poseidon, has markedly improved our knowledge of global tides, thereby allowing significant progress on some longstanding problems in geodynamics. This paper reviews some of that progress. Emphasis is given to global-scale problems, particularly those falling within the mandate of the new IERS Special Bureau for Tides: angular momentum, gravitational field, geocenter motion. For this discussion I use primarily the new ocean tide solutions GOT99.2, CSR4.0, and TPXO.4 (for which G. Egbert has computed inverse-theoretic error estimates), and I concentrate on new results in angular momentum and gravity and their solid-earth implications. One example is a new estimate of the effective tidal Q at the M_2 frequency, based on combining these ocean models with tidal estimates from satellite laser ranging. Three especially intractable problems are also addressed: (1) determining long-period tides in the Arctic [large unknown effect on the inertia tensor, particularly for Mf]; (2) determining the global psi_l tide [large unknown effect on interpretations of gravimetry for the near-diurnal free wobble]; and (3) determining radiational tides [large unknown temporal variations at important frequencies]. Problems (2) and (3) are related.

  8. Research on Earth's rotation and the effect of atmospheric pressure on vertical deformation and sea level variability

    NASA Technical Reports Server (NTRS)

    Wahr, John

    1993-01-01

    The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.

  9. Motional Induction by Tsunamis and Ocean Tides: 10 Years of Progress

    NASA Astrophysics Data System (ADS)

    Minami, Takuto

    2017-09-01

    Motional induction is the process by which the motion of conductive seawater in the ambient geomagnetic main field generates electromagnetic (EM) variations, which are observable on land, at the seafloor, and sometimes at satellite altitudes. Recent years have seen notable progress in our understanding of motional induction associated with tsunamis and with ocean tides. New studies of tsunami motional induction were triggered by the 2004 Sumatra earthquake tsunami and further promoted by subsequent events, such as the 2010 Chile earthquake and the 2011 Tohoku earthquake. These events yielded observations of tsunami-generated EM variations from land and seafloor stations. Studies of magnetic fields generated by ocean tides attracted interest when the Swarm satellite constellation enabled researchers to monitor tide-generated magnetic variations from low Earth orbit. Both avenues of research benefited from the advent of sophisticated seafloor instruments, by which we may exploit motional induction for novel applications. For example, seafloor EM measurements can serve as detectors of vector properties of tsunamis, and seafloor EM data related to ocean tides have proved useful for sounding Earth's deep interior. This paper reviews and discusses the progress made in motional induction studies associated with tsunamis and ocean tides during the last decade.

  10. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  11. Ocean tides from Seasat-A

    NASA Technical Reports Server (NTRS)

    Hendershott, M. C.; Munk, W. H.; Zetler, B. D.

    1974-01-01

    Two procedures for the evaluation of global tides from SEASAT-A altimetry data are elaborated: an empirical method leading to the response functions for a grid of about 500 points from which the tide can be predicted for any point in the oceans, and a dynamic method which consists of iteratively modifying the parameters in a numerical solution to Laplace tide equations. It is assumed that the shape of the received altimeter signal can be interpreted for sea state and that orbit calculations are available so that absolute sea levels can be obtained.

  12. Orthogonal stack of global tide gauge sea level data

    NASA Technical Reports Server (NTRS)

    Trupin, A.; Wahr, J.

    1990-01-01

    Yearly and monthly tide gauge sea level data from around the globe are fitted to numerically generated equilibrium tidal data to search for the 18.6 year lunar tide and 14 month pole tide. Both tides are clearly evident in the results, and their amplitudes and phases are found to be consistent with a global equilibrium response. Global, monthly sea level data from outside the Baltic sea and Gulf of Bothnia are fitted to global atmospheric pressure data to study the response of the ocean to pressure fluctuations. The response is found to be inverted barometer at periods greater than two months. Global averages of tide gauge data, after correcting for the effects of post glacial rebound on individual station records, reveal an increase in sea level over the last 80 years of between 1.1 mm/yr and 1.9 mm/yr.

  13. Galileo and Descartes on Copernicanism and the cause of the tides.

    PubMed

    Schmaltz, Tad M

    2015-06-01

    Galileo and Descartes were on the front lines of the defense of Copernicanism against theological objections that took on special importance during the seventeenth century. Galileo attempted to overcome opposition to Copernicanism within the Catholic Church by offering a demonstration of this theory that appeals to the fact that the double motion of the earth is necessary as a cause of the tides. It turns out, however, that the details of Galileo's tidal theory compromise his demonstration. Far from attempting to provide a demonstration of the earth's motion, Descartes ultimately argued that his system is compatible with the determination of the Church that the earth is at rest. Nonetheless, Descartes's account of the cause of the tides creates difficulty for this argument. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Migrating diurnal tide variability induced by propagating planetary waves

    NASA Astrophysics Data System (ADS)

    Chang, Loren C.

    The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on

  15. The lunar nodal tide and the distance to tne Moon during the Precambrian era

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Zahnle, K. J.

    1986-01-01

    The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.

  16. A model of oscillatory transport in granular soils, with application to barometric pumping and earth tides.

    PubMed

    Neeper, D A

    2001-04-01

    A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.

  17. Future Change to Tide-Influenced Deltas

    NASA Astrophysics Data System (ADS)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  18. M2, S2, K1 models of the global ocean tide

    NASA Technical Reports Server (NTRS)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  19. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station, Slovakia

    NASA Astrophysics Data System (ADS)

    Brimich, Ladislav; Bednárik, Martin; Bezák, Vladimír; Kohút, Igor; Bán, Dóra; Eper-Pápai, Ildikó; Mentes, Gyula

    2016-06-01

    The Vyhne Tidal Station of the Earth Science Institute of the Slovak Academy of Sciences is located in the former mining gallery of St. Anthony of Padua in the Vyhne valley, Štiavnické vrchy Mts., Central Slovakia. It is equipped with a 20.5 metre long quartz-tube extensometer measuring Earth's tides, and long-term tectonic deformations of the Earth's crust. Data between 2001 and 2015 with some diverse gaps were digitally collected, processed and analysed. The effects of the local conditions, such as structure of the observatory, cavity effect, topography and geological features of the surrounding rocks, were investigated in detail and these effects were taken into consideration during the interpretation of the results of the data analysis. Tidal analysis of the extensometric data between 2005 and 2015 revealed that the measured tidal amplitudes are close to the theoretical values. The tidal transfer of the observatory was also investigated by coherence analysis between the theoretical and the measured extensometric data. The coherence is better than 0.9 both in the diurnal and semidiurnal band. The effect of the free core nutation resonance was also investigated in the case of the K1 and P1 tidal components. Since the K1/O1 ratio was about the theoretical value 0.8, than the P1/O1 was between 1.0 and 1.15 instead of the theoretical value of 0.9. The rate of the long-term strain rate was also investigated and the obtained -0.05 μstr/y shows a good agreement with the strain rate inferred from GPS measurements in the Central European GPS Reference Network.

  20. In Brief: Red tide Web site

    NASA Astrophysics Data System (ADS)

    Showstack, Randy; Kumar, Mohi

    2008-06-01

    The U.S. National Oceanic and Atmospheric Administration has established the NOAA New England Red Tide Information Center to help people understand the significant red tides that are predicted to form there later this spring. The site (http://www.oceanservice.noaa.gov/redtide) will provide a summary of the current red tide situation and its potential harmful impacts on humans and animals and will serve as a central repository of information. The site also will have direct links to news releases, changes to relevant federal fishing regulations, links to closures of shellfish waters, and links to state agency Web sites with localized information. In addition, the site will have information about NOAA's scientific response effort as well as information from several other sources including NOAA's major response partner, the Woods Hole Oceanographic Institution (WHOI). On 24 April, WHOI scientists, using forecast models developed with NOAA funding support, predicted ``that excess winter precipitation has set the stage for a harmful algal bloom similar to the historic red tide of 2005.'' That bloom shut down shellfish beds from the Bay of Fundy to Martha's Vineyard for several months.

  1. Simultaneous generation and scattering of internal tides by ocean floor topography

    NASA Astrophysics Data System (ADS)

    Mathur, Manikandan

    2015-11-01

    Internal waves play a significant role in the global energy budget of the ocean, with internal tides potentially contributing to the conversion of a large amount of mechanical energy into heat in the deep ocean. Several studies in the past decade have investigated internal tide generation and internal tide scattering by ocean floor topography, but by treating them as two separate, independent processes. In this talk, we use the recently developed Green function model (Mathur et al., J. Geophys. Res. Oceans, 119, 2165-2182, 2014), sans the WKB approximation, to quantify the extent to which internal tide generation (scattering) that results from barotropic (baroclinic) forcing on small- and large-scale topography in uniform and nonuniform stratifications is modified by the presence of a background baroclinic (barotropic) tide. Results on idealized topography, stratification and forcing will first be presented, followed by a discussion on the relevance of our studies in the real ocean scenario. The author thanks the Ministry of Earth Sciences, Government of India for financial support under the Monsoon Mission Grant MM/2014/IND-002.

  2. COST Action ES1401 TIDES: a European network on TIme DEpendent Seismology

    NASA Astrophysics Data System (ADS)

    Morelli, Andrea

    2016-04-01

    Using the full-length records of seismic events and background ambient noise, today seismology is going beyond still-life snapshots of the interior of the Earth, and look into time-dependent changes of its properties. Data availability has grown dramatically with the expansion of seismographic networks and data centers, so as to enable much more detailed and accurate analyses. COST Action ES1401 TIDES (TIme DEpendent Seismology; http://tides-cost.eu) aims at structuring the EU seismological community to enable development of data-intensive, time-dependent techniques for monitoring Earth active processes (e.g., earthquakes, volcanic eruptions, landslides, glacial earthquakes) as well as oil/gas reservoirs. The main structure of TIDES is organised around working groups on: Workflow integration of data and computing resources; Seismic interferometry and ambient noise; Forward problems and High-performance computing applications; Seismic tomography, full waveform inversion and uncertainties; Applications in the natural environment and industry. TIDES is an open network of European laboratories with complementary skills, and is organising a series of events - workshops and advanced training schools - as well as supporting short-duration scientific stays. The first advanced training school was held in Bertinoro (Italy) on June 2015, with attendance of about 100 participants from 20 European countries, was devoted to how to manage and model seismic data with modern tools. The next school, devoted to ambient noise, will be held in 2016 Portugal: the program will be announced at the time of this conference. TIDES will strengthen Europe's role in a critical field for natural hazards and natural resource management.

  3. Tidal Friction in the Earth and Ocean

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2006-12-01

    "Tidal Friction" is a classic subject in geophysics, with ties to some of the great scientists of the Victorian era. The subject has been reinvigorated over the past decade by space geodesy, and particularly by the Topex/Poseidon satellite altimeter mission. In fact, the topic has now taken on some significance in oceanography, with potential implications for problems of mixing, thermocline maintenance, and the thermohaline circulation. Likewise, tidal measurements have become sufficiently precise to reveal new information about the solid earth. In this respect, the tidal force is an invaluable "probe" of the earth, at frequencies well outside the seismic band. This talk will "follow the energy" of tides while noting some important geophysical implications at each stage. In the present earth-moon-sun configuration, energy for tides is extracted from the earth's rotation. Ancient eclipses bear witness to this, and the discrepancy between Babylonian (and other) observations and tidal predictions yields unique information about the mantle and the overlying fluid envelope. Complementary information comes from tidal anelasticity estimates, which are now available at frequencies ranging from semidiurnal to fortnightly, monthly, and 18.6 years. These data, when combined with various kinds of gravity measurements, are relevant to the present-day sea-level problem. Solid-earth tidal dissipation represents less than 5% of the system total. As has long been realized, the largest energy sink is the ocean. About 70% of the oceanic dissipation occurs in shallow seas (the traditional sink) and 30% in the deep ocean, generally near rugged bottom topography. The latter represents a substantial amount of power, roughly 1 gigawatt, available for generation of internal tides and other baroclinic motions. Experiments like HOME are helping unravel the links between barotropic tides, internal tides, turbulence, and mixing. The latter opens possible linkages to climate, and recent work

  4. Public perceptions of Florida red tide risks.

    PubMed

    Kuhar, Sara E; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A

    2009-07-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals' responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides.

  5. Public Perceptions of Florida Red Tide Risks

    PubMed Central

    Kuhar, Sara E.; Nierenberg, Kate; Kirkpatrick, Barbara; Tobin, Graham A.

    2009-01-01

    This research integrates theoretical frameworks of risk perception, social amplification of risk, and the role of place-specific contexts in order to explore the various perceptions surrounding Florida red tides. Florida red tides are naturally occurring events that are increasing in frequency, duration, and severity. This has implications for public health, the local economy, and ecosystem health. While many of the negative impacts of Florida red tides are not easily controlled, some of the secondary impacts may be mitigated through individuals’ responses. However, public perception and consequent reactions to Florida red tides have not been investigated. This research uses questionnaire surveys, and semi-structured interviews, to explore the various perceptions of the risk surrounding red tides. Surveys and interviews were conducted along two Florida west coast beaches. The results indicate that the underlying foundations of the social amplification of the risk framework are applicable to understanding how individuals form perceptions of risk relative to red tide events. There are key differences between the spatial locations of individuals and corresponding perceptions, indicating that place-specific contexts are essential to understanding how individuals receive and interpret risk information. The results also suggest that individuals may be lacking efficient and up-to-date information about Florida red tides and their impacts because of inconsistent public outreach. Overall, social and spatial factors appear to be influential as to whether individuals amplify or attenuate the risks associated with Florida red tides. PMID:19392675

  6. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Keshin, Maxim; Whitehouse, Pippa L.; Thomas, Ian D.; Milne, Glenn; Riva, Riccardo E. M.

    2012-07-01

    The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ˜300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5-2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.

  7. O1, P1, N2 models of the global ocean tide on an elastic earth plus surface potential and spherical harmonic decompositions for M2, S2, and K1

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1982-01-01

    The models of M2, S2, and K1 presented in Parke and Hendershott (1980) are supplemented with models of O1, P1, and N2. The models satisfy specified elevation boundary conditions and are generated by fighting a small number of test functions to island data. Maps are presented of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each new component. Maps of the tidal potential seen by an observer fixed to the surface of the solid earth are also presented for all six constituents. Spherical harmonic coefficients up to order four and the rms magnitude of the coefficients to order fifteen are presented for each constituent. The rms magnitudes of the P1 and K1 coefficients normalized by their respective equilibrium amplitudes are compared to determine the effect of the diurnal core resonance.

  8. Global estimation of ocean tides in deep and shallow waters from TOPEX/POSEIDON and numerical models with applications to geophysics, oceanography, and precision altimetry

    NASA Astrophysics Data System (ADS)

    Tierney, Craig Cristy

    Presented here are several investigations of ocean tides derived from TOPEX/POSEIDON (T/P) altimetry and numerical models. The purpose of these investigations is to study the short wavelength features in the T/P data and to preserve these wavelengths in global ocean tide models that are accurate in shallow and deep waters. With these new estimates, effects of the tides on loading, Earth's rotation, and tidal energetics are studied. To preserve tidal structure, tides have been estimated along the ground track of T/P by the harmonic and response methods using 4.5 years of data. Results show the two along-track (AT) estimates agree with each other and with other tide models for those components with minimal aliasing problems. Comparisons to global models show that there is tidal structure in the T/P data that is not preserved with current gridding methods. Error estimates suggest there is accurate information in the T/P data from shallow waters that can be used to improve tidal models. It has been shown by Ray and Mitchum (1996) that the first mode baroclinic tide can be separated from AT tide estimates by filtering. This method has been used to estimate the first mode semidiurnal baroclinic tides globally. Estimates for M2 show good correlation with known regions of baroclinic tide generation. Using gridded, filtered AT estimates, a lower bound on the energy contained in the M2 baroclinic tide is 50 PJ. Inspired by the structure found in the AT estimates, a gridding method is presented that preserves tidal structure in the T/P data. These estimates are assimilated into a nonlinear, finite difference, global barotropic tidal model. Results from the 8 major tidal constituents show the model performs equivalently to other models in the deep waters, and is significantly better in the shallow waters. Crossover variance is reduced from 14 cm to 10 cm in the shallow waters. Comparisons to Earth rotation show good agreement to results from VLBI data. Tidal energetics

  9. Earth and ocean physics. [results of ERTS-1 imagery for determining earth gravity and tectonic conditions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for obtaining a parameterization of the marine geoid for suitable orthogonality properties in altimetry data is discussed. The application of the technique to the Puerto Rico trench is explained and a map of the data is developed. The Goddard Earth Model (GEM-6) is described to show the method for determining the earth gravity field using data obtained from satellite tracking stations. The derivation of a global ocean tide model from satellite data is explained. The influence of solid earth and ocean tides on the inclination of GEOS-1 is plotted. The delineation of the geographical fracture pattern and boundary system of the tectonic plates using ERTS satellite is shown.

  10. Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Medvedev, Alexander S.

    2017-04-01

    Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.

  11. Tide, Ocean and Climate on Exoplanets

    NASA Astrophysics Data System (ADS)

    Si, Y.; Yang, J.

    2017-12-01

    On Earth, tide is a main part of the driving force for the deep ocean overturning circulation. For habitable planets around low-mass stars, the tidal force is expected to be much stronger than that on Earth, due to the fact that the habitable zone is very close to the host stars and that tide force is inversely proportional to the orbital distance cubed. The deep ocean overturning circulation on this type of planets is therefore expected to be much stronger than that on Earth, if all else being equal. We test this hypothesis using a fully coupled atmosphere-ocean model, the Community Climate System Model version 3 (CCSM3). Our results show that the intensity of oceanic meridional overturning circulation (MOC) is approximately proportional to κ1/3, where κ is the mixing coefficient across density interfaces and it is mainly determined by the strength of the tidal force. As a result of the enhanced MOC, more heat is transported to dark regions and sea ice melts completely there, and meanwhile more heat is mixed from the surface to the deep ocean and thereby the entire ocean becomes much warmer (Fig. 1). A positive cloud feedback further warms the global ocean and atmosphere. These results imply that one planet with a stronger tidal force will likely enter a globally ice-covered snowball state at a lower stellar flux and enter a moist greenhouse or runaway greenhouse state at also a lower stellar flux, meaning that the tidal force acts to push the habitable zone outward. This study significantly improves our understanding of the possible coupling between planetary orbit, ocean, climate, and habitability on exoplanets.

  12. Apparent Relations Between Solar Activity and Solar Tides Caused by the Planets

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    2007-01-01

    A solar storm is a storm of ions and electrons from the Sun. Large solar storms are usually preceded by solar flares, phenomena that can be characterized quantitatively from Earth. Twenty-five of the thirty-eight largest known solar flares were observed to start when one or more tide-producing planets (Mercury, Venus, Earth, and Jupiter) were either nearly above the event positions (less than 10 deg. longitude) or at the opposing side of the Sun. The probability for this to happen at random is 0.039 percent. This supports the hypothesis that the force or momentum balance (between the solar atmospheric pressure, the gravity field, and magnetic field) on plasma in the looping magnetic field lines in solar corona could be disturbed by tides, resulting in magnetic field reconnection, solar flares, and solar storms. Separately, from the daily position data of Venus, Earth, and Jupiter, an 11-year planet alignment cycle is observed to approximately match the sunspot cycle. This observation supports the hypothesis that the resonance and beat between the solar tide cycle and nontidal solar activity cycle influences the sunspot cycle and its varying magnitudes. The above relations between the unpredictable solar flares and the predictable solar tidal effects could be used and further developed to forecast the dangerous space weather and therefore reduce its destructive power against the humans in space and satellites controlling mobile phones and global positioning satellite (GPS) systems.

  13. Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, Jennifer; Joseph, Renu

    2013-09-14

    The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less

  14. Tides and Modern Geodesy

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Chao, Benjamin F. (Technical Monitor)

    2002-01-01

    In modem high-precision geodesy, and especially in modem space geodesy, every measurement that one makes contains tidal signals. Generally these signals are considered noise and must somehow be eliminated. The stringent requirements of the latest space geodetic missions place severe demands on tidal models. On the other hand, these missions provide the strongest data for improving tidal models. In particular, TOPEX/POSEIDON altimetry and LAGEOS laser ranging have improved models to such an extent that new geophysical information about the ocean and the solid Earth are coming to light. Presumably GRACE intersatellite ranging data will also add to this information. This paper discusses several of these new geophysical results, with special emphasis given to the dissipation of tidal energy. Strong constraints have recently been placed on the partitioning of energy dissipation among the ocean, atmosphere, and solid earth and between the deep and shallow ocean. The dissipation in deep water is associated with internal tides and has potentially important implications for understanding the ocean's thermohaline circulation.

  15. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  16. A tide prediction and tide height control system for laboratory mesocosms

    PubMed Central

    Long, Jeremy D.

    2015-01-01

    Experimental mesocosm studies of rocky shore and estuarine intertidal systems may benefit from the application of natural tide cycles to better replicate variation in immersion time, water depth, and attendant fluctuations in abiotic and edaphic conditions. Here we describe a stand-alone microcontroller tide prediction open-source software program, coupled with a mechanical tidal elevation control system, which allows continuous adjustment of aquarium water depths in synchrony with local tide cycles. We used this system to monitor the growth of Spartina foliosa marsh cordgrass and scale insect herbivores at three simulated shore elevations in laboratory mesocosms. Plant growth decreased with increasing shore elevation, while scale insect population growth on the plants was not strongly affected by immersion time. This system shows promise for a range of laboratory mesocosm studies where natural tide cycling could impact organism performance or behavior, while the tide prediction system could additionally be utilized in field experiments where treatments need to be applied at certain stages of the tide cycle. PMID:26623195

  17. Assessing the importance of internal tide scattering in the deep ocean

    NASA Astrophysics Data System (ADS)

    Haji, Maha; Peacock, Thomas; Carter, Glenn; Johnston, T. M. Shaun

    2014-11-01

    Tides are one of the main sources of energy input to the deep ocean, and the pathways of energy transfer from barotropic tides to turbulent mixing scales via internal tides are not well understood. Large-scale (low-mode) internal tides account for the bulk of energy extracted from barotropic tides and have been observed to propagate over 1000 km from their generation sites. We seek to examine the fate of these large-scale internal tides and the processes by which their energy is transferred, or ``scattered,'' to small-scale (high-mode) internal tides, which dissipate locally and are responsible for internal tide driven mixing. The EXperiment on Internal Tide Scattering (EXITS) field study conducted in 2010-2011 sought to examine the role of topographic scattering at the Line Islands Ridge. The scattering process was examined via data from three moorings equipped with moored profilers, spanning total depths of 3000--5000 m. The results of our field data analysis are rationalized via comparison to data from two- and three-dimensional numerical models and a two-dimensional analytical model based on Green function theory.

  18. Tidal tomography constrains Earth's deep-mantle buoyancy.

    PubMed

    Lau, Harriet C P; Mitrovica, Jerry X; Davis, James L; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David

    2017-11-15

    Earth's body tide-also known as the solid Earth tide, the displacement of the solid Earth's surface caused by gravitational forces from the Moon and the Sun-is sensitive to the density of the two Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific. These massive regions extend approximately 1,000 kilometres upward from the base of the mantle and their buoyancy remains actively debated within the geophysical community. Here we use tidal tomography to constrain Earth's deep-mantle buoyancy derived from Global Positioning System (GPS)-based measurements of semi-diurnal body tide deformation. Using a probabilistic approach, we show that across the bottom two-thirds of the two LLSVPs the mean density is about 0.5 per cent higher than the average mantle density across this depth range (that is, its mean buoyancy is minus 0.5 per cent), although this anomaly may be concentrated towards the very base of the mantle. We conclude that the buoyancy of these structures is dominated by the enrichment of high-density chemical components, probably related to subducted oceanic plates or primordial material associated with Earth's formation. Because the dynamics of the mantle is driven by density variations, our result has important dynamical implications for the stability of the LLSVPs and the long-term evolution of the Earth system.

  19. Thermal tides in the dusty martian atmosphere: a verification of theory.

    PubMed

    Zurek, R W; Leovy, C B

    1981-07-24

    Major features of the daily surface pressure oscillations observed by the Viking landers during the two great dust storms on Mars in 1977 can be explained in terms of the classical atmospheric tidal theory developed for the earth's atmosphere. The most dramatic exception is the virtual disappearance of only the diurnal tide at Viking Lander 1 just before the second storm. This disappearance is attributed to destructive interference between the usually westward-traveling tide and an eastward-traveling diurnal Kelvin mode generated by orographically induced differential heating. The continuing Viking Lander 1 pressure measurements can be used with the model to monitor future great dust storms.

  20. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Tracking of LAGEOS for polar motion and Earth rotation studies and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination continues. The BE-C and Starlette satellites were tracked for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics.

  1. Waves: Internal Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1999-01-01

    Oceanic internal tides are internal waves with tidal periodicities. They are ubiquitous throughout the ocean, although generally more pronounced near large bathymetric features such as mid-ocean ridges and continental slopes. The internal vertical displacements associated with these waves can be extraordinarily large. Near some shelf breaks where the surface tides are strong, internal displacements (e.g., of an isothermal surface) can exceed 200 meters. Displacements of 10 meters in the open ocean are not uncommon. The associated current velocities are usually comparable to or larger than the currents of the surface tide. On continental shelves internal tides can occasionally generate packets of internal solitons, which are detectable in remote sensing imagery. Other common nonlinear features are generation of higher harmonics (e.g., 6-hr waves) and wave breaking. Internal tides are known to be an important energy source for mixing of shelf waters. Recent research suggests that they may also be a significant energy source for deep-ocean mixing.

  2. Tides at the east coast of Lanzarote Island

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Vélez, E. J.

    2012-04-01

    The main goal of this work is the study of the ocean tides at the east coast of Lanzarote (Canary Islands). We have analyzed time series of tide gauge and bottom pressure observations available in the region and we have made a further comparative validation with recent global and local ocean tide models. Lanzarote island shows singular features, with regard its volcanic structure and geomorphological properties and, also, concerning the characteristics of the ocean tides in the surrounding waters. For this reason, this region experiences a great interest in Geodesy and Geodynamics. Particularly, an accurate modelization of the ocean tides is of great importance to correct with high accuracy the effect of the ocean over the multiple geodetic measurements that are being carried out in the Geodynamic Laboratory of Lanzarote, LGL (Vieira et al., 1991; 2006). Furthermore, the analysis of tide gauge and bottom pressure records in this area is of great importance to investigate sea level variations, to evaluate and quantify the causes of these changes and the possible correlation with vertical movements of the Earth's crust. The time series of sea level and bottom pressure data considered in this work are obtained at two different locations of the island and, in each of them, using several sensors at different periods of time. First location is Jameos del Agua (JA) station, which belongs to the LGL. This station is placed in the open ocean, 200 meters distant from the northeastern coast of the island and at 8 meters depth. The observations have been carried out using 3 bottom pressure sensors (Aanderaa WLR7, SAIV TD301A and Aqualogger 210PT) at different periods of time (spanning a total of six years). Second location is Arrecife (AR) station, which is 23 km south of JA station. In this case, the sea level data come from a float tide gauge belonging to the Instituto Español de Oceanografía, installed at the beginning of the loading bay, and a radar tide gauge from the

  3. Landslide movement in southwest Colorado triggered by atmospheric tides

    USGS Publications Warehouse

    Schulz, W.H.; Kean, J.W.; Wang, G.

    2009-01-01

    Landslides are among the most hazardous of geological processes, causing thousands of casualties and damage on the order of billions of dollars annually. The movement of most landslides occurs along a discrete shear surface, and is triggered by a reduction in the frictional strength of the surface. Infiltration of water into the landslide from rainfall and snowmelt and ground motion from earthquakes are generally implicated in lowering the frictional strength of this surface. However, solid-Earth and ocean tides have recently been shown to trigger shear sliding in other processes, such as earthquakes and glacial motion. Here we use observations and numerical modelling to show that a similar processatmospheric tidescan trigger movement in an ongoing landslide. The Slumgullion landslide, located in the SanJuan Mountains of Colorado, shows daily movement, primarily during diurnal low tides of the atmosphere. According to our model, the tidal changes in air pressure cause air and water in the sediment pores to flow vertically, altering the frictional stress of the shear surface; upward fluid flow during periods of atmospheric low pressure is most conducive to sliding. We suggest that tidally modulated changes in shear strength may also affect the stability of other landslides, and that the rapid pressure variations associated with some fast-moving storm systems could trigger a similar response. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  4. COCONet enhancements to circum-Caribbean tsunami warning, tidal, and sea-level monitoring: update on tide gauge installations

    NASA Astrophysics Data System (ADS)

    Dausz, K.; Dittmann, S. T.; Feaux, K.; von Hillebrandt-Andrade, C.; Mattioli, G. S.; Normandeau, J.

    2014-12-01

    The Continually Operating Caribbean GPS Observational Network (COCONet) is a National Science Foundation (NSF) funded multi-hazard geodetic and meteorological network distributed throughout the Caribbean, which provides infrastructure and capacity building for a broad range of earth science questions. The network is a multi-national collaboration consisting of 46 newly constructed continuous Global Positioning Systems (cGPS) and 21 refurbished existing GPS stations, all co-located with meteorological sensors. One recommendation of the COCONet working group was to improve the vertical reference frame for long-term sea level monitoring. A COCONet supplement was awarded by the NSF to further address this particular objective through the co-location of GPS and tide gauges. This COCOnet infrastructure, along with the new tide gauges, will have broad scientific implications for hazards mitigation, solid earth, and atmospheric science research. UNAVCO engineers have meet with members of the Caribbean tide gauge community to establish target locations and design station layout. Allocated NSF funds allow for the construction of two complete new tide gauge systems each with two complimentary cGPS. Following the recommendations of NOAA and the sea level monitoring community, the two "new" locales will be Port Royal, Jamaica and Puerto Morelos, Mexico. Both locations had previously existing, but currently non-operational tide gauges. UNAVCO engineers will install a Sutron Radar Level Recorder and a backup pressure sensor tide gauge with GOES satellite telemetry. Tide data will be freely available by the Intergovernmental Oceanographic Commission (www.ioc-sealevelmonitoring.org). The NSF supplement also provided funds for adding cGPS to two additional locations where currently functioning tide gauge systems exist. Proposed locations for this additional infrastructure are Barahona, Dominican Republic and Bocas del Toro, Panama. All four locations will feature two standard

  5. Vertical land motion along the coast of Louisiana: Integrating satellite altimetry, tide gauge and GPS

    NASA Astrophysics Data System (ADS)

    Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.

    2017-12-01

    Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.

  6. Thermal Tides During the 2001 Martian Global-Scale Dust Storm

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Wilson, R. John; McConnochie, Timothy H.; Toigo, Anthony D.; Bandfield, Donald J.; Smith, Michael D.

    2014-01-01

    The 2001 (Mars Year 25) global dust storm radically altered the dynamics of the Martian atmosphere. Using observations from the Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft and Mars WRF general circulation model simulations, we examine the changes to thermal tides and planetary waves caused by the storm. We find that the extratropical diurnal migrating tide is dramatically enhanced during the storm, particularly in the southern hemisphere, reaching amplitudes of more than 20 K. The tropical diurnal migrating tide is weakened to almost undetectable levels. The diurnal Kelvin waves are also significantly weakened, particularly during the period of global expansion at Ls=200deg-210deg. In contrast, the westward propagating diurnal wavenumber 2 tide strengthens to 4-8 K at altitudes above 30km. The wavenumber 1 stationary wave reaches amplitudes of 10-12 K at 50deg-70degN, far larger than is typically seen during this time of year. The phase of this stationary wave and the enhancement of the diurnal wavenumber 2 tide appear to be responses to the high-altitude westward propagating equatorial wavenumber 1 structure in dust mixing ratio observed during the storm in previous works. This work provides a global picture of dust storm wave dynamics that reveals the coupling between the tropics and high-latitude wave responses. We conclude that the zonal distribution of thermotidal forcing from atmospheric aerosol concentration is as important to understanding the atmospheric wave response as the total global mean aerosol optical depth.

  7. Development of a new model for short period ocean tidal variations of Earth rotation

    NASA Astrophysics Data System (ADS)

    Schuh, Harald

    2015-08-01

    Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.

  8. Resonant Third-Degree Diurnal Tides in the Seas Off Western Europe

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Smith, David E. (Technical Monitor)

    2000-01-01

    Third-degree diurnal tides are estimated from long time series of sea level measurements at three North Atlantic tide gauges. Although their amplitudes are only a few mm or less, their admittances are far larger than those of second-degree diurnal tides, just as Cartwright discovered for the M(sub 1) constituent. The tides are evidently resonantly enhanced owing to high spatial correlation between the third-degree spherical harmonic of the tidal potential and a near-diurnal oceanic normal mode that is most pronounced in the North Atlantic. By estimating the ocean tidal response across the diurnal band (5 tidal constituents plus nodal modulations), the period and Q of this mode and one nearby mode are estimated.

  9. Tides and tsunamis

    NASA Technical Reports Server (NTRS)

    Zetler, B. D.

    1972-01-01

    Although tides and tsunamis are both shallow water waves, it does not follow that they are equally amenable to an observational program using an orbiting altimeter on a satellite. A numerical feasibility investigation using a hypothetical satellite orbit, real tide observations, and sequentially increased levels of white noise has been conducted to study the degradation of the tidal harmonic constants caused by adding noise to the tide data. Tsunami waves, possibly a foot high and one hundred miles long, must be measured in individual orbits, thus requiring high relative resolution.

  10. Using an Altimeter-Derived Internal Tide Model to Remove Tides from in Situ Data

    NASA Technical Reports Server (NTRS)

    Zaron, Edward D.; Ray, Richard D.

    2017-01-01

    Internal waves at tidal frequencies, i.e., the internal tides, are a prominent source of variability in the ocean associated with significant vertical isopycnal displacements and currents. Because the isopycnal displacements are caused by ageostrophic dynamics, they contribute uncertainty to geostrophic transport inferred from vertical profiles in the ocean. Here it is demonstrated that a newly developed model of the main semidiurnal (M2) internal tide derived from satellite altimetry may be used to partially remove the tide from vertical profile data, as measured by the reduction of steric height variance inferred from the profiles. It is further demonstrated that the internal tide model can account for a component of the near-surface velocity as measured by drogued drifters. These comparisons represent a validation of the internal tide model using independent data and highlight its potential use in removing internal tide signals from in situ observations.

  11. Wind Stress Forcing of the North Sea "Pole Tide"

    NASA Technical Reports Server (NTRS)

    OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.

    1998-01-01

    We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.

  12. A survey of the theory of the Earth's rotation

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1981-01-01

    The theory of the Earth's rotation and the geophysical phenomena affecting it is examined. First principles are reviewed and the problem of polar motion and UT1 variations is formulated in considerable generality and detail. The effects of Earth deformations and the solid Earth tides are analyzed.

  13. Direct estimation of tidally induced Earth rotation variations observed by VLBI

    NASA Astrophysics Data System (ADS)

    Englich, S.; Heinkelmann, R.; BOHM, J.; Schuh, H.

    2009-09-01

    The subject of our study is the investigation of periodical variations induced by solid Earth tides and ocean tides in Earth rotation parameters (ERP: polar motion, UT1)observed by VLBI. There are two strategies to determine the amplitudes and phases of Earth rotation variations from observations of space geodetic techniques. The common way is to derive time series of Earth rotation parameters first and to estimate amplitudes and phases in a second step. Results obtained by this means were shown in previous studies for zonal tidal variations (Englich et al.; 2008a) and variations caused by ocean tides (Englich et al.; 2008b). The alternative method is to estimate the tidal parameters directly within the VLBI data analysis procedure together with other parameters such as station coordinates, tropospheric delays, clocks etc. The purpose of this work was the application of this direct method to a combined VLBI data analysis using the software packages OCCAM (Version 6.1, Gauss-Markov-Model) and DOGSCS (Gerstl et al.; 2001). The theoretical basis and the preparatory steps for the implementation of this approach are presented here.

  14. Using inquiry-based instruction with Web-based data archives to facilitate conceptual change about tides among preservice teachers

    NASA Astrophysics Data System (ADS)

    Ucar, Sedat

    The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual

  15. Improving the detection of tectonic transients in Japan by accounting for Earth's deformation response to surface mass loading

    NASA Astrophysics Data System (ADS)

    Martens, H. R.; Simons, M.; Moore, A. W.; Owen, S. E.; Rivera, L. A.

    2016-12-01

    We explore the contributions of oceanic, atmospheric, and hydrologic mass loading to Global Navigation Satellite System (GNSS)-inferred observations of surface displacements in Japan. Surface mass loading (SML) generates mm- to cm-level deformation of the solid Earth on time scales of hours to years, which exceeds the measurement uncertainties of most GNSS position estimates. By improving the efficiency and accuracy of the prediction and empirical estimation of SML response, we aim to reduce the variance of GNSS time series and therefore enhance the ability to resolve subtle tectonic signals, such as aseismic transients associated with subduction zone processes. Using the GIPSY software in precise point positioning mode, we estimate time series of sub-daily receiver positions for the GNSS Earth Observation Network System (GEONET) in Japan. We also model the Earth's elastic deformation response to a variety of surface mass loads, including loads of atmospheric (e.g., ECMWF) and oceanic (e.g., TPXO8-Atlas, ECCO2) origin. We extract periodic signals, such as the ocean tides and seasonal variations in hydrological loading, using harmonic analysis. Deformation caused by non-periodic loads, such as non-tidal oceanic and atmospheric loads, can be predicted and removed to further reduce the variance. We seek to streamline the workflow for estimating SML-induced surface displacements from a variety of sources in order to account for loading signals in routine GNSS data processing, thereby improving the ability to assess the mechanics of plate boundaries.

  16. Barometric Tides from ECMWF Operational Analyses

    NASA Technical Reports Server (NTRS)

    Ray, R. D.; Ponte, R. M.

    2003-01-01

    The solar diurnal and semidiurnal tidal oscillations in surface pressure are extracted from the the operational analysis product of the European Centre for Medium Range Weather Forecasting (ECMWF). For the semidiurnal tide this involves a special temporal interpolation, following Van den Dool and colleagues. The resulting tides are compared with a ground truth tide dataset, a compilation of well-determined tide estimates deduced from long time series of station barometer measurements. These comparisons show that the ECMWF tides are significantly more accurate than the tides deduced from two other widely available reanalysis products. Spectral analysis of ECMWF pressure series shows that the tides consist of sharp central peaks with modulating sidelines at integer multiples of 1 cycle/year, superimposed on a broad cusp of stochastic energy. The integrated energy in the cusp dominates that of the sidelines. This complicates development of a simple model that can characterize the full temporal variability of the tides.

  17. The measurement of Earth rotation on a deformable Earth

    NASA Technical Reports Server (NTRS)

    Cannon, W. H.

    1980-01-01

    Until recently, the methods of geodetic positioning on the Earth were limited to a precision of roughly one part in 10 to the 6th power. At this level of precision, the Earth can be regarded as a rigid body since the largest departure of the Earth from rigidity is manifested in the strains of the Earth tides which are of the order of one part in 10 to the 7th power. Long baseline interferometry is expected to routinely provide global positioning to a precision of one part in 10 to the 8th power or better. At this level of precision, all parts of the Earth's surface must be regarded as being, at least potentially, in continual motion relative to the geocenter as a result of a variety of geophysical effects. The general implications of this phenomenon for the theory of the Earth's rotation is discussed. Particular attention is given to the question of the measurement of the 'Earth's rotation vector' on a deformable Earth.

  18. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    NASA Astrophysics Data System (ADS)

    Dinger, Florian; Bobrowski, Nicole; Warnach, Simon; Bredemeyer, Stefan; Hidalgo, Silvana; Arellano, Santiago; Galle, Bo; Platt, Ulrich; Wagner, Thomas

    2018-03-01

    We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. The BrO/SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua) suggest a possible link between a drop in BrO/SO2 and a future explosion. In addition, the observed relatively high BrO/SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the north-south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local

  19. Ocean tides for satellite geodesy

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    Spherical harmonic tidal solutions have been obtained at the frequencies of the 32 largest luni-solar tides using prior theory of the author. That theory was developed for turbulent, nonglobal, self-gravitating, and loading oceans possessing realistic bathymetry and linearized bottom friction; the oceans satisfy no-flow boundary conditions at coastlines. In this theory the eddy viscosity and bottom drag coefficients are treated as spatially uniform. Comparison of the predicted degree-2 components of the Mf, P1, and M2 tides with those from numerical and satellite-based tide models allows the ocean friction parameters to be estimated at long and short periods. Using the 32 tide solutions, the frequency dependence of tidal admittance is investigated, and the validity of sideband tide models used in satellite orbit analysis is examined. The implications of admittance variability for oceanic resonances are also explored.

  20. Polar Motion Constraints on Models of the Fortnightly Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2002-01-01

    Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by

  1. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    NASA Astrophysics Data System (ADS)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  2. Application of the Convolution Formalism to the Ocean Tide Potential: Results from the Gravity and Recovery and Climate Experiment (GRACE)

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Yuan, D. -N.

    2006-01-01

    A computationally efficient approach to reducing omission errors in ocean tide potential models is derived and evaluated using data from the Gravity Recovery and Climate Experiment (GRACE) mission. Ocean tide height models are usually explicitly available at a few frequencies, and a smooth unit response is assumed to infer the response across the tidal spectrum. The convolution formalism of Munk and Cartwright (1966) models this response function with a Fourier series. This allows the total ocean tide height, and therefore the total ocean tide potential, to be modeled as a weighted sum of past, present, and future values of the tide-generating potential. Previous applications of the convolution formalism have usually been limited to tide height models, but we extend it to ocean tide potential models. We use luni-solar ephemerides to derive the required tide-generating potential so that the complete spectrum of the ocean tide potential is efficiently represented. In contrast, the traditionally adopted harmonic model of the ocean tide potential requires the explicit sum of the contributions from individual tidal frequencies. It is therefore subject to omission errors from neglected frequencies and is computationally more intensive. Intersatellite range rate data from the GRACE mission are used to compare convolution and harmonic models of the ocean tide potential. The monthly range rate residual variance is smaller by 4-5%, and the daily residual variance is smaller by as much as 15% when using the convolution model than when using a harmonic model that is defined by twice the number of parameters.

  3. Comparison of Regression Methods to Compute Atmospheric Pressure and Earth Tidal Coefficients in Water Level Associated with Wenchuan Earthquake of 12 May 2008

    NASA Astrophysics Data System (ADS)

    He, Anhua; Singh, Ramesh P.; Sun, Zhaohua; Ye, Qing; Zhao, Gang

    2016-07-01

    The earth tide, atmospheric pressure, precipitation and earthquake fluctuations, especially earthquake greatly impacts water well levels, thus anomalous co-seismic changes in ground water levels have been observed. In this paper, we have used four different models, simple linear regression (SLR), multiple linear regression (MLR), principal component analysis (PCA) and partial least squares (PLS) to compute the atmospheric pressure and earth tidal effects on water level. Furthermore, we have used the Akaike information criterion (AIC) to study the performance of various models. Based on the lowest AIC and sum of squares for error values, the best estimate of the effects of atmospheric pressure and earth tide on water level is found using the MLR model. However, MLR model does not provide multicollinearity between inputs, as a result the atmospheric pressure and earth tidal response coefficients fail to reflect the mechanisms associated with the groundwater level fluctuations. On the premise of solving serious multicollinearity of inputs, PLS model shows the minimum AIC value. The atmospheric pressure and earth tidal response coefficients show close response with the observation using PLS model. The atmospheric pressure and the earth tidal response coefficients are found to be sensitive to the stress-strain state using the observed data for the period 1 April-8 June 2008 of Chuan 03# well. The transient enhancement of porosity of rock mass around Chuan 03# well associated with the Wenchuan earthquake (Mw = 7.9 of 12 May 2008) that has taken its original pre-seismic level after 13 days indicates that the co-seismic sharp rise of water well could be induced by static stress change, rather than development of new fractures.

  4. Hydrodynamical simulations of strong tides in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Guillochon, James

    2013-07-01

    At the simplest level, gravitational sources are considered to be point-like and in solitude, with a radial force that falls off as r -2. In reality, all astrophysical objects aside from black holes are extended in space, and can be deformed by the tidal forces arising from the proximity of companion objects with large average densities. When these forces are weak, the response of an object to a tide can be through a decomposition into basis functions, but this approach fails when the tide is strong enough to deform an object by a distance equal to its own size. Under these circumstances, a hydrodynamical representation of the object is required to understand the true tidal response. In this thesis, we present a number of examples of physical systems in which tides dominate the dynamics. First, we consider the case of a star that encounters a supermassive black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that produces shocks that would be observable in the X-ray. Second, we present the results of hydrodynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we investigate the survival prospects of giant planets that have been scattered into highly eccentricity orbits and are exposed to a strong tide applied by their parent star. Fourth, we systematically map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use what we have learned about the feeding rate to model determine the highest-likelihood model for an observed prototypical tidal disruption event.

  5. Lunar Core and Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2004-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2,3,4] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening, which in the past has been marginal but improving [3,4,5], now seems significant. Direct detection of the core moment has not yet been achieved.

  6. Environmental exposures to Florida red tides: Effects on emergency room respiratory diagnoses admissions.

    PubMed

    Kirkpatrick, Barbara; Fleming, Lora E; Backer, Lorraine C; Bean, Judy A; Tamer, Robert; Kirkpatrick, Gary; Kane, Terrance; Wanner, Adam; Dalpra, Dana; Reich, Andrew; Baden, Daniel G

    2006-10-01

    Human exposure to Florida red tides formed by Karenia brevis, occurs from eating contaminated shellfish and inhaling aerosolized brevetoxins. Recent studies have documented acute symptom changes and pulmonary function responses after inhalation of the toxic aerosols, particularly among asthmatics. These findings suggest that there are increases in medical care facility visits for respiratory complaints and for exacerbations of underlying respiratory diseases associated with the occurrence of Florida red tides.This study examined whether the presence of a Florida red tide affected the rates of admission with a respiratory diagnosis to a hospital emergency room in Sarasota, FL. The rate of respiratory diagnoses admissions were compared for a 3-month time period when there was an onshore red tide in 2001 (red tide period) and during the same 3-month period in 2002 when no red tide bloom occurred (non-red tide period). There was no significant increase in the total number of respiratory admissions between the two time periods. However, there was a 19% increase in the rate of pneumonia cases diagnosed during the red tide period compared with the non-red tide period. We categorized home residence zip codes as coastal (within 1.6 km from the shore) or inland (>1.6 km from shore). Compared with the non-red tide period, the coastal residents had a significantly higher (54%) rate of respiratory diagnoses admissions than during the red tide period. We then divided the diagnoses into subcategories (i.e. pneumonia, bronchitis, asthma, and upper airway disease). When compared with the non-red tide period, the coastal zip codes had increases in the rates of admission of each of the subcategories during the red tide period (i.e. 31, 56, 44, and 64%, respectively). This increase was not observed seen in the inland zip codes.These results suggest that the healthcare community has a significant burden from patients, particularly those who live along the coast, needing emergency

  7. Tides and deltaic morphodynamics

    NASA Astrophysics Data System (ADS)

    Plink-Bjorklund, Piret

    2016-04-01

    Tide-dominated and tide-influenced deltas are not widely recognized in the ancient record, despite the numerous modern and Holocene examples, including eight of the twelve modern largest deltas in the world, like the Ganges-Brahmaputra, Amazon, Chang Jiang, and Irrawadi. Furthermore, tide-dominated or tide-influenced deltas are suggested to be more common in inner-shelf or embayment settings rather than close to or at a shelf edge, primarily because wave energy is expected to be higher and tidal energy lower in outer shelf and shelf-edge areas. Thus, most shelf-edge deltas are suggested to be fluvial or wave dominated. However, there are ancient examples of tide-influenced shelf-edge deltas, indicating that the controls on tidal morphodynamics in deltas are not yet well understood. This paper asks the following questions: (1) How do tides influence delta deposition, beyond creating recognizable tidal facies? (2) Does tidal reworking create specific geometries in delta clinoforms? (3) Does tidal reworking change progradation rates of deltas? (4) Is significant tidal reworking of deltas restricted to inner-shelf deltas only? (5) What are the conditions at which deltas may be tidally influenced or tide-dominated in outer-shelf areas or at the shelf edge? (6) What are the main morphodynamic controls on the degree of tidal reworking of deltas? The paper utilizes a dataset of multiple ancient and modern deltas, situated both on the shelf and shelf edge. We show that beyond the commonly recognized shore-perpendicular morphological features and the recognizable tidal facies, the main effects of tidal reworking of deltas are associated with delta clinoform morphology, morphodynamics of delta lobe switching, delta front progradation rates, and the nature of the delta plain. Strong tidal influence is here documented to promote subaqueous, rapid progradation of deltas, by efficiently removing sediment from river mouth and thus reducing mouth bar aggradation and fluvial delta

  8. M2 ocean tide parameters and the deceleration of the moon's mean longitude from satellite orbit data

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Williamson, R. G.

    1979-01-01

    An estimation is made of the principal long-period spherical harmonic parameters in the representation of the M2 ocean tide from the orbital histories of the three satellites 1967-92A, Starlette, and GEOS 3. The data used are primarily the evolution of the orbital inclinations of the satellites in conjunction with the longitude of the ascending node from GEOS 3. Analysis procedure and analytic formulation, as well as ocean tidal parameter estimation and deceleration of the lunar mean longitude are outlined. The credibility of the M2 ocean tide solution is further enhanced by the close accord between the computed value for the deceleration of the lunar mean longitude and other recently reported estimates. It is evident from the results presented that studies of close earth satellite orbits are able to provide important information about the tidal forces acting on the earth.

  9. Proceedings of the Geodesy/Solid Earth and Ocean Physics (GEOP) Research Conferences

    NASA Technical Reports Server (NTRS)

    Mueller, I. I. (Editor)

    1975-01-01

    Papers are presented dealing with interdisciplinary research in the fields of geodesy, solid earth and ocean physics. Topics discussed include: solid earth and ocean tides; the rotation of the earth and polar motion; vertical crustal motions; the geoid and ocean surface; earthquake mechanism; sea level changes; and lunar dynamics.

  10. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    NASA Astrophysics Data System (ADS)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  11. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The major focus for operations during this period was the preliminary MERIT Campaign and its intensive tracking of LAGEOS for polar motion and Earth rotation studies. The data acquired from LAGEOS were used for other geophysical investigations, including studies of crustal dynamics, and Earth and ocean tides, and for the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and Earth's gravity field and for studies of solid Earth dynamics.

  12. Possible forcing of global temperature by the oceanic tides

    PubMed Central

    Keeling, Charles D.; Whorf, Timothy P.

    1997-01-01

    An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740

  13. Time variations in the Earth's gravity field

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Eanes, R. J.

    1992-01-01

    At the present time, the causes and consequences of changes in the Earth's gravity field due to geophysical and meteorological phenomena are not well understood. The Earth's gravity field represents the complicated distribution of all of the matter that makes up our planet. Its variations are caused by the motions of the solid Earth interacting with the gravitational attraction of the Sun and the Moon (tides) and with the Earth's atmosphere, oceans, polar ice caps and groundwater due to changing weather patterns. These variations influence the rotation of the Earth, alter the orbits of Earth satellites, cause sea level fluctuations, and indirectly affect the global climate pattern.

  14. Study on Interaction Between Diurnal Tide and Atmospheric Aerosols Observed by Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Li, T.

    2016-12-01

    The increased local time coverage observed by Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter (MRO) can enable direct extraction of thermal tides in Mars middle atmosphere with reduced aliasing. Using temperature profiles from Mars year (MY) 30 to 32, we study the latitudinal and seasonal variations of tides and stationary planetary waves with zonal wave numbers s = 1-3. The amplitude of the migrating diurnal tide (DW1) has strong semiannual variations both in the equatorial region and in the Southern Hemisphere (SH) middle latitudes. Aerosols widely distributed in the atmosphere of Mars, namely, dust and water ice also show apparent diurnal variations, which may be caused by a dynamical process of tidal vertical wind. Tidal response in dust abundance indicates an annual variation with maximum amplitude in aphelion seasons while the background abundance of dust peaks in perihelion seasons when global dust storm occurs frequently, which suggests that extremely large abundance of dust may restrain its own tidal response. Water ice abundance in the middle latitudes has a semiannual variation which is similar to the thermal diurnal tide. In addition, the diurnal heating rate of aerosols is calculated and Hough decomposition is performed to estimate the radiative effect of aerosols on diurnal tide.

  15. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide. The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine. The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra

  16. Red Tide Strands South African Rock Lobsters

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Although some red tides form a healthy part of phytoplankton production, recurrent harmful or toxic blooms also occur, with results depending upon the type of plankton and on atmospheric and oceanic conditions. At Elands Bay in South Africa's Western Cape province, about 1000 tons of rock lobsters beached themselves during February 2002, when the decay of dense blooms of phytoplankton caused a rapid reduction in the oxygen concentration of nearshore waters. The lobsters (or crayfish, as they are known locally) moved toward the breaking surf in search of oxygen, but were stranded by the retreating tide.

    The Multi-angle Imaging SpectroRadiometer's nadir camera acquired these red, green, blue composites on February 2 and 18, 2002, during Terra orbits 11315 and 11548. The colors have been accentuated to highlight the bloom, and land and water have been enhanced separately. The two views show the shoreward migration of the algal bloom. Each image represents an area of about 205 kilometers x 330 kilometers. Elands Bay is situated near the mouth of the Doring River, about 75 kilometers northeast of the jutting Cape Columbine.

    The term 'red tide' is used to refer to a number of different types of phytoplankton blooms of various hues. The wine color of certain parts of this bloom are consistent with the ciliate species Mesodinium rubrum, which has been associated with recurring harmful algal blooms along the Western Cape coast. Under these conditions, the lobsters are not poisoned. During the recent event, government and military staff transported as many of the living lobsters as possible to areas that were less affected by the red tide. At the same time, people came from across South Africa to gather the undersized creatures for food. The effects of the losses on the maritime economy are expected to be felt over the next few years.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington

  17. Earth and ocean dynamics satellites and systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1975-01-01

    An overview is presented of the present state of satellite and ground systems making observations of the dynamics of the solid earth and the oceans. Emphasis is placed on applications of space technology for practical use. Topics discussed include: satellite missions and results over the last two decades in the areas of earth gravity field, polar motions, earth tides, magnetic anomalies, and satellite-to-satellite tracking; laser ranging systems; development of the Very Long Baseline Interferometer; and Skylab radar altimeter data applications.

  18. Earth tides, volcanos and climatic change

    NASA Technical Reports Server (NTRS)

    Roosen, R. G.; Harrington, R. S.; Giles, J.; Browning, I.

    1976-01-01

    The effect of variations in tidal stresses on the earth caused by the sun and moon on volcanic activity and climate is investigated. A statistically significant correlation is found between the derivatives of the envelopes of peak tidal stresses at high northern latitudes and the mean temperature of the Northern Hemisphere as reflected in oxygen isotope ratios in the Greenland ice cap. It is suggested that variations in tidal stresses cause changes in the amount of stratospheric dust produced by volcanic activity, which affects the thickness of the stratospheric dust veil and the atmospheric radiation balance. For a simple model, periodic variations in tidal stress account for 13% of the variance in the ice-core temperature record.

  19. ISEA (International geodetic project in SouthEastern Alaska) for rapid uplifting caused by glacial retreat: (4) Gravity tide observation

    NASA Astrophysics Data System (ADS)

    Sato, T.; Miura, S.; Sun, W.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Heavner, M.

    2006-12-01

    The southeastern Alaska shows a large uplift rate as 30 mm/yr at most, which is considered to be closely related to the glacial isostatic adjustment (GIA) including two effects of the past and present-day ice melting (Larsen et al., 2004). So, this area is important to improve our knowledge of the viscoelastic property of the earth and to consider the global changes. Combing the displacement and gravity observations is useful to constrain the model computation results for GIA (Sato et al., 2006). In order to progress the previous work by the group of Univ. Alaska, Fairbanks (UAF), an observation project by Japan and USA groups was started in 2005 (Miura et al., this meeting). Under this project, June 2006, the continuous GPS measurements started (M. Kufman et al., this meeting) and the absolute gravity (AG) measurements were conducted (W. Sun et al., this meeting). Precise correction for the effect of ocean tide loading is one of the key to increase the observation accuracy of the GPS and gravity observations, especially for the AG measurement. Thanks for the satellite sea surface altimeters such as TOPEX/Poseidon and Jason-1, the accuracy of global ocean tide models based on these data has been much improved, and its accuracy is estimated at a level better than 1.3 cm as a RMS error of the vector differences of the 8 main tidal waves (Matsumoto et al., 2006). However, on the other hand, it is known that the southeastern Alaska is a place that shows a large discrepancy among the proposed global ocean tide models mainly due to a complex topography and bathymetry of the fjord area. In order to improve the accuracy of the ocean tide correction, we started the gravity tide observation at Juneau from June 2006. Two kinds of gravimeters are used for the observation. Sampling interval of the data is at every 1 min. We analyzed the 1 month data from the beginning of the observation and compared the tidal analysis results with the model tide including both effects of the

  20. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  1. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Jr., Robert R.; Blanchard, Stephen F.; Simonovic, Slobodan P.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  2. Tidal distortion caused by the resonance of sexta-diurnal tides in a micromesotidal embayment

    NASA Astrophysics Data System (ADS)

    Song, Dehai; Yan, Yuhan; Wu, Wen; Diao, Xiliang; Ding, Yang; Bao, Xianwen

    2016-10-01

    Double high water and double-peak flood current were observed in Daya Bay (DYB), China, which is a shallow, mixed, mainly semidiurnal-tide dominated bay with a micro to mesotidal range. Harmonic analysis reveals that the quarter and especially the sexta-diurnal constituents are getting much stronger as tides propagating into the bay. The astronomical tides-induced tidal asymmetry is yet dominant at the bay entrance but overtaken by the sexta-diurnal tides at the end of the bay. Both the M4 and M6 tide meet the requirement proposed in previous studies but still unable to produce a double high water alone. Therefore, the conditions to produce a double high water between a fundamental tide and its higher harmonics need to be revisited. Analytical solutions were obtained in this paper, which fit the numerical solutions very well. Modeling result indicates M6 alone with M2 can produce the double high water in DYB but limited in some regions, while the combination of M2, M4, and M6 tides would enhance the capability. The amplification of sexta-diurnal tides in DYB is dominated by resonance and followed by shoaling effect. Bottom friction damped M6 a lot and largely confined its amplification. However, the quadratic friction and other nonlinear processes are just responsible for about 10% of the total M6 increase.

  3. King Tides and Climate Change

    EPA Pesticide Factsheets

    The highest predicted high tide of the year at a coastal location can bring unusually high water levels and can cause flooding. Learn about these tides including what they are, when they occur, and what they can mean for the future.

  4. Insights into aquifer vulnerability and potential recharge zones from the borehole response to barometric pressure changes

    NASA Astrophysics Data System (ADS)

    El Araby, Mahmoud; Odling, Noelle; Clark, Roger; West, Jared

    2010-05-01

    Borehole water levels fluctuate in response to deformation of the surrounding aquifer caused by surface loading due to barometric pressure or strain caused by Earth and ocean tides. The magnitude and nature of this response mainly depend on the hydraulic properties of the aquifer and overlying units and borehole design. Thus water level responses reflect the effectiveness of a confining unit as a protective layer against aquifer contamination (and therefore groundwater vulnerability) and to potential aquifer recharge/discharge zones. In this study, time series of borehole water levels and barometric pressure are being investigated using time series analysis and signal processing techniques with the aim of developing a methodology for assessing recharge/discharge distribution and groundwater vulnerability in the confined/semi-confined part of the Chalk aquifer in East Yorkshire, UK. The chalk aquifer in East Yorkshire is an important source for industrial and domestic water supply. The aquifer water quality is threatened by surface pollution particularly by nitrates from agricultural fertilizers. The confined/semi-confined part of this aquifer is covered by various types of superficial deposits resulting in a wide range of the aquifer's degree of confinement. A number of boreholes have been selected for monitoring to cover all these various types of confining units. Automatic pressure transducers are installed to record water levels and barometric pressure measurements at each borehole on 15 minutes recording intervals. In strictly confined aquifers, borehole water level response to barometric pressure is an un-drained instantaneous response and is a constant fraction of the barometric pressure changes. This static confined constant is called the barometric efficiency which can be estimated simply by the slope of a regression plot of water levels versus barometric pressure. However, in the semi confined aquifer case this response is lagged due to water movement

  5. The Art of Red Tide Science

    PubMed Central

    Hall, Emily R.; Nierenberg, Kate; Boyes, Anamari J.; Heil, Cynthia A.; Flewelling, Leanne J.; Kirkpatrick, Barbara

    2012-01-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined “The Art of Red Tide Science,” consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues. PMID:22712002

  6. The Art of Red Tide Science.

    PubMed

    Hall, Emily R; Nierenberg, Kate; Boyes, Anamari J; Heil, Cynthia A; Flewelling, Leanne J; Kirkpatrick, Barbara

    2012-05-01

    Over the years, numerous outreach strategies by the science community, such as FAQ cards and website information, have been used to explain blooms of the toxic dinoflagellate, Karenia brevis that occur annually off the west coast of Florida to the impacted communities. Many state and federal agencies have turned to funded research groups for assistance in the development and testing of environmental outreach products. In the case of Florida red tide, the Fish and Wildlife Research Institute/Mote Marine Laboratory (MML) Cooperative Red Tide Agreement allowed MML to initiate a project aimed at developing innovative outreach products about Florida red tide. This project, which we coined "The Art of Red Tide Science," consisted of a team effort between scientists from MML and students from Ringling College of Art and Design. This successful outreach project focused on Florida red tide can be used as a model to develop similar outreach projects for equally complex ecological issues.

  7. Energetics of global ocean tides from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, David E.; Ray, Richard D.

    1991-01-01

    The present paper focuses on resonance and energetics of the daily tides, especially in the southern ocean, the distribution of gravitational power input of daily and half-daily tides, and comparison with other estimates of global dissipation rates. The present global tidal maps, derived from Geosat altimetry, compare favorably with ground truth data at about the same rms level as the models of Schwiderski (1983), and are slightly better in lunar than in solar tides. Diurnal admittances clearly show Kelvin wave structure in the southern ocean and confirm the resonant mode of Platzman (1984) at 28.5 + or - 0.1 hr with an apparent Q of about 4. Driving energy is found to enter dominantly in the North Pacific for the daily tides and is strongly peaked in the tropical oceans for the half-daily tides. Global rates of working on all major tide constituents except S2 agree well with independent results from analyses of gravity through satellite tracking. Comparison at S2 is improved by allowing for the air tide in gravitational results but suggests deficiencies in all solar tide models.

  8. Dependence of Lunar Tide of the Equatorial Electrojet on the Wintertime Polar Vortex, Solar Flux, and QBO

    NASA Astrophysics Data System (ADS)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.; Maute, A.; Pedatella, N.

    2018-05-01

    The lower atmospheric forcing effects on the ionosphere are particularly evident during extreme meteorological events known as sudden stratospheric warmings (SSWs). During SSWs, the polar stratosphere and ionosphere, two distant atmospheric regions, are coupled through the SSW-induced modulation of atmospheric migrating and nonmigrating tides. The changes in the migrating semidiurnal solar and lunar tides are the major source of ionospheric variabilities during SSWs. In this study, we use 55 years of ground-magnetometer observations to investigate the composite characteristics of the lunar tide of the equatorial electrojet (EEJ) during SSWs. These long-term observations allow us to capture the EEJ lunar tidal response to the SSWs in a statistical sense. Further, we examine the influence of solar flux conditions and the phases of quasi-biennial oscillation (QBO) on the lunar tide and find that the QBO phases and solar flux conditions modulate the EEJ lunar tidal response during SSWs in a similar way as they modulate the wintertime Arctic polar vortex. This work provides first evidence of modulation of the EEJ lunar tide due to QBO.

  9. Analyses of the solid earth and ocean tidal perturbations on the orbits of the Geos 1 and Geos 2 satellites

    NASA Technical Reports Server (NTRS)

    Felsentreger, T. L.; Marsh, J. G.; Agreen, R. W.

    1976-01-01

    Perturbations in the inclination of the Geos 1 and Geos 2 satellite orbits have been analyzed for the solid earth and ocean tide contributions. Precision reduced camera and Tranet Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modeled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc sec (36 m) in the inclination of Geos 1 and 4.5 arc sec (135 m) for Geos 2. The solid earth tides were then modeled by using the Love number 0.30. The resulting inclination residuals were then analyzed for ocean tide spherical harmonic parameters.

  10. Long term variabilities and tendencies of mesospheric lunar semidiurnal tide over Tirunelveli (8.7°N, 77.8°E)

    NASA Astrophysics Data System (ADS)

    Sathishkumar, S.; Sridharan, S.; Muhammed Kutty, P. V.; Gurubaran, S.

    2017-10-01

    The medium frequency radar deployed at Tirunelveli (8.7°N, 77.8°E), which is located near the southmost tip of peninsular India, have been providing continuous data from the year 1993 to the year 2012 that helped to study the long term tendencies in the lunar tidal variabilities over this geographic location. In the present paper we present the results of seasonal, interannual and long-term variabilities of lunar semi-diurnal tides in the upper mesosphere over Tirunelveli. The present study also includes comparison with model values. The study shows that the tidal amplitudes are larger in the meridional components of the mesospheric winds than the zonal winds. The seasonal variations of the tides are similar in both the components. The tides show maximum amplitudes of about ∼5 m/s in February/March, secondary maximum amplitudes of about ∼3 m/s in September and minimum amplitudes during summer months (May-August). The observed seasonal variation of the lunar tides do not compare well with Vial and Forbes (1994) model values, though it is consistent with earlier observations. The lunar tidal phase in meridional winds leads that in zonal winds from January to June and from September to November, while the latter leads the former during July/August. The lunar tides show large interannual variability. There are unusual amplitude enhancements in the lunar tide in meridional winds during the winters of 2006 and 2009, when major sudden stratospheric warmings (SSW) occurred at high latitude northern hemisphere, whereas zonal lunar tide does not show any clear association with the SSW. Vertical wavelengths of lunar tides in zonal and meridional wind are in the range of 20-90 km. The vertical wavelengths of lunar tides in both zonal and meridional component are smaller in June and larger in November and December. The monthly mean zonal and meridional winds are subjected to regression analysis to study the tidal response to long-period oscillations, namely, quasi

  11. Florida Red Tide Perception: Residents versus Tourists

    PubMed Central

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Tanga, Elvira; Dalpra, Dana R.; Kirkpatrick, Barbara

    2010-01-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide. PMID:20824108

  12. Florida Red Tide Perception: Residents versus Tourists.

    PubMed

    Nierenberg, Kate; Byrne, Margaret; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Tanga, Elvira; Dalpra, Dana R; Kirkpatrick, Barbara

    2010-09-01

    The west coast of Florida has annual blooms of the toxin-producing dinoflagellate, Karenia brevis with Sarasota, FL considered the epicenter for these blooms. Numerous outreach materials, including Frequently Asked Question (FAQ) cards, exhibits for local museums and aquaria, public beach signs, and numerous websites have been developed to disseminate information to the public about this natural hazard. In addition, during intense onshore blooms, a great deal of media attention, primarily via newspaper (print and web) and television, is focused on red tide. However to date, the only measure of effectiveness of these outreach methods has been counts of the number of people exposed to the information, e.g., visits to a website or number of FAQ cards distributed. No formal assessment has been conducted to determine if these materials meet their goal of informing the public about Florida red tide. Also, although local residents have the opinion that they are very knowledgeable about Florida red tide, this has not been verified empirically. This study addressed these issues by creating and administering an evaluation tool for the assessment of public knowledge about Florida red tide. A focus group of Florida red tide outreach developers assisted in the creation of the evaluation tool. The location of the evaluation was the west coast of Florida, in Sarasota County. The objective was to assess the knowledge of the general public about Florida red tide. This assessment identified gaps in public knowledge regarding Florida red tides and also identified what information sources people want to use to obtain information on Florida red tide. The results from this study can be used to develop more effective outreach materials on Florida red tide.

  13. Measuring storm tide and high-water marks caused by Hurricane Sandy in New York: Chapter 2

    USGS Publications Warehouse

    Simonson, Amy E.; Behrens, Riley

    2015-01-01

    In response to Hurricane Sandy, personnel from the U.S. Geological Survey (USGS) deployed a temporary network of storm-tide sensors from Virginia to Maine. During the storm, real-time water levels were available from tide gages and rapid-deployment gages (RDGs). After the storm, USGS scientists retrieved the storm-tide sensors and RDGs and surveyed high-water marks. These data demonstrate that the timing of peak storm surge relative to astronomical tide was extremely important in southeastern New York. For example, along the south shores of New York City and western Suffolk County, the peak storm surge of 6–9 ft generally coincided with the astronomical high tide, which resulted in substantial coastal flooding. In the Peconic Estuary and northern Nassau County, however, the peak storm surge of 9 ft and nearly 12 ft, respectively, nearly coincided with normal low tide, which helped spare these communities from more severe coastal flooding.

  14. Excitation mechanism of non-migrating tides

    NASA Astrophysics Data System (ADS)

    Miyoshi, Yasunobu; Pancheva, Dora; Mukhtarov, Plamen; Jin, Hidekatsu; Fujiwara, Hitoshi; Shinagawa, Hiroyuki

    2017-04-01

    Using an atmosphere-ionosphere coupled model, the excitation source and temporal (seasonal and interannual) variations in non-migrating tides are investigated in this study. We first focus our attention on temporal variations in eastward moving diurnal tide with zonal wavenumber 3 (DE3), which is the largest of all the non-migrating tides in the mesosphere and lower thermosphere (MLT). Our simulation results indicate that upward propagation of the DE3 excited in the troposphere is sensitive to the zonal mean zonal wind in the stratosphere and mesosphere. The DE3 amplitude is enhanced in the region where the vertical shear of the zonal mean zonal wind is positive (westerly shear). Quasi-2-year variation in the DE3 amplitude in the MLT region is generated by quasi-2-year variation in the zonal mean zonal wind between 40 and 70 km, which is modulated by the stratospheric QBO. The excitation mechanisms of SW3 (westward moving semidiurnal tide with zonal wavenumber 3) and SW1 (westward moving semidiurnal tide with zonal wavenumber 1) are also investigated. During equinoxes, the SW3 and SW1 are excited by tropospheric heating (latent heat release and solar radiative heating) associated with cumulus convection in the tropics, and propagate upward into the MLT region. On the other hand, during solstices, SW3 and SW1 are generated in the winter stratosphere and mesosphere through the nonlinear interaction between the stationary planetary wave and migrating semidiurnal tide, and propagate upward to the lower thermosphere. The excitation sources of other non-migrating tides are also discussed.

  15. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M; Studts, Jamie

    2014-02-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis , occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and 'snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods.

  16. Florida Red Tide Knowledge and Risk Perception: Is there a need for tailored messaging?

    PubMed Central

    Kirkpatrick, Barbara; Kohler, Kate; Byrne, Margaret M.; Studts, Jamie

    2013-01-01

    Harmful algal blooms of the toxic dinoflagellate, Karenia brevis, occur throughout the Gulf of Mexico. Recent research efforts sponsored by the National Institute of Environmental Health Sciences (NIEHS) and others found that Florida red tide causes both acute and possibly chronic health effects from the toxic aerosols. Florida red tide also demonstrated significant social and economic impacts to both coastal residents and visitors. In conjunction with the research, persistent outreach efforts were conducted over the 11 year period. The goal of this project was to assess potential needs for tailored messaging needed among different red tide information user groups. Survey participants included 303 local residents, both with asthma and without, and ‘snowbirds (seasonal residents that reside in the Sarasota area for more than 3 months but less than 6 months/year), also both with asthma and without. The questionnaire assessed Florida red tide knowledge and risk perception regarding Florida red tide using items drawn from two previously published surveys to allow comparison. Our results reveal that overall knowledge of Florida red tide has not changed. We found that knowledge was consistent across our selected groups and also did not vary by age, gender and education level. However, knowledge regarding consumption of seafood during Florida red tide has declined. Risk perception increased significantly for people who have asthma. Individuals responsible for public health communication regarding Florida red tide and human health concerns need to continue to pursue more effective outreach messages and delivery methods. PMID:24563634

  17. Red Tide off Texas Coast

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Red tides (algae) bloomed late this summer along a 300-mile stretch of Texas' Gulf Coast, killing millions of fish and shellfish as well as making some people sick. State officials are calling this the worst red tide bloom in 14 years. The algae produces a poison that paralyzes fish and prevents them from breathing. There is concern that the deadly algae could impact or even wipe out this year's oyster harvest in Texas, which usually peaks during the Thanksgiving and Christmas holidays. The red tides were first observed off the Texas coast in mid-August and have been growing steadily in size ever since. Red tides tend to bloom and subside rapidly, depending upon changes in wind speed and direction, water temperature, salinity, and rainfall patterns (as the algae doesn't do as well in fresher water). This true-color image of the Texas Gulf Coast was acquired on September 29, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Terra spacecraft. The red tide can be seen as the dark reddish discoloration in the ocean running southwest to northeast along the coast. In this scene, the bloom appears to be concentrated north and east of Corpus Christi, just off Matagorda Island. The image was made at 500-meter resolution using a combination of MODIS' visible bands 1 (red), 4 (green), and 3 (blue). The city of Houston can be seen clearly as the large, greyish cluster of pixels to the north and west of Galveston Bay, which is about mid-way up the coastline in this image. Also visible in this image are plumes of smoke, perhaps wildfires, both to the north and northeast of Houston. For more information about red tides, refer to the Texas Red Tide Web site. Image courtesy Andrey Savtchenko, MODIS Data Support Team, and the MODIS Ocean Team, NASA's Goddard Space Flight Center

  18. Using smartphones for monitoring atmospheric tides

    NASA Astrophysics Data System (ADS)

    Price, Colin; Maor, Ron; Shachaf, Hofit

    2018-09-01

    By 2020 there will be more than 6 billion smartphones around the globe, carried by the public. These smartphones are equipped with sensitive sensors that can be used to monitor our environment (temperature, pressure, humidity, magnetic field, etc.) In this paper we use the pressure sensor (barometer) within smartphones to study atmospheric tides. These tides are produced by the absorption of solar radiation by water vapor in the troposphere, and by ozone in the stratosphere. The strongest tides are the semi-diurnal tides (period of 12 h) with maximum pressure at 9am/9pm and minimum pressure at 3am/3pm. Given the proliferation of smartphones around the globe, this source of environmental data may become extremely useful for scientific research in the near future.

  19. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    NASA Astrophysics Data System (ADS)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  20. The Global S$_1$ Ocean Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.

    2003-01-01

    The small S$_1$ ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide. The global character of $S-1$ is here determined by numerical modeling and by analysis of Topex/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results, and large ( $ greater than $l\\cm) amplitudes in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S$-1$ and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S$-1$ Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. While gravitational diurnal tidal forces excite primarily a 28-hour Antarctic-Pacific mode, the S$_1$ air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

  1. New Jersey Tide Telemetry System

    USGS Publications Warehouse

    Hoppe, Heidi L.

    2007-01-01

    Each summer the population of the barrier-island communities of New Jersey increases by tens of thousands. When a coastal storm threatens these communities, the limited number of bridges and causeways that connect the islands with the mainland become overcrowded, making evacuations from the barrier islands to the mainland difficult. Timely evacuation depends on well-defined emergency evacuation plans used in conjunction with accurate flood forecasting and up to the minute (real-time) tide-level information. The 'Great Nor'easter' storm that struck the coastal areas of New Jersey on December 11, 1992, caused about $270 million in insured damages to public and private property (Dorr and others, 1995). Most of the damage was due to tidal flooding and storm surge, which were especially severe along the back bay areas. Comprehensive and reliable tide-level and meteorological data for the back bays was needed to make accurate flood forecasts. Collection of tidal data for the ocean and large bays was adequately covered by the National Oceanic and Atmospheric Administration's National Ocean Service (NOAA's NOS), but in New Jersey little to no data are available for the back-bay areas. The back bays behave quite differently than the ocean as a result of the complex interaction between the winds and the geometry of the inlets and bays. A slow moving Nor'easter can keep tide levels in back bays several feet higher than the ocean tide by not allowing tides to recede, resulting in flooding of bridges and causeways that link the barrier islands to the mainland. The U.S. Geological Survey (USGS), in cooperation with the New Jersey Department of Transportation (NJDOT), designed and installed the New Jersey Tide Telemetry System (NJTTS) with assistance from NOAA's NOS in 1997. This system is part of a statewide network of tide gages, weather stations, and stream gages that collect data in real time. The NJTTS supplies comprehensive, reliable real-time tide-level and meteorological

  2. Evolution of Tides and Tidal Dissipation Over the Past 26,000 Years Using a Multi-Scale Model of Global Barotropic Tides

    NASA Astrophysics Data System (ADS)

    Salehipour, H.; Peltier, W. R.

    2014-12-01

    In this paper we will describe the results obtained through integration of a further refined version of the truly global barotropic tidal model of Salehipour et al. (Ocean Modell., 69, 2013) using the most recent reconstruction of ice-age bathymetric conditions as embodied in the recently constructed ICE-6G_C (VM5a) model of Peltier et al. (JGR-Solid Earth, in press, 2014). Our interest is in the spatial and temporal evolution of tidal amplitude, phase and dissipation from the Last Glacial Maximum (LGM) 26,000 years ago until the present. The state-of-the-art higher order nonlinear tidal model of Salehipour et al. (2013) includes a highly parallelized multi-scale framework in which an unstructured tessellation of the global ocean enables extensive local refinement around regions of interest such as the Hawaiian Ridge, the Brazil Basin and the Southern Ocean. At LGM, features such as the Patagonian Shelf were fully exposed land which during the deglaciation process would have been flooded leading to significant changes of tidal range along the evolving coastline. In the further development of this model we have included the fully iterated treatment of the influence of gravitational self-attraction and loading as in, e.g. Egbert et al. (JGR-Oceans, 109, 2004). The treatment of the dissipation of the barotropic tide through dissipation of the internal tide has also been significantly improved. Our paleobathymetry and coastline data sets extend from LGM to present at 500 year intervals and constitute a significant refinement of the widely employed ICE-5G (VM2) model of Peltier (Annu. Rev. Earth Planet. Sci., 32, 2004). Our results will be compared with those recently published by Green & Nycander (JPO, 43, 2013) and Wilmes & Green (JGR-Oceans, 119, 2014) as well as with the earlier results of Griffiths & Peltier (GRL, 35, 2008; J. Clim., 22, 2009).

  3. Changes in Work Habits of Lifeguards in Relation to Florida Red Tide.

    PubMed

    Nierenberg, Kate; Kirner, Karen; Hoagland, Porter; Ullmann, Steven; Leblanc, William G; Kirkpatrick, Gary; Fleming, Lora E; Kirkpatrick, Barbara

    2010-05-01

    The marine dinoflagellate, Karenia brevis, is responsible for Florida red tides. Brevetoxins, the neurotoxins produced by K. brevis blooms, can cause fish kills, contaminate shellfish, and lead to respiratory illness in humans. Although several studies have assessed different economic impacts from Florida red tide blooms, no studies to date have considered the impact on beach lifeguard work performance. Sarasota County experiences frequent Florida red tides and staffs lifeguards at its beaches 365 days a year. This study examined lifeguard attendance records during the time periods of March 1 to September 30 in 2004 (no bloom) and March 1 to September 30 in 2005 (bloom). The lifeguard attendance data demonstrated statistically significant absenteeism during a Florida red tide bloom. The potential economic costs resulting from red tide blooms were comprised of both lifeguard absenteeism and presenteeism. Our estimate of the costs of absenteeism due to the 2005 red tide in Sarasota County is about $3,000. On average, the capitalized costs of lifeguard absenteeism in Sarasota County may be on the order of $100,000 at Sarasota County beaches alone. When surveyed, lifeguards reported not only that they experienced adverse health effects of exposure to Florida red tide but also that their attentiveness and abilities to take preventative actions decrease when they worked during a bloom, implying presenteeism effects. The costs of presenteeism, which imply increased risks to beachgoers, arguably could exceed those of absenteeism by an order of magnitude. Due to the lack of data, however, we are unable to provide credible estimates of the costs of presenteeism or the potential increased risks to bathers.

  4. Mapping the nonstationary internal tide with satellite altimetry

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.

    2017-01-01

    Temporal variability of the internal tide has been inferred from the 23 year long combined records of the TOPEX/Poseidon, Jason-1, and Jason-2 satellite altimeters by combining harmonic analysis with an analysis of along-track wavenumber spectra of sea-surface height (SSH). Conventional harmonic analysis is first applied to estimate and remove the stationary components of the tide at each point along the reference ground tracks. The wavenumber spectrum of the residual SSH is then computed, and the variance in a neighborhood around the wavenumber of the mode-1 baroclinic M2 tide is interpreted as the sum of noise, broadband nontidal processes, and the nonstationary tide. At many sites a bump in the spectrum associated with the internal tide is noted, and an empirical model for the noise and nontidal processes is used to estimate the nonstationary semidiurnal tidal variance. The results indicate a spatially inhomogeneous pattern of tidal variability. Nonstationary tides are larger than stationary tides throughout much of the equatorial Pacific and Indian Oceans.

  5. Tides in the Black Sea: Observations and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Medvedev, Igor P.

    2018-05-01

    Longterm hourly data from 28 tide gauges were used to examine the main features of tides in the Black Sea. The tides in this basin are directly caused by tide-generating forces and the semidiurnal tides prevail over diurnal tides. Based on the Princeton Ocean Model (POM), a numerical model of tides in the Black Sea and adjacent Sea of Azov was developed and found to be in good agreement with tide gauge observations. Detailed tidal charts for amplitudes and phase lags of the major tidal harmonics in these two seas were constructed. The results of the numerical modelling and observations reveal for the semidiurnal tides the presence of an amphidromy with clockwise rotation and another one with counterclockwise rotation for the diurnal tides, both located in the central part of the sea near the Crimean Peninsula. Therefore, for this part of the sea the amplitudes of harmonics M 2 and K 1 are less than 0.1 cm. Relatively larger M 2 amplitudes are observed on the east and west coasts of the sea (2-3 cm). The maximum amplitude of the harmonic M 2 was found at Karkinit Bay—up to 4.5 cm—while the maximum tidal range varies from 1 cm near the Crimean Peninsula to 18-19 cm in the Dnieper-Bug Estuary and Karkinit Bay. Radiational tides, initiated mainly by sea breezes, make an important contribution to the formation of tidal oscillations in the Dnieper-Bug Estuary.

  6. Orientations and Relative Shear-strain Response Coefficients for PBO Gladwin Tensor Strainmeters from Teleseismic Love Waves

    NASA Astrophysics Data System (ADS)

    Roeloffs, E. A.

    2016-12-01

    A Gladwin Tensor Strainmeter (GTSM) is designed to measure changes of the horizontal strain tensor, derived as linear combinations of radial elongations or contractions of the strainmeter's cylindrical housing measured at four azimuths. Each radial measurement responds to changes in the areal, horizontal shear and vertical components of the strain tensor in the surrounding formation. The elastic response coefficients to these components depend on the relative elastic moduli of the housing, formation, and cement. These coefficients must be inferred for each strainmeter after it is cemented into its borehole by analyzing the instrument response to well-characterized strain signals such as earth tides. For some GTSMs of the Earthscope Plate Boundary Observatory (PBO), however, reconciling observed earth-tide signals with modeled tidal strains requires response coefficients that differ substantially between the instrument's four gauges, and/or orientation corrections of tens of degrees. GTSM response coefficients can also be estimated from high-resolution records of teleseismic Love waves from great earthquakes around the world. Such records can be used in conjunction with apparent propagation azimuths from nearby broadband seismic stations to determine the GTSM's orientation. Knowing the orientation allows the ratios between the shear strain response coefficients of a GTSM's four gauges to be estimated. Applying this analysis to 14 PBO GTSMs confirms that orientations of some instruments differ significantly from orientations measured during installation. Orientations inferred from earth-tide response tend to agree with those inferred from Love waves for GTSMs far from tidal water bodies, but to differ for GTSMs closer to coastlines. Orientations derived from teleseismic Love waves agree with those estimated by Grant and Langston (2010) using strains from a broadband seismic array near Anza, California. PBO GTSM recordings of teleseismic Love waves show differences of

  7. Anticipated Observation of Waves and Tides by the GOLD Mission Using a GCM and GLOW model

    NASA Astrophysics Data System (ADS)

    Greer, K.; Solomon, S. C.; Rusch, D. W.

    2017-12-01

    One of the major scientific objectives of the GOLD mission is to address the significance of atmospheric waves and tides propagating from below on the thermospheric temperature structure. Here we examine the modes of tides and spectrum of waves that will be observed by GOLD in geostationary orbit. The GOLD instrument is an imaging spectrograph that will measure the Earth's emissions from 132 to 162 nm. These measurements will be used to image thermospheric temperature and composition near 160 km on the dayside disk at half-hour time scales. TIE-GCM is used to produce a realistic model atmosphere, where different wave and tidal components can be easily extracted, and GLobal AirglOW (GLOW) model produces the emissions in the spectral bands observed by GOLD.

  8. Synthesis and biological evaluation of 6-substituted-5-fluorouridine ProTides.

    PubMed

    Slusarczyk, Magdalena; Ferla, Salvatore; Brancale, Andrea; McGuigan, Christopher

    2018-02-01

    A new family of thirteen phosphoramidate prodrugs (ProTides) of different 6-substituted-5-fluorouridine nucleoside analogues were synthesized and evaluated as potential anticancer agents. In addition, antiviral activity against Chikungunya (CHIKV) virus was evaluated using a cytopathic effect inhibition assay. Although a carboxypeptidase Y assay supported a putative mechanism of activation of ProTides built on 5-fluorouridine with such C6-modifications, the Hint docking studies revealed a compromised substrate-activity for the Hint phosphoramidase-type enzyme that is likely responsible for phosphoramidate bioactivation through P-N bond cleavage and free nucleoside 5'-monophosphate delivery. Our observations may support and explain to some extent the poor in vitro biological activity generally demonstrated by the series of 6-substituted-5-fluorouridine phosphoramidates (ProTides) and will be of guidance for the design of novel phosphoramidate prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Non-linear processes in the Earth atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  10. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  11. Precise comparisons of bottom-pressure and altimetric ocean tides

    NASA Astrophysics Data System (ADS)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  12. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  13. New Miscellaneous Results in Tides from Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G.; Cartwright, D.; Smith, David E. (Technical Monitor)

    2000-01-01

    This paper describes a variety of new results concerning ocean tides that have been derived from Topex/Poseidon satellite altimeter data. Most of these results are based on new tidal solutions employing nearly 8 years of data. The topics covered include internal tides and long-period tides.

  14. TIDE TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems

    NASA Astrophysics Data System (ADS)

    Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.

    2012-12-01

    A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed TIDE TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. TIDE TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. TIDE TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. TIDE TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats TIDE TOOL includes a metadata file, COMP_META, that contains all of the information needed by TIDE TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. TIDE TOOL can therefore continuously decode theses sea-level messages in real-time and display the time

  15. Intraseasonal variability and tides in Makassar Strait

    NASA Astrophysics Data System (ADS)

    Susanto, R. Dwi; Gordon, Arnold L.; Sprintall, Janet; Herunadi, Bambang

    2000-05-01

    Intraseasonal variability and tides along the Makassar Strait, the major route of Indonesian throughflow, are investigated using spectral and time-frequency analyses which are applied to sea level, wind and mooring data. Semidiurnal and diurnal tides are dominant features, with higher (lower) semidiurnal (diurnal) energy in the north compared to the south. Sea levels and mooring data display intraseasonal variability which are probably a response to remotely forced Kelvin waves from the Indian Ocean through Lombok Strait and to Rossby waves from the Pacific Ocean. Sea levels in Tarakan and Balikpapan and Makassar mooring velocities reveal intraseasonal features with periods of 48-62 days associated with Rossby waves from the Sulawesi Sea. Kelvin wave features with periods of 67-100 days are seen in Bali (Lombok Strait), at the mooring sites and in Balikpapan, however, they are not seen in Tarakan, which implies that these waves diminish after passing through the Makassar Strait.

  16. Tidal Locking Of The Earth

    NASA Astrophysics Data System (ADS)

    Koohafkan, Michael

    2006-05-01

    The Moon's orbit and spin period are nearly synchronized, or tidally locked. Could the Moon's orbit and the Earth's spin eventually synchronize as well? The Moon's gravitational pull on the Earth produces tides in our oceans, and tidal friction gradually lengthens our days. Less obvious gravitational interactions between the Earth and Moon may also have effects on Earth's spin. The Earth is slightly distorted into an egg-like shape, and the torque exerted by the Moon on our equatorial bulge slowly changes the tilt of our spin axis. How do effects such as these change as the Moon drifts away from Earth? I will examine gravitational interactions between Earth and Moon to learn how they contribute to the deceleration of the Earth's rotation. My goal is to determine the amount of time it would take for the Earth's rotational speed to decelerate until the period of a single rotation matches the period of the Moon's orbit around Earth -- when the Earth is ``tidally locked'' with the Moon. I aim to derive a general mathematical expression for the rotational deceleration of the Earth due to Moon's gravitational influences.

  17. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    NASA Astrophysics Data System (ADS)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  18. Internal tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Lionel, Tchilibou Michel; Gourdeau, Lionel; Djath, Bugshin; Lyard, Florent; Allain, Damien; Koch Larrouy, Ariane; Yoga Nogroho, Dwi; Morrow, Rosemary

    2017-04-01

    In the south west Pacific, the Solomon Sea lies on the pathway of the Low Latitudes Western Boundary Currents (LLWBCs) that connect the subtropics to the equator. The Solomon Sea have a particular interest in a climatic context, since they are a critical pathway for ENSO and its low frequency modulation. The western Pacific is a place of energetic internal tides generated over its complex bottom topographic features. In the Indonesian Archipelago, they are particularly active in defining the properties of the waters that move from the Pacific to the Indian Ocean. The salinity maximum at the thermocline level, which is characteristic of the South Pacific Tropical Waters (SPTW) flowing within the LLWBCs and feeding the Equatorial UnderCurrent, is largely eroded within the Solomon Sea. Different mechanisms could explain such salt erosion including current/bathymetry interactions, internal tides, and eddy activity. The motivation of this study is to investigate the potential role of internal tides for such water mass transformation. Results from a 1/36° resolution regional model including explicit tides are presented. As a first step, the generation and propagation of internal tides in the Solomon Sea are determined, and the conversion rate from barotropic to baroclinic energy is estimated.

  19. Analysis of an unconfined aquifer subject to asynchronous dual-tide propagation

    USGS Publications Warehouse

    Rotzoll, K.; El-Kadi, A. I.; Gingerich, S.B.

    2008-01-01

    Most published solutions for aquifer responses to ocean tides focus on the one-sided attenuation of the signal as it propagates inland. However, island aquifers experience periodic forcing from the entire coast, which can lead to integrated effects of different tidal signals, especially on narrow high-permeability islands. In general, studies disregard a potential time lag as the tidal wave sweeps around the island. We present a one-dimensional analytical solution to the ground water flow equation subject to asynchronous and asymmetric oscillating head conditions on opposite boundaries and test it on data from an unconfined volcanic aquifer in Maui. The solution considers sediment-damping effects at the coastline. The response of Maui Aquifers indicate that water table elevations near the center of the aquifer are influenced by a combination of tides from opposite coasts. A better match between the observed ground water head and the theoretical response can be obtained with the proposed dual-tide solution than with single-sided solutions. Hydraulic diffusivity was estimated to be 2.3 ?? 107 m 2/d. This translates into a hydraulic conductivity of 500 m/d, assuming a specific yield of 0.04 and an aquifer thickness of 1.8 km. A numerical experiment confirmed the hydraulic diffusivity value and showed that the y-intercepts of the modal attenuation and phase differences estimated by regression can approximate damping factors caused by low-permeability units at the boundary.

  20. Ocean Tide Loading Computation

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    2005-01-01

    September 15,2003 through May 15,2005 This grant funds the maintenance, updating, and distribution of programs for computing ocean tide loading, to enable the corrections for such loading to be more widely applied in space- geodetic and gravity measurements. These programs, developed under funding from the CDP and DOSE programs, incorporate the most recent global tidal models developed from Topex/Poscidon data, and also local tide models for regions around North America; the design of the algorithm and software makes it straightforward to combine local and global models.

  1. Tides and Trends in Higher Education.

    ERIC Educational Resources Information Center

    Fincher, Cameron

    This paper examines changes in American higher education, using the metaphor of ocean tides. The tides of change in the 1980s included public demands for assessment and accountability; fairness and credibility in advantages and benefits; improved quality of education; effectiveness and efficiency; assurance that college graduates were personally…

  2. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  3. Observations and simulations of the ionospheric lunar tide: Seasonal variability

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2014-07-01

    The seasonal variability of the ionospheric lunar tide is investigated using a combination of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations and thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) simulations. The present study focuses on the seasonal variability of the lunar tide in the ionosphere and its potential connection to the occurrence of stratosphere sudden warmings (SSWs). COSMIC maximum F region electron density (NmF2) and total electron content observations reveal a primarily annual variation of the ionospheric lunar tide, with maximum amplitudes occurring at low latitudes during December-February. Simulations of the lunar tide climatology in TIME-GCM display a similar annual variability as the COSMIC observations. This leads to the conclusion that the annual variability of the lunar tide in the ionosphere is not solely due to the occurrence of SSWs. Rather, the annual variability of the lunar tide in the ionosphere is generated by the seasonal variability of the lunar tide at E region altitudes. However, compared to the observations, the ionospheric lunar tide annual variability is weaker in the climatological simulations which is attributed to the occurrence of SSWs during the majority of the years included in the observations. Introducing a SSW into the TIME-GCM simulation leads to an additional enhancement of the lunar tide during Northern Hemisphere winter, increasing the lunar tide annual variability and resulting in an annual variability that is more consistent with the observations. The occurrence of SSWs can therefore potentially bias lunar tide climatologies, and it is important to consider these effects in studies of the lunar tide in the atmosphere and ionosphere.

  4. Semidiurnal thermal tides in asynchronously rotating hot Jupiters

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Leconte, J.

    2018-05-01

    Context. Thermal tides can torque the atmosphere of hot Jupiters into asynchronous rotation, while these planets are usually assumed to be locked into spin-orbit synchronization with their host star. Aims: In this work, our goal is to characterize the tidal response of a rotating hot Jupiter to the tidal semidiurnal thermal forcing of its host star by identifying the structure of tidal waves responsible for variation of mass distribution, their dependence on the tidal frequency, and their ability to generate strong zonal flows. Methods: We develop an ab initio global modelling that generalizes the early approach of Arras & Socrates (2010, ApJ, 714, 1) to rotating and non-adiabatic planets. We analytically derive the torque exerted on the body and the associated timescales of evolution, as well as the equilibrium tidal response of the atmosphere in the zero-frequency limit. Finally, we numerically integrate the equations of thermal tides for three cases, including dissipation and rotation step by step. Results: The resonances associated with tidally generated gravito-inertial waves significantly amplify the resulting tidal torque in the range 1-30 days. This torque can globally drive the atmosphere into asynchronous rotation, as its sign depends on the tidal frequency. The resonant behaviour of the tidal response is enhanced by rotation, which couples the forcing to several Hough modes in the general case, while the radiative cooling tends to regularize it and diminish its amplitude.

  5. Tide-related seismic velocity changes across the English Channel

    NASA Astrophysics Data System (ADS)

    de Ridder, S.; Valova, V.; Curtis, A.

    2016-12-01

    Temporal changes in the seismic velocities in the Earth's subsurface are known to occur due to a range of phenomena including seasonal variations, magmatic activity, nonlinear healing after strong ground motion, and glacial loading and unloading. Our goal is to extend observations of small velocity changes towards shorter timescales. Earth tides caused by the gravitational attraction between the Earth and the Moon might affect seismic properties. If tidal velocity variations can be recovered from long range cross-correlations, and can also be coupled to stress-strain induced variations in the elastic properties, that would pave the way for systematic imaging of rheological properties of the upper crust. With this long-term goal, we studied data recorded between January 2010 and December 2015 by four broad-band instruments from the British Geological Survey network. One station is located in Cornwall, two in Devon, and one across the English Channel on the island of Jersey. Continuous seismic recordings of the vertical components of particle velocity were divided into one hour intervals, bandpass filtered between 0.02 and 0.11 Hz, spectrally whitened, and cross-correlated between station pairs. The resulting cross-correlations were stacked into bins corresponding to the average water levels observed at nearby ports resulting in cross-correlation traces as a function of water level, for each station pair. To detect temporal changes, a multi-window time-shift analysis is applied to these inter-station traces. We find a stretch factor that best translates one trace into another: this stretch is indicative of changes in average seismic velocities between the pair of tidal phases. We detected systematic seismic velocity variations as a function of water level. We find that increasing water level coincided with decreasing seismic velocities. Separating the data according to up- and down-going tidal tracts reveals that the observed velocity changes exhibit a time

  6. Global Geospace Science (GGS)/POLAR Thermal Ion Dynamics Experiments (TIDE) Co-Investigator Program: Mission Operations and Data Analysis (MO/DA)

    NASA Technical Reports Server (NTRS)

    Nagy, Andrew; Liemohn, M.

    2004-01-01

    We have pursued several investigations using the Polar/TIDE data set. The first was a comparison of TIDE high-altitude observations with similar ion flux signatures in the Los Alamos National Laboratory (LANL) magnetospheric plasma analyzer (MPA) data. There are several geosynchronously orbiting satellites with LANL MPA instruments onboard. When the satellite is immersed in fresh plasma sheet electrons, the spacecraft voltage drops to several hundred volts negative, and cold ions are accelerated in to the detector. In the LANL MPA spectrograms, the accelerated cold ions appear as a bright, narrow line, following the voltage of the spacecraft. This "ion line" is seen regularly on the nightside, but has not received much attention. The Polar TIDE observations indicated a ubiquitous "lobal wind" in the near-- magnetotail, a field-aligned stream of approx. 100 eV ions flowing out of both polar ionospheres. The interesting result of this research is that the MPA ion line is also peaked in the field-aligned direction, even though the potential well should be uniform in all directions. It is believed that this is evidence that the lobal winds not only populate the high-latitude lobes, but fill the lobes all the way in to the near-Earth plasma sheet (the location of geosynchronous orbit). This activity developed into a full-scale survey of the lobal wind observations in the TIDE database. The universality of these observations with respect to local time and solar wind conditions implies that the ionospheric outflow is supplying the near-Earth plasma sheet at all times, regardless of magnetic activity. We have conducted a statistical study of the characteristics of the lobal wind in these two data sets FIDE and LANL MPA), finding much similarity between them. Using these characteristics as input conditions to our inner magnetosphere ion transport model, we have conducted simulations of the flow of these particles inside of geosynchronous orbit to show the impact these

  7. Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements

    NASA Technical Reports Server (NTRS)

    Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1994-01-01

    An improved geocentric global ocean tide model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the tide solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved tide model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 tide model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 tide gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new tide model further confirms that the tide model has been improved.

  8. Monthly and Fortnightly Tidal Variations of the Earth's Rotation Rate Predicted by a TOPEX/POSEIDON Empirical Ocean Tide Model

    NASA Technical Reports Server (NTRS)

    Desai, S.; Wahr, J.

    1998-01-01

    Empirical models of the two largest constituents of the long-period ocean tides, the monthly and the fortnightly constituents, are estimated from repeat cycles 10 to 210 of the TOPEX/POSEIDON (T/P) mission.

  9. Observations and Modeling of Thermal Structure in the Lower Atmosphere and the Upward Propagation of Tides into the Thermosphere

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Kahre, M.

    2017-01-01

    Thermal tides are the atmospheric response to diurnally varying thermal forcing resulting from radiative and convective heat transfer from the surface and from aerosol and gaseous heating within the atmosphere. Tides include sun-synchronous (migrating) waves driven in response to solar heating and additional non-migrating waves resulting from longitudinal variations in the distributions of topography, dust aerosol and water ice clouds. The systematic spatial mapping of temperature over 5 Mars years by the Mars Climate Sounder (MCS) has yielded a well-defined climatology of seasonally-varying temperature structures in the lower atmosphere, from 5 to 80 km. Tide theory and Mars global circulation model (MGCM) simulations are a fruitful framework for relating temperature observations to thermal forcing by aerosol fields [1]. The analysis of density and temperature fields derived from MAVEN IUVS and NGIMS observations have revealed the presence of predominantly zonal wave 2 and 3 features at altitudes of 100-170 km that are almost certainly non-migrating tides propagating upward from the lower atmosphere [2,3]. In this presentation we will use the MCS climatology and MGCM simulations to relate the density variations seen by MAVEN with the seasonally varying tide activity in the lower atmosphere. Large amplitude perturbations in density are most sensitive to the tide components with the longest vertical wavelengths in temperature, which are well resolved in MCS observations.

  10. Tides Stabilize Deltas until Humans Interfere

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.

    2017-12-01

    Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that tides tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to tides are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the tides, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger tides, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil

  11. The Role of Gravity Waves in Modulating Atmospheric Tides

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G; Chan, K. L.; Porter, H. S.

    1999-01-01

    We discuss results for the diurnal and semidiurnal tides obtained from our 3-D, time dependent numerical spectral model (NMS), extending from the ground up into the thermosphere, which incorporates Hines' Doppler spread parameterization of small scale gravity waves (GW). In the DSP, GW momentum (and energy) are conserved as the waves modulate the background flow and are filtered by the flow.As a consequence, the GW interaction tightly couples the dynamic components of the middle atmosphere with strong non-linear interactions between mean zonal circulation, tides and planetary waves to produce complicated patterns of variability much like those observed. The major conclusions are: (1) Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal tide is amplified and its vertical wavelength is reduced at altitudes between 80 and 120 km. Wave filtering by the mean zonal circulation (with peak velocities during solstice) causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the tide that has been observed on UARS. (2) Without the diurnal tide, the semidiurnal tide would also be modulated in this way. But the diurnal tide filters out the GW preferentially during equinox, so that the semidiurnal tide, at higher altitudes, tends to peak during solstice. (3) Under the influence of GW, the tides are modulated also significantly by planetary waves, with periods between 2 and 30 days, which are generated preferentially during solstice in part due to baroclinic instability.

  12. Impact of sea level rise on tide gate function.

    PubMed

    Walsh, Sean; Miskewitz, Robert

    2013-01-01

    Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.

  13. ENSO effects on MLT diurnal tides: A 21 year reanalysis data-driven GAIA model simulation

    NASA Astrophysics Data System (ADS)

    Liu, Huixin; Sun, Yang-Yi; Miyoshi, Yasunobu; Jin, Hidekatsu

    2017-05-01

    Tidal responses to El Niño-Southern Oscillation (ENSO) in the mesosphere and lower thermosphere (MLT) are investigated for the first time using reanalysis data-driven simulations covering 21 years. The simulation is carried out with the Ground-to-topside Atmosphere-Ionosphere model for Aeronomy (GAIA) during 1996-2016, which covers nine ENSO events. ENSO impacts on diurnal tides at 100 km altitude are analyzed and cross-compared among temperature (T), zonal wind (U), and meridional wind (V), which reveals the following salient features: (1) Tidal response can differ significantly among T, U, and V in terms of magnitude and latitudinal structure, making detection of ENSO effects sensitive to the parameter used and the location of a ground station; (2) the nonmigrating DE3 tide in T and U shows a prominent hemisphere asymmetric response to La Niña, with an increase between 0° and 30°N and a decrease between 30° and 0°S. In contrast, DE3 in V exhibits no significant response; (3) the migrating DW1 enhances during El Niño in equatorial regions for T and U but in off-equatorial regions for V. As the first ENSO study based on reanalysis-driven simulations, GAIA's full set of tidal responses in T, U, and V provides us with a necessary global context to better understand and cross-compare observations during ENSO events. Comparisons with observations during the 1997-98 El Niño and 2010-11 La Niña reveal good agreement in both magnitude and timing. Comparisons with "free-run" WACCM simulations (T) show consistent results in nonmigrating tides DE2 and DE3 but differences in the migrating DW1 tide.

  14. A nowcast model for tides and tidal currents in San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, Ralph T.; Smith, Richard E.

    1998-01-01

    National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of tides, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because tides and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of tides and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for tides and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for tides and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.

  15. Can tides influence volcanic eruptions?

    NASA Astrophysics Data System (ADS)

    Girona, T.; Huber, C.

    2015-12-01

    The possibility that the Moon-Sun gravitational force can affect terrestrial volcanoes and trigger eruptions is a controversial issue that has been proposed since ancient times, and that has been widely debated during the last century. The controversy arises mainly from two reasons. First, the days of initiation of eruptions are not well known for many volcanoes, and thus a robust statistical comparison with tidal cycles cannot be performed for many of them. Second, the stress changes induced by tides in the upper crust are very small (10-3 MPa) compared to the tensile strength of rocks (~ 10-1-10 MPa), and hence the mechanism by which tidal stresses might trigger eruptions is unclear. In this study, we address these issues for persistently degassing volcanoes, as they erupt frequently and thus the initiation time of a significant number of eruptions (>30) is well known in several cases (9). In particular, we find that the occurrence of eruptions within ±2 days from neap tides (first and third quarter moon) is lower than 34% (e.g., 29% for Etna, Italy; 28% for Merapi, Indonesia), which is the value expected if eruptions occur randomly with no external influence. To understand this preference for erupting far away from neap tides, we have developed a new lumped-parameter model that accounts for the deformation of magma reservoirs, a partially open conduit, and a gas layer where bubbles accumulate beneath volcanic craters before being released. We demonstrate that this system reservoir-conduit-gas layer acts as an amplifier of the tidal stresses, such that, when a volcano approaches to a critical state, the gas overpressure beneath the crater can reach up to several MPa more during a spring tide (full and new moon) than during a neap tide. This amplification mechanism can explain why active volcanoes are sensitive to the moon cycles.

  16. The gravitational self-interaction of the Earth's tidal bulge

    NASA Astrophysics Data System (ADS)

    Norsen, Travis; Dreese, Mackenzie; West, Christopher

    2017-09-01

    According to a standard, idealized analysis, the Moon would produce a 54 cm equilibrium tidal bulge in the Earth's oceans. This analysis omits many factors (beyond the scope of the simple idealized model) that dramatically influence the actual height and timing of the tides at different locations, but it is nevertheless an important foundation for more detailed studies. Here, we show that the standard analysis also omits another factor—the gravitational interaction of the tidal bulge with itself—which is entirely compatible with the simple, idealized equilibrium model and which produces a surprisingly non-trivial correction to the predicted size of the tidal bulge. Our analysis uses ideas and techniques that are familiar from electrostatics, and should thus be of interest to teachers and students of undergraduate E&M, Classical Mechanics (and/or other courses that cover the tides), and geophysics courses that cover the closely related topic of Earth's equatorial bulge.

  17. The response of fluid-saturated reservoirs to lunisolar tides: Part 1. Background parameters of tidal components in ground displacements and groundwater level

    NASA Astrophysics Data System (ADS)

    Besedina, A. N.; Vinogradov, E. A.; Gorbunova, E. M.; Kabychenko, N. V.; Svintsov, I. S.; Pigulevskiy, P. I.; Svistun, V. K.; Shcherbina, S. V.

    2015-01-01

    The first part of this work is dedicated to the response of different-age structures to lunisolar tides, which can be considered as a sounding signal for monitoring the state of fluid-saturated reservoirs. The complex approach to processing the data obtained at the testing sites of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Institute of Geophysics of the National Academy of Sciences of Ukraine, and KIEV station of the IRIS seismic network is applied for recognizing the tides against the hydrogeological, barometric, and seismic series. The comparative analysis of the experimental and theoretical values of the diurnal and semidiurnal tidal components in the time series of ground displacements is carried out. The tidal variations in the groundwater level are compared with the tidal components revealed in the ground displacement of the different-age structure of the Moscow Basin and Ukrainian Shield, which are parts of the East European artesian region. The differences in the tidal responses of the groundwater level and ground displacement probably suggest that the state of the massif is affected by certain additional factors associated, e.g., with the passage of earthquake-induced seismic waves and the changes in the hydrogeodynamic environment.

  18. The double high tide at Port Ellen: Doodson's criterion revisited

    NASA Astrophysics Data System (ADS)

    Byrne, Hannah A. M.; Mattias Green, J. A.; Bowers, David G.

    2017-07-01

    Doodson proposed a minimum criterion to predict the occurrence of double high (or double low) waters when a higher-frequency tidal harmonic is added to the semi-diurnal tide. If the phasing of the harmonic is optimal, the condition for a double high water can be written bn2/a > 1 where b is the amplitude of the higher harmonic, a is the amplitude of the semi-diurnal tide, and n is the ratio of their frequencies. Here we expand this criterion to allow for (i) a phase difference ϕ between the semi-diurnal tide and the harmonic and (ii) the fact that the double high water will disappear in the event that b/a becomes large enough for the higher harmonic to be the dominant component of the tide. This can happen, for example, at places or times where the semi-diurnal tide is very small. The revised parameter is br2/a, where r is a number generally less than n, although equal to n when ϕ = 0. The theory predicts that a double high tide will form when this parameter exceeds 1 and then disappear when it exceeds a value of order n2 and the higher harmonic becomes dominant. We test these predictions against observations at Port Ellen in the Inner Hebrides of Scotland. For most of the data set, the largest harmonic of the semi-diurnal tide is the sixth diurnal component, for which n = 3. The principal lunar and solar semi-diurnal tides are about equal at Port Ellen and so the semi-diurnal tide becomes very small twice a month at neap tides (here defined as the smallest fortnightly tidal range). A double high water forms when br2/a first exceeds a minimum value of about 1.5 as neap tides are approached and then disappears as br2/a then exceeds a second limiting value of about 10 at neap tides in agreement with the revised criterion.

  19. Aerosolized red-tide toxins (brevetoxins) and asthma.

    PubMed

    Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Bean, Judy A; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M; Baden, Daniel G

    2007-01-01

    With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons >or= 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV(1), midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins.

  20. Aerosolized Red-Tide Toxins (Brevetoxins) and Asthma

    PubMed Central

    Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Bean, Judy A.; Wanner, Adam; Reich, Andrew; Zaias, Julia; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Abraham, William M.; Baden, Daniel G.

    2009-01-01

    Background With the increasing incidence of asthma, there is increasing concern over environmental exposures that may trigger asthma exacerbations. Blooms of the marine microalgae, Karenia brevis, cause red tides (or harmful algal blooms) annually throughout the Gulf of Mexico. K brevis produces highly potent natural polyether toxins, called brevetoxins, which are sodium channel blockers, and possibly histamine activators. In experimental animals, brevetoxins cause significant bronchoconstriction. In humans, a significant increase in self-reported respiratory symptoms has been described after recreational and occupational exposures to Florida red-tide aerosols, particularly among individuals with asthma. Methods Before and after 1 h spent on beaches with and without an active K brevis red-tide exposure, 97 persons ≥ 12 years of age with physician-diagnosed asthma were evaluated by questionnaire and spirometry. Concomitant environmental monitoring, water and air sampling, and personal monitoring for brevetoxins were performed. Results Participants were significantly more likely to report respiratory symptoms after K brevis red-tide aerosol exposure than before exposure. Participants demonstrated small, but statistically significant, decreases in FEV1, midexpiratory phase of forced expiratory flow, and peak expiratory flow after exposure, particularly among those participants regularly using asthma medications. No significant differences were detected when there was no Florida red tide (ie, during nonexposure periods). Conclusions This study demonstrated objectively measurable adverse changes in lung function from exposure to aerosolized Florida red-tide toxins in asthmatic subjects, particularly among those requiring regular therapy with asthma medications. Future studies will assess these susceptible subpopulations in more depth, as well as the possible long-term effects of these toxins. PMID:17218574

  1. Global ocean tide models on the eve of Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    1993-01-01

    Some existing global ocean tide models that can provide tide corrections to Topex/Poseidon altimeter data are described. Emphasis is given to the Schwiderski and Cartwright-Ray models, as these are the most comprehensive, highest resolution models, but other models that will soon appear are mentioned. Differences between models for M2 often exceed 10 cm over vast stretches of the ocean. Comparisons to 80 selected pelagic and island gauge measurements indicate the Schwiderski model is more accurate for the major solar tides, Cartwright-Ray for the major lunar tides. The adequacy of available tide models for studying basin-scale motions is probably marginal at best.

  2. Organizational Analysis of the TIDES Project and the STAR-TIDES Network Using the 7-S Framework

    DTIC Science & Technology

    2013-04-01

    data, provided some useful rec- ommendations.8 Since that time, TIDES has continued to grow and change. The present study was undertaken to update the...information across platforms and within the secure NDU network. For ex- ample, many contacts made by the Director are preserved within his Blackberry ...the active participation of STAR-TIDES network members, and to grow the network. 5. Skills Skills refers to the talents and abilities of the

  3. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition.

    PubMed

    Gao, Guang; Xia, Jianrong; Yu, Jinlan; Zeng, Xiaopeng

    2018-02-01

    A classical red tide alga Skeletonema costatum was cultured under various nitrate levels to investigate its physiological response to nitrate enrichment combined with CO 2 limitation. The higher nitrate levels increased content of photosynthetic pigments (Chl a and Chl c), electron transport rate in photosystem II, photosynthetic O 2 evolution, and thus growth rate in S. costatum. On the other hand, the lower CO 2 levels (3.5-4.4 μmol kg -1 seawater) and higher pH (8.56-8.63) values in seawater were observed under higher nitrate conditions. Redox activity of plasma membrane and carbonic anhydrase in S. costatum was enhanced to address the reduced CO 2 level at higher nitrate levels. In addition, the pH compensation point was enhanced and direct HCO 3 - use was induced at higher nitrate levels. These findings indicate that nitrate enrichment would stimulate the breakout of S. costatum dominated red tides via enhancing its photosynthetic performances, and maintain a quick growth rate under CO 2 limitation conditions through improving its inorganic carbon acquisition capability. Our study sheds light on the mechanisms of S. costatum defeating CO 2 limitation during algal bloom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms.

    PubMed

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2010-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure.This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period.These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken.

  5. Gastrointestinal Emergency Room Admissions and Florida Red Tide Blooms

    PubMed Central

    Kirkpatrick, Barbara; Bean, Judy A; Fleming, Lora E; Kirkpatrick, Gary; Grief, Lynne; Nierenberg, Kate; Reich, Andrew; Watkins, Sharon; Naar, Jerome

    2009-01-01

    Human exposure to brevetoxins during Florida red tide blooms formed by Karenia brevis has been documented to cause acute gastrointestinal, neurologic, and respiratory health effects.. Traditionally, the routes of brevetoxin exposure have been through the consumption of contaminated bivalve shellfish and the inhalation of contaminated aerosols. However, recent studies using more sensitive methods have demonstrated the presence of brevetoxins in many components of the aquatic food web which may indicate potential alternative routes for human exposure. This study examined whether the presence of a Florida red tide bloom affected the rates of admission for a gastrointestinal diagnosis to a hospital emergency room in Sarasota, FL. The rates of gastrointestinal diagnoses admissions were compared for a 3-month time period in 2001 when Florida red tide bloom was present onshore to the same 3-month period in 2002 when no Florida red tide bloom occurred. A significant 40% increase in the total number of gastrointestinal emergency room admissions for the Florida red tide bloom period was found compared to the non red tide period. These results suggest that the healthcare community may experience a significant and unrecognized impact from patients needing emergency medical care for gastrointestinal illnesses during Florida red tide blooms. Thus, additional studies characterizing the potential sources of exposure to the toxins, as well as the dose/effect relationship of brevetoxin exposure, should be undertaken. PMID:20161425

  6. The Global Mode-1 S2 Internal Tide

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongxiang

    2017-11-01

    The global mode-1 S2 internal tide is observed using sea surface height (SSH) measurements from four satellite altimeters: TOPEX/Poseidon, Jason-1, Jason-2, and Geosat Follow-On. Plane wave analysis is employed to extract three mode-1 S2 internal tidal waves in any given 250 km by 250 km window, which are temporally coherent over a 20 year period from 1992 to 2012. Depth-integrated energy and flux of the S2 internal tide are calculated from the SSH amplitude and a conversion function built from climatological hydrographic profiles in the World Ocean Atlas 2013. The results show that the S2 and M2 internal tides have similar spatial patterns. Both S2 and M2 internal tides originate at major topographic features and propagate over long distances. The S2 internal tidal beams are generally shorter, likely because the relatively weaker S2 internal tide is easily overwhelmed by nontidal noise. The northbound S2 and M2 internal tides from the Hawaiian Ridge are observed to travel over 3500 km across the Northeast Pacific. The globally integrated energy of the mode-1 S2 internal tide is 7.8 PJ (1 PJ = 1015 J), about 20% that of M2 (36.4 PJ). The histogram of S2 to M2 SSH ratios peaks at 0.4, consistent with the square root of their energy ratio. In terms of SSH, S2 is greater than M2 in ≈10% of the global ocean and ≥50% of M2 in about half of the global ocean.

  7. Seasonal Variations of the Earth's Gravitational Field: An Analysis of Atmospheric Pressure, Ocean Tidal, and Surface Water Excitation

    NASA Technical Reports Server (NTRS)

    Dong, D,; Gross, R.S.; Dickey, J.

    1996-01-01

    Monthly mean gravitational field parameters (denoted here as C(sub even)) that represent linear combinations of the primarily even degree zonal spherical harmonic coefficients of the Earth's gravitational field have been recovered using LAGEOS I data and are compared with those derived from gridded global surface pressure data of the National meteorological center (NMC) spanning 1983-1992. The effect of equilibrium ocean tides and surface water variations are also considered. Atmospheric pressure and surface water fluctuations are shown to be the dominant cause of observed annual C(sub even) variations. Closure with observations is seen at the 1sigma level when atmospheric pressure, ocean tide and surface water effects are include. Equilibrium ocean tides are shown to be the main source of excitation at the semiannual period with closure at the 1sigma level seen when both atmospheric pressure and ocean tide effects are included. The inverted barometer (IB) case is shown to give the best agreement with the observation series. The potential of the observed C(sub even) variations for monitoring mass variations in the polar regions of the Earth and the effect of the land-ocean mask in the IB calculation are discussed.

  8. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  9. Internal Tide Generation by Steep Topography

    DTIC Science & Technology

    2007-09-01

    acting on the barotropic tide ( Foda and Hill 1998) was incomplete. Kunze will put this work in the context of recent internal tide research and...Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320-327. Foda , M.A., and D.F. Hill, 1998: Nonlinear energy...Bispectral analysis of energy transfer within the two-dimensional ocean internal wave field. . Phys. Oceanogr., 35, 2104-2109. Garrett, C., and E

  10. Refine of Regional Ocean Tide Model Using GPS Data

    NASA Astrophysics Data System (ADS)

    Wang, F.; Zhang, P.; Sun, Z.; Jiang, Z.; Zhang, Q.

    2018-04-01

    Due to lack of regional data constraints, all global ocean tide models are not accuracy enough in offshore areas around China, also the displacements predicted by different models are not consistency. The ocean tide loading effects have become a major source of error in the high precision GPS positioning. It is important for high precision GPS applications to build an appropriate regional ocean tide model. We first process the four offshore GPS tracking station's observation data which located in Guangdong province of China by using PPP aproach to get the time series. Then use the spectral inversion method to acquire eigenvalues of the Ocean Tidal Loading. We get the estimated value of not only 12hour period tide wave (M2, S2, N2, K2) but also 24hour period tide wave (O1, K1, P1, Q1) which has not been got in presious studies. The contrast test shows that GPS estimation value of M2, K1 is consistent with the result of five famous glocal ocean load tide models, but S2, N2, K2, O1, P1, Q1 is obviously larger.

  11. Differences between mean tide level and mean sea level

    NASA Astrophysics Data System (ADS)

    Woodworth, P. L.

    2017-01-01

    This paper discusses the differences between mean tide level (MTL) and mean sea level (MSL) as demonstrated using information from a global tide gauge data set. The roles of the two main contributors to differences between MTL and MSL (the M4 harmonic of the M2 semidiurnal tide, and the combination of the diurnal tides K1 and O1) are described, with a particular focus on the spatial scales of variation in MTL-MSL due to each contributor. Findings from the tide gauge data set are contrasted with those from a state-of-the-art global tide model. The study is of interest within tidal science, but also has practical importance regarding the type of mean level used to define land survey datums. In addition, an appreciation of MTL-MSL difference is important in the use of the historical sea level data used in climate change research, with implications for some of the data stored in international databanks. Particular studies are made of how MTL and MSL might differ through the year, and if MTL is measured in daylight hours only, as has been the practice of some national geodetic agencies on occasions in the past.

  12. The equilibrium tide in stars and giant planets. I. The coplanar case

    NASA Astrophysics Data System (ADS)

    Remus, F.; Mathis, S.; Zahn, J.-P.

    2012-08-01

    Context. Since 1995, more than 500 extrasolar planets have been discovered orbiting very close to their parent star, where they experience strong tidal interactions. Their orbital evolution depends on the physical mechanisms that cause tidal dissipation, which remain poorly understood. Aims: We refine the theory of the equilibrium tide in fluid bodies that are partly or entirely convective, to predict the dynamical evolution of the systems. In particular, we examine the validity of modeling the tidal dissipation using the quality factor Q, which is commonly done. We consider here the simplest case where the considered star or planet rotates uniformly, all spins are aligned, and the companion is reduced to a point mass. Methods: We expand the tidal potential as a Fourier series, and express the hydrodynamical equations in the reference frame, which rotates with the corresponding Fourier component. The results are cast in the form of a complex disturbing function, which may be implemented directly in the equations governing the dynamical evolution of the system. Results: The first manifestation of the tide is to distort the shape of the star or planet adiabatically along the line of centers. This generates the divergence-free velocity field of the adiabatic equilibrium tide, which is stationary in the frame rotating with the considered Fourier component of the tidal potential; this large-scale velocity field is decoupled from the dynamical tide. The tidal kinetic energy is dissipated into heat by means of turbulent friction, which is modeled here as an eddy-viscosity acting on the adiabatic tidal flow. This dissipation induces a second velocity field, the dissipative equilibrium tide, which is in quadrature with the exciting potential; this field is responsible for the imaginary part of the disturbing function, which is implemented in the dynamical evolution equations, from which one derives the characteristic evolutionary times. Conclusions: The rate at which the

  13. Simulation and video animation of canal flushing created by a tide gate

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A tide-gate algorithm was added to a one-dimensional unsteady flow model that was calibrated, verified, and used to determine the locations of as many as five tide gates that would maximize flushing in two canal systems. Results from the flow model were used to run a branched Lagrangian transport model to simulate the flushing of a conservative constituent from the canal systems both with and without tide gates. A tide gate produces a part-time riverine flow through the canal system that improves flushing along the flow path created by the tide gate. Flushing with no tide gates and with a single optimally located tide gate are shown with a video animation.

  14. How Do Tides and Tsunamis Interact in a Highly Energetic Channel? The Case of Canal Chacao, Chile

    NASA Astrophysics Data System (ADS)

    Winckler, Patricio; Sepúlveda, Ignacio; Aron, Felipe; Contreras-López, Manuel

    2017-12-01

    This study aims at understanding the role of tidal level, speed, and direction in tsunami propagation in highly energetic tidal channels. The main goal is to comprehend whether tide-tsunami interactions enhance/reduce elevation, currents speeds, and arrival times, when compared to pure tsunami models and to simulations in which tides and tsunamis are linearly superimposed. We designed various numerical experiments to compute the tsunami propagation along Canal Chacao, a highly energetic channel in the Chilean Patagonia lying on a subduction margin prone to megathrust earthquakes. Three modeling approaches were implemented under the same seismic scenario: a tsunami model with a constant tide level, a series of six composite models in which independent tide and tsunami simulations are linearly superimposed, and a series of six tide-tsunami nonlinear interaction models (full models). We found that hydrodynamic patterns differ significantly among approaches, being the composite and full models sensitive to both the tidal phase at which the tsunami is triggered and the local depth of the channel. When compared to full models, composite models adequately predicted the maximum surface elevation, but largely overestimated currents. The amplitude and arrival time of the tsunami-leading wave computed with the full model was found to be strongly dependent on the direction of the tidal current and less responsive to the tide level and the tidal current speed. These outcomes emphasize the importance of addressing more carefully the interactions of tides and tsunamis on hazard assessment studies.

  15. The Near-Earth Plasma Environment

    NASA Technical Reports Server (NTRS)

    Pfaff, Robert F., Jr.

    2012-01-01

    An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth's plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.

  16. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    One hundred sets of mean elements of GEOS-3 computed at 2-day intervals yielded observation equations for the M sub 2 ocean tide from the long periodic variations of the inclination and node of the orbit. The 2nd degree Love number was given the value k sub 2 = 0.30 and the solid tide phase angle was taken to be zero. Combining obtained equations with results for the satellite 1967-92A gives the M sub 2 ocean tide parameter values. Under the same assumption of zero solid tide phase lag, the lunar tidal acceleration was found mostly due to the C sub 22 term in the expansion of the M sub 2 tide with additional small contributions from the 0 sub 1 and N sub 2 tides. Using Lambeck's (1975) estimates for the latter, the obtained acceleration in lunar longitudal in excellent agreement with the most recent determinations from ancient and modern astronomical data.

  17. Some dinophycean red tide plankton species generate a superoxide scavenging substance.

    PubMed

    Sato, Emiko; Niwano, Yoshimi; Matsuyama, Yukihiko; Kim, Daekyung; Nakashima, Takuji; Oda, Tatsuya; Kohno, Masahiro

    2007-03-01

    Recent studies indicate that some raphidophycean red tide flagellates produce substances able to scavenge superoxide, whereas there have been no reports on superoxide scavenger production by dinophycean red tide flagellates. In this study, we examined the superoxide-scavenging activity of aqueous extracts from dinophycean red tide flagellates, Gymnodinium spp., Scrippsiella trochoidea, and Karenia sp., by a luminol analog L-012-dependent chemiluminescence (CL) method and an electron spin resonance (ESR)-spin trapping method, and compared the activity to that of raphidophycean red tide flagellates, Chattonella spp., Heterosigma akashiwo, and Fibrocapsa japonica. In the experiment applying the L-012-dependent CL method, only the aqueous extracts from raphidophycean red tide flagellates showed superoxide-scavenging activity. On the other hand, applying the ESR-spin trapping method, we found that the aqueous extracts from dinophycean red tide flagellates also showed superoxide-scavenging activity. This is the first report on the production of a superoxide-scavenger by dinophycean red tide flagellates.

  18. A finite element model for tides and resonance along the north coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Foreman, M. G. G.; Henry, R. F.; Walters, R. A.; Ballantyne, V. A.

    1993-02-01

    A finite element, barotropic, tidal model is developed for the north coast of British Columbia. The model is run with eight tidal constituents and the results are compared with the Flather (1987) finite difference model, and with extensive tide gauge and current meter observations. Although the tidal potential, Earth tide, and loading tide are included in the forcing, their inclusion is shown to change the largest M2 amplitudes by only 2.5% and the largest K1 amplitudes by less than 1%. Root mean square differences between observed and calculated sea level amplitudes and phases are within 1.9 cm and 2.9° for all but one constituent, but the model currents do not in general, compare as favourably. The barotropic currents observed in Hecate Strait are reproduced well, but elsewhere evidence is shown that model inaccuracies are due to baroclinic effects. Tidal residual currents calculated by the model suggest the existence of eddies off the tip of Cape St. James, Cape Chacon, and around Goose Island and Learmonth Banks. The shallow water constituents in Hecate Strait are shown to have significant contributions from the constructive interference of signals propagating into Dixon Entrance and Queen Charlotte Sound. Using the model, the longest resonant period of the system is estimated to be 7.6 hours with an energy dissipation parameter, Q, of 9.5.

  19. Tide-surge Interaction Intensified by the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Zhou; Shi, Fengyan; Hong, Hua-Sheng; Shang, Shao-Ping; Kirby, James T.

    2010-06-01

    The Taiwan Strait is a long and wide shelf-channel where the hydrodynamics is extremely complex, being characterized by strong tides, and where storm surges frequently occur during the typhoon season. Obvious oscillations due to tide-surge interaction were observed by tide gauges along the northern Fujian coast, the west bank of the Taiwan Strait, during Typhoon Dan (1999). Numerical experiments indicate that nonlinear bottom friction (described by the quadratic formula) is a major factor to predict these oscillations while the nonlinear advective terms and the shallow water effect have little contribution. It is found that the tide-surge interaction in the northern portion of the Taiwan Strait is intensified by the strait. Simulations based on simplified topographies with and without the island of Taiwan show that, in the presence of the island, the channel effect strengthens tidal currents and tends to align the major axes of tidal ellipses along the channel direction. Storm-induced currents are also strengthened by the channel. The pattern of strong tidal currents and storm-induced currents along the channel direction enhances tide-surge interaction via the nonlinear bottom friction, resulting in the obvious oscillations along the northern Fujian coast.

  20. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish

    PubMed Central

    Murillo, Laurence; Randon, Marine; Lebot, Clément

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  1. Influence of Green Tides in Coastal Nursery Grounds on the Habitat Selection and Individual Performance of Juvenile Fish.

    PubMed

    Le Luherne, Emilie; Le Pape, Olivier; Murillo, Laurence; Randon, Marine; Lebot, Clément; Réveillac, Elodie

    2017-01-01

    Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less

  2. [Study of red tide spectral characteristics and its mechanism].

    PubMed

    Cui, Ting-Wei; Zhang, Jie; Ma, Yi; Sun, Ling

    2006-05-01

    In situ spectral data of different red tide, whose dominant species are leptocylindrus danicus, chattonella marina, skeletonema costatum, and mesodinium rubrum, were acquired by above water method utilizing spectrometer manufactured by FieldSpec Dual VNIR (USA). It is emphasized that the characteristic reflectance peak lying between 687 and 728 nm can be used to distinguish between red tide and normal sea water. Also the spectral discrepancy between different dominant species of red tide is pointed out, which could be utilized to identify certain red tide species by remote sensing technique. Mechanisms of phytoplankton red tide spectra peaks and vales are given. Spectral characteristics of mesodinium rubrum, a kind of protozoan, may be related to its symbiotic alga in its body and phytoplankton pigment crumb. So, research on ingestion preference, symbiotic property with algae, and fluorescence emission character of such symbiotic algae under normal temperature may be helpful for the deep understanding of mechanism of mesodinium rubrum spectra.

  3. The enhanced nodal equilibrium ocean tide and polar motion

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1979-01-01

    The tidal response of the ocean to long period forcing functions was investigated. The results indicate the possibility of excitation of a wobble component with the amplitude and frequency indicated by the data. An enhancement function for the equilibrium tide was postulated in the form of an expansion in zonal harmonics and the coefficients of such an expansion were estimated so as to obtain polar motion components of the required magnitude.

  4. The importance of weightlessness and tides in teaching gravitation

    NASA Astrophysics Data System (ADS)

    Galili, I.; Lehavi, Y.

    2003-11-01

    We examine the presentation of the weight, weightlessness, and tides in university-level physics textbooks. Introductory textbooks often do not discuss tidal forces even though their understanding would be useful for understanding weightlessness. The explanations of tides often miss the free gravitational motion of both interacting objects, which is essential for the symmetry of tidal deformation. The shortcomings in the explanations of weightlessness and tides as provided by students and teachers are compared to textbook discussions. We suggest that an explicit discussion of the different definitions of weight and a synergetic presentation of weightlessness and tides might lead to a better understanding of gravitation. Our approach is illustrated by examples of tidal effects appropriate for introductory courses.

  5. Nonlinear Tides in Close Binary Systems

    NASA Astrophysics Data System (ADS)

    Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh

    2012-06-01

    We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' >~ 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static "equilibrium" tidal distortion is, however, stable to parametric resonance except for solar binaries with P <~ 2-5 days. (2) For companion masses larger than a few Jupiter masses, the dynamical tide causes short length scale waves to grow so rapidly that they must be treated as traveling waves, rather than standing waves. (3) We show that the global three-wave treatment of parametric instability typically used in the astrophysics literature does not yield the fastest-growing daughter modes or instability threshold in many cases. We find a form of parametric instability in which a single parent wave excites a very large number of daughter waves (N ≈ 103[P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the

  6. Tide Corrections for Coastal Altimetry: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2008-01-01

    Knowledge of global oceanic tides has markedly advanced over the last two decades, in no small part because of the near-global measurements provided by satellite altimeters, and especially the long and precise Topex/Poseidon time series e.g. [2]. Satellite altimetry in turn places very severe demands on the accuracy of tidal models. The reason is clear: tides are by far the largest contributor to the variance of sea-surface elevation, so any study of non-tidal ocean signals requires removal of this dominant tidal component. Efforts toward improving models for altimetric tide corrections have understandably focused on deep-water, open-ocean regions. These efforts have produced models thought to be generally accurate to about 2 cm rms. Corresponding tide predictions in shelf and near-coastal regions, however, are far less accurate. This paper discusses the status of our current abilities to provide near-global tidal predictions in shelf and near-coastal waters, highlights some of the difficulties that must be overcome, and attempts to divine a path toward some degree of progress. There are, of course, many groups worldwide who model tides over fairly localized shallow-water regions, and such work is extremely valuable for any altimeter study limited to those regions, but this paper considers the more global models necessary for the general user. There have indeed been efforts to patch local and global models together, but such work is difficult to maintain over many updates and can often encounter problems of proprietary or political nature. Such a path, however, might yet prove the most fruitful, and there are now new plans afoot to try again. As is well known, tides in shallow waters tend to be large, possibly nonlinear, and high wavenumber. The short spatial scales mean that current mapping capabilities with (multiple) nadir-oriented altimeters often yield inadequate coverage. This necessitates added reliance on numerical hydrodynamic models and data assimilation

  7. Storm surge and tide interaction: a complete paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, Kevin; Williams, Jane; Proctor, Robert

    2014-05-01

    Globally, 200 million people live on coastal floodplains and about 1 trillion worth of assets lie within 1 metre of mean sea level. Any change in the statistics of flood frequency or severity would impact on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. This has been shown previously by analytical models but not as yet confirmed by fully non-linear models of the continental shelf. We present results from an operational model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are generally greater when tidal range is low. Our results contradict the absence of any such correlation observed in the complete record of UK tide gauge data. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that operational models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge

  8. Storm Surge and Tide Interaction: A Complete Paradigm

    NASA Astrophysics Data System (ADS)

    Horsburgh, K.

    2014-12-01

    Estimates show that in 2005, in the largest 136 coastal cities, there were 40 million people and 3,000 billion of assets exposed to 1 in 100 year coastal flood events. Mean sea level rise will increase this exposure to 150 million people and 35,000 billion of assets by 2070. Any further change in the statistics of flood frequency or severity would impact severely on economic and social systems. It is therefore crucial to understand the physical drivers of extreme storm surges, and to have confidence in datasets used for extreme sea level statistics. Much previous research has focussed on the process of tide-surge interaction, and it is now widely accepted that the physical basis of tide-surge interaction is that a phase shift of the tidal signal represents the effect of the surge on the tide. The second aspect of interaction is that shallow water momentum considerations imply that differing tidal states should modulate surge generation: wind stress should have greater surge-generating potential on lower tides. We present results from a storm surge model of the European shelf that demonstrate that tidal range does have an effect on the surges generated. The cycle-integrated effects of wind stress (i.e. the skew surge) are greater when tidal range is low. Our results contradict the absence of any such correlation in tide gauge records. This suggests that whilst the modulating effect of the tide on the skew surge (the time-independent difference between peak prediction and observations) is significant, the difference between individual storms is dominant. This implies that forecasting systems must predict salient detail of the most intense storms. A further implication is that flood forecasting models need to simulate tides with acceptable accuracy at all coastal locations. We extend our model analysis to show that the same modulation of storm surges (by tidal conditions) applies to tropical cyclones. We conduct simulations using a mature operational storm surge model

  9. Occupational exposure to aerosolized brevetoxins during Florida red tide events: effects on a healthy worker population.

    PubMed

    Backer, Lorraine C; Kirkpatrick, Barbara; Fleming, Lora E; Cheng, Yung Sung; Pierce, Richard; Bean, Judy A; Clark, Richard; Johnson, David; Wanner, Adam; Tamer, Robert; Zhou, Yue; Baden, Daniel G

    2005-05-01

    Karenia brevis (formerly Gymnodinium breve) is a marine dinoflagellate responsible for red tides that form in the Gulf of Mexico. K. brevis produces brevetoxins, the potent toxins that cause neurotoxic shellfish poisoning. There is also limited information describing human health effects from environmental exposures to brevetoxins. Our objective was to examine the impact of inhaling aerosolized brevetoxins during red tide events on self-reported symptoms and pulmonary function. We recruited a group of 28 healthy lifeguards who are occupationally exposed to red tide toxins during their daily work-related activities. They performed spirometry tests and reported symptoms before and after their 8-hr shifts during a time when there was no red tide (unexposed period) and again when there was a red tide (exposed period). We also examined how mild exercise affected the reported symptoms and spirometry tests during unexposed and exposed periods with a subgroup of the same lifeguards. Environmental sampling (K. brevis cell concentrations in seawater and brevetoxin concentrations in seawater and air) was used to confirm unexposed/exposed status. Compared with unexposed periods, the group of lifeguards reported more upper respiratory symptoms during the exposed periods. We did not observe any impact of exposure to aerosolized brevetoxins, with or without mild exercise, on pulmonary function.

  10. Observation of the Earth liquid core resonance by extensometers

    NASA Astrophysics Data System (ADS)

    Bán, Dóra; Mentes, Gyula

    2016-04-01

    The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.

  11. Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.

    1991-01-01

    Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.

  12. Palaeoclimate: ocean tides and Heinrich events.

    PubMed

    Arbic, Brian K; Macayeal, Douglas R; Mitrovica, Jerry X; Milne, Glenn A

    2004-11-25

    Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

  13. Lunar tidal acceleration obtained from satellite-derived ocean tide parameters

    NASA Technical Reports Server (NTRS)

    Goad, C. C.; Douglas, B. C.

    1978-01-01

    Observation equations for the M2 ocean tide are computed from Geos 3 data for the long periodic variations of the inclination and node of the orbit. M2 ocean tide parameter values C22+ = 3.23 + or - 0.25 cm, epsilon 22+ = 331 + or - 6 deg, and epsilon 42+ = 113 + or - 6 deg are determined. With the assumption of zero solid tide phase lag, the lunar tidal acceleration is mostly (85%) due to the C22+ term in the expansion of the M2 tide with additional small contributions from the O1 and N2 tides. The calculated value for the tidal acceleration in lunar longitude is -27.4 + or - 3 arc sec/sq (100 yr) which is similar to values determined from astronomical data. The mean elements of Geos 3 are presented in tabular form.

  14. Snowball Earth: Response of the biosphere?

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2001-05-01

    Snowball Earth is a script for global catastrophe that rivals giant impact theories in the likely severity of its environmental effects. This is particularly true for the "hard" version of the hypothesis, which requires the atmosphere to be effectively isolated from the ocean so that its carbon dioxide concentration can build up to the level ( ~100 PAL) ultimately required to melt the ice. However, coupled GCM-EMB models (Hyde et al. Nature 405, 425-430; Crowley & Hyde, GRL 28, 283-286) allow equatorial open water solutions under plausible Neoproterozoic conditions. These "softer" scenarios are more appealing if one considers the possible effects of snowball Earth episodes on the global biosphere. The meager Neoproterozoic fossil record makes it difficult to observe the biospheric response directly, but we know from evolutionary trees constructed from aligned protein and DNA sequences from living organisms, calibrated by the fossil record, that many lines of descent passed through the Cryogenian glacial periods. They include various kinds of prokaryotic and eukaryotic algae, a range of protists, and probably, a number of different kinds of animals and fungi. In addition, most of the microbial groups shown on comprehensive 16S rRNA trees have molecular clock ages that predate the snowball episodes. As the global environmental perturbations associated with the "hard" snowball hypothesis (freezing temperatures; huge and rapid changes in temperature; sudden carbon dioxide overload) are thought to have been biologically limiting during the Phanerozoic, the inferred response of the biosphere to Neoprotereozic glaciations may, indeed, provide a way of testing alternative snowball Earth scenarios.

  15. Construction of Green Tide Monitoring System and Research on its Key Techniques

    NASA Astrophysics Data System (ADS)

    Xing, B.; Li, J.; Zhu, H.; Wei, P.; Zhao, Y.

    2018-04-01

    As a kind of marine natural disaster, Green Tide has been appearing every year along the Qingdao Coast, bringing great loss to this region, since the large-scale bloom in 2008. Therefore, it is of great value to obtain the real time dynamic information about green tide distribution. In this study, methods of optical remote sensing and microwave remote sensing are employed in Green Tide Monitoring Research. A specific remote sensing data processing flow and a green tide information extraction algorithm are designed, according to the optical and microwave data of different characteristics. In the aspect of green tide spatial distribution information extraction, an automatic extraction algorithm of green tide distribution boundaries is designed based on the principle of mathematical morphology dilation/erosion. And key issues in information extraction, including the division of green tide regions, the obtaining of basic distributions, the limitation of distribution boundary, and the elimination of islands, have been solved. The automatic generation of green tide distribution boundaries from the results of remote sensing information extraction is realized. Finally, a green tide monitoring system is built based on IDL/GIS secondary development in the integrated environment of RS and GIS, achieving the integration of RS monitoring and information extraction.

  16. Lunar tides in the Thermosphere-Ionosphere-Electrodynamics General Circulation Model

    NASA Astrophysics Data System (ADS)

    Stening, R. J.; Richmond, A. D.; Roble, R. G.

    1999-01-01

    Lunar semidiurnal tides are introduced at the lower boundary of the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM). The tides are derived from the model of Vial and Forbes [1994] and interesting properties of these tides are found when they are subjected to Hough decomposition; there is considerable hemispherical antisymmetry in the September tides, and the March and September modal compositions are significantly different. A differencing method is used to isolate the lunar tidal effects in the TIEGCM, and these are compared with lunar tidal analyses of ionospheric data. The model reproduces the broad features of the lunar tide in foF2 (maximum frequency of the F region) with phase changes around 7° magnetic dip latitude during daytime. The model and data analysis both give variations of the amplitude and phase of the lunar tide with local time. Near the equator the variation of phase with local time changes with latitude as the equatorial anomaly develops during the day. Comparison between the model predictions and analyses of data at observatories at midlatitudes produces mixed results. Here the effects of the lunar components of both electrodynamic drifts and of neutral winds need to be taken into account. Several cases of day to night changes in the phase of the lunar tide in foF2 are noted. Large nighttime amplitudes of the lunar tide in hmF2 (height of the maximum density), more than 4 km, seem to be due to inphase action of the electrodynamic and neutral wind effects while during daytime they are out of phase. The lunar tide in the ratio of oxygen to nitrogen density [O]/[N2] is estimated and found to be of relatively minor importance. Amplitudes of the lunar tide in foF2 may be measured at more than 0.4 MHz at some local times, but the model values are less than this. Comparison is also made with ion drift measurements made by the San Marco D satellite. The several uncertainties which

  17. Orbital Evolution of Planetesimals by the Galactic Tide

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Kokubo, E.; Mukai, T.

    2005-05-01

    The Oort cloud is a spherical comet reservoir surrounding the solar system. There is general agreement that the Oort cloud comets are the residual planetesimals of planet formation. The standard scenario of the Oort cloud formation consists of two dynamical stages: (1) giant planets raise the aphelia of planetesimals to the outer region of the solar system and (2) the galactic tide, passing stars, and giant molecular clouds pull up their perihelia out of the planetary region. Here we show the orbital evolution of planetesimals by the galactic tide. Planetesimals with large aphelion distances change their perihelion distances toward the outside of the planetary region by the galactic tide and become members of the Oort cloud. The effect of the galactic tide on the planetesimals with semimajor axes of ˜ 104AU is about 10-3 of the solar gravity. The timescale of the orbital evolution is ˜ 108 years. We consider only the vertical component of the galactic tide. Under the axisymmetric potential, some planetesimals may show the librations around ω (argument of perihelion)=π /2 and 3π /2 (the Kozai mechanism). The alternate increases of eccentricity and inclination of the Kozai mechanism are effective to form the Oort cloud. The secular perturbation theory demonstrates the Kozai mechanism and we can understand the motion of the planetesimals analytically. We apply the Kozai mechanism to the galactic tide and discuss the property of the Oort cloud formed by the Kozai mechanizm. This work was supported by the 21st Century COE Program Origin and Evolution of Planetary Systems of the Ministry of Education, Culture, Sports, Science, and Technology, Japan, and JSPS Research Fellowship for Young Scientists.

  18. Non-Migrating Diurnal Tides Generated with Planetary Waves in the Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We report here the results from a modeling study with our Numerical Spectral Model (NSM) that extends from the ground into thermosphere. The NSM incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GWs) and describes the major dynamical features of the atmosphere, including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the solar migrating tidal excitation sources, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that have amplitudes comparable to those observed. The model produces the diurnal (and semidiurnal) oscillations of the zonal mean (m = 0), and eastward and westward propagating tides for zonal wave numbers m = 1 to 4. To identify the mechanism of excitation for these tides, a numerical experiment is performed. The NSM is run without the heat source for the zonal-mean circulation and temperature variation, and the amplitudes of the resulting nonmigrating tides are then negligibly small. This leads to the conclusion that the planetary waves, which normally are excited in the NSM by instabilities but are suppressed in this case, generate the nonmigrating tides through nonlinear interactions with the migrating tides.

  19. Waves and tides responsible for the intermittent closure of the entrance of a small, sheltered tidal wetland at San Francisco, CA

    USGS Publications Warehouse

    Hanes, D.M.; Ward, K.; Erikson, L.H.

    2011-01-01

    Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel. ?? 2011.

  20. Satellite tracking and earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The SAO laser site in Arequipa continued routine operations throughout the reporting period except for the months of March and April when upgrading was underway. The laser in Orroral Valley was operational through March. Together with the cooperating stations in Wettzell, Grasse, Kootwikj, San Fernando, Helwan, and Metsahove the laser stations obtained a total of 37,099 quick-look observations on 978 passes of BE-C, Starlette, and LAGEOS. The Network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The Network performed regular tracking of BE-C and Starlette for refined determinations of station coordinate and the Earth's gravity field and for studies of solid earth dynamics. Monthly statistics of the passes and points are given by station and by satellite.

  1. Mapping ocean tides with satellites - A computer simulation

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Kuo, J. T.; Jachens, R. C.

    1978-01-01

    As a preliminary study for the future worldwide direct mapping of the open ocean tide with satellites equipped with precision altimeters we conducted a simulated study using sets of artificially generated altimeter data constructed from a realistic geoid and four pairs of major tides in the northeastern Pacific Ocean. Recovery of the original geoid and eight tidal maps is accomplished by a space-time, least squares harmonic analysis scheme. The resultant maps appear fairly satisfactory even when random noises up to + or - 100 cm are added to the altimeter data of sufficient space-time density. The method also produces a refined geoid which is rigorously corrected for the dynamic tides.

  2. A Hybrid Remote Sensing Approach for Detecting the Florida Red Tide

    NASA Astrophysics Data System (ADS)

    Carvalho, G. A.; Minnett, P. J.; Banzon, V.; Baringer, W.

    2008-12-01

    Harmful algal blooms (HABs) have caused major worldwide economic losses commonly linked with health problems for humans and wildlife. In the Eastern Gulf of Mexico the toxic marine dinoflagellate Karenia brevis is responsible for nearly annual, massive red tides causing fish kills, shellfish poisoning, and acute respiratory irritation in humans: the so-called Florida Red Tide. Near real-time satellite measurements could be an effective method for identifying HABs. The use of space-borne data would be a highly desired, low-cost technique offering the remote and accurate detection of K. brevis blooms over the West Florida Shelf, bringing tremendous societal benefits to the general public, scientific community, resource managers and medical health practitioners. An extensive in situ database provided by the Florida Fish and Wildlife Conservation Commission's Research Institute was used to examine the long-term accuracy of two satellite- based algorithms at detecting the Florida Red Tide. Using MODIS data from 2002 to 2006, the two algorithms are optimized and their accuracy assessed. It has been found that the sequential application of the algorithms results in improved predictability characteristics, correctly identifying ~80% of the cases (for both sensitivity and specificity, as well as overall accuracy), and exhibiting strong positive (70%) and negative (86%) predictive values.

  3. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Dong, Danan

    1994-01-01

    We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current

  4. Preliminary Study on Coupling Wave-Tide-Storm Surges Prediction System

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Kim, K.

    2008-12-01

    The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surge, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module on wave heights. However, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (RTSM : Regional Tide/Storm Surges Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The RTSM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and RTSM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the

  5. Eddy Resolving Global Ocean Prediction including Tides

    DTIC Science & Technology

    2013-09-30

    atlantic meridional overturning circulation in the subpolar North Atlantic . Journal of Geophysical Research vol 118, doi:10.1002/jgrc,20065. [published, refereed] ...global ocean circulation model was examined using results from years 2005-2009 of a seven and a half year 1/12.5° global simulation that resolves...internal tides, along with barotropic tides and the eddying general circulation . We examined tidal amplitudes computed using 18 183-day windows that

  6. Research on red tide occurrences using enclosed experimental ecosystems in west Xiamen Harbor, China—Relationship between various factors and red tide occurrences

    NASA Astrophysics Data System (ADS)

    Lin, Yu; Harrison, P. J.

    2000-06-01

    A series of enclosed ecosystem experiments were conducted in a land-based tank near the seaside of West Xiamen Harbor. The results of experiments conducted in different seasons and years showed a repeatable phytoplankton succession. In this relatively stable ecosystem with added nutrients and trace metals, diatoms dominated initially, dinoflagellates dominated in the later stage, and dinoflagellate red tides eventually occurred. Vitamin B12 enrichment may speed up this succession process. Stirring the water column could stop this process. Soluble Mn at a level of 3 4 μg/L in seawater, which also is the existing concentration of soluble Mn in Xiamen Harbor seawater, is sufficient for the multiplication of algae and occurrence of red tide. The present study showed that excessive soluble Mn in Xiamen Harbor cannot cause red tide, and that Fe was one of the important factors causing diatiom red tide in this present study.

  7. The recognition of ocean red tide with hyper-spectral-image based on EMD

    NASA Astrophysics Data System (ADS)

    Zhao, Wencang; Wei, Hongli; Shi, Changjiang; Ji, Guangrong

    2008-05-01

    A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general picture data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast.

  8. Red tides in the Gulf of Mexico: Where, when, and why?

    PubMed Central

    Walsh, J. J.; Jolliff, J. K.; Darrow, B. P.; Lenes, J. M.; Milroy, S. P.; Remsen, A.; Dieterle, D. A.; Carder, K. L.; Chen, F. R.; Vargo, G. A.; Weisberg, R. H.; Fanning, K. A.; Muller-Karger, F. E.; Shinn, E.; Steidinger, K. A.; Heil, C. A.; Tomas, C. R.; Prospero, J. S.; Lee, T. N.; Kirkpatrick, G. J.; Whitledge, T. E.; Stockwell, D. A.; Villareal, T. A.; Jochens, A. E.; Bontempi, P. S.

    2010-01-01

    [1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l–1 of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l–1. The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication. PMID:20411040

  9. Anisotropic dissipation of the global internal tide from a higher-order multiscale barotropic tidal simulation

    NASA Astrophysics Data System (ADS)

    Salehipour, Hesam; Peltier, W. Richard

    2013-04-01

    will present maps of energy dissipation for different tidal constituents using grids with resolutions up to 1/18° in coastal regions as well as in areas with high gradients in the bottom topography. The discontinuous Galerkin formulation provides important energy conservation properties as well as enabling the accurate representation of sharp topographic gradients without smoothing, a feature well matched to the multi-scale problem of the dissipation of the internal tide. We will describe the detailed energy budgets delivered by this model under both modern and Last Glacial Maximum oceanographic conditions, including relative sea level and internal density stratification effects. The results of the simulations will be illustrated with global maps with enhanced resolution for the internal tidal dissipation which may be exploited in the parameterization of vertical mixing. We will use the reconstructed paleotopography of the ICE-5G model of Peltier [Annu. Rev. Earth Planet Sci. 2004] as well as the more recent refinement (ICE-6G) to compute the characteristics of the LGM tidal regime and will compare these characteristics to those of the modern ocean.

  10. Seasonal modulation of M2 tide in the Northern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Tazkia, A. R.; Krien, Y.; Durand, F.; Testut, L.; Islam, AKM S.; Papa, F.; Bertin, X.

    2017-04-01

    The Northern Bay of Bengal (BoB) with its adjoining Ganges-Brahmaputra-Meghna delta (GBM) forms the largest deltaic region in the world. It is surrounded by a wide area of low-lying land (less than a few meters above mean sea level), very densely populated. It is home to a strong variability of sea level, across all timescales, with ample tides and frequent storm surges. It is also subject to extended river flooding during the monsoon season, with frequent overflows of two of the world's largest rivers (Brahmaputra and Ganges). There is thus a need to understand and predict the various mechanisms responsible for coastal and estuarine water level variability in this area. In this study, we address one of the least understood facets of this variability: the low-frequency modulation of tides. We focus on the seasonal changes of amplitude of the semi-diurnal lunar tide, M2. It is found that M2 amplitude shows marked changes between winter and summer seasons (of order 10 cm), incommensurate with most of the world's coastal ocean. We observe contrasted patterns from the open areas of the coastal ocean to the inner part of the GBM estuary. In the coastal ocean and over most of the GBM delta, M2 amplitude is stronger during summer and decreases until winter. Conversely, in the far northern part of GBM estuary, M2 amplitude is stronger during winter and weaker during summer. We make use of a hydrodynamic barotropic tidal model to decipher the processes responsible for this evolution. It is found that throughout the coastal ocean and over most of the GBM delta, this evolution is driven by frictional effects, with a seasonal modulation of bottom dissipation of tidal energy. Our simple barotropic model, however, does not capture the observed range of seasonal modulation of tides in the GBM estuary and at its mouth. Our study advocates for a careful consideration of these processes for a proper representation of the tidal dynamics as well as of the flooding hazard in the Bengal

  11. A Model for Teaching the Dynamical Theory of Tides.

    ERIC Educational Resources Information Center

    Railsback, L. Bruce

    1991-01-01

    The dynamical theory of tides is often neglected in teaching oceanography because students have difficulty in visualizing the movements of the tides across the glove. A schematic diagram portraying amphidromic systems as mechanical gears helps overcome these problems. (Author)

  12. Modeling influence of tide stages on forecasts of the 2010 Chilean tsunami

    NASA Astrophysics Data System (ADS)

    Uslu, B. U.; Chamberlin, C.; Walsh, D.; Eble, M. C.

    2010-12-01

    The impact of the 2010 Chilean tsunami is studied using the NOAA high-resolution tsunami forecast model augmented to include modeled tide heights in addition to deep-water tsunami propagation as boundary-condition input. The Chilean tsunami was observed at the Los Angeles tide station at mean low water, Hilo at low, Pago Pago at mid tide and Wake Island near high tide. Because the tsunami arrived at coastal communities at a representative variety of tide stages, 2010 Chile tsunami provides opportunity to study the tsunami impacts at different tide levels to different communities. The current forecast models are computed with a constant tidal stage, and this study evaluates techniques for adding an additional varying predicted tidal component in a forecasting context. Computed wave amplitudes, wave currents and flooding are compared at locations around the Pacific, and the difference in tsunami impact due to tidal stage is studied. This study focuses on how tsunami impacts vary with different tide levels, and helps us understand how the inclusion of tidal components can improve real-time forecast accuracy.

  13. The role of extreme floods in estuary-coastal behaviour: contrasts between river- and tide-dominated microtidal estuaries

    NASA Astrophysics Data System (ADS)

    Cooper, J. A. G.

    2002-06-01

    Contrasting modes of sedimentation and facies arrangement in tide- and river-dominated microtidal estuaries arise from the degree to which river or tidal discharge and sediment supply influences an estuary. A distinct facies gradation exists in tide-dominated systems from sandy, barrier/tidal delta-associated environments at the coast through deep mud-dominated middle reaches to fluvial sediment in the upper reaches. In river-dominated systems, fluvial sediment extends to the barrier and flood-tidal deltas are poorly developed or absent from the estuary. A number of independent observations during extreme floods on the South African coast indicate that these types of estuary respond differently to extreme river floods and that the mode of response corresponds to estuary type. Tide-dominated systems exhibit preferential erosion of noncohesive barrier and tidal delta sediments during river floods while the middle reaches remain little modified. River-dominated systems experience consistent erosion throughout their channel length during extreme floods. The increased cohesion of riverine sediments and stabilisation of bars by vegetation in river-dominated channels means that higher magnitude floods are necessary to effect significant morphological change. Barrier erosion, including the tidal delta, results in deposition of an ephemeral delta composed almost entirely of sands from these deposits in tide-dominated estuaries. In river-dominated systems, eroded channel sediments and material from the river catchment may augment barrier sediments in the ephemeral delta deposit. Post-flood, wave-reworking of ephemeral delta sediments acts to restore barriers to pre-flood morphology within a few years; however, in river-dominated systems, the additional sediment volume may produce significant coastal progradation that requires several years or decades to redistribute. These different modes of flood response mediated by the nature of the estuary have implications for coastal

  14. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  15. Satellite-tracking and Earth dynamics research programs

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The activities carried out by the Smithsonian Astrophysical Observatory (SAO) are described. The SAO network continued to track LAGEOS at highest priority for polar motion and Earth rotation studies, and for other geophysical investigations, including crustal dynamics, Earth and ocean tides, and the general development of precision orbit determination. The network performed regular tracking of several other retroreflector satellites including GEOS-1, GEOS-3, BE-C, and Starlette for refined determinations of station coordinates and the Earth's gravity field and for studies of solid Earth dynamics. A major program in laser upgrading continued to improve ranging accuracy and data yield. This program includes an increase in pulse repetition rate from 8 ppm to 30 ppm, a reduction in laser pulse width from 6 nsec to 2 to 3 nsec, improvements in the photoreceiver and the electronics to improve daylight ranging, and an analog pulse detection system to improve range noise and accuracy. Data processing hardware and software are discussed.

  16. The self-consistent dynamic pole tide in global oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1985-01-01

    The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.

  17. Seasonal variation of semidiurnal internal tides in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Jeon, Chanhyung; Park, Jae-Hun; Varlamov, Sergey M.; Yoon, Jong-Hwan; Kim, Young Ho; Seo, Seongbong; Park, Young-Gyu; Min, Hong Sik; Lee, Jae Hak; Kim, Cheol-Ho

    2014-05-01

    The seasonal variation of semidiurnal internal tides in the East/Japan Sea was investigated using 25 month long output from a real-time ocean forecasting system. The z coordinate eddy-resolving high-resolution numerical model, called the RIAM ocean model, incorporates data assimilation that nudges temperature and salinity fields together with volume transport through the Korea Strait to produce realistic oceanic currents and stratification. In addition to atmospheric forcing, it includes tidal forcing of 16 major components along open boundaries. The model generates energetic semidiurnal internal tides around the northern entrance of the Korea Strait. Energy conversion from barotropic to baroclinic (internal) tides varies seasonally with maxima in September (ranging 0.48-0.52 GW) and minima in March (ranging 0.11-0.16 GW). This seasonal variation is induced by the seasonality in stratification near the southwestern East/Japan Sea. The propagation distance of the internal tides is associated with generation intensity and wavelength. From late summer to early winter, the semidiurnal internal tides travel relatively far from the generation region due to stratification changes; its energy dissipates less as a result of longer wavelengths. Our results suggest that spatiotemporal variation of internal-tide-induced mixing due to the seasonality in the generation, propagation, and dissipation of internal tides should be considered for a more realistic simulation of water masses and circulation in models of the East/Japan Sea.

  18. Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution

    NASA Astrophysics Data System (ADS)

    Motoyama, M.; Tsunakawa, H.; Takahashi, F.

    2016-12-01

    The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular

  19. The impact of future sea-level rise on the global tides

    NASA Astrophysics Data System (ADS)

    Pickering, M. D.; Horsburgh, K. J.; Blundell, J. R.; Hirschi, J. J.-M.; Nicholls, R. J.; Verlaan, M.; Wells, N. C.

    2017-06-01

    Tides are a key component in coastal extreme water levels. Possible changes in the tides caused by mean sea-level rise (SLR) are therefore of importance in the analysis of coastal flooding, as well as many other applications. We investigate the effect of future SLR on the tides globally using a fully global forward tidal model: OTISmpi. Statistical comparisons of the modelled and observed tidal solutions demonstrate the skill of the refined model setup with no reliance on data assimilation. We simulate the response of the four primary tidal constituents to various SLR scenarios. Particular attention is paid to future changes at the largest 136 coastal cities, where changes in water level would have the greatest impact. Spatially uniform SLR scenarios ranging from 0.5 to 10 m with fixed coastlines show that the tidal amplitudes in shelf seas globally respond strongly to SLR with spatially coherent areas of increase and decrease. Changes in the M2 and S2 constituents occur globally in most shelf seas, whereas changes in K1 and O1 are confined to Asian shelves. With higher SLR tidal changes are often not proportional to the SLR imposed and larger portions of mean high water (MHW) changes are above proportional. Changes in MHW exceed ±10% of the SLR at 10% of coastal cities. SLR scenarios allowing for coastal recession tend increasingly to result in a reduction in tidal range. The fact that the fixed and recession shoreline scenarios result mainly in changes of opposing sign is explained by the effect of the perturbations on the natural period of oscillation of the basin. Our results suggest that coastal management strategies could influence the sign of the tidal amplitude change. The effect of a spatially varying SLR, in this case fingerprints of the initial elastic response to ice mass loss, modestly alters the tidal response with the largest differences at high latitudes.

  20. Detecting the red tide based on remote sensing data in optically complex East China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohui; Pan, Delu; Mao, Zhihua; Tao, Bangyi; Liu, Qiong

    2012-09-01

    Red tide not only destroys marine fishery production, deteriorates the marine environment, affects coastal tourist industry, but also causes human poison, even death by eating toxic seafood contaminated by red tide organisms. Remote sensing technology has the characteristics of large-scale, synchronized, rapid monitoring, so it is one of the most important and most effective means of red tide monitoring. This paper selects the high frequency red tides areas of the East China Sea as study area, MODIS/Aqua L2 data as the data source, analysis and compares the spectral differences in the red tide water bodies and non-red tide water bodies of many historical events. Based on the spectral differences, this paper develops the algorithm of Rrs555/Rrs488> 1.5 to extract the red tide information. Apply the algorithm on red tide event happened in the East China Sea on May 28, 2009 to extract the information of red tide, and found that the method can determine effectively the location of the occurrence of red tide; there is a good corresponding relationship between red tide extraction result and chlorophyll a concentration extracted by remote sensing, shows that these algorithm can determine effectively the location and extract the red tide information.

  1. Mapping nonlinear shallow-water tides: a look at the past and future

    NASA Astrophysics Data System (ADS)

    Andersen, Ole B.; Egbert, Gary D.; Erofeeva, Svetlana Y.; Ray, Richard D.

    2006-12-01

    Overtides and compound tides are generated by nonlinear mechanisms operative primarily in shallow waters. Their presence complicates tidal analysis owing to the multitude of new constituents and their possible frequency overlap with astronomical tides. The science of nonlinear tides was greatly advanced by the pioneering researches of Christian Le Provost who employed analytical theory, physical modeling, and numerical modeling in many extensive studies, especially of the tides of the English Channel. Le Provost’s complementary work with satellite altimetry motivates our attempts to merge these two interests. After a brief review, we describe initial steps toward the assimilation of altimetry into models of nonlinear tides via generalized inverse methods. A series of barotropic inverse solutions is computed for the M_4 tide over the northwest European Shelf. Future applications of altimetry to regions with fewer in situ measurements will require improved understanding of error covariance models because these control the tradeoffs between fitting hydrodynamics and data, a delicate issue in coastal regions. While M_4 can now be robustly determined along the Topex/Poseidon satellite ground tracks, many other compound tides face serious aliasing problems.

  2. Impact of tides in a baroclinic circulation model of the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Guarnieri, A.; Pinardi, N.; Oddo, P.; Bortoluzzi, G.; Ravaioli, M.

    2013-01-01

    AbstractThe impact of <span class="hlt">tides</span> in the circulation of the Adriatic Sea is investigated by means of a nested baroclinic numerical ocean model. <span class="hlt">Tides</span> are introduced using a modified Flather boundary condition at the open edge of the domain. The results show that tidal amplitudes and phases are reproduced correctly by the baroclinic model and tidal harmonic constants errors are comparable with those resulting from the most consolidated barotropic models. Numerical experiments were conducted to estimate and assess the impact of (i) the modified Flather lateral boundary condition; (ii) <span class="hlt">tides</span> on temperature, salinity, and stratification structures in the basin; and (iii) <span class="hlt">tides</span> on mixing and circulation in general. <span class="hlt">Tides</span> induce a different momentum advective component in the basin, which in turn produces a different distribution of water masses in the basin. <span class="hlt">Tides</span> impact on mixing and stratification in the River Po region (northwestern Adriatic) and induce semidiurnal fluctuations of salinity and temperature, in all four seasons for the former and summer alone for the latter. A clear presence of internal <span class="hlt">tides</span> was evidenced in the northern Adriatic Sea basin, corroborating previous findings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5794..415B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5794..415B"><span>Spatio-temporal environmental data <span class="hlt">tide</span> corrections for reconnaissance operations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn</p> <p>2005-06-01</p> <p>Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local <span class="hlt">tide</span> variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of <span class="hlt">tide</span> corrections provided for the area and time of interest by the Naval Research Laboratory <span class="hlt">tide</span> prediction code PCTides. For each geographic position of the AQS-20 sonar, a <span class="hlt">tide</span> height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1257557','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1257557"><span>Overview of Aerosolized Florida Red <span class="hlt">Tide</span> Toxins: Exposures and Effects</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.</p> <p>2005-01-01</p> <p>Florida red <span class="hlt">tide</span> is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red <span class="hlt">tide</span> toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red <span class="hlt">tide</span> toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red <span class="hlt">tide</span> toxins. PMID:15866773</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15866773','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15866773"><span>Overview of aerosolized Florida red <span class="hlt">tide</span> toxins: exposures and effects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G</p> <p>2005-05-01</p> <p>Florida red <span class="hlt">tide</span> is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red <span class="hlt">tide</span> toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red <span class="hlt">tide</span> toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red <span class="hlt">tide</span> toxins.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22165212','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22165212"><span>[Temporal and spatial distribution of red <span class="hlt">tide</span> in Yangtze River Estuary and adjacent waters].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang</p> <p>2011-09-01</p> <p>The events of red <span class="hlt">tide</span> were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red <span class="hlt">tide</span>, the distribution map was generated accordingly. The results show: (1) There are three red <span class="hlt">tide</span>-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red <span class="hlt">tide</span> occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red <span class="hlt">tide</span> were significantly increasing; (2) The frequent occurrence of red <span class="hlt">tide</span> was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red <span class="hlt">tide</span> plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red <span class="hlt">tides</span> caused by these species were 38, 35, 15, 10 times separately.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20379895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20379895"><span>Personal exposure to aerosolized red <span class="hlt">tide</span> toxins (brevetoxins).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G</p> <p>2010-06-01</p> <p>Florida red <span class="hlt">tides</span> occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red <span class="hlt">tide</span> aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red <span class="hlt">tide</span> event in March 2005, and in May 2008 when there was no red <span class="hlt">tide</span>. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red <span class="hlt">tide</span> event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022462','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022462"><span>Tidal Friction in the <span class="hlt">Earth</span>-Moon System and Laplace Planes: Darwin Redux</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rubincam, David P.</p> <p>2015-01-01</p> <p>The dynamical evolution of the <span class="hlt">Earth</span>-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: <span class="hlt">Earth</span>, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the <span class="hlt">Earth</span> and the <span class="hlt">Earth</span> is in a circular orbit about the Sun. For <span class="hlt">Earth</span>-Moon distances greater than 10 <span class="hlt">Earth</span> radii, the <span class="hlt">Earth</span>'s approximate tidal <span class="hlt">response</span> can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten <span class="hlt">Earth</span>, M. Ross's and G. Schubert's model of an <span class="hlt">Earth</span> near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean <span class="hlt">tides</span>, the <span class="hlt">Earth</span>'s obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 <span class="hlt">Earth</span> radii from the <span class="hlt">Earth</span>, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6160D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6160D"><span>TIGA <span class="hlt">Tide</span> Gauge Data Reprocessing at GFZ</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Zhiguo; Schöne, Tilo; Gendt, Gerd</p> <p>2014-05-01</p> <p>To analyse the <span class="hlt">tide</span> gauge measurements for the purpose of global long-term sea level change research a well-defined absolute reference frame is required by oceanographic community. To create such frame the data from a global GNSS network located at or near <span class="hlt">tide</span> gauges are processed. For analyzing the GNSS data on a preferably continuous basis the International GNSS Service (IGS) <span class="hlt">Tide</span> Gauge Benchmark Monitoring Working Group (TIGA-WG) is <span class="hlt">responsible</span>. As one of the TIGA Analysis Centers the German Research Centre for Geosciences (GFZ) is contributing to the IGS TIGA Reprocessing Campaign. The solutions of the TIGA Reprocessing Campaign will also contribute to 2nd IGS Data Reprocessing Campaign with GFZ IGS reprocessing solution. After the first IGS reprocessing finished in 2010 some improvements were implemented into the latest GFZ software version EPOS.P8: reference frame IGb08 based on ITRF2008, antenna calibration igs08.atx, geopotential model (EGM2008), higher-order ionospheric effects, new a priori meteorological model (GPT2), VMF mapping function, and other minor improvements. GPS data of the globally distributed tracking network of 794 stations for the time span from 1994 until end of 2012 are used for the TIGA reprocessing. To handle such large network a new processing strategy is developed and described in detail. In the TIGA reprocessing the GPS@TIGA data are processed in precise point positioning (PPP) mode to clean data using the IGS reprocessing orbit and clock products. To validate the quality of the PPP coordinate results the rates of 80 GPS@TIGA station vertical movement are estimated from the PPP results using Maximum Likelihood Estimation (MLE) method. The rates are compared with the solution of University of LaRochelle Consortium (ULR) (named ULR5). 56 of the 80 stations have a difference of the vertical velocities below 1 mm/yr. The error bars of PPP rates are significant larger than those of ULR5, which indicates large time correlated noise in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=lunar&pg=7&id=EJ605726','ERIC'); return false;" href="https://eric.ed.gov/?q=lunar&pg=7&id=EJ605726"><span>The <span class="hlt">Tides</span>--A Neglected Topic.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hartel, Hermann</p> <p>2000-01-01</p> <p>Finds that computer simulations can be used to visualize the processes involved with lunar <span class="hlt">tides</span>. Technology adds value, thus opening new paths for a more distinct analysis and increased learning results. (Author/CCM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SPIE.5660...23L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SPIE.5660...23L"><span>On-orbit characterizations of <span class="hlt">Earth</span> Radiation Budget Experiment broadband shortwave active cavity radiometer sensor <span class="hlt">responses</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Robert B., III; Wilson, Robert S.; Smith, G. Louis; Bush, Kathryn A.; Thomas, Susan; Pandey, Dhirendra K.; Paden, Jack</p> <p>2004-12-01</p> <p>The NASA <span class="hlt">Earth</span> Radiation Budget Experiment (ERBE) missions were designed to monitor long-term changes in the <span class="hlt">earth</span> radiation budget components which may cause climate changes. During the October 1984 through September 2004 period, the NASA <span class="hlt">Earth</span> Radiation Budget Satellite (ERBS)/ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the <span class="hlt">earth</span> radiation budget components of the incoming total solar irradiance (TSI), <span class="hlt">earth</span>-reflected TSI, and <span class="hlt">earth</span>-emitted outgoing longwave radiation (OLR). The <span class="hlt">earth</span>-reflected total solar irradiances were measured using broadband shortwave fused, waterless quartz (Suprasil) filters and ACR"s that were covered with a black paint absorbing surface. Using on-board calibration systems, 1984 through 1999, long-term ERBS/ERBE ACR sensor <span class="hlt">response</span> changes were determined from direct observations of the incoming TSI in the 0.2-5 micrometer shortwave broadband spectral region. During the October 1984 through September 1999 period, the ERBS shortwave sensor <span class="hlt">responses</span> were found to decrease as much as 8.8% when the quartz filter transmittances decreased due to direct exposure to TSI. On October 6, 1999, the on-board ERBS calibration systems failed. To estimate the 1999-2004, ERBS sensor <span class="hlt">response</span> changes, the 1984-1997 NOAA-9, and 1986-1995 NOAA-10 Spacecraft ERBE ACR <span class="hlt">responses</span> were used to characterize <span class="hlt">response</span> changes as a function of exposure time. The NOAA-9 and NOAA-10 ACR <span class="hlt">responses</span> decreased as much as 10% due to higher integrated TSI exposure times. In this paper, for each of the ERBS, NOAA-9, and NOAA-10 Spacecraft platforms, the solar calibrations of the ERBE sensor <span class="hlt">responses</span> are described as well as the derived ERBE sensor <span class="hlt">response</span> changes as a function of TSI exposure time. For the 1984-2003 ERBS data sets, it is estimated that the calibrated ERBE <span class="hlt">earth</span>-reflected TSI measurements have precisions approaching 0.2 Watts-per-squared-meter at satellite altitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/44847','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/44847"><span>Impacts of exotic mangroves and mangrove control on <span class="hlt">tide</span> pool fish assemblages</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Richard A. MacKenzie; Cailtin L. Kryss</p> <p>2013-01-01</p> <p>Fish were sampled from <span class="hlt">tide</span> pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting <span class="hlt">tide</span> pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated <span class="hlt">tide</span> pools before and after mangroves had been chemically...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..12210156S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..12210156S"><span>The Effect of Barotropic and Baroclinic <span class="hlt">Tides</span> on Coastal Stratification and Mixing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suanda, S. H.; Feddersen, F.; Kumar, N.</p> <p>2017-12-01</p> <p>The effects of barotropic and baroclinic <span class="hlt">tides</span> on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no <span class="hlt">tides</span> (NT) is compared to two simulations with the addition of predominantly barotropic local <span class="hlt">tides</span> (LT) and with combined barotropic and remotely generated, baroclinic <span class="hlt">tides</span> (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic <span class="hlt">tides</span> (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic <span class="hlt">tide</span> destroys stratification an order of magnitude faster than barotropic <span class="hlt">tides</span>. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic <span class="hlt">tides</span> is comparable to the magnitude of the observed seasonal cycle of stratification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27684043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27684043"><span>High-resolution <span class="hlt">tide</span> projections reveal extinction threshold in <span class="hlt">response</span> to sea-level rise.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S</p> <p>2017-05-01</p> <p>Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population <span class="hlt">responses</span> or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high <span class="hlt">tide</span> events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential <span class="hlt">responses</span> of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMIN22A..03K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMIN22A..03K"><span>A Tsunami-Focused <span class="hlt">Tide</span> Station Data Sharing Framework</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kari, U. S.; Marra, J. J.; Weinstein, S. A.</p> <p>2006-12-01</p> <p>The Indian Ocean Tsunami of 26 December 2004 made it clear that information about <span class="hlt">tide</span> stations that could be used to support detection and warning (such as location, collection and transmission capabilities, operator identification) are insufficiently known or not readily accessible. Parties interested in addressing this problem united under the Pacific Region Data Integrated Data Enterprise (PRIDE), and in 2005 began a multiyear effort to develop a distributed metadata system describing <span class="hlt">tide</span> stations starting with pilot activities in a regional framework and focusing on tsunami detection and warning systems being developed by various agencies. First, a plain semantic description of the tsunami-focused <span class="hlt">tide</span> station metadata was developed. The semantic metadata description was, in turn, developed into a formal metadata schema championed by International Tsunami Information Centre (ITIC) as part of a larger effort to develop a prototype web service under the PRIDE program in 2005. Under the 2006 PRIDE program the formal metadata schema was then expanded to corral input parameters for the <span class="hlt">Tide</span>Tool application used by Pacific Tsunami Warning Center (PTWC) to drill down into wave activity at a <span class="hlt">tide</span> station that is located using a web service developed on this metadata schema. This effort contributed to formalization of web service dissemination of PTWC watch and warning tsunami bulletins. During this time, the data content and sharing issues embodied in this schema have been discussed at various forums. The result is that the various stakeholders have different data provider and user perspectives (semantic content) and also exchange formats (not limited to just XML). The challenge then, is not only to capture all data requirements, but also to have formal representation that is easily transformed into any specified format. The latest revision of the <span class="hlt">tide</span> gauge schema (Version 0.3), begins to address this challenge. It encompasses a broader range of provider and user</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4833402','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4833402"><span>Risk in daily newspaper coverage of red <span class="hlt">tide</span> blooms in Southwest Florida</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter</p> <p>2016-01-01</p> <p>This study investigated newspaper coverage of Florida red <span class="hlt">tide</span> blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red <span class="hlt">tide</span> stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red <span class="hlt">tide</span> itself in terms of environmental risk, tourism risk, and public health risk. The study found that red <span class="hlt">tide</span> news coverage is most often framed as an environmental story. PMID:27087790</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27087790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27087790"><span>Risk in daily newspaper coverage of red <span class="hlt">tide</span> blooms in Southwest Florida.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Zongchao; Garrison, Bruce; Ullmann, Steven G; Kirkpatrick, Barbara; Fleming, Lora E; Hoagland, Porter</p> <p></p> <p>This study investigated newspaper coverage of Florida red <span class="hlt">tide</span> blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red <span class="hlt">tide</span> stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an aspect of coverage of red <span class="hlt">tide</span> itself in terms of environmental risk, tourism risk, and public health risk. The study found that red <span class="hlt">tide</span> news coverage is most often framed as an environmental story.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..637G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..637G"><span>Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Wenping; Schuttelaars, Henk; Zhang, Heng</p> <p>2016-05-01</p> <p>Different types of tidal asymmetry (see review of de Swart and Zimmerman Annu Rev Fluid Mech 41: 203-229, 2009) are examined in this study. We distinguish three types of tidal asymmetry: duration and magnitude differences between flood and ebb tidal flow, duration difference between the rising and falling <span class="hlt">tides</span>. For waterborne substance transport, the first two asymmetries are important while the last one is not. In this study, we take the Huangmaohai Estuary (HE), Pearl River Delta, China as an example to examine the spatio-temporal variations of the tidal asymmetry in a mixed semidiurnal tidal regime and to explain them by investigating the associated mechanisms. The methodology defining the tidal duration asymmetry and velocity skewness, proposed by Nidzieko (J Geophys Res 115: C08006. doi: <ExternalRef> <RefSource>10.1029/2009JC005864</RefSource> <RefTarget Address="10.1029/2009JC005864" TargetType="DOI"/> </ExternalRef>, 2010) and synthesized by Song et al. (J Geophys Res 116: C12007. doi: <ExternalRef> <RefSource>10.1029/2011JC007270</RefSource> <RefTarget Address="10.1029/2011JC007270" TargetType="DOI"/> </ExternalRef>, 2011), is utilized here and referred to as tidal duration asymmetry (TDA) and flow velocity asymmetry (FVA), respectively. The methodology is further used to quantify the flow duration asymmetry (FDA). A positive asymmetry means a shorter duration of low water slack for FDA, a shorter duration of the rising <span class="hlt">tide</span> for TDA, and a flood dominance for FVA and vice versa. The Regional Ocean Modeling System (ROMS) model is used to provide relatively long-term water elevation and velocity data and to conduct diagnostic experiments. In the HE, the main tidal constituents are diurnal <span class="hlt">tides</span> K 1, O 1 and semidiurnal <span class="hlt">tides</span> M 2 and S 2. The interaction among the diurnal and semidiurnal <span class="hlt">tides</span> generates a negative tidal asymmetry, while the interactions among semidiurnal <span class="hlt">tides</span> and their overtides or compound <span class="hlt">tides</span> result in a positive tidal asymmetry. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1122/ofr20171122.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1122/ofr20171122.pdf"><span>Monitoring storm <span class="hlt">tide</span> and flooding from Hurricane Matthew along the Atlantic coast of the United States, October 2016</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Frantz, Eric R.; Byrne,, Michael L.; Caldwell, Andral W.; Harden, Stephen L.</p> <p>2017-11-02</p> <p>IntroductionHurricane Matthew moved adjacent to the coasts of Florida, Georgia, South Carolina, and North Carolina. The hurricane made landfall once near McClellanville, South Carolina, on October 8, 2016, as a Category 1 hurricane on the Saffir-Simpson Hurricane Wind Scale. The U.S. Geological Survey (USGS) deployed a temporary monitoring network of storm-<span class="hlt">tide</span> sensors at 284 sites along the Atlantic coast from Florida to North Carolina to record the timing, areal extent, and magnitude of hurricane storm <span class="hlt">tide</span> and coastal flooding generated by Hurricane Matthew. Storm <span class="hlt">tide</span>, as defined by the National Oceanic and Atmospheric Administration, is the water-level rise generated by a combination of storm surge and astronomical <span class="hlt">tide</span> during a coastal storm.The deployment for Hurricane Matthew was the largest deployment of storm-<span class="hlt">tide</span> sensors in USGS history and was completed as part of a coordinated Federal emergency <span class="hlt">response</span> as outlined by the Stafford Act (Public Law 92–288, 42 U.S.C. 5121–5207) under a directed mission assignment by the Federal Emergency Management Agency. In total, 543 high-water marks (HWMs) also were collected after Hurricane Matthew, and this was the second largest HWM recovery effort in USGS history after Hurricane Sandy in 2012.During the hurricane, real-time water-level data collected at temporary rapid deployment gages (RDGs) and long-term USGS streamgage stations were relayed immediately for display on the USGS Flood Event Viewer (https://stn.wim.usgs.gov/FEV/#MatthewOctober2016). These data provided emergency managers and responders with critical information for tracking flood-effected areas and directing assistance to effected communities. Data collected from this hurricane can be used to calibrate and evaluate the performance of storm-<span class="hlt">tide</span> models for maximum and incremental water level and flood extent, and the site-specific effects of storm <span class="hlt">tide</span> on natural and anthropogenic features of the environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C13G..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C13G..07J"><span>Modelling and parameterizing the influence of <span class="hlt">tides</span> on ice-shelf melt rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, N.; Molines, J. M.; Le Sommer, J.; Mathiot, P.; de Lavergne, C.; Gurvan, M.; Durand, G.</p> <p>2017-12-01</p> <p>Significant Antarctic ice sheet thinning is observed in several sectors of Antarctica, in particular in the Amundsen Sea sector, where warm circumpolar deep waters affect basal melting. The later has the potential to trigger marine ice sheet instabilities, with an associated potential for rapid sea level rise. It is therefore crucial to simulate and understand the processes associated with ice-shelf melt rates. In particular, the absence of <span class="hlt">tides</span> representation in ocean models remains a caveat of numerous ocean hindcasts and climate projections. In the Amundsen Sea, <span class="hlt">tides</span> are relatively weak and the melt-induced circulation is stronger than the tidal circulation. Using a regional 1/12° ocean model of the Amundsen Sea, we nonetheless find that <span class="hlt">tides</span> can increase melt rates by up to 36% in some ice-shelf cavities. Among the processes that can possibly affect melt rates, the most important is an increased exchange at the ice/ocean interface resulting from the presence of strong tidal currents along the ice drafts. Approximately a third of this effect is compensated by a decrease in thermal forcing along the ice draft, which is related to an enhanced vertical mixing in the ocean interior in presence of <span class="hlt">tides</span>. Parameterizing the effect of <span class="hlt">tides</span> is an alternative to the representation of explicit <span class="hlt">tides</span> in an ocean model, and has the advantage not to require any filtering of ocean model outputs. We therefore explore different ways to parameterize the effects of <span class="hlt">tides</span> on ice shelf melt. First, we compare several methods to impose tidal velocities along the ice draft. We show that getting a realistic spatial distribution of tidal velocities in important, and can be deduced from the barotropic velocities of a <span class="hlt">tide</span> model. Then, we explore several aspects of parameterized tidal mixing to reproduce the <span class="hlt">tide</span>-induced decrease in thermal forcing along the ice drafts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED226987.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED226987.pdf"><span><span class="hlt">Tides</span>. Marine Science Curriculum Aid No. 5. Sea Grant Report 80-2.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>McDonald, Judy</p> <p></p> <p>This manual, developed for use in Alaskan secondary schools, is one of a continuing series designed to provide basic information about the marine environment and Alaskan marine resources. The first part of the manual presents information about <span class="hlt">tides</span>, focusing on: the nature of <span class="hlt">tides</span>; cause of <span class="hlt">tides</span>; factors related to tidal movement; types of…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA33B1999H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA33B1999H"><span>Investigating TIME-GCM Atmospheric <span class="hlt">Tides</span> for Different Lower Boundary Conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haeusler, K.; Hagan, M. E.; Lu, G.; Forbes, J. M.; Zhang, X.; Doornbos, E.</p> <p>2013-12-01</p> <p>It has been recently established that atmospheric <span class="hlt">tides</span> generated in the lower atmosphere significantly influence the geospace environment. In order to extend our knowledge of the various coupling mechanisms between the different atmospheric layers, we rely on model simulations. Currently there exist two versions of the Global Scale Wave Model (GSWM), i.e. GSWM02 and GSWM09, which are used as a lower boundary (ca. 30 km) condition for the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) and account for the upward propagating atmospheric <span class="hlt">tides</span> that are generated in the troposphere and lower stratosphere. In this paper we explore the various TIME-GCM upper atmospheric tidal <span class="hlt">responses</span> for different lower boundary conditions and compare the model diagnostics with tidal results from satellite missions such as TIMED, CHAMP, and GOCE. We also quantify the differences between results associated with GSWM02 and GSWM09 forcing and results of TIMEGCM simulations using Modern-Era Retrospective Analysis for Research and Application (MERRA) data as a lower boundary condition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25678466','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25678466"><span>Sublethal red <span class="hlt">tide</span> toxin exposure in free-ranging manatees (Trichechus manatus) affects the immune system through reduced lymphocyte proliferation <span class="hlt">responses</span>, inflammation, and oxidative stress.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walsh, Catherine J; Butawan, Matthew; Yordy, Jennifer; Ball, Ray; Flewelling, Leanne; de Wit, Martine; Bonde, Robert K</p> <p>2015-04-01</p> <p>The health of many Florida manatees (Trichechus manatus latirostris) is adversely affected by exposure to blooms of the toxic dinoflagellate, Karenia brevis. K. brevis blooms are common in manatee habitats of Florida's southwestern coast and produce a group of cyclic polyether toxins collectively referred to as red <span class="hlt">tide</span> toxins, or brevetoxins. Although a large number of manatees exposed to significant levels of red <span class="hlt">tide</span> toxins die, several manatees are rescued from sublethal exposure and are successfully treated and returned to the wild. Sublethal brevetoxin exposure may potentially impact the manatee immune system. Lymphocyte proliferative <span class="hlt">responses</span> and a suite of immune function parameters in the plasma were used to evaluate effects of brevetoxin exposure on health of manatees rescued from natural exposure to red <span class="hlt">tide</span> toxins in their habitat. Blood samples were collected from rescued manatees at Lowry Park Zoo in Tampa, FL and from healthy, unexposed manatees in Crystal River, FL. Peripheral blood leukocytes (PBL) isolated from whole blood were stimulated with T-cell mitogens, ConA and PHA. A suite of plasma parameters, including plasma protein electrophoresis profiles, lysozyme activity, superoxide dismutase (SOD) activity, and reactive oxygen/nitrogen (ROS/RNS) species, was also used to assess manatee health. Significant decreases (p<0.05) in lymphocyte proliferation were observed in ConA and PHA stimulated lymphocytes from rescued animals compared to non-exposed animals. Significant correlations were observed between oxidative stress markers (SOD, ROS/RNS) and plasma brevetoxin concentrations. Sublethal exposure to brevetoxins in the wild impacts some immune function components, and thus, overall health, in the Florida manatee. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P41A1573P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P41A1573P"><span>Modeling of Mercury <span class="hlt">tides</span> for recovery of gravity field and interior properties</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padovan, S.; Margot, J.; Hauck, S. A.; Lemoine, F. G.; Mazarico, E.; Peale, S. J.; Solomon, S. C.</p> <p>2011-12-01</p> <p>The radio science experiment on the MESSENGER mission allows the determination of the gravitational field of Mercury. In order to secure the best possible gravity-field recovery, it is important to model all the forces acting on the spacecraft. Here we study the perturbations induced on the spacecraft by the <span class="hlt">tides</span> raised on Mercury by the Sun. The manner by which the <span class="hlt">tides</span> affect the orbit of MESSENGER depends on the <span class="hlt">response</span> of the planet to the <span class="hlt">tide</span>-raising potential. This <span class="hlt">response</span> is directly connected to the interior properties of Mercury, and its study can help improve our understanding of the physical and chemical properties of the planet. The standard approach of modeling the strongest tidal effect on the gravitational field is by introducing a time-varying component in the degree-two harmonic coefficients of the gravity field. The amplitude of these variations depends on known quantities (mass of the Sun and Mercury, radius of Mercury and its position and relative orientation with respect to the Sun) and on the Love number k2. The value of this parameter is sensitive (among other things) to the state of the core and to the rigidity of the mantle (which in turn depends on its chemical composition). An accurate value of k2 determined from orbit perturbations can be compared to values obtained with forward modeling of the interior of Mercury. The orbital geometry and physical environment of MESSENGER make the identification of the tidal perturbation difficult. Nevertheless, recent work has shown that in the case of Mars, careful study of the effect of <span class="hlt">tides</span> on the spacecraft trajectory can help identify which orbital and observational geometries exhibit stronger tidal signatures and are apt to provide the best possible determination of k2. Our long-term goal is to evaluate k2 for a suite of interior models and to evaluate the sensitivity of k2 to key interior properties. We will describe the orbital geometry and the tidal perturbations acting on the spacecraft</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26628152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26628152"><span>Improved vertical optical fiber borehole strainmeter design for measuring <span class="hlt">Earth</span> strain.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeWolf, Scott; Wyatt, Frank K; Zumberge, Mark A; Hatfield, William</p> <p>2015-11-01</p> <p>Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. A new 250 m, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the design and deployment at the Piñon Flat Observatory are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 ϵ(2)/Hz), consistent within 1-3 dB between redundant components. Examination of its <span class="hlt">response</span> to <span class="hlt">Earth</span> <span class="hlt">tides</span> and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio for local near surface material of 0.25 that is consistent with previous results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23002593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23002593"><span>[Analysis on characteristics of red <span class="hlt">tide</span> in Fujian coastal waters during the last 10 years].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xue-Ding</p> <p>2012-07-01</p> <p>There were 161 red <span class="hlt">tide</span> events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red <span class="hlt">tide</span> in Fujian coastal waters: (1) Outbreaks of red <span class="hlt">tide</span> often occurred between April and September, and the peak period was in May and June. Most red <span class="hlt">tide</span> events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red <span class="hlt">tide</span> tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red <span class="hlt">tides</span> in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red <span class="hlt">tides</span>, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red <span class="hlt">tides</span> obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red <span class="hlt">tides</span> mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red <span class="hlt">tides</span> were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red <span class="hlt">tides</span> during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red <span class="hlt">tides</span> in Fujian coastal waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005843&hterms=foster&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfoster','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005843&hterms=foster&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfoster"><span>Future Nuisance Flooding at Boston Caused by Astronomical <span class="hlt">Tides</span> Alone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Foster, Grant</p> <p>2016-01-01</p> <p>Sea level rise necessarily triggers more occurrences of minor, or nuisance, flooding events along coastlines, a fact well documented in recent studies. At some locations nuisance flooding can be brought about merely by high spring <span class="hlt">tides</span>, independent of storms, winds, or other atmospheric conditions. Analysis of observed water levels at Boston indicates that tidal flooding began to occur there in 2011 and will become more frequent in subsequent years. A compilation of all predicted nuisance-flooding events, induced by astronomical <span class="hlt">tides</span> alone, is presented through year 2050. The accuracy of the <span class="hlt">tide</span> prediction is improved when several unusual properties of Gulf of Maine <span class="hlt">tides</span>, including secular changes, are properly accounted for. Future mean sea-level rise at Boston cannot be predicted with comparable confidence, so two very different climate scenarios are adopted; both predict a large increase in the frequency and the magnitude of tidal flooding events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102174"><span>Mesospheric Non-Migrating <span class="hlt">Tides</span> Generated With Planetary Waves: II Influence of Gravity Waves</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating <span class="hlt">tides</span> could generate in the upper mesosphere non-migrating <span class="hlt">tides</span> with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating <span class="hlt">tides</span>. The GWs thus affect significantly the migrating <span class="hlt">tides</span> and PWs, the building blocks of non-migrating <span class="hlt">tides</span>. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and <span class="hlt">tides</span>. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating <span class="hlt">tides</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn.tmp...57W"><span>Experimental investigation of internal <span class="hlt">tides</span> generated by finite-height topography</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Shuya; Chen, Xu; Wang, Jinhu; Meng, Jing</p> <p>2018-06-01</p> <p>Internal <span class="hlt">tides</span> generated by finite-height topography are investigated in the laboratory, and the particle image velocimetry (PIV) technique is applied to measure the velocity fields. The energy, energy flux, and vertical mode structure of the internal <span class="hlt">tides</span> are calculated and analyzed. The experimental results indicate that the strength of the wave field is mainly affected by the normalized topography height. The rays radiated from the taller topography are wider than those radiated from the lower topography. Both the experimental and theoretical results indicate that the normalized energy and energy flux of the internal <span class="hlt">tides</span> are mainly determined by the normalized topography height, and the increase of the two quantities follows a quadratic function, and they almost remain unchanged with different normalized frequencies except for higher frequency. The percentage of energy for mode-1 and mode-2 internal <span class="hlt">tides</span> is determined not only by frequency but also by topography height. In addition, an "inherent normalized frequency" is observed in the experiment, at which the percentage of energy for mode 1 and mode 2 does not vary with topography height. The decay rate of internal <span class="hlt">tide</span> energy in the near field and far field is also estimated, with average values of 36.5 and 7.5%, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11518112F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11518112F"><span>Southern Argentina Agile Meteor Radar: System design and initial measurements of large-scale winds and <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Mitchell, N. J.; Stockwell, R. G.; Fuller, B.; Vandepeer, B.; Hormaechea, J.; Brunini, C.; Levato, H.</p> <p>2010-09-01</p> <p>The Southern Argentina Agile Meteor Radar (SAAMER) was installed at Rio Grande on Tierra del Fuego (53.8°S, 67.8°W) in May 2008 and has been operational for ˜24 months. This paper describes the motivations for the radar design and its placement at the southern tip of South America, its operating modes and capabilities, and observations of the mean winds, planetary waves, and <span class="hlt">tides</span> during its first ˜20 months of operation. SAAMER was specifically designed to provide very high resolution of large-scale motions and hopefully enable direct measurements of the vertical momentum flux by gravity waves, which have only been possible previously with dual- or multiple-beam radars and lidars or in situ measurements. SAAMER was placed on Tierra del Fuego because it was a region devoid of similar measurements, the latitude was anticipated to provide high sensitivity to an expected large semidiurnal <span class="hlt">tide</span>, and the region is now recognized to be a "hot spot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere, perhaps the most dynamically active location on <span class="hlt">Earth</span>. SAAMER was also intended to permit simultaneous enhanced meteor studies, including "head echo" and "nonspecular" measurements, which were previously possible only with high-power large-aperture radars. Initial measurements have defined the mean circulation and structure, exhibited planetary waves at various periods, and revealed large semidiurnal <span class="hlt">tide</span> amplitudes and variability, with maximum amplitudes at higher altitudes often exceeding 60 m s-1 and amplitude modulations at periods from a few to ˜30 days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23A1984K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23A1984K"><span>Effect of <span class="hlt">Tide</span> Elevation on Extratropical Storm Surge in Northwest Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Keshtpoor, M.; Carnacina, I.; Yablonsky, R. M.</p> <p>2016-12-01</p> <p>Extratropical cyclones (ETCs) are the major storm surge-generating meteorological events in northwest Europe. The total water level increase induced by these ETCs is significantly influenced by the local tidal range, which exceeds 8 meters along the southwestern UK coastline. In particular, a surge-generating ETC during high <span class="hlt">tide</span> may put coastal assets and infrastructure in risk. Also, during low <span class="hlt">tide</span>, the risk of surge induced by extreme ETC events is diminished. Here, the effect of tidal elevation on storm surge is investigated at 196 <span class="hlt">tide</span> gauges in northwest Europe. A numerical, hydrodynamic model was developed using Delft3D-FM framework to simulate the coastal hydrodynamics during ETCs. Then, 1750 historical events were simulated to investigate the pattern of coastal inundation. Results suggest that in areas with a large tidal range ( 8 meters) and during the time period surrounding high or low <span class="hlt">tide</span>, the pattern of coastal hydrodynamics is governed by <span class="hlt">tide</span> and not storm surge. This result is most evident near the English Channel and Bristol Channel, where low frequency maximum water levels are observed when storm surge is combined with high <span class="hlt">tide</span>. In contrast, near the tidal phase reversal, coastal hydrodynamics responds primarily to the storm surge, and low frequency maximum water elevation largely depends on the surge. In the areas with a small tidal range, ETC strength determines the pattern of coastal inundation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870034097&hterms=Paradox+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DParadox%2Bvalue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870034097&hterms=Paradox+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DParadox%2Bvalue"><span>Another look at North Sea pole <span class="hlt">tide</span> dynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dickman, S. R.; Preisig, J. R.</p> <p>1986-01-01</p> <p>The mechanism proposed by Wunsch (1974) to explain pole <span class="hlt">tide</span> observations in the North Sea is evaluated. Wunsch's equations governing pole <span class="hlt">tide</span> in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P13A2121T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P13A2121T"><span>Librations and <span class="hlt">tides</span> of icy satellites: model comparison for Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinh, A.; Van Hoolst, T.; Baland, R. M.; Beuthe, M.; Rivoldini, A.; Dehant, V. M. A.</p> <p>2015-12-01</p> <p>The latest measurements of the librations of Enceladus suggest that it could have a global subsurface ocean or a non-hydrostatic core (Thomas et al. 2014). Further observations should constrain the properties of the ice shell, and similar insights are expected from future investigation of Europa and Ganymede.Detailed models of the librations and <span class="hlt">tides</span> are therefore required to properly interpret these measurements in terms of interior structure. Here we compare the `classical', separate <span class="hlt">tide</span> and libration models (where spherical symmetry is assumed to compute the <span class="hlt">tides</span>, Van Hoolst et al. 2013) with our combined <span class="hlt">tide</span>+libration model (Trinh et al. 2013), both extended to account for non-hydrostatic structure.Even with a global ocean, different mechanisms act to prevent Enceladus's shell from moving independently from the rest. Among those, pressure coupling across the flattened boundaries of the ocean requires special care if the shape is not fully relaxed. We discuss how it should be modelled in the classical approach to be consistent with the combined model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdWR..103....1X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdWR..103....1X"><span>Combined effects of <span class="hlt">tides</span>, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling</p> <p>2017-05-01</p> <p>Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap <span class="hlt">tides</span>, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the <span class="hlt">tide</span>-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was <span class="hlt">responsible</span> for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap <span class="hlt">tides</span>, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring <span class="hlt">tides</span>, a less well-aerated zone with increased salinity where drainage occurred during the neap <span class="hlt">tides</span>, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the <span class="hlt">tide</span>-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023001','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023001"><span>Model of Semidiurnal Pseudo <span class="hlt">Tide</span> in the High-Latitude Upper Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talaat, E. R.; Mayr, H. G.</p> <p>2011-01-01</p> <p>We present numerical results for the m = 1 meridional winds of semi diurnal oscillations in the high-latitude upper mesosphere, which are generated in the Numerical Spectral Model (NSM) without solar excitations of the <span class="hlt">tides</span>. Identified with heuristic computer runs, the pseudo <span class="hlt">tides</span> attain amplitudes that are, at times, as large as the non-migrating <span class="hlt">tides</span> produced with standard solar forcing. Under the influence of parameterized gravity waves, the nonlinear NSM generates internal oscillations like the quasi-biennial oscillation, that are produced with periods favored by the dynamical properties of the system. The Coriolis force would favor at polar latitudes the excitation of the 12-hour periodicity. This oscillation may help explain the large non-migrating semidiurnal <span class="hlt">tides</span> that are observed in the region with ground-based and satellite measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S33G2942G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S33G2942G"><span>Far-field tsunami of 2017 Mw 8.1 Tehuantepec, Mexico earthquake recorded by Chilean <span class="hlt">tide</span> gauge network: Implications for tsunami warning systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.</p> <p>2017-12-01</p> <p>The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field <span class="hlt">tide</span> gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the <span class="hlt">tide</span> level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early <span class="hlt">response</span>. Most important operational efforts have focused on strengthening <span class="hlt">tide</span> gauge network for national area of <span class="hlt">responsibility</span>. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of <span class="hlt">responsibility</span> in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as <span class="hlt">tide</span> gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of <span class="hlt">responsibility</span>. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B54D..02W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B54D..02W"><span>The influence of <span class="hlt">tides</span> on biogeochemical dynamics at the mouth of the Amazon River</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.</p> <p>2017-12-01</p> <p>A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the <span class="hlt">response</span> of a suite of biogeochemical parameters to <span class="hlt">tide</span>-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced <span class="hlt">response</span> at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low <span class="hlt">tide</span> (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low <span class="hlt">tide</span> with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term <span class="hlt">response</span> of aquatic systems to change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P51B2136B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P51B2136B"><span>Subsurface Ocean <span class="hlt">Tides</span> in Enceladus and Other Icy Moons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beuthe, M.</p> <p>2016-12-01</p> <p>Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical <span class="hlt">tides</span> give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative <span class="hlt">tides</span> in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity <span class="hlt">tide</span> does not move the crust. Therefore, crustal dissipation due to dynamical obliquity <span class="hlt">tides</span> can differ from the static prediction by up to a factor of two.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18600196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18600196"><span>Illness associated with red <span class="hlt">tide</span>--Nassau County, Florida, 2007.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>2008-07-04</p> <p>A "red <span class="hlt">tide</span>" is a harmful algal bloom that occurs when toxic, microscopic algae in seawater proliferate to a higher-than-normal concentration (i.e., bloom), often discoloring the water red, brown, green, or yellow. Red <span class="hlt">tides</span> can kill fish, birds, and marine mammals and cause illness in humans. Florida red <span class="hlt">tide</span> is caused by the dinoflagellate Karenia brevis, which produces toxins called brevetoxins and is most commonly found in the Gulf of Mexico; however, K. brevis blooms also can occur along the Atlantic coast. On September 25, 2007, a cluster of respiratory illnesses was reported to the Nassau County Health Department (NCHD) in northeastern Florida. All of the ill persons were employed at a beach restoration worksite by a dredging company operating at Fernandina Beach; they reported symptoms of eye or respiratory irritation (e.g., coughing, sneezing, sniffling, and throat irritation). NCHD and the Florida Department of Health promptly conducted epidemiologic and environmental investigations and determined the illnesses likely were associated with exposure to a red <span class="hlt">tide</span> along the Atlantic coast. These actions highlight the importance of rapid investigation of health concerns with potential environmental causes to enable timely notification of the public and prevent further illness.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...142...32Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...142...32Z"><span><span class="hlt">Tide</span>-surge interaction along the east coast of the Leizhou Peninsula, South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Heng; Cheng, Weicong; Qiu, Xixi; Feng, Xiangbo; Gong, Wenping</p> <p>2017-06-01</p> <p>A triply-nested two-dimensional (2D) ocean circulation model along with observed sea level records are used to study <span class="hlt">tide</span>-surge interaction along the east coast of the Leizhou Peninsula (LP) which is characterized by extensive mudflats, large tidal ranges and a complex coastline. The dependency of surge maxima on the water level and the phase of <span class="hlt">tide</span> are respectively investigated using two statistical approaches. Results show that <span class="hlt">tide</span>-surge interaction along the east coast of the LP is significant, where surges peak 3-6 h before or after the nearest high water. The triply-nested 2D ocean circulation model is used to quantify <span class="hlt">tide</span>-surge interaction in this region and to investigate its physical cause. The largest amplitudes of <span class="hlt">tide</span>-surge interaction are found in the shallow water region of the Leizhou Bay, with values up to 1 m during typhoon events. Numerical experiments reveal that nonlinear bottom friction is the main contributor to <span class="hlt">tide</span>-surge interaction, while the contribution of the nonlinear advective effect can be neglected. The shallow water effect enhances the role of nonlinear bottom friction in determining <span class="hlt">tide</span>-surge modulation, leaving the surge peaks usually occur on the rising or falling <span class="hlt">tide</span>. It is also found that the relative contribution of local wind and remote wind is different depending on the storm track and storm intensity, which would finally affect the temporal and spatial distribution of <span class="hlt">tide</span>-surge interaction during typhoon events. These findings confirm the importance of coupling storm surges and <span class="hlt">tides</span> for the prediction of storm surge events in regions which are characterized by shallow water depths and large tidal ranges.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018DyAtO..82...89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018DyAtO..82...89B"><span>Dynamical significance of <span class="hlt">tides</span> over the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhagawati, Chirantan; Pandey, Suchita; Dandapat, Sumit; Chakraborty, Arun</p> <p>2018-06-01</p> <p><span class="hlt">Tides</span> play a significant role in the ocean surface circulations and vertical mixing thereby influencing the Sea Surface Temperatures (SST) as well. This, in turn, plays an important role in the global circulation when used as a lower boundary condition in a global atmospheric general circulation model. Therefore in the present study, the dynamics of <span class="hlt">tides</span> over the Bay of Bengal (BoB) is investigated through numerical simulations using a high resolution (1/12°) Regional Ocean Modeling System (ROMS). Based on statistical analysis it is observed that incorporation of explicit tidal forcing improves the model performance in simulating the basin averaged monthly surface circulation features by 64% compared to the simulation without <span class="hlt">tides</span>. The model simulates also Mixed Layer Depth (MLD) and SST realistically. The energy exchange between tidal oscillations and eddies leads to redistribution of surface kinetic energy density with a net decrease of 0.012 J m-3 in the western Bay and a net increase of 0.007 J m-3 in the eastern Bay. The tidal forcing also affects the potential energy anomaly and vertical mixing thereby leading to a fall in monthly MLD over the BoB. The mixing due to <span class="hlt">tides</span> leads to a subsequent reduction in monthly SST and a corresponding reduction in surface heat exchange. These results from the numerical simulation using ROMS reveal that <span class="hlt">tides</span> have a significant influence over the air-sea heat exchange which is the most important parameter for prediction of Tropical Cyclone frequency and its future variability over the BoB.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8447M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8447M"><span>Mean <span class="hlt">Tide</span> Level Data in the PSMSL Mean Sea Level Dataset</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, Andrew; Bradshaw, Elizabeth; Gordon, Kathy; Jevrejeva, Svetlana; Rickards, Lesley; Tamisiea, Mark; Williams, Simon; Woodworth, Philip</p> <p>2016-04-01</p> <p>The Permanent Service for Mean Sea Level (PSMSL) is the internationally recognised global sea level data bank for long term sea level change information from <span class="hlt">tide</span> gauges. Established in 1933, the PSMSL continues to be <span class="hlt">responsible</span> for the collection, publication, analysis and interpretation of sea level data. The PSMSL operates under the auspices of the International Council for Science (ICSU), is a regular member of the ICSU World Data System and is associated with the International Association for the Physical Sciences of the Oceans (IAPSO) and the International Association of Geodesy (IAG). The PSMSL continues to work closely with other members of the sea level community through the Intergovernmental Oceanographic Commission's Global Sea Level Observing System (GLOSS). Currently, the PSMSL data bank holds over 67,000 station-years of monthly and annual mean sea level data from over 2250 <span class="hlt">tide</span> gauge stations. Data from each site are quality controlled and, wherever possible, reduced to a common datum, whose stability is monitored through a network of geodetic benchmarks. PSMSL also distributes a data bank of measurements taken from in-situ ocean bottom pressure recorders. Most of the records in the main PSMSL dataset indicate mean sea level (MSL), derived from high-frequency <span class="hlt">tide</span> gauge data, with sampling typically once per hour or higher. However, some of the older data is based on mean <span class="hlt">tide</span> level (MTL), which is obtained from measurements taken at high and low <span class="hlt">tide</span> only. While usually very close, MSL and MTL can occasionally differ by many centimetres, particularly in shallow water locations. As a result, care must be taken when using long sea level records that contain periods of MTL data. Previously, periods during which the values indicated MTL rather than MSL were noted in the documentation, and sometimes suggested corrections were supplied. However, these comments were easy to miss, particularly in large scale studies that used multiple stations from across</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007236','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007236"><span>Secular Changes in the Solar Semidiurnal <span class="hlt">Tide</span> of the Western North Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2009-01-01</p> <p>An analysis of twentieth century <span class="hlt">tide</span> gauge records reveals that the solar semidiurnal <span class="hlt">tide</span> S, has been decreasing in amplitude along the eastern coast of North America and at the mid-ocean site Bermuda. In relative terms the observed rates are unusually large, of order 10% per century. Periods of greatest change, however, are inconsistent among the stations, and roughly half the stations show increasing amplitude since the late 1990s. Excepting the Gulf of Maine, lunar <span class="hlt">tides</span> are either static or slightly increasing in amplitude; a few stations show decreases. Large changes in solar, but not lunar, <span class="hlt">tides</span> suggest causes related to variable radiational forcing, but the hypothesis is at present unproven. Citation: Ray, R. D. (2009), Secular changes in the solar semidiurnal <span class="hlt">tide</span> of the western North Atlantic Ocean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4343Y"><span>Development of Operational Wave-<span class="hlt">Tide</span>-Storm surges Coupling Prediction System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.</p> <p>2009-04-01</p> <p>The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large <span class="hlt">tides</span> in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-<span class="hlt">tide</span>-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of <span class="hlt">tides</span> and storm surges on wind waves and recommended further investigations into the effects of wave-<span class="hlt">tide</span>-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high <span class="hlt">tide</span> and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/<span class="hlt">tide</span> prediction system (STORM : Storm Surges/<span class="hlt">Tide</span> Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10422E..1EH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10422E..1EH"><span>The influence of <span class="hlt">tide</span> on sea surface temperature in the marginal sea of northwest Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung</p> <p>2017-10-01</p> <p><span class="hlt">Tide</span> gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of <span class="hlt">tide</span> on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring <span class="hlt">tide</span> is higher than that at neap <span class="hlt">tide</span> in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also <span class="hlt">tides</span> could influence the SST variations, especially in the open ocean region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4784J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4784J"><span>Modelling the influence of <span class="hlt">tides</span> on ice-shelf melt rates in the Amundsen Sea, Antarctica.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, Nicolas C.; Molines, Jean-Marc; Le Sommer, Julien; Mathiot, Pierre; Chanut, Jérome; Madec, Gurvan</p> <p>2017-04-01</p> <p>Variations in melt beneath ice- shelves may trigger ice-sheet instabilities, in particular in West Antarctica. Therefore, improving the understanding and modelling of ice-shelf basal melt rates has been a major focus over the last decades. In this presentation, we provide further insight into the role of <span class="hlt">tides</span> on basal melt rates, and we assess several methods to account for <span class="hlt">tides</span> in models that do not include an explicit representation of <span class="hlt">tides</span>. First, we use an explicit representation of <span class="hlt">tides</span> in a regional configuration of the NEMO-3.6 model deployed over the Amundsen Sea. We show that most of the tidal influence on ice-shelf melt is explained by four tidal constituents. <span class="hlt">Tides</span> enhance melt by more than 30% in some cavities like Abbot, Cosgrove and Dotson, but by less than 10% in others like Thwaites and Pine Island. Over the entire Amundsen Sea sector, <span class="hlt">tides</span> enhance melt by 92 Gt/yr, which is mostly induced by tidal velocities along ice drafts (+148 Gt/yr), partly compensated by <span class="hlt">tide</span>-induced change in thermal forcing (-31 Gt/yr) and co-variations between tidal velocities and thermal forcing (-26 Gt/yr). In the second part of this presentation, we show that using uniform tidal velocities to account for <span class="hlt">tides</span> effects in ocean models with no explicit <span class="hlt">tides</span> produces large biases in melt rates. By contrast, prescribing non-uniform tidal velocities allows an accurate representation of the dynamical effects of <span class="hlt">tides</span> on melt rates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11C1651A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11C1651A"><span>Errors in Tsunami Source Estimation from <span class="hlt">Tide</span> Gauges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arcas, D.</p> <p>2012-12-01</p> <p>Linearity of tsunami waves in deep water can be assessed as a comparison of flow speed, u to wave propagation speed √gh. In real tsunami scenarios this evaluation becomes impractical due to the absence of observational data of tsunami flow velocities in shallow water. Consequently the extent of validity of the linear regime in the ocean is unclear. Linearity is the fundamental assumption behind tsunami source inversion processes based on linear combinations of unit propagation runs from a deep water propagation database (Gica et al., 2008). The primary tsunami elevation data for such inversion is usually provided by National Oceanic and Atmospheric (NOAA) deep-water tsunami detection systems known as DART. The use of <span class="hlt">tide</span> gauge data for such inversions is more controversial due to the uncertainty of wave linearity at the depth of the <span class="hlt">tide</span> gauge site. This study demonstrates the inaccuracies incurred in source estimation using <span class="hlt">tide</span> gauge data in conjunction with a linear combination procedure for tsunami source estimation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19879288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19879288"><span>Characterization of Florida red <span class="hlt">tide</span> aerosol and the temporal profile of aerosol concentration.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G</p> <p>2010-05-01</p> <p>Red <span class="hlt">tide</span> aerosols containing aerosolized brevetoxins are produced during the red <span class="hlt">tide</span> bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red <span class="hlt">tide</span> aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red <span class="hlt">tide</span> events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red <span class="hlt">tide</span> aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red <span class="hlt">tide</span> aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red <span class="hlt">tide</span> aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red <span class="hlt">tide</span> aerosol during a sampling period could be explained generally with the variation of wind direction. Copyright 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DDA....4710201F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DDA....4710201F"><span>Brouwer Award Lecture: Anelastic <span class="hlt">tides</span> of close-in satellites and exoplanets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferraz-Mello, Sylvio</p> <p>2016-05-01</p> <p>This lecture reviews a new theory of the anelastic <span class="hlt">tides</span> of celestial bodies in which the deformation of the body is the result of a Newtonian creep inversely proportional to the viscosity of the body and, along each radius, directly proportional to the distance from the actual surface of the body to the equilibrium. The first version of the theory (AAS/DDA 2012; CeMDA 2013), was restricted to homogeneous bodies. It was applied to many different bodies as the Moon, Mercury, super-<span class="hlt">Earths</span> and hot Jupiters. An improved version (AAS/DDA 2014) included also the loss of angular momentum due to stellar winds and was applied to the study of the rotational evolution of active stars hosting massive companions. One more recent version (Folonier et al. AAS/DDA 2013; DPS 2015) allowed for the consideration of layered structures and was applied to Titan and Mercury. The resulting anelastic <span class="hlt">tides</span> depend on the nature of the considered body. In the case of low-viscosity bodies (high relaxation factor), as gaseous planets and stars, the results are nearly the same of Darwin's theory. For instance, in these cases the dissipation grows proportionally to the tidal frequency. In the case of high-viscosity rocky satellites and planets (low relaxation factor), the results are structurally different: the dissipation varies with the tidal frequency following an inverse power law and the rotation may be driven to several attractors whose frequencies are 1/2, 1, 3/2, 2, 5/2,… times the orbital mean-motion, even when no permanent triaxiality exists.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B34A..03T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B34A..03T"><span>Soil warming <span class="hlt">response</span>: field experiments to <span class="hlt">Earth</span> system models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todd-Brown, K. E.; Bradford, M.; Wieder, W. R.; Crowther, T. W.</p> <p>2017-12-01</p> <p>The soil carbon <span class="hlt">response</span> to climate change is extremely uncertain at the global scale, in part because of the uncertainty in the magnitude of the temperature <span class="hlt">response</span>. To address this uncertainty we collected data from 48 soil warming manipulations studies and examined the temperature <span class="hlt">response</span> using two different methods. First, we constructed a mixed effects model and extrapolated the effect of soil warming on soil carbon stocks under anticipated shifts in surface temperature during the 21st century. We saw significant vulnerability of soil carbon stocks, especially in high carbon soils. To place this effect in the context of anticipated changes in carbon inputs and moisture shifts, we applied a one pool decay model with temperature sensitivities to the field data and imposed a post-hoc correction on the <span class="hlt">Earth</span> system model simulations to integrate the field with the simulated temperature <span class="hlt">response</span>. We found that there was a slight elevation in the overall soil carbon losses, but that the field uncertainty of the temperature sensitivity parameter was as large as the variation in the among model soil carbon projections. This implies that model-data integration is unlikely to constrain soil carbon simulations and highlights the importance of representing parameter uncertainty in these <span class="hlt">Earth</span> system models to inform emissions targets.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049128&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049128&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doceans%2Btide"><span>Geographical representation of radial orbit perturbations due to ocean <span class="hlt">tides</span>: Implications for satellite altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bettadpur, Srinivas V.; Eanes, Richard J.</p> <p>1994-01-01</p> <p>In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean <span class="hlt">tides</span>. At each location these perturbations are seen to be coherent with the <span class="hlt">tide</span> height variations. The study of this singularity is of obvious importance to the estimation of ocean <span class="hlt">tides</span> from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean <span class="hlt">tide</span> models to the ocean <span class="hlt">tide</span> force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean <span class="hlt">tide</span> model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean <span class="hlt">tide</span> model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean <span class="hlt">tide</span> induced errors in the TOPEX/POSEIDON-derived <span class="hlt">tide</span> models is also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP21E..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP21E..03A"><span>Quantifying the Influence of Waves and <span class="hlt">Tides</span> in Shaping Delta Morphologies with the Use of Numerical Modelling.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adam, A.; Avdis, A.; Allison, P. A.</p> <p>2016-12-01</p> <p>Deltas form at river mouths with a geomorphology that is controlled by the energy level of the river and the water body into which it is flowing and sedimentation rate. Modern deltas are often areas of high productivity and thus important fisheries and diversity hotspots and also home to millions of people. Geologically ancient deltas are important hydrocarbon prospects that can include both source rocks and reservoirs. Deltas around the world show considerable variability in their geomorphology,but can be geomorphologically classified based on the dominant physical processes controlling sedimentation (wave, fluvial and tidal). There is clear value in being able to determine the relative importance of these processes on geologically ancient deltas, as this information can inform hydrocarbon exploitation strategies. The interaction of these processes, however, is complex and/or temporal and spatially variable. One approach is the use of numerical modelling. <span class="hlt">Earth</span> system models are now used to study the <span class="hlt">Earth</span>'s climate, either to reconstruct the past and understand the forces that shaped <span class="hlt">Earth</span>, or to predict the future. Atmospheric and oceanic models are used in conjunction to calculate the propagation and evolution of winds, waves and <span class="hlt">tides</span> over long periods of time. Using this information to study the coastal geophysical processes can be very useful, since both the temporal variabilities and temporal ranges of the dominant forces can be accounted for.Herein we outline a research strategy and initial results that quantify the wave and tidal influences on some of the largest deltas and study their relative impact on delta morphologies. First an ocean circulation model (Fluidity) and a spectral wave model (SWAN) are used to simulate the waves and <span class="hlt">tides</span> in modern <span class="hlt">Earth</span>, globally. The results are then validated against measurements and the tidal- and wave- induced bed shear stresses are calculated for a wide range of deltas. The utility of numerical modelling as a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..115.6020R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..115.6020R"><span>Nonlinear terms in storm surge predictions: Effect of <span class="hlt">tide</span> and shelf geometry with case study from Hurricane Rita</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rego, JoãO. L.; Li, Chunyan</p> <p>2010-06-01</p> <p>This study applied the finite volume coastal ocean model (FVCOM) to the storm surge induced by Hurricane Rita along the Louisiana-Texas coast. The model was calibrated for <span class="hlt">tides</span> and validated with observed water levels. Peak water levels were shown to be lower than expected for a landfall at high <span class="hlt">tide</span>. For low- and high-<span class="hlt">tide</span> landfalls, nonlinear effects due to <span class="hlt">tide</span>-surge coupling were constructive and destructive to total storm <span class="hlt">tide</span>, respectively, and their magnitude reached up to 70% of the tidal amplitude in the Rita application. <span class="hlt">Tide</span>-surge interaction was further examined using a standard hurricane under idealized scenarios to evaluate the effects of various shelf geometries, <span class="hlt">tides</span>, and landfall timings (relative to <span class="hlt">tide</span>). Nonlinearity was important between landfall position and locations within 2.5 × radius of maximum winds. On an idealized wide continental shelf, nonlinear effects reached up to 80% of the tidal amplitude with an S2 <span class="hlt">tide</span> and up to 47% with a K1 <span class="hlt">tide</span>. Increasing average depths by 4 m reduced nonlinear effects to 41% of the tidal amplitude; increasing the slope by a factor of 3 produced nonlinearities of just 26% of <span class="hlt">tide</span> (both with a K1 <span class="hlt">tide</span>). The nonlinear effect was greatest for landfalls at low <span class="hlt">tide</span>, followed by landfalls at high <span class="hlt">tide</span> and then by landfalls at midebb or midflood.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..573H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..573H"><span>Research on High Accuracy Detection of Red <span class="hlt">Tide</span> Hyperspecrral Based on Deep Learning Cnn</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Y.; Ma, Y.; An, J.</p> <p>2018-04-01</p> <p>Increasing frequency in red <span class="hlt">tide</span> outbreaks has been reported around the world. It is of great concern due to not only their adverse effects on human health and marine organisms, but also their impacts on the economy of the affected areas. this paper put forward a high accuracy detection method based on a fully-connected deep CNN detection model with 8-layers to monitor red <span class="hlt">tide</span> in hyperspectral remote sensing images, then make a discussion of the glint suppression method for improving the accuracy of red <span class="hlt">tide</span> detection. The results show that the proposed CNN hyperspectral detection model can detect red <span class="hlt">tide</span> accurately and effectively. The red <span class="hlt">tide</span> detection accuracy of the proposed CNN model based on original image and filter-image is 95.58 % and 97.45 %, respectively, and compared with the SVM method, the CNN detection accuracy is increased by 7.52 % and 2.25 %. Compared with SVM method base on original image, the red <span class="hlt">tide</span> CNN detection accuracy based on filter-image increased by 8.62 % and 6.37 %. It also indicates that the image glint affects the accuracy of red <span class="hlt">tide</span> detection seriously.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDG13009S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDG13009S"><span>Capturing remote mixing due to internal <span class="hlt">tides</span> using multi-scale modeling tool: SOMAR-LES</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Santilli, Edward; Chalamalla, Vamsi; Scotti, Alberto; Sarkar, Sutanu</p> <p>2016-11-01</p> <p>Internal <span class="hlt">tides</span> that are generated during the interaction of an oscillating barotropic <span class="hlt">tide</span> with the bottom bathymetry dissipate only a fraction of their energy near the generation region. The rest is radiated away in the form of low- high-mode internal <span class="hlt">tides</span>. These internal <span class="hlt">tides</span> dissipate energy at remote locations when they interact with the upper ocean pycnocline, continental slope, and large scale eddies. Capturing the wide range of length and time scales involved during the life-cycle of internal <span class="hlt">tides</span> is computationally very expensive. A recently developed multi-scale modeling tool called SOMAR-LES combines the adaptive grid refinement features of SOMAR with the turbulence modeling features of a Large Eddy Simulation (LES) to capture multi-scale processes at a reduced computational cost. Numerical simulations of internal <span class="hlt">tide</span> generation at idealized bottom bathymetries are performed to demonstrate this multi-scale modeling technique. Although each of the remote mixing phenomena have been considered independently in previous studies, this work aims to capture remote mixing processes during the life cycle of an internal <span class="hlt">tide</span> in more realistic settings, by allowing multi-level (coarse and fine) grids to co-exist and exchange information during the time stepping process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B23A2052T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B23A2052T"><span>Atmospheric Transport of Nutrient Matter during a Red <span class="hlt">Tide</span> Event</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, R.; Weng, H.; Lin, Q.</p> <p>2017-12-01</p> <p>Harmful algal blooms (HABs) resulting from an explosive increase in algae population have become a global problem in coastal marine environment. During 3rd -8th, May of 2006, large-scale, mixed prorocentrum dentatum stein and skeletonema costatum bloom developed in those water off the coast of Zhejiang province (Zhoushan city and Liuheng Island) of China. Using Global Nested Air Quality Prediction Modeling System (GNAQPMS), we find an atmospheric transport of considerable nutrient matter (nitrate, ammonium, Fe (Ⅱ)) to East China Sea (ECS) before the red <span class="hlt">tide</span> event. It be inferred that the atmospheric transport of nutrient matter is a significant source of nutrient matter in the water of East China Sea whose hydrological setting is dominated by oligotrophic Taiwan Warm Current in spring. Such atmospheric transport of nutrient matter is likely a cause factor of red <span class="hlt">tide</span> in the coast of East China Sea, especially during dust event. The study provides new information for discovering the occurring mechanism of the red <span class="hlt">tides</span> in ECS and the essential parameters for the red <span class="hlt">tide</span> research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29602505','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29602505"><span>Consortial brown <span class="hlt">tide</span> - picocyanobacteria blooms in Guantánamo Bay, Cuba.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hall, Nathan S; Litaker, R Wayne; Kenworthy, W Judson; Vandersea, Mark W; Sunda, William G; Reid, James P; Slone, Daniel H; Butler, Susan</p> <p>2018-03-01</p> <p>A brown <span class="hlt">tide</span> bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml -1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown <span class="hlt">tide</span> bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown <span class="hlt">tide</span> development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35-36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown <span class="hlt">tide</span>, and ciliate abundance was high compared to other systems not impacted by brown <span class="hlt">tide</span>. Preferential grazing by zooplankton on non-brown <span class="hlt">tide</span> species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown <span class="hlt">tide</span> bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the short-lived duration</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25592420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25592420"><span>Exoplanet dynamics. Asynchronous rotation of <span class="hlt">Earth</span>-mass planets in the habitable zone of lower-mass stars.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leconte, Jérémy; Wu, Hanbo; Menou, Kristen; Murray, Norman</p> <p>2015-02-06</p> <p>Planets in the habitable zone of lower-mass stars are often assumed to be in a state of tidally synchronized rotation, which would considerably affect their putative habitability. Although thermal <span class="hlt">tides</span> cause Venus to rotate retrogradely, simple scaling arguments tend to attribute this peculiarity to the massive Venusian atmosphere. Using a global climate model, we show that even a relatively thin atmosphere can drive terrestrial planets' rotation away from synchronicity. We derive a more realistic atmospheric <span class="hlt">tide</span> model that predicts four asynchronous equilibrium spin states, two being stable, when the amplitude of the thermal <span class="hlt">tide</span> exceeds a threshold that is met for habitable <span class="hlt">Earth</span>-like planets with a 1-bar atmosphere around stars more massive than ~0.5 to 0.7 solar mass. Thus, many recently discovered terrestrial planets could exhibit asynchronous spin-orbit rotation, even with a thin atmosphere. Copyright © 2015, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRD..11514108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRD..11514108P"><span>Analysis of migrating diurnal <span class="hlt">tides</span> detected in FORMOSAT-3/COSMIC temperature data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pirscher, B.; Foelsche, U.; Borsche, M.; Kirchengast, G.; Kuo, Y.-H.</p> <p>2010-07-01</p> <p>The characteristics of atmospheric <span class="hlt">tides</span> in the upper troposphere and lower stratosphere region are investigated using radio occultation (RO) measurements performed by the Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellite constellation and compared to <span class="hlt">tides</span> observed in short-term forecast model fields of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP). Spectral analysis of 2 years of monthly data (2007 to 2008) yields the migrating diurnal <span class="hlt">tide</span> to be the largest spectral component. This diurnal <span class="hlt">tide</span> shows similar temporal, latitudinal, and altitudinal characteristics in all data sets equatorward of 50°. Beyond 50°, COSMIC local time sampling is insufficient within 1 month, which prevents space-time spectral analysis from isolating atmospheric waves. Diurnal <span class="hlt">tides</span> of temperature are characterized by largest amplitudes in the tropics (0.8 K to 1.0 K at an altitude of 30 km). Amplitudes of diurnal <span class="hlt">tides</span> analyzed in model data are more pronounced by ˜20%. An annual cycle of the amplitudes, characteristically linked to the movement of the intertropical convergence zone, is clearly revealed. Tropical diurnal phase features downward progression of waves fronts with a vertical wavelength of 20 km. Extratropical diurnal <span class="hlt">tides</span> are most pronounced in the model data sets with amplitudes of up to 0.5 K at 30 km. In this analysis we also see the influence of high-altitude initialization of RO data by background information in using data processed by two different centers (University Corporation for Atmospheric Research (UCAR) and Wegener Center (WEGC)). UCAR data, initialized by a climatology without tidal information, exhibit no appreciable extratropical diurnal <span class="hlt">tides</span>, while WEGC data, initialized by ECMWF forecasts, show more pronounced ones. Overall the results underpin the utility of the local-time resolving COSMIC RO</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241685&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=241685&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Pacific Northwest <span class="hlt">tide</span> channel utilization by fish as an ecosystem service</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Background/Question/Methods: Saltwater marsh <span class="hlt">tide</span> channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of <span class="hlt">tide</span> channels in Pacific Northwest estuaries has ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1263/pdf/ofr2012-1263.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1263/pdf/ofr2012-1263.pdf"><span>Monitoring storm <span class="hlt">tide</span> and flooding from Hurricane Isaac along the Gulf Coast of the United States, August 2012</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCallum, Brian E.; McGee, Benton D.; Kimbrow, Dustin R.; Runner, Michael S.; Painter, Jaime A.; Frantz, Eric R.; Gotvald, Anthony J.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level and barometric pressure sensors at 127 locations along the gulf coast from Alabama to Louisiana to record the timing, areal extent, and magnitude of hurricane storm <span class="hlt">tide</span> and coastal flooding generated by Hurricane Isaac. This deployment was undertaken as part of a coordinated federal emergency <span class="hlt">response</span> as outlined by the Stafford Act under a directed mission assignment by the Federal Emergency Management Agency. Storm <span class="hlt">tide</span>, as defined by National Oceanic and Atmospheric Administration (NOAA; National Oceanic and Atmospheric Administration, 2008), is the water-level rise generated by a combination of storm surge and astronomical <span class="hlt">tide</span> during a coastal storm. Hurricane Isaac initially made landfall on the coast of Louisiana in Plaquemines Parish on August 28, 2012, as a Category 1 hurricane on the Saffir–Simpson Hurricane Wind Scale (National Weather Service, 1974) and then stalled over southern Louisiana for several days, causing prolonged storm-<span class="hlt">tide</span> impacts. A total of 188 water-level and wave-height sensors were deployed at 127 locations during August 27–28 prior to landfall. More than 90 percent of the sensors and all high-water marks (HWMs) were recovered and surveyed to North American Vertical Datum of 1988 (NAVD 88) within 7 days of the Isaac landfall. Only a handful of sensors in the Plaquemines Parish area of Louisiana could not be retrieved until weeks later due to prolonged flooding in the area. Data collected from this event can be used to evaluate the performance of storm-<span class="hlt">tide</span> models for maximum and incremental water level and flood extent and the site-specific effects of storm <span class="hlt">tide</span> on natural and anthropogenic features of the environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://dx.doi.org/10.1029/2009JB006407','USGSPUBS'); return false;" href="http://dx.doi.org/10.1029/2009JB006407"><span>Tidal calibration of Plate Boundary Observatory borehole strainmeters: Roles of vertical and shear coupling</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roeloffs, Evelyn</p> <p>2010-01-01</p> <p>A multicomponent borehole strainmeter directly measures changes in the diameter of its cylindrical housing at several azimuths. To transform these measurements to formation strains requires a calibration matrix, which must be estimated by analyzing the installed strainmeter's <span class="hlt">response</span> to known strains. Typically, theoretical calculations of <span class="hlt">Earth</span> tidal strains serve as the known strains. This paper carries out such an analysis for 12 Plate Boundary Observatory (PBO) borehole strainmeters, postulating that each of the strainmeters' four gauges responds ("couples") to all three horizontal components of the formation strain tensor, as well as to vertical strain. Orientation corrections are also estimated. The fourth extensometer in each PBO strainmeter provides redundant information used to reduce the chance that coupling coefficients could be misleadingly fit to inappropriate theoretical <span class="hlt">tides</span>. Satisfactory fits between observed and theoretically calculated <span class="hlt">tides</span> were obtained for three PBO strainmeters in California, where the calculated <span class="hlt">tides</span> are corroborated by other instrumentation, as well as for six strainmeters in Oregon and Washington, where no other instruments have ever recorded <span class="hlt">Earth</span> tidal strain. Several strainmeters have unexpectedly large coupling coefficients for vertical strain, which increases the strainmeter's <span class="hlt">response</span> to atmospheric pressure. Vertical coupling diminishes, or even changes the sign of, the apparent <span class="hlt">response</span> to areal strain caused by <span class="hlt">Earth</span> <span class="hlt">tides</span> or deep <span class="hlt">Earth</span> processes because near the free surface, vertical strains are opposite in sign to areal strain. Vertical coupling does not impair the shear strain <span class="hlt">response</span>, however. PBO borehole strainmeters can provide calibrated shear strain time series of transient strain associated with tectonic or magmatic processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRC..118.6303M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRC..118.6303M"><span>Internal <span class="hlt">tide</span> generation by abyssal hills using analytical theory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melet, Angélique; Nikurashin, Maxim; Muller, Caroline; Falahat, S.; Nycander, Jonas; Timko, Patrick G.; Arbic, Brian K.; Goff, John A.</p> <p>2013-11-01</p> <p>Internal <span class="hlt">tide</span> driven mixing plays a key role in sustaining the deep ocean stratification and meridional overturning circulation. Internal <span class="hlt">tides</span> can be generated by topographic horizontal scales ranging from hundreds of meters to tens of kilometers. State of the art topographic products barely resolve scales smaller than ˜10 km in the deep ocean. On these scales abyssal hills dominate ocean floor roughness. The impact of abyssal hill roughness on internal-<span class="hlt">tide</span> generation is evaluated in this study. The conversion of M2 barotropic to baroclinic tidal energy is calculated based on linear wave theory both in real and spectral space using the Shuttle Radar Topography Mission SRTM30_PLUS bathymetric product at 1/120° resolution with and without the addition of synthetic abyssal hill roughness. Internal <span class="hlt">tide</span> generation by abyssal hills integrates to 0.1 TW globally or 0.03 TW when the energy flux is empirically corrected for supercritical slope (i.e., ˜10% of the energy flux due to larger topographic scales resolved in standard products in both cases). The abyssal hill driven energy conversion is dominated by mid-ocean ridges, where abyssal hill roughness is large. Focusing on two regions located over the Mid-Atlantic Ridge and the East Pacific Rise, it is shown that regionally linear theory predicts an increase of the energy flux due to abyssal hills of up to 100% or 60% when an empirical correction for supercritical slopes is attempted. Therefore, abyssal hills, unresolved in state of the art topographic products, can have a strong impact on internal <span class="hlt">tide</span> generation, especially over mid-ocean ridges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8102R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8102R"><span>Fingerprints of Sea Level Rise on Changing <span class="hlt">Tides</span> in the Chesapeake and Delaware Bays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ross, Andrew C.; Najjar, Raymond G.; Li, Ming; Lee, Serena Blyth; Zhang, Fan; Liu, Wei</p> <p>2017-10-01</p> <p>Secular tidal trends are present in many <span class="hlt">tide</span> gauge records, but their causes are often unclear. This study examines trends in <span class="hlt">tides</span> over the last century in the Chesapeake and Delaware Bays. Statistical models show negative M2 amplitude trends at the mouths of both bays, while some upstream locations have insignificant or positive trends. To determine whether sea level rise is <span class="hlt">responsible</span> for these trends, we include a term for mean sea level in the statistical models and compare the results with predictions from numerical and analytical models. The observed and predicted sensitivities of M2 amplitude and phase to mean sea level are similar, although the numerical model amplitude is less sensitive to sea level. The sensitivity occurs as a result of strengthening and shifting of the amphidromic system in the Chesapeake Bay and decreasing frictional effects and increasing convergence in the Delaware Bay. After accounting for the effect of sea level, significant negative background M2 and S2 amplitude trends are present; these trends may be related to other factors such as dredging, <span class="hlt">tide</span> gauge errors, or river discharge. Projected changes in tidal amplitudes due to sea level rise over the 21st century are substantial in some areas, but depend significantly on modeling assumptions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17111605','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17111605"><span>[Mechanisms of removing red <span class="hlt">tide</span> organisms by organo-clays].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Xi-Hua; Song, Xiu-Xian; Yu, Zhi-Ming; Wang, Kui</p> <p>2006-08-01</p> <p>We tested the influence of the preparation conditions of the quaternary ammonium compounds (QACs) modified clays on their capacities to remove red <span class="hlt">tide</span> organisms, then discussed the mechanisms of the organo-clays removing red <span class="hlt">tide</span> organisms. Hexadecyltrimethylammonium (HDTMA) improved the capacity of clays to flocculate red <span class="hlt">tide</span> algae, and the HDTMA in metastable state enhanced the toxicity of the clay complexes to algae. The capacities of the organo-clays correlated with the toxicity and the adsorbed amount of the QACs used in clays modification, but as the incubation time was prolonged the stability of the organo-clays was improved and the algal removal efficiencies of the clay complexes decreased. When the adsorbed HDTMA was arranged in different clays in which the spatial resistance was different, there was more HDTMA in metastable state in the three-layer montmorillonite. Because of the homo-ion effect the bivalent or trivalent metal ions induced more HDTMA in metastable state and the corresponding organo-clays had high capacities to remove red <span class="hlt">tide</span> organisms. When the reaction temperature was 60 degrees C the adsorbed HDTMA was easily arranged on cation exchange sites, if the temperature rose or fell the metastable HDTMA would increase so that the capacity of the clays was improved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930071962&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgravity%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930071962&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dgravity%2Bearth"><span>Observed temporal variations in the <span class="hlt">Earth</span>'s gravity field from 16-year Starlette orbit analysis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cheng, M. K.; Eanes, R. L.; Shum, C. K.; Schutz, B. E.; Tapley, B. D.</p> <p>1992-01-01</p> <p>Satellite laser ranging data to Starlette, collected during the period from 1975 to 1990, are analyzed to determine yearly values of the second degree annual (Sa) and semiannual (Ssa) <span class="hlt">tides</span>, simultaneously with average values of other low degree and order <span class="hlt">tide</span> parameters. The yearly fluctuations in the values for Sa and Ssa are associated with changes in the <span class="hlt">Earth</span>'s second degree zonal harmonic caused by meteorological excitation. The Starlette-determined mean values for the amplitude of the annual and semiannual variations in J2 are 32.3 x 10 exp -11 and 19.5 x 10 exp -11, respectively; while the rms about the mean values are 4.1 x 10 exp -11 and 6.3 x 10 exp -11, respectively. The annual delta-J2 is in good agreement with the value obtained from the combined effects of air mass redistribution without the oceanic inverted-barometer effects (non-IB) and hydrological change. Approximately 90 percent of the observed annual variation from Starlette is attributed to the meteorological mass redistribution occurring on the <span class="hlt">Earth</span>'s surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1459919','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1459919"><span>Weather Variability, <span class="hlt">Tides</span>, and Barmah Forest Virus Disease in the Gladstone Region, Australia</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S.; McMichael, Anthony J.; Dale, Pat; Tong, Shilu</p> <p>2006-01-01</p> <p>In this study we examined the impact of weather variability and <span class="hlt">tides</span> on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of <span class="hlt">response</span> and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low <span class="hlt">tides</span>, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high <span class="hlt">tide</span> in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention. PMID:16675420</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16675420','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16675420"><span>Weather variability, <span class="hlt">tides</span>, and Barmah Forest virus disease in the Gladstone region, Australia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; McMichael, Anthony J; Dale, Pat; Tong, Shilu</p> <p>2006-05-01</p> <p>In this study we examined the impact of weather variability and <span class="hlt">tides</span> on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of <span class="hlt">response</span> and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low <span class="hlt">tides</span>, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high <span class="hlt">tide</span> in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/ds/2007/294/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/ds/2007/294/"><span>Monitoring the Storm <span class="hlt">Tide</span> of Hurricane Wilma in Southwestern Florida, October 2005</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderqvist, Lars E.; Byrne, Michael J.</p> <p>2007-01-01</p> <p>Temporary monitoring stations employing non-vented pressure transducers were used to augment an existing U.S. Geological Survey coastal monitoring network to document the inland water levels related to the storm <span class="hlt">tide</span> of Hurricane Wilma on the southwestern coast of Florida. On October 22, 2005, an experimental network consisting of 30 temporary stations was deployed over 90 miles of coastline to record the magnitude, extent, and timing of hurricane storm <span class="hlt">tide</span> and coastal flooding. Sensors were programmed to record time, temperature, and barometric or water pressure. Water pressure was adjusted for changes in barometric pressure and salinity, and then converted to feet of water above the sensor. Elevation surveys using optical levels were conducted to reference storm <span class="hlt">tide</span> water-level data and high-water marks to the North American Vertical Datum of 1988 (NAVD 88). Storm <span class="hlt">tide</span> water levels more than 5 feet above NAVD 88 were recorded by sensors at several locations along the southwestern Florida coast. Temporary storm <span class="hlt">tide</span> monitoring stations used for this effort have demonstrated their value in: (1) furthering the understanding of storm <span class="hlt">tide</span> by allowing the U.S. Geological Survey to extend the scope of data collection beyond that of existing networks, and (2) serving as backup data collection at existing monitoring stations by utilizing nearby structures that are more likely to survive a major hurricane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000116203','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000116203"><span>Estimates of Internal <span class="hlt">Tide</span> Energy Fluxes from Topex/Poseidon Altimetry: Central North Pacific</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Cartwright, David E.; Smith, David E. (Technical Monitor)</p> <p>2000-01-01</p> <p>Energy fluxes for first-mode M(sub 2) internal <span class="hlt">tides</span> are deduced throughout the central North Pacific Ocean from Topex/Poseidon satellite altimeter data. Temporally coherent internal <span class="hlt">tide</span> signals in the altimetry, combined with climatological hydrographic data, determine the tidal displacements, pressures, and currents at depth, which yield power transmission rates. For a variety of reasons the deduced rates should be considered lower bounds. Internal <span class="hlt">tides</span> were found to emanate from several large bathymetric structures, especially the Hawaiian Ridge, where the integrated flux amounts to about six gigawatts. Internal <span class="hlt">tides</span> are generated at the Aleutian Trench near 172 deg west and propagate southwards nearly 2000 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.113..145L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.113..145L"><span>The K1 internal <span class="hlt">tide</span> simulated by a 1/10° OGCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhuhua; von Storch, Jin-Song; Müller, Malte</p> <p>2017-05-01</p> <p>This paper quantifies the K1 internal <span class="hlt">tide</span> simulated by the 1/10° STORMTIDE model, which simultaneously resolves the eddying general circulation and <span class="hlt">tides</span>. An evident feature of the K1 internal <span class="hlt">tide</span> is the critical latitude φc at 30°, which in the STORMTIDE model is characterized by variations from a high energy level equatorward of 30° to a low energy level poleward of 30°. This critical latitude separates the internal <span class="hlt">tide</span> dynamics into bottom-trapped (at latitudes |φ| > |φc|) and freely propagating (at |φ| < |φc|) motions, respectively. Both types of motions are examined. The bottom-trapping process reveals a gradual vertical decrease of wave energy away from the bottom. The vertical scale, over which the wave energy decrease occurs, is smaller in shallow than in deep water regions. For the freely propagating K1 internal <span class="hlt">tides</span>, the STORMTIDE model is able to simulate the first three low modes, with the wavelengths ranging from 200-400 km, 100-200 km, to 60-120 km. These wavelength distributions reveal not only a zonal asymmetry but also a poleward increase up to φc, in particular in the Pacific. Such distributions indicate the impact of stratification N and the Coriolis frequency f on the wavelengths. The large wavelength gradient near φc is caused by the wavelength increase from finite values at subcritical latitudes to infinity at φc. Compared to the M2 internal <span class="hlt">tide</span>, the lower K1 tidal frequency leads to a stronger role of f, hence a weaker effect of N, for the K1 internal <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ESASP.710E...9E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ESASP.710E...9E"><span>Twenty Years of Progress on Global Ocean <span class="hlt">Tide</span>: The Impact of Satellite Altimetry</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egbert, Gary D.; Ray, Richard D.</p> <p>2013-09-01</p> <p>At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean <span class="hlt">tides</span> were properly viewed as a source of noise-tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by <span class="hlt">tides</span>, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of <span class="hlt">tides</span> has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period <span class="hlt">tides</span>; non-linear <span class="hlt">tides</span> in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal <span class="hlt">tide</span> conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal <span class="hlt">tides</span>, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal <span class="hlt">tides</span>. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the sub-mesoscale with SWOT, which will require correction for internal <span class="hlt">tides</span>) may bring us full circle, again pushing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009634','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009634"><span>Twenty Years of Progress on Global Ocean <span class="hlt">Tides</span>: The Impact of Satellite Altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, Gary; Ray, Richard</p> <p>2012-01-01</p> <p>At the dawn of the era of high-precision altimetry, before the launch of TOPEX/Poseidon, ocean <span class="hlt">tides</span> were properly viewed as a source of noise--tidal variations in ocean height would represent a very substantial fraction of what the altimeter measures, and would have to be accurately predicted and subtracted if altimetry were to achieve its potential for ocean and climate studies. But to the extent that the altimetry could be severely contaminated by <span class="hlt">tides</span>, it also represented an unprecedented global-scale tidal data set. These new data, together with research stimulated by the need for accurate tidal corrections, led to a renaissance in tidal studies in the oceanographic community. In this paper we review contributions of altimetry to tidal science over the past 20 years, emphasizing recent progress. Mapping of <span class="hlt">tides</span> has now been extended from the early focus on major constituents in the open ocean to include minor constituents, (e.g., long-period <span class="hlt">tides</span>; non-linear <span class="hlt">tides</span> in shelf waters, and in the open ocean), and into shallow and coastal waters. Global and spatially local estimates of tidal energy balance have been refined, and the role of internal <span class="hlt">tide</span> conversion in dissipating barotropic tidal energy is now well established through modeling, altimetry, and in situ observations. However, energy budgets for internal <span class="hlt">tides</span>, and the role of tidal dissipation in vertical ocean mixing remain controversial topics. Altimetry may contribute to resolving some of these important questions through improved mapping of low-mode internal <span class="hlt">tides</span>. This area has advanced significantly in recent years, with several global maps now available, and progress on constraining temporally incoherent components. For the future, new applications of altimetry (e.g., in the coastal ocean, where barotropic tidal models remain inadequate), and new mission concepts (studies of the submesoscale with SWOT, which will require correction for internal <span class="hlt">tides</span>) may bring us full circle, again pushing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20541229','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20541229"><span>Recurrence of the world's largest green-<span class="hlt">tide</span> in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Dongyan; Keesing, John K; Dong, Zhijun; Zhen, Yu; Di, Baoping; Shi, Yajun; Fearns, Peter; Shi, Ping</p> <p>2010-09-01</p> <p>In the summer of 2008, the world's largest green-<span class="hlt">tide</span> occurred in the Yellow Sea, China. The hypothesized cause was the expansion of Porphyra yezoensis aquaculture along the Jiangsu coastline and the re-occurrence of a green-<span class="hlt">tide</span> in 2009 was predicted. In this study, satellite and field images showed the formation of the June 2009 green-<span class="hlt">tide</span> which again originated from the Jiangsu coast. The <span class="hlt">responsible</span> species, its source and biomass accumulation were studied to support the previous hypothesis. Morphological and phylogenetic analysis demonstrated the homology of Ulva prolifera in the 2008 green-<span class="hlt">tide</span> with the U. prolifera from P. yezoensis aquaculture rafts. About 91-505kg/ha of U. prolifera was attached to the P. yezoensis aquaculture rafts and a total biomass of 4956 tonnes was estimated during the harvesting of P. yezoensis. This is sufficient to seed a bloom when they are dislodged from the rafts as a result of harvesting practices. Copyright 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22007423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22007423"><span>[Retrieve of red <span class="hlt">tide</span> distributions from MODIS data based on the characteristics of water spectrum].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qiu, Zhong-Feng; Cui, Ting-Wei; He, Yi-Jun</p> <p>2011-08-01</p> <p>After comparing the spectral differences between red <span class="hlt">tide</span> water and normal water, we developed a method to retrieve red <span class="hlt">tide</span> distributions from MODIS data based on the characteristics of red <span class="hlt">tide</span> water spectrum. The authors used the 119 series of in situ observations to validate the method and found that only one observation has not been detected correctly. The authors then applied this method to MODIS data on April 4, 2005. In the research areas three locations of red <span class="hlt">tide</span> water were apparently detected with the total areas about 2 000 km2. The retrieved red <span class="hlt">tide</span> distributions are in good agreement with the distributions of high chlorophyll a concentrations. The research suggests that the method is available to eliminating the influence of suspended sediments and can be used to retrieve the locations and areas of red <span class="hlt">tide</span> water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGeo...62...56B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGeo...62...56B"><span>Complex demodulation in VLBI estimation of high frequency <span class="hlt">Earth</span> rotation components</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Böhm, S.; Brzeziński, A.; Schuh, H.</p> <p>2012-12-01</p> <p>The spectrum of high frequency <span class="hlt">Earth</span> rotation variations contains strong harmonic signal components mainly excited by ocean <span class="hlt">tides</span> along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal <span class="hlt">tides</span> in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within <span class="hlt">Earth</span> rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated <span class="hlt">Earth</span> rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in <span class="hlt">Earth</span> rotation recommended by the International <span class="hlt">Earth</span> Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27733288','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27733288"><span>Eutrophication and warming-driven green <span class="hlt">tides</span> (Ulva rigida) are predicted to increase under future climate change scenarios.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Guang; Clare, Anthony S; Rose, Craig; Caldwell, Gary S</p> <p>2017-01-15</p> <p>The incidence and severity of extraordinary macroalgae blooms (green <span class="hlt">tides</span>) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical <span class="hlt">responses</span> of a causative green <span class="hlt">tide</span> species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO 2 ), temperature (14, 18°C) and nitrate availability (6 and 150μmolL -1 ). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO 2 or nitrate. Reproductive success was highest (64.4±5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green <span class="hlt">tides</span>, particularly when eutrophication cannot be effectively controlled. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910136D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910136D"><span>GRACE AOD1B Product Release 06: Long-Term Consistency and the Treatment of Atmospheric <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobslaw, Henryk; Bergmann-Wolf, Inga; Dill, Robert; Poropat, Lea; Flechtner, Frank</p> <p>2017-04-01</p> <p>The GRACE satellites orbiting the <span class="hlt">Earth</span> at very low altitudes are affected by rapid changes in the <span class="hlt">Earth</span>'s gravity field caused by mass redistribution in atmosphere and oceans. To avoid temporal aliasing of such high-frequency variability into the final monthly-mean gravity fields, those effects are typically modelled during the numerical orbit integration by appling the 6-hourly GRACE Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) a priori model. In preparation of the next GRACE gravity field re-processing currently performed by the GRACE Science Data System, a new version of AOD1B has been calculated. The data-set is based on 3-hourly surface pressure anomalies from ECMWF that have been mapped to a common reference orography by means of ECMWF's mean sea-level pressure diagnostic. Atmospheric <span class="hlt">tides</span> as well as the corresponding oceanic <span class="hlt">response</span> at the S1, S2, S3, and L2 frequencies and its annual modulations have been fitted and removed in order to retain the non-tidal variability only. The data-set is expanded into spherical harmonics complete up to degree and order 180. In this contribution, we will demonstrate that AOD1B RL06 is now free from spurious jumps in the time-series related to occasional changes in ECMWF's operational numerical weather prediction system. We will also highlight the rationale for separating tidal signals from the AOD1B coefficients, and will finally discuss the current quality of the AOD1B forecasts that have been introduced very recently for GRACE quicklook or near-realtime applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015152"><span>On the Temporal Variability of Low-Mode Internal <span class="hlt">Tides</span> in the Deep Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.; Zaron, E. D.</p> <p>2010-01-01</p> <p>In situ measurements of internal <span class="hlt">tides</span> are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal <span class="hlt">tides</span> detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal <span class="hlt">tides</span> in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-<span class="hlt">tide</span> signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal <span class="hlt">tide</span> signals is critical for observing non-tidal submesoscale phenomena.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2013/5076/pdf/sir2013-5076_report_508.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2013/5076/pdf/sir2013-5076_report_508.pdf"><span>A one-dimensional diffusion analogy model for estimation of <span class="hlt">tide</span> heights in selected tidal marshes in Connecticut</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron</p> <p>2013-01-01</p> <p>A one-dimensional diffusion analogy model for estimating <span class="hlt">tide</span> heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate <span class="hlt">tide</span> heights, flow velocities, and <span class="hlt">tide</span> arrival times for <span class="hlt">tide</span> conditions other than the highest <span class="hlt">tide</span> for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-<span class="hlt">tide</span> heights in tidal wetlands drained by <span class="hlt">tide</span> gates where <span class="hlt">tide</span> levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two <span class="hlt">tide</span> gates that prevent full tidal inundation of the marsh. The method application shows reasonable <span class="hlt">tide</span> heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all <span class="hlt">tide</span> gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the <span class="hlt">tide</span> gates were to fail.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA512341','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA512341"><span>Defense Horizons. STAR-<span class="hlt">TIDES</span> and Starfish Networks: Supporting Stressed Populations with Distributed Talent</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-12-01</p> <p>In November 2007, Cyclone Sidr struck Bangladesh. In <span class="hlt">response</span> to a query, members of the network noted that Vibrio cholerae bacteria are carried...southern California severely stressed the area around San Diego and stretched beyond the border into Mexico . The STAR–<span class="hlt">TIDES</span> core group asked members of...day warn- ing on where cholera outbreaks might occur. A check with the National Geospatial-Intelligence Agency (NGA) revealed that there was no</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..126...73H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..126...73H"><span>Partly standing internal <span class="hlt">tides</span> in a dendritic submarine canyon observed by an ocean glider</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.</p> <p>2017-08-01</p> <p>An autonomous ocean glider is used to make the first direct measurements of internal <span class="hlt">tides</span> within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal <span class="hlt">tides</span> in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal <span class="hlt">tides</span> - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal <span class="hlt">tide</span> energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal <span class="hlt">tide</span> driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal <span class="hlt">tides</span> impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal <span class="hlt">tides</span>. This study highlights how a well-designed glider mission, incorporating a series of <span class="hlt">tide</span>-resolving stations at key locations, can be used to understand internal <span class="hlt">tide</span> dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..335T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..335T"><span>Three-Dimensional Structures of Thermal <span class="hlt">Tides</span> Simulated by a Venus GCM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa</p> <p>2018-02-01</p> <p>Thermal <span class="hlt">tides</span> in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal <span class="hlt">tides</span> obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal <span class="hlt">tides</span> depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal <span class="hlt">tides</span>, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal <span class="hlt">tides</span>, which may be excited by the nonlinear interactions among the diurnal and semidiurnal <span class="hlt">tides</span> in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007772&hterms=records&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drecords','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007772&hterms=records&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Drecords"><span>Manuel Johnson's <span class="hlt">Tide</span> Record at St. Helena</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.</p> <p>2017-01-01</p> <p>The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean <span class="hlt">tides</span> with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnsons <span class="hlt">tide</span> gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day <span class="hlt">tide</span> gauge measurements from the same site.Johnsons method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnsons data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computerfiles as part of this study for the benefit of future researchers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HGSS....8....9C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HGSS....8....9C"><span>Manuel Johnson's <span class="hlt">tide</span> record at St. Helena</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cartwright, David E.; Woodworth, Philip L.; Ray, Richard D.</p> <p>2017-03-01</p> <p>The astronomer Manuel Johnson, a future President of the Royal Astronomical Society, recorded the ocean <span class="hlt">tides</span> with his own instrument at St. Helena in 1826-1827, while waiting for an observatory to be built. It is an important record in the history of tidal science, as the only previous measurements at St. Helena had been those made by Nevil Maskelyne in 1761, and there were to be no other systematic measurements until the late 20th century. Johnson's <span class="hlt">tide</span> gauge, of a curious but unique design, recorded efficiently the height of every tidal high and low water for at least 13 months, in spite of requiring frequent re-setting. These heights compare very reasonably with a modern tidal synthesis based on present-day <span class="hlt">tide</span> gauge measurements from the same site. Johnson's method of timing is unknown, but his calculations of lunar phases suggest that his tidal measurements were recorded in Local Apparent Time. Unfortunately, the recorded times are found to be seriously and variably lagged by many minutes. Johnson's data have never been fully published, but his manuscripts have been safely archived and are available for inspection at Cambridge University. His data have been converted to computer files as part of this study for the benefit of future researchers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231327','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3231327"><span>Time-Frequency Analyses of <span class="hlt">Tide</span>-Gauge Sensor Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Erol, Serdar</p> <p>2011-01-01</p> <p>The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors’ data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by <span class="hlt">tide</span>-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek <span class="hlt">tide</span>-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The <span class="hlt">tide</span>-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of <span class="hlt">tide</span>-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented. PMID:22163829</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22163829','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22163829"><span>Time-frequency analyses of <span class="hlt">tide</span>-gauge sensor data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Erol, Serdar</p> <p>2011-01-01</p> <p>The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by <span class="hlt">tide</span>-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek <span class="hlt">tide</span>-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The <span class="hlt">tide</span>-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of <span class="hlt">tide</span>-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED22C..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED22C..02V"><span>Exploring Marine Science through the University of Delaware's <span class="hlt">TIDE</span> camp</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veron, D. E.; Newton, F. A.; Veron, F.; Trembanis, A. C.; Miller, D. C.</p> <p>2012-12-01</p> <p>For the past five years, the University of Delaware has offered a two-week, residential, summer camp to rising sophomores, juniors, and seniors who are interested in marine science. The camp, named <span class="hlt">TIDE</span> (Taking an Interest in Delaware's Estuary) camp, is designed to introduce students to the breadth of marine science while providing them with a college experience. Campers participate in a variety of academic activities which include classroom, laboratory, and field experiences, as well as numerous social activities. Two unique features of this small, focused camp is the large number of university faculty that are involved, and the ability of students to participate in ongoing research projects. At various times students have participated in fish and dolphin counts, AUV deployment, wind-wave tank experiments, coastal water and beach studies, and ROV activities. In addition, each year campers have participated in a local service project. Through communication with former <span class="hlt">TIDE</span> participants, it is clear that this two-week, formative experience plays a large role in students choice of major when entering college.2012 <span class="hlt">Tide</span> Camp - Salt marsh in southern Delaware 2012 <span class="hlt">Tide</span> Camp - Field trip on a small boat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMIP21A0664K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMIP21A0664K"><span><span class="hlt">Earth</span> Tidal Controls on Basal Dynamics and Hydrology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kulessa, B.; Hubbard, B. P.; Brown, G. H.; Becker, J.</p> <p>2001-12-01</p> <p>We appraise <span class="hlt">earth</span> tidal forcing of coupled mechanical and hydrological processes beneath warm-based ice masses, which have to date been poorly documented but represent exciting phenomena that have important implications for future studies of glacier dynamics. Regular cycles in winter and early spring electrical self-potential (SP), water pressure (PW) and electrical conductivity (EC) were recorded at the bases of several boreholes drilled through Haut Glacier d'Arolla, Switzerland. Fourier power spectra of these data reflect the presence of diurnal and semi-diurnal cycles, and comparison with the <span class="hlt">earth</span> tidal spectrum indicates that at least four components of the latter are visible in the borehole spectra: the luni-solar diurnal, the principal lunar diurnal, the principal solar semi-diurnal, and the principal lunar semi-diurnal. This correspondence suggests that <span class="hlt">earth</span> <span class="hlt">tides</span> exert a strong control over water flow at the bed of the glacier, at least during winter and early spring. We envisage a mechanism that involves <span class="hlt">earth-tide</span> induced deformation of the bedrock and the unconsolidated sediments beneath the glacier, and to a certain extent probably also the overlying ice body. Basal water pockets, including those containing our sensors, located within these media are in turn also likely to be deformed periodically. We believe that PW gradients induced by such deformation may result in transient water flow and SPs in the pockets. Since PW and EC are typically out-of-phase, injection of waters of lower EC into the pockets during times of peak water flow is likely. Several lines of evidence suggest that such injection was caused by melting of the ice wall due to frictional heating, balancing creep closure which sustained some pockets through the winter. Further, the first annually-repeated post-winter reorganization event, termed the May event, may well be triggered by tidally-induced releases of waters from storage. This implies that the May event marks the opening of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930005803&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930005803&hterms=gravity+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Bearth"><span>Application of precise altimetry to the study of precise leveling of the sea surface, the <span class="hlt">Earth</span>'s gravity field, and the rotation of the <span class="hlt">Earth</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.</p> <p>1991-01-01</p> <p>Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the <span class="hlt">tide</span> in the global energy exchange; (3) oceanic effect on the <span class="hlt">Earth</span>'s rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910769K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910769K"><span>A Plan to Develop a Red <span class="hlt">Tide</span> Warning System for Seawater Desalination Process Management</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Tae Woo; Yun, Hong Sik</p> <p>2017-04-01</p> <p>The holt of the seawater desalination process for fifty five days due to the eight-month long red <span class="hlt">tide</span> in 2008 in the Persian Gulf, the Middle East, had lost about 10 billion KRW. The POSCO Seawater Desalination facility, located in Gwangyang Bay Area in the Southern Sea, has produced 30,000 tons of fresh water per day since 2014. Since there has been an incident of red time in the area for three months in August, 2012, it is necessary to establish a warning system for red <span class="hlt">tide</span> that threatens the stable operation of the seawater desalination facility. A red <span class="hlt">tide</span> warning system can offer the seawater desalination facility manager customized services on red <span class="hlt">tide</span> information and potential red <span class="hlt">tide</span> inflow to the water intake. This study aimed to develop a red <span class="hlt">tide</span> warning system in Gwangyang Bay Area by combining RS, modeling and monitoring technologies, which provides red <span class="hlt">tide</span> forecasting information with which to effectively control the seawater desalination process. Using the proposed system, the seawater desalination facility manager can take phased measures to cope with the inflow of red <span class="hlt">tide</span>. ACKNOWLEDGMENTS This research was supported by a grant(16IFIP-C088924-03) from Industrial Facilities & Infrastructure Research Program funded by Ministry of Land, Infrastructure and Transport(MOLIT) of the Korea government and the Korea Agency for Infrastructure Technology Advancement (KAIA). This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2014R1A1A2054975).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002390&hterms=churchill&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchurchill','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002390&hterms=churchill&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchurchill"><span>On Measurements of the <span class="hlt">Tide</span> at Churchill, Hudson Bay</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2016-01-01</p> <p>Since the late 1990s the semi-diurnal <span class="hlt">tide</span> at Churchill, on the western shore of Hudson Bay, has been decreasing in amplitude, with M(sub 2) amplitudes falling from approximately 154 cm in 1998 to 146 cm in 2012 and 142 cm in 2014. There has been a corresponding small increase in phase lag. Mean low water, decreasing throughout most of the twentieth century, has levelled off. Although the tidal changes could reflect merely a malfunctioning <span class="hlt">tide</span> gauge, the fact that there are no other measurements in the region and the possibility that the <span class="hlt">tide</span> is revealing important environmental changes calls for serious investigation. Satellite altimeter measurements of the <span class="hlt">tide</span> in Hudson Bay are complicated by the seasonal ice cover; at most locations less than 40% of satellite passes return valid ocean heights and even those can be impacted by errors from sea ice. Because the combined TOPEX/Poseidon, Jason-1, and Jason-2 time series is more than 23 years long, it is now possible to obtain sufficient data at crossover locations near Churchill to search for tidal changes. The satellites sense no changes in M(sub 2) that are comparable to the changes seen at the Churchill gauge. The changes appear to be localized to the harbour, or to the Churchill River, or to the gauge itself.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21729317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21729317"><span>Transcriptomic <span class="hlt">response</span> of the red <span class="hlt">tide</span> dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M</p> <p>2011-07-05</p> <p>The role of coastal nutrient sources in the persistence of Karenia brevis red <span class="hlt">tides</span> in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient <span class="hlt">responses</span> in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-<span class="hlt">responsive</span> gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is <span class="hlt">responsive</span> to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth <span class="hlt">response</span> to P-addition. To study transcriptome <span class="hlt">responses</span> to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in <span class="hlt">response</span> to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14587353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14587353"><span>[Algorithms of multiband remote sensing for coastal red <span class="hlt">tide</span> waters].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mao, Xianmou; Huang, Weigen</p> <p>2003-07-01</p> <p>The spectral characteristics of the coastal waters in East China Sea was studied using in situ measurements, and the multiband algorithms of remote sensing for bloom waters was discussed and developed. Examples of red <span class="hlt">tide</span> detection using the algorithms in the East China Sea were presented. The results showed that the algorithms could provide information about the location and the area coverage of the red <span class="hlt">tide</span> events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4411942Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4411942Z"><span>Propagation of the Semidiurnal Internal <span class="hlt">Tide</span>: Phase Velocity Versus Group Velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zhongxiang</p> <p>2017-12-01</p> <p>The superposition of two waves of slightly different wavelengths has long been used to illustrate the distinction between phase velocity and group velocity. The first-mode M2 and S2 internal <span class="hlt">tides</span> exemplify such a two-wave model in the natural ocean. The M2 and S2 tidal frequencies are 1.932 and 2 cycles per day, respectively, and their superposition forms a spring-neap cycle in the semidiurnal band. The spring-neap cycle acts like a wave, with its frequency, wave number, and phase being the differences of the M2 and S2 internal <span class="hlt">tides</span>. The spring-neap cycle and energy of the semidiurnal internal <span class="hlt">tide</span> propagate at the group velocity. Long-range propagation of M2 and S2 internal <span class="hlt">tides</span> in the North Pacific is observed by satellite altimetry. Along a 3,400 km beam spanning 24°-54°N, the M2 and S2 travel times are 10.9 and 11.2 days, respectively. For comparison, it takes the spring-neap cycle 21.1 days to travel over this distance. Spatial maps of the M2 phase velocity, the S2 phase velocity, and the group velocity are determined from phase gradients of the corresponding satellite observed internal <span class="hlt">tide</span> fields. The observed phase and group velocities agree with theoretical values estimated using the World Ocean Atlas 2013 annual-mean ocean stratification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17803882','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17803882"><span>Exacerbation of asthma by Florida "red <span class="hlt">tide</span>" during an ocean sailing trip.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steensma, David P</p> <p>2007-09-01</p> <p>A 36-year-old man with adult-onset nonallergic triad asthma developed acute bronchospasm and copious sputum production during an offshore sailing excursion on the Gulf Coast of Florida. Symptoms were linked to proximity to blooms of the marine dinoflagellate Karenia brevis (red <span class="hlt">tide</span>) and heavy aerosolized brevetoxin exposure, and symptoms recurred during rechallenge. Patients with respiratory disease who are planning a visit to red <span class="hlt">tide</span>-prone seaside areas should be cautioned to bring their pulmonary medications, and clinicians should be aware that reactive airway symptoms may be triggered by exposure to red <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA514184','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA514184"><span>North Adriatic <span class="hlt">Tides</span>: Observations, Variational Data Assimilation Modeling, and Linear <span class="hlt">Tide</span> Dynamics</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-12-01</p> <p>of the North Adriatic ( Lee et al., 2005). In addition to the ADCP measurements of currents through- out the water column, bottom pressure (by ADCP or...of the year with low levels of stratification (Figure 2, Jeffries and Lee , 2007). Actual generation of internal <span class="hlt">tides</span> in the North Adriatic would...Thompson, K.R., Teague, W. J., Jacobs, G.A., Suk, M.-S., Chang, K.-I., Lee , J.-C. and Choi, B.H. (2004): Data assimilation modeling of the barotropic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28625616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28625616"><span>Modelling explicit <span class="hlt">tides</span> in the Indonesian seas: An important process for surface sea water properties.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit</p> <p>2018-06-01</p> <p>Very intense internal <span class="hlt">tides</span> take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal <span class="hlt">tides</span> spatio-temporal patterns in the Indonesian Seas. The model reproduced internal <span class="hlt">tide</span> dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal <span class="hlt">tides</span> energy, with stronger cooling in austral winter. The cycle of spring <span class="hlt">tides</span> and neap <span class="hlt">tides</span> modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal <span class="hlt">tides</span> might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1482G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1482G"><span>Numerical Modelling of Tertiary <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen</p> <p>2018-06-01</p> <p>Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary <span class="hlt">tides</span>" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary <span class="hlt">tides</span> are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017991','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017991"><span>Modeling the <span class="hlt">tides</span> of Massachusetts and Cape Cod Bays</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jenter, H.L.; Signell, R.P.; Blumberg, A.F.; ,</p> <p>1993-01-01</p> <p>A time-dependent, three-dimensional numerical modeling study of the <span class="hlt">tides</span> of Massachusetts and Cape Code Bays, motivated by construction of a new sewage treatment plant and ocean outfall for the city of Boston, has been undertaken by the authors. The numerical model being used is a hybrid version of the Blumberg and Mellor ECOM3D model, modified to include a semi-implicit time-stepping scheme and transport of a non-reactive dissolved constituent. <span class="hlt">Tides</span> in the bays are dominated by the semi-diurnal frequencies, in particular by the M2 <span class="hlt">tide</span>, due to the resonance of these frequencies in the Gulf of Maine. The numerical model reproduces, well, measured tidal ellipses in unstratified wintertime conditions. Stratified conditions present more of a problem because tidal-frequency internal wave generation and propagation significantly complicates the structure of the resulting tidal field. Nonetheless, the numerical model reproduces qualitative aspects of the stratified tidal flow that are consistent with observations in the bays.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.V21A4726X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.V21A4726X"><span>Modeling mid-ocean ridge hydrothermal <span class="hlt">response</span> to earthquakes, <span class="hlt">tides</span>, and ocean currents: a case study at the Grotto mound, Endeavour Segment, Juan de Fuca Ridge</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, G.; Bemis, K. G.</p> <p>2014-12-01</p> <p>Seafloor hydrothermal systems feature intricate interconnections among oceanic, geological, hydrothermal, and biological processes. The advent of the NEPTUNE observatory operated by Ocean Networks Canada at the Endeavour Segment, Juan de Fuca Ridge enables scientists to study these interconnections through multidisciplinary, continuous, real-time observations. The multidisciplinary observatory instruments deployed at the Grotto Mound, a major study site of the NEPTUNE observatory, makes it a perfect place to study the <span class="hlt">response</span> of a seafloor hydrothermal system to geological and oceanic processes. In this study, we use the multidisciplinary datasets recorded by the NEPTUNE Observatory instruments as observational tools to demonstrate two different aspects of the <span class="hlt">response</span> of hydrothermal activity at the Grotto Mound to geological and oceanic processes. First, we investigate a recent increase in venting temperature and heat flux at Grotto observed by the Benthic and Resistivity Sensors (BARS) and the Cabled Observatory Vent Imaging Sonar (COVIS) respectively. This event started in Mar 2014 and is still evolving by the time of writing this abstract. An initial interpretation in light of the seismic data recorded by a neighboring ocean bottom seismometer on the NEPTUNE observatory suggests the temperature and heat flux increase is probably triggered by local seismic activities. Comparison of the observations with the results of a 1-D mathematical model simulation of hydrothermal sub-seafloor circulation elucidates the potential mechanisms underlying hydrothermal <span class="hlt">response</span> to local earthquakes. Second, we observe significant tidal oscillations in the venting temperature time series recorded by BARS and the acoustic imaging of hydrothermal plumes by COVIS, which is evidence for hydrothermal <span class="hlt">response</span> to ocean <span class="hlt">tides</span> and currents. We interpret the tidal oscillations of venting temperature as a result of tidal loading on a poroelastic medium. We then invoke poroelastic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990088419&hterms=Reddy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DReddy"><span>The Role of Gravity Waves in Generating Equatorial Oscillations in Modulating Atmospheric <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Reddy, C. A.</p> <p>1999-01-01</p> <p>We discuss a Numerical Spectral Mode (NSM) that extends from the ground up into the thermosphere and incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations in the mean zonal circulation, the semi-annual and quasi-biennial oscillations (SAO and QBO), as well as the <span class="hlt">tides</span> and planetary waves in the middle atmosphere. Initial results showed that this model can reproduce the salient features observed, including the QBO extending into the upper mesosphere inferred from UARS measurements. The model has now been extended to simulate also: (a) the zonal circulation of the lower stratosphere and upper troposphere, and (b) the upwelling at equatorial latitudes associated with the Brewer Dobsen circulation that affects the dynamics significantly as pointed out by Dunkerton. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase in the model the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. This development is conducive to extending the QBO and SAO to higher latitudes through global scale momentum redistribution. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. In a 3D version of the model, wave momentum is absorbed and dissipated by <span class="hlt">tides</span> and planetary waves. A somewhat larger GW source (well within the DSP range) is then required to generate realistic QBO and SAO amplitudes. Since GW momentum is deposited in the altitude regime of increasing winds, the amplitude of the diurnal <span class="hlt">tide</span> is amplified and its vertical wavelength is reduced at altitudes between 70 and 120 km. Wave filtering by the mean zonal circulation causes the GW flux to peak during equinox, and this produces a large semi-annual variation in the <span class="hlt">tide</span> that has been observed on UARS. Without the diurnal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19654919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19654919"><span>Exposure and effect assessment of aerosolized red <span class="hlt">tide</span> toxins (brevetoxins) and asthma.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleming, Lora E; Bean, Judy A; Kirkpatrick, Barbara; Cheng, Yung Sung; Pierce, Richard; Naar, Jerome; Nierenberg, Kate; Backer, Lorraine C; Wanner, Adam; Reich, Andrew; Zhou, Yue; Watkins, Sharon; Henry, Mike; Zaias, Julia; Abraham, William M; Benson, Janet; Cassedy, Amy; Hollenbeck, Julie; Kirkpatrick, Gary; Clarke, Tainya; Baden, Daniel G</p> <p>2009-07-01</p> <p>In previous studies we demonstrated statistically significant changes in reported symptoms for lifeguards, general beach goers, and persons with asthma, as well as statistically significant changes in pulmonary function tests (PFTs) in asthmatics, after exposure to brevetoxins in Florida red <span class="hlt">tide</span> (Karenia brevis bloom) aerosols. In this study we explored the use of different methods of intensive ambient and personal air monitoring to characterize these exposures to predict self-reported health effects in our asthmatic study population. We evaluated health effects in 87 subjects with asthma before and after 1 hr of exposure to Florida red <span class="hlt">tide</span> aerosols and assessed for aerosolized brevetoxin exposure using personal and ambient samplers. After only 1 hr of exposure to Florida red <span class="hlt">tide</span> aerosols containing brevetoxin concentrations > 57 ng/m(3), asthmatics had statistically significant increases in self-reported respiratory symptoms and total symptom scores. However, we did not see the expected corresponding changes in PFT results. Significant increases in self-reported symptoms were also observed for those not using asthma medication and those living >/= 1 mile from the coast. These results provide additional evidence of health effects in asthmatics from ambient exposure to aerosols containing very low concentrations of brevetoxins, possibly at the lower threshold for inducing a biologic <span class="hlt">response</span> (i.e., toxicity). Consistent with the literature describing self-reported symptoms as an accurate measure of asthmatic distress, our results suggest that self-reported symptoms are a valuable measure of the extent of health effects from exposure to aerosolized brevetoxins in asthmatic populations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195431','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195431"><span>Consortial brown <span class="hlt">tide</span> − picocyanobacteria blooms in Guantánamo Bay, Cuba</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, Nathan S; Litaker, R. Wayne; Kenworthy, W. Judson; Vandersea, Mark W.; Sunda, William G.; Reid, James P.; Slone, Daniel H.; Butler, Susan M.</p> <p>2018-01-01</p> <p>A brown <span class="hlt">tide</span> bloom of Aureoumbra lagunensis developed in Guantánamo Bay, Cuba during a period of drought in 2013 that followed heavy winds and rainfall from Hurricane Sandy in late October 2012. Based on satellite images and water turbidity measurements, the bloom appeared to initiate in January 2013. The causative species (A. lagunensis) was confirmed by microscopic observation, and pigment and genetic analyses of bloom samples collected on May 28 of that year. During that time, A. lagunensis reached concentrations of 900,000 cells ml−1 (28 ppm by biovolume) in the middle portion of the Bay. Samples could not be collected from the northern (Cuban) half of the Bay because of political considerations. Subsequent sampling of the southern half of the Bay in November 2013, April 2014, and October 2014 showed persistent lower concentrations of A. lagunensis, with dominance shifting to the cyanobacterium Synechococcus (up to 33 ppm in April), an algal group that comprised a minor bloom component on May 28. Thus, unlike the brown <span class="hlt">tide</span> bloom in Laguna Madre, which lasted 8 years, the bloom in Guantánamo Bay was short-lived, much like recent blooms in the Indian River, Florida. Although hypersaline conditions have been linked to brown <span class="hlt">tide</span> development in the lagoons of Texas and Florida, observed euhaline conditions in Guantánamo Bay (salinity 35–36) indicate that strong hypersalinity is not a requirement for A. lagunensis bloom formation. Microzooplankton biomass dominated by ciliates was high during the observed peak of the brown <span class="hlt">tide</span>, and ciliate abundance was high compared to other systems not impacted by brown <span class="hlt">tide</span>. Preferential grazing by zooplankton on non-brown <span class="hlt">tide</span> species, as shown in A. lagunensis blooms in Texas and Florida, may have been a factor in the development of the Cuban brown <span class="hlt">tide</span> bloom. However, subsequent selection of microzooplankton capable of utilizing A. lagunensis as a primary food source may have contributed to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.G51C0680K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.G51C0680K"><span>Arctic Ocean <span class="hlt">Tides</span> from GRACE Satellite Accelerations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.</p> <p>2010-12-01</p> <p>Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these <span class="hlt">tides</span> directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar <span class="hlt">tides</span> in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.G41B1031W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.G41B1031W"><span>Diurnal and Semidiurnal Variations in <span class="hlt">Earth</span> Rotation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weijing, Q.; Xu, X.; Dong, D.; Zhou, Y.</p> <p>2016-12-01</p> <p>In recent decades, <span class="hlt">earth</span> orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including Satellite Laser ranging (SLR), Very Long Baseline Interferometry (VLBI) and the Global Positioning System (GPS). We are able to obtain the <span class="hlt">Earth</span> Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1 with Consistency of 90% , and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. This work add the motivating term libration to the empirical tidal models, which can reduce the difference between the high frequency <span class="hlt">earth</span> rotation model and observations. Then the numerical simulated ocean tidal model is obtained with the newest ERP datas from GPS, and the Scaled Sensitivity Matrix (SSM) approach is used to separate the sidebands in major ocean <span class="hlt">tides</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DSRII.101..231W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DSRII.101..231W"><span>Population dynamics of red <span class="hlt">tide</span> dinoflagellates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wyatt, Timothy; Zingone, Adriana</p> <p>2014-03-01</p> <p>Sea-surface discolorations due to high concentrations of phytoplankton are called red <span class="hlt">tides</span>. Their ecological significance is a long standing puzzle, and they are sometimes considered pathological. Here we propose that many red <span class="hlt">tides</span>, particularly but not exclusively those composed of certain autotrophic dinoflagellates, are presexual/sexual swarms, essential links in their complex life cycles. This view provides a rationale for the appearance of these organisms in thin surface layers, and helps explain their ephemeral nature. We suggest that further understanding of this phenomenon, and of phytoplankton ecology in general, would benefit from attention to the 'net reproductive value‧ (r) over the whole life cycle as well as to the division rate (μ) of the vegetative phase. It is argued that r is strategically adapted to seasonal cycles and long term environmental variability, while μ reflects tactical needs (timing) and constraints (grazers, parasites) on vegetative growth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ECSS..149..120P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ECSS..149..120P"><span>Recruitment of fish larvae and juveniles into two estuarine nursery areas with evidence of ebb <span class="hlt">tide</span> use</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pattrick, Paula; Strydom, Nadine</p> <p>2014-08-01</p> <p>Recruitment of larvae and early juveniles, against the ebb <span class="hlt">tide</span> in the shallower, slower-flowing marginal areas of two permanently open estuaries in the Eastern Cape, South Africa was observed. To determine tidal, diel and seasonal variations of larval and juvenile fish recruitment, fyke nets were used during a 24-hour cycle over two years from December 2010 to October 2012. On either side of each estuary bank, two fyke nets with mouth openings facing opposite directions (i.e. one net facing the incoming or outgoing <span class="hlt">tide</span> and the other facing the opposing direction) were used to sample fishes. The aims of this study were to determine if 1) on the flood <span class="hlt">tide</span>, were the nets facing the incoming <span class="hlt">tide</span> collecting more larvae and early juveniles recruiting into the estuarine nursery area, than the nets facing the opposing direction and 2) on the ebb <span class="hlt">tide</span>, were the nets facing the sea, and hence the opposing direction of the outgoing ebb <span class="hlt">tide</span>, collecting more fishes recruiting into the nursery against the ebb <span class="hlt">tide</span>, than the nets facing the outgoing ebb <span class="hlt">tide</span>? Larval and juvenile fish CPUE, species diversity and richness varied seasonally between estuarine systems and between diel and tidal conditions. Highest catches were recorded on the flood <span class="hlt">tide</span>, which coincided with sunrise in the Swartkops Estuary. Greatest catches of larvae and early juveniles were observed during the ebb <span class="hlt">tide</span> at night in the Sundays Estuary. On the ebb <span class="hlt">tide</span>, higher catches of several dominant species and several commercially important fishery species, occurred in the fyke nets which faced the sea, indicating the early developmental stages of these fish species are not necessarily being lost from the nursery. These larvae and juveniles are actively swimming against the ebb <span class="hlt">tide</span> in the shallower, slower-flowing marginal areas facilitating recruitment against ebb flow.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011CSR....31..282C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011CSR....31..282C"><span>Short-term variations in mesozooplankton, ichthyoplankton, and nutrients associated with semi-diurnal <span class="hlt">tides</span> in a patagonian Gulf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.</p> <p>2011-03-01</p> <p>The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high <span class="hlt">tides</span>, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that <span class="hlt">tides</span> are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood <span class="hlt">tides</span>, whereas younger stages increased during daytime flood <span class="hlt">tides</span>. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal <span class="hlt">tides</span> below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this <span class="hlt">response</span> might be beneficial, transporting these individuals inshore to areas that are rich in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OSJ....51..195H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OSJ....51..195H"><span>Tidal asymmetry in a tidal creek with mixed mainly semidiurnal <span class="hlt">tide</span>, Bushehr Port, Persian Gulf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hosseini, Seyed Taleb; Chegini, Vahid; Sadrinasab, Masoud; Siadatmousavi, Seyed Mostafa; Yari, Sadegh</p> <p>2016-03-01</p> <p>This study investigated the tidal asymmetry imposed by both the interaction of principal <span class="hlt">tides</span> and the higher harmonics generated by distortions within a tidal creek network with mixed mainly semidiurnal <span class="hlt">tide</span> in the Bushehr Port, Persian Gulf. Since velocity and water-level imposed by principal triad <span class="hlt">tides</span> K1-O1-M2 are in quadrature, duration asymmetries during a tidal period in this short, shallow inverse estuary should be manifest as skewed velocities. The principal <span class="hlt">tides</span> produce periodic asymmetries including a strong ebb-dominance and a weak flood-dominance condition during spring and neap <span class="hlt">tides</span> respectively. The higher harmonics induced by nonlinearities engender a flood-dominance condition where the convergence effects are higher than frictional effects, and an ebbdominance condition where intertidal storage are extended. Since the triad K1-O1-M2 driven asymmetry is not overcome by higher harmonics close to the mouth, the periodic asymmetry dominates within the creek in which higher harmonics reinforce the weak flood-dominance (strong ebb-dominance) condition in the convergent channel (divergent area). Also, the maximum flood and the maximum ebb from all harmonic constituents occurred close to high water slack time during both spring and neap <span class="hlt">tides</span> in this short creek. Since occational wetting of intertidal areas happened close to the high water (HW) time during spring <span class="hlt">tide</span>, the water level flooded slowly close to the HW time of the spring <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12867197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12867197"><span>HPLC pigment analysis of marine phytoplankton during a red <span class="hlt">tide</span> occurrence in Tolo Harbour, Hong Kong.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wong, C Kwan; Wong, C Kim</p> <p>2003-09-01</p> <p>A red <span class="hlt">tide</span> was detected in the inner parts of Tolo Harbour, Hong Kong, in November 2000. Water samples were collected from a fixed station at the centre of the red <span class="hlt">tide</span> patch for microscopic analysis of phytoplankton community composition and high performance liquid chromatography (HPLC) analysis of phytoplankton pigments. At the peak of the red <span class="hlt">tide</span> on 24 November 2000, phytoplankton was dominated by the dinoflagellate Scrippsiella trochoidea. The red <span class="hlt">tide</span> began to decline at the end of November and, by 1 December 2000, the phytoplankton was dominated by diatoms. Chlorophylls and carotenoids in water samples were analysed using HPLC pigment separation technique. Dinoflagellates were indicated by the signature pigment peridinin. Significant correlation (r=0.999) was found between the peridinin concentration and dinoflagellate density. A decrease in peridinin and an increase in fucoxanthin, a major carotenoid in diatoms, marked the shift in phytoplankton composition at the end of the red <span class="hlt">tide</span>. HPLC analysis also revealed the occurrence of minor phytoplankton groups that are difficult to identify by light microscopy. Red <span class="hlt">tide</span> monitoring and study of red <span class="hlt">tide</span> dynamics in Hong Kong have been based on cell counting and spectrophotometric or fluorometric measurement of chlorophyll a. HPLC pigment analysis provides an effective alternative for investigating phytoplankton dynamics during red <span class="hlt">tide</span> and other algal blooms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/wri/1984/4293/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/wri/1984/4293/report.pdf"><span>Water-surface elevations for the high <span class="hlt">tide</span> of December 15, 1977, in the Puget Sound region, Washington</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, L.M.</p> <p>1985-01-01</p> <p>An unusually high oceanic <span class="hlt">tide</span> on December 15, 1977, caused flooding of lowlying, nearshore parts of western Washington, including several areas in the Puget Sound region. At Seattle, the December 15 high <span class="hlt">tide</span> of 14.8 feet above MLLW (mean lower low water datum; 8.55 feet above the National Geodetic Vertical Daltum of 1929, or NGVD) was 0.1 foot higher than the 100-year high <span class="hlt">tide</span>. At Neah Bay, near the western end of the Straits of Juan de Fuca, however, the high <span class="hlt">tide</span> of 8.77 feet MLLW (4.55 feet NGVD) on that date was 3.2 feet lower than the 100-year high <span class="hlt">tide</span>. This study has identified the observed December 15 high-<span class="hlt">tide</span> elevations at many locations in the Puget Sound region. The observed high <span class="hlt">tide</span> then was much higher than predicted in most of the Puget Sound region, primarily as the result of a very low barametric pressure. Little damage from wind waves was reported. Elevation profiles for the predicted and observed high <span class="hlt">tides</span> on December 15 and for several other selected <span class="hlt">tide</span> levels indicate an increase in the maximum height in the inland direction, except near Port Angeles, and show abrupt changes in tidal elevations at three constrictions - Admiralty Inlet, Tacoma Narrows, and Deception Pass. (USGS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900061991&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900061991&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth"><span>Nystagmus <span class="hlt">responses</span> in a group of normal humans during <span class="hlt">earth</span>-horizontal axis rotation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wall, Conrad, III; Furman, Joseph M. R.</p> <p>1989-01-01</p> <p>Horizontal eye movement <span class="hlt">responses</span> to <span class="hlt">earth</span>-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe <span class="hlt">earth</span>-horizontal yaw axis <span class="hlt">responses</span> are loosely interrelated, and some of them vary significantly with gender and age.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G21A0860B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G21A0860B"><span>Marina di Ravenna <span class="hlt">Tide</span> Gauge (Italy): rescue of the initial 23 years of data (1873-1896)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruni, S.; Zerbini, S.; Raicich, F.; Errico, M.; Santi, E.</p> <p>2017-12-01</p> <p>The <span class="hlt">tide</span> gauge of Marina di Ravenna, formerly Porto Corsini, Italy, has been first installed in August 1873, but its oldest records, currently available through public archives, only date back to 1896. We found historical documents reporting that the earlier data should have been preserved in the historical archives of the Istituto Geografico Militare (IGM), Florence, Italy. Even if we did not find the original tidal charts in the IGM archives, we were able to retrieve six hand-written volumes reporting the readings of the high and low waters for the period 1873-1922. These volumes and the relevant documents contain important information which allowed clarifying existing doubts on the <span class="hlt">tide</span> gauge reference levels and constants. The 1873-1922 data were digitized, the quality was assessed as well as the reference to a common datum. With the addition of these initial 23 years of data (1873-1896), the time series of the Marina di Ravenna <span class="hlt">tide</span> gauge spans now 144 years. The area of Marina di Ravenna was and is affected by subsidence, due to both natural and anthropogenic causes. The effects of human activities started to be noticeable since the 1920s, when the area was interested by reclamation works; during the 60s and 70s, ground-fluid extraction was <span class="hlt">responsible</span> for subsidence rates up to several cm/year. The newly retrieved records are then particularly valuable for assessing the local sea-level trend in a period when only natural subsidence was affecting the <span class="hlt">tide</span>-gauge observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JGRC..108.3151F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JGRC..108.3151F"><span>Internal <span class="hlt">tides</span> in the Northern Gulf of California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Filonov, Anatoliy E.; LavíN, M. F.</p> <p>2003-05-01</p> <p>The characteristics of the internal <span class="hlt">tide</span> in the Northern Gulf of California are described using data from two moored arrays of temperature and current sensors, one for summer and one for winter, located between Angel de la Guarda Island and the mainland. From the summer six-sensor mooring it was found that: (1) the current fluctuations are dominated by the semidiurnal frequency band, while the quarterdiurnal frequency dominated the temperature fluctuations. (2) The baroclinic semidiurnal horizontal current fluctuations are aligned with the gulf axis, and have amplitudes of 10-15 cm s-1; the vertical displacements reached 4 m in this frequency band. (3) The vertical modal structure for the temperature and velocity oscillations was dominated by the first and third modes. (4) The energy of the semidiurnal internal <span class="hlt">tide</span> is 45% of that of the barotropic <span class="hlt">tide</span>. (5) Vertical wave number spectra showed slightly asymmetric peaks in the high wave number components, indicating that their downflowing energy is larger than that flowing upward. From the winter two-sensor mooring, it was found that the vertical oscillations were mainly semidiurnal, with root mean square amplitudes of 7 m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=salinity&pg=2&id=ED128205','ERIC'); return false;" href="https://eric.ed.gov/?q=salinity&pg=2&id=ED128205"><span>Investigations in Marine Chemistry: <span class="hlt">Tide</span> Pool Ecology.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schlenker, Richard M.</p> <p></p> <p>Students investigated the salinity of <span class="hlt">tide</span> pools at different levels in the intertidal zone. Data are analyzed collectively. Students graphed and discussed data. Included are suggestions for evaluation and further study. (Author)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810963L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810963L"><span>High-resolution barotropic <span class="hlt">tide</span> modelling in the South China Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luu, Quang-Hung; Tkalich, Pavel</p> <p>2016-04-01</p> <p>The South China Sea (SCS) links two of the largest open oceans, the Pacific and the Indian, mainly through the Luzon-Taiwan Straits in the northeast and the Malacca-Karimata Straits in the southwest, respectively. It has a rhino-like shape of 3000-km long, whose belly is contiguous to Vietnam and back leans on the Philippines. The highly irregular topography includes the Gulf of Tonkin in the north, the Gulf Thailand in the southwest, and several small islands in the middle of SCS (i.e., the Spratly and the Paracels) resulting in complicated astronomic <span class="hlt">tides</span> and tidal dynamics in this region. In this study, we present high-resolution simulation of <span class="hlt">tides</span> in the SCS using the Semi-Implicit Eulerian-Lagrangian Finite-Element (SELFE) model. We derive the bathymetry from the Shuttle Radar Topography Mission (SMRT) 15-arc second dataset, one of the finest global topography data sources. Our particular interest is to resolve small bathymetry features and islands in the middle of the SCS which we obtained by digitizing very-high resolution satellite images (30-m accuracy). An unstructured triangular mesh comprising of up to 5 million nodes is generated to resolve these features with very high accuracy, while maintaining fairly coarse resolution in rest of the domain. The model is configured to run in barotropic mode by forcing harmonic oscillations from FES2012 global <span class="hlt">tide</span> predictions along open boundaries, adjusted to account for volume transport at key channels in the SCS. Computed surface elevations and currents agree well with available <span class="hlt">tide</span> predictions and measurements. Sensitivity study is performed to analyze the role of the small bathymetry features on distorting <span class="hlt">tides</span> in the SCS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040095308','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040095308"><span>QBO Generated Inter-annual Variations of the Diurnal <span class="hlt">Tide</span> in the Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.</p> <p>2004-01-01</p> <p>We report results from a study with the Numerical Spectral Model (NSM), which produces in the mesosphere significant inter-annual variations in the diurnal <span class="hlt">tide</span>. Applying Hines Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates near the equator a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m / s at 30 Ism. As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal <span class="hlt">tide</span> at altitudes around 95 km. In the present paper it is shown that the QBO modulates the <span class="hlt">tide</span> such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the <span class="hlt">tide</span> thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanism, the relative importance of the linearized advection terms are discussed that involve the meridional and vertical winds of the diurnal <span class="hlt">tide</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040171679&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040171679&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DQbo"><span>QBO Generated Inter-annual Variations of the Diurnal <span class="hlt">Tide</span> in the Mesosphere</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.</p> <p>2004-01-01</p> <p>We report results from a study with the Numerical Spectral Model (NSM), which produces in the d i d <span class="hlt">tide</span> significant inter-annual variations. Applying Hines' Doppler Spread Parameterization (DPS), small-scale gravity waves (GW) drive the Quasi-biennial Oscillation (QBO) and Semi-annual Oscillation (SAO). With a GW source that peaks at the equator and is taken to be isotropic and independent of season, the NSM generates a QBO with variable periods around 27 months and zonal wind amplitudes close to 20 m/s at 30 lan, As reported earlier, the NSM reproduces the observed equinoctial maxima in the diurnal <span class="hlt">tide</span> at altitudes around 95 km. In the present paper it is shown that the QBO modulates the <span class="hlt">tide</span> such that the seasonal amplitude maxima can vary from one year to another by as much as 30%. Since the period of the QBO is variable, its phase relative to the seasonal cycle changes. The magnitude of the QBO modulation of the <span class="hlt">tide</span> thus varies considerably as our long-term model simulation shows. To shed light on the underlying mechanisms, we discuss (a) the relative importance of the linearized advection terms that involve the meridional and vertical winds of the diurnal <span class="hlt">tide</span> and (b) the effects momentum deposition from GWs filtered by the QBO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6378A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6378A"><span>New insights into ocean <span class="hlt">tide</span> loading corrections on tidal gravity data in Canary Islands</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.</p> <p>2009-04-01</p> <p>The Canary Islands are an interesting area to investigate ocean <span class="hlt">tides</span> loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean <span class="hlt">tide</span> loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity <span class="hlt">tide</span> measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and <span class="hlt">tide</span> gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity <span class="hlt">tide</span> observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity <span class="hlt">tide</span> observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean <span class="hlt">tide</span> loading corrections, based on the five global ocean <span class="hlt">tide</span> models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body <span class="hlt">tide</span> model (Dehant et al., 1999). The lowest values are found for inelastic model in the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890002733','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890002733"><span>Observed tidal braking in the <span class="hlt">earth</span>/moon/sun system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.</p> <p>1987-01-01</p> <p>The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-<span class="hlt">earth</span> satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor <span class="hlt">tides</span>. Wahr's <span class="hlt">earth</span> tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of <span class="hlt">earth</span>'s rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the <span class="hlt">earth</span> due to the observed secular change in the <span class="hlt">earth</span>'s second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the <span class="hlt">earth</span>'s rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880054600&hterms=braking+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbraking%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880054600&hterms=braking+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dbraking%2Bsystem"><span>Observed tidal braking in the <span class="hlt">earth</span>/moon/sun system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.</p> <p>1988-01-01</p> <p>The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-<span class="hlt">earth</span> satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor <span class="hlt">tides</span>. Wahr's <span class="hlt">earth</span> tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century-squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century-squared), with the corresponding tidal braking of <span class="hlt">earth</span>'s rotation being -5.98 + or - 0.22 X 10 to the -22 rad/second-squared. If the nontidal braking of the <span class="hlt">earth</span> due to the observed secular change in the <span class="hlt">earth</span>'s second zonal harmonic is considered, satellite techniques yield a total value of the secular change in the <span class="hlt">earth</span>'s rotation rate of -4.69 + or - 0.36 X 10 to the -22 rad/second-squared.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ascl.soft08005P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ascl.soft08005P"><span>POET: Planetary Orbital Evolution due to <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Penev, Kaloyan</p> <p>2014-08-01</p> <p>POET (Planetary Orbital Evolution due to <span class="hlt">Tides</span>) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of <span class="hlt">tides</span>. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29749219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29749219"><span>[Influences of <span class="hlt">tide</span> on silicon and nitrogen contents in soil and porewater in the Minjiang Ri-ver estuary, Southeast China].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Guan Yun; Zhai, Shui Jing; Le, Xiao Qing; Tong, Chuan</p> <p>2017-01-01</p> <p>Taking Shanyuntan wetland in the Minjiang River estuary as test object, the dissolved silicates (DSi) and inorganic nitrogen contents in porewater and the biogenic silica (BSi) and total nitrogen contents in surface soil of the Phragmites australis wetland, Cyperus malaccensis wetland and Spartina alterniflora wetland were measured in October 2014 (spring <span class="hlt">tide</span> month) and April 2015 (neap <span class="hlt">tide</span> month), respectively, to illuminate the influence of <span class="hlt">tide</span> on silicon and nitrogen contents in soil and porewater of estuarine wetland. Results showed that the DSi content in porewater and the BSi content in surface soil in spring <span class="hlt">tide</span> month were slightly higher than those in neap <span class="hlt">tide</span> month, with the highest being observed on neap <span class="hlt">tide</span> day and the lowest occurring on spring <span class="hlt">tide</span> day. In contrast, the BSi content in surface soil on spring <span class="hlt">tide</span> day showed an opposite trend with that on neap <span class="hlt">tide</span> day. The contents of NH 4 + -N and NO 3 - -N in porewater of different wetland soils in spring <span class="hlt">tide</span> month were higher than those in neap <span class="hlt">tide</span> month, while the content of NH 4 + -N on spring <span class="hlt">tide</span> day was significantly higher than that on neap <span class="hlt">tide</span> day (P<0.05). The study found that hydrological conditions such as flooding duration and drying-wetting alternation caused by <span class="hlt">tide</span> had great influences on silicon and nitrogen contents in porewater and surface soil, and vegetation types also showed great influences on their distributions in intertidal wetland of the Minjiang River estuary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeoRL..32.9603M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeoRL..32.9603M"><span><span class="hlt">Tide</span> gauge observations of the Indian Ocean tsunami, December 26, 2004</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Merrifield, M. A.; Firing, Y. L.; Aarup, T.; Agricole, W.; Brundrit, G.; Chang-Seng, D.; Farre, R.; Kilonsky, B.; Knight, W.; Kong, L.; Magori, C.; Manurung, P.; McCreery, C.; Mitchell, W.; Pillay, S.; Schindele, F.; Shillington, F.; Testut, L.; Wijeratne, E. M. S.; Caldwell, P.; Jardin, J.; Nakahara, S.; Porter, F.-Y.; Turetsky, N.</p> <p>2005-05-01</p> <p>The magnitude 9.0 earthquake centered off the west coast of northern Sumatra (3.307°N, 95.947°E) on December 26, 2004 at 00:59 UTC (United States Geological Survey (USGS) (2005), USGS Earthquake Hazards Program-Latest Earthquakes, Earthquake Hazards Program, http://earthquake.usgs.gov/eqinthenews/2004/usslav/, 2005) generated a series of tsunami waves that devastated coastal areas throughout the Indian Ocean. <span class="hlt">Tide</span> gauges operated on behalf of national and international organizations recorded the wave form at a number of island and continental locations. This report summarizes the <span class="hlt">tide</span> gauge observations of the tsunami in the Indian Ocean (available as of January 2005) and provides a recommendation for the use of the basin-wide <span class="hlt">tide</span> gauge network for future warnings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840008165','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840008165"><span>Satellite-tracking and <span class="hlt">Earth</span> dynamics research programs</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>The Arequipa station obtained a total of 31,989 quick-look range observations on 719 passes in the six months. Data were acquired from Metsahovi, San Fernando, Kootwijk, Wettzell, Grasse, Simosato, Graz, Dodaira and Herstmonceux. Work progressed on the setup of SAO 1. Discussions were also initiated with the Israelis on the relocation of SAO-3 to a site in southern Israel in FY-1984. Arequipa and the cooperating stations continued to track LAGEOS at highest priority for polar motion and <span class="hlt">Earth</span> rotation studies, and for other geophysical investigations, including crustal dynamics, <span class="hlt">earth</span> and ocean <span class="hlt">tides</span>, and the general development of precision orbit determination. SAO completed the revisions to its field software as a part of its recent upgrading program. With cesium standards Omega receivers, and other timekeeping aids, the station was able to maintain a timing accuracy of better than plus or minus 6 to 8 microseconds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17650866','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17650866"><span>[Relationships between pollutants discharge and red <span class="hlt">tide</span> occurrence in Shenzhen eastern coast].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Tian-jiu; Niu, Tao; Ying, Wen-ye</p> <p>2007-05-01</p> <p>The study on the effects of pollutants discharge on red <span class="hlt">tide</span> occurrence in eastern sea area of Shenzhen showed that the occurrence frequency of dinoflagellate red <span class="hlt">tide</span> had significant positive correlations with the net discharge of total nitrogen (TN) and total phosphorous (TP) as well as the N/P ratio of the discharge. The thresholds of net discharged TN and TP were estimated to be 3.917 x 10(3) t and 2.123 x 10(4) t, respectively. No significant correlation was observed between diatom red <span class="hlt">tide</span> and alongshore pollutants discharge. An example was given to illustrate the means of pollutants discharge control.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3014608','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3014608"><span>Review of Florida Red <span class="hlt">Tide</span> and Human Health Effects</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fleming, Lora E.; Kirkpatrick, Barbara; Backer, Lorraine C.; Walsh, Cathy J.; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M.; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G.</p> <p>2010-01-01</p> <p>This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red <span class="hlt">tides</span>. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red <span class="hlt">tide</span> research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue—one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red <span class="hlt">tide</span> organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people. PMID:21218152</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21218152','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21218152"><span>Review of Florida Red <span class="hlt">Tide</span> and Human Health Effects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Walsh, Cathy J; Nierenberg, Kate; Clark, John; Reich, Andrew; Hollenbeck, Julie; Benson, Janet; Cheng, Yung Sung; Naar, Jerome; Pierce, Richard; Bourdelais, Andrea J; Abraham, William M; Kirkpatrick, Gary; Zaias, Julia; Wanner, Adam; Mendes, Eliana; Shalat, Stuart; Hoagland, Porter; Stephan, Wendy; Bean, Judy; Watkins, Sharon; Clarke, Tainya; Byrne, Margaret; Baden, Daniel G</p> <p>2011-01-01</p> <p>This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red <span class="hlt">tides</span>. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red <span class="hlt">tide</span> research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red <span class="hlt">tide</span> organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.bioone.org/perlserv/?request=get-abstract&doi=10.1672%2F0277-5212%282001%29021%5B0451%3ASHUPON%5D2.0.CO%3B2','USGSPUBS'); return false;" href="http://www.bioone.org/perlserv/?request=get-abstract&doi=10.1672%2F0277-5212%282001%29021%5B0451%3ASHUPON%5D2.0.CO%3B2"><span>Seasonal habitat-use patterns of nekton in a <span class="hlt">tide</span>-restricted and unrestricted New England salt marsh</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Raposa, K.B.; Roman, C.T.</p> <p>2001-01-01</p> <p>Many New England salt marshes remain <span class="hlt">tide</span>-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but <span class="hlt">responses</span> by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the <span class="hlt">tide</span>-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the <span class="hlt">tide</span>-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRG..123..787K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRG..123..787K"><span>Direct and Indirect Effects of <span class="hlt">Tides</span> on Ecosystem-Scale CO2 Exchange in a Brackish Tidal Marsh in Northern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knox, S. H.; Windham-Myers, L.; Anderson, F.; Sturtevant, C.; Bergamaschi, B.</p> <p>2018-03-01</p> <p>We investigated the direct and indirect influence of <span class="hlt">tides</span> on net ecosystem exchange (NEE) of carbon dioxide (CO2) in a temperate brackish tidal marsh. NEE displayed a tidally driven pattern with obvious characteristics at the multiday scale, with greater net CO2 uptake during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span>. Based on the relative mutual information between NEE and biophysical variables, this was driven by a combination of higher water table depth (WTD), cooler air temperature, and lower vapor pressure deficit (VPD) during spring <span class="hlt">tides</span> relative to neap <span class="hlt">tides</span>, as the fortnightly tidal cycle not only influenced water levels but also strongly modulated water and air temperature and VPD. <span class="hlt">Tides</span> also influenced NEE at shorter timescales, with a reduction in nighttime fluxes during growing season spring <span class="hlt">tides</span> when the higher of the two semidiurnal <span class="hlt">tides</span> caused inundation at the site. WTD significantly influenced ecosystem respiration (Reco), with lower Reco during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span>. While WTD did not appear to affect ecosystem photosynthesis (gross ecosystem production, GPP) directly, the impact of <span class="hlt">tides</span> on temperature and VPD influenced GPP, with higher daily light-use efficiency and photosynthetic activity during spring <span class="hlt">tides</span> than neap <span class="hlt">tides</span> when temperature and VPD were lower. The strong direct and indirect influence of <span class="hlt">tides</span> on NEE across the diel and multiday timescales has important implications for modeling NEE in tidal wetlands and can help inform the timing and frequency of chamber measurements as annual or seasonal net CO2 uptake may be underestimated if measurements are only taken during nonflooded periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA606524','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA606524"><span>How Stationary Are the Internal <span class="hlt">Tides</span> in a High-Resolution Global Ocean Circulation Model?</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-05-12</p> <p>Egbert et al., 1994] and that the model global internal <span class="hlt">tide</span> amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the <span class="hlt">tides</span> along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic <span class="hlt">tides</span> and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4367342','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4367342"><span>High Frequency Variations of <span class="hlt">Earth</span> Rotation Parameters from GPS and GLONASS Observations</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong</p> <p>2015-01-01</p> <p>The <span class="hlt">Earth</span>'s rotation undergoes changes with the influence of geophysical factors, such as <span class="hlt">Earth</span>'s surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of <span class="hlt">Earth</span> Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of <span class="hlt">Earth</span> Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean <span class="hlt">tides</span>. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean <span class="hlt">tide</span> model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future. PMID:25635416</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoRL..3311601H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoRL..3311601H"><span>Hurricanes, submarine groundwater discharge, and Florida's red <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Chuanmin; Muller-Karger, Frank E.; Swarzenski, Peter W.</p> <p>2006-06-01</p> <p>A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ~1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red <span class="hlt">tides</span> occur in the same area (approximately 26-29°N, 82-83°W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red <span class="hlt">tides</span> off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ~35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red <span class="hlt">tides</span> in other coastal regions of the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028072','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028072"><span>Hurricanes, submarine groundwater discharge, and Florida's red <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hu, C.; Muller-Karger, F. E.; Swarzenski, P.W.</p> <p>2006-01-01</p> <p>A Karenia brevis Harmful Algal Bloom affected coastal waters shallower than 50 m off west-central Florida from January 2005 through January 2006, showing a sustained anomaly of ???1 mg chlorophyll m-3 over an area of up to 67,500 km2. Red <span class="hlt">tides</span> occur in the same area (approximately 26-29??N, 82-83??W) almost every year, but the intense 2005 bloom led to a widespread hypoxic zone (dissolved oxygen <2 mg L-1) that caused mortalities of benthic communities, fish, turtles, birds, and marine mammals. Runoff alone provided insufficient nitrogen to support this bloom. We pose the hypothesis that submarine groundwater discharge (SGD) provides the missing nutrients, and indeed can trigger and support the recurrent red <span class="hlt">tides</span> off west-central Florida. SGD inputs of dissolved inorganic nitrogen (DIN) in Tampa Bay alone are ???35% of that discharged by all central Florida rivers draining west combined. We propose that the unusual number of hurricanes in 2004 resulted in high runoff, and in higher than normal SGD emerging along the west Florida coast throughout 2005, initiating and fueling the persistent HAB. This mechanism may also explain recurrent red <span class="hlt">tides</span> in other coastal regions of the Gulf of Mexico. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23628547','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23628547"><span>Temporal and spatial distribution of red <span class="hlt">tide</span> outbreaks in the Yangtze River Estuary and adjacent waters, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang</p> <p>2013-07-15</p> <p>Between 1972 and 2009, evidence of red <span class="hlt">tide</span> outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red <span class="hlt">tides</span>, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red <span class="hlt">tide</span>-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red <span class="hlt">tides</span> occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red <span class="hlt">tide</span> outbreaks increased significantly. (2) During the months of May and June, the red <span class="hlt">tide</span> occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red <span class="hlt">tide</span> plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18598142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18598142"><span><span class="hlt">Tides</span> and the evolution of planetary habitability.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard</p> <p>2008-06-01</p> <p><span class="hlt">Tides</span> raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and <span class="hlt">tides</span> can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that <span class="hlt">tides</span> can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900043987&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900043987&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide"><span>Observations of the Mf ocean <span class="hlt">tide</span> from Geosat altimetry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cartwright, David E.; Ray, Richard D.</p> <p>1990-01-01</p> <p>Zonal averages of the 13.66-day Mf <span class="hlt">tide</span> are derived from one year of Geosat altimetry records. The orbit errors are reduced by 1/revolution corrections taken over long (several day) arcs. The short-period <span class="hlt">tides</span> are removed using a model previously derived from the same data. The Mf zonal averages indicate definite nonequilibrium character at nearly all latitudes. The imaginary admittances indicate a Q of at least 8; such a value is consistent with a simplified theory of coupled gravitational and vorticity modes and suggests a value for Proudman's 'friction period' about 123 days.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.312....1V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.312....1V"><span>The influence of wave-, wind- and <span class="hlt">tide</span>-forced currents on headland sand bypassing - Study case: Santa Catarina Island north shore, Brazil</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vieira da Silva, Guilherme; Toldo, Elírio E., Jr.; Klein, Antonio H. da F.; Short, Andrew D.</p> <p>2018-07-01</p> <p>Investigations of headland sand bypassing are still an under-reported subject in the literature. This paper aims to understand the contribution of currents forced by different mechanisms such as <span class="hlt">tides</span>, winds (i.e. local wind acting over the ocean surface generating currents, without considering wave generation) and waves (as they approach/break on the coast) to headland sand bypassing. The study was carried out in an area comprising a series of seven headlands with varying wave exposure due to changes in shoreline orientation and increasing tidal influence close to a relatively large bay. This paper uses a calibrated and validated process-based model (Delft3D) to simulate a series of scenarios including spring and neap <span class="hlt">tides</span> during flood and ebb conditions and a range of wind and wave scenarios that encompass both average and extreme conditions. The results indicate that waves are the main driving force for the headland bypassing as they transport sand at rates two orders of magnitude higher than <span class="hlt">tide</span>- or wind-driven sediment transport. The <span class="hlt">tide</span>-driven currents can only transport sediment during spring <span class="hlt">tides</span> in locations where the currents are intensified. It is also demonstrated that the wave direction plays an important role in sediment transport. In exposed areas with larger headlands a combination of wave directions is required to first transport sediment offshore (out of the beach) and secondly to transport sediment alongshore and back to the next beach. Whereas in areas with little variation in wave direction exposure, the same oblique wave direction is <span class="hlt">responsible</span> for the entire headland bypassing process. This is the first time the contribution of <span class="hlt">tide</span>-, winds- and wave-generated sediment transport to headland bypassing have been studied.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940009899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940009899"><span>Use of global positioning system measurements to determine geocentric coordinates and variations in <span class="hlt">Earth</span> orientation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malla, R. P.; Wu, S.-C.; Lichten, S. M.</p> <p>1993-01-01</p> <p>Geocentric tracking station coordinates and short-period <span class="hlt">Earth</span>-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in <span class="hlt">Earth</span> orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in <span class="hlt">Earth</span> orientation presently show centimeter-level precision. Comparison between GPS-estimated <span class="hlt">Earth</span>-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean <span class="hlt">tide</span> models suggests that observed subdaily variations in <span class="hlt">Earth</span> rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for <span class="hlt">Earth</span> orientation and geocenter improves significantly when data collected from low <span class="hlt">Earth</span>-orbiting satellites as well as from ground sites are combined. The low <span class="hlt">Earth</span> GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14A2747A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14A2747A"><span>Accurate Modelling of Surface Currents and Internal <span class="hlt">Tides</span> in a Semi-enclosed Coastal Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.</p> <p>2016-02-01</p> <p>The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). <span class="hlt">Tides</span> in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal <span class="hlt">tides</span> are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic <span class="hlt">tides</span> reinforce, whereas the observations show that at the surface the baroclinic <span class="hlt">tides</span> oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the <span class="hlt">tides</span>, the necessary modifications to the model required to correct the phase, the resulting baroclinic <span class="hlt">tides</span> and the improvements in the surface currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028755','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028755"><span>The origin of neap-spring tidal cycles</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kvale, E.P.</p> <p>2006-01-01</p> <p>The origin of oceanic <span class="hlt">tides</span> is a basic concept taught in most introductory college-level sedimentology/geology, oceanography, and astronomy courses. <span class="hlt">Tides</span> are typically explained in the context of the equilibrium tidal theory model. Yet this model does not take into account real <span class="hlt">tides</span> in many parts of the world. Not only does the equilibrium tidal model fail to explicate amphidromic circulation, it also does not explain diurnal <span class="hlt">tides</span> in low latitude positions. It likewise fails to explain the existence of <span class="hlt">tide</span>-dominated areas where neap-spring cycles are synchronized with the 27.32-day orbital cycle of the Moon (tropical month), rather than with the more familiar 29.52-day cycle of lunar phases (synodic month). Both types of neap-spring cycles can be recognized in the rock record. A complete explanation of the origin of <span class="hlt">tides</span> should include a discussion of dynamic tidal theory. In the dynamic tidal model, <span class="hlt">tides</span> resulting from the motions of the Moon in its orbit around the <span class="hlt">Earth</span> and the <span class="hlt">Earth</span> in its orbit around the Sun are modeled as products of the combined effects of a series of phantom satellites. The movement of each of these satellites, relative to the <span class="hlt">Earth</span>'s equator, creates its own tidal wave that moves around an amphidromic point. Each of these waves is referred to as a tidal constituent. The geometries of the ocean basins determine which of these constituents are amplified. Thus, the <span class="hlt">tide</span>-raising potential for any locality on <span class="hlt">Earth</span> can be conceptualized as the result of a series of tidal constituents specific to that region. A better understanding of tidal cycles opens up remarkable opportunities for research on tidal deposits with implications for, among other things, a more complete understanding of the tidal dynamics <span class="hlt">responsible</span> for sediment transport and deposition, changes in <span class="hlt">Earth</span>-Moon distance through time, and the possible influences tidal cycles may exert on organisms. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259169&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=259169&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Pacific Northwest <span class="hlt">tide</span> channel utilization by fish as an ecosystem service - August 2013</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Background/Question/Methods: Saltwater marsh <span class="hlt">tide</span> channels are considered to be important in the ecology of estuarine fish serving both as a refuge and as a provider of enhanced food resources. However, this presumed function of <span class="hlt">tide</span> channels in Pacific Northwest estuaries has r...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=environmental+AND+news&pg=4&id=EJ1071630','ERIC'); return false;" href="https://eric.ed.gov/?q=environmental+AND+news&pg=4&id=EJ1071630"><span>Risk in Daily Newspaper Coverage of Red <span class="hlt">Tide</span> Blooms in Southwest Florida</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Li, Zongchao; Garrison, Bruce; Ullmann, Steven G.; Kirkpatrick, Barbara; Fleming, Lora E.; Hoagland, Porter</p> <p>2015-01-01</p> <p>This study investigated newspaper coverage of Florida red <span class="hlt">tide</span> blooms in four metropolitan areas of Southwest Florida during a 25-year period, 1987-2012. We focused on how journalists framed red <span class="hlt">tide</span> stories with respect to environmental risk, health risk, and economic risk. We determined risk to be a key factor in this news coverage, being an…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120.6865L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120.6865L"><span>Impacts of <span class="hlt">tides</span> on tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea, Japan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Han Soo; Shimoyama, Tomohisa; Popinet, Stéphane</p> <p>2015-10-01</p> <p>The impacts of <span class="hlt">tides</span> on extreme tsunami propagation due to potential Nankai Trough earthquakes in the Seto Inland Sea (SIS), Japan, are investigated through numerical experiments. Tsunami experiments are conducted based on five scenarios that consider <span class="hlt">tides</span> at four different phases, such as flood, high, ebb, and low <span class="hlt">tides</span>. The probes that were selected arbitrarily in the Bungo and Kii Channels show less significant effects of <span class="hlt">tides</span> on tsunami heights and the arrival times of the first waves than those that experience large tidal ranges in inner basins and bays of the SIS. For instance, the maximum tsunami height and the arrival time at Toyomaesi differ by more than 0.5 m and nearly 1 h, respectively, depending on the tidal phase. The uncertainties defined in terms of calculated maximum tsunami heights due to <span class="hlt">tides</span> illustrate that the calculated maximum tsunami heights in the inner SIS with standing <span class="hlt">tides</span> have much larger uncertainties than those of two channels with propagating <span class="hlt">tides</span>. Particularly in Harima Nada, the uncertainties due to the impacts of <span class="hlt">tides</span> are greater than 50% of the tsunami heights without tidal interaction. The results recommend simulate tsunamis together with <span class="hlt">tides</span> in shallow water environments to reduce the uncertainties involved with tsunami modeling and predictions for tsunami hazards preparedness. This article was corrected on 26 OCT 2015. See the end of the full text for details.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA41A2609L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA41A2609L"><span>The variability of SE2 <span class="hlt">tide</span> extracted from TIMED/SABER observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Wan, W.; Ren, Z.</p> <p>2017-12-01</p> <p>Based on the temperature observations of the TIMED/SABER in mesosphere/lower thermosphere region (70-110 km altitudes) and at the low latitude and midlatitude (45°S-45°N) from 2002 to 2012, the variability of the nonmigrating <span class="hlt">tide</span> SE2 with 1 day resolution is analyzed. It is found that the climatological features (large-scale variability) of the semidiurnal nonmigrating <span class="hlt">tide</span> with zonal wave number 2 (SE2) <span class="hlt">tide</span> are similar with the results from the previous research works. The SE2 <span class="hlt">tide</span> manifests mainly at the low-mid latitudes around ±30°. The northern hemisphere tidal amplitudes below 110 km are larger than the southern hemisphere <span class="hlt">tide</span>. SE2 peaks below 110 km mainly present between 100 and 110 km altitude. The tidal amplitudes below 110 km occur a north-south asymmetry about the equator in the annual variation: in the southern hemisphere, SE2 occurs with an obvious annual variation with a maximum of tidal amplitudes in December, while in the northern one, the semiannual variations with maximum at the equinoxes. Herein, owing to the high-resolution tidal data, we could research the short-term (day-to-day) variations of SE2. We found that the day-to-day variations manifest mainly at between 100 and 110 km altitudes; it increases gradually with latitudes, and it is stronger at the low-mid latitudes; it is relatively slightly stronger around solstices than equinoxes; and it does not present a remarkably interannual variation. The SE2 day-to-day variations may be composed by the absolute amplitudes' variance and the impact of the wave phases, and the latter ones are more important.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890062471&hterms=ERP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DERP','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890062471&hterms=ERP&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DERP"><span>Analysis of <span class="hlt">earth</span> rotation solution from Starlette</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schutz, B. E.; Cheng, M. K.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.</p> <p>1989-01-01</p> <p><span class="hlt">Earth</span> rotation parameter (ERP) solutions were derived from the Starlette orbit analysis during the Main MERIT Campaign, using a technique of a consider-covariance analysis to assess the effects of errors on the polar motion solutions. The polar motion solution was then improved through the simultaneous adjustment of some dynamical parameters representing identified dominant perturbing sources (such as the geopotential and ocean-<span class="hlt">tide</span> coefficients) on the polar motion solutions. Finally, an improved ERP solution was derived using the gravity field model, PTCF1, described by Tapley et al. (1986). The accuracy of the Starlette ERP solution was assessed by a comparison with the LAGEOS-derived ERP solutions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800015416','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800015416"><span>Investigation of tidal displacements of the <span class="hlt">Earth</span>'s surface by laser ranging to GEOS-3</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bower, D. R.; Halpenny, J.; Paul, M. K.; Lambert, A.</p> <p>1980-01-01</p> <p>An analysis of laser ranging data from three stations was carried out in an attempt to measure the geometric <span class="hlt">Earth</span> <span class="hlt">tide</span>. Two different approaches to the problem were investigated. The dynamic method computes pass to pass apparent movements in stations height relative to short arcs fitted to several passes of data from the same station by the program GEODYNE. The quasi-geometric method reduces the dependence on unmodelled satellite dynamics to a knowledge of only the radial position of the satellite by considering two station simultaneous ranging at the precise time that the satellite passes through the plane defined by two stations and the center of mass of the <span class="hlt">Earth</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010091027&hterms=blunt+tool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dblunt%2Btool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010091027&hterms=blunt+tool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dblunt%2Btool"><span>Integrated Thermal <span class="hlt">Response</span> Tool for <span class="hlt">Earth</span> Entry Vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)</p> <p>2001-01-01</p> <p>A system is presented for multi-dimensional, fully-coupled thermal <span class="hlt">response</span> modeling of hypersonic entry vehicles. The system consists of a two-dimensional implicit thermal <span class="hlt">response</span>, pyrolysis and ablation program (TITAN), a commercial finite-element thermal and mechanical analysis code (MARC), and a high fidelity Navier-Stokes equation solver (GIANTS). The simulations performed by this integrated system include hypersonic flow-field, fluid and solid interaction, ablation, shape change, pyrolysis gas generation and flow, and thermal <span class="hlt">response</span> of heatshield and structure. The thermal <span class="hlt">response</span> of the ablating and charring heatshield material is simulated using TITAN, and that of the underlying structural is simulated using MARC. The ablating heatshield is treated as an outer boundary condition of the structure, and continuity conditions of temperature and heat flux are imposed at the interface between TITAN and MARC. Aerothermal environments with fluid and solid interaction are predicted by coupling TITAN and GIANTS through surface energy balance equations. With this integrated system, the aerothermal environments for an entry vehicle and the thermal <span class="hlt">response</span> of both the heatshield and the structure can be obtained simultaneously. Representative computations for a proposed blunt body <span class="hlt">earth</span> entry vehicle are presented and discussed in detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010019249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010019249"><span><span class="hlt">Earth</span> Observing-1 Advanced Land Imager: Radiometric <span class="hlt">Response</span> Calibration</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.</p> <p>2000-01-01</p> <p>The Advanced Land Imager (ALI) is one of three instruments to be flown on the first <span class="hlt">Earth</span> Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric <span class="hlt">response</span> of the Advanced Land Imager. Results from system level measurements of the instrument <span class="hlt">response</span>, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013CSR....63S.126W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013CSR....63S.126W"><span>Modeling <span class="hlt">tides</span> and their influence on the circulation in Prince William Sound, Alaska</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiaochun; Chao, Yi; Zhang, Hongchun; Farrara, John; Li, Zhijin; Jin, Xin; Park, Kyungeen; Colas, Francois; McWilliams, James C.; Paternostro, Chris; Shum, C. K.; Yi, Yuchan; Schoch, Carl; Olsson, Peter</p> <p>2013-07-01</p> <p>In the process of developing a real-time data-assimilating coastal ocean forecasting system for Prince William Sound, Alaska, tidal signal was added to a three-domain nested model for the region. The model, which is configured from the Regional Ocean Modeling System (ROMS), has 40 levels in the vertical direction and horizontal resolutions of 10.6km, 3.6km and 1.2km for its three nested domains, respectively. In the present research, the ROMS tidal solution was validated using data from coastal <span class="hlt">tide</span> gauges, satellite altimeters, high-frequency coastal radars, and Acoustic Doppler Current Profiler (ADCP) current surveys. The error of barotropic <span class="hlt">tides</span>, as measured by the total root mean square discrepancy of eight major tidal constituents is 5.3cm, or 5.6% of the tidal sea surface height variability in the open ocean. Along the coastal region, the total discrepancy is 9.6cm, or 8.2% of the tidal sea surface height variability. Model tidal currents agree reasonably well with the observations. The influence of <span class="hlt">tides</span> on the circulation was also investigated using numerical experiments. Besides <span class="hlt">tides</span>, other types of forcing fields (heat flux, wind stress, evaporation minus precipitation, and freshwater discharge) were also included in the model. Our results indicate that <span class="hlt">tides</span> play a significant role in shaping the mean circulation of the region. For the summer months, the tidal residual circulation tends to generate a cyclonic gyre in the central Sound. The net transport into the Sound through Hinchinbrook Entrance is reduced. <span class="hlt">Tides</span> also increase the mixed layer depth in the Sound, especially during the winter months.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO24E3018C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO24E3018C"><span>Near-surface energy transfers from internal <span class="hlt">tide</span> beams to smaller vertical scale motions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.</p> <p>2016-02-01</p> <p>Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic <span class="hlt">tides</span> pass over underwater topography and generate internal <span class="hlt">tides</span>. The resulting internal <span class="hlt">tide</span> energy is confined in vertically limited structures, or beams. As internal <span class="hlt">tide</span> beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal <span class="hlt">tide</span> energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal <span class="hlt">tide</span> energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CorRe..36..401C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CorRe..36..401C"><span>Effect of short-term subaerial exposure on the cauliflower coral, Pocillopora damicornis, during a simulated extreme low-<span class="hlt">tide</span> event</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castrillón-Cifuentes, Ana Lucia; Lozano-Cortés, Diego F.; Zapata, Fernando A.</p> <p>2017-06-01</p> <p>There is increased interest in understanding how stress reduces coral resistance to disturbances and how acclimatization increases the ability of corals to resist future stress. Most extreme low <span class="hlt">tides</span> at Gorgona Island, which expose reef flats to air, do not appear to negatively affect corals because corals usually do not undergo lethal bleaching during such events. However, coral physiology and fitness may be impacted by this phenomenon. The aim of this study was to evaluate whether corals exposed to air have modified biological functions to resist bleaching. To test this, an extreme low-<span class="hlt">tide</span> event was simulated in the field. Colonies of Pocillopora damicornis were exposed to air for 15 or 40 min over the course of one, two, or three consecutive days. This procedure was repeated for one to three months. Colonies of P. damicornis exposed to air had reduced fecundity, decreased zooxanthellae density, and changed color from darker to lighter. However, the growth rate of exposed corals was similar to that of non-exposed colonies. We conclude that short periods of subaerial exposure during extreme low <span class="hlt">tides</span> are not lethal to P. damicornis, but negatively affect sexual reproduction, which might have deleterious effects at the population level. The periodic occurrence of extreme low <span class="hlt">tides</span> in the tropical eastern Pacific may be one factor <span class="hlt">responsible</span> for the high rate of asexual reproduction (e.g., fragmentation) in pocilloporid corals of this region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Physical+AND+science+AND+textbook&pg=4&id=EJ1083305','ERIC'); return false;" href="https://eric.ed.gov/?q=Physical+AND+science+AND+textbook&pg=4&id=EJ1083305"><span>Using <span class="hlt">Tide</span> Data in Introductory Classes</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>De Jong, Marvin L.</p> <p>2006-01-01</p> <p>Oceantides are not typically high in our consciousness here in Missouri, but in teaching astronomy and physical science the subject always comes up, and teachers of physical science and astronomy are all quite familiar with the textbook explanations. Our goal here is not to explain <span class="hlt">tides</span> but to make some suggestions about how, on their own,…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28670939','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28670939"><span>Zaccaria Lilio and the shape of the <span class="hlt">earth</span>: A brief <span class="hlt">response</span> to Allegro's "Flat <span class="hlt">earth</span> science".</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nothaft, C Philipp E</p> <p>2017-12-01</p> <p>This is a <span class="hlt">response</span> to James J. Allegro's article "The Bottom of the Universe: Flat <span class="hlt">Earth</span> Science in the Age of Encounter," published in Volume 55, Number 1, of this journal. Against the solid consensus of modern scholars, Allegro contends that the decades around 1500 saw a resurgence of popular and learned doubts about the existence of a southern hemisphere and the concept of a spherical <span class="hlt">earth</span> more generally. It can be shown that a substantial part of Allegro's argument rests on an erroneous reading of his main textual witness, Zaccaria Lilio's Contra Antipodes (1496), and on a failure adequately to place this source in the context of the cosmographical debate of the late fifteenth and early sixteenth centuries. Once this context is taken into account, the notion that Lilio was a flat-earther falls flat.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17361736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17361736"><span>[Research on airborne hyperspectral identification of red <span class="hlt">tide</span> organism dominant species based on SVM].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Yi; Zhang, Jie; Cui, Ting-wei</p> <p>2006-12-01</p> <p>Airborne hyperspectral identification of red <span class="hlt">tide</span> organism dominant species can provide technique for distinguishing red <span class="hlt">tide</span> and its toxin, and provide support for scaling the disaster. Based on support vector machine(SVM), the present paper provides an identification model of red <span class="hlt">tide</span> dominant species. Utilizing this model, the authors accomplished three identification experiments with the hyperspectral data obtained on 16th July, and 19th and 25th August, 2001. It is shown from the identification results that the model has a high precision and is not restricted by high dimension of the hyperspectral data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25972565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25972565"><span>Environmental Chemistry and Chemical Ecology of "Green <span class="hlt">Tide</span>" Seaweed Blooms.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Alstyne, Kathryn L; Nelson, Timothy A; Ridgway, Richard L</p> <p>2015-09-01</p> <p>Green <span class="hlt">tides</span> are large growths or accumulations of green seaweeds that have been increasing in magnitude and frequency around the world. Because green <span class="hlt">tides</span> consist of vast biomasses of algae in a limited area and are often seasonal or episodic, they go through periods of rapid growth in which they take up large amounts of nutrients and dissolved gases and generate bioactive natural products that may be stored in the plants, released into the environment, or broken down during decomposition. As a result of the use and production of inorganic and organic compounds, the algae in these blooms can have detrimental impacts on other organisms. Here, we review some of the effects that green <span class="hlt">tides</span> have on the chemistry of seawater and the effects of the natural products that they produce. As blooms are developing and expanding, algae in green <span class="hlt">tides</span> take up inorganic nutrients, such as nitrate and ortho-phosphate, which can limit their availability to other photosynthetic organisms. Their uptake of dissolved inorganic carbon for use in photosynthesis can cause localized spikes in the pH of seawater during the day with concomitant drops in the pH at night when the algae are respiring. Many of the algae that form green-<span class="hlt">tide</span> blooms produce allelopathic compounds, which are metabolites that affect other species. The best documented allelopathic compounds include dimethylsulfoniopropionate (DMSP), dopamine, and reactive oxygen species (ROS) and their breakdown products. DMSP and dopamine are involved in defenses against herbivores. Dopamine and ROS are released into seawater where they can be allelopathic or toxic to other organisms. Thus, these macroalgal blooms can have harmful effects on nearby organisms by altering concentrations of nutrients and dissolved gas in seawater and by producing and releasing allelopathic or toxic compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CSR...137...56I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CSR...137...56I"><span>Sea-level rise impacts on the <span class="hlt">tides</span> of the European Shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Idier, Déborah; Paris, François; Cozannet, Gonéri Le; Boulahya, Faiza; Dumas, Franck</p> <p>2017-04-01</p> <p>Sea-level rise (SLR) can modify not only total water levels, but also tidal dynamics. Several studies have investigated the effects of SLR on the <span class="hlt">tides</span> of the western European continental shelf (mainly the M2 component). We further investigate this issue using a modelling-based approach, considering uniform SLR scenarios from -0.25 m to +10 m above present-day sea level. Assuming that coastal defenses are constructed along present-day shorelines, the patterns of change in high <span class="hlt">tide</span> levels (annual maximum water level) are spatially similar, regardless of the magnitude of sea-level rise (i.e., the sign of the change remains the same, regardless of the SLR scenario) over most of the area (70%). Notable increases in high <span class="hlt">tide</span> levels occur especially in the northern Irish Sea, the southern part of the North Sea and the German Bight, and decreases occur mainly in the western English Channel. These changes are generally proportional to SLR, as long as SLR remains smaller than 2 m. Depending on the location, they can account for +/-15% of regional SLR. High <span class="hlt">tide</span> levels and the M2 component exhibit slightly different patterns. Analysis of the 12 largest tidal components highlights the need to take into account at least the M2, S2, N2, M4, MS4 and MN4 components when investigating the effects of SLR on <span class="hlt">tides</span>. Changes in high <span class="hlt">tide</span> levels are much less proportional to SLR when flooding is allowed, in particular in the German Bight. However, some areas (e.g., the English Channel) are not very sensitive to this option, meaning that the effects of SLR would be predictable in these areas, even if future coastal defense strategies are ignored. Physically, SLR-induced tidal changes result from the competition between reductions in bed friction damping, changes in resonance properties and increased reflection at the coast, i.e., local and non-local processes. A preliminary estimate of tidal changes by 2100 under a plausible non-uniform SLR scenario (using the RCP4.5 scenario) is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JGeo...51..358A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JGeo...51..358A"><span>Verifying the body <span class="hlt">tide</span> at the Canary Islands using tidal gravimetry observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.; Vieira, R.</p> <p>2011-05-01</p> <p>Gravity <span class="hlt">tide</span> records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body <span class="hlt">tide</span> model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean <span class="hlt">tide</span> loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O 1, K 1, M 2, S 2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body <span class="hlt">tide</span> models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..280..278B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..280..278B"><span>Crustal control of dissipative ocean <span class="hlt">tides</span> in Enceladus and other icy moons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beuthe, Mikael</p> <p>2016-12-01</p> <p>Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical <span class="hlt">tides</span> give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative <span class="hlt">tides</span> in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity <span class="hlt">tide</span> does not move the crust. Therefore, crustal dissipation due to dynamical obliquity <span class="hlt">tides</span> can differ from the static prediction by up to a factor of two.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990089548','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990089548"><span>A Global Ocean <span class="hlt">Tide</span> Model From TOPEX/POSEIDON Altimetry: GOT99.2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>1999-01-01</p> <p>Goddard Ocean <span class="hlt">Tide</span> model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic <span class="hlt">tides</span>, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean <span class="hlt">tide</span>-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period <span class="hlt">tides</span>; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1284Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1284Y"><span>Gravity <span class="hlt">Tides</span> Extracted from Relative Gravimeter Data by Combining Empirical Mode Decomposition and Independent Component Analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Hongjuan; Guo, Jinyun; Kong, Qiaoli; Chen, Xiaodong</p> <p>2018-04-01</p> <p>The static observation data from a relative gravimeter contain noise and signals such as gravity <span class="hlt">tides</span>. This paper focuses on the extraction of the gravity <span class="hlt">tides</span> from the static relative gravimeter data for the first time applying the combined method of empirical mode decomposition (EMD) and independent component analysis (ICA), called the EMD-ICA method. The experimental results from the CG-5 gravimeter (SCINTREX Limited Ontario Canada) data show that the gravity <span class="hlt">tides</span> time series derived by EMD-ICA are consistent with the theoretical reference (Longman formula) and the RMS of their differences only reaches 4.4 μGal. The time series of the gravity <span class="hlt">tides</span> derived by EMD-ICA have a strong correlation with the theoretical time series and the correlation coefficient is greater than 0.997. The accuracy of the gravity <span class="hlt">tides</span> estimated by EMD-ICA is comparable to the theoretical model and is slightly higher than that of independent component analysis (ICA). EMD-ICA could overcome the limitation of ICA having to process multiple observations and slightly improve the extraction accuracy and reliability of gravity <span class="hlt">tides</span> from relative gravimeter data compared to that estimated with ICA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.G33A0030K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.G33A0030K"><span>Effect of Ocean <span class="hlt">Tide</span> Models on the Precise Orbit Determination of Geodetic Satellites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kubo-Oka, T.; Matsumoto, K.; Otsubo, T.; Gotoh, T.</p> <p>2005-12-01</p> <p>Several ocean <span class="hlt">tide</span> models are tested with precise observation data of satellite laser ranging to geodetic satellites, Starlette and Stella. Four ocean models, NAO.99b, CSR 3.0 (standard model in IERS Conventions 2003), CSR 4.0, and GOT99.2b were implemented in our orbit analysis software "concerto ver. 4". NAO.99b model was developed by assimilating tidal solutions from TOPEX/POSEIDON altimeter data into hydrodynamical model. Eight constituents (M2, S2, K1, O1, N2, P1, K2, Q1) were taken into account in each ocean <span class="hlt">tide</span> model. Moreover, eight additional constituents (M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) can be included in NAO.99b model. Effect of ocean <span class="hlt">tides</span> on geopotential coefficients were computed to 20th order. SLR data to Starlette and Stella were divided into arcs of 7 days length and 52 arcs (Jan. 2 - Dec. 30, 2004) were analyzed. Using different ocean <span class="hlt">tide</span> model, orbits of these satellites were determined and weighted rms of postfit residuals are compared. We found that the NAO.99b model with 16 constituents can reduce weighted rms of postfit residuals using to the level of about 6.0 cm (Starlette) and 9.6 cm (Stella). These values are about 3-5 % smaller compared to other ocean <span class="hlt">tide</span> models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67..973Z"><span>Evolution of wave and <span class="hlt">tide</span> over vegetation region in nearshore waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Mingliang; Zhang, Hongxing; Zhao, Kaibin; Tang, Jun; Qin, Huifa</p> <p>2017-08-01</p> <p>Coastal wetlands are an important ecosystem in nearshore regions, where complex flow characteristics occur because of the interactions among <span class="hlt">tides</span>, waves, and plants, especially in the discontinuous flow of the intertidal zone. In order to simulate the wave and wave-induced current in coastal waters, in this study, an explicit depth-averaged hydrodynamic (HD) model has been dynamically coupled with a wave spectral model (CMS-Wave) by sharing the <span class="hlt">tide</span> and wave data. The hydrodynamic model is based on the finite volume method; the intercell flux is computed using the Harten-Lax-van Leer (HLL) approximate Riemann solver for computing the dry-to-wet interface; the drag force of vegetation is modeled as the sink terms in the momentum equations. An empirical wave energy dissipation term with plant effect has been derived from the wave action balance equation to account for the resistance induced by aquatic vegetation in the CMS-Wave model. The results of the coupling model have been verified using the measured data for the case with wave-<span class="hlt">tide</span>-vegetation interactions. The results show that the wave height decreases significantly along the wave propagation direction in the presence of vegetation. In the rip channel system, the oblique waves drive a meandering longshore current; it moves from left to right past the cusps with oscillations. In the vegetated region, the wave height is greatly attenuated due to the presence of vegetation, and the radiation stresses are noticeably changed as compared to the region without vegetation. Further, vegetation can affect the spatial distribution of mean velocity in a rip channel system. In the co-exiting environment of <span class="hlt">tides</span>, waves, and vegetation, the locations of wave breaking and wave-induced radiation stress also vary with the water level of flooding or ebb <span class="hlt">tide</span> in wetland water, which can also affect the development and evolution of wave-induced current.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4109K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4109K"><span>Nordic Sea Level - Analysis of PSMSL RLR <span class="hlt">Tide</span> Gauge data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knudsen, Per; Andersen, Ole</p> <p>2015-04-01</p> <p><span class="hlt">Tide</span> gauge data from the Nordic region covering a period of time from 1920 to 2000 are evaluated. 63 stations having RLR data for at least 40 years have been used. Each <span class="hlt">tide</span> gauge data record was averaged to annual averages after the monthly average seasonal anomalies were removed. Some stations lack data, especially before around 1950. Hence, to compute representative sea level trends for the 1920-2000 period a procedure for filling in estimated sea level values in the voids, is needed. To fill in voids in the <span class="hlt">tide</span> gauge data records a reconstruction method was applied that utilizes EOF.s in an iterative manner. Subsequently the trends were computed. The estimated trends range from about -8 mm/year to 2 mm/year reflecting both post-glacial uplift and sea level rise. An evaluation of the first EOFs show that the first EOF clearly describes the trends in the time series. EOF #2 and #3 describe differences in the inter-annual sea level variability with-in the Baltic Sea and differences between the Baltic and the North Atlantic / Norwegian seas, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29218058','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29218058"><span>Assessment of the effect of three-dimensional mantle density heterogeneity on <span class="hlt">earth</span> rotation in tidal frequencies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia</p> <p>2016-11-01</p> <p>In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on <span class="hlt">Earth</span> Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference <span class="hlt">Earth</span> Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the <span class="hlt">earth</span>'s surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean <span class="hlt">tides</span> as predicted by <span class="hlt">tide</span> models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free <span class="hlt">earth</span> rotation may provide useful constraints to construct the Reference <span class="hlt">Earth</span> Model (REM), which is the next major objective in global geophysics research beyond PREM.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710909B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710909B"><span>Bottom friction optimization for a better barotropic <span class="hlt">tide</span> modelling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy</p> <p>2015-04-01</p> <p>At a regional scale, barotropic <span class="hlt">tides</span> are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for <span class="hlt">tide</span> modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global <span class="hlt">tide</span> models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available <span class="hlt">tide</span> gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19234604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19234604"><span>Mass stranding of marine birds caused by a surfactant-producing red <span class="hlt">tide</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jessup, David A; Miller, Melissa A; Ryan, John P; Nevins, Hannah M; Kerkering, Heather A; Mekebri, Abdou; Crane, David B; Johnson, Tyler A; Kudela, Raphael M</p> <p>2009-01-01</p> <p>In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red <span class="hlt">tide</span> caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red <span class="hlt">tide</span>, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red <span class="hlt">tides</span> have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2641015','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2641015"><span>Mass Stranding of Marine Birds Caused by a Surfactant-Producing Red <span class="hlt">Tide</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jessup, David A.; Miller, Melissa A.; Ryan, John P.; Nevins, Hannah M.; Kerkering, Heather A.; Mekebri, Abdou; Crane, David B.; Johnson, Tyler A.; Kudela, Raphael M.</p> <p>2009-01-01</p> <p>In November-December 2007 a widespread seabird mortality event occurred in Monterey Bay, California, USA, coincident with a massive red <span class="hlt">tide</span> caused by the dinoflagellate Akashiwo sanguinea. Affected birds had a slimy yellow-green material on their feathers, which were saturated with water, and they were severely hypothermic. We determined that foam containing surfactant-like proteins, derived from organic matter of the red <span class="hlt">tide</span>, coated their feathers and neutralized natural water repellency and insulation. No evidence of exposure to petroleum or other oils or biotoxins were found. This is the first documented case of its kind, but previous similar events may have gone undetected. The frequency and amplitude of red <span class="hlt">tides</span> have increased in Monterey Bay since 2004, suggesting that impacts on wintering marine birds may continue or increase. PMID:19234604</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12210369D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12210369D"><span>Influence of Solar and Lunar <span class="hlt">Tides</span> on the Mesopause Region as Observed in Polar Mesosphere Summer Echoes Characteristics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalin, P.; Kirkwood, S.; Pertsev, N.; Perminov, V.</p> <p>2017-10-01</p> <p>Long-term observations of polar mesosphere summer echoes (PMSE) from 2002 to 2012 are investigated with the aim to statistically study the effects of solar thermal migrating and lunar gravitational <span class="hlt">tides</span> on aerosol layers and their environment at altitudes 80-90 km. The solar and lunar tidal periodicities are clearly present in PMSE data. For the first time, both amplitudes and phases of solar and lunar <span class="hlt">tides</span> are estimated using PMSE data from the ESRAD radar located at Esrange (Sweden). The diurnal, semidiurnal, and terdiurnal solar migrating <span class="hlt">tides</span> show pronounced periodicities in the PMSE strength and wind velocity components. Lunar <span class="hlt">tides</span> demonstrate clear oscillations in the PMSE strength and wind velocities as well. "canonical" lunar gravitational <span class="hlt">tides</span>, corresponding to the lunar gravitational potential, produce rather large amplitudes and are comparable to the solar thermal <span class="hlt">tides</span>, whereas "noncanonical" lunar oscillations have minor effects on PMSE layers, but are still statistically significant. The influence of diurnal/semidiurnal <span class="hlt">tides</span> and monthly/semimonthly tidal components is studied separately. Our estimations of solar thermal and lunar tidal amplitudes are in good agreement with those of previous model and experimental studies. A new mechanism of quadratic demodulation of the solar semidiurnal and lunar semidiurnal <span class="hlt">tides</span> is shown to be valid at the summer mesopause and can explain periodical PMSE oscillations due to the lunar synodic semimonthly <span class="hlt">tide</span> with period of 14.77 days. Two harmonics with periods of 27.0 and 13.5 days supposedly representing the solar rotation cycle are also clearly present in PMSE data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3852247','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3852247"><span>Enhanced Production of Green <span class="hlt">Tide</span> Algal Biomass through Additional Carbon Supply</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>de Paula Silva, Pedro H.; Paul, Nicholas A.; de Nys, Rocky; Mata, Leonardo</p> <p>2013-01-01</p> <p>Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 −) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 − affinity of three green <span class="hlt">tide</span> algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in <span class="hlt">response</span> to CO2 enrichment. All three species had similar high pH compensation points (9.7–9.9), and grew at similar rates up to pH 9, demonstrating HCO3 − utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green <span class="hlt">tide</span> algal species under intensive culture, despite their clear ability to utilise HCO3 −. PMID:24324672</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24324672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24324672"><span>Enhanced production of green <span class="hlt">tide</span> algal biomass through additional carbon supply.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Paula Silva, Pedro H; Paul, Nicholas A; de Nys, Rocky; Mata, Leonardo</p> <p>2013-01-01</p> <p>Intensive algal cultivation usually requires a high flux of dissolved inorganic carbon (Ci) to support productivity, particularly for high density algal cultures. Carbon dioxide (CO2) enrichment can be used to overcome Ci limitation and enhance productivity of algae in intensive culture, however, it is unclear whether algal species with the ability to utilise bicarbonate (HCO3 (-)) as a carbon source for photosynthesis will benefit from CO2 enrichment. This study quantified the HCO3 (-) affinity of three green <span class="hlt">tide</span> algal species, Cladophora coelothrix, Cladophora patentiramea and Chaetomorpha linum, targeted for biomass and bioenergy production. Subsequently, we quantified productivity and carbon, nitrogen and ash content in <span class="hlt">response</span> to CO2 enrichment. All three species had similar high pH compensation points (9.7-9.9), and grew at similar rates up to pH 9, demonstrating HCO3 (-) utilization. Algal cultures enriched with CO2 as a carbon source had 30% more total Ci available, supplying twenty five times more CO2 than the control. This higher Ci significantly enhanced the productivity of Cladophora coelothrix (26%), Chaetomorpha linum (24%) and to a lesser extent for Cladophora patentiramea (11%), compared to controls. We demonstrated that supplying carbon as CO2 can enhance the productivity of targeted green <span class="hlt">tide</span> algal species under intensive culture, despite their clear ability to utilise HCO3 (-).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18513758','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18513758"><span>Analysis of change of red <span class="hlt">tide</span> species in Yodo River estuary by the numerical ecosystem model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hayashi, Mitsuru; Yanagi, Tetsuo</p> <p>2008-01-01</p> <p>Occurrence number of red <span class="hlt">tides</span> in Osaka Bay in Japan is more than 20 cases every year. Diatom red <span class="hlt">tide</span> was dominant in Osaka Bay, but the non-diatom red <span class="hlt">tide</span> was dominant in early 1990s. Therefore, the material cycling in Yodo River estuary in Osaka Bay during August from 1991 to 2000 was analyzed by using the numerical ecosystem model and field observation data to clarify the reasons of change in red <span class="hlt">tide</span> species. Year-to-year variation in calculated concentration ratio of diatom to non-diatom corresponds to the variation in observed ratio of red <span class="hlt">tide</span> days of diatom to non-diatom. Limiting nutrient of primary production is phosphate over the period. Diatom dominated from 1991 to 1993, but it was difficult for non-diatom to grow due to the limitation by physical condition. Non-diatom was able to grow because of good physical and nutrient conditions from 1994 to 1996. And diatom dominated again under the good physical condition, and phosphorus supply was not enough for non-diatom to grow from 1998 to 2000. Phosphate concentration in the lower layer of Yodo River estuary was important to the variation in red <span class="hlt">tide</span> species in the upper layer of Yodo River estuary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-a-sky-view-of-earth-from-suomi-npp_16611703184_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-a-sky-view-of-earth-from-suomi-npp_16611703184_o.html"><span>A Sky View of <span class="hlt">Earth</span> From Suomi NPP</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-22</p> <p>This composite image of southern Africa and the surrounding oceans was captured by six orbits of the NASA/NOAA Suomi National Polar-orbiting Partnership spacecraft on April 9, 2015, by the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. Tropical Cyclone Joalane can be seen over the Indian Ocean. Winds, <span class="hlt">tides</span> and density differences constantly stir the oceans while phytoplankton continually grow and die. Orbiting radiometers such as VIIRS allows scientists to track this variability over time and contribute to better understanding of ocean processes that are beneficial to human survival on <span class="hlt">Earth</span>. The image was created by the Ocean Biology Processing Group at NASA's Goddard Space Flight Center in Greenbelt, Maryland.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890026397&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Deffect%2Bglobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890026397&hterms=effect+global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Deffect%2Bglobal%2Bwarming"><span>Atmospheric effects on <span class="hlt">earth</span> rotation and polar motion</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salstein, David A.</p> <p>1988-01-01</p> <p>The variability in the <span class="hlt">earth</span>'s rotation rate not due to known solid body <span class="hlt">tides</span> is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and <span class="hlt">earth</span>; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical <span class="hlt">earth</span> rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026995','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026995"><span>Floodtide pulses after low <span class="hlt">tides</span> in shallow subembayments adjacent to deep channels</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Warner, J.C.; Schoellhamer, D.H.; Ruhl, C.A.; Burau, J.R.</p> <p>2004-01-01</p> <p>In shallow waters surface gravity waves (<span class="hlt">tides</span>) propagate with a speed proportional to the square root of water depth (c=g(h+η)). As the ratio of free surface displacement to mean depth (η/h) approaches unity the wave will travel noticeably faster at high <span class="hlt">tide</span> than at low <span class="hlt">tide</span>, creating asymmetries in the tidal form. This physical process is explained analytically by the increased significance of friction and the nonlinear terms in the continuity and momentum equations. In a tidal system comprising a shallow bay adjacent to a deeper channel, tidal asymmetries will be more prevalent in the shallow bay. Thus strong barotropic gradients can be generated between the two, producing rapid accelerations of currents into the bay (relative to other bay tidal processes) and create a maximum peak in the flood <span class="hlt">tide</span> that we describe as a floodtide pulse. These floodtide pulses can promote a landward flux of suspended-sediment into the bay. In Grizzly Bay (part of northern San Francisco Bay, USA), field observations verify the occurrence of floodtide pulses during the lowest low <span class="hlt">tides</span> of the year. No pulses were observed in neighboring Honker Bay, which has an average depth ~30 cm greater than Grizzly Bay. Numerical simulations of northern San Francisco Bay using realistic bathymetry demonstrated that floodtide pulses occurred in Grizzly Bay but not in Honker Bay, consistent with the observations. Both observations and numerical simulations show that floodtide pulses promote a landward flux of sediment into Grizzly Bay. Numerical simulations of an idealized bay-channel system quantify the importance of mean depth and friction in creating these floodtide pulses. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22140273-introducing-cafein-new-computational-tool-stellar-pulsations-dynamic-tides','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22140273-introducing-cafein-new-computational-tool-stellar-pulsations-dynamic-tides"><span>INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC <span class="hlt">TIDES</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Valsecchi, F.; Farr, W. M.; Willems, B.</p> <p>2013-08-10</p> <p>Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic <span class="hlt">tides</span> in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic <span class="hlt">tides</span> in close binaries.more » We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the {beta} Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic <span class="hlt">tides</span> regime by investigating the effects of dynamic <span class="hlt">tides</span> on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of <span class="hlt">tides</span> on their orbital evolution.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7656E..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7656E..08L"><span>Study of ocean red <span class="hlt">tide</span> multi-parameter monitoring technology based on double-wavelength airborne lidar system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Hong; Wang, Xinming; Liang, Kun</p> <p>2010-10-01</p> <p>For monitoring and forecasting of the ocean red <span class="hlt">tide</span> in real time, a marine environment monitoring technology based on the double-wavelength airborne lidar system is proposed. An airborne lidar is father more efficient than the traditional measure technology by the boat. At the same time, this technology can detect multi-parameter about the ocean red <span class="hlt">tide</span> by using the double-wavelength lidar.It not only can use the infrared laser to detect the scattering signal under the water and gain the information about the red tise's density and size, but also can use the blue-green laser to detect the Brillouin scattering signal and deduce the temperature and salinity of the seawater.The red <span class="hlt">tide</span>'s density detecting model is firstly established by introducing the concept about the red <span class="hlt">tide</span> scattering coefficient based on the Mie scattering theory. From the Brillouin scattering theory, the relationship about the blue-green laser's Brillouin scattering frequency shift value and power value with the seawater temperature and salinity is found. Then, the detecting mode1 of the saewater temperature and salinity can be established. The value of the red <span class="hlt">tide</span> infrared scattering signal is evaluated by the simulation, and therefore the red <span class="hlt">tide</span> particles' density can be known. At the same time, the blue-green laser's Brillouin scattering frequency shift value and power value are evaluated by simulating, and the temperature and salinity of the seawater can be known. Baed on the multi-parameters, the ocean red <span class="hlt">tide</span>'s growth can be monitored and forecasted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060037608&hterms=earth+landing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dearth%2Blanding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060037608&hterms=earth+landing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dearth%2Blanding"><span>Orbital and Landing Operations at Near-<span class="hlt">Earth</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scheeres, D. J.</p> <p>1995-01-01</p> <p>Orbital and landing operations about near-<span class="hlt">Earth</span> asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar <span class="hlt">tide</span> and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2012/1022/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2012/1022/"><span>Monitoring inland storm <span class="hlt">tide</span> and flooding from Hurricane Irene along the Atlantic Coast of the United States, August 2011</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCallum, Brian E.; Painter, Jaime A.; Frantz, Eric R.</p> <p>2012-01-01</p> <p>The U.S. Geological Survey (USGS) deployed a temporary monitoring network of water-level sensors at 212 locations along the Atlantic coast from South Carolina to Maine during August 2011 to record the timing, areal extent, and magnitude of inland hurricane storm <span class="hlt">tide</span> and coastal flooding generated by Hurricane Irene. Water-level sensor locations were selected to augment existing <span class="hlt">tide</span>-gage networks to ensure adequate monitoring in areas forecasted to have substantial storm <span class="hlt">tide</span>. As defined by the National Oceanic and Atmospheric Administration (NOAA; 2011a,b), storm <span class="hlt">tide</span> is the water-level rise generated by a coastal storm as a result of the combination of storm surge and astronomical <span class="hlt">tide</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15623043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15623043"><span>[Removal efficiency of red <span class="hlt">tide</span> organisms by modified clay and its impacts on cultured organisms].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cao, Xi-hua; Song, Xiu-xian; Yu, Zhi-ming</p> <p>2004-09-01</p> <p>Removal efficiencies of Prorocentrum donghaiense (Prorocentrum dentatum) by Hexadecyltrimethylammonium (HDTMA) bromide and organo-clay modified by HDTMA were identified. Moreover the toxicity of the unbound HDTMA and HDTMA plus clay to aquacultural organisms, Penaeus japonicus, was also tested. The results suggested that (1) The unbound HDTMA had an excellent ability to remove the red <span class="hlt">tide</span> organisms. However, its strong toxicity to Penaeus japonicus would restrict its practical use in red <span class="hlt">tide</span> control. (2) The toxicity of HDTMA could be remarkably decreased by addition of clay and the organo-clay complex had a good ability to removal red <span class="hlt">tide</span> organisms. At the same time the availability of organo-clay to remove the red <span class="hlt">tide</span> of P. donghaiense and Heterosigma akashiwo in the lab-imitated cultures were studied. The results indicated that the organo-clay complex could remove 100% P. donghaiense at the dosage of 0.03 g/L and effectively control H. akashiwo at 0.09 g/L while the survival rate of Penaeus japonicus larvae, which were cultured in the red <span class="hlt">tide</span> seawater, is kept 100%. According to the results in laboratory, the mesocosm tests (CEPEX) in East China Sea were conducted in April and May of 2003. The removal efficiencies of original clay, organic clay and inorganic clay were compared during the CEPEX tests. The results revealed that both inorganic clay and organic clay could remove red <span class="hlt">tide</span> organisms more effectively than the original clay.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17891964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17891964"><span>[Discrimination of Red <span class="hlt">Tide</span> algae by fluorescence spectra and principle component analysis].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Rong-guo; Hu, Xu-peng; Zhang, Chuan-song; Wang, Xiu-lin</p> <p>2007-07-01</p> <p>Fluorescence discrimination technology for 11 species of the Red <span class="hlt">Tide</span> algae at genus level was constructed by principle component analysis and non-negative least squares. Rayleigh and Raman scattering peaks of 3D fluorescence spectra were eliminated by Delaunay triangulation method. According to the results of Fisher linear discrimination, the first principle component score and the second component score of 3D fluorescence spectra were chosen as discriminant feature and the feature base was established. The 11 algae species were tested, and more than 85% samples were accurately determinated, especially for Prorocentrum donghaiense, Skeletonema costatum, Gymnodinium sp., which have frequently brought Red <span class="hlt">tide</span> in the East China Sea. More than 95% samples were right discriminated. The results showed that the genus discriminant feature of 3D fluorescence spectra of Red <span class="hlt">Tide</span> algae given by principle component analysis could work well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060012293','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060012293"><span>Secular changes of the M2 <span class="hlt">tide</span> in the Gulf of Maine</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ray, Richard D.</p> <p>2005-01-01</p> <p>Analyses of long time series of hourly <span class="hlt">tide</span>-gauge data at four stations in the Gulf of Maine reveal that the amplitude of the M2 <span class="hlt">tide</span> underwent a nearly linear secular increase throughout most of the twentieth century. In the early 1980s, however, the amplitude of M2 abruptly dropped. Sea level changes alone appear inadequate to explain either the long-term trend or the recent trend discontinuity. Tidal models that account for Holocene sea level rise do predict an amplification of M2, but much smaller than the currently observed trends. Nor do recent annual mean sea levels correlate with the recent trend discontinuity. Some unknown fraction of the open Atlantic may be similarly affected, since the M2 discontinuity, but not the long-term secular increase in the <span class="hlt">tide</span>, is evident also at Halifax.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612611','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612611"><span>Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-01-23</p> <p>Center 875 North Randolph Street, Suite 1425 Arlington, VA 22203-1995 ONR Approved for public release, distribution is unlimited. A global tuning...factor with a larger value in the Atlantic. Our best global mean RMS error of 4.4 cm for areas deeper than 1000 m and equatorward of 66_ is among the...lowest obtained in a forward barotropic <span class="hlt">tide</span> model. Barotropic <span class="hlt">tides</span>; Global modeling; Linear wave drag Unclassified Unclassified Unclassified UU</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030032518&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030032518&hterms=oceanography&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Doceanography"><span>Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ponte, Rui M.; Ray, Richard D.</p> <p>2003-01-01</p> <p>Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar <span class="hlt">tide</span> as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric <span class="hlt">tides</span> in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-<span class="hlt">tide</span> corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcMod..83...26L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcMod..83...26L"><span>Integration of coastal inundation modeling from storm <span class="hlt">tides</span> to individual waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Ning; Roeber, Volker; Yamazaki, Yoshiki; Heitmann, Troy W.; Bai, Yefei; Cheung, Kwok Fai</p> <p>2014-11-01</p> <p>Modeling of storm-induced coastal inundation has primarily focused on the surge generated by atmospheric pressure and surface winds with phase-averaged effects of the waves as setup. Through an interoperable model package, we investigate the role of phase-resolving wave processes in simulation of coastal flood hazards. A spectral ocean wave model describes generation and propagation of storm waves from deep to intermediate water, while a non-hydrostatic storm-<span class="hlt">tide</span> model has the option to couple with a spectral coastal wave model for computation of phase-averaged processes in a near-shore region. The ocean wave and storm-<span class="hlt">tide</span> models can alternatively provide the wave spectrum and the surface elevation as the boundary and initial conditions for a nested Boussinesq model. Additional surface-gradient terms in the Boussinesq equations maintain the quasi-steady, non-uniform storm <span class="hlt">tide</span> for modeling of phase-resolving surf and swash-zone processes as well as combined <span class="hlt">tide</span>, surge, and wave inundation. The two nesting schemes are demonstrated through a case study of Hurricane Iniki, which made landfall on the Hawaiian Island of Kauai in 1992. With input from a parametric hurricane model and global reanalysis and tidal datasets, the two approaches produce comparable significant wave heights and phase-averaged surface elevations in the surf zone. The nesting of the Boussinesq model provides a seamless approach to augment the inundation due to the individual waves in matching the recorded debris line along the coast.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21671159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21671159"><span>Heat-shock <span class="hlt">response</span> and antioxidant defense during air exposure in Patagonian shallow-water limpets from different climatic habitats.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pöhlmann, Kevin; Koenigstein, Stefan; Alter, Katharina; Abele, Doris; Held, Christoph</p> <p>2011-11-01</p> <p>Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on <span class="hlt">earth</span>, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock <span class="hlt">response</span> (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the <span class="hlt">tide</span> was low at the experimental site compared to the 6 h value taken at high <span class="hlt">tide</span>. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by <span class="hlt">tides</span>. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress <span class="hlt">response</span> is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21532966','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21532966"><span>Frontiers in Outreach and Education: The Florida Red <span class="hlt">Tide</span> Experience.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C; Currier, Robert; Kirkpatrick, Barbara</p> <p>2011-05-01</p> <p>To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red <span class="hlt">Tide</span> P01 research group (Florida Red <span class="hlt">Tide</span> Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red <span class="hlt">Tide</span> Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3082139','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3082139"><span>Frontiers in Outreach and Education: The Florida Red <span class="hlt">Tide</span> Experience</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nierenberg, Kate; Hollenbeck, Julie; Fleming, Lora E.; Stephan, Wendy; Reich, Andrew; Backer, Lorraine C.; Currier, Robert; Kirkpatrick, Barbara</p> <p>2011-01-01</p> <p>To enhance information sharing and garner increased support from the public for scientific research, funding agencies now typically require that research groups receiving support convey their work to stakeholders. The National Institute of Environmental Health Sciences-(NIEHS) funded Aerosolized Florida Red <span class="hlt">Tide</span> P01 research group (Florida Red <span class="hlt">Tide</span> Research Group) has employed a variety of outreach strategies to meet this requirement. Messages developed from this project began a decade ago and have evolved from basic print material (fliers and posters) to an interactive website, to the use of video and social networking technologies, such as Facebook and Twitter. The group was able to track dissemination of these information products; however, evaluation of their effectiveness presented much larger challenges. The primary lesson learned by the Florida Red <span class="hlt">Tide</span> Research Group is that the best ways to reach specific stakeholders is to develop unique products or services to address specific stakeholders needs, such as the Beach Conditions Reporting System. Based on the experience of the Group, the most productive messaging products result when scientific community engages potential stakeholders and outreach experts during the very initial phases of a project. PMID:21532966</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr42W7.1521L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr42W7.1521L"><span>Accuracy Assessment of Recent Global Ocean <span class="hlt">Tide</span> Models around Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.</p> <p>2017-09-01</p> <p>Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean <span class="hlt">tide</span> models around Antarctica is poorer than those in deep oceans. Using tidal measurements from <span class="hlt">tide</span> gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean <span class="hlt">tide</span> models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21428075','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21428075"><span>[Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red <span class="hlt">tide</span> algae].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao</p> <p>2011-01-01</p> <p>The identification techniques for 10 species of red <span class="hlt">tide</span> algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red <span class="hlt">tide</span> algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red <span class="hlt">tide</span> algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red <span class="hlt">tide</span> algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red <span class="hlt">tide</span> algae and principal component analysis could work well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.G41C..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.G41C..02A"><span><span class="hlt">Earth</span>'s surface loading study using InSAR</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amelung, F.; Zhao, W.; Doin, M. P.</p> <p>2014-12-01</p> <p><span class="hlt">Earth</span>'s surface loading/unloading such as glacier retreat, lake water level change, ocean <span class="hlt">tide</span>, cause measurable (centimeter to millimeter) surface deformation from Synthetic Aperture Radar Interferometry (InSAR). Such seasonal or decadal deformation signals are useful for the estimation of the amount of load and the parameterization of crust and upper mantle - typically under an elastic or a visco-elastic mechanism. Since 2010, we established a study of surface loading using small baseline InSAR time-series analysis. Four sites are included in this study, which are Vatnajokull ice cap, Lake Yamzho Yumco, Petermann glacier, and Barnes ice cap using different satellites such as ERS1/2, Envisat, Radarsat-2, TerraSAR-X. We present results that mainly answer three questions: 1) Is InSAR time-series capable for the detection of millimeter level deformation due to surface loading; 2) When the <span class="hlt">Earth</span>'s rheology is known, how much load change occured; 3) When the surface loading is known, what are the <span class="hlt">Earth</span>'s parameters such as Young's modulus, viscosity. For glacier retreat problem, we introduce a new model for the ice mass loss estimation considering the spatial distribution of ice loss. For lake unloading problem, modeled elastic parameters are useful for the comparison to other 1-D models, e.g. the model based on seismic data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012672','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012672"><span>Harmonic analysis of <span class="hlt">tides</span> and tidal currents in South San Francisco Bay, California</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheng, R.T.; Gartner, J.W.</p> <p>1985-01-01</p> <p>Water level observations from <span class="hlt">tide</span> stations and current observations from current-meter moorings in South San Francisco Bay (South Bay), California have been harmonically analysed. At each <span class="hlt">tide</span> station, 13 harmonic constituents have been computed by a least-squares regression without inference. <span class="hlt">Tides</span> in South Bay are typically mixed; there is a phase lag of approximately 1 h and an amplification of 1??5 from north to south for a mean semi-diurnal <span class="hlt">tide</span>. Because most of the current-meter records are between 14 and 29 days, only the five most important harmonics have been solved for east-west and north-south velocity components. The eccentricity of tidal-current ellipse is generally very small, which indicates that the tidal current in South Bay is strongly bidirectional. The analyses further show that the principal direction and the magnitude of tidal current are well correlated with the basin bathymetry. Patterns of Eulerian residual circulation deduced from the current-meter data show an anticlockwise gyre to the west and a clockwise gyre to the east of the main channel in the summer months due to the prevailing westerly wind. Opposite trends have been observed during winter when the wind was variable. ?? 1985.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..834S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..834S"><span>Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and <span class="hlt">Tide</span>-Resolving Simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris</p> <p>2018-01-01</p> <p>Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and <span class="hlt">tide</span>-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and <span class="hlt">tides</span> via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but <span class="hlt">tides</span> produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by <span class="hlt">tides</span> and surface forcing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011DyAtO..52..224B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011DyAtO..52..224B"><span>Winter variability in the western Gulf of Maine: Part 1: Internal <span class="hlt">tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, W. S.</p> <p>2011-09-01</p> <p>During the winter 1997-1998, a field program was conducted in Wilkinson Basin-western Gulf of Maine-as part of a study of winter convective mixing. The field program consisted of (1) Wilkinson basin-scale hydrographic surveys, (2) a tight three-mooring array with ˜100 m separations measured temperature and conductivity at rates of 2-15 min and (3) a single pair of upward/downward-looking pair acoustic Doppler current profiling (ADCP) instruments measured currents with 8 m vertical resolution over the 270 m water column in north-central Wilkinson basin at a rate of 10 min. The moored array measurements below the mixed layer (˜100 m depth) between 11 January and 6 February 1998 were dominated by a combination of the relatively strong semidiurnal external (depth-independent or barotropic) <span class="hlt">tide</span>; upon which were superposed a weaker phase-locked semidiurnal internal <span class="hlt">tide</span> and a very weak water column mean currents of about 1 cm/s southward or approximately across the local isobaths. The harmonic analysis of a vertical average of the relatively uniform ADCP velocities in the well-mixed upper 123 m of the water column, defined the external tidal currents which were dominated by a nearly rectilinear, across-isobath (326°T) M 2 semidiurnal tidal current of about 15 cm/s. The depth-dependent residual current field, which was created by subtracting the external tidal current, consisted of (1) clockwise-rotating semidiurnal internal tidal currents of about 5 cm/s below the mixed layer; (2) clockwise-rotating inertial currents; and (3) a considerably less energetic subtidal current variability. The results from both frequency-domain empirical orthogonal function and tidal harmonic analyses of the of isotherm displacement series at each of the three moorings in the 100 m array mutually confirm an approximate east-northeastward phase propagation of the dominant M 2 semidiurnal internal <span class="hlt">tide</span> across Wilkinson Basin. Further investigation supports the idea that this winter internal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1002184-multi-scale-modeling-puget-sound-using-unstructured-grid-coastal-ocean-model-from-tide-flats-estuaries-coastal-waters','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1002184-multi-scale-modeling-puget-sound-using-unstructured-grid-coastal-ocean-model-from-tide-flats-estuaries-coastal-waters"><span>Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from <span class="hlt">tide</span> flats to estuaries and coastal waters</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yang, Zhaoqing; Khangaonkar, Tarang</p> <p>2010-11-19</p> <p>Water circulation in Puget Sound, a large complex estuary system in the Pacific Northwest coastal ocean of the United States, is governed by multiple spatially and temporally varying forcings from <span class="hlt">tides</span>, atmosphere (wind, heating/cooling, precipitation/evaporation, pressure), and river inflows. In addition, the hydrodynamic <span class="hlt">response</span> is affected strongly by geomorphic features, such as fjord-like bathymetry and complex shoreline features, resulting in many distinguishing characteristics in its main and sub-basins. To better understand the details of circulation features in Puget Sound and to assist with proposed nearshore restoration actions for improving water quality and the ecological health of Puget Sound, a high-resolutionmore » (around 50 m in estuaries and <span class="hlt">tide</span> flats) hydrodynamic model for the entire Puget Sound was needed. Here, a threedimensional circulation model of Puget Sound using an unstructured-grid finite volume coastal ocean model is presented. The model was constructed with sufficient resolution in the nearshore region to address the complex coastline, multi-tidal channels, and <span class="hlt">tide</span> flats. Model open boundaries were extended to the entrance of the Strait of Juan de Fuca and the northern end of the Strait of Georgia to account for the influences of ocean water intrusion from the Strait of Juan de Fuca and the Fraser River plume from the Strait of Georgia, respectively. Comparisons of model results, observed data, and associated error statistics for tidal elevation, velocity, temperature, and salinity indicate that the model is capable of simulating the general circulation patterns on the scale of a large estuarine system as well as detailed hydrodynamics in the nearshore <span class="hlt">tide</span> flats. Tidal characteristics, temperature/salinity stratification, mean circulation, and river plumes in estuaries with <span class="hlt">tide</span> flats are discussed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711794V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711794V"><span>Numerical simulation of <span class="hlt">tides</span> in Ontario Lacus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vincent, David; Karatekin, Ozgür</p> <p>2015-04-01</p> <p>Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of <span class="hlt">tides</span>. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The <span class="hlt">tide</span> generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun <span class="hlt">tide</span> generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1286Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1286Q"><span>Formation of the Lunar Fossil Bulges and Its Implication for the Early <span class="hlt">Earth</span> and Moon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qin, Chuan; Zhong, Shijie; Phillips, Roger</p> <p>2018-02-01</p> <p>First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the <span class="hlt">Earth</span> and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-<span class="hlt">Earth</span> distance was less than 32 <span class="hlt">Earth</span> radii, and that the <span class="hlt">Earth</span> in Hadean was significantly less dissipative to lunar <span class="hlt">tides</span> than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.3999S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.3999S"><span>Tsunami hazard assessment in the Hudson River Estuary based on dynamic tsunami-<span class="hlt">tide</span> simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shelby, Michael; Grilli, Stéphan T.; Grilli, Annette R.</p> <p>2016-12-01</p> <p>This work is part of a tsunami inundation mapping activity carried out along the US East Coast since 2010, under the auspice of the National Tsunami Hazard Mitigation program (NTHMP). The US East Coast features two main estuaries with significant tidal forcing, which are bordered by numerous critical facilities (power plants, major harbors,...) as well as densely built low-level areas: Chesapeake Bay and the Hudson River Estuary (HRE). HRE is the object of this work, with specific focus on assessing tsunami hazard in Manhattan, the Hudson and East River areas. In the NTHMP work, inundation maps are computed as envelopes of maximum surface elevation along the coast and inland, by simulating the impact of selected probable maximum tsunamis (PMT) in the Atlantic ocean margin and basin. At present, such simulations assume a static reference level near shore equal to the local mean high water (MHW) level. Here, instead we simulate maximum inundation in the HRE resulting from dynamic interactions between the incident PMTs and a <span class="hlt">tide</span>, which is calibrated to achieve MHW at its maximum level. To identify conditions leading to maximum tsunami inundation, each PMT is simulated for four different phases of the <span class="hlt">tide</span> and results are compared to those obtained for a static reference level. We first separately simulate the <span class="hlt">tide</span> and the three PMTs that were found to be most significant for the HRE. These are caused by: (1) a flank collapse of the Cumbre Vieja Volcano (CVV) in the Canary Islands (with a 80 km3 volume representing the most likely extreme scenario); (2) an M9 coseismic source in the Puerto Rico Trench (PRT); and (3) a large submarine mass failure (SMF) in the Hudson River canyon of parameters similar to the 165 km3 historical Currituck slide, which is used as a local proxy for the maximum possible SMF. Simulations are performed with the nonlinear and dispersive long wave model FUNWAVE-TVD, in a series of nested grids of increasing resolution towards the coast, by one</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26337227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26337227"><span>Assessing change of environmental dynamics by legislation in Japan, using red <span class="hlt">tide</span> occurrence in Ise Bay as an indicator.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suzuki, Chika</p> <p>2016-01-30</p> <p>Tokyo Bay, Ise Bay, and the Seto Inland Sea are the total pollutant load control target areas in Japan. A significant correlation between the incidence of red <span class="hlt">tides</span> and water quality has been observed in the Seto Inland Sea (Honjo, 1991). However, while red <span class="hlt">tides</span> also occur in Ise Bay and Tokyo Bay, similar correlations have not been observed. Hence, it is necessary to understand what factors cause red <span class="hlt">tides</span> to effectively manage these semi-closed systems. This study aims to investigate the relationship between the dynamics of the Red <span class="hlt">Tide</span> Index and nitrogen regulation as well as phosphorus regulation, even in Ise Bay where, unlike Tokyo Bay, there are few observation items, by selecting a suitable objective variable. The introduction of a new technique that uses the Red <span class="hlt">Tide</span> Index has revealed a possibility that the total pollution load control has influenced the dynamics of red <span class="hlt">tide</span> blooms in Ise Bay. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6331M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6331M"><span>Monitoring Sea Level by <span class="hlt">Tide</span> Gauges and GPS at Barcelona and Estartit Harbours</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.</p> <p>2012-04-01</p> <p>Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal <span class="hlt">tide</span> gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), etc. The <span class="hlt">tide</span> gauge of l'Estartit is a traditional floating gauge placed 21 years ago and has an accuracy of ± 2 mm. Since 1996, l'Estartit <span class="hlt">tide</span> gauge has been co-located with geodetic techniques (GPS measurements of XU, Utilitary Network, and XdA, Levelling Network,) and it is tied to the SPGIC (Integrated Geodetic Positioning System of Catalonia) project of the Cartographic Institute of Catalunya (ICC). In 2006, due to the work for the expansion of the harbour, the <span class="hlt">tide</span> gauge had to be moved. Before the work started, appropiate GPS measurements were carried out in order to ensure the connection of the <span class="hlt">tide</span> gauge data. During October 2006 and May 2008, the <span class="hlt">tide</span> gauge was inactive and it has been moved on to a new location inside the harbour. In June 2008, new GPS and levelling measures have been done in order to tie the new location into SPGIC project and to co-locate old data respect the new one. Although l'Estartit does not have a GPS permanent station, it is possible to build a virtual one from the service "CATNET web" of the ICC. "CATNET web" is a data distribution system of a virtual GPS permanent station via web. From the coordinates where you want to place the virtual station, the time interval and the measurement rate, the system generates a RINEX file under the requested conditions. At Barcelona harbour there is one MIROS radar <span class="hlt">tide</span> gauge belonging to Puertos del Estado (Spanish Harbours). It is placed at the dock 140 of the ENAGAS Building.The radar</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22053149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22053149"><span>Florida Red <span class="hlt">Tide</span> Toxins (Brevetoxins) and Longitudinal Respiratory Effects in Asthmatics.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bean, Judy A; Fleming, Lora E; Kirkpatrick, Barbara; Backer, Lorraine C; Nierenberg, Kate; Reich, Andrew; Cheng, Yung Sung; Wanner, Adam; Benson, Janet; Naar, Jerome; Pierce, Richard; Abraham, William M; Kirkpatrick, Gary; Hollenbeck, Julie; Zaias, Julia; Mendes, Eliana; Baden, Daniel G</p> <p>2011-09-01</p> <p>Having demonstrated significant and persistent adverse changes in pulmonary function for asthmatics after 1 hour exposure to brevetoxins in Florida red <span class="hlt">tide</span> (Karenia brevis bloom) aerosols, we assessed the possible longer term health effects in asthmatics from intermittent environmental exposure to brevetoxins over 7 years. 125 asthmatic subjects were assessed for their pulmonary function and reported symptoms before and after 1 hour of environmental exposure to Florida red <span class="hlt">tide</span> aerosols for upto 11 studies over seven years. As a group, the asthmatics came to the studies with normal standardized percent predicted pulmonary function values. The 38 asthmatics who participated in only one exposure study were more reactive compared to the 36 asthmatics who participated in ≥4 exposure studies. The 36 asthmatics participating in ≥4 exposure studies demonstrated no significant change in their standardized percent predicted pre-exposure pulmonary function over the 7 years of the study. These results indicate that stable asthmatics living in areas with intermittent Florida red <span class="hlt">tides</span> do not exhibit chronic respiratory effects from intermittent environmental exposure to aerosolized brevetoxins over a 7 year period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7021689','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7021689"><span>Thermal treatment for increasing magnetostrictive <span class="hlt">response</span> of rare <span class="hlt">earth</span>-iron alloy rods</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Verhoeven, J.D.; McMasters, O.D.</p> <p>1989-07-18</p> <p>Magnetostrictive rods formed from rare <span class="hlt">earth</span>-iron alloys are subjected to a short time heat treatment to increase their magnetostrictive <span class="hlt">response</span> under compression. The heat treatment is preferably carried out at a temperature of from 900 to 1,000 C for 20 minutes to six hours.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867039','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867039"><span>Thermal treatment for increasing magnetostrictive <span class="hlt">response</span> of rare <span class="hlt">earth</span>-iron alloy rods</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Verhoeven, John D.; McMasters, O. D.</p> <p>1989-07-18</p> <p>Magnetostrictive rods formed from rare <span class="hlt">earth</span>-iron alloys are subjected to a short time heat treatment to increase their Magnetostrictive <span class="hlt">response</span> under compression. The heat treatment is preferably carried out at a temperature of from 900.degree. to 1000.degree. C. for 20 minutes to six hours.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23D2774H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23D2774H"><span>Martian thermal <span class="hlt">tides</span> from the surface to the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holstein-Rathlou, C.; Withers, P.</p> <p>2017-12-01</p> <p>The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal <span class="hlt">tides</span> at the surface, above that surface location and in the atmosphere. Thermal <span class="hlt">tides</span> are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal <span class="hlt">tides</span>. Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography. In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time. 2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating <span class="hlt">tides</span>, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from "appropriately quiet" Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DPS....4941812H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DPS....4941812H"><span>Martian thermal <span class="hlt">tides</span> from the surface to the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holstein-Rathlou, Christina; Withers, Paul</p> <p>2017-10-01</p> <p>The presence of observational platforms both in orbit and on the surface of Mars today provides a unique opportunity to simultaneously study the effects of thermal <span class="hlt">tides</span> at the surface, above that surface location and in the atmosphere. Thermal <span class="hlt">tides</span> are an important aspect of the atmospheric dynamics on Mars and the unique opportunity to unify landed and orbital measurements can provide a comprehensive understanding of thermal <span class="hlt">tides</span>.Ideally, pressure measurements from the Curiosity lander and atmospheric temperature profiles from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter provide a complimentary pair of surface and atmospheric observations to study. However, the unique landing site of Curiosity, in Gale crater, introduces several complicating factors to the analysis of tidal behavior, two of which are crater circulation and the impact of the dichotomy boundary topography.In order to achieve a baseline understanding of thermal tidal behavior another complimentary pair of observations is necessary. For this purpose, the equatorial and relatively topographically flat landing site of the Viking 1 (VIK1) lander, along with its lengthy record of surface pressures, is the candidate surface dataset. There are no concurrent atmospheric observational data, so atmospheric profiles were obtained from the Mars Climate Database to ensure maximum coverage in space and time.2-dimensional Fourier analysis in local time and longitude has yielded amplitude and phases for the four major tidal modes on Mars (diurnal and semidiurnal migrating <span class="hlt">tides</span>, DK1 and DK2). We will present current results regarding amplitude and phase dependence on season and altitude at the VIK1 landing site. These results will (in time) be tied to tidal amplitude and phase behavior from observed MCS atmospheric temperature profiles from “appropriately quiet” Mars years (years without major dust storms). The understanding gathered from this approach will then allow us to return to the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11..963R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11..963R"><span>Effective and <span class="hlt">responsible</span> teaching of climate change in <span class="hlt">Earth</span> Science-related disciplines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Z. P.; Greenhough, B. J.</p> <p>2009-04-01</p> <p>Climate change is a core topic within <span class="hlt">Earth</span> Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The <span class="hlt">Earth</span> Science disciplines play a crucial role in our understanding of past, present and future climate change and the <span class="hlt">Earth</span> system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and <span class="hlt">responsibility</span> amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of <span class="hlt">responsibility</span> towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of <span class="hlt">Earth</span> Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10724989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10724989"><span><span class="hlt">TIDE</span>: an intelligent home-based healthcare information & diagnostic environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abidi, S S</p> <p>1999-01-01</p> <p>The 21st century promises to usher in an era of Internet based healthcare services--Tele-Healthcare. Such services augur well with the on-going paradigm shift in healthcare delivery patterns, i.e. patient centred services as opposed to provider centred services and wellness maintenance as opposed to illness management. This paper presents a Tele-Healthcare info-structure <span class="hlt">TIDE</span>--an 'intelligent' wellness-oriented healthcare delivery environment. <span class="hlt">TIDE</span> incorporates two WWW-based healthcare systems: (1) AIMS (Automated Health Monitoring System) for wellness maintenance and (2) IDEAS (Illness Diagnostic & Advisory System) for illness management. Our proposal comes from an attempt to rethink the sources of possible leverage in improving healthcare; vis-à-vis the provision of a continuum of personalised home-based healthcare services that emphasise the role of the individual in self health maintenance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020022492&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Modeling <span class="hlt">Tides</span>, Planetary Waves, and Equatorial Oscillations in the MLT</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mengel, J. G.; Mayr, H. G.; Drob, D. P.; Porter, H. S.; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>Applying Hines Doppler Spread Parameterization for gravity waves (GW), our 3D model reproduces some essential features that characterize the observed seasonal variations of <span class="hlt">tides</span> and planetary waves in the upper mesosphere. In 2D, our model also reproduces the large Semi-Annual Oscillation (SAO) and Quasi Biennial Oscillation (QBO) observed in this region at low latitudes. It is more challenging to describe these features combined in a more comprehensive self consistent model, and we give a progress report that outlines the difficulties and reports some success. In 3D, the GW's are partially absorbed by <span class="hlt">tides</span> and planetary waves to amplify them. Thus the waves are less efficient in generating the QBO and SAO at equatorial latitudes. Some of this deficiency is compensated by the fact that the GW activity is observed to be enhanced at low latitudes. Increasing the GW source has the desired effect to boost the QBO, but the effect is confined primarily to the stratosphere. With increasing altitude, the meridional circulation becomes more important in redistributing the momentum deposited in the background flow by the GW's. Another factor involved is the altitude at which the GW's originate, which we had originally chosen to be the surface. Numerical experiments show that moving this source altitude to the top of the troposphere significantly increases the efficiency for generating the QBO without affecting much the <span class="hlt">tides</span> and planetary waves in the model. Attention to the details in which the GW source comes into play thus appears to be of critical importance in modeling the phenomenology of the MLT. Among the suite of numerical experiments reported, we present a simulation that produced significant variations of <span class="hlt">tides</span> and planetary waves in the upper mesosphere. The effect is related to the QBO generated in the model, and GW filtering is the likely cause.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMSA23A2038L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMSA23A2038L"><span>Stratospheric Sudden Warming Effects on the Ionospheric Migrating <span class="hlt">Tides</span> during 2008-2010 observed by FORMOSAT-3/COSMIC</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.</p> <p>2013-12-01</p> <p>In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 <span class="hlt">tides</span> are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating <span class="hlt">tides</span> and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric <span class="hlt">response</span>. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric <span class="hlt">responses</span> will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195670','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195670"><span>Joint Probability Analysis of Extreme Precipitation and Storm <span class="hlt">Tide</span> in a Coastal City under Changing Environment</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling</p> <p>2014-01-01</p> <p>Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm <span class="hlt">tide</span> are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm <span class="hlt">tide</span> or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm <span class="hlt">tide</span> and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt’s tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm <span class="hlt">tide</span> is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm <span class="hlt">tide</span> is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm <span class="hlt">tide</span>, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment. PMID:25310006</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25310006','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25310006"><span>Joint probability analysis of extreme precipitation and storm <span class="hlt">tide</span> in a coastal city under changing environment.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Kui; Ma, Chao; Lian, Jijian; Bin, Lingling</p> <p>2014-01-01</p> <p>Catastrophic flooding resulting from extreme meteorological events has occurred more frequently and drawn great attention in recent years in China. In coastal areas, extreme precipitation and storm <span class="hlt">tide</span> are both inducing factors of flooding and therefore their joint probability would be critical to determine the flooding risk. The impact of storm <span class="hlt">tide</span> or changing environment on flooding is ignored or underestimated in the design of drainage systems of today in coastal areas in China. This paper investigates the joint probability of extreme precipitation and storm <span class="hlt">tide</span> and its change using copula-based models in Fuzhou City. The change point at the year of 1984 detected by Mann-Kendall and Pettitt's tests divides the extreme precipitation series into two subsequences. For each subsequence the probability of the joint behavior of extreme precipitation and storm <span class="hlt">tide</span> is estimated by the optimal copula. Results show that the joint probability has increased by more than 300% on average after 1984 (α = 0.05). The design joint return period (RP) of extreme precipitation and storm <span class="hlt">tide</span> is estimated to propose a design standard for future flooding preparedness. For a combination of extreme precipitation and storm <span class="hlt">tide</span>, the design joint RP has become smaller than before. It implies that flooding would happen more often after 1984, which corresponds with the observation. The study would facilitate understanding the change of flood risk and proposing the adaption measures for coastal areas under a changing environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoRL..4210671E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoRL..4210671E"><span>Head-of-<span class="hlt">tide</span> bottleneck of particulate material transport from watersheds to estuaries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Skalak, Katherine J.</p> <p>2015-12-01</p> <p>We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of <span class="hlt">tide</span> on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of <span class="hlt">tide</span>, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of <span class="hlt">tide</span> stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70176290','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70176290"><span>Head-of-<span class="hlt">tide</span> bottleneck of particulate material transport from watersheds to estuaries</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ensign, Scott H.; Noe, Gregory; Hupp, Cliff R.; Skalak, Katherine</p> <p>2015-01-01</p> <p>We measured rates of sediment, C, N, and P accumulation at four floodplain sites spanning the nontidal through oligohaline Choptank and Pocomoke Rivers, Maryland, USA. Ceramic tiles were used to collect sediment for a year and sediment cores were collected to derive decadal sedimentation rates using 137Cs. The results showed highest rates of short- and long-term sediment, C, N, and P accumulation occurred in tidal freshwater forests at the head of <span class="hlt">tide</span> on the Choptank and the oligohaline marsh of the Pocomoke River, and lowest rates occurred in the downstream tidal freshwater forests in both rivers. Presumably, watershed material was mostly trapped at the head of <span class="hlt">tide</span>, and estuarine material was trapped in oligohaline marshes. This hydrologic transport bottleneck at the head of <span class="hlt">tide</span> stores most available watershed sediment, C, N, and P creating a sediment shadow in lower tidal freshwater forests potentially limiting their resilience to sea level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.2473A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.2473A"><span>Transient groundwater dynamics in a coastal aquifer: The effects of <span class="hlt">tides</span>, the lunar cycle, and the beach profile</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abarca, Elena; Karam, Hanan; Hemond, Harold F.; Harvey, Charles F.</p> <p>2013-05-01</p> <p>Detailed field measurements are combined with a numerical modeling to characterize the groundwater dynamics beneath the discharge zone at Waquoit Bay, Massachusetts. Groundwater salinity values revealed a saline circulation cell that overlaid the discharging freshwater and grew and disappeared with the lunar cycle. The cell was initiated by a greater bay water infiltration during the new moon when high <span class="hlt">tides</span> overtopped the mean high-<span class="hlt">tide</span> mark, flooding the flatter beach berm and inundating a larger area of the beach. The dynamics of this cell were further characterized by a tracer test and by constructing a density-dependent flow model constrained to salinity and head data. The numerical model captured the growing and diminishing behavior of the circulation cell and provided the estimates of freshwater and saline water fluxes and travel times. Furthermore, the model enabled quantification of the relationship between the characteristics of the observed tidal cycle (maximum, minimum, and mean tidal elevations) and the different components of the groundwater circulation (freshwater discharge, intertidal saline cycling, and deep saline cycling). We found that (1) recharge to the intertidal saline cell is largely controlled by the high-<span class="hlt">tide</span> elevation; (2) freshwater discharge is positively correlated to the low-<span class="hlt">tide</span> elevation, whereas deep saline discharge from below the discharging freshwater is negatively correlated to the low-<span class="hlt">tide</span> elevation. So, when the low-<span class="hlt">tide</span> elevation is relatively high, more freshwater discharges and less deep saltwater discharges. In contrast when low <span class="hlt">tides</span> are very low, less freshwater discharges and more deep salt water discharges; (3) offshore inflow of saline water is largely insensitive to <span class="hlt">tides</span> and the lunar cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ChOE...31..578Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ChOE...31..578Y"><span>Design, optimization and numerical modelling of a novel floating pendulum wave energy converter with <span class="hlt">tide</span> adaptation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Jing; Zhang, Da-hai; Chen, Ying; Liang, Hui; Tan, Ming; Li, Wei; Ma, Xian-dong</p> <p>2017-10-01</p> <p>A novel floating pendulum wave energy converter (WEC) with the ability of <span class="hlt">tide</span> adaptation is designed and presented in this paper. Aiming to a high efficiency, the buoy's hydrodynamic shape is optimized by enumeration and comparison. Furthermore, in order to keep the buoy's well-designed leading edge always facing the incoming wave straightly, a novel transmission mechanism is then adopted, which is called the tidal adaptation mechanism in this paper. Time domain numerical models of a floating pendulum WEC with or without <span class="hlt">tide</span> adaptation mechanism are built to compare their performance on various water levels. When comparing these two WECs in terms of their average output based on the linear passive control strategy, the output power of WEC with the <span class="hlt">tide</span> adaptation mechanism is much steadier with the change of the water level and always larger than that without the <span class="hlt">tide</span> adaptation mechanism.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN24B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN24B..01M"><span>Establishing Esri ArcGIS Enterprise Platform Capabilities to Support <span class="hlt">Response</span> Activities of the NASA <span class="hlt">Earth</span> Science Disasters Program</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molthan, A.; Seepersad, J.; Shute, J.; Carriere, L.; Duffy, D.; Tisdale, B.; Kirschbaum, D.; Green, D. S.; Schwizer, L.</p> <p>2017-12-01</p> <p>NASA's <span class="hlt">Earth</span> Science Disasters Program promotes the use of <span class="hlt">Earth</span> observations to improve the prediction of, preparation for, <span class="hlt">response</span> to, and recovery from natural and technological disasters. NASA <span class="hlt">Earth</span> observations and those of domestic and international partners are combined with in situ observations and models by NASA scientists and partners to develop products supporting disaster mitigation, <span class="hlt">response</span>, and recovery activities among several end-user partners. These products are accompanied by training to ensure proper integration and use of these materials in their organizations. Many products are integrated along with other observations available from other sources in GIS-capable formats to improve situational awareness and <span class="hlt">response</span> efforts before, during and after a disaster. Large volumes of NASA observations support the generation of disaster <span class="hlt">response</span> products by NASA field center scientists, partners in academia, and other institutions. For example, a prediction of high streamflows and inundation from a NASA-supported model may provide spatial detail of flood extent that can be combined with GIS information on population density, infrastructure, and land value to facilitate a prediction of who will be affected, and the economic impact. To facilitate the sharing of these outputs in a common framework that can be easily ingested by downstream partners, the NASA <span class="hlt">Earth</span> Science Disasters Program partnered with Esri and the NASA Center for Climate Simulation (NCCS) to establish a suite of Esri/ArcGIS services to support the dissemination of routine and event-specific products to end users. This capability has been demonstrated to key partners including the Federal Emergency Management Agency using a case-study example of Hurricane Matthew, and will also help to support future domestic and international disaster events. The <span class="hlt">Earth</span> Science Disasters Program has also established a longer-term vision to leverage scientists' expertise in the development and delivery of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO34D3103G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO34D3103G"><span>LLWBCS changes through surface mesoscale activity and baroclinic <span class="hlt">tides</span> in the Solomon Sea</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.</p> <p>2016-02-01</p> <p>In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal <span class="hlt">tides</span>, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal <span class="hlt">tides</span>. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit <span class="hlt">tides</span> provide a description of baroclinic <span class="hlt">tides</span> in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.2601S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.2601S"><span>Angular momentum budget of the radiational S1 ocean <span class="hlt">tide</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schindelegger, Michael; Dobslaw, Henryk; Poropat, Lea; Salstein, David; Böhm, Johannes</p> <p>2016-04-01</p> <p>The balance of diurnal S1 oceanic angular momentum (OAM) variations through torques at the sea surface and the bottom topography is validated using both a barotropic and a baroclinic numerical <span class="hlt">tide</span> model. This analysis discloses the extent to which atmosphere-driven S1 forward simulations are reliable for use in studies of high-frequency polar motion and changes in length-of-day. Viscous and dissipative torques associated with wind stress, bottom friction, as well as internal tidal energy conversion are shown to be small, and they are overshadowed by gravitational and pressure-related interaction forces. In particular, the zonal OAM variability of S1 is almost completely balanced by the water pressure torque on the local bathymetry, whereas in the prograde equatorial case also the air pressure torque on the seafloor as well as ellipsoidal contributions from the non-spherical atmosphere and solid <span class="hlt">Earth</span> must be taken into account. Overall, the OAM budget is well closed in both the axial and the equatorial directions, thus allowing for an identification of the main diurnal angular momentum sinks in the ocean. The physical interaction forces are found to be largest at shelf breaks and continental slopes in low latitudes, with the most dominant contribution coming from the Indonesian archipelago.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..137a2037Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..137a2037Y"><span>The comparison of heavy metals (Pb and Cd) in the water and sediment during spring and neap <span class="hlt">tide</span> tidal periods in Popoh Bay, Indonesia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yona, D.; Febriana, R.; Handayani, M.</p> <p>2018-04-01</p> <p>This study attempted to investigate different concentration of lead (Pb) dan cadmium (Cd) in the water and sediment during spring and neap tidal periods in the Popoh Bay, Indonesia. Water and sediment samples were taken during spring and neap <span class="hlt">tides</span> from eight sampling stations in the study area. The result shows higher concentration of Pb than the concentration of Cd in both spring and neap <span class="hlt">tides</span> due to higher input of Pb from the oil pollution by boat and fisheries activities. Pb concentrations were doubled during neap <span class="hlt">tide</span> in both water and sediments with the value of 0.51 and 0.28 ml/L in the water during neap and spring <span class="hlt">tide</span>, respectively; and 0.27 ppm and 0.16 mg/kg in the sediment during neap and spring <span class="hlt">tide</span>, respectively. On the other hand, Cd concentrations in the water were found in almost similar values between spring and neap <span class="hlt">tide</span> (0.159 and 0.165 ml/L in spring <span class="hlt">tide</span> and neap <span class="hlt">tide</span>, respectively), but in the sediment, the concentration was a little higher during spring <span class="hlt">tide</span> (0.09 and 0.05 mg/kg during spring and neap <span class="hlt">tide</span>, respectively). This study shows that water movement during spring and neap <span class="hlt">tides</span> has significant effect on the distribution of heavy metals.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013OcDyn..63..823Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013OcDyn..63..823Z"><span>Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of <span class="hlt">tide</span>, surge and non-linear interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zijl, Firmijn; Verlaan, Martin; Gerritsen, Herman</p> <p>2013-07-01</p> <p>In real-time operational coastal forecasting systems for the northwest European shelf, the representation accuracy of <span class="hlt">tide</span>-surge models commonly suffers from insufficiently accurate tidal representation, especially in shallow near-shore areas with complex bathymetry and geometry. Therefore, in conventional operational systems, the surge component from numerical model simulations is used, while the harmonically predicted <span class="hlt">tide</span>, accurately known from harmonic analysis of <span class="hlt">tide</span> gauge measurements, is added to forecast the full water-level signal at <span class="hlt">tide</span> gauge locations. Although there are errors associated with this so-called astronomical correction (e.g. because of the assumption of linearity of <span class="hlt">tide</span> and surge), for current operational models, astronomical correction has nevertheless been shown to increase the representation accuracy of the full water-level signal. The simulated modulation of the surge through non-linear <span class="hlt">tide</span>-surge interaction is affected by the poor representation of the <span class="hlt">tide</span> signal in the <span class="hlt">tide</span>-surge model, which astronomical correction does not improve. Furthermore, astronomical correction can only be applied to locations where the astronomic <span class="hlt">tide</span> is known through a harmonic analysis of in situ measurements at <span class="hlt">tide</span> gauge stations. This provides a strong motivation to improve both <span class="hlt">tide</span> and surge representation of numerical models used in forecasting. In the present paper, we propose a new generation <span class="hlt">tide</span>-surge model for the northwest European Shelf (DCSMv6). This is the first application on this scale in which the tidal representation is such that astronomical correction no longer improves the accuracy of the total water-level representation and where, consequently, the straightforward direct model forecasting of total water levels is better. The methodology applied to improve both <span class="hlt">tide</span> and surge representation of the model is discussed, with emphasis on the use of satellite altimeter data and data assimilation techniques for reducing parameter</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8983D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8983D"><span>Acoustic Tomography in the Canary Basin: Meddies and <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dushaw, Brian D.; Gaillard, Fabienne; Terre, Thierry</p> <p>2017-11-01</p> <p>An acoustic propagation experiment over 308 km range conducted in the Canary Basin in 1997-1998 was used to assess the ability of ocean acoustic tomography to measure the flux of Mediterranean water and Meddies. Instruments on a mooring adjacent to the acoustic path measured the southwestward passage of a strong Meddy in temperature, salinity, and current. Over 9 months of transmissions, the acoustic arrival pattern was an initial broad stochastic pulse varying in duration by 250-500 ms, followed eight stable, identified-ray arrivals. Small-scale sound speed fluctuations from Mediterranean water parcels littered around the sound channel axis caused acoustic scattering. Internal waves contributed more modest acoustic scattering. Based on simulations, the main effect of a Meddy passing across the acoustic path is the formation of many early-arriving, near-axis rays, but these rays are thoroughly scattered by the small-scale Mediterranean-water fluctuations. A Meddy decreases the deep-turning ray travel times by 10-30 ms. The dominant acoustic signature of a Meddy is therefore the expansion of the width of the initial stochastic pulse. While this signature appears inseparable from the other effects of Mediterranean water in this region, the acoustic time series indicates the steady passage of Mediterranean water across the acoustic path. Tidal variations caused by the mode-1 internal <span class="hlt">tides</span> were measured by the acoustic travel times. The observed internal <span class="hlt">tides</span> were partly predicted using a recent global model for such <span class="hlt">tides</span> derived from satellite altimetry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000115617','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000115617"><span>Mesosphere Dynamics with Gravity Wave Forcing. 1; Diurnal and Semi-Diurnal <span class="hlt">Tides</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>We present results from a nonlinear, 3D, time dependent numerical spectral model (NSM), which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere that is dominated by wave interactions. We discuss diurnal and semi-diurnal <span class="hlt">tides</span> ill the present paper (Part 1) and planetary waves in the companion paper (Part 2). To provide an understanding of the seasonal variations of <span class="hlt">tides</span>, in particular with regard to gravity wave processes, numerical experiments are performed that lead to the following conclusions: 1. The large semiannual variations in tile diurnal <span class="hlt">tide</span> (DT), with peak amplitudes observed around equinox, are produced primarily by GW interactions that involve, in part, planetary waves. 2. The DT, like planetary waves, tends to be amplified by GW momentum deposition, which reduces also the vertical wavelength. 3.Variations in eddy viscosity associated with GW interactions tend to peak in late spring and early fall and call also influence the DT. 4. The semidiurnal semidiurnal <span class="hlt">tide</span> (SDT), and its phase in particular, is strongly influenced by the mean zonal circulation. 5. The SDT, individually, is amplified by GW's. But the DT filters out GW's such that the wave interaction effectively reduces the amplitude of the SDT, effectively producing a strong nonlinear interaction between the DT and SDT. 6.) Planetary waves generated internally by baroclinic instability and GW interaction produce large amplitude modulations of the DT and SDT.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSM.B44A..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSM.B44A..05C"><span>Flood <span class="hlt">Tide</span> Transport of Blue Crab Postlarvae: Limitations in a Lagoonal Estuary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cudaback, C.; Eggleston, D.</p> <p>2005-05-01</p> <p>Blue crabs, an important commercial species, spend much of their life in estuaries along the east coast. The larvae spawn at or near the ocean, but the juveniles mature in the lower salinity waters of the estuary. It is generally believed that blue crab postlarvae migrate into near surface waters on flood, possibly cued by increasing salinity, and return to the bottom on ebb. Over several tidal cycles, the postlarvae travel a significant distance up-estuary. This model applies quite well to Chesapeake Bay, which has a strong along-estuary salinity gradient and large <span class="hlt">tides</span>, but may not apply as well to Pamlico Sound, where circulation and salinity are more wind-driven than tidal. A recently completed study (N. Reyns, PhD), indicates that postlarval blue crabs use flood <span class="hlt">tides</span> and wind-driven currents to cross Pamlico Sound. This study was based on observations with good spatial coverage, but limited vertical and temporal resolution. We have recently completed a complementary study, sampling crab larvae around the clock at four depths at a single location. Preliminary results from the new study suggest that the crab postlarvae do swim all the way to the surface, on flood only, and that flood currents are strongest slightly below the surface. These observations suggest the utility of flood <span class="hlt">tide</span> transport in this system. However, near bottom salinity does not seem to be driven by <span class="hlt">tides</span>; at this point it is unclear what cue might trigger the vertical migration of the postlarvae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=Electricity&id=EJ1033507','ERIC'); return false;" href="https://eric.ed.gov/?q=Electricity&id=EJ1033507"><span>Catching the <span class="hlt">Tide</span>: A Review of Tidal Energy Systems</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Harris, Frank</p> <p>2014-01-01</p> <p>Harnessing energy from the <span class="hlt">tides</span> is a much-promoted but rarely realised way of generating electricity. This article examines some of the systems that are currently in use or under development, and outlines their economic, environmental and technical implications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23A0238C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23A0238C"><span>Performances of the New Real Time Tsunami Detection Algorithm applied to <span class="hlt">tide</span> gauges data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chierici, F.; Embriaco, D.; Morucci, S.</p> <p>2017-12-01</p> <p>Real-time tsunami detection algorithms play a key role in any Tsunami Early Warning System. We have developed a new algorithm for tsunami detection (TDA) based on the real-time <span class="hlt">tide</span> removal and real-time band-pass filtering of seabed pressure time series acquired by Bottom Pressure Recorders. The TDA algorithm greatly increases the tsunami detection probability, shortens the detection delay and enhances detection reliability with respect to the most widely used tsunami detection algorithm, while containing the computational cost. The algorithm is designed to be used also in autonomous early warning systems with a set of input parameters and procedures which can be reconfigured in real time. We have also developed a methodology based on Monte Carlo simulations to test the tsunami detection algorithms. The algorithm performance is estimated by defining and evaluating statistical parameters, namely the detection probability, the detection delay, which are functions of the tsunami amplitude and wavelength, and the occurring rate of false alarms. In this work we present the performance of the TDA algorithm applied to <span class="hlt">tide</span> gauge data. We have adapted the new tsunami detection algorithm and the Monte Carlo test methodology to <span class="hlt">tide</span> gauges. Sea level data acquired by coastal <span class="hlt">tide</span> gauges in different locations and environmental conditions have been used in order to consider real working scenarios in the test. We also present an application of the algorithm to the tsunami event generated by Tohoku earthquake on March 11th 2011, using data recorded by several <span class="hlt">tide</span> gauges scattered all over the Pacific area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2762953','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2762953"><span>A social marketing approach to implementing evidence-based practice in VHA QUERI: the <span class="hlt">TIDES</span> depression collaborative care model</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2009-01-01</p> <p>Abstract Collaborative care models for depression in primary care are effective and cost-effective, but difficult to spread to new sites. Translating Initiatives for Depression into Effective Solutions (<span class="hlt">TIDES</span>) is an initiative to promote evidence-based collaborative care in the U.S. Veterans Health Administration (VHA). Social marketing applies marketing techniques to promote positive behavior change. Described in this paper, <span class="hlt">TIDES</span> used a social marketing approach to foster national spread of collaborative care models. <span class="hlt">TIDES</span> social marketing approach The approach relied on a sequential model of behavior change and explicit attention to audience segmentation. Segments included VHA national leadership, Veterans Integrated Service Network (VISN) regional leadership, facility managers, frontline providers, and veterans. <span class="hlt">TIDES</span> communications, materials and messages targeted each segment, guided by an overall marketing plan. Results Depression collaborative care based on the <span class="hlt">TIDES</span> model was adopted by VHA as part of the new Primary Care Mental Health Initiative and associated policies. It is currently in use in more than 50 primary care practices across the United States, and continues to spread, suggesting success for its social marketing-based dissemination strategy. Discussion and conclusion Development, execution and evaluation of the <span class="hlt">TIDES</span> marketing effort shows that social marketing is a promising approach for promoting implementation of evidence-based interventions in integrated healthcare systems. PMID:19785754</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP34A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP34A..08L"><span>First Numerical Simulations of Turbulent Dynamos Driven by Libration, Precession and <span class="hlt">Tides</span> in Triaxial Ellipsoids - An Alternative Route for Planetary Magnetism</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Bars, M.; Kanuganti, S. R.; Favier, B.</p> <p>2017-12-01</p> <p>Most of the time, planetary dynamos are - tacitly or not - associated with thermo-solutal convection. The convective dynamo model has indeed proven successful to explain the current <span class="hlt">Earth</span>'s magnetic field. However, its results are sometimes difficult to reconcile with observational data and its validity can be questioned for several celestial bodies. For instance, the small size of the Moon and Ganymede makes it difficult to maintain a sufficient temperature gradient to sustain convection and to explain their past and present magnetic fields, respectively. The same caveat applies to the growing number of planetesimals shown to have generated magnetic fields in their early history. Finally, the energy budget of the early <span class="hlt">Earth</span> is difficult to reconcile with a convective dynamo before the onset of inner core growth. Significant effort has thus been put into finding new routes for planetary dynamo. In particular, the rotational dynamics of planets, moons and small bodies, where their average spinning motion is periodically perturbed by the small mechanical forcings of libration, precession and/or <span class="hlt">tides</span>, is now widely accepted as an efficient source of core turbulence. The underlying mechanism relies on a parametric instability where the inertial waves of the rotating fluid core are resonantly excited by the small forcing, leading to exponential growth and bulk filling intense motions, pumping their energy from the orbital dynamics. Dynamos driven by mechanical forcing have been suggested for the Moon, Mars, Io, the early <span class="hlt">Earth</span>, etc. However, the real dynamo capacity of the corresponding flows has up-to-now been studied only in very limited cases, with simplified spherical/spheroidal geometries and/or overly viscous fluids. We will present here the first numerical simulations of dynamos driven by libration, precession and <span class="hlt">tides</span>, in the triaxial ellipsoidal geometry and in the turbulent regime relevant for planetary cores. We will describe the numerical techniques</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870004443','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870004443"><span>The 14 month wind stressed residual circulation (pole <span class="hlt">tide</span>) in the North Sea</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oconnor, W. P.</p> <p>1986-01-01</p> <p>From published research it is known that a quasi-periodic 14 month atmospheric pressure oscillation of a few tenths of a millibar exists in the region of the North and Baltic Seas. At some time in the cycle the associated wind stress has a westerly component that drives a circulation in the North Sea. The results of a dynamical model and comparisons with several North Sea residual circulation studies show that a large sea level gradient results along the Dutch coast. It is this feature that has been referred to as the enhanced pole <span class="hlt">tide</span>. The dynamical similarity of this pole <span class="hlt">tide</span> in the North and Baltic Seas to the annual and seasonal wind forced circulations is considered. It is inferred that the large deviations of the pole <span class="hlt">tide</span> from equilibrium at coastal stations are the result of this sea level set up forces by the 14 month wind stress cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G43B1040R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G43B1040R"><span>Sea Level, Land Motion, and the Anomalous <span class="hlt">Tide</span> at Churchill, Hudson Bay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ray, R. D.</p> <p>2015-12-01</p> <p>The importance of the <span class="hlt">tide</span> gauge at Churchill, Manitoba, cannot be overstated. It is the only permanently operating <span class="hlt">tide</span> gauge in the central Canadian Arctic, and it sits on a prime spot for monitoring the mantle's rebound from the Laurentide ice loss. Yet interpretation of the sea-level time series at Churchill has long been problematic, going back even to early work by Gutenberg in the 1940s. The long-term relative sea-level rates are inconsistent: approximately -4, -19, -5 ± 1 mm/y for the periods 1940-1970, 1970-1990, 1990-2014 respectively. Annual mean high water (MHW) and mean low water (MLW) reflect these trends until around 1990, after which MLW leveled off and is now nearly unchanging. Slightly later, around 2000, the semidiurnal <span class="hlt">tides</span> became very anomalous, with falling amplitudes and slightly increasing phase lags. The amplitude of M2 was approximately 154 cm before 2000; it dropped to about 146 cm by 2010 and reached an all-time low of 142 cm in 2014. Satellite altimeter estimates of the <span class="hlt">tide</span> in this region, although challenging because of seasonal ice cover, show no comparable M2 changes, so the tidal changes must be localized to the near vicinity of the gauge (or to the gauge itself if caused by a malfunction). On the other hand, altimetry confirms the post-1992 Churchill measurements of mean sea level, thanks to the long time series of land motion measurements obtained at GPS station CHUR, which gives a vertical uplift of 10.1 mm/y. Combining satellite altimeter data with the Churchill <span class="hlt">tide</span>-gauge data gives an implied vertical crustal rate of about 9.0 ± 0.8 mm/y, in reasonable agreement with the GPS. In summary, we have still anomalous MSL measurements at the Churchill gauge for the intermediate 1970-1990 era, and very anomalous tidal measurements since 2000, but we have apparently quite reliable MSL rates since 1990.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790060669&hterms=oceans+puerto+rico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doceans%2Bpuerto%2Brico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790060669&hterms=oceans+puerto+rico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Doceans%2Bpuerto%2Brico"><span>Oceanic geoid and <span class="hlt">tides</span> derived from GEOS 3 satellite data in the Northwestern Atlantic Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Won, I. J.; Miller, L. S.</p> <p>1979-01-01</p> <p>Two sets of GEOS 3 altimeter data which fall within about a 2.5-deg width are analyzed for ocean geoid and <span class="hlt">tides</span>. One set covers a path from Newfoundland to Cuba, and the other a path from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four <span class="hlt">tides</span>, M2, O1, S2, and K1, are derived along the two strips. While the analyses produced convergent solutions for all 40 cases, the uncertainty caused by the linear orbital bias error of the satellite is too large to claim that the solutions represent the true ocean <span class="hlt">tides</span> in the area. A spot check of the result with the Mode deep-sea <span class="hlt">tide</span> gauge data shows poor agreement. A positive conclusion of this study is that despite the uncertain orbital error the oceanic geoid obtained through this analysis can improve significantly the short-wavelength structure over existing spherical harmonic geoid models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930005789&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930005789&hterms=oceans+tide&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Doceans%2Btide"><span>Global ocean <span class="hlt">tides</span> through assimilation of oceanographic and altimeter satellite data in a hydrodynamic model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leprovost, Christian; Mazzega, P.; Vincent, P.</p> <p>1991-01-01</p> <p>Ocean <span class="hlt">tides</span> must be considered in many scientific disciplines: astronomy, oceanography, geodesy, geophysics, meteorology, and space technologies. Progress in each of these disciplines leads to the need for greater knowledge and more precise predictions of the ocean <span class="hlt">tide</span> contribution. This is particularly true of satellite altimetry. On one side, the present and future satellite altimetry missions provide and will supply new data that will contribute to the improvement of the present ocean <span class="hlt">tide</span> solutions. On the other side, tidal corrections included in the Geophysical Data Records must be determined with the maximum possible accuracy. The valuable results obtained with satellite altimeter data thus far have not been penalized by the insufficiencies of the present ocean <span class="hlt">tide</span> predictions included in the geophysical data records (GDR's) because the oceanic processes investigated have shorter wavelengths than the error field of the tidal predictions, so that the residual errors of the tidal corrections are absorbed in the empirical tilt and bias corrections of the satellite orbit. For future applications to large-scale oceanic phenomena, however, it will no longer be possible to ignore these insufficiencies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4500M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4500M"><span>Examples of learning activities for <span class="hlt">Earth</span> and Space Sciences in the new Italian National curriculum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macario, Maddalena</p> <p>2016-04-01</p> <p>In the last few years, starting from 2010, science curricula were changed dramatically in the secondary Italian school as consequence of a radical law reform. In particular, <span class="hlt">Earth</span> Science and Astronomy subjects have been shifted from the last to the previous school years; in addition, these subjects have been integrated with other natural sciences learning, such as biology and chemistry. As a consequence, Italian teachers felt forced to totally revise their teaching methods for all of these disciplines. The most demanding need was adapting content to younger learners, as those of the first years are, who usually do have neither pre-knowledge in physics nor high level maths skills. Secondly, content learning was progressively driven toward a greater attention to environmental issues in order to raise more awareness in learners about global changes as examples of fragile equilibrium of our planet. In this work some examples of activities are shown, to introduce students to some astronomical phenomena in a simpler way, which play a key role in influencing other <span class="hlt">Earth</span>'s events, in order to make pupils more conscious about how and to what extent our planet depends on space, at different time scales. The activities range from moon motions affecting <span class="hlt">tides</span>, to secondary <span class="hlt">Earth</span> motions, which are <span class="hlt">responsible</span> for climate changes, to the possibility to find life forms in other parts of the Universe, to the possibility for humans to live in the space for future space missions. Students are involved in hands-on inquiry-based laboratories that scaffold both theoretic knowledge and practical skills for a deeper understanding of cause-effect relationships existing in the <span class="hlt">Earth</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.3754O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.3754O"><span>Daily estimates of the migrating <span class="hlt">tide</span> and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortland, David A.</p> <p>2017-04-01</p> <p>Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and <span class="hlt">tide</span> components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal <span class="hlt">tide</span> extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal <span class="hlt">tide</span> extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating <span class="hlt">tides</span> is due to changes in the mean flow structure and the superposition of the tidal <span class="hlt">responses</span> to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900011199','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900011199"><span>An improved model for the <span class="hlt">Earth</span>'s gravity field</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.</p> <p>1989-01-01</p> <p>An improved model for the <span class="hlt">Earth</span>'s gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid <span class="hlt">Earth</span> <span class="hlt">tide</span> parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980008058','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980008058"><span>Impulse <span class="hlt">Response</span> Measurements Over Space-<span class="hlt">Earth</span> Paths Using the GPS Coarse/Acquisition Codes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lemmon, J. J.; Papazian, P. B.</p> <p>1995-01-01</p> <p>The impulse <span class="hlt">responses</span> of radio transmission channels over space-<span class="hlt">earth</span> paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse <span class="hlt">responses</span> are described. Examples of impulse <span class="hlt">response</span> measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3474721','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3474721"><span>Applicability of Hydrogen Peroxide in Brown <span class="hlt">Tide</span> Control – Culture and Microcosm Studies</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Randhawa, Varunpreet; Thakkar, Megha; Wei, Liping</p> <p>2012-01-01</p> <p>Brown <span class="hlt">tide</span> algal blooms, caused by the excessive growth of Aureococcus anophagefferens, recur in several northeastern US coastal bays. Direct bloom control could alleviate the ecological and economic damage associated with bloom outbreak. This paper explored the effectiveness and safety of natural chemical biocide hydrogen peroxide (H2O2) for brown <span class="hlt">tide</span> bloom control. Culture studies showed that H2O2 at 1.6 mg L−1 effectively eradicated high density A. anophagefferens within 24-hr, but caused no significant growth inhibition in the diatoms, prymnesiophytes, green algae and dinoflagellates of >2–3 μm cell sizes among 12 phytoplankton species tested over 1-week observation. When applied to brown <span class="hlt">tide</span> bloom prone natural seawater in a microcosm study, this treatment effectively removed the developing brown <span class="hlt">tide</span> bloom, while the rest of phytoplankton assemblage (quantified via HPLC based marker pigment analyses), particularly the diatoms and green algae, experienced only transient suppression then recovered with total chlorophyll a exceeding that in the controls within 72-hr; cyanobacteria was not eradicated but was still reduced about 50% at 72-hr, as compared to the controls. The action of H2O2 against phytoplankton as a function of cell size and cell wall structure, and a realistic scenario of H2O2 application were discussed. PMID:23082223</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OSJ...tmp...25O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OSJ...tmp...25O"><span><span class="hlt">Tide</span>-related Changes in mRNA Abundance of Aromatases and Estrogen Receptors in the Ovary and Brain of the Threespot Wrasse Halichoeres trimaculatus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oh, Dae-Ju; Hur, Sung-Pyo; Bouchekioua, Selma; Takeuchi, Yuki; Udagawa, Shingo; Aluru, Neelakanteswar; Park, Yong-Ju; Park, Ji-Gweon; Kim, Se-Jae; Moon, Thomas W.; Vijayan, Mathilakath M.; Takemura, Akihiro</p> <p>2018-05-01</p> <p>The threespot wrasse (Halichoeres trimaculatus; Family Labridae) is a common coral reef species of the Indo-Pacific Ocean. Given that this species spawns daily at high <span class="hlt">tide</span> (HT), we hypothesized that endocrine changes in relation to gonadal development are synchronized with the tidal cycle. To test this, we examined the transcript abundance of two cytochrome P450 aromatases (cyp19a and cyp19b) and two estrogen receptors (erα and erβ) in the ovary and brain of this species in <span class="hlt">response</span> to tidal change. When fish were collected around four tidal points [low <span class="hlt">tide</span> (LT), flood <span class="hlt">tide</span> (FT), high <span class="hlt">tide</span> (HT), and ebb <span class="hlt">tide</span> (ET)], gonadosomatic index and oocyte diameter increased around HT and FT, respectively. Ovulatory follicles were observed in ovaries around HT. Real-time quantitative polymerase-chain reaction revealed that mRNA abundance of cyp19a and erα, but not erβ, in the ovary increased around ET and HT, respectively. On the other hand, mRNA levels of cyp19b in the forebrain were significantly higher around FT. Increases of erα and erβ mRNA abundance around FT were observed in all areas of the brain and the midbrain, respectively. The changes in mRNA abundance of key genes involved in reproduction at specific tidal cycles, along with the development of the vitellogenic oocytes in the ovary, support our hypothesis that synchronization of endocrine changes to the tidal periodicity plays a role in the gonadal development of this species. We hypothesize that conversion of testosterone to E2 in the brain may be associated with the spawning behavior given that the wrasse exhibits group spawning with a territory-holding male around HT.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CSR...116....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CSR...116....1S"><span>Temperature variability caused by internal <span class="hlt">tides</span> in the coral reef ecosystem of Hanauma bay, Hawai'i</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Katharine A.; Rocheleau, Greg; Merrifield, Mark A.; Jaramillo, Sergio; Pawlak, Geno</p> <p>2016-03-01</p> <p>Hanauma Bay Nature Preserve is a shallow bay (<30 m depth) on the island of O'ahu, Hawai'i, offshore of which tidal flow over deep ridge topography (500-1000 m depth) is known to generate semidiurnal frequency internal <span class="hlt">tides</span>. A field experiment was conducted during March to June 2009 to determine whether the deep internal <span class="hlt">tides</span> propagate shoreward to influence variability in temperature and currents in the bay environment. Temperature observations in the bay exhibit a diurnal cycle that is strongest near the surface (upper 10 m) and is associated with solar heating. In early summer (May-June), as the upper mixed layer warms and a shallow seasonal thermocline develops, temperature fluctuations in deeper bay waters (>15 m depth) become dominated by large semidiurnal variations (up to 2.7 °C) that are attributed to the internal <span class="hlt">tide</span>. These temperature drops caused by the internal <span class="hlt">tide</span> occur consistently twice a day under summer stratification at depths as shallow as 15 m, while smaller temperature drops (up to 1.8 °C) occur occasionally at 5 m. Although semidiurnal band temperatures vary seasonally, semidiurnal band currents exhibit similar magnitudes in spring and summer. This suggests that the weak temperature fluctuations in spring are due to the bay residing entirely in the upper mixed layer at this time of year, while internal <span class="hlt">tide</span> energy continues to influence currents. Observations made along a cross-shore/vertical transect at the center of the bay with an autonomous underwater vehicle highlight the structure of cold intrusions that fill a large portion of the bay as well as the relationship between temperature, salinity, chlorophyll, and backscatter. Near-bottom, advective heat flux estimates at the mouth of the bay indicate that the internal <span class="hlt">tide</span> tends to advect cold water into the bay primarily on the northeast side of the bay entrance, with cold water outflow on the opposite side. The observations highlight the role of the internal <span class="hlt">tide</span> along with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950049125&hterms=information+processing+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Bprocessing%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950049125&hterms=information+processing+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation%2Bprocessing%2Bmodel"><span>TOPEX/POSEIDON <span class="hlt">tides</span> estimated using a global inverse model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Egbert, Gary D.; Bennett, Andrew F.; Foreman, Michael G. G.</p> <p>1994-01-01</p> <p>Altimetric data from the TOPEX/POSEIDON mission will be used for studies of global ocean circulation and marine geophysics. However, it is first necessary to remove the ocean <span class="hlt">tides</span>, which are aliased in the raw data. The <span class="hlt">tides</span> are constrained by the two distinct types of information: the hydrodynamic equations which the tidal fields of elevations and velocities must satisfy, and direct observational data from <span class="hlt">tide</span> gauges and satellite altimetry. Here we develop and apply a generalized inverse method, which allows us to combine rationally all of this information into global tidal fields best fitting both the data and the dynamics, in a least squares sense. The resulting inverse solution is a sum of the direct solution to the astronomically forced Laplace tidal equations and a linear combination of the representers for the data functionals. The representer functions (one for each datum) are determined by the dynamical equations, and by our prior estimates of the statistics or errors in these equations. Our major task is a direct numerical calculation of these representers. This task is computationally intensive, but well suited to massively parallel processing. By calculating the representers we reduce the full (infinite dimensional) problem to a relatively low-dimensional problem at the outset, allowing full control over the conditioning and hence the stability of the inverse solution. With the representers calculated we can easily update our model as additional TOPEX/POSEIDON data become available. As an initial illustration we invert harmonic constants from a set of 80 open-ocean <span class="hlt">tide</span> gauges. We then present a practical scheme for direct inversion of TOPEX/POSEIDON crossover data. We apply this method to 38 cycles of geophysical data records (GDR) data, computing preliminary global estimates of the four principal tidal constituents, M(sub 2), S(sub 2), K(sub 1) and O(sub 1). The inverse solution yields tidal fields which are simultaneously smoother, and in better</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>