Sample records for earth visualization tools

  1. Exploratory Climate Data Visualization and Analysis Using DV3D and UVCDAT

    NASA Technical Reports Server (NTRS)

    Maxwell, Thomas

    2012-01-01

    Earth system scientists are being inundated by an explosion of data generated by ever-increasing resolution in both global models and remote sensors. Advanced tools for accessing, analyzing, and visualizing very large and complex climate data are required to maintain rapid progress in Earth system research. To meet this need, NASA, in collaboration with the Ultra-scale Visualization Climate Data Analysis Tools (UVCOAT) consortium, is developing exploratory climate data analysis and visualization tools which provide data analysis capabilities for the Earth System Grid (ESG). This paper describes DV3D, a UV-COAT package that enables exploratory analysis of climate simulation and observation datasets. OV3D provides user-friendly interfaces for visualization and analysis of climate data at a level appropriate for scientists. It features workflow inte rfaces, interactive 40 data exploration, hyperwall and stereo visualization, automated provenance generation, and parallel task execution. DV30's integration with CDAT's climate data management system (COMS) and other climate data analysis tools provides a wide range of high performance climate data analysis operations. DV3D expands the scientists' toolbox by incorporating a suite of rich new exploratory visualization and analysis methods for addressing the complexity of climate datasets.

  2. Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3

    NASA Astrophysics Data System (ADS)

    Endsley, K. A.; Billmire, M. G.

    2016-01-01

    Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.

  3. Visualizing Dynamic Weather and Ocean Data in Google Earth

    NASA Astrophysics Data System (ADS)

    Castello, C.; Giencke, P.

    2008-12-01

    Katrina. Climate change. Rising sea levels. Low lake levels. These headliners, and countless others like them, underscore the need to better understand our changing oceans and lakes. Over the past decade, efforts such as the Global Ocean Observing System (GOOS) have added to this understanding, through the creation of interoperable ocean observing systems. These systems, including buoy networks, gliders, UAV's, etc, have resulted in a dramatic increase in the amount of Earth observation data available to the public. Unfortunately, these data tend to be restrictive to mass consumption, owing to large file sizes, incompatible formats, and/or a dearth of user friendly visualization software. Google Earth offers a flexible way to visualize Earth observation data. Marrying high resolution orthoimagery, user friendly query and navigation tools, and the power of OGC's KML standard, Google Earth can make observation data universally understandable and accessible. This presentation will feature examples of meteorological and oceanographic data visualized using KML and Google Earth, along with tools and tips for integrating other such environmental datasets.

  4. Survey of visualization and analysis tools

    NASA Technical Reports Server (NTRS)

    Meyer, P. J.

    1994-01-01

    A large number of commercially available visualization and analysis tools are available to the researcher. Some of the strengths and limitations of some of these tools, from the viewpoint of the earth sciences discipline, are discussed. Visualization and analysis tools fall into one of two categories: those that are designed to a specific purpose and are non-extensive and those that are generic visual programming tools that are extensible. Most of the extensible packages examined incorporate a data flow paradigm.

  5. Coastal On-line Assessment and Synthesis Tool 2.0

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Navard, Andrew; Nguyen, Beth

    2011-01-01

    COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.

  6. Google-Earth Based Visualizations for Environmental Flows and Pollutant Dispersion in Urban Areas

    PubMed Central

    Liu, Daoming; Kenjeres, Sasa

    2017-01-01

    In the present study, we address the development and application of an efficient tool for conversion of results obtained by an integrated computational fluid dynamics (CFD) and computational reaction dynamics (CRD) approach and their visualization in the Google Earth. We focus on results typical for environmental fluid mechanics studies at a city scale that include characteristic wind flow patterns and dispersion of reactive scalars. This is achieved by developing a code based on the Java language, which converts the typical four-dimensional structure (spatial and temporal dependency) of data results in the Keyhole Markup Language (KML) format. The visualization techniques most often used are revisited and implemented into the conversion tool. The potential of the tool is demonstrated in a case study of smog formation due to an intense traffic emission in Rotterdam (The Netherlands). It is shown that the Google Earth can provide a computationally efficient and user-friendly means of data representation. This feature can be very useful for visualization of pollution at street levels, which is of great importance for the city residents. Various meteorological and traffic emissions can be easily visualized and analyzed, providing a powerful, user-friendly tool for traffic regulations and urban climate adaptations. PMID:28257078

  7. A Java-based tool for creating KML files from GPS waypoints

    NASA Astrophysics Data System (ADS)

    Kinnicutt, P. G.; Rivard, C.; Rimer, S.

    2008-12-01

    Google Earth provides a free tool with powerful capabilities for visualizing geoscience images and data. Commercial software tools exist for doing sophisticated digitizing and spatial modeling , but for the purposes of presentation, visualization and overlaying aerial images with data Google Earth provides much of the functionality. Likewise, with current technologies in GPS (Global Positioning System) systems and with Google Earth Plus, it is possible to upload GPS waypoints, tracks and routes directly into Google Earth for visualization. However, older technology GPS units and even low-cost GPS units found today may lack the necessary communications interface to a computer (e.g. no Bluetooth, no WiFi, no USB, no Serial, etc.) or may have an incompatible interface, such as a Serial port but no USB adapter available. In such cases, any waypoints, tracks and routes saved in the GPS unit or recorded in a field notebook must be manually transferred to a computer for use in a GIS system or other program. This presentation describes a Java-based tool developed by the author which enables users to enter GPS coordinates in a user-friendly manner, then save these coordinates in a Keyhole MarkUp Language (KML) file format, for visualization in Google Earth. This tool either accepts user-interactive input or accepts input from a CSV (Comma Separated Value) file, which can be generated from any spreadsheet program. This tool accepts input in the form of lat/long or UTM (Universal Transverse Mercator) coordinates. This presentation describes this system's applicability through several small case studies. This free and lightweight tool simplifies the task of manually inputting GPS data into Google Earth for people working in the field without an automated mechanism for uploading the data; for instance, the user may not have internet connectivity or may not have the proper hardware or software. Since it is a Java application and not a web- based tool, it can be installed on one's field laptop and the GPS data can be manually entered without the need for internet connectivity. This tool provides a table view of the GPS data, but lacks a KML viewer to view the data overlain on top of an aerial view, as this viewer functionality is provided in Google Earth. The tool's primary contribution lies in its more convenient method for entering the GPS data manually when automated technologies are not available.

  8. The EarthKAM project: creating space imaging tools for teaching and learning

    NASA Astrophysics Data System (ADS)

    Dodson, Holly; Levin, Paula; Ride, Sally; Souviney, Randall

    2000-07-01

    The EarthKAM Project is a NASA-supported partnership of secondary and university students with Earth Science and educational researchers. This report describes an ongoing series of activities that more effectively integrate Earth images into classroom instruction. In this project, students select and analyze images of the Earth taken during Shuttle flights and use the tools of modern science (computers, data analysis tools and the Internet) to disseminate the images and results of their research. A related study, the Visualizing Earth Project, explores in greater detail the cognitive aspects of image processing and the educational potential of visualizations in science teaching and learning. The content and organization of the EarthKAM datasystem of images and metadata are also described. An associated project is linking this datasystem of images with the Getty Thesaurus of Geographic Names, which will allow users to access a wide range of geographic and political information for the regions shown in EarthKAM images. Another project will provide tools for automated feature extraction from EarthKAM images. In order to make EarthKAM resources available to a larger number of schools, the next important goal is to create an integrated datasystem that combines iterative resource validation and publication, with multimedia management of instructional materials.

  9. Google Earth Mapping Exercises for Structural Geology Students--A Promising Intervention for Improving Penetrative Visualization Ability

    ERIC Educational Resources Information Center

    Giorgis, Scott

    2015-01-01

    Three-dimensional thinking skills are extremely useful for geoscientists, and at the undergraduate level, these skills are often emphasized in structural geology courses. Google Earth is a powerful tool for visualizing the three-dimensional nature of data collected on the surface of Earth. The results of a 5 y pre- and posttest study of the…

  10. Three-Dimensional Soil Landscape Modeling: A Potential Earth Science Teaching Tool

    ERIC Educational Resources Information Center

    Schmid, Brian M.; Manu, Andrew; Norton, Amy E.

    2009-01-01

    Three-dimensional visualization is helpful in understanding soils, and three dimensional (3-D) tools are gaining popularity in teaching earth sciences. Those tools are still somewhat underused in soil science, yet soil properties such as texture, color, and organic carbon content vary both vertically and horizontally across the landscape. These…

  11. JPL Earth Science Center Visualization Multitouch Table

    NASA Astrophysics Data System (ADS)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  12. 3D Visualization for Planetary Missions

    NASA Astrophysics Data System (ADS)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  13. The Visual Geophysical Exploration Environment: A Multi-dimensional Scientific Visualization

    NASA Astrophysics Data System (ADS)

    Pandya, R. E.; Domenico, B.; Murray, D.; Marlino, M. R.

    2003-12-01

    The Visual Geophysical Exploration Environment (VGEE) is an online learning environment designed to help undergraduate students understand fundamental Earth system science concepts. The guiding principle of the VGEE is the importance of hands-on interaction with scientific visualization and data. The VGEE consists of four elements: 1) an online, inquiry-based curriculum for guiding student exploration; 2) a suite of El Nino-related data sets adapted for student use; 3) a learner-centered interface to a scientific visualization tool; and 4) a set of concept models (interactive tools that help students understand fundamental scientific concepts). There are two key innovations featured in this interactive poster session. One is the integration of concept models and the visualization tool. Concept models are simple, interactive, Java-based illustrations of fundamental physical principles. We developed eight concept models and integrated them into the visualization tool to enable students to probe data. The ability to probe data using a concept model addresses the common problem of transfer: the difficulty students have in applying theoretical knowledge to everyday phenomenon. The other innovation is a visualization environment and data that are discoverable in digital libraries, and installed, configured, and used for investigations over the web. By collaborating with the Integrated Data Viewer developers, we were able to embed a web-launchable visualization tool and access to distributed data sets into the online curricula. The Thematic Real-time Environmental Data Distributed Services (THREDDS) project is working to provide catalogs of datasets that can be used in new VGEE curricula under development. By cataloging this curricula in the Digital Library for Earth System Education (DLESE), learners and educators can discover the data and visualization tool within a framework that guides their use.

  14. CEOS visualization environment (COVE) tool for intercalibration of satellite instruments

    USGS Publications Warehouse

    Kessler, P.D.; Killough, B.D.; Gowda, S.; Williams, B.R.; Chander, G.; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of international and domestic space agencies and organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration planning efforts, whether those efforts require past, present, or future predictions. This paper provides a brief overview of the COVE tool, its validation, accuracies, and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  15. CEOS Visualization Environment (COVE) Tool for Intercalibration of Satellite Instruments

    NASA Technical Reports Server (NTRS)

    Kessler, Paul D.; Killough, Brian D.; Gowda, Sanjay; Williams, Brian R.; Chander, Gyanesh; Qu, Min

    2013-01-01

    Increasingly, data from multiple instruments are used to gain a more complete understanding of land surface processes at a variety of scales. Intercalibration, comparison, and coordination of satellite instrument coverage areas is a critical effort of space agencies and of international and domestic organizations. The Committee on Earth Observation Satellites Visualization Environment (COVE) is a suite of browser-based applications that leverage Google Earth to display past, present, and future satellite instrument coverage areas and coincident calibration opportunities. This forecasting and ground coverage analysis and visualization capability greatly benefits the remote sensing calibration community in preparation for multisatellite ground calibration campaigns or individual satellite calibration studies. COVE has been developed for use by a broad international community to improve the efficiency and efficacy of such calibration efforts. This paper provides a brief overview of the COVE tool, its validation, accuracies and limitations with emphasis on the applicability of this visualization tool for supporting ground field campaigns and intercalibration of satellite instruments.

  16. An overview of the web-based Google Earth coincident imaging tool

    USGS Publications Warehouse

    Chander, Gyanesh; Kilough, B.; Gowda, S.

    2010-01-01

    The Committee on Earth Observing Satellites (CEOS) Visualization Environment (COVE) tool is a browser-based application that leverages Google Earth web to display satellite sensor coverage areas. The analysis tool can also be used to identify near simultaneous surface observation locations for two or more satellites. The National Aeronautics and Space Administration (NASA) CEOS System Engineering Office (SEO) worked with the CEOS Working Group on Calibration and Validation (WGCV) to develop the COVE tool. The CEOS member organizations are currently operating and planning hundreds of Earth Observation (EO) satellites. Standard cross-comparison exercises between multiple sensors to compare near-simultaneous surface observations and to identify corresponding image pairs are time-consuming and labor-intensive. COVE is a suite of tools that have been developed to make such tasks easier.

  17. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less

  18. Leveraging Earth and Planetary Datasets to Support Student Investigations in an Introductory Geoscience Course

    NASA Astrophysics Data System (ADS)

    Ryan, Jeffrey; De Paor, Declan

    2016-04-01

    Engaging undergraduates in discovery-based research during their first two years of college was a listed priority in the 2012 Report of the USA President's Council of Advisors on Science and Technology (PCAST), and has been the focus of events and publications sponsored by the National Academies (NAS, 2015). Challenges faced in moving undergraduate courses and curricula in this direction are the paired questions of how to effectively provide such experiences to large numbers of students, and how to do so in ways that are cost- and time-effiicient for institutions and instructional faculty. In the geosciences, free access to of a growing number of global earth and planetary data resources and associated visualization tools permits one to build into introductory-level courses straightforward data interrogation and analysis activities that provide students with valuable experiences with the compilation and critical investigation of earth and planetary data. Google Earth provides global Earth and planetary imagery databases that span large ranges in resolution and in time, permitting easy examination of earth surface features and surface features on Mars or the Moon. As well, "community" data sources (i.e., Gigapan photographic collections and 3D visualizations of geologic features, as are supported by the NSF GEODE project) allow for intensive interrogation of specific geologic phenomena. Google Earth Engine provides access to rich satellite-based earth observation data, supporting studies of weather and related student efforts. GeoMapApp, the freely available visualization tool of the Interdisciplinary Earth Data Alliance (IEDA), permits examination of the seafloor and the integration of a range of third-party data. The "Earth" meteorological website (earth.nullschool.net) provides near real-time visualization of global weather and oceanic conditions, which in combination with weather option data from Google Earth permits a deeper interrogation of atmospheric conditions. In combination, these freely accessible data resources permit one to transform general- audience geoscience courses into extended investigations, in which students discover key information about the workings of our planet.

  19. Visualization tool for three-dimensional plasma velocity distributions (ISEE_3D) as a plug-in for SPEDAS

    NASA Astrophysics Data System (ADS)

    Keika, Kunihiro; Miyoshi, Yoshizumi; Machida, Shinobu; Ieda, Akimasa; Seki, Kanako; Hori, Tomoaki; Miyashita, Yukinaga; Shoji, Masafumi; Shinohara, Iku; Angelopoulos, Vassilis; Lewis, Jim W.; Flores, Aaron

    2017-12-01

    This paper introduces ISEE_3D, an interactive visualization tool for three-dimensional plasma velocity distribution functions, developed by the Institute for Space-Earth Environmental Research, Nagoya University, Japan. The tool provides a variety of methods to visualize the distribution function of space plasma: scatter, volume, and isosurface modes. The tool also has a wide range of functions, such as displaying magnetic field vectors and two-dimensional slices of distributions to facilitate extensive analysis. The coordinate transformation to the magnetic field coordinates is also implemented in the tool. The source codes of the tool are written as scripts of a widely used data analysis software language, Interactive Data Language, which has been widespread in the field of space physics and solar physics. The current version of the tool can be used for data files of the plasma distribution function from the Geotail satellite mission, which are publicly accessible through the Data Archives and Transmission System of the Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA). The tool is also available in the Space Physics Environment Data Analysis Software to visualize plasma data from the Magnetospheric Multiscale and the Time History of Events and Macroscale Interactions during Substorms missions. The tool is planned to be applied to data from other missions, such as Arase (ERG) and Van Allen Probes after replacing or adding data loading plug-ins. This visualization tool helps scientists understand the dynamics of space plasma better, particularly in the regions where the magnetohydrodynamic approximation is not valid, for example, the Earth's inner magnetosphere, magnetopause, bow shock, and plasma sheet.

  20. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  1. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  2. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data analysis and visualization tools is also available within Giovanni. The GES DISC is currently developing a systematic series of training modules for Earth science satellite data, associated with our development of additional datasets and data visualization tools for Giovanni. Training sessions will include an overview of the Earth science datasets archived at Goddard, an overview of terms and techniques associated with satellite remote sensing, dataset-specific issues, an overview of Giovanni functionality, and a series of examples of how data can be readily accessed and visualized.

  3. NASA/NOAA/AMS Earth Science Electronic Theatre

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat 7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite, Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  4. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    NASA Astrophysics Data System (ADS)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery, maps, and data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers within a common 3D coordinate space. Data management within the OEF handles and hides the inevitable quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Heuristics are used to extract necessary metadata used to guide data and visual operations. Derived data representations are computed to better support fluid interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization makes use of 3D graphics hardware support found on today's computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.

  5. BingEO: Enable Distributed Earth Observation Data for Environmental Research

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yang, C.; Xu, Y.

    2010-12-01

    Our planet is facing great environmental challenges including global climate change, environmental vulnerability, extreme poverty, and a shortage of clean cheap energy. To address these problems, scientists are developing various models to analysis, forecast, simulate various geospatial phenomena to support critical decision making. These models not only challenge our computing technology, but also challenge us to feed huge demands of earth observation data. Through various policies and programs, open and free sharing of earth observation data are advocated in earth science. Currently, thousands of data sources are freely available online through open standards such as Web Map Service (WMS), Web Feature Service (WFS) and Web Coverage Service (WCS). Seamless sharing and access to these resources call for a spatial Cyberinfrastructure (CI) to enable the use of spatial data for the advancement of related applied sciences including environmental research. Based on Microsoft Bing Search Engine and Bing Map, a seamlessly integrated and visual tool is under development to bridge the gap between researchers/educators and earth observation data providers. With this tool, earth science researchers/educators can easily and visually find the best data sets for their research and education. The tool includes a registry and its related supporting module at server-side and an integrated portal as its client. The proposed portal, Bing Earth Observation (BingEO), is based on Bing Search and Bing Map to: 1) Use Bing Search to discover Web Map Services (WMS) resources available over the internet; 2) Develop and maintain a registry to manage all the available WMS resources and constantly monitor their service quality; 3) Allow users to manually register data services; 4) Provide a Bing Maps-based Web application to visualize the data on a high-quality and easy-to-manipulate map platform and enable users to select the best data layers online. Given the amount of observation data accumulated already and still growing, BingEO will allow these resources to be utilized more widely, intensively, efficiently and economically in earth science applications.

  6. EarthSLOT (an Earth Science, Logistics, and Outreach Terrainbase): Or, How You Can Create 3D, Interactive Visualizations of the Earth with Little or No Funds.

    NASA Astrophysics Data System (ADS)

    Prokein, P.; Nolan, M.

    2004-12-01

    In spring of 2004 we received a Small Grant for Exploratory Research (SGER) from the NSF's Office of Polar Program's Arctic Logistics and Research Support program to create an internet-based, interactive, 3D terrain and data visualization system of the Arctic. A preliminary version of this application, called EarthSLOT, can now be found on-line at www.earthslot.org. EarthSLOT allows users to visualize the earth, whether as a spinning globe from space or from the sea-floor looking up at a mid-ocean ridge or anywhere in between. Flight controls range from completely interactive to following pre-planned routes, and the visualizations can be done real-time over the internet or saved as screen shots or MPG movies. The purpose of this project is to put easy-to-use 3D terrain and visualization tools into the hands of many users at little or no cost to them, by taking care of the complicated and expensive work ourselves. Therefore EarthSLOT may be an ideal tool for scientists with low outreach budgets to share their research with other scientists or the public. Those on a very low budget can use EarthSLOT for free, as can any ordinary user, without modifying it or adding their own data. Example uses would be analyzing the terrain surrounding a field site, adding a 3D visualization of a study area to a presentation, or exploring the vector data added by others to their study areas. Those with about \\$1200 to spend on the necessary commercial software can add their own content to the existing application. For example, an ecologist can add or create shapefiles that outlines their study plots and then link those outlines to web pages containing data or further information. Or a glaciologist can superimpose the locations of mass balance stakes and weather stations on the surface of a glacier, then create an mpg movie that starts in space and zooms down to the stake level to visualize how weather systems on a planetary scale relate to the local measurements. Or scientists/educators can teleconference and use the software's collaborative tools such that one user can control the displays of the others', guiding them to points of interest in 3D over the internet. EarthSLOT is a new and evolving project and we are seeking input from potential user communities on ways to improve it as well as ways to diversify and strengthen its funding base. Combinations of any resolution digital elevation models or imagery can be used in EarthSLOT, and we plan to use global Landsat mosaics as the minimum level of imagery. One way to improve this is through contributions of higher resolution data from users. Our current funding is arctic-based, but the application itself is global in nature. We are therefore seeking new funding sources to help support developments in other regions of the globe and ensure that EarthSLOT can remain on-line as a low-cost resource for as many users as possible.

  7. A Perspective of Our Planet's Atmosphere, Land, and Oceans: A View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Tucker, Compton

    2002-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to South America with its Andes Mountains and the glaciers of Patagonia, ending up close and personal in Buenos Aires. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in South America and Africa, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. New visualization tools allow us to roam & zoom through massive global mosaic images from the Himalayas to the dynamics of the Pacific Ocean that affect the climate of South and North America. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of South America and Africa showing land use and land cover change from Patagonia to the Amazon Basin, including the Andes Mountains, the Pantanal, and the Bolivian highlands. Landsat flyins to Rio Di Janeiro and Buenos Aires will be shows to emphasize the capabilities of new satellite technology to visualize our natural environment. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  8. The nature of the (visualization) game: Challenges and opportunities from computational geophysics

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.

    2016-12-01

    As the geosciences enters the era of big data, modeling and visualization become increasingly vital tools for discovery, understanding, education, and communication. Here, we focus on modeling and visualization of the structure and dynamics of the Earth's surface and interior. The past decade has seen accelerated data acquisition, including higher resolution imaging and modeling of Earth's deep interior, complex models of geodynamics, and high resolution topographic imaging of the changing surface, with an associated acceleration of computational modeling through better scientific software, increased computing capability, and the use of innovative methods of scientific visualization. The role of modeling is to describe a system, answer scientific questions, and test hypotheses; the term "model" encompasses mathematical models, computational models, physical models, conceptual models, statistical models, and visual models of a structure or process. These different uses of the term require thoughtful communication to avoid confusion. Scientific visualization is integral to every aspect of modeling. Not merely a means of communicating results, the best uses of visualization enable scientists to interact with their data, revealing the characteristics of the data and models to enable better interpretation and inform the direction of future investigation. Innovative immersive technologies like virtual reality, augmented reality, and remote collaboration techniques, are being adapted more widely and are a magnet for students. Time-varying or transient phenomena are especially challenging to model and to visualize; researchers and students may need to investigate the role of initial conditions in driving phenomena, while nonlinearities in the governing equations of many Earth systems make the computations and resulting visualization especially challenging. Training students how to use, design, build, and interpret scientific modeling and visualization tools prepares them to better understand the nature of complex, multiscale geoscience data.

  9. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  10. Spectral mapping tools from the earth sciences applied to spectral microscopy data.

    PubMed

    Harris, A Thomas

    2006-08-01

    Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures. (c) 2006 International Society for Analytical Cytology.

  11. Using Interactive Visualization to Analyze Solid Earth Data and Geodynamics Models

    NASA Astrophysics Data System (ADS)

    Kellogg, L. H.; Kreylos, O.; Billen, M. I.; Hamann, B.; Jadamec, M. A.; Rundle, J. B.; van Aalsburg, J.; Yikilmaz, M. B.

    2008-12-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. Major projects such as EarthScope and GeoEarthScope are producing the data needed to characterize the structure and kinematics of Earth's surface and interior at unprecedented resolution. At the same time, high-performance computing enables high-precision and fine- detail simulation of geodynamics processes, complementing the observational data. To facilitate interpretation and analysis of these datasets, to evaluate models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. VR has traditionally been used primarily as a presentation tool allowing active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for accelerated scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. Our approach to VR takes advantage of the specialized skills of geoscientists who are trained to interpret geological and geophysical data generated from field observations. Interactive tools allow the scientist to explore and interpret geodynamic models, tomographic models, and topographic observations, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulations or field observations. The use of VR technology enables us to improve our interpretation of crust and mantle structure and of geodynamical processes. Mapping tools based on computer visualization allow virtual "field studies" in inaccessible regions, and an interactive tool allows us to construct digital fault models for use in numerical models. Using the interactive tools on a high-end platform such as an immersive virtual reality room known as a Cave Automatic Virtual Environment (CAVE), enables the scientist to stand in data three-dimensional dataset while taking measurements. The CAVE involves three or more projection surfaces arranged as walls in a room. Stereo projectors combined with a motion tracking system and immersion recreates the experience of carrying out research in the field. This high-end system provides significant advantages for scientists working with complex volumetric data. The interactive tools also work on low-cost platforms that provide stereo views and the potential for interactivity such as a Geowall or a 3D enabled TV. The Geowall is also a well-established tool for education, and in combination with the tools we have developed, enables the rapid transfer of research data and new knowledge to the classroom. The interactive visualization tools can also be used on a desktop or laptop with or without stereo capability. Further information about the Virtual Reality User Interface (VRUI), the 3DVisualizer, the Virtual mapping tools, and the LIDAR viewer, can be found on the KeckCAVES website, www.keckcaves.org.

  12. Visualization of the NASA ICON mission in 3d

    NASA Astrophysics Data System (ADS)

    Mendez, R. A., Jr.; Immel, T. J.; Miller, N.

    2016-12-01

    The ICON Explorer mission (http://icon.ssl.berkeley.edu) will provide several data products for the atmosphere and ionosphere after its launch in 2017. This project will support the mission by investigating the capability of these tools for visualization of current and predicted observatory characteristics and data acquisition. Visualization of this mission can be accomplished using tools like Google Earth or CesiumJS, as well assistance from Java or Python. Ideally we will bring this visualization into the homes of people without the need of additional software. The path of launching a standalone website, building this environment, and a full toolkit will be discussed. Eventually, the initial work could lead to the addition of a downloadable visualization packages for mission demonstration or science visualization.

  13. Stepping Into Science Data: Data Visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Skolnik, S.

    2017-12-01

    Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.

  14. State of the Oceans: A Satellite Data Processing System for Visualizing Near Real-Time Imagery on Google Earth

    NASA Astrophysics Data System (ADS)

    Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.

    2011-12-01

    The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.

  15. A Presentation of Spectracular Visualizations

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using I m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  16. A Presentation of Spectacular Visualizations. Visions of Our Planet's Atmosphere, Land and Oceans: ETheater Presentation

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortices and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  17. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    NASA Astrophysics Data System (ADS)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  18. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Dean N.

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities.more » The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.« less

  19. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  20. Visions of Our Planet's Atmosphere, Land & Oceans - ETheater Presentation

    NASA Technical Reports Server (NTRS)

    Hasler, F.

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of ma'gazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUS, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  1. Visions of Our Planet's Atmosphere, Land and Oceans: Electronic-Theater 2000

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Delaware Bay and Philadelphia area. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer tropical cyclones & tornadic thunderstorms. See the latest spectacular images from NASA, NOAA & UMETSAT remote sensing missions like GOES, Meteosat, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. see visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including Landsat tours of the US, and Africa with drill downs of major global cities using 1 m resolution commercialized spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. see ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across a super sized panoramic screen.

  2. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, GIOVANNI

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Acker, J. G.; Kempler, S. J.

    2016-12-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to research scientists, applications scientists, applications users, and students around the world. The GES DISC is the home (archive) of NASA Precipitation and Hydrology, as well as Atmospheric Composition and Dynamics remote sensing data and information. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI, http://giovanni.gsfc.nasa.gov/) allows users to explore satellite-based data using sophisticated analyses and visualizations without downloading data and software, which is particularly suitable for novices to use NASA datasets in STEM activities. In this presentation, we will briefly introduce GIOVANNI and recommend datasets for STEM. Examples of using these datasets in STEM activities will be presented as well.

  3. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  4. Earthscape, a Multi-Purpose Interactive 3d Globe Viewer for Hybrid Data Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Sarthou, A.; Mas, S.; Jacquin, M.; Moreno, N.; Salamon, A.

    2015-08-01

    The hybrid visualization and interaction tool EarthScape is presented here. The software is able to display simultaneously LiDAR point clouds, draped videos with moving footprint, volume scientific data (using volume rendering, isosurface and slice plane), raster data such as still satellite images, vector data and 3D models such as buildings or vehicles. The application runs on touch screen devices such as tablets. The software is based on open source libraries, such as OpenSceneGraph, osgEarth and OpenCV, and shader programming is used to implement volume rendering of scientific data. The next goal of EarthScape is to perform data analysis using ENVI Services Engine, a cloud data analysis solution. EarthScape is also designed to be a client of Jagwire which provides multisource geo-referenced video fluxes. When all these components will be included, EarthScape will be a multi-purpose platform that will provide at the same time data analysis, hybrid visualization and complex interactions. The software is available on demand for free at france@exelisvis.com.

  5. SCEC-VDO: A New 3-Dimensional Visualization and Movie Making Software for Earth Science Data

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Sanskriti, F.; Yu, J.; Callaghan, S.; Maechling, P. J.; Jordan, T. H.

    2016-12-01

    Researchers and undergraduate interns at the Southern California Earthquake Center (SCEC) have created a new 3-dimensional (3D) visualization software tool called SCEC Virtual Display of Objects (SCEC-VDO). SCEC-VDO is written in Java and uses the Visualization Toolkit (VTK) backend to render 3D content. SCEC-VDO offers advantages over existing 3D visualization software for viewing georeferenced data beneath the Earth's surface. Many popular visualization packages, such as Google Earth, restrict the user to views of the Earth from above, obstructing views of geological features such as faults and earthquake hypocenters at depth. SCEC-VDO allows the user to view data both above and below the Earth's surface at any angle. It includes tools for viewing global earthquakes from the U.S. Geological Survey, faults from the SCEC Community Fault Model, and results from the latest SCEC models of earthquake hazards in California including UCERF3 and RSQSim. Its object-oriented plugin architecture allows for the easy integration of new regional and global datasets, regardless of the science domain. SCEC-VDO also features rich animation capabilities, allowing users to build a timeline with keyframes of camera position and displayed data. The software is built with the concept of statefulness, allowing for reproducibility and collaboration using an xml file. A prior version of SCEC-VDO, which began development in 2005 under the SCEC Undergraduate Studies in Earthquake Information Technology internship, used the now unsupported Java3D library. Replacing Java3D with the widely supported and actively developed VTK libraries not only ensures that SCEC-VDO can continue to function for years to come, but allows for the export of 3D scenes to web viewers and popular software such as Paraview. SCEC-VDO runs on all recent 64-bit Windows, Mac OS X, and Linux systems with Java 8 or later. More information, including downloads, tutorials, and example movies created fully within SCEC-VDO is available here: http://scecvdo.usc.edu

  6. Getting Your GIS Data into Google Earth: Data Conversion Tools and Tips

    NASA Astrophysics Data System (ADS)

    Nurik, R.; Marks, M.

    2009-12-01

    Google Earth is a powerful platform for displaying your data. You can easily visualize content using the Keyhole Markup Language (KML). But what if you don't have your data in KML format? GIS data comes in a wide variety of formats, including .shp files, CSV, and many others. What can you do? This session will walk you through some of the tools for converting data to KML format. We will explore a variety of tools, including: Google Earth Pro, GDAL/OGR, KML2KML, etc. This session will be paced so that you can follow along on your laptop if you wish. Should you want to follow along, bring a laptop, and install the trial versions of Google Earth Pro and KML2KML. It is also recommended that you download GDAL from gdal.org and install it on your system.

  7. Data Fusion and Visualization with the OpenEarth Framework (OEF)

    NASA Astrophysics Data System (ADS)

    Nadeau, D. R.; Baru, C.; Fouch, M. J.; Crosby, C. J.

    2010-12-01

    Data fusion is an increasingly important problem to solve as we strive to integrate data from multiple sources and build better models of the complex processes operating at the Earth’s surface and its interior. These data are often large, multi-dimensional, and subject to differing conventions for file formats, data structures, coordinate spaces, units of measure, and metadata organization. When visualized, these data require differing, and often conflicting, conventions for visual representations, dimensionality, icons, color schemes, labeling, and interaction. These issues make the visualization of fused Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data fusion and visualization suite of software being developed at the Supercomputer Center at the University of California, San Diego. Funded by the NSF, the project is leveraging virtual globe technology from NASA’s WorldWind to create interactive 3D visualization tools that combine layered data from a variety of sources to create a holistic view of features at, above, and beneath the Earth’s surface. The OEF architecture is cross-platform, multi-threaded, modular, and based upon Java. The OEF’s modular approach yields a collection of compatible mix-and-match components for assembling custom applications. Available modules support file format handling, web service communications, data management, data filtering, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats. Each one imports data into a general-purpose data representation that supports multidimensional grids, topography, points, lines, polygons, images, and more. From there these data then may be manipulated, merged, filtered, reprojected, and visualized. Visualization features support conventional and new visualization techniques for looking at topography, tomography, maps, and feature geometry. 3D grid data such as seismic tomography may be sliced by multiple oriented cutting planes and isosurfaced to create 3D skins that trace feature boundaries within the data. Topography may be overlaid with satellite imagery along with data such as gravity and magnetics measurements. Multiple data sets may be visualized simultaneously using overlapping layers and a common 3D+time coordinate space. Data management within the OEF handles and hides the quirks of differing file formats, web protocols, storage structures, coordinate spaces, and metadata representations. Derived data are computed automatically to support interaction and visualization while the original data is left unchanged in its original form. Data is cached for better memory and network efficiency, and all visualization is accelerated by 3D graphics hardware found on today’s computers. The OpenEarth Framework project is currently prototyping the software for use in the visualization, and integration of continental scale geophysical data being produced by EarthScope-related research in the Western US. The OEF is providing researchers with new ways to display and interrogate their data and is anticipated to be a valuable tool for future EarthScope-related research.

  8. A Presentation of Spectacular Visualizations

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes and tornadic thunderstorms. See the latest spectacular images from NASA and the National Oceanic and Atmospheric Administration (NOAA) remote sensing missions like the Geostationary Operational Environmental Satellites (GOES), NOAA, Tropical Rainfall Measuring Mission (TRMM), SeaWiFS, Landsat7, and new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran, and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science, and on National and International Network TV. New Digital Earth visualization tools allow us to roam and zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using one meter resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere and oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  9. Web-Based Tools for Data Visualization and Decision Support for South Asia

    NASA Astrophysics Data System (ADS)

    Jones, N.; Nelson, J.; Pulla, S. T.; Ames, D. P.; Souffront, M.; David, C. H.; Zaitchik, B. F.; Gatlin, P. N.; Matin, M. A.

    2017-12-01

    The objective of the NASA SERVIR project is to assist developing countries in using information provided by Earth observing satellites to assess and manage climate risks, land use, and water resources. We present a collection of web apps that integrate earth observations and in situ data to facilitate deployment of data and water resources models as decision-making tools in support of this effort. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated for many of the regional SERVIR hubs where both financial and technical capacity may be limited. All that is needed to use the system is an Internet connection and a web browser. We take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization make results intuitive and information derived actionable. We also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This makes our tools interoperable and extensible via application programming interfaces (APIs) so that tools and data from other projects can both consume and share the tools developed in our project. Our approach enables the integration of multiple types of data and models, thus facilitating collaboration between science teams in SERVIR. The apps developed thus far by our team process time-varying netCDF files from Earth observations and large-scale computer simulations and allow visualization and exploration via raster animation and extraction of time series at selected points and/or regions.

  10. Visualizing Cross-sectional Data in a Real-World Context

    NASA Astrophysics Data System (ADS)

    Van Noten, K.; Lecocq, T.

    2016-12-01

    If you could fly around your research results in three dimensions, wouldn't you like to do it? Visualizing research results properly during scientific presentations already does half the job of informing the public on the geographic framework of your research. Many scientists use the Google Earth™ mapping service (V7.1.2.2041) because it's a great interactive mapping tool for assigning geographic coordinates to individual data points, localizing a research area, and draping maps of results over Earth's surface for 3D visualization. However, visualizations of research results in vertical cross-sections are often not shown simultaneously with the maps in Google Earth. A few tutorials and programs to display cross-sectional data in Google Earth do exist, and the workflow is rather simple. By importing a cross-sectional figure into in the open software SketchUp Make [Trimble Navigation Limited, 2016], any spatial model can be exported to a vertical figure in Google Earth. In this presentation a clear workflow/tutorial is presented how to image cross-sections manually in Google Earth. No software skills, nor any programming codes are required. It is very easy to use, offers great possibilities for teaching and allows fast figure manipulation in Google Earth. The full workflow can be found in "Van Noten, K. 2016. Visualizing Cross-Sectional Data in a Real-World Context. EOS, Transactions AGU, 97, 16-19".The video tutorial can be found here: https://www.youtube.com/watch?v=Tr8LwFJ4RYU&Figure: Cross-sectional Research Examples Illustrated in Google Earth

  11. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  12. Leveraging Google Geo Tools for Interactive STEM Education: Insights from the GEODE Project

    NASA Astrophysics Data System (ADS)

    Dordevic, M.; Whitmeyer, S. J.; De Paor, D. G.; Karabinos, P.; Burgin, S.; Coba, F.; Bentley, C.; St John, K. K.

    2016-12-01

    Web-based imagery and geospatial tools have transformed our ability to immerse students in global virtual environments. Google's suite of geospatial tools, such as Google Earth (± Engine), Google Maps, and Street View, allow developers and instructors to create interactive and immersive environments, where students can investigate and resolve common misconceptions in STEM concepts and natural processes. The GEODE (.net) project is developing digital resources to enhance STEM education. These include virtual field experiences (VFEs), such as an interactive visualization of the breakup of the Pangaea supercontinent, a "Grand Tour of the Terrestrial Planets," and GigaPan-based VFEs of sites like the Canadian Rockies. Web-based challenges, such as EarthQuiz (.net) and the "Fold Analysis Challenge," incorporate scaffolded investigations of geoscience concepts. EarthQuiz features web-hosted imagery, such as Street View, Photo Spheres, GigaPans, and Satellite View, as the basis for guided inquiry. In the Fold Analysis Challenge, upper-level undergraduates use Google Earth to evaluate a doubly-plunging fold at Sheep Mountain, WY. GEODE.net also features: "Reasons for the Seasons"—a Google Earth-based visualization that addresses misconceptions that abound amongst students, teachers, and the public, many of whom believe that seasonality is caused by large variations in Earth's distance from the Sun; "Plate Euler Pole Finder," which helps students understand rotational motion of tectonic plates on the globe; and "Exploring Marine Sediments Using Google Earth," an exercise that uses empirical data to explore the surficial distribution of marine sediments in the modern ocean. The GEODE research team includes the authors and: Heather Almquist, Cinzia Cervato, Gene Cooper, Helen Crompton, Terry Pavlis, Jen Piatek, Bill Richards, Jeff Ryan, Ron Schott, Barb Tewksbury, and their students and collaborating colleagues. We are supported by NSF DUE 1323419 and a Google Geo Curriculum Award.

  13. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-based Earth Science Data in the Classroom

    NASA Technical Reports Server (NTRS)

    Lloyd, Steven; Acker, James G.; Prados, Ana I.; Leptoukh, Gregory G.

    2008-01-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite-based remote sensing data sets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable data set to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface.

  14. Modeling the Round Earth through Diagrams

    NASA Astrophysics Data System (ADS)

    Padalkar, Shamin; Ramadas, Jayashree

    Earlier studies have found that students, including adults, have problems understanding the scientifically accepted model of the Sun-Earth-Moon system and explaining day-to-day astronomical phenomena based on it. We have been examining such problems in the context of recent research on visual-spatial reasoning. Working with middle school students in India, we have developed a pedagogical sequence to build the mental model of the Earth and tried it in three schools for socially and educationally disadvantaged students. This pedagogy was developed on the basis of (1) a reading of current research in imagery and visual-spatial reasoning and (2) students' difficulties identified during the course of pretests and interviews. Visual-spatial tools such as concrete (physical) models, gestures, and diagrams are used extensively in the teaching sequence. The building of a mental model is continually integrated with drawing inferences to understand and explain everyday phenomena. The focus of this article is inferences drawn with diagrams.

  15. A Knowledge Portal and Collaboration Environment for the Earth Sciences

    NASA Astrophysics Data System (ADS)

    D'Agnese, F. A.

    2008-12-01

    Earth Knowledge is developing a web-based 'Knowledge Portal and Collaboration Environment' that will serve as the information-technology-based foundation of a modular Internet-based Earth-Systems Monitoring, Analysis, and Management Tool. This 'Knowledge Portal' is essentially a 'mash- up' of web-based and client-based tools and services that support on-line collaboration, community discussion, and broad public dissemination of earth and environmental science information in a wide-area distributed network. In contrast to specialized knowledge-management or geographic-information systems developed for long- term and incremental scientific analysis, this system will exploit familiar software tools using industry standard protocols, formats, and APIs to discover, process, fuse, and visualize existing environmental datasets using Google Earth and Google Maps. An early form of these tools and services is being used by Earth Knowledge to facilitate the investigations and conversations of scientists, resource managers, and citizen-stakeholders addressing water resource sustainability issues in the Great Basin region of the desert southwestern United States. These ongoing projects will serve as use cases for the further development of this information-technology infrastructure. This 'Knowledge Portal' will accelerate the deployment of Earth- system data and information into an operational knowledge management system that may be used by decision-makers concerned with stewardship of water resources in the American Desert Southwest.

  16. ADOPT: A tool for automatic detection of tectonic plates at the surface of convection models

    NASA Astrophysics Data System (ADS)

    Mallard, C.; Jacquet, B.; Coltice, N.

    2017-08-01

    Mantle convection models with plate-like behavior produce surface structures comparable to Earth's plate boundaries. However, analyzing those structures is a difficult task, since convection models produce, as on Earth, diffuse deformation and elusive plate boundaries. Therefore we present here and share a quantitative tool to identify plate boundaries and produce plate polygon layouts from results of numerical models of convection: Automatic Detection Of Plate Tectonics (ADOPT). This digital tool operates within the free open-source visualization software Paraview. It is based on image segmentation techniques to detect objects. The fundamental algorithm used in ADOPT is the watershed transform. We transform the output of convection models into a topographic map, the crest lines being the regions of deformation (plate boundaries) and the catchment basins being the plate interiors. We propose two generic protocols (the field and the distance methods) that we test against an independent visual detection of plate polygons. We show that ADOPT is effective to identify the smaller plates and to close plate polygons in areas where boundaries are diffuse or elusive. ADOPT allows the export of plate polygons in the standard OGR-GMT format for visualization, modification, and analysis under generic softwares like GMT or GPlates.

  17. IN13B-1660: Analytics and Visualization Pipelines for Big Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Technical Reports Server (NTRS)

    Chaudhary, Aashish; Votava, Petr; Nemani, Ramakrishna R.; Michaelis, Andrew; Kotfila, Chris

    2016-01-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  18. Analytics and Visualization Pipelines for Big ­Data on the NASA Earth Exchange (NEX) and OpenNEX

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; Votava, P.; Nemani, R. R.; Michaelis, A.; Kotfila, C.

    2016-12-01

    We are developing capabilities for an integrated petabyte-scale Earth science collaborative analysis and visualization environment. The ultimate goal is to deploy this environment within the NASA Earth Exchange (NEX) and OpenNEX in order to enhance existing science data production pipelines in both high-performance computing (HPC) and cloud environments. Bridging of HPC and cloud is a fairly new concept under active research and this system significantly enhances the ability of the scientific community to accelerate analysis and visualization of Earth science data from NASA missions, model outputs and other sources. We have developed a web-based system that seamlessly interfaces with both high-performance computing (HPC) and cloud environments, providing tools that enable science teams to develop and deploy large-scale analysis, visualization and QA pipelines of both the production process and the data products, and enable sharing results with the community. Our project is developed in several stages each addressing separate challenge - workflow integration, parallel execution in either cloud or HPC environments and big-data analytics or visualization. This work benefits a number of existing and upcoming projects supported by NEX, such as the Web Enabled Landsat Data (WELD), where we are developing a new QA pipeline for the 25PB system.

  19. Explore the virtual side of earth science

    USGS Publications Warehouse

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  20. Visualizing Geographic Data in Google Earth for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Martin, D. J.; Treves, R.

    2008-12-01

    Google Earth is an excellent tool to help students and the public visualize scientific data as with low technical skill scientific content can be shown in three dimensions against a background of remotely sensed imagery. It therefore has a variety of uses in university education and as a tool for public outreach. However, in both situations it is of limited value if it is only used to attract attention with flashy three dimensional animations. In this poster we shall illustrate several applications that represent what we believe is good educational practice. The first example shows how the combination of a floor map and a projection of Google Earth on a screen can be used to produce active learning. Students are asked to imagine where they would build a house on Big Island Hawaii in order to avoid volcanic hazards. In the second example Google Earth is used to illustrate evidence over a range of scales in a description of Lake Agassiz flood events which would be more difficult to comprehend in a traditional paper based format. In the final example a simple text manipulation application "TMapper" is used to change the color palette of a thematic map generated by the students in Google Earth to teach them about the use of color in map design.

  1. Who uses NASA Earth Science Data? Connecting with Users through the Earthdata website and Social Media

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; Brennan, J.; Bagwell, R.; Behnke, J.

    2015-12-01

    This poster will introduce and explore the various social media efforts, monthly webinar series and a redesigned website (https://earthdata.nasa.gov) established by National Aeronautics and Space Administration's (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  2. Giovanni - The Bridge Between Data and Science

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Acker, James

    2017-01-01

    This article describes new features in the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni), a user-friendly online tool that enables visualization, analysis, and assessment of NASA Earth science data sets without downloading data and software. Since the satellite era began, data collected from Earth-observing satellites have been widely used in research and applications; however, using satellite-based data sets can still be a challenge to many. To facilitate data access and evaluation, as well as scientific exploration and discovery, the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) has developed Giovanni for a wide range of users around the world. This article describes the latest capabilities of Giovanni with examples, and discusses future plans for this innovative system.

  3. A boxplot for circular data.

    PubMed

    Buttarazzi, Davide; Pandolfo, Giuseppe; Porzio, Giovanni C

    2018-05-21

    The box-and-whiskers plot is an extraordinary graphical tool that provides a quick visual summary of an observed distribution. In spite of its many extensions, a really suitable boxplot to display circular data is not yet available. Thanks to its simplicity and strong visual impact, such a tool would be especially useful in all fields where circular measures arise: biometrics, astronomy, environmetrics, Earth sciences, to cite just a few. For this reason, in line with Tukey's original idea, a Tukey-like circular boxplot is introduced. Several simulated and real datasets arising in biology are used to illustrate the proposed graphical tool. © 2018, The International Biometric Society.

  4. NetCDF-CF: Supporting Earth System Science with Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Davis, E.; Zender, C. S.; Arctur, D. K.; O'Brien, K.; Jelenak, A.; Santek, D.; Dixon, M. J.; Whiteaker, T. L.; Yang, K.

    2017-12-01

    NetCDF-CF is a community-developed convention for storing and describing earth system science data in the netCDF binary data format. It is an OGC recognized standard with numerous existing FOSS (Free and Open Source Software) and commercial software tools can explore, analyze, and visualize data that is stored and described as netCDF-CF data. To better support a larger segment of the earth system science community, a number of efforts are underway to extend the netCDF-CF convention with the goal of increasing the types of data that can be represented as netCDF-CF data. This presentation will provide an overview and update of work to extend the existing netCDF-CF convention. It will detail the types of earth system science data currently supported by netCDF-CF and the types of data targeted for support by current netCDF-CF convention development efforts. It will also describe some of the tools that support the use of netCDF-CF compliant datasets, the types of data they support, and efforts to extend them to handle the new data types that netCDF-CF will support.

  5. iGlobe Interactive Visualization and Analysis of Spatial Data

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick

    2012-01-01

    iGlobe is open-source software built on NASA World Wind virtual globe technology. iGlobe provides a growing set of tools for weather science, climate research, and agricultural analysis. Up until now, these types of sophisticated tools have been developed in isolation by national agencies, academic institutions, and research organizations. By providing an open-source solution to analyze and visualize weather, climate, and agricultural data, the scientific and research communities can more readily advance solutions needed to understand better the dynamics of our home planet, Earth

  6. MaRGEE: Move and Rotate Google Earth Elements

    NASA Astrophysics Data System (ADS)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  7. Creating User-Friendly Tools for Data Analysis and Visualization in K-12 Classrooms: A Fortran Dinosaur Meets Generation Y

    NASA Technical Reports Server (NTRS)

    Chambers, L. H.; Chaudhury, S.; Page, M. T.; Lankey, A. J.; Doughty, J.; Kern, Steven; Rogerson, Tina M.

    2008-01-01

    During the summer of 2007, as part of the second year of a NASA-funded project in partnership with Christopher Newport University called SPHERE (Students as Professionals Helping Educators Research the Earth), a group of undergraduate students spent 8 weeks in a research internship at or near NASA Langley Research Center. Three students from this group formed the Clouds group along with a NASA mentor (Chambers), and the brief addition of a local high school student fulfilling a mentorship requirement. The Clouds group was given the task of exploring and analyzing ground-based cloud observations obtained by K-12 students as part of the Students' Cloud Observations On-Line (S'COOL) Project, and the corresponding satellite data. This project began in 1997. The primary analysis tools developed for it were in FORTRAN, a computer language none of the students were familiar with. While they persevered through computer challenges and picky syntax, it eventually became obvious that this was not the most fruitful approach for a project aimed at motivating K-12 students to do their own data analysis. Thus, about halfway through the summer the group shifted its focus to more modern data analysis and visualization tools, namely spreadsheets and Google(tm) Earth. The result of their efforts, so far, is two different Excel spreadsheets and a Google(tm) Earth file. The spreadsheets are set up to allow participating classrooms to paste in a particular dataset of interest, using the standard S'COOL format, and easily perform a variety of analyses and comparisons of the ground cloud observation reports and their correspondence with the satellite data. This includes summarizing cloud occurrence and cloud cover statistics, and comparing cloud cover measurements from the two points of view. A visual classification tool is also provided to compare the cloud levels reported from the two viewpoints. This provides a statistical counterpart to the existing S'COOL data visualization tool, which is used for individual ground-to-satellite correspondences. The Google(tm) Earth file contains a set of placemarks and ground overlays to show participating students the area around their school that the satellite is measuring. This approach will be automated and made interactive by the S'COOL database expert and will also be used to help refine the latitude/longitude location of the participating schools. Once complete, these new data analysis tools will be posted on the S'COOL website for use by the project participants in schools around the US and the world.

  8. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    NASA Astrophysics Data System (ADS)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT Science Cloud for Earth and space science. In 2003 56 refereed papers were published. At the end, we introduce a couple of successful results of Earth and space sciences using these three techniques carried out on the NICT Sciences Cloud. [1] http://sc-web.nict.go.jp

  9. Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon

    2014-01-01

    Approaches used in Earth science research such as case study analysis and climatology studies involve discovering and gathering diverse data sets and information to support the research goals. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. In cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. This paper presents a specialized search, aggregation and curation tool for Earth science to address these challenges. The search rool automatically creates curated 'Data Albums', aggregated collections of information related to a specific event, containing links to relevant data files [granules] from different instruments, tools and services for visualization and analysis, and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non relevant information and data.

  10. The Diverse Data, User Driven Services and the Power of Giovanni at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung

    2017-01-01

    This presentation provides an overview of remote sensing and model data at GES (Goddard Earth Sciences) DISC (Data and Information Services Center); Overview of data services at GES DISC (Registration with NASA data system; Searching and downloading data); Giovanni (Geospatial Interactive Online VisualizationANd aNalysis Infrastructure): online data exploration tool; and NASA Earth Data and Information System.

  11. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  12. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  13. Topography Analysis and Visualization Software Supports a Guided Comparative Planetology Education Exhibit at the Smithsonian's Air and Space Museum

    NASA Technical Reports Server (NTRS)

    Roark, J. H.; Masuoka, C. M.; Frey, H. V.; Keller, J.; Williams, S.

    2005-01-01

    The Planetary Geodynamics Laboratory (http://geodynamics.gsfc.nasa.gov) of NASA s Goddard Space Flight Center designed, produced and recently delivered a "museum-friendly" version of GRIDVIEW, a grid visualization and analysis application, to the Smithsonian's National Air and Space Museum where it will be used in a guided comparative planetology education exhibit. The software was designed to enable museum visitors to interact with the same Earth and Mars topographic data and tools typically used by planetary scientists, and experience the thrill of discovery while learning about the geologic differences between Earth and Mars.

  14. What Happens to Student Learning When Color Is Added to a New Knowledge Representation Strategy? Implications from Visual Thinking Networking.

    ERIC Educational Resources Information Center

    Longo, Palma J.

    A long-term study was conducted to test the effectiveness of visual thinking networking (VTN), a new generation of knowledge representation strategies with 56 ninth grade earth science students. The recent findings about the brain's organization and processing conceptually ground VTN as a new cognitive tool used by learners when making their…

  15. DataONE: A Distributed Environmental and Earth Science Data Network Supporting the Full Data Life Cycle

    NASA Astrophysics Data System (ADS)

    Cook, R.; Michener, W.; Vieglais, D.; Budden, A.; Koskela, R.

    2012-04-01

    Addressing grand environmental science challenges requires unprecedented access to easily understood data that cross the breadth of temporal, spatial, and thematic scales. Tools are needed to plan management of the data, discover the relevant data, integrate heterogeneous and diverse data, and convert the data to information and knowledge. Addressing these challenges requires new approaches for the full data life cycle of managing, preserving, sharing, and analyzing data. DataONE (Observation Network for Earth) represents a virtual organization that enables new science and knowledge creation through preservation and access to data about life on Earth and the environment that sustains it. The DataONE approach is to improve data collection and management techniques; facilitate easy, secure, and persistent storage of data; continue to increase access to data and tools that improve data interoperability; disseminate integrated and user-friendly tools for data discovery and novel analyses; work with researchers to build intuitive data exploration and visualization tools; and support communities of practice via education, outreach, and stakeholder engagement.

  16. Into the deep Earth: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Wallenta, A.

    2012-12-01

    Illustrations make an ideal way to visualize what is not readily seen, especially for the deep Earth where photographs are impossible. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. We use the comic book format to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The first of two comics will be presented entitled, "The Adventures of GEO: Tackling Plate Tectonics."

  17. Case study of visualizing global user download patterns using Google Earth and NASA World Wind

    NASA Astrophysics Data System (ADS)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao

    2012-01-01

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).

  18. Leveraging High Resolution Topography for Education and Outreach: Updates to OpenTopography to make EarthScope and Other Lidar Datasets more Prominent in Geoscience Education

    NASA Astrophysics Data System (ADS)

    Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.

    2013-12-01

    The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The education section of the OpenTopography portal has recently been strengthened with the addition of several new resources and the re-organization of existing content for easy discovery. New resources include a detailed frequently asked questions (FAQ) section, updated 'How-to' videos for downloading data from OpenTopography and additional webpages aimed at students, educators and researchers leveraging existing and updated resources from OpenTopography, EarthScope and other organizations. In addition, the OpenLandform catalog, an online collection of classic geologic landforms depicted in lidar, has been updated to include additional tectonic landforms from EarthScope lidar datasets.

  19. Voyager Interactive Web Interface to EarthScope

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate tectonic processes are reflected in observed geophysical phenomena. Constructing maps by controlling map parameters and answering open-ended questions which describe, compare relationships, and work with both observed and model data, promote conceptual understanding of plate tectonics and related processes. The goals of curricular development emphasize inquiry, development of critical thinking skills, and student-centered interests. Custom editions of the map utility have been made as the "Jules Verne Voyager" and "Voyager Junior", for the International Lithosphere Project's "Global Strain Rate Map", and for EarthScope Education and Outreach as "EarthScope Voyager Jr.". For the latter, a number of EarthScope-specific features have been added, including locations of proposed USArray (seismic), Plate Boundary Observatory (geodetic), and San Andreas Fault Observatory at Depth sites, plus detailed maps and geographically referenced examples of EarthScope-related scientific investigations. As EarthScope develops, maps will be updated in `real time' so that students of all ages can use the data in formal and informal educational settings.

  20. Going beyond the NASA Earthdata website: Reaching out to new audiences via social media and webinars

    NASA Astrophysics Data System (ADS)

    Bagwell, R.; Wong, M. M.; Brennan, J.; Murphy, K. J.; Behnke, J.

    2014-12-01

    This poster will introduce and explore the various social media efforts and monthly webinar series recently established by the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. Some of the capabilities include twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), a data discovery and service access client (Reverb), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative, and a host of other discipline specific data discovery, data access, data subsetting and visualization tools and services. We have embarked on these efforts to reach out to new audiences and potential new users and to engage our diverse end user communities world-wide. One of the key objectives is to increase awareness of the breadth of Earth science data information, services, and tools that are publicly available while also highlighting how these data and technologies enable scientific research.

  1. The GLOBAL Learning and Observations to Benefit the Environment (GLOBE) Data Visualization and Retrieval System. Building a robust system for scientists and students.

    NASA Astrophysics Data System (ADS)

    Overoye, D.; Lewis, C.; Butler, D. M.; Andersen, T. J.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. The GLOBE Data Information System (DIS) currently supports users with the ability to enter data from over 50 different science protocols. GLOBE's Data Access and Visualization tools have been developed to accommodate the need to display and retrieve data from this large number of protocols. The community of users is also diverse, including NASA scientists, citizen scientists and grade school students. The challenge for GLOBE is to meet the needs from this diverse set of users with protocol specific displays that are simple enough for a GLOBE school to use, but also provide enough features for a NASA Scientist to retrieve data sets they are interested in. During the last 3 years, the GLOBE visualization system has evolved to meet the needs of these various users, leveraging user feedback and technological advances. Further refinements and enhancements continue. In this session we review the design and capabilities of the GLOBE visualization and data retrieval tool set, discuss the evolution of these tools, and discuss coming directions.

  2. Supporting Data Stewardship Throughout the Data Life Cycle in the Solid Earth Sciences

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Lehnert, K. A.; Carbotte, S. M.; Hsu, L.

    2013-12-01

    Stewardship of scientific data is fundamental to enabling new data-driven research, and ensures preservation, accessibility, and quality of the data, yet researchers, especially in disciplines that typically generate and use small, but complex, heterogeneous, and unstructured datasets are challenged to fulfill increasing demands of properly managing their data. The IEDA Data Facility (www.iedadata.org) provides tools and services that support data stewardship throughout the full life cycle of observational data in the solid earth sciences, with a focus on the data management needs of individual researchers. IEDA builds upon and brings together over a decade of development and experiences of its component data systems, the Marine Geoscience Data System (MGDS, www.marine-geo.org) and EarthChem (www.earthchem.org). IEDA services include domain-focused data curation and synthesis, tools for data discovery, access, visualization and analysis, as well as investigator support services that include tools for data contribution, data publication services, and data compliance support. IEDA data synthesis efforts (e.g. PetDB and Global Multi-Resolution Topography (GMRT) Synthesis) focus on data integration and analysis while emphasizing provenance and attribution. IEDA's domain-focused data catalogs (e.g. MGDS and EarthChem Library) provide access to metadata-rich long-tail data complemented by extensive metadata including attribution information and links to related publications. IEDA's visualization and analysis tools (e.g. GeoMapApp) broaden access to earth science data for domain specialist and non-specialists alike, facilitating both interdisciplinary research and education and outreach efforts. As a disciplinary data repository, a key role IEDA plays is to coordinate with its user community and to bridge the requirements and standards for data curation with both the evolving needs of its science community and emerging technologies. Development of IEDA tools and services is based first and foremost on the scientific needs of its user community. As data stewardship becomes a more integral component of the scientific workflow, IEDA investigator support services (e.g. Data Management Plan Tool and Data Compliance Reporting Tool) continue to evolve with the goal of lessening the 'burden' of data management for individual investigators by increasing awareness and facilitating the adoption of data management practices. We will highlight a variety of IEDA system components that support investigators throughout the data life cycle, and will discuss lessons learned and future directions.

  3. Adventures of Geo: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Wallenta, A.

    2015-12-01

    Illustrations are a good way to visualize what is not readily seen. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. In the second installment of "Adventures of Geo," we use the comic book format to introduce the Moon, its formation, evolution, orbit and its interplay with Earth. The exploration of such faraway places is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum.

  4. Adventures of Geo: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K. M.; Wallenta, A.

    2014-12-01

    Illustrations are a good way to visualize what is not readily seen. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. In the second installment of "Adventures of Geo," we use the comic book format to introduce the Moon, its formation, evolution, orbit and its interplay with Earth. The exploration of such faraway places is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum.

  5. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  6. Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration

    NASA Astrophysics Data System (ADS)

    Schumacher, J. A.; Yetman, G. G.

    2007-12-01

    The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.

  7. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    NASA Astrophysics Data System (ADS)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  8. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  9. BErkeley Atmospheric CO2 Network (BEACON) - Bringing Measurements of CO2 Emissions to a School Near You

    NASA Astrophysics Data System (ADS)

    Teige, V. E.; Havel, E.; Patt, C.; Heber, E.; Cohen, R. C.

    2011-12-01

    The University of California at Berkeley in collaboration with the Chabot Space and Science Center describe a set of educational programs, workshops, and exhibits based on a multi-node greenhouse gas and air quality monitoring network being deployed over Oakland, California. Examining raw numerical data using highly engaging and effective geo-data visualization tools like Google Earth can make the science come alive for students, and provide a hook for drawing them into deeper investigations. The Climate Science Investigations teacher workshop at the Chabot Space and Science Center will make use of Google Earth, Excel, and other geo-data visualization tools to step students through the process from data acquisition to discovery. Using multiple data sources, including output from the BErkeley Atmospheric CO2 Network (BEACON) project, participants will be encouraged to explore a variety of different modes of data display toward producing a unique, and ideally insightful, illumination of the data.

  10. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discover tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out nonrelevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  11. Use of Semantic Technology to Create Curated Data Albums

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Li, Xiang; Sainju, Roshan; Bakare, Rohan; Basyal, Sabin; Fox, Peter (Editor); Norack, Tom (Editor)

    2014-01-01

    One of the continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available online. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the data sets they need can obtain the specific files using these systems. However, in cases where researchers are interested in studying an event of research interest, they must manually assemble a variety of relevant data sets by searching the different distributed data systems. Consequently, there is a need to design and build specialized search and discovery tools in Earth science that can filter through large volumes of distributed online data and information and only aggregate the relevant resources needed to support climatology and case studies. This paper presents a specialized search and discovery tool that automatically creates curated Data Albums. The tool was designed to enable key elements of the search process such as dynamic interaction and sense-making. The tool supports dynamic interaction via different modes of interactivity and visual presentation of information. The compilation of information and data into a Data Album is analogous to a shoebox within the sense-making framework. This tool automates most of the tedious information/data gathering tasks for researchers. Data curation by the tool is achieved via an ontology-based, relevancy ranking algorithm that filters out non-relevant information and data. The curation enables better search results as compared to the simple keyword searches provided by existing data systems in Earth science.

  12. Instant Gratification: Striking a Balance Between Rich Interactive Visualization and Ease of Use for Casual Web Surfers

    NASA Astrophysics Data System (ADS)

    Russell, R. M.; Johnson, R. M.; Gardiner, E. S.; Bergman, J. J.; Genyuk, J.; Henderson, S.

    2004-12-01

    Interactive visualizations can be powerful tools for helping students, teachers, and the general public comprehend significant features in rich datasets and complex systems. Successful use of such visualizations requires viewers to have, or to acquire, adequate expertise in use of the relevant visualization tools. In many cases, the learning curve associated with competent use of such tools is too steep for casual users, such as members of the lay public browsing science outreach web sites or K-12 students and teachers trying to integrate such tools into their learning about geosciences. "Windows to the Universe" (http://www.windows.ucar.edu) is a large (roughly 6,000 web pages), well-established (first posted online in 1995), and popular (over 5 million visitor sessions and 40 million pages viewed per year) science education web site that covers a very broad range of Earth science and space science topics. The primary audience of the site consists of K-12 students and teachers and the general public. We have developed several interactive visualizations for use on the site in conjunction with text and still image reference materials. One major emphasis in the design of these interactives has been to ensure that casual users can quickly learn how to use the interactive features without becoming frustrated and departing before they were able to appreciate the visualizations displayed. We will demonstrate several of these "user-friendly" interactive visualizations and comment on the design philosophy we have employed in developing them.

  13. Learning GIS and exploring geolocated data with the all-in-one Geolokit toolbox for Google Earth

    NASA Astrophysics Data System (ADS)

    Watlet, A.; Triantafyllou, A.; Bastin, C.

    2016-12-01

    GIS software are today's essential tools to gather and visualize geological data, to apply spatial and temporal analysis and finally, to create and share interactive maps for further investigations in geosciences. Such skills are especially essential to learn for students who go through fieldtrips, samples collections or field experiments. However, time is generally missing to teach in detail all the aspects of visualizing geolocated geoscientific data. For these purposes, we developed Geolokit: a lightweight freeware dedicated to geodata visualization and written in Python, a high-level, cross-platform programming language. Geolokit software is accessible through a graphical user interface, designed to run in parallel with Google Earth, benefitting from the numerous interactive capabilities. It is designed as a very user-friendly toolbox that allows `geo-users' to import their raw data (e.g. GPS, sample locations, structural data, field pictures, maps), to use fast data analysis tools and to visualize these into the Google Earth environment using KML code; with no require of third party software, except Google Earth itself. Geolokit comes with a large number of geosciences labels, symbols, colours and placemarks and is applicable to display several types of geolocated data, including: Multi-points datasets Automatically computed contours of multi-points datasets via several interpolation methods Discrete planar and linear structural geology data in 2D or 3D supporting large range of structures input format Clustered stereonets and rose diagrams 2D cross-sections as vertical sections Georeferenced maps and grids with user defined coordinates Field pictures using either geo-tracking metadata from a camera built-in GPS module, or the same-day track of an external GPS In the end, Geolokit is helpful for quickly visualizing and exploring data without losing too much time in the numerous capabilities of GIS software suites. We are looking for students and teachers to discover all the functionalities of Geolokit. As this project is under development and planned to be open source, we are definitely looking to discussions regarding particular needs or ideas, and to contributions in the Geolokit project.

  14. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http://siovizcenter.ucsd.edu/workshop). In addition to daily lecture and lab exercises, COSMOS students also conduct a mini-research project of their choice that uses data ranging from the 2004 Parkfield Earthquake, to Southern California seismicity, to global seismicity. Students collect seismic data from the Internet and evaluate earthquake locations, magnitudes, temporal sequence of seismic activity, active fault planes, and plate tectonic boundaries using research quality techniques. Students are given the opportunity to build 3-D visualizations of their research data sets and archive these at the SIO Visualization Center's online library, which is globally accessible to students, teachers, researchers, and the general public (http://www.siovizcenter.ucsd.edu/library.php). These student- generated visualizations have become a practical resource for not only students and teachers, but also geophysical researchers that use the visual objects as research tools to better explore and understand their data. Through Earthquakes in Action, we offer both the tools for scientific exploration and the thrills of scientific discovery, providing students with valuable knowledge, novel research experience, and a unique sense of scientific contribution.

  15. Earth Observation oriented teaching materials development based on OGC Web services and Bashyt generated reports

    NASA Astrophysics Data System (ADS)

    Stefanut, T.; Gorgan, D.; Giuliani, G.; Cau, P.

    2012-04-01

    Creating e-Learning materials in the Earth Observation domain is a difficult task especially for non-technical specialists who have to deal with distributed repositories, large amounts of information and intensive processing requirements. Furthermore, due to the lack of specialized applications for developing teaching resources, technical knowledge is required also for defining data presentation structures or in the development and customization of user interaction techniques for better teaching results. As a response to these issues during the GiSHEO FP7 project [1] and later in the EnviroGRIDS FP7 [2] project, we have developed the eGLE e-Learning Platform [3], a tool based application that provides dedicated functionalities to the Earth Observation specialists for developing teaching materials. The proposed architecture is built around a client-server design that provides the core functionalities (e.g. user management, tools integration, teaching materials settings, etc.) and has been extended with a distributed component implemented through the tools that are integrated into the platform, as described further. Our approach in dealing with multiple transfer protocol types, heterogeneous data formats or various user interaction techniques involve the development and integration of very specialized elements (tools) that can be customized by the trainers in a visual manner through simple user interfaces. In our concept each tool is dedicated to a specific data type, implementing optimized mechanisms for searching, retrieving, visualizing and interacting with it. At the same time, in each learning resource can be integrated any number of tools, through drag-and-drop interaction, allowing the teacher to retrieve pieces of data of various types (e.g. images, charts, tables, text, videos etc.) from different sources (e.g. OGC web services, charts created through Bashyt application, etc.) through different protocols (ex. WMS, BASHYT API, FTP, HTTP etc.) and to display them all together in a unitary manner using the same visual structure [4]. Addressing the High Power Computation requirements that are met while processing environmental data, our platform can be easily extended through tools that connect to GRID infrastructures, WCS web services, Bashyt API (for creating specialized hydrological reports) or any other specialized services (ex. graphics cluster visualization) that can be reached over the Internet. At run time, on the trainee's computer each tool is launched in an asynchronous running mode and connects to the data source that has been established by the teacher, retrieving and displaying the information to the user. The data transfer is accomplished directly between the trainee's computer and the corresponding services (e.g. OGC, Bashyt API, etc.) without passing through the core server platform. In this manner, the eGLE application can provide better and more responsive connections to a large number of users.

  16. Flow visualization and modeling for education and outreach in low-income countries

    NASA Astrophysics Data System (ADS)

    Motanated, K.

    2016-12-01

    Being able to visualize the dynamic interaction between the movement of water and sediment flux is undeniably a profound tool for students and novices to understand complicated earth surface processes. In a laser-sheet flow visualization technique, a light source that is thin and monochromatic is required to illuminate sediments or tracers in the flow. However, an ideal laser sheet generator is rather expensive, especially for schools and universities residing in low-income countries. This project is proposing less-expensive options for a laser-sheet source and flow visualization experiment configuration for qualitative observation and quantitative analysis of the interaction between fluid media and sediments. Here, Fresnel lens is used to convert from point laser into sheet laser. Multiple combinations of laser diodes of various wavelength (nanometer) and power (milliwatt) and Fresnel lenses of various dimensions are analyzed. The pair that is able to produce the thinnest and brightest light sheet is not only effective but also affordable. The motion of sediments in a flow can be observed by illuminating the laser-sheet in an interested flow region. The particle motion is recorded by a video camera that is capable of taking multiple frames per second and having a narrow depth of view. The recorded video file can be played in a slow-motion mode so students can visually observe and qualitatively analyze the particle motion. An open source software package for Particle Imaging Velocimetry (PIV) can calculate the local velocity of particles from still images extracted from the video and create a vector map depicting particle motion. This flow visualization experiment is inexpensive and the configuration is simple to setup. Most importantly, this flow visualization technique serves as a fundamental tool for earth surface process education and can further be applied to sedimentary process modeling.

  17. Live Interrogation and Visualization of Earth Systems (LIVES)

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Anderson, L. C.

    2007-12-01

    Twenty tablet PCs and associated peripherals acquired through a HP Technology for Teaching grant are being used to redesign two freshman laboratory courses as well as a sophomore geobiology course in Geology and Geophysics at Louisiana State University. The two introductory laboratories serve approximately 750 students per academic year including both majors and non-majors; the geobiology course enrolls about 35 students/year and is required for majors in the department's geology concentration. Limited enrollments and 3 hour labs make it possible to incorporate hands-on visualization, animation, GIS, manipulation of data and images, and access to geological data available online. Goals of the course redesigns include: enhancing visualization of earth materials, physical/chemical/biological processes, and biosphere/geosphere history; strengthening student's ability to acquire, manage, and interpret multifaceted geological information; fostering critical thinking, the scientific method, and earth-system science/perspective in ancient and modern environments (such as coastal erosion and restoration in Louisiana or the Snowball Earth hypothesis); improving student communication skills; and increasing the quantity, quality, and diversity of students pursuing Earth Science careers. IT resources available in the laboratory provide students with sophisticated visualization tools, allowing them to switch between 2-D and 3-D reconstructions more seamlessly, and enabling them to manipulate larger integrated data- sets, thus permitting more time for critical thinking and hypothesis testing. IT resources also enable faculty and students to simultaneously work with simulation software to animate earth processes such as plate motions or groundwater flow and immediately test hypothesis formulated in the data analysis. Finally, tablet PCs make it possible for data gathering and analysis outside a formal classroom. As a result, students will achieve fluency in using visualization and technology for informal and formal scientific communication. The equipment and exercises developed also will be used in additional upper level undergraduate classes and two outreach programs: NSF funded Geoscience Alliance for Enhanced Minority Participation and Shell Foundation funded Shell Undergraduate Recruiting and Geoscience Education.

  18. The Earth Science Research Network as Seen Through Network Analysis of the AGU

    NASA Astrophysics Data System (ADS)

    Narock, T.; Hasnain, S.; Stephan, R.

    2017-12-01

    Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.

  19. The Science Behind the NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Starr, David (Technical Monitor)

    2002-01-01

    Details of the science stories and scientific results behind the Etheater Earth Science Visualizations from the major remote sensing institutions around the country will be explained. The NASA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Temple Square and the University of Utah Campus. Go back to the early weather satellite images from the 1960s see them contrasted with the latest US/Europe/Japan global weather data. See the latest images and image sequences from NASA & NOAA missions like Terra, GOES, NOAA, TRMM, SeaWiFS, Landsat 7 visualized with state-of-the art tools. A similar retrospective of numerical weather models from the 1960s will be compared with the latest "year 2002" high-resolution models. See the inner workings of a powerful hurricane as it is sliced and dissected using the University of Wisconsin Vis-5D interactive visualization system. The largest super computers are now capable of realistic modeling of the global oceans. See ocean vortexes and currents that bring up the nutrients to feed phitoplankton and zooplankton as well as draw the crill fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate regimes. The Internet and networks have appeared while computers and visualizations have vastly improved over the last 40 years. These advances make it possible to present the broad scope and detailed structure of the huge new observed and simulated datasets in a compelling and instructive manner. New visualization tools allow us to interactively roam & zoom through massive global images larger than 40,000 x 20,000 pixels. Powerful movie players allow us to interactively roam, zoom & loop through 4000 x 4000 pixel bigger than HDTV movies of up to 5000 frames. New 3D tools allow highly interactive manipulation of detailed perspective views of many changing model quantities. See the 1m resolution before and after shots of lower Manhattan and the Pentagon after the September 11 disaster as well as shots of Afghanistan from the Space Imaging IKONOS as well as debris plume images from Terra MODIS and SPOT Image. Shown by the SGI-Octane Graphics-Supercomputer are visualizations of hurricanes Michelle 2001, Floyd, Mitch, Fran and Linda. Our visualizations of these storms have been featured on the covers of the National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA's large collection of High Definition TV (HDTV) visualizations clips New visualizations of a Los Alamos global ocean model, and high-resolution results of a NASA/JPL Atlantic ocean basin model showing currents, and salinity features will be shown. El Nino/La Nina effects on sea surface temperature and sea surface height of the Pacific Ocean will also be shown. The SST simulations will be compared with GOES Gulf Stream animations and ocean productivity observations. Tours will be given of the entire Earth's land surface at 500 m resolution from recently composited Terra MODIS data, Visualizations will be shown from the Earth Science Etheater 2001 recently presented over the last years in New Zealand, Johannesburg, Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York City, Pasadena, UCAR/Boulder, and Penn State University. The presentation will use a 2-CPU SGI/CRAY Octane Super Graphics workstation with 4 GB RAM and terabyte disk array at 2048 x 768 resolution plus multimedia laptop with three high resolution projectors. Visualizations will also be featured from museum exhibits and presentations including: the Smithsonian Air & Space Museum in Washington, IMAX theater at the Maryland Science Center in Baltimore, the James Lovell Discovery World Science museum in Milwaukee, the American Museum of Natural History (NYC) Hayden Planetarium IMAX theater, etc. The Etheater is sponsored by NASA, NOAA and the American Meteorological Society. This presentation is brought to you by the University of Utah College of Mines and Earth Sciences and, the Utah Museum of Natural History.

  20. Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth

    NASA Astrophysics Data System (ADS)

    Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.

    2017-09-01

    Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.

  1. Integrating thematic web portal capabilities into the NASA Earthdata Web Infrastructure

    NASA Astrophysics Data System (ADS)

    Wong, M. M.; McLaughlin, B. D.; Huang, T.; Baynes, K.

    2015-12-01

    The National Aeronautics and Space Administration (NASA) acquires and distributes an abundance of Earth science data on a daily basis to a diverse user community worldwide. To assist the scientific community and general public in achieving a greater understanding of the interdisciplinary nature of Earth science and of key environmental and climate change topics, the NASA Earthdata web infrastructure is integrating new methods of presenting and providing access to Earth science information, data, research and results. This poster will present the process of integrating thematic web portal capabilities into the NASA Earthdata web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators. Earthdata is a part of the Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools.

  2. Earthdata User Interface Patterns: Building Usable Web Interfaces Through a Shared UI Pattern Library

    NASA Astrophysics Data System (ADS)

    Siarto, J.

    2014-12-01

    As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.

  3. Enhancing interdisciplinary collaboration and decisionmaking with J-Earth: an open source data sharing, visualization and GIS analysis platform

    NASA Astrophysics Data System (ADS)

    Prashad, L. C.; Christensen, P. R.; Fink, J. H.; Anwar, S.; Dickenshied, S.; Engle, E.; Noss, D.

    2010-12-01

    Our society currently is facing a number of major environmental challenges, most notably the threat of climate change. A multifaceted, interdisciplinary approach involving physical and social scientists, engineers and decisionmakers is critical to adequately address these complex issues. To best facilitate this interdisciplinary approach, data and models at various scales - from local to global - must be quickly and easily shared between disciplines to effectively understand environmental phenomena and human-environmental interactions. When data are acquired and studied on different scales and within different disciplines, researchers and practitioners may not be able to easily learn from each others results. For example, climate change models are often developed at a global scale, while strategies that address human vulnerability to climate change and mitigation/adaptation strategies are often assessed on a local level. Linkages between urban heat island phenomena and global climate change may be better understood with increased data flow amongst researchers and those making policy decisions. In these cases it would be useful have a single platform to share, visualize, and analyze numerical model and satellite/airborne remote sensing data with social, environmental, and economic data between researchers and practitioners. The Arizona State University 100 Cities Project and Mars Space Flight Facility are developing the open source application J-Earth, with the goal of providing this single platform, that facilitates data sharing, visualization, and analysis between researchers and applied practitioners around environmental and other sustainability challenges. This application is being designed for user communities including physical and social scientists, NASA researchers, non-governmental organizations, and decisionmakers to share and analyze data at multiple scales. We are initially focusing on urban heat island and urban ecology studies, with data and users from local to global levels. J-Earth is a Geographic Information System (GIS) that provides analytical tools for visualizing high-resolution and hyperspectral remote sensing imagery along with numeric and vector data. J-Earth is part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of tools which were first created to target NASA instruments on Mars and Lunar missions. Data can currently be incorporated in J-Earth at a scale of over 32,000 pixels per degree. Among other GIS functions, users can analyze trends along a transect line, or across vector regions, over multiple stacked numerical data layers and export their results. Open source tools, like J-Earth, are not only generally free or low-cost to users but provide the opportunity for users to contribute direction, functionality, and data standards to these projects. The flexible nature of open source projects often facilitates the incorporation of unique and emerging data sources, such as mobile phone data, sensor networks, croudsourced inputs, and social networking. The J-Earth team plans to incorporate datasources such as these with the feedback and participation of the user community.

  4. GES DAAC HDF Data Processing and Visualization Tools

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Cho, S.; Johnson, J.; Li, J.; Liu, Z.; Lu, L.; Pollack, N.; Qin, J.; Savtchenko, A.; Teng, B.

    2002-12-01

    The Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) plays a major role in enabling basic scientific research and providing access to scientific data to the general user community. Several GES DAAC Data Support Teams provide expert assistance to users in accessing data, including information on visualization tools and documentation for data products. To provide easy access to the science data, the data support teams have additionally developed many online and desktop tools for data processing and visualization. This presentation is an overview of major HDF tools implemented at the GES DAAC and aimed at optimizing access to EOS data for the Earth Sciences community. GES DAAC ONLINE TOOLS: MODIS and AIRS on-demand Channel/Variable Subsetter are web-based, on-the-fly/on-demand subsetters that perform channel/variable subsetting and restructuring for Level1B and Level 2 data products. Users can specify criteria to subset data files with desired channels and variables and then download the subsetted file. AIRS QuickLook is a CGI/IDL combo package that allows users to view AIRS/HSB/AMSU Level-1B data online by specifying a channel prior to obtaining data. A global map is also provided along with the image to show geographic coverage of the granule and flight direction of the spacecraft. OASIS (Online data AnalySIS) is an IDL-based HTML/CGI interface for search, selection, and simple analysis of earth science data. It supports binary and GRIB formatted data, such as TOVS, Data Assimilation products, and some NCEP operational products. TRMM Online Analysis System is designed for quick exploration, analyses, and visualization of TRMM Level-3 and other precipitation products. The products consist of the daily (3B42), monthly(3B43), near-real-time (3B42RT), and Willmott's climate data. The system is also designed to be simple and easy to use - users can plot the average or accumulated rainfall over their region of interest for a given time period, or plot the time series of regional rainfall average. WebGIS is an online web software that implements the Open GIS Consortium (OGC) standards for mapping requests and rendering. It allows users access to TRMM, MODIS, SeaWiFS, and AVHRR data from several DAAC map servers, as well as externally served data such as political boundaries, population centers, lakes, rivers, and elevation. GES DAAC DESKTOP TOOLS: HDFLook-MODIS is a new, multifunctional, data processing and visualization tool for Radiometric and Geolocation, Atmosphere, Ocean, and Land MODIS HDF-EOS data. Features include (1) accessing and visualization of all swath (Levels l and 2) MODIS and AIRS products, and gridded (Levels 3 and 4) MODIS products; (2) re-mapping of swath data to world map; (3) geo-projection conversion; (4) interactive and batch mode capabilities; (5) subsetting and multi-granule processing; and (6) data conversion. SIMAP is an IDL-based script that is designed to read and map MODIS Level 1B (L1B) and Level 2 (L2) Ocean and Atmosphere products. It is a non-interactive, command line executed tool. The resulting maps are scaled to physical units (e.g., radiances, concentrations, brightness temperatures) and saved in binary files. TRMM HDF (in C and Fortran), reads in TRMM HDF data files and writes out user-selected SDS arrays and Vdata tables as separate flat binary files.

  5. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  6. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have retreated worldwide in a response to global change. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  7. EarthChem: International Collaboration for Solid Earth Geochemistry in Geoinformatics

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Lehnert, K. A.; Hofmann, A. W.; Sarbas, B.; Carlson, R. W.

    2005-12-01

    The current on-line information systems for igneous rock geochemistry - PetDB, GEOROC, and NAVDAT - convincingly demonstrate the value of rigorous scientific data management of geochemical data for research and education. The next generation of hypothesis formulation and testing can be vastly facilitated by enhancing these electronic resources through integration of available datasets, expansion of data coverage in location, time, and tectonic setting, timely updates with new data, and through intuitive and efficient access and data analysis tools for the broader geosciences community. PetDB, GEOROC, and NAVDAT have therefore formed the EarthChem consortium (www.earthchem.org) as a international collaborative effort to address these needs and serve the larger earth science community by facilitating the compilation, communication, serving, and visualization of geochemical data, and their integration with other geological, geochronological, geophysical, and geodetic information to maximize their scientific application. We report on the status of and future plans for EarthChem activities. EarthChem's development plan includes: (1) expanding the functionality of the web portal to become a `one-stop shop for geochemical data' with search capability across databases, standardized and integrated data output, generally applicable tools for data quality assessment, and data analysis/visualization including plotting methods and an information-rich map interface; and (2) expanding data holdings by generating new datasets as identified and prioritized through community outreach, and facilitating data contributions from the community by offering web-based data submission capability and technical assistance for design, implementation, and population of new databases and their integration with all EarthChem data holdings. Such federated databases and datasets will retain their identity within the EarthChem system. We also plan on working with publishers to ease the assimilation of geochemical data into the EarthChem database. As a community resource, EarthChem will address user concerns and respond to broad scientific and educational needs. EarthChem will hold yearly workshops, town hall meetings, and/or exhibits at major meetings. The group has established a two-tier committee structure to help ease the communication and coordination of database and IT issues between existing data management projects, and to receive feedback and support from individuals and groups from the larger geosciences community.

  8. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and scalable professional development programming to facilitate systemic changes in the teaching and learning about climate and global change. We are establishing a diverse community of scientists and educators across the country that are using these tools, and plan to create local networks supported by UGC staff and partners.

  9. Weather from 250 Miles Up: Visualizing Precipitation Satellite Data (and Other Weather Applications) Using CesiumJS

    NASA Technical Reports Server (NTRS)

    Lammers, Matt

    2017-01-01

    Geospatial weather visualization remains predominately a two-dimensional endeavor. Even popular advanced tools like the Nullschool Earth display 2-dimensional fields on a 3-dimensional globe. Yet much of the observational data and model output contains detailed three-dimensional fields. In 2014, NASA and JAXA (Japanese Space Agency) launched the Global Precipitation Measurement (GPM) satellite. Its two instruments, the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) observe much of the Earth's atmosphere between 65 degrees North Latitude and 65 degrees South Latitude. As part of the analysis and visualization tools developed by the Precipitation Processing System (PPS) Group at NASA Goddard, a series of CesiumJS [Using Cesium Markup Language (CZML), JavaScript (JS) and JavaScript Object Notation (JSON)] -based globe viewers have been developed to improve data acquisition decision making and to enhance scientific investigation of the satellite data. Other demos have also been built to illustrate the capabilities of CesiumJS in presenting atmospheric data, including model forecasts of hurricanes, observed surface radar data, and gridded analyses of global precipitation. This talk will present these websites and the various workflows used to convert binary satellite and model data into a form easily integrated with CesiumJS.

  10. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  11. Clouds and the Earth's Radiant Energy System (CERES) Visualization Single Satellite Footprint (SSF) Plot Generator

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.

    1995-01-01

    The first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched in 1997 to collect data on the Earth's radiation budget. The data retrieved from the satellite will be processed through twelve subsystems. The Single Satellite Footprint (SSF) plot generator software was written to assist scientists in the early stages of CERES data analysis, producing two-dimensional plots of the footprint radiation and cloud data generated by one of the subsystems. Until the satellite is launched, however, software developers need verification tools to check their code. This plot generator will aid programmers by geolocating algorithm result on a global map.

  12. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H.

    1993-01-01

    The Center for the Study of Earth from Space (CSES) at the University of Colorado, Boulder, has developed a prototype interactive software system called the Spectral Image Processing System (SIPS) using IDL (the Interactive Data Language) on UNIX-based workstations. SIPS is designed to take advantage of the combination of high spectral resolution and spatial data presentation unique to imaging spectrometers. It streamlines analysis of these data by allowing scientists to rapidly interact with entire datasets. SIPS provides visualization tools for rapid exploratory analysis and numerical tools for quantitative modeling. The user interface is X-Windows-based, user friendly, and provides 'point and click' operation. SIPS is being used for multidisciplinary research concentrating on use of physically based analysis methods to enhance scientific results from imaging spectrometer data. The objective of this continuing effort is to develop operational techniques for quantitative analysis of imaging spectrometer data and to make them available to the scientific community prior to the launch of imaging spectrometer satellite systems such as the Earth Observing System (EOS) High Resolution Imaging Spectrometer (HIRIS).

  13. Visualization Case Study: Eyjafjallajökull Ash (Invited)

    NASA Astrophysics Data System (ADS)

    Simmon, R.

    2010-12-01

    Although data visualization is a powerful tool in Earth science, the resulting imagery is often complex and difficult to interpret for non-experts. Students, journalists, web site visitors, or museum attendees often have difficulty understanding some of the imagery scientists create, particularly false-color imagery and data-driven maps. Many visualizations are designed for data exploration or peer communication, and often follow discipline conventions or are constrained by software defaults. Different techniques are necessary for communication with a broad audience. Data visualization combines ideas from cognitive science, graphic design, and cartography, and applies them to the challenge of presenting data clearly. Visualizers at NASA's Earth Observatory web site (earthobservatory.nasa.gov) use these techniques to craft remote sensing imagery for interested but non-expert readers. Images range from natural-color satellite images and multivariate maps to illustrations of abstract concepts. I will use imagery of the eruption of Iceland's Eyjafjallajökull volcano as a case study, showing specific applications of general design techniques. By using color carefully (including contextual data), precisely aligning disparate data sets, and highlighting important features, we crafted an image that clearly conveys the complex vertical and horizontal distribution of airborne ash.

  14. Investigating Methods for Serving Visualizations of Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  15. Data Visualization Challenges and Opportunities in User-Oriented Application Development

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2015-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  16. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    NASA Astrophysics Data System (ADS)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  17. Teaching Tectonics to Undergraduates with Web GIS

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A.; Sahagian, D. L.; Rutzmoser, S.

    2013-12-01

    Geospatial reasoning skills provide a means for manipulating, interpreting, and explaining structured information and are involved in higher-order cognitive processes that include problem solving and decision-making. Appropriately designed tools, technologies, and curriculum can support spatial learning. We present Web-based visualization and analysis tools developed with Javascript APIs to enhance tectonic curricula while promoting geospatial thinking and scientific inquiry. The Web GIS interface integrates graphics, multimedia, and animations that allow users to explore and discover geospatial patterns that are not easily recognized. Features include a swipe tool that enables users to see underneath layers, query tools useful in exploration of earthquake and volcano data sets, a subduction and elevation profile tool which facilitates visualization between map and cross-sectional views, drafting tools, a location function, and interactive image dragging functionality on the Web GIS. The Web GIS platform is independent and can be implemented on tablets or computers. The GIS tool set enables learners to view, manipulate, and analyze rich data sets from local to global scales, including such data as geology, population, heat flow, land cover, seismic hazards, fault zones, continental boundaries, and elevation using two- and three- dimensional visualization and analytical software. Coverages which allow users to explore plate boundaries and global heat flow processes aided learning in a Lehigh University Earth and environmental science Structural Geology and Tectonics class and are freely available on the Web.

  18. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  19. Infusion of a Gaming Paradigm into Computer-Aided Engineering Design Tools

    DTIC Science & Technology

    2012-05-03

    Virtual Test Bed (VTB), and the gaming tool, Unity3D . This hybrid gaming environment coupled a three-dimensional (3D) multibody vehicle system model...from Google Earth to the 3D visual front-end fabricated around Unity3D . The hybrid environment was sufficiently developed to support analyses of the...ndFr Cti3r4 G’OjrdFr ctior-2 The VTB simulation of the vehicle dynamics ran concurrently with and interacted with the gaming engine, Unity3D which

  20. ASDC Advances in the Utilization of Microservices and Hybrid Cloud Environments

    NASA Astrophysics Data System (ADS)

    Baskin, W. E.; Herbert, A.; Mazaika, A.; Walter, J.

    2017-12-01

    The Atmospheric Science Data Center (ASDC) is transitioning many of its software tools and applications to standalone microservices deployable in a hybrid cloud, offering benefits such as scalability and efficient environment management. This presentation features several projects the ASDC staff have implemented leveraging the OpenShift Container Application Platform and OpenStack Hybrid Cloud Environment focusing on key tools and techniques applied to: Earth Science data processing Spatial-Temporal metadata generation, validation, repair, and curation Archived Data discovery, visualization, and access

  1. Data are from Mars, Tools are from Venus

    NASA Technical Reports Server (NTRS)

    Lee, H. Joe

    2017-01-01

    Although during the data production phase, the data producers will usually ensure the products to be easily used by the specific power users the products serve. However, most data products are also posted for general public to use. It is not straightforward for data producers to anticipate what tools that these general end-data users are likely to use. In this talk, we will try to help fill in the gap by going over various tools related to Earth Science and how they work with the existing NASA HDF (Hierarchical Data Format) data products and the reasons why some products cannot be visualized or analyzed by existing tools. One goal is for to give insights for data producers on how to make their data product more interoperable. On the other hand, we also provide some hints for end users on how to make tools work with existing HDF data products. (tool category list: check the comments) HDF-EOS tools: HDFView HDF-EOS Plugin, HEG, h4tonccf, hdf-eos2 dumper, NCL, MATLAB, IDL, etc.net; CDF-Java tools: Panoply, IDV, toosUI, NcML, etc.net; CDF-C tools: ArcGIS Desktop, GrADS, NCL, NCO, etc.; GDAL tools: ArcGIS Desktop, QGIS, Google Earth, etc.; CSV tools: ArcGIS Online, MS Excel, Tableau, etc.

  2. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  3. Near Real Time Integration of Satellite and Radar Data for Probabilistic Nearcasting of Severe Weather

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2014-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  4. A Web-based Google-Earth Coincident Imaging Tool for Satellite Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Killough, B. D.; Chander, G.; Gowda, S.

    2009-12-01

    The Group on Earth Observations (GEO) is coordinating international efforts to build a Global Earth Observation System of Systems (GEOSS) to meet the needs of its nine “Societal Benefit Areas”, of which the most demanding, in terms of accuracy, is climate. To accomplish this vision, satellite on-orbit and ground-based data calibration and validation (Cal/Val) of Earth observation measurements are critical to our scientific understanding of the Earth system. Existing tools supporting space mission Cal/Val are often developed for specific campaigns or events with little desire for broad application. This paper describes a web-based Google-Earth based tool for the calculation of coincident satellite observations with the intention to support a diverse international group of satellite missions to improve data continuity, interoperability and data fusion. The Committee on Earth Observing Satellites (CEOS), which includes 28 space agencies and 20 other national and international organizations, are currently operating and planning over 240 Earth observation satellites in the next 15 years. The technology described here will better enable the use of multiple sensors to promote increased coordination toward a GEOSS. The CEOS Systems Engineering Office (SEO) and the Working Group on Calibration and Validation (WGCV) support the development of the CEOS Visualization Environment (COVE) tool to enhance international coordination of data exchange, mission planning and Cal/Val events. The objective is to develop a simple and intuitive application tool that leverages the capabilities of Google-Earth web to display satellite sensor coverage areas and for the identification of coincident scene locations along with dynamic menus for flexibility and content display. Key features and capabilities include user-defined evaluation periods (start and end dates) and regions of interest (rectangular areas) and multi-user collaboration. Users can select two or more CEOS missions from a database including Satellite Tool Kit (STK) generated orbit information and perform rapid calculations to identify coincident scenes where the groundtracks of the CEOS mission instrument fields-of-view intersect. Calculated results are displayed on a customized Google-Earth web interface to view location and time information along with optional output to EXCEL table format. In addition, multiple viewports can be used for comparisons. COVE was first introduced to the CEOS WGCV community in May 2009. Since that time, the development of a prototype version has progressed. It is anticipated that the capabilities and applications of COVE can support a variety of international Cal/Val activities as well as provide general information on Earth observation coverage for education and societal benefit. This project demonstrates the utility of a systems engineering tool with broad international appeal for enhanced communication and data evaluation opportunities among international CEOS agencies. The COVE tool is publicly accessible via NASA servers.

  5. The Earth System Documentation (ES-DOC) project

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Greenslade, M. A.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.

    2013-12-01

    Earth System Documentation (ES-DOC) is an international project supplying high quality tools and services in support of Earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation ecosystem that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system. Within this context ES-DOC leverages the emerging Common Information Model (CIM) metadata standard, which has supported the following projects: ** Coupled Model Inter-comparison Project Phase 5 (CMIP5); ** Dynamical Core Model Inter-comparison Project (DCMIP-2012); ** National Climate Predictions and Projections Platforms (NCPP) Quantitative Evaluation of Downscaling Workshop (QED-2013). This presentation will introduce the project to a wider audience and will demonstrate the current production level capabilities of the eco-system: ** An ESM documentation Viewer embeddable into any website; ** An ESM Questionnaire configurable on a project by project basis; ** An ESM comparison tool reusable across projects; ** An ESM visualization tool reusable across projects; ** A search engine for speedily accessing published documentation; ** Libraries for streamlining document creation, validation and publishing pipelines.

  6. VIP Data Explorer: A Tool for Exploring 30 years of Vegetation Index and Phenology Observations

    NASA Astrophysics Data System (ADS)

    Barreto-munoz, A.; Didan, K.; Rivera-Camacho, J.; Yitayew, M.; Miura, T.; Tsend-Ayush, J.

    2011-12-01

    Continuous acquisition of global satellite imagery over the years has contributed to the creation of long term data records from AVHRR, MODIS, TM, SPOT-VGT and other sensors. These records account for 30+ years, as these archives grow, they become invaluable tools for environmental, resources management, and climate studies dealing with trends and changes from local, regional to global scale. In this project, the Vegetation Index and Phenology Lab (VIPLab) is processing 30 years of daily global surface reflectance data into an Earth Science Data Record of Vegetation Index and Phenology metrics. Data from AVHRR (N07,N09,N11 and N14) and MODIS (AQUA and TERRA collection 5) for the periods 1981-1999 and 2000-2010, at CMG resolution were processed into one seamless and sensor independent data record using various filtering, continuity and gap filling techniques (Tsend-Ayush et al., AGU 2011, Rivera-Camacho et al, AGU 2011). An interactive online tool (VIP Data Explorer) was developed to support the visualization, qualitative and quantitative exploration, distribution, and documentation of these records using a simple web 2.0 interface. The VIP Data explorer (http://vip.arizona.edu/viplab_data_explorer) can display any combination of multi temporal and multi source data, enable the quickly exploration and cross comparison of the various levels of processing of this data. It uses the Google Earth (GE) model and was developed using the GE API for images rendering, manipulation and geolocation. These ESDRs records can be quickly animated in this environment and explored for visual trends and anomalies detection. Additionally the tool enables extracting and visualizing any land pixel time series while showing the different levels of processing it went through. User can explore this ESDR database within this data explorer GUI environment, and any desired data can be placed into a dynamic "cart" to be ordered and downloaded later. More functionalities are planned and will be added to this data explorer tool as the project progresses.

  7. Teaching with AR as a Tool for Relief Visualization: Usability and Motivation Study

    ERIC Educational Resources Information Center

    Carrera, Carlos Carbonell; Perez, Jose Luis Saorin; Cantero, Jorge de la Torre

    2018-01-01

    In the field of geographical and environmental education, maps and geo-referenced information are frequently used, in which the earth's surfaces are represented in a two-dimensional (2D) way. Students have difficulty interpreting the relief representation and switching between 2D and 3D scenarios. Digital terrain modelling is added to the…

  8. Earth and Space Science Informatics: Raising Awareness of the Scientists and the Public

    NASA Astrophysics Data System (ADS)

    Messerotti, M.; Cobabe-Ammann, E.

    2009-04-01

    The recent developments in Earth and Space Science Informatics led to the availability of advanced tools for data search, visualization and analysis through e.g. the Virtual Observatories or distributed data handling infrastructures. Such facilities are accessible via web interfaces and allow refined data handling to be carried out. Notwithstanding, to date their use is not exploited by the scientific community for a variety of reasons that we will analyze in this work by considering viable strategies to overcome the issue. Similarly, such facilities are powerful tools for teaching and for popularization provided that e-learning programs involving the teachers and respectively the communicators are made available. In this context we will consider the present activities and projects by stressing the role and the legacy of the Electronic Geophysical Year.

  9. Visualization of High-Resolution LiDAR Topography in Google Earth

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Nandigam, V.; Arrowsmith, R.; Blair, J. L.

    2009-12-01

    The growing availability of high-resolution LiDAR (Light Detection And Ranging) topographic data has proven to be revolutionary for Earth science research. These data allow scientists to study the processes acting on the Earth’s surfaces at resolutions not previously possible yet essential for their appropriate representation. In addition to their utility for research, the data have also been recognized as powerful tools for communicating earth science concepts for education and outreach purposes. Unfortunately, the massive volume of data produced by LiDAR mapping technology can be a barrier to their use. To facilitate access to these powerful data for research and educational purposes, we have been exploring the use of Keyhole Markup Language (KML) and Google Earth to deliver LiDAR-derived visualizations. The OpenTopography Portal (http://www.opentopography.org/) is a National Science Foundation-funded facility designed to provide access to Earth science-oriented LiDAR data. OpenTopography hosts a growing collection of LiDAR data for a variety of geologic domains, including many of the active faults in the western United States. We have found that the wide spectrum of LiDAR users have variable scientific applications, computing resources, and technical experience and thus require a data distribution system that provides various levels of access to the data. For users seeking a synoptic view of the data, and for education and outreach purposes, delivering full-resolution images derived from LiDAR topography into the Google Earth virtual globe is powerful. The virtual globe environment provides a freely available and easily navigated viewer and enables quick integration of the LiDAR visualizations with imagery, geographic layers, and other relevant data available in KML format. Through region-dependant network linked KML, OpenTopography currently delivers over 20 GB of LiDAR-derived imagery to users via simple, easily downloaded KMZ files hosted at the Portal. This method provides seamlessly access to hillshaded imagery for both bare earth and first return terrain models with various angles of illumination. Seamless access to LiDAR-derived imagery in Google Earth has proven to be the most popular product available in the OpenTopography Portal. The hillshade KMZ files have been downloaded over 3000 times by users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons. OpenTopography also provides dynamically generated KMZ visualizations of LiDAR data products produced when users choose to use the OpenTopography point cloud access and processing system. These Google Earth compatible products allow users to quickly visualize the custom terrain products they have generated without the burden of loading the data into a GIS environment. For users who have installed the Google Earth browser plug-in, these visualizations can be launched directly from the OpenTopography results page and viewed directly in the browser.

  10. Visualizations and Mental Models - The Educational Implications of GEOWALL

    NASA Astrophysics Data System (ADS)

    Rapp, D.; Kendeou, P.

    2003-12-01

    Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an effective tool for helping students to learn geological information (and potentially restructure their na‹ve conceptions of geologic principles).

  11. An OpenEarth Framework (OEF) for Integrating and Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Moreland, J. L.; Nadeau, D. R.; Baru, C.; Crosby, C. J.

    2009-12-01

    The integration of data is essential to make transformative progress in understanding the complex processes operating at the Earth’s surface and within its interior. While our current ability to collect massive amounts of data, develop structural models, and generate high-resolution dynamics models is well developed, our ability to quantitatively integrate these data and models into holistic interpretations of Earth systems is poorly developed. We lack the basic tools to realize a first-order goal in Earth science of developing integrated 4D models of Earth structure and processes using a complete range of available constraints, at a time when the research agenda of major efforts such as EarthScope demand such a capability. Among the challenges to 3D data integration are data that may be in different coordinate spaces, units, value ranges, file formats, and data structures. While several file format standards exist, they are infrequently or incorrectly used. Metadata is often missing, misleading, or relegated to README text files along side the data. This leaves much of the work to integrate data bogged down by simple data management tasks. The OpenEarth Framework (OEF) being developed by GEON addresses these data management difficulties. The software incorporates file format parsers, data interpretation heuristics, user interfaces to prompt for missing information, and visualization techniques to merge data into a common visual model. The OEF’s data access libraries parse formal and de facto standard file formats and map their data into a common data model. The software handles file format quirks, storage details, caching, local and remote file access, and web service protocol handling. Heuristics are used to determine coordinate spaces, units, and other key data features. Where multiple data structure, naming, and file organization conventions exist, those heuristics check for each convention’s use to find a high confidence interpretation of the data. When no convention or embedded data yields a suitable answer, the user is prompted to fill in the blanks. The OEF’s interaction libraries assist in the construction of user interfaces for data management. These libraries support data import, data prompting, data introspection, the management of the contents of a common data model, and the creation of derived data to support visualization. Finally, visualization libraries provide interactive visualization using an extended version of NASA WorldWind. The OEF viewer supports visualization of terrains, point clouds, 3D volumes, imagery, cutting planes, isosurfaces, and more. Data may be color coded, shaded, and displayed above, or below the terrain, and always registered into a common coordinate space. The OEF architecture is open and cross-platform software libraries are available separately for use with other software projects, while modules from other projects may be integrated into the OEF to extend its features. The OEF is currently being used to visualize data from EarthScope-related research in the Western US.

  12. Using Flow Charts to Visualize the Decision-Making Process in Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Aung, M. T. Y.; Myat, T.; Zheng, Y.; Mays, M. L.; Ngwira, C.; Damas, M. C.

    2016-12-01

    Our society today relies heavily on technological systems such as satellites, navigation systems, power grids and aviation. These systems are very sensitive to space weather disturbances. When Earth-directed space weather driven by the Sun arrives at the Earth, it causes changes to the Earth's radiation environment and the magnetosphere. Strong disturbances in the magnetosphere of the Earth are responsible for geomagnetic storms that can last from hours to days depending on strength of storms. Geomagnetic storms can severely impact critical infrastructure on Earth, such as the electric power grid, and Solar Energetic Particles that can endanger life in outer space. How can we lessen these adverse effects? They can be lessened through the early warning signals sent by space weather forecasters before CME or high-speed stream arrives. A space weather forecaster's duty is to send predicted notifications to high-tech industries and NASA missions so that they could take extra measures for protection. NASA space weather forecasters make prediction decisions by following certain steps and processes from the time an event occurs at the sun all the way to the impact locations. However, there has never been a tool that helps these forecasters visualize the decision process until now. A flow chart is created to help forecasters visualize the decision process. This flow chart provides basic knowledge of space weather and can be used to train future space weather forecasters. It also helps to cut down the training period and increase consistency in forecasting. The flow chart is also a great reference for people who are already familiar with space weather.

  13. Spec Tool; an online education and research resource

    NASA Astrophysics Data System (ADS)

    Maman, S.; Shenfeld, A.; Isaacson, S.; Blumberg, D. G.

    2016-06-01

    Education and public outreach (EPO) activities related to remote sensing, space, planetary and geo-physics sciences have been developed widely in the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev, Israel. These programs aim to motivate the learning of geo-scientific and technologic disciplines. For over the past decade, the facility hosts research and outreach activities for researchers, local community, school pupils, students and educators. As software and data are neither available nor affordable, the EPIF Spec tool was created as a web-based resource to assist in initial spectral analysis as a need for researchers and students. The tool is used both in the academic courses and in the outreach education programs and enables a better understanding of the theoretical data of spectroscopy and Imaging Spectroscopy in a 'hands-on' activity. This tool is available online and provides spectra visualization tools and basic analysis algorithms including Spectral plotting, Spectral angle mapping and Linear Unmixing. The tool enables to visualize spectral signatures from the USGS spectral library and additional spectra collected in the EPIF such as of dunes in southern Israel and from Turkmenistan. For researchers and educators, the tool allows loading collected samples locally for further analysis.

  14. Cloud-Based Computational Tools for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Arendt, A. A.; Fatland, R.; Howe, B.

    2015-12-01

    Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zong, Ziliang; Job, Joshua; Zhang, Xuesong

    Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASAWorld Wind. We illustrate our methods by visualizing over 170,000 global downloadmore » requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the hot spot areas of research. Most importantly, our methods demonstrate an easy way to geovisualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).« less

  16. Applying Strategic Visualization(Registered Trademark) to Lunar and Planetary Mission Design

    NASA Technical Reports Server (NTRS)

    Frassanito, John R.; Cooke, D. R.

    2002-01-01

    NASA teams, such as the NASA Exploration Team (NEXT), utilize advanced computational visualization processes to develop mission designs and architectures for lunar and planetary missions. One such process, Strategic Visualization (trademark), is a tool used extensively to help mission designers visualize various design alternatives and present them to other participants of their team. The participants, which may include NASA, industry, and the academic community, are distributed within a virtual network. Consequently, computer animation and other digital techniques provide an efficient means to communicate top-level technical information among team members. Today,Strategic Visualization(trademark) is used extensively both in the mission design process within the technical community, and to communicate the value of space exploration to the general public. Movies and digital images have been generated and shown on nationally broadcast television and the Internet, as well as in magazines and digital media. In our presentation will show excerpts of a computer-generated animation depicting the reference Earth/Moon L1 Libration Point Gateway architecture. The Gateway serves as a staging corridor for human expeditions to the lunar poles and other surface locations. Also shown are crew transfer systems and current reference lunar excursion vehicles as well as the Human and robotic construction of an inflatable telescope array for deployment to the Sun/Earth Libration Point.

  17. Virtual Observatories for Space Physics Observations and Simulations: New Routes to Efficient Access and Visualization

    NASA Technical Reports Server (NTRS)

    Roberts, Aaron

    2005-01-01

    New tools for data access and visualization promise to make the analysis of space plasma data both more efficient and more powerful, especially for answering questions about the global structure and dynamics of the Sun-Earth system. We will show how new existing tools (particularly the Virtual Space Physics Observatory-VSPO-and the Visual System for Browsing, Analysis and Retrieval of Data-ViSBARD; look for the acronyms in Google) already provide rapid access to such information as spacecraft orbits, browse plots, and detailed data, as well as visualizations that can quickly unite our view of multispacecraft observations. We will show movies illustrating multispacecraft observations of the solar wind and magnetosphere during a magnetic storm, and of simulations of 3 0-spacecraft observations derived from MHD simulations of the magnetosphere sampled along likely trajectories of the spacecraft for the MagCon mission. An important issue remaining to be solved is how best to integrate simulation data and services into the Virtual Observatory environment, and this talk will hopefully stimulate further discussion along these lines.

  18. Taking the world for a spin: teaching spatial and data visualization with a digital globe

    NASA Astrophysics Data System (ADS)

    Teplitzky, S.; Powell, S.

    2016-12-01

    In the summer of 2016, the Earth Sciences & Map Library at the University of California, Berkeley, purchased a Magic Planet digital globe in a collaboration between the library and the departments of Geography and Earth & Planetary Science. This 30" diameter 3D display supplements and expands the library's instruction and outreach activities in GIS, data visualization and modeling. Faculty and graduate students were surveyed regarding their interest in using the globe for teaching and research projects. Based on this feedback, librarians developed a basic training plan for using the globe in the classroom, as well as an assessment tool to rate the effectiveness of instruction with the digital globe. Student and faculty responses at the end of fall semester (2016) will be evaluated for future plans to increase the variety of data sets and animations available to view on the globe. Curriculum and guides for visualizing custom and interactive data sets will be developed and made available based on current researcher and student interests. We are excited about partnering with our departments and engaging our students in the possibilities of 3d visualization, and look forward to sharing lessons learned.

  19. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new ideas. This presentation will provide an update of the recent enhancements of the NEIS architecture and visualization capabilities, challenges faced, as well as ongoing research activities related to this project.

  20. GENESIS: GPS Environmental and Earth Science Information System

    NASA Technical Reports Server (NTRS)

    Hajj, George

    1999-01-01

    This presentation reviews the GPS ENvironmental and Earth Science Information System (GENESIS). The objectives of GENESIS are outlined (1) Data Archiving, searching and distribution for science data products derived from Space borne TurboRogue Space Receivers for GPS science and other ground based GPS receivers, (2) Data browsing using integrated visualization tools, (3) Interactive web/java-based data search and retrieval, (4) Data subscription service, (5) Data migration from existing GPS archived data, (6) On-line help and documentation, and (7) participation in the WP-ESIP federation. The presentation reviews the products and services of Genesis, and the technology behind the system.

  1. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    Today, the principal investigators of NASA Earth Science missions develop their own software to manipulate, visualize, and analyze the data collected from Earth, space, and airborne observation instruments. There is very little, if any, collaboration among these principal investigators due to the lack of collaborative tools, which would allow these scientists to share data and results. At NASA's Jet Propulsion Laboratory (JPL), under the Lunar Mapping and Modeling Project (LMMP), we have built a web portal that exposes a set of common services to users to allow search, visualization, subset, and download lunar science data. Users also have access to a set of tools that visualize, analyze and annotate the data. These services are developed according to industry standards for data access and manipulation, such REST and Open Geospatial Consortium (OGC) web services. As a result, users can access the datasets through custom written applications or off-the-shelf applications such as Google Earth. Even though it's currently used to store and process lunar data, this web portal infrastructure has been designed to support other solar system bodies such as asteroids and planets, including Earth. The infrastructure uses a combination of custom, commercial, and open-source software as well as off-the-shelf hardware and pay-by-use cloud computing services. The use of standardized web service interfaces facilitates platform and application-independent access to the services and data. For instance, we have software clients for the LMMP portal that provide a rich browsing and analysis experience from a variety of platforms including iOS and Android mobile platforms and large screen multi-touch displays with 3-D terrain viewing functions. The service-oriented architecture and design principles utilized in the implementation of the portal lends itself to be reusable and scalable and could naturally be extended to include a collaborative environment that enables scientists and principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  2. Climate Engine - Monitoring Drought with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.

    2016-12-01

    Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed ClimateEngine.org, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.

  3. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  4. In Interactive, Web-Based Approach to Metadata Authoring

    NASA Technical Reports Server (NTRS)

    Pollack, Janine; Wharton, Stephen W. (Technical Monitor)

    2001-01-01

    NASA's Global Change Master Directory (GCMD) serves a growing number of users by assisting the scientific community in the discovery of and linkage to Earth science data sets and related services. The GCMD holds over 8000 data set descriptions in Directory Interchange Format (DIF) and 200 data service descriptions in Service Entry Resource Format (SERF), encompassing the disciplines of geology, hydrology, oceanography, meteorology, and ecology. Data descriptions also contain geographic coverage information, thus allowing researchers to discover data pertaining to a particular geographic location, as well as subject of interest. The GCMD strives to be the preeminent data locator for world-wide directory level metadata. In this vein, scientists and data providers must have access to intuitive and efficient metadata authoring tools. Existing GCMD tools are not currently attracting. widespread usage. With usage being the prime indicator of utility, it has become apparent that current tools must be improved. As a result, the GCMD has released a new suite of web-based authoring tools that enable a user to create new data and service entries, as well as modify existing data entries. With these tools, a more interactive approach to metadata authoring is taken, as they feature a visual "checklist" of data/service fields that automatically update when a field is completed. In this way, the user can quickly gauge which of the required and optional fields have not been populated. With the release of these tools, the Earth science community will be further assisted in efficiently creating quality data and services metadata. Keywords: metadata, Earth science, metadata authoring tools

  5. Making Your Tools Useful to a Broader Audience

    NASA Astrophysics Data System (ADS)

    Lyness, M. D.; Broten, M. J.

    2006-12-01

    With the increasing growth of Web Services and SOAP the ability to connect and reuse computational and also visualization tools from all over the world via Web Interfaces that can be easily displayed in any current browser has provided the means to construct an ideal online research environment. The age-old question of usability is a major determining factor whether a particular tool would find great success in its community. An interface that can be understood purely by a user's intuition is desirable and more closely obtainable than ever before. Through the use of increasingly sophisticated web-oriented technologies including JavaScript, AJAX, and the DOM, web interfaces are able to harness the advantages of the Internet along with the functional capabilities of native applications such as menus, partial page changes, background processing, and visual effects to name a few. Also, with computers becoming a normal part of the educational process companies, such as Google and Microsoft, give us a synthetic intuition as a foundation for new designs. Understanding the way earth science researchers know how to use computers will allow the VLab portal (http://vlab.msi.umn.edu) and other projects to create interfaces that will get used. To provide detailed communication with the users of VLab's computational tools, projects like the Porky Portlet (http://www.gorerle.com/vlab-wiki/index.php?title=Porky_Portlet) spawned to empower users with a fully- detailed, interactive visual representation of progressing workflows. With the well-thought design of such tools and interfaces, researchers around the world will become accustomed to new highly engaging, visual web- based research environments.

  6. Three-dimensional visualization of geographical terrain data using temporal parallax difference induction

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2009-02-01

    Vision III Imaging, Inc. (the Company) has developed Parallax Image Display (PIDTM) software tools to critically align and display aerial images with parallax differences. Terrain features are rendered obvious to the viewer when critically aligned images are presented alternately at 4.3 Hz. The recent inclusion of digital elevation models in geographic data browsers now allows true three-dimensional parallax to be acquired from virtual globe programs like Google Earth. The authors have successfully developed PID methods and code that allow three-dimensional geographical terrain data to be visualized using temporal parallax differences.

  7. Wallace Creek Virtual Field Trip: Teaching Geoscience Concepts with LiDAR

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; Crosby, C. J.

    2009-12-01

    Recently available data such as LiDAR (Light Detection and Ranging) high-resolution topography can assist students to better visualize and understand geosciences concepts. It is important to bring these data into geosciences curricula as teaching aids while ensuring that the visualization tools, virtual environments, etc. do not serve as barriers to student learning. As a Southern California Earthquake Center ACCESS-G intern, I am creating a “virtual field trip” to Wallace Creek along the San Andreas Fault (SAF) using Google Earth as a platform and the B4 project LiDAR data. Wallace Creek is an excellent site for understanding the centennial-to-millennial record of SAF slip because of its dramatic stream offsets. Using the LiDAR data instead of, or alongside, traditional visualizations and teaching methods enhances a student’s ability to understand plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology. Viewing a high-resolution representation of the topography in Google Earth allows students to analyze the landscape and answer questions about the behavior of the San Andreas Fault. The activity guides students along the fault allowing them to measure channel offsets using the Google Earth measuring tool. Knowing the ages of channels, they calculate slip rate. They look for the smallest channel offsets around Wallace Creek in order to determine the slip per event. At both a “LiDAR and Education” workshop and the Cyberinfrastructure Summer Institute for Geoscientists (CSIG), I presented the Wallace Creek activity to high school and college earth science teachers. The teachers were positive in their responses and had numerous important suggestions including the need for a teacher’s manual for instruction and scientific background, and that the student goals and science topics should be specific and well-articulated for the sake of both the teacher and the student. The teachers also noted that the technology in classrooms varies significantly. Some do not have computers available for students or do not have access to the internet or certain software licenses. For this reason, I am also creating a paper-based version of the same exercise. After a usable activity is developed I plan to make it available online through the OpenTopography portal (www.opentopography.com) using a format similar to the online teaching boxes seen at DLESE (www.dlese.org). The final version will facilitate visual student learning through the popular Google Earth platform along with student guides and a teacher’s manual.

  8. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    NASA Astrophysics Data System (ADS)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  9. The Path from Large Earth Science Datasets to Information

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  10. A knowledge based system for scientific data visualization

    NASA Technical Reports Server (NTRS)

    Senay, Hikmet; Ignatius, Eve

    1992-01-01

    A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.

  11. How Would You Move Mount Fuji - And Why Would You Want To?

    NASA Astrophysics Data System (ADS)

    de Paor, D. G.

    2008-12-01

    According to author William Poundstone, "How Would You Move Mt Fuji?" typifies the kind of question that corporations such as Microsoft are wont to ask job applicants in order to test their lateral thinking skills. One answer (albeit not one that would necessarily secure a job at Microsoft) is: "With Google Earth and a Macintosh or PC." The answer to the more profound follow-up question "Why Would You Want To?" is hinted at by one of the great quotations of earth science, namely Charles Lyell's proposition that "The Present Is Key to the Past." Google Earth is a phenomenally powerful tool for visualizing today's earth, ocean, and atmosphere. With the aid of Google SketchUp, that visualization can be extended to reconstruct the past using relocated samples of present-day landscapes and environments as models of paleo-DEM and paleogeography. Volcanoes are particularly useful models because their self similar growth can be simulated by changing KML altitude tags within a timespan, but numerous other landforms and geologic structures serve as useful keys to the past. Examples range in scale from glaciers and fault scarps to island arcs and mountain ranges. The ability to generate a paleo-terrain model in Google Earth brings us one step closer to a truly four- dimensional, interactive geological map of the world throughout time.

  12. VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David; hide

    2017-01-01

    The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.

  13. Current Development Status of an Integrated Tool for Modeling Quasi-static Deformation in the Solid Earth

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Dicaprio, C.; Simons, M.

    2003-12-01

    With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.

  14. Linking Plasma Conditions in the Magnetosphere with Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Rastaetter, Lutz; Kozyra, Janet; Kuznetsova, Maria M.; Berrios, David H.

    2012-01-01

    Modeling of the full magnetosphere, ring current and ionosphere system has become an indispensable tool in analyzing the series of events that occur during geomagnetic storms. The CCMC has a full model suite available for the magnetosphere, together with visualization tools that allow a user to perform a large variety of analyses. The January, 21, 2005 storm was a moderate-size storm that has been found to feature a large penetration electric field and unusually large polar caps (low-latitude precipitation patterns) that are otherwise found in super storms. Based on simulations runs at CCMC we can outline the likely causes of this behavior. Using visualization tools available to the online user we compare results from different magnetosphere models and present connections found between features in the magnetosphere and the ionosphere that are connected magnetically. The range of magnetic mappings found with different models can be compared with statistical models (Tsyganenko) and the model's fidelity can be verified with observations from low earth orbiting satellites such as DMSP and TIMED.

  15. Simulating Earthquakes for Science and Society: New Earthquake Visualizations Ideal for Use in Science Communication

    NASA Astrophysics Data System (ADS)

    de Groot, R. M.; Benthien, M. L.

    2006-12-01

    The Southern California Earthquake Center (SCEC) has been developing groundbreaking computer modeling capabilities for studying earthquakes. These visualizations were initially shared within the scientific community but have recently have gained visibility via television news coverage in Southern California. These types of visualizations are becoming pervasive in the teaching and learning of concepts related to earth science. Computers have opened up a whole new world for scientists working with large data sets, and students can benefit from the same opportunities (Libarkin &Brick, 2002). Earthquakes are ideal candidates for visualization products: they cannot be predicted, are completed in a matter of seconds, occur deep in the earth, and the time between events can be on a geologic time scale. For example, the southern part of the San Andreas fault has not seen a major earthquake since about 1690, setting the stage for an earthquake as large as magnitude 7.7 -- the "big one." Since no one has experienced such an earthquake, visualizations can help people understand the scale of such an event. Accordingly, SCEC has developed a revolutionary simulation of this earthquake, with breathtaking visualizations that are now being distributed. According to Gordin and Pea (1995), theoretically visualization should make science accessible, provide means for authentic inquiry, and lay the groundwork to understand and critique scientific issues. This presentation will discuss how the new SCEC visualizations and other earthquake imagery achieve these results, how they fit within the context of major themes and study areas in science communication, and how the efficacy of these tools can be improved.

  16. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    PubMed

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  17. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    NASA Astrophysics Data System (ADS)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    The Earth Exploration Toolbook (EET) Workshops Project provides a mechanism for teachers and students to have successful data-using educational experiences. In this professional development project, teachers learn to use National Science Digital Library (NSDL), the Digital Library for Earth System Education (DLESE), and an Earth Exploration Toolbook (EET) chapter. In an EET Data Analysis Workshop, participants walk through an Earth Exploration Toolbook (EET) chapter, learning basic data analysis techniques and discussing ways to use Earth science datasets and analysis tools with their students. We have offered twenty-eight Data Analysis Workshops since the project began. The total number of participants in the twenty-eight workshops to date is three hundred eleven, which reflects one hundred eighty different teachers participating in one or more workshops. Our workshops reach middle and high school teachers across the United States at schools with lower socioeconomic levels and at schools with large numbers of minority students. Our participants come from thirty-eight different states including Alaska, Maine, Florida, Montana, and many others. Eighty-six percent of our participants are classroom teachers. The remaining fourteen percent are staff development specialists, university faculty, or outreach educators working with teachers. Of the classroom teachers, one third are middle school teachers (grades 6 to 8) and two thirds are high school teachers (grades 9 to 12.) Thirty-four percent of our participants come from schools where minority populations are the majority make up of the school. Twenty-five percent of our participants are at schools where the majority of the students receive free or reduced cost lunches. Our professional development workshops are helping to raise teachers' awareness of both the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). Prior to taking one of our workshops, forty-two percent of our participants reported that they have not tried to locate a teaching resource in DLESE and forty-eight percent report that they have not to locate a teaching resource in NSDL. As part of an EET Data Analysis workshop, teachers actively visit both digital libraries. Virtual workshops using Web conferencing and teleconferencing are an effective and convenient way to deliver professional development that brings teachers from all over the nation together to learn new technology. Teachers report that the step-by-step facilitation along with the ability to ask questions and interact with their peers are some of the most useful aspects of the workshop. In this presentation, we will share successes and challenges of teachers as they implement these Earth science data analysis and visualization tools in their classrooms.

  18. A Web Portal-Based Time-Aware KML Animation Tool for Exploring Spatiotemporal Dynamics of Hydrological Events

    NASA Astrophysics Data System (ADS)

    Bao, X.; Cai, X.; Liu, Y.

    2009-12-01

    Understanding spatiotemporal dynamics of hydrological events such as storms and droughts is highly valuable for decision making on disaster mitigation and recovery. Virtual Globe-based technologies such as Google Earth and Open Geospatial Consortium KML standards show great promises for collaborative exploration of such events using visual analytical approaches. However, currently there are two barriers for wider usage of such approaches. First, there lacks an easy way to use open source tools to convert legacy or existing data formats such as shapefiles, geotiff, or web services-based data sources to KML and to produce time-aware KML files. Second, an integrated web portal-based time-aware animation tool is currently not available. Thus users usually share their files in the portal but have no means to visually explore them without leaving the portal environment which the users are familiar with. We develop a web portal-based time-aware KML animation tool for viewing extreme hydrologic events. The tool is based on Google Earth JavaScript API and Java Portlet standard 2.0 JSR-286, and it is currently deployable in one of the most popular open source portal frameworks, namely Liferay. We have also developed an open source toolkit kml-soc-ncsa (http://code.google.com/p/kml-soc-ncsa/) to facilitate the conversion of multiple formats into KML and the creation of time-aware KML files. We illustrate our tool using some example cases, in which drought and storm events with both time and space dimension can be explored in this web-based KML animation portlet. The tool provides an easy-to-use web browser-based portal environment for multiple users to collaboratively share and explore their time-aware KML files as well as improving the understanding of the spatiotemporal dynamics of the hydrological events.

  19. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  20. Visualizing Earth and Planetary Remote Sensing Data Using JMARS

    NASA Astrophysics Data System (ADS)

    Dickenshied, S.; Christensen, P. R.; Carter, S.; Anwar, S.; Noss, D.

    2014-12-01

    JMARS (Java Mission-planning and Analysis for Remote Sensing) is a free geospatial application developed by the Mars Space Flight Facility at Arizona State University. Originally written as a mission planning tool for the THEMIS instrument on board the MARS Odyssey Spacecraft, it was released as an analysis tool to the general public in 2003. Since then it has expanded to be used for mission planning and scientific data analysis by additional NASA missions to Mars, the Moon, and Vesta, and it has come to be used by scientists, researchers and students of all ages from more than 40 countries around the world. The public version of JMARS now also includes remote sensing data for Mercury, Venus, Earth, the Moon, Mars, and a number of the moons of Jupiter and Saturn. Additional datasets for asteroids and other smaller bodies are being added as they becomes available and time permits. JMARS fuses data from different instruments in a geographical context. One core strength of JMARS is that it provides access to geospatially registered data via a consistent interface. Such data include global images (graphical and numeric), local mosaics, individual instrument images, spectra, and vector-oriented data. By hosting these products, users are able to avoid searching for, downloading, decoding, and projecting data on their own using a disparate set of tools and procedures. The JMARS team processes, indexes, and reorganizes data to make it quickly and easily accessible in a consistent manner. JMARS leverages many open-source technologies and tools to accomplish these data preparation steps. In addition to visualizing multiple datasets in context with one another, JMARS allows a user to find data products from differing missions that intersect the same geographical location, time range, or observational parameters. Any number of georegistered datasets can then be viewed or analyzed simultaneously with one another. A user can easily create a mosaic of graphic data, plot numeric data, or project any arbitrary scene over surface topography. All of these visualization options can be exported for use in presentations, publications, or for further analysis in other tools.

  1. Recent Advances in Geospatial Visualization with the New Google Earth

    NASA Astrophysics Data System (ADS)

    Anderson, J. C.; Poyart, E.; Yan, S.; Sargent, R.

    2017-12-01

    Google Earth's detailed, world-wide imagery and terrain data provide a rich backdrop for geospatial visualization at multiple scales, from global to local. The Keyhole Markup Language (KML) is an open standard that has been the primary way for users to author and share data visualizations in Google Earth. Despite its ease of use and flexibility for relatively small amounts of data, users can quickly run into difficulties and limitations working with large-scale or time-varying datasets using KML in Google Earth. Recognizing these challenges, we present our recent work toward extending Google Earth to be a more powerful data visualization platform. We describe a new KML extension to simplify the display of multi-resolution map tile pyramids - which can be created by analysis platforms like Google Earth Engine, or by a variety of other map tile production pipelines. We also describe how this implementation can pave the way to creating novel data visualizations by leveraging custom graphics shaders. Finally, we present our investigations into native support in Google Earth for data storage and transport formats that are well-suited for big raster and vector data visualization. Taken together, these capabilities make it easier to create and share new scientific data visualization experiences using Google Earth, and simplify the integration of Google Earth with existing map data products, services, and analysis pipelines.

  2. OrbitMaster: An Online Tool for Investigating Solar System Dynamics and Visualizing Orbital Uncertainties in the Undergraduate Classroom

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew W.; Rector, Travis A.; Baalke, Ron; Ajiki, Osamu

    2016-01-01

    OrbitMaster is a 3-D orbit visualization tool designed for the undergraduate astronomy classroom. It has been adapted from AstroArts' interactive OrbitViewer applet under the GNU General Public License, as part of the Research-Based Science Education for Undergraduates (RBSEU) curriculum. New features allow the user to alter an asteroid's orbital parameters using slider controls, and to monitor its changing position and speed relative to both Sun and Earth. It detects close approaches and collisions with Earth, and calculates revised distances and impact speeds due to Earth's gravitational attraction. It can also display many asteroid orbits at once, with direct application to visualizing the uncertainty in a single asteroid's orbital parameters. When paired with Project Pluto's Find_Orb orbit determination software and a source of asteroid astrometry, this enables monitoring of changes in orbital uncertainties with time and/or additional observational data. See http://facstaff.columbusstate.edu/puckett_andrew/orbitmaster.html.A series of undergraduate labs using the OrbitMaster applet are available as part of the RBSEU curriculum. In the first lab, students gain hands-on experience with the mechanics of asteroid orbits and confirm Kepler's laws of planetary motion. In the second, they study the orbits of Potentially Hazardous Asteroids as they build their own "Killer Asteroids" and investigate the minimum and maximum speed limits that apply to Earth-impacting objects. In the third and fourth labs, they discover the kinetic energy-crater size relationship, engage in their own Crater Scene Investigation (C.S.I.) to estimate impactor size, and understand the regional consequences of impacts. These labs may be used separately, or in support of a further seven-week sequence culminating in an authentic research project in which students submit measurements to the Minor Planet Center to refine a real asteroid's orbit. As with all RBSE projects, the overarching goal is for students to learn science by actually doing science, and to retain knowledge learned in-context. For more information, see http://rbseu.uaa.alaska.edu.

  3. Jules Verne Voyager, Jr: An Interactive Map Tool for Teaching Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Meertens, C. M.

    2010-12-01

    We present an interactive, web-based map utility that can make new geological and geophysical results accessible to a large number and variety of users. The tool provides a user-friendly interface that allows users to access a variety of maps, satellite images, and geophysical data at a range of spatial scales. The map tool, dubbed 'Jules Verne Voyager, Jr.', allows users to interactively create maps of a variety of study areas around the world. The utility was developed in collaboration with the UNAVCO Consortium for study of global-scale tectonic processes. Users can choose from a variety of base maps (including "Face of the Earth" and "Earth at Night" satellite imagery mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others), add a number of geographic and geophysical overlays (coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, etc.), and then superimpose both observed and model velocity vectors representing a compilation of 2933 GPS geodetic measurements from around the world. A remarkable characteristic of the geodetic compilation is that users can select from some 21 plates' frames of reference, allowing a visual representation of both 'absolute' plate motion (in a no-net rotation reference frame) and relative motion along all of the world's plate boundaries. The tool allows users to zoom among at least three map scales. The map tool can be viewed at http://jules.unavco.org/VoyagerJr/Earth. A more detailed version of the map utility, developed in conjunction with the EarthScope initiative, focuses on North America geodynamics, and provides more detailed geophysical and geographic information for the United States, Canada, and Mexico. The ‘EarthScope Voyager’ can be accessed at http://jules.unavco.org/VoyagerJr/EarthScope. Because the system uses pre-constructed gif images and overlays, the system can rapidly create and display maps to a large number of users simultaneously and does not require any special software installation on users' systems. In addition, a javascript-based educational interface, dubbed "Exploring our Dynamic Planet", incorporates the map tool, explanatory material, background scientific material, and curricular activities that encourage users to explore Earth processes using the Jules Verne Voyager, Jr. tool. Exploring our Dynamic Planet can be viewed at http://www.dpc.ucar.edu/VoyagerJr/. Because of its flexibility, the map utilities can be used for hands-on exercises exploring plate interaction in a range of academic settings, from high school science classes to entry-level undergraduate to graduate-level tectonics courses.

  4. Development of Visualizations and Loggable Activities for the Geosciences. Results from Recent TUES Sponsored Projects

    NASA Astrophysics Data System (ADS)

    De Paor, D. G.; Bailey, J. E.; Whitmeyer, S. J.

    2012-12-01

    Our TUES research centers on the role of digital data, visualizations, animations, and simulations in undergraduate geoscience education. Digital hardware (smartphones, tablets, GPSs, GigaPan robotic camera mounts, etc.) are revolutionizing field data collection. Software products (GIS, 3-D scanning and modeling programs, virtual globes, etc.) have truly transformed the way geoscientists teach, learn, and do research. Whilst Google-Earth-style visualizations are famously user-friend for the person browsing, they can be notoriously unfriendly for the content creator. Therefore, we developed tools to help educators create and share visualizations as easily as if posting on Facebook. Anyone whoIf you wish to display geological cross sections on Google Earth, go to digitalplanet.org, upload image files, position them on a line of section, and share with the world through our KMZ hosting service. Other tools facilitate screen overlay and 3-D map symbol generation. We advocate use of such technology to enable undergraduate students to 'publish' their first mapping efforts even while they are working in the field. A second outcome of our TUES projects merges Second-Life-style interaction with Google Earth. We created games in which students act as first responders for natural hazard mitigation, prospectors for natural resource explorations, and structural geologist for map-making. Students are represented by avatars and collaborate by exchange of text messages - the natural mode of communication for the current generation. Teachers view logs showing student movements as well as transcripts of text messages and can scaffold student learning and geofence students to prevent wandering. Early results of in-class testing show positive learning outcomes. The third aspect of our program emphasizes dissemination. Experience shows that great effort is required to overcome activation energy and ensure adoption of new technology into the curriculum. We organized a GSA Penrose Conference, a GSA Pardee Keynote Symposium, and AGU Townhall Meeting, and numerous workshops at annual and regional meetings, and set up a web site dedicated to dissemination of program products. Future plans include development of augmented reality teaching resources, hosting of community mapping services, and creation of a truly 4-D virtual globe.;

  5. Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.

    2009-12-01

    Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.

  6. GlastCam: A Telemetry-Driven Spacecraft Visualization Tool

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.; Tsai, Dean

    2009-01-01

    Developed for the GLAST project, which is now the Fermi Gamma-ray Space Telescope, GlastCam software ingests telemetry from the Integrated Test and Operations System (ITOS) and generates four graphical displays of geometric properties in real time, allowing visual assessment of the attitude, configuration, position, and various cross-checks. Four windows are displayed: a "cam" window shows a 3D view of the satellite; a second window shows the standard position plot of the satellite on a Mercator map of the Earth; a third window displays star tracker fields of view, showing which stars are visible from the spacecraft in order to verify star tracking; and the fourth window depicts

  7. Access and visualization using clusters and other parallel computers

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Bergou, Attila; Berriman, Bruce; Block, Gary; Collier, Jim; Curkendall, Dave; Good, John; Husman, Laura; Jacob, Joe; Laity, Anastasia; hide

    2003-01-01

    JPL's Parallel Applications Technologies Group has been exploring the issues of data access and visualization of very large data sets over the past 10 or so years. this work has used a number of types of parallel computers, and today includes the use of commodity clusters. This talk will highlight some of the applications and tools we have developed, including how they use parallel computing resources, and specifically how we are using modern clusters. Our applications focus on NASA's needs; thus our data sets are usually related to Earth and Space Science, including data delivered from instruments in space, and data produced by telescopes on the ground.

  8. NASA's Earth Science Gateway: A Platform for Interoperable Services in Support of the GEOSS Architecture

    NASA Astrophysics Data System (ADS)

    Alameh, N.; Bambacus, M.; Cole, M.

    2006-12-01

    Nasa's Earth Science as well as interdisciplinary research and applications activities require access to earth observations, analytical models and specialized tools and services, from diverse distributed sources. Interoperability and open standards for geospatial data access and processing greatly facilitate such access among the information and processing compo¬nents related to space¬craft, airborne, and in situ sensors; predictive models; and decision support tools. To support this mission, NASA's Geosciences Interoperability Office (GIO) has been developing the Earth Science Gateway (ESG; online at http://esg.gsfc.nasa.gov) by adapting and deploying a standards-based commercial product. Thanks to extensive use of open standards, ESG can tap into a wide array of online data services, serve a variety of audiences and purposes, and adapt to technology and business changes. Most importantly, the use of open standards allow ESG to function as a platform within a larger context of distributed geoscience processing, such as the Global Earth Observing System of Systems (GEOSS). ESG shares the goals of GEOSS to ensure that observations and products shared by users will be accessible, comparable, and understandable by relying on common standards and adaptation to user needs. By maximizing interoperability, modularity, extensibility and scalability, ESG's architecture fully supports the stated goals of GEOSS. As such, ESG's role extends beyond that of a gateway to NASA science data to become a shared platform that can be leveraged by GEOSS via: A modular and extensible architecture Consensus and community-based standards (e.g. ISO and OGC standards) A variety of clients and visualization techniques, including WorldWind and Google Earth A variety of services (including catalogs) with standard interfaces Data integration and interoperability Mechanisms for user involvement and collaboration Mechanisms for supporting interdisciplinary and domain-specific applications ESG has played a key role in recent GEOSS Service Network (GSN) demos and workshops, acting not only as a service and data catalog and discovery client, but also as a portrayal and visualization client to distributed data.

  9. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  10. NOAA's Science On a Sphere Education Program: Application of a Scientific Visualization System to Teach Earth System Science and Improve our Understanding About Creating Effective Visualizations

    NASA Astrophysics Data System (ADS)

    McDougall, C.; McLaughlin, J.

    2008-12-01

    NOAA has developed several programs aimed at facilitating the use of earth system science data and data visualizations by formal and informal educators. One of them, Science On a Sphere, a visualization display tool and system that uses networked LCD projectors to display animated global datasets onto the outside of a suspended, 1.7-meter diameter opaque sphere, enables science centers, museums, and universities to display real-time and current earth system science data. NOAA's Office of Education has provided grants to such education institutions to develop exhibits featuring Science On a Sphere (SOS) and create content for and evaluate audience impact. Currently, 20 public education institutions have permanent Science On a Sphere exhibits and 6 more will be installed soon. These institutions and others that are working to create and evaluate content for this system work collaboratively as a network to improve our collective knowledge about how to create educationally effective visualizations. Network members include other federal agencies, such as, NASA and the Dept. of Energy, and major museums such as Smithsonian and American Museum of Natural History, as well as a variety of mid-sized and small museums and universities. Although the audiences in these institutions vary widely in their scientific awareness and understanding, we find there are misconceptions and lack of familiarity with viewing visualizations that are common among the audiences. Through evaluations performed in these institutions we continue to evolve our understanding of how to create content that is understandable by those with minimal scientific literacy. The findings from our network will be presented including the importance of providing context, real-world connections and imagery to accompany the visualizations and the need for audience orientation before the visualizations are viewed. Additionally, we will review the publicly accessible virtual library housing over 200 datasets for SOS and any other real or virtual globe. These datasets represent contributions from NOAA, NASA, Dept. of Energy, and the public institutions that are displaying the spheres.

  11. 3D visualization of solar wind ion data from the Chang'E-1 exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Sun, Yankui; Tang, Zesheng

    2011-10-01

    Chang'E-1 (abbreviation CE-1), China's first Moon-orbiting spacecraft launched in 2007, carried equipment called the Solar Wind Ion Detector (abbreviation SWID), which sent back tens of gigabytes of solar wind ion differential number flux data. These data are essential for furthering our understanding of the cislunar space environment. However, to fully comprehend and analyze these data presents considerable difficulties, not only because of their huge size (57 GB), but also because of their complexity. Therefore, a new 3D visualization method is developed to give a more intuitive representation than traditional 1D and 2D visualizations, and in particular to offer a better indication of the direction of the incident ion differential number flux and the relative spatial position of CE-1 with respect to the Sun, the Earth, and the Moon. First, a coordinate system named Selenocentric Solar Ecliptic (SSE) which is more suitable for our goal is chosen, and solar wind ion differential number flux vectors in SSE are calculated from Geocentric Solar Ecliptic System (GSE) and Moon Center Coordinate (MCC) coordinates of the spacecraft, and then the ion differential number flux distribution in SSE is visualized in 3D space. This visualization method is integrated into an interactive visualization analysis software tool named vtSWIDs, developed in MATLAB, which enables researchers to browse through numerous records and manipulate the visualization results in real time. The tool also provides some useful statistical analysis functions, and can be easily expanded.

  12. Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Rastatter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.; Berrios, David H.

    2011-01-01

    In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user.

  13. Mapping of Sample Collection Data: GIS Tools for the Natural Product Researcher

    PubMed Central

    Oberlies, Nicholas H.; Rineer, James I.; Alali, Feras Q.; Tawaha, Khaled; Falkinham, Joseph O.; Wheaton, William D.

    2009-01-01

    Scientists engaged in the research of natural products often either conduct field collections themselves or collaborate with partners who do, such as botanists, mycologists, or SCUBA divers. The information gleaned from such collecting trips (e.g. longitude/latitude coordinates, geography, elevation, and a multitude of other field observations) have provided valuable data to the scientific community (e.g., biodiversity), even if it is tangential to the direct aims of the natural products research, which are often focused on drug discovery and/or chemical ecology. Geographic Information Systems (GIS) have been used to display, manage, and analyze geographic data, including collection sites for natural products. However, to the uninitiated, these tools are often beyond the financial and/or computational means of the natural product scientist. With new, free, and easy-to-use geospatial visualization tools, such as Google Earth, mapping and geographic imaging of sampling data are now within the reach of natural products scientists. The goals of the present study were to develop simple tools that are tailored for the natural products setting, thereby presenting a means to map such information, particularly via open source software like Google Earth. PMID:20161345

  14. 3D Immersive Visualization: An Educational Tool in Geosciences

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  15. The Value of Data and Metadata Standardization for Interoperability in Giovanni Or: Why Your Product's Metadata Causes Us Headaches!

    NASA Technical Reports Server (NTRS)

    Smit, Christine; Hegde, Mahabaleshwara; Strub, Richard; Bryant, Keith; Li, Angela; Petrenko, Maksym

    2017-01-01

    Giovanni is a data exploration and visualization tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC). It has been around in one form or another for more than 15 years. Giovanni calculates simple statistics and produces 22 different visualizations for more than 1600 geophysical parameters from more than 90 satellite and model products. Giovanni relies on external data format standards to ensure interoperability, including the NetCDF CF Metadata Conventions. Unfortunately, these standards were insufficient to make Giovanni's internal data representation truly simple to use. Finding and working with dimensions can be convoluted with the CF Conventions. Furthermore, the CF Conventions are silent on machine-friendly descriptive metadata such as the parameter's source product and product version. In order to simplify analyzing disparate earth science data parameters in a unified way, we developed Giovanni's internal standard. First, the format standardizes parameter dimensions and variables so they can be easily found. Second, the format adds all the machine-friendly metadata Giovanni needs to present our parameters to users in a consistent and clear manner. At a glance, users can grasp all the pertinent information about parameters both during parameter selection and after visualization.

  16. Scientific Visualization Tools for Enhancement of Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable four-dimensional interactive environment. These tools allow students to make higher order decisions based on large multidimensional sets of data while diminishing the level of frustration that results from dealing with the details of processing large data sets.

  17. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1994-01-01

    Envision is an interactive environment that provides researchers in the earth sciences convenient ways to manage, browse, and visualize large observed or model data sets. Its main features are support for the netCDF and HDF file formats, an easy to use X/Motif user interface, a client-server configuration, and portability to many UNIX workstations. The Envision package also provides new ways to view and change metadata in a set of data files. It permits a scientist to conveniently and efficiently manage large data sets consisting of many data files. It also provides links to popular visualization tools so that data can be quickly browsed. Envision is a public domain package, freely available to the scientific community. Envision software (binaries and source code) and documentation can be obtained from either of these servers: ftp://vista.atmos.uiuc.edu/pub/envision/ and ftp://csrp.tamu.edu/pub/envision/. Detailed descriptions of Envision capabilities and operations can be found in the User's Guide and Reference Manuals distributed with Envision software.

  18. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    NASA Astrophysics Data System (ADS)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  19. The Earth Gravitational Model 1996: The NCCS: Resource for Development, Resource for the Future

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For centuries, men have attempted to understand the climate system through observations obtained from Earth's surface. These observations yielded preliminary understanding of the ocean currents, tides, and prevailing winds using visual observation and simple mechanical tools as their instruments. Today's sensitive, downward-looking radar systems, called altimeters, onboard satellites can measure globally the precise height of the ocean surface. This surface is largely that of the equipotential gravity surface, called the geoid - the level surface to which the oceans would conform if there were no forces acting on them apart from gravity, as well as having a significant 1-2- meter-level signal arising from the motion of the ocean's currents.

  20. Look into Our "Eyes" and See the Future

    NASA Astrophysics Data System (ADS)

    Hussey, K.

    2016-12-01

    There are great plans ahead for NASA's "Eyes on…" suite of products. Come and see the latest advances and new features in "Eyes on the Earth", "Eyes on the Solar System" and "Eyes on Exoplanets", NASA's real-time, 3D interactive visualization tools that allow users to virtually explore the Earth, our Solar System and well beyond. This presentation will provide live demonstrations of some exciting new features in each of these products and how they may be used to inspire the next generation of students and educators in STEM. Relive Juno's majestic insertion into orbit around Jupiter and preview Cassini's "Grand Finale" as it prepares to plunge into the clouds of Saturn in September of 2017.

  1. Providing Context for Complexity: Using Infographics and Conceptual Models to Teach Global Change Processes

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.

    2015-12-01

    Understanding modern and historical global changes requires interdisciplinary knowledge of the physical and life sciences. The Understanding Global Change website from the UC Museum of Paleontology will use a focal infographic that unifies diverse content often taught in separate K-12 science units. This visualization tool provides scientists with a structure for presenting research within the broad context of global change, and supports educators with a framework for teaching and assessing student understanding of complex global change processes. This new approach to teaching the science of global change is currently being piloted and refined based on feedback from educators and scientists in anticipation of a 2016 website launch. Global change concepts are categorized within the infographic as causes of global change (e.g., burning of fossil fuels, volcanism), ongoing Earth system processes (e.g., ocean circulation, the greenhouse effect), and the changes scientists measure in Earth's physical and biological systems (e.g., temperature, extinctions/radiations). The infographic will appear on all website content pages and provides a template for the creation of flowcharts, which are conceptual models that allow teachers and students to visualize the interdependencies and feedbacks among processes in the atmosphere, hydrosphere, biosphere, and geosphere. The development of this resource is timely given that the newly adopted Next Generation Science Standards emphasize cross-cutting concepts, including model building, and Earth system science. Flowchart activities will be available on the website to scaffold inquiry-based lessons, determine student preconceptions, and assess student content knowledge. The infographic has already served as a learning and evaluation tool during professional development workshops at UC Berkeley, Stanford University, and the Smithsonian National Museum of Natural History. At these workshops, scientists and educators used the infographic to highlight how their research and activities reinforce conceptual links among global change topics. Pre- and post-workshop assessment results and responses to questionnaires have guided the refinement of classroom activities and assessment tools utilizing flowcharts as models for global change processes.

  2. Visualizing Distributions from Multi-Return Lidar Data to Understand Forest Structure

    NASA Technical Reports Server (NTRS)

    Kao, David L.; Kramer, Marc; Luo, Alison; Dungan, Jennifer; Pang, Alex

    2004-01-01

    Spatially distributed probability density functions (pdfs) are becoming relevant to the Earth scientists and ecologists because of stochastic models and new sensors that provide numerous realizations or data points per unit area. One source of these data is from multi-return airborne lidar, a type of laser that records multiple returns for each pulse of light sent towards the ground. Data from multi-return lidar is a vital tool in helping us understand the structure of forest canopies over large extents. This paper presents several new visualization tools that allow scientists to rapidly explore, interpret and discover characteristic distributions within the entire spatial field. The major contribution from-this work is a paradigm shift which allows ecologists to think of and analyze their data in terms of the distribution. This provides a way to reveal information on the modality and shape of the distribution previously not possible. The tools allow the scientists to depart from traditional parametric statistical analyses and to associate multimodal distribution characteristics to forest structures. Examples are given using data from High Island, southeast Alaska.

  3. SAVS: A Space and Atmospheric Visualization Science system

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Mankofsky, A.; Blanchard, P.; Goodrich, C.; McNabb, D.; Kamins, D.

    1995-01-01

    The research environment faced by space and atmospheric scientists in the 1990s is characterized by unprecedented volumes of new data, by ever-increasing repositories of unexploited mission files, and by the widespread use of empirical and large-scale computational models needed for the synthesis of understanding across data sets and discipline boundaries. The effective analysis and interpretation of such massive amounts of information have become the subjects of legitimate concern. With SAVS (a Space and Atmospheric Visualization Science System), we address these issues by creating a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, and analysis without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. SAVS provides (1) a customizable framework for accessing a powerful set of visualization tools based on the popular AVS visualization software with hooks to PV-Wave and access to Khoros modules, (2) a set of mathematical and statistical tools, (3) an extensible library of discipline-specific functions and models (e.g., MSIS, IRI, Feldstein Oval, IGRF, satellite tracking with CADRE-3, etc.), and (4) capabilities for local and remote data base access. The system treats scalar, vector, and image data, and runs on most common Unix workstations. We present a description of SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the Earth's thermospheric, ionospheric, and mesospheric domains (TIMED).

  4. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  5. The I4 Online Query Tool for Earth Observations Data

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Vanderbloemen, Lisa A.; Lawrence, Samuel J.

    2015-01-01

    The NASA Earth Observation System Data and Information System (EOSDIS) delivers an average of 22 terabytes per day of data collected by orbital and airborne sensor systems to end users through an integrated online search environment (the Reverb/ECHO system). Earth observations data collected by sensors on the International Space Station (ISS) are not currently included in the EOSDIS system, and are only accessible through various individual online locations. This increases the effort required by end users to query multiple datasets, and limits the opportunity for data discovery and innovations in analysis. The Earth Science and Remote Sensing Unit of the Exploration Integration and Science Directorate at NASA Johnson Space Center has collaborated with the School of Earth and Space Exploration at Arizona State University (ASU) to develop the ISS Instrument Integration Implementation (I4) data query tool to provide end users a clean, simple online interface for querying both current and historical ISS Earth Observations data. The I4 interface is based on the Lunaserv and Lunaserv Global Explorer (LGE) open-source software packages developed at ASU for query of lunar datasets. In order to avoid mirroring existing databases - and the need to continually sync/update those mirrors - our design philosophy is for the I4 tool to be a pure query engine only. Once an end user identifies a specific scene or scenes of interest, I4 transparently takes the user to the appropriate online location to download the data. The tool consists of two public-facing web interfaces. The Map Tool provides a graphic geobrowser environment where the end user can navigate to an area of interest and select single or multiple datasets to query. The Map Tool displays active image footprints for the selected datasets (Figure 1). Selecting a footprint will open a pop-up window that includes a browse image and a link to available image metadata, along with a link to the online location to order or download the actual data. Search results are either delivered in the form of browse images linked to the appropriate online database, similar to the Map Tool, or they may be transferred within the I4 environment for display as footprints in the Map Tool. Datasets searchable through I4 (http://eol.jsc.nasa.gov/I4_tool) currently include: Crew Earth Observations (CEO) cataloged and uncataloged handheld astronaut photography; Sally Ride EarthKAM; Hyperspectral Imager for the Coastal Ocean (HICO); and the ISS SERVIR Environmental Research and Visualization System (ISERV). The ISS is a unique platform in that it will have multiple users over its lifetime, and that no single remote sensing system has a permanent internal or external berth. The open source I4 tool is designed to enable straightforward addition of new datasets as they become available such as ISS-RapidSCAT, Cloud Aerosol Transport System (CATS), and the High Definition Earth Viewing (HDEV) system. Data from other sensor systems, such as those operated by the ISS International Partners or under the auspices of the US National Laboratory program, can also be added to I4 provided sufficient access to enable searching of data or metadata is available. Commercial providers of remotely sensed data from the ISS may be particularly interested in I4 as an additional means of directing potential customers and clients to their products.

  6. Building Interactive Visualizations for Geochronological Data

    NASA Astrophysics Data System (ADS)

    Zeringue, J.; Bowring, J. F.; McLean, N. M.; Pastor, F.

    2014-12-01

    Since the early 1990s, Ken Ludwig's Isoplot software has been the tool of choice for visualization and analysis of isotopic data used for geochronology. The software is an add-in to Microsoft Excel that allows users to generate visual representations of data. However, recent changes to Excel have made Isoplot more difficult to use and maintain, and the software is no longer supported. In the last several years, the Cyber Infrastructure Research and Development Lab for the Earth Sciences (CIRDLES), at the College of Charleston, has worked collaboratively with geochronologists to develop U-Pb_Redux, a software product that provides some of Isoplot's functionality for U-Pb geochronology. However, the community needs a full and complete Isoplot replacement that is open source, platform independent, and not dependent on proprietary software. This temporary lapse in tooling also presents a tremendous opportunity for scientific computing in the earth sciences. When Isoplot was written for Excel, it gained much of the platform's flexibility and power but also was burdened with its limitations. For example, Isoplot could not be used outside of Excel, could not be cross-platform (so long as Excel wasn't), could not be embedded in other applications, and only static images could be produced. Nonetheless this software was and still is a powerful tool that has served the community for more than two decades and the trade-offs were more than acceptable. In 2014, we seek to gain flexibility not available with Excel. We propose that the next generation of charting software be reusable, platform-agnostic, and interactive. This new software should allow scientists to easily explore—not just passively view—their data. Beginning in the fall of 2013, researchers at CIRDLES began planning for and prototyping a 21st-century replacement for Isoplot, which we call Topsoil, an anagram of Isoplot. This work is being conducted in the public domain at https://github.com/CIRDLES/topsoil. We welcome and encourage community participation and contributions.

  7. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  8. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.

  9. Tools and Data Services from the GSFC Earth Sciences DAAC for Aura Science Data Users

    NASA Technical Reports Server (NTRS)

    Kempler, S.; Johnson, J.; Leptoukh, G.; Ahmad, S.; Pham, L.; Eng, E.; Berrick, S.; Teng, W.; Vollmer, B.

    2004-01-01

    In these times of rapidly increasing amounts of archived data, tools and data services that manipulate data and uncover nuggets of information that potentially lead to scientific discovery are becoming more and more essential. The Goddard Space Flight Center (GSFC) Earth Sciences (GES) Distributed Active Archive Center (DAAC) has made great strides in facilitating science and applications research by, in consultation with its users, developing innovative tools and data services. That is, as data users become more sophisticated in their research and more savvy with information extraction methodologies, the GES DAAC has been responsive to this evolution. This presentation addresses the tools and data services available and under study at the GES DAAC, applied to the Earth sciences atmospheric data. Now, with the data from NASA's latest Atmospheric Chemistry mission, Aura, being readied for public release, GES DAAC tools, proven successful for past atmospheric science missions such as MODIS, AIRS, TRMM, TOMS, and UARS, provide an excellent basis for similar tools updated for the data from the Aura instruments. GES DAAC resident Aura data sets are from the Microwave Limb Sounder (MLS), Ozone Monitoring Instrument (OMI), and High Resolution Dynamics Limb Sounder (HIRDLS). Data obtained by these instruments afford researchers the opportunity to acquire accurate and continuous visualization and analysis, customized for Aura data, will facilitate the use and increase the usefulness of the new data. The Aura data, together with other heritage data at the GES DAAC, can potentially provide a long time series of data. GES DAAC tools will be discussed, as well as the GES DAAC Near Archive Data Mining (NADM) environment, the GIOVANNI on-line analysis tool, and rich data search and order services. Information can be found at: http://daac.gsfc.nasa.gov/upperatm/aura/. Additional information is contained in the original extended abstract.

  10. Simulation services and analysis tools at the CCMC to study multi-scale structure and dynamics of Earth's magnetopause

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Liu, Y. H.; Rastaetter, L.; Pembroke, A. D.; Chen, L. J.; Hesse, M.; Glocer, A.; Komar, C. M.; Dorelli, J.; Roytershteyn, V.

    2016-12-01

    The presentation will provide overview of new tools, services and models implemented at the Community Coordinated Modeling Center (CCMC) to facilitate MMS dayside results analysis. We will provide updates on implementation of Particle-in-Cell (PIC) simulations at the CCMC and opportunities for on-line visualization and analysis of results of PIC simulations of asymmetric magnetic reconnection for different guide fields and boundary conditions. Fields, plasma parameters, particle distribution moments as well as particle distribution functions calculated in selected regions of the vicinity of reconnection sites can be analyzed through the web-based interactive visualization system. In addition there are options to request distribution functions in user selected regions of interest and to fly through simulated magnetic reconnection configurations and a map of distributions to facilitate comparisons with observations. A broad collection of global magnetosphere models hosted at the CCMC provide opportunity to put MMS observations and local PIC simulations into global context. We recently implemented the RECON-X post processing tool (Glocer et al, 2016) which allows users to determine the location of separator surface around closed field lines and between open field lines and solar wind field lines. The tool also finds the separatrix line where the two surfaces touch and positions of magnetic nulls. The surfaces and the separatrix line can be visualized relative to satellite positions in the dayside magnetosphere using an interactive HTML-5 visualization for each time step processed. To validate global magnetosphere models' capability to simulate locations of dayside magnetosphere boundaries we will analyze the proximity of MMS to simulated separatrix locations for a set of MMS diffusion region crossing events.

  11. Exploring New Methods of Displaying Bit-Level Quality and Other Flags for MODIS Data

    NASA Technical Reports Server (NTRS)

    Khalsa, Siri Jodha Singh; Weaver, Ron

    2003-01-01

    The NASA Distributed Active Archive Center (DAAC) at the National Snow and Ice Data Center (NSIDC) archives and distributes snow and sea ice products derived from the MODerate resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. All MODIS standard products are in the Earth Observing System version of the Hierarchal Data Format (HDF-EOS). The MODIS science team has packed a wealth of information into each HDF-EOS file. In addition to the science data arrays containing the geophysical product, there are often pixel-level Quality Assurance arrays which are important for understanding and interpreting the science data. Currently, researchers are limited in their ability to access and decode information stored as individual bits in many of the MODIS science products. Commercial and public domain utilities give users access, in varying degrees, to the elements inside MODIS HDF-EOS files. However, when attempting to visualize the data, users are confronted with the fact that many of the elements actually represent eight different 1-bit arrays packed into a single byte array. This project addressed the need for researchers to access bit-level information inside MODIS data files. In an previous NASA-funded project (ESDIS Prototype ID 50.0) we developed a visualization tool tailored to polar gridded HDF-EOS data set. This tool,called the Polar researchers to access, geolocate, visualize, and subset data that originate from different sources and have different spatial resolutions but which are placed on a common polar grid. The bit-level visualization function developed under this project was added to PHDIS, resulting in a versatile tool that serves a variety of needs. We call this the EOS Imaging Tool.

  12. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie

    2015-04-01

    Several innovative, polar focused activities and tools including a polar hub website (http://thepolarhub.org) have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom teachers, natural resource managers, community members, leaders, and climate scientists as participants.

  13. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial RTMM doesn t make the airborne science, it makes the airborne science easier.

  14. Cloud Geospatial Analysis Tools for Global-Scale Comparisons of Population Models for Decision Making

    NASA Astrophysics Data System (ADS)

    Hancher, M.; Lieber, A.; Scott, L.

    2017-12-01

    The volume of satellite and other Earth data is growing rapidly. Combined with information about where people are, these data can inform decisions in a range of areas including food and water security, disease and disaster risk management, biodiversity, and climate adaptation. Google's platform for planetary-scale geospatial data analysis, Earth Engine, grants access to petabytes of continually updating Earth data, programming interfaces for analyzing the data without the need to download and manage it, and mechanisms for sharing the analyses and publishing results for data-driven decision making. In addition to data about the planet, data about the human planet - population, settlement and urban models - are now available for global scale analysis. The Earth Engine APIs enable these data to be joined, combined or visualized with economic or environmental indicators such as nighttime lights trends, global surface water, or climate projections, in the browser without the need to download anything. We will present our newly developed application intended to serve as a resource for government agencies, disaster response and public health programs, or other consumers of these data to quickly visualize the different population models, and compare them to ground truth tabular data to determine which model suits their immediate needs. Users can further tap into the power of Earth Engine and other Google technologies to perform a range of analysis from simple statistics in custom regions to more complex machine learning models. We will highlight case studies in which organizations around the world have used Earth Engine to combine population data with multiple other sources of data, such as water resources and roads data, over deep stacks of temporal imagery to model disease risk and accessibility to inform decisions.

  15. Finite-difference time-domain modelling of through-the-Earth radio signal propagation

    NASA Astrophysics Data System (ADS)

    Ralchenko, M.; Svilans, M.; Samson, C.; Roper, M.

    2015-12-01

    This research seeks to extend the knowledge of how a very low frequency (VLF) through-the-Earth (TTE) radio signal behaves as it propagates underground, by calculating and visualizing the strength of the electric and magnetic fields for an arbitrary geology through numeric modelling. To achieve this objective, a new software tool has been developed using the finite-difference time-domain method. This technique is particularly well suited to visualizing the distribution of electromagnetic fields in an arbitrary geology. The frequency range of TTE radio (400-9000 Hz) and geometrical scales involved (1 m resolution for domains a few hundred metres in size) involves processing a grid composed of millions of cells for thousands of time steps, which is computationally expensive. Graphics processing unit acceleration was used to reduce execution time from days and weeks, to minutes and hours. Results from the new modelling tool were compared to three cases for which an analytic solution is known. Two more case studies were done featuring complex geologic environments relevant to TTE communications that cannot be solved analytically. There was good agreement between numeric and analytic results. Deviations were likely caused by numeric artifacts from the model boundaries; however, in a TTE application in field conditions, the uncertainty in the conductivity of the various geologic formations will greatly outweigh these small numeric errors.

  16. NASA's Earth Observatory and Visible Earth: Imagery and Science on the Internet

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Simmon, Robert B.; Herring, David D.

    2003-01-01

    The purpose of NASA s Earth Observatory and Visible Earth Web sites is to provide freely-accessible locations on the Internet where the public can obtain new satellite imagery (at resolutions up to a given sensor's maximum) and scientific information about our home planet. Climatic and environmental change are the sites main foci. As such, they both contain ample data visualizations and time-series animations that demonstrate geophysical parameters of particular scientific interest, with emphasis on how and why they vary over time. An Image Composite Editor (ICE) tool will be added to the Earth Observatory in October 2002 that will allow visitors to conduct basic analyses of available image data. For example, users may produce scatter plots to correlate images; or they may probe images to find the precise unit values per pixel of a given data product; or they may build their own true-color and false-color images using multi- spectral data. In particular, the sites are designed to be useful to the science community, public media, educators, and students.

  17. Improving the Accessibility and Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Tisdale, Matthew; Tisdale, Brian

    2015-01-01

    Many of the NASA Langley Atmospheric Science Data Center (ASDC) Distributed Active Archive Center (DAAC) multidimensional tropospheric and atmospheric chemistry data products are stored in HDF4, HDF5 or NetCDF format, which traditionally have been difficult to analyze and visualize with geospatial tools. With the rising demand from the diverse end-user communities for geospatial tools to handle multidimensional products, several applications, such as ArcGIS, have refined their software. Many geospatial applications now have new functionalities that enable the end user to: Store, serve, and perform analysis on each individual variable, its time dimension, and vertical dimension. Use NetCDF, GRIB, and HDF raster data formats across applications directly. Publish output within REST image services or WMS for time and space enabled web application development. During this webinar, participants will learn how to leverage geospatial applications such as ArcGIS, OPeNDAP and ncWMS in the production of Earth science information, and in increasing data accessibility and usability.

  18. Data Albums: An Event Driven Search, Aggregation and Curation Tool for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Kulkarni, Ajinkya; Maskey, Manil; Bakare, Rohan; Basyal, Sabin; Li, Xiang; Flynn, Shannon

    2014-01-01

    One of the largest continuing challenges in any Earth science investigation is the discovery and access of useful science content from the increasingly large volumes of Earth science data and related information available. Approaches used in Earth science research such as case study analysis and climatology studies involve gathering discovering and gathering diverse data sets and information to support the research goals. Research based on case studies involves a detailed description of specific weather events using data from different sources, to characterize physical processes in play for a specific event. Climatology-based research tends to focus on the representativeness of a given event, by studying the characteristics and distribution of a large number of events. This allows researchers to generalize characteristics such as spatio-temporal distribution, intensity, annual cycle, duration, etc. To gather relevant data and information for case studies and climatology analysis is both tedious and time consuming. Current Earth science data systems are designed with the assumption that researchers access data primarily by instrument or geophysical parameter. Those who know exactly the datasets of interest can obtain the specific files they need using these systems. However, in cases where researchers are interested in studying a significant event, they have to manually assemble a variety of datasets relevant to it by searching the different distributed data systems. In these cases, a search process needs to be organized around the event rather than observing instruments. In addition, the existing data systems assume users have sufficient knowledge regarding the domain vocabulary to be able to effectively utilize their catalogs. These systems do not support new or interdisciplinary researchers who may be unfamiliar with the domain terminology. This paper presents a specialized search, aggregation and curation tool for Earth science to address these existing challenges. The search tool automatically creates curated "Data Albums", aggregated collections of information related to a specific science topic or event, containing links to relevant data files (granules) from different instruments; tools and services for visualization and analysis; and information about the event contained in news reports, images or videos to supplement research analysis. Curation in the tool is driven via an ontology based relevancy ranking algorithm to filter out non-relevant information and data.

  19. RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology

    NASA Astrophysics Data System (ADS)

    Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.

    2011-12-01

    A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.

  20. Tools for educational access to seismic data

    NASA Astrophysics Data System (ADS)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    Student engagement can be increased both by providing easy access to real data, and by addressing newsworthy events such as recent large earthquakes. IRIS EPO has a suite of access and visualization tools that can be used for such engagement, including a set of three tools that allow students to explore global seismicity, use seismic data to determine Earth structure, and view and analyze near-real-time ground motion data in the classroom. These tools are linked to online lessons that are designed for use in middle school through introductory undergraduate classes. The IRIS Earthquake Browser allows discovery of key aspects of plate tectonics, earthquake locations (in pseudo 3D) and seismicity rates and patterns. IEB quickly displays up to 20,000 seismic events over up to 30 years, making it one of the most responsive, practical ways to visualize historical seismicity in a browser. Maps are bookmarkable and preserve state, meaning IEB map links can be shared or worked into a lesson plan. The Global Seismogram Plotter automatically creates visually clear seismic record sections from selected large earthquakes that are tablet-friendly and can also to be printed for use in a classroom without computers. The plots are designed to be appropriate for use with no parameters to set, but users can also modify the plots, such as including a recording station near a chosen location. A guided exercise is provided where students use the record section to discover the diameter of Earth's outer core. Students can pick and compare phase arrival times onscreen which is key to performing the exercise. A companion station map shows station locations and further information and is linked to the record section. jAmaSeis displays seismic data in real-time from either a local instrument and/or from remote seismic stations that stream data using standard seismic data protocols, and can be used in the classroom or as a public display. Users can filter data, fit a seismogram to travel time curves, triangulate event epicenters on a globe, estimate event magnitudes, and generate images showing seismograms and corresponding calculations. All three tools access seismic databases curated by IRIS Data Services. In addition, jAmaseis also can access data from non-IRIS sources.

  1. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  2. Playing with Satellite Data

    NASA Astrophysics Data System (ADS)

    Beitler, J.; Truex, S.

    2008-12-01

    Would you like to see your science on the evening news? On everyone's mobile device? How hard is it to make one of those cool Google Earth files so people can explore your world? Do you need to be a programmer, or could most any person with a little motivation and a few inexpensive tools do it? Find out what it takes to get started with these technologies--it may be easier than you think--and how they can give your data more legs. I will demonstrate some of the ways that the National Snow and Ice Data Center has been successful in reaching the public and educators with visualized and animated data about the Earth's frozen regions, and talk about some of the how-to. In particular, see what we have done with QuickTime, Google Earth, YouTube, and the iPhone. I'll also talk about how we've assessed the reach and success of these efforts.

  3. Uploading, Searching and Visualizing of Paleomagnetic and Rock Magnetic Data in the Online MagIC Database

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Donadini, F.

    2007-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all available measurements and derived properties from paleomagnetic studies of directions and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and will soon implement two search nodes, one for paleomagnetism and one for rock magnetism. Currently the PMAG node is operational. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. Users can also browse the database by data type or by data compilation to view all contributions associated with well known earlier collections like PINT, GMPDB or PSVRL. The query result set is displayed in a digestible tabular format allowing the user to descend from locations to sites, samples, specimens and measurements. At each stage, the result set can be saved and, where appropriate, can be visualized by plotting global location maps, equal area, XY, age, and depth plots, or typical Zijderveld, hysteresis, magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (version 2.3) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload and takes only a few minutes to process tens of thousands of data records. The standardized MagIC template files are stored in the digital archives of EarthRef.org where they remain available for download by the public (in both text and Excel format). Finally, the contents of these template files are automatically parsed into the online relational database, making the data available for online searches in the paleomagnetic and rock magnetic search nodes. During the upload process the owner has the option of keeping the contribution private so it can be viewed in the context of other data sets and visualized using the suite of MagIC plotting tools. Alternatively, the new data can be password protected and shared with a group of users at the contributor's discretion. Once they are published and the owner is comfortable making the upload publicly accessible, the MagIC Editing Committee reviews the contribution for adherence to the MagIC data model and conventions to ensure a high level of data integrity.

  4. The GLOBAL Learning and Observations to Benefit the Environment (GLOBE) Collaboration System. Building a robust international collaboration environment for teachers, scientists and students.

    NASA Astrophysics Data System (ADS)

    Overoye, D.; Lewis, C.

    2016-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) Program is a worldwide hands-on, primary and secondary school-based science and education program founded on Earth Day 1995. Implemented in 117 countries, GLOBE promotes the teaching and learning of science, supporting students, teachers and scientists worldwide to collaborate with each other on inquiry-based investigations of the Earth system. As an international platform supporting a large number and variety of stakeholders, the GLOBE Data Information System (DIS) was re-built with the goal of providing users the support needed to foster and develop collaboration between teachers, students and scientists while supporting the collection and visualization of over 50 different earth science investigations (protocols). There have been many challenges to consider as we have worked to prototype and build various tools to support collaboration across the GLOBE community - language, security, time zones, user roles and the Child Online Protection Act (COPA) to name a few. During the last 3 years the re-built DIS has been in operation we have supported user to user collaboration, school to school collaboration, project/campaign to user collaboration and scientist to scientist collaboration. We have built search tools to facilitate finding collaboration partners. The tools and direction continue to evolve based on feedback, evolving needs and changes in technology. With this paper we discuss our approach for dealing with some of the collaboration challenges, review tools built to encourage and support collaboration, and analyze which tools have been successful and which have not. We will review new ideas for collaboration in the GLOBE community that are guiding upcoming development.

  5. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  6. Discovery of Marine Datasets and Geospatial Metadata Visualization

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.

    2009-12-01

    NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar” infrastructure.

  7. Visualising Earth's Mantle based on Global Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Pugmire, D.; Lefebvre, M. P.; Hill, J.; Komatitsch, D.; Peter, D. B.; Podhorszki, N.; Tromp, J.

    2017-12-01

    Recent advances in 3D wave propagation solvers and high-performance computing have enabled regional and global full-waveform inversions. Interpretation of tomographic models is often done on visually. Robust and efficient visualization tools are necessary to thoroughly investigate large model files, particularly at the global scale. In collaboration with Oak Ridge National Laboratory (ORNL), we have developed effective visualization tools and used for visualization of our first-generation global model, GLAD-M15 (Bozdag et al. 2016). VisIt (https://wci.llnl.gov/simulation/computer-codes/visit/) is used for initial exploration of the models and for extraction of seismological features. The broad capability of VisIt, and its demonstrated scalability proved valuable for experimenting with different visualization techniques, and in the creation of timely results. Utilizing VisIt's plugin-architecture, a data reader plugin was developed, which reads the ADIOS (https://www.olcf.ornl.gov/center-projects/adios/) format of our model files. Blender (https://www.blender.org) is used for the setup of lighting, materials, camera paths and rendering of geometry. Python scripting was used to control the orchestration of different geometries, as well as camera animation for 3D movies. While we continue producing 3D contour plots and movies for various seismic parameters to better visualize plume- and slab-like features as well as anisotropy throughout the mantle, our aim is to make visualization an integral part of our global adjoint tomography workflow to routinely produce various 2D cross-sections to facilitate examination of our models after each iteration. This will ultimately form the basis for use of pattern recognition techniques in our investigations. Simulations for global adjoint tomography are performed on ORNL's Titan system and visualization is done in parallel on ORNL's post-processing cluster Rhea.

  8. Gravity as a Strong Prior: Implications for Perception and Action.

    PubMed

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called "strong prior". As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.

  9. Visualization of International Solar-Terrestrial Physics Program (ISTP) data

    NASA Technical Reports Server (NTRS)

    Kessel, Ramona L.; Candey, Robert M.; Hsieh, Syau-Yun W.; Kayser, Susan

    1995-01-01

    The International Solar-Terrestrial Physics Program (ISTP) is a multispacecraft, multinational program whose objective is to promote further understanding of the Earth's complex plasma environment. Extensive data sharing and data analysis will be needed to ensure the success of the overall ISTP program. For this reason, there has been a special emphasis on data standards throughout ISTP. One of the key tools will be the common data format (CDF), developed, maintained, and evolved at the National Space Science Data Center (NSSDC), with the set of ISTP implementation guidelines specially designed for space physics data sets by the Space Physics Data Facility (associated with the NSSDC). The ISTP guidelines were developed to facilitate searching, plotting, merging, and subsetting of data sets. We focus here on the plotting application. A prototype software package was developed to plot key parameter (KP) data from the ISTP program at the Science Planning and Operations Facility (SPOF). The ISTP Key Parameter Visualization Tool is based on the Interactive Data Language (IDL) and is keyed to the ISTP guidelines, reading data stored in CDF. With the combination of CDF, the ISTP guidelines, and the visualization software, we can look forward to easier and more effective data sharing and use among ISTP scientists.

  10. Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.

    2017-12-01

    We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.

  11. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  12. Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.

    1993-01-01

    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.

  13. A Space and Atmospheric Visualization Science System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.

    1994-01-01

    SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.

  14. Analyzing Earth Science Research Networking through Visualizations

    NASA Astrophysics Data System (ADS)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  15. Mission Specialist (MS) Ride with tool tray on middeck

    NASA Image and Video Library

    1983-06-24

    STS007-12-536 (18-24 June 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, displays the array of tools at her disposal on the mid deck of the Earth-orbiting Space Shuttle Challenger. Dr. Ride is positioned near the monodisperse latex reactor (MLR) experiment. They cylinder near her elbow is the actual reactor and the device next to it at right frame edge is the MRL apparatus container. Dr. Ride and four other astronauts are sharing duties aboard the reusable spacecraft for a six-day space mission full of “firsts.” This photograph was made with a 35mm camera. It was among the visuals used by crewmembers at their post-flight press conference.

  16. KML-Based Access and Visualization of High Resolution LiDAR Topography

    NASA Astrophysics Data System (ADS)

    Crosby, C. J.; Blair, J. L.; Nandigam, V.; Memon, A.; Baru, C.; Arrowsmith, J. R.

    2008-12-01

    Over the past decade, there has been dramatic growth in the acquisition of LiDAR (Light Detection And Ranging) high-resolution topographic data for earth science studies. Capable of providing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LiDAR data allow earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible yet essential for their appropriate representation. These datasets also have significant implications for earth science education and outreach because they provide an accurate representation of landforms and geologic hazards. Unfortunately, the massive volume of data produced by LiDAR mapping technology can be a barrier to their use. To make these data available to a larger user community, we have been exploring the use of Keyhole Markup Language (KML) and Google Earth to provide access to LiDAR data products and visualizations. LiDAR digital elevation models are typically delivered in a tiled format that lends itself well to a KML-based distribution system. For LiDAR datasets hosted in the GEON OpenTopography Portal (www.opentopography.org) we have developed KML files that show the extent of available LiDAR DEMs and provide direct access to the data products. Users interact with these KML files to explore the extent of the available data and are able to select DEMs that correspond to their area of interest. Selection of a tile loads a download that the user can then save locally for analysis in their software of choice. The GEON topography system also has tools available that allow users to generate custom DEMs from LiDAR point cloud data. This system is powerful because it enables users to access massive volumes of raw LiDAR data and to produce DEM products that are optimized to their science applications. We have developed a web service that converts the custom DEM models produced by the system to a hillshade that is delivered to the user as a KML groundoverlay. The KML product enables users to quickly and easily visualize the DEMs in Google Earth. By combining internet-based LiDAR data processing with KML visualization products, users are able to execute computationally intensive data sub-setting, processing and visualization without having local access to computing resources, GIS software, or data processing expertise. Finally, GEON has partnered with the US Geological Survey to generate region-dependant network linked KML visualizations for large volumes of LiDAR derived hillshades of the Northern San Andreas fault system. These data, acquired by the NSF-funded GeoEarthScope project, offer an unprecedented look at active faults in the northern portion of the San Andreas system. Through the region-dependant network linked KML, users can seamlessly access 1 meter hillshades (both 315 and 45 degree sun angles) for the full 1400 square kilometer dataset, without downloading huge volumes of data. This type of data access has great utility for users ranging from earthquake scientists to K-12 educators who wish to introduce cutting edge real world data into their earth science lessons.

  17. Tools for Data Analysis in the Middle School Classroom: A Teacher Professional Development Program

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Haddad, N.; McAuliffe, C.; Dahlman, L.

    2006-12-01

    In order for students to learn how to engage with scientific data to answer questions about the real world, it is imperative that their teachers are 1) comfortable with the data and the tools used to analyze it, and 2) feel prepared to support their students in this complex endeavor. TERC's Tools for Data Analysis in the Middle School Classroom (DataTools) professional development program, funded by NSF's ITEST program, prepares middle school teachers to integrate Web-based scientific data and analysis tools into their existing curricula. This 13-month program supports teachers in using a set of freely or commonly available tools with a wide range of data. It also gives them an opportunity to practice teaching these skills to students before teaching in their own classrooms. The ultimate goal of the program is to increase the number of middle school students who work directly with scientific data, who use the tools of technology to import, manipulate, visualize and analyze the data, who come to understand the power of data-based arguments, and who will consider pursuing a career in technical and scientific fields. In this session, we will describe the elements of the DataTools program and the Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet), a Web-based resource that supports Earth system education for teachers and students in grades 6 through 16. The EET provides essential support to DataTools teachers as they use it to learn to locate and download Web-based data and use data analysis tools. We will also share what we have learned during the first year of this three-year program.

  18. Integration of Geophysical and Geochemical Data

    NASA Astrophysics Data System (ADS)

    Yamagishi, Y.; Suzuki, K.; Tamura, H.; Nagao, H.; Yanaka, H.; Tsuboi, S.

    2006-12-01

    Integration of geochemical and geophysical data would give us a new insight to the nature of the Earth. It should advance our understanding for the dynamics of the Earth's interior and surface processes. Today various geochemical and geophysical data are available on Internet. These data are stored in various database systems. Each system is isolated and provides own format data. The goal of this study is to display both the geochemical and geophysical data obtained from such databases together visually. We adopt Google Earth as the presentation tool. Google Earth is virtual globe software and is provided free of charge by Google, Inc. Google Earth displays the Earth's surface using satellite images with mean resolution of ~15m. We display any graphical features on Google Earth by KML format file. We have developed softwares to convert geochemical and geophysical data to KML file. First of all, we tried to overlay data from Georoc and PetDB and seismic tomography data on Google Earth. Georoc and PetDB are both online database systems for geochemical data. The data format of Georoc is CSV and that of PetDB is Microsoft Excel. The format of tomography data we used is plain text. The conversion software can process these different file formats. The geochemical data (e. g. compositional abundance) is displayed as a three-dimensional column on the Earth's surface. The shape and color of the column mean the element type. The size and color tone vary according to the abundance of the element. The tomography data can be converted into a KML file for each depth. This overlay plot of geochemical data and tomography data should help us to correlate internal temperature anomalies to geochemical anomalies, which are observed at the surface of the Earth. Our tool can convert any geophysical and geochemical data to a KML as long as the data is associated with longitude and latitude. We are going to support more geophysical data formats. In addition, we are currently trying to obtain scientific insights for the Earth's interior based on the view of both geophysical and geochemical data on Google Earth.

  19. The Challenges and Benefits of Using Computer Technology for Communication and Teaching in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fairley, J. P.; Hinds, J. J.

    2003-12-01

    The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.

  20. Gravity as a Strong Prior: Implications for Perception and Action

    PubMed Central

    Jörges, Björn; López-Moliner, Joan

    2017-01-01

    In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities. PMID:28503140

  1. Collaboratively Conceived, Designed and Implemented: Matching Visualization Tools with Geoscience Data Collections and Geoscience Data Collections with Visualization Tools via the ToolMatch Service.

    NASA Astrophysics Data System (ADS)

    Hoebelheinrich, N. J.; Lynnes, C.; West, P.; Ferritto, M.

    2014-12-01

    Two problems common to many geoscience domains are the difficulties in finding tools to work with a given dataset collection, and conversely, the difficulties in finding data for a known tool. A collaborative team from the Earth Science Information Partnership (ESIP) has gotten together to design and create a web service, called ToolMatch, to address these problems. The team began their efforts by defining an initial, relatively simple conceptual model that addressed the two uses cases briefly described above. The conceptual model is expressed as an ontology using OWL (Web Ontology Language) and DCterms (Dublin Core Terms), and utilizing standard ontologies such as DOAP (Description of a Project), FOAF (Friend of a Friend), SKOS (Simple Knowledge Organization System) and DCAT (Data Catalog Vocabulary). The ToolMatch service will be taking advantage of various Semantic Web and Web standards, such as OpenSearch, RESTful web services, SWRL (Semantic Web Rule Language) and SPARQL (Simple Protocol and RDF Query Language). The first version of the ToolMatch service was deployed in early fall 2014. While more complete testing is required, a number of communities besides ESIP member organizations have expressed interest in collaborating to create, test and use the service and incorporate it into their own web pages, tools and / or services including the USGS Data Catalog service, DataONE, the Deep Carbon Observatory, Virtual Solar Terrestrial Observatory (VSTO), and the U.S. Global Change Research Program. In this session, presenters will discuss the inception and development of the ToolMatch service, the collaborative process used to design, refine, and test the service, and future plans for the service.

  2. Exposing the Strategies that can Reduce the Obstacles: Improving the Science User Experience

    NASA Astrophysics Data System (ADS)

    Lindsay, F. E.; Brennan, J.; Behnke, J.; Lynnes, C.

    2017-12-01

    It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASA's Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of science and applications users.

  3. Exposing the Strategies that Can Reduce the Obstacles: Improving the Science User Experience

    NASA Technical Reports Server (NTRS)

    Lindsay, Francis E.; Brennan, Jennifer; Behnke, Jeanne; Lynnes, Chris

    2017-01-01

    It is now well established that pursuing generic solutions to what seem are common problems in Earth science data access and use can often lead to disappointing results for both system developers and the intended users. This presentation focuses on real-world experience of managing a large and complex data system, NASAs Earth Science Data and Information Science System (EOSDIS), whose mission is to serve both broad user communities and those in smaller niche applications of Earth science data and services. In the talk, we focus on our experiences with known data user obstacles characterizing EOSDIS approaches, including various technological techniques, for engaging and bolstering, where possible, user experiences with EOSDIS. For improving how existing and prospective users discover and access NASA data from EOSDIS we introduce our cross-archive tool: Earthdata Search. This new search and order tool further empowers users to quickly access data sets using clever and intuitive features. The Worldview data visualization tool is also discussed highlighting how many users are now performing extensive data exploration without necessarily downloading data. Also, we explore our EOSDIS data discovery and access webinars, data recipes and short tutorials, targeted technical and data publications, user profiles and social media as additional tools and methods used for improving our outreach and communications to a diverse user community. These efforts have paid substantial dividends for our user communities by allowing us to target discipline specific community needs. The desired take-away from this presentation will be an improved understanding of how EOSDIS has approached, and in several instances achieved, removing or lowering the barriers to data access and use. As we look ahead to more complex Earth science missions, EOSDIS will continue to focus on our user communities, both broad and specialized, so that our overall data system can continue to serve the needs of science and applications users.

  4. A highlight of data products from IRIS Data Services

    NASA Astrophysics Data System (ADS)

    Hutko, A. R.; Bahavar, M.; Trabant, C. M.; Van Fossen, M.; Weekly, R. T.

    2014-12-01

    Since 2009 the IRIS Data Management Center has served the seismology community in a variety of ways by offering higher order data products generated internally or by the research community in addition to raw times series data traditionally managed at the DMC. These products are intended to facilitate research as baseline standards, tools for data visualization or characterization, and teaching & outreach material. We currently serve 25 data products of which 7 are event-based that provide quick looks at many aspects of interest to researchers, often within a few hours of real-time. Among our new offerings is an expansion of the visualization capabilities of the Earth Model Collaboration, a repository of author contributed tomography and other Earth models. Currently EMC tools allow users to make 2D plots slicing through models. New 3D visualization tools being developed will bridge the gap between 2D slices and advanced and sometimes complicated 3D visualization packages with common 3D capabilities that can be set up and learned within minutes. The newly released Global Stacks is a project that stacks up to a million seismograms to illuminate the global seismic wavefield. Seismograms are processed and stacked for three component data across many frequency bands. The resulting stacks lead to high-fidelity wavefield images that clearly highlight characteristics such as dispersion in surface waves and many phases not commonly observed such as P'P'P'P'. Another recent addition is the Automated Surface Wave Phase Velocity Measuring System, which is an automated do-it-yourself surface wave tomography package requiring minimal user input and produces research quality tomography results. To further enhance our effort to support the research community, we invite proposals for collaborative data product development. This is an excellent opportunity for researchers to put forward unique and useful data product ideas and collaborate with the DMC in the development of the product. While we do not offer funding, this is an opportunity to utilize our resources to make a new data product that will be shared with the community. In the near future, DOIs will be provided for products we host, thereby improving contributor recognition. Details on our data products are available at: http://www.iris.edu/ds/products

  5. Space Radiation Monitoring Center at SINP MSU

    NASA Astrophysics Data System (ADS)

    Kalegaev, Vladimir; Barinova, Wera; Barinov, Oleg; Bobrovnikov, Sergey; Dolenko, Sergey; Mukhametdinova, Ludmila; Myagkova, Irina; Nguen, Minh; Panasyuk, Mikhail; Shiroky, Vladimir; Shugay, Julia

    2015-04-01

    Data on energetic particle fluxes from Russian satellites have been collected in Space monitoring data center at Moscow State University in the near real-time mode. Web-portal http://smdc.sinp.msu.ru/ provides operational information on radiation state of the near-Earth space. Operational data are coming from space missions ELECTRO-L1, Meteor-M2. High-resolution data on energetic electron fluxes from MSU's satellite VERNOV with RELEC instrumentation on board are also available. Specific tools allow the visual representation of the satellite orbit in 3D space simultaneously with particle fluxes variations. Concurrent operational data coming from other spacecraft (ACE, GOES, SDO) and from the Earth's surface (geomagnetic indices) are used to represent geomagnetic and radiation state of near-Earth environment. Internet portal http://swx.sinp.msu.ru provides access to the actual data characterizing the level of solar activity, geomagnetic and radiation conditions in heliosphere and the Earth's magnetosphere in the real-time mode. Operational forecasting services automatically generate alerts on particle fluxes enhancements above the threshold values, both for SEP and relativistic electrons, using data from LEO and GEO orbits. The models of space environment working in autonomous mode are used to generalize the information obtained from different missions for the whole magnetosphere. On-line applications created on the base of these models provide short-term forecasting for SEP particles and relativistic electron fluxes at GEO and LEO, Dst and Kp indices online forecasting up to 1.5 hours ahead. Velocities of high-speed streams in solar wind on the Earth orbit are estimated with advance time of 3-4 days. Visualization system provides representation of experimental and modeling data in 2D and 3D.

  6. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  7. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    NASA Technical Reports Server (NTRS)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  8. More than a feeling: bringing touch into astronauts' spatial orientation

    NASA Astrophysics Data System (ADS)

    van Erp Jan, B. F.; van Veen Hendrik, A. H. C.; Mark, Ruijsendaal

    2007-09-01

    Data show that spatial orientation in microgravity differs from that on Earth possibly facilitating space motion sickness and degrading performance. As a technology demonstration, we developed a Tactile Orientation Awareness Support Tool (TOAST) consisting of a vest with 56 vibrators. TOAST presents an artificial gravity vector by a localised vibration on the torso that points in the direction of down. Here, we report on the operational issues of TOAST. In an experiment with a single male austronaut, we tested if he could detect the vibrations in mircogravity as fast as on Earth. We used several questionnaires to investigate issues such as comfort and usability. The results show that, on average, the astronaut responds faster in microgravity than on Earth. However, the data also showed that the fit of the vest could be improved. The questionnaires show that the tool supported the astronaut in orientation tasks and has potential in challenging situations, but is not needed during daily operations. Although the comfort of the vest is OK, the somewhat bulky equipment of the demonstrator reduced its wearibility. We conclude that the demonstration was successful but that more microgravity data are needed to corroborate the findings. We expect a spin- off to applications for pilots, divers, individuals with a visual or vestibular dysfunction, emergency services, and the automobile and sports industry.

  9. Data mining tools for Sentinel 1 and Sentinel 2 data exploitation

    NASA Astrophysics Data System (ADS)

    Espinoza Molina, Daniela; Datcu, Mihai

    2016-10-01

    With the new planned Sentinel missions, the availability of Earth Observation data is increasing everyday offering a larger number of applications that can be created using these data. Currently, three of the five missions were launched and they are delivering a wealth of data and imagery of the Earth's surface as, for example, the Sentinel-1 carries an advanced radar instrument to provide an all-weather, day-and-night supply of Earth imagery. The second mission, the Sentinel-2, carries an optical instrument payload that will sample 13 spectral bands at different resolutions. Even though, we count on tools for automated loading and visual exploration of the Sentinel data, we still face the problem of extracting relevant structures from the images, finding similar patterns in a scene, exploiting the data, and creating final user applications based on these processed data. In this paper, we present our approach for processing radar and multi-spectral Sentinel data. Our approach is mainly composed of three steps: 1) the generation of a data model that explains the information contained in a Sentinel product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback methods.

  10. Accessing Earth Science Data Visualizations through NASA GIBS & Worldview

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Wong, M. M.; King, B. A.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting nearly 15 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This poster will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We invite discussion on how the visualizations can be used or improved for educational purposes.

  11. The Earth System CoG Collaboration Environment

    NASA Astrophysics Data System (ADS)

    DeLuca, C.; Murphy, S.; Cinquini, L.; Treshansky, A.; Wallis, J. C.; Rood, R. B.; Overeem, I.

    2013-12-01

    The Earth System CoG supports collaborative Earth science research and product development in virtual organizations that span multiple projects and communities. It provides access to data, metadata, and visualization services along with tools that support open project governance, and it can be used to host individual projects or to profile projects hosted elsewhere. All projects on CoG are described using a project ontology - an organized common vocabulary - that exposes information needed for collaboration and decision-making. Projects can be linked into a network, and the underlying ontology enables consolidated views of information across the network. This access to information promotes the creation of active and knowledgeable project governance, at both individual and aggregate project levels. CoG is being used to support software development projects, model intercomparison projects, training classes, and scientific programs. Its services and ontology are customizable by project. This presentation will provide an overview of CoG, review examples of current use, and discuss how CoG can be used as knowledge and coordination hub for networks of projects in the Earth Sciences.

  12. Visualizing projected Climate Changes - the CMIP5 Multi-Model Ensemble

    NASA Astrophysics Data System (ADS)

    Böttinger, Michael; Eyring, Veronika; Lauer, Axel; Meier-Fleischer, Karin

    2017-04-01

    Large ensembles add an additional dimension to climate model simulations. Internal variability of the climate system can be assessed for example by multiple climate model simulations with small variations in the initial conditions or by analyzing the spread in large ensembles made by multiple climate models under common protocols. This spread is often used as a measure of uncertainty in climate projections. In the context of the fifth phase of the WCRP's Coupled Model Intercomparison Project (CMIP5), more than 40 different coupled climate models were employed to carry out a coordinated set of experiments. Time series of the development of integral quantities such as the global mean temperature change for all models visualize the spread in the multi-model ensemble. A similar approach can be applied to 2D-visualizations of projected climate changes such as latitude-longitude maps showing the multi-model mean of the ensemble by adding a graphical representation of the uncertainty information. This has been demonstrated for example with static figures in chapter 12 of the last IPCC report (AR5) using different so-called stippling and hatching techniques. In this work, we focus on animated visualizations of multi-model ensemble climate projections carried out within CMIP5 as a way of communicating climate change results to the scientific community as well as to the public. We take a closer look at measures of robustness or uncertainty used in recent publications suitable for animated visualizations. Specifically, we use the ESMValTool [1] to process and prepare the CMIP5 multi-model data in combination with standard visualization tools such as NCL and the commercial 3D visualization software Avizo to create the animations. We compare different visualization techniques such as height fields or shading with transparency for creating animated visualization of ensemble mean changes in temperature and precipitation including corresponding robustness measures. [1] Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones, C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C., Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D., Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert, D., Levine, R., Loew, A., Mäkelä, J., Martin, G., Mason, E., Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D., Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams, K. D.: ESMValTool (v1.0) - a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-9-1747-2016, 2016.

  13. Science on a Sphere and Data in the Classroom: A Marriage Between Limitless Learning Experiences.

    NASA Astrophysics Data System (ADS)

    Zepecki, S., III; Dean, A. F.; Pisut, D.

    2017-12-01

    NOAA and other agencies have contributed significantly to the creation and distribution of educational materials to enhance the public understanding of the interconnectedness of the Earth processes and human activities. Intended for two different learning audiences, Science on a Sphere and Data in the Classroom are both educational tools used to enhance understanding of our world and how human activity influences change. Recently, NOAA has undertaken the task of marrying Data in the Classroom's NGSS aligned curriculum, which includes topics such as El Niño, sea level rise, and coral bleaching, with Science on a Sphere's Earth and space data visualization exhibits. This partnership allows for the fluidity of NOAA's data-driven learning materials, and fosters the homogeneity of formal and informal learning experiences for varied audiences.

  14. Geoinformatics 2007: data to knowledge

    USGS Publications Warehouse

    Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.

    2007-01-01

    Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling.

  15. Analysis of model output and science data in the Virtual Model Repository (VMR).

    NASA Astrophysics Data System (ADS)

    De Zeeuw, D.; Ridley, A. J.

    2014-12-01

    Big scientific data not only includes large repositories of data from scientific platforms like satelites and ground observation, but also the vast output of numerical models. The Virtual Model Repository (VMR) provides scientific analysis and visualization tools for a many numerical models of the Earth-Sun system. Individual runs can be analyzed in the VMR and compared to relevant data through relevant metadata, but larger collections of runs can also now be studied and statistics generated on the accuracy and tendancies of model output. The vast model repository at the CCMC with over 1000 simulations of the Earth's magnetosphere was used to look at overall trends in accuracy when compared to satelites such as GOES, Geotail, and Cluster. Methodology for this analysis as well as case studies will be presented.

  16. Educator Uses of Data-Enhanced Investigations for Climate Change Education (DICCE), An Online System for Accessing a Vast Portal of NASA Earth System Data Known As the Goddard Interactive Online Visualization and Analysis Infrastructure (GIOVANNI)

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Acker, J. G.

    2015-12-01

    Data-enhanced Investigations for Climate Change Education (DICCE) has made it easier and more technologically feasible for secondary and post-secondary instructors and students to study climate change and related Earth system phenomena using data products from the Goddard Interactive Online Visualization and Analysis Infrastructure (GIOVANNI), a powerful portal of Earth observation data that provides access to numerous data products on Earth system phenomena representing the land biosphere, physical land, ocean biosphere, physical ocean, physical atmosphere, atmospheric gases, and energy and radiation system. These data products are derived from remote-sensing instruments on satellites, ground stations, and data assimilation models. Instructors and students can query the GIOVANNI data archive, then save the results as map images, time series plots, vertical profiles of the atmosphere, and data tables. Any part of the world can be selected for analysis. The project has also produced a tool for instructors to author and adapt standards-based lesson plans, student data investigation activities, and presentations around visualizations they make available to their students via DICCE-G. Supports are provided to students and teachers about how to interpret trends in data products of their choice at the regional level and a schema has been developed to help them understand how those data products fit into current scientific thinking about the certainties and uncertainties of climate change. The presentation will (1) describe the features of DICCE, (2) examples of curricula developed to make use of DICCE in classrooms, (3) how these curricula align to Next Generation Science Standards, and (4) how they align to science education research literature about how to make school science more engaging. Recently-analyzed teacher and student outcomes from DICCE use will also be reported.

  17. Leveraging Global Geo-Data and Information Technologies to Bring Authentic Research Experiences to Students in Introductory Geosciences Courses

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2014-12-01

    The 2012 PCAST report identified the improvement of "gateway" science courses as critical to increasing the number of STEM graduates to levels commensurate with national needs. The urgent need to recruit/ retain more STEM graduates is particularly acute in the geosciences, where growth in employment opportunities, an aging workforce and flat graduation rates are leading to substantial unmet demand for geoscience-trained STEM graduates. The need to increase the number of Bachelors-level geoscience graduates was an identified priority at the Summit on the Future of Undergraduate Geoscience Education (http://www.jsg.utexas.edu/events/future-of-geoscience-undergraduateeducation/), as was the necessity of focusing on 2-year colleges, where a growing number of students are being introduced to geosciences. Undergraduate research as an instructional tool can help engage and retain students, but has largely not been part of introductory geoscience courses because of the challenge of scaling such activities for large student numbers. However, burgeoning information technology resources, including publicly available earth and planetary data repositories and freely available, intuitive data visualization platforms makes structured, in-classroom investigations of geoscience questions tractable, and open-ended student inquiry possible. Examples include "MARGINS Mini-Lessons", instructional resources developed with the support of two NSF-DUE grant awards that involve investigations of marine geosciences data resources (overseen by the Integrated Earth Data Applications (IEDA) portal: www.iedadata.org) and data visualization using GeoMapApp (www.geomapapp.org); and the growing suite of Google-Earth based data visualization and exploration activities overseen by the Google Earth in Onsite and Distance Education project (geode.net). Sample-based investigations are also viable in introductory courses, thanks to remote instrument operations technologies that allow real student participation in instrument-based data collection and interpretation. It is thus possible to model for students nearly the entire scientific process in introductory geoscience courses, allowing them to experience the excitement of "doing" science and thereby enticing more of them into the field.

  18. Climate Data Service in the FP7 EarthServer Project

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Grazia Veratelli, Maria

    2013-04-01

    EarthServer is a European Framework Program project that aims at developing and demonstrating the usability of open standards (OGC and W3C) in the management of multi-source, any-size, multi-dimensional spatio-temporal data - in short: "Big Earth Data Analytics". In order to demonstrate the feasibility of the approach, six thematic Lighthouse Applications (Cryospheric Science, Airborne Science, Atmospheric/ Climate Science, Geology, Oceanography, and Planetary Science), each with 100+ TB, are implemented. Scope of the Atmospheric/Climate lighthouse application (Climate Data Service) is to implement the system containing global to regional 2D / 3D / 4D datasets retrieved either from satellite observations, from numerical modelling and in-situ observations. Data contained in the Climate Data Service regard atmospheric profiles of temperature / humidity, aerosol content, AOT, and cloud properties provided by entities such as the European Centre for Mesoscale Weather Forecast (ECMWF), the Austrian Meteorological Service (Zentralanstalt für Meteorologie und Geodynamik - ZAMG), the Italian National Agency for new technologies, energies and sustainable development (ENEA), and the Sweden's Meteorological and Hydrological Institute (Sveriges Meteorologiska och Hydrologiska Institut -- SMHI). The system, through an easy-to-use web application permits to browse the loaded data, visualize their temporal evolution on a specific point with the creation of 2D graphs of a single field, or compare different fields on the same point (e.g. temperatures from different models and satellite observations), and visualize maps of specific fields superimposed with high resolution background maps. All data access operations and display are performed by means of OGC standard operations namely WMS, WCS and WCPS. The EarthServer project has just started its second year over a 3-years development plan: the present status the system contains subsets of the final database, with the scope of demonstrating I/O modules and visualization tools. At the end of the project all datasets will be available to the users.

  19. Tree Cover Mapping Tool—Documentation and user manual

    USGS Publications Warehouse

    Cotillon, Suzanne E.; Mathis, Melissa L.

    2016-06-02

    The Tree Cover Mapping (TCM) tool was developed by scientists at the U.S. Geological Survey Earth Resources Observation and Science Center to allow a user to quickly map tree cover density over large areas using visual interpretation of high resolution imagery within a geographic information system interface. The TCM tool uses a systematic sample grid to produce maps of tree cover. The TCM tool allows the user to define sampling parameters to estimate tree cover within each sample unit. This mapping method generated the first on-farm tree cover maps of vast regions of Niger and Burkina Faso. The approach contributes to implementing integrated landscape management to scale up re-greening and restore degraded land in the drylands of Africa. The TCM tool is easy to operate, practical, and can be adapted to many other applications such as crop mapping, settlements mapping, or other features. This user manual provides step-by-step instructions for installing and using the tool, and creating tree cover maps. Familiarity with ArcMap tools and concepts is helpful for using the tool.

  20. Images of Earth and Space: The Role of Visualization in NASA Science

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  1. Advanced Analysis and Visualization of Space Weather Phenomena

    NASA Astrophysics Data System (ADS)

    Murphy, Joshua J.

    As the world becomes more technologically reliant, the more susceptible society as a whole is to adverse interactions with the sun. This "space weather'' can produce significant effects on modern technology, from interrupting satellite service, to causing serious damage to Earth-side power grids. These concerns have, over the past several years, prompted an out-welling of research in an attempt to understand the processes governing, and to provide a means of forecasting, space weather events. The research presented in this thesis couples to current work aimed at understanding Coronal Mass Ejections (CMEs) and their influence on the evolution of Earth's magnetic field and associated Van Allen radiation belts. To aid in the analysis of how these solar wind transients affect Earth's magnetic field, a system named Geospace/Heliosphere Observation & Simulation Tool-kit (GHOSTkit), along with its python analysis tools, GHOSTpy, has been devised to calculate the adiabatic invariants of trapped particle motion within Earth's magnetic field. These invariants aid scientists in ordering observations of the radiation belts, providing a more natural presentation of data, but can be computationally expensive to calculate. The GHOSTpy system, in the phase presented here, is aimed at providing invariant calculations based on LFM magnetic field simulation data. This research first examines an ideal dipole application to gain understanding on system performance. Following this, the challenges of applying the algorithms to gridded LFM MHD data is examined. Performance profiles are then presented, followed by a real-world application of the system.

  2. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Malayeri, M. L.; Pahlevan, K. M. A.; Jacobson, W. C.

    2004-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by NSF.

  3. The Astronomy Workshop

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.

    2005-05-01

    The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses, classes for undergraduate majors, and High Schools. Here we briefly describe a few of the more popular tools. The Life of the Sun (New!): The history of the Sun is animated as a movie, showing students how the size and color of our star has evolved and will evolve in time. Animated Orbits of Planets and Moons: The orbital motions of planets, moons, asteroids, and comets are animated at their correct relative speeds in accurate to-scale drawings. Solar System Collisions: This most popular of our applications shows what happens when an asteroid or comet with user-defined size and speed impacts a given planet. The program calculates many effects, including the country of impact (if Earth is the target), energy of explosion, crater size, and magnitude of the ``planetquake'' generated. It also displays a relevant image (e.g. terrestrial crater, lunar crater, etc.). Astronomical Distances: Travel away from the Earth at a chosen speed and see how long it takes to reach other planets, stars and galaxies. This tool helps students visualize astronomical distances in an intuitive way. Funding for the Astronomy Workshop is provided by a NASA EPO grant.

  4. GeneOnEarth: fitting genetic PC plots on the globe.

    PubMed

    Torres-Sánchez, Sergio; Medina-Medina, Nuria; Gignoux, Chris; Abad-Grau, María M; González-Burchard, Esteban

    2013-01-01

    Principal component (PC) plots have become widely used to summarize genetic variation of individuals in a sample. The similarity between genetic distance in PC plots and geographical distance has shown to be quite impressive. However, in most situations, individual ancestral origins are not precisely known or they are heterogeneously distributed; hence, they are hardly linked to a geographical area. We have developed GeneOnEarth, a user-friendly web-based tool to help geneticists to understand whether a linear isolation-by-distance model may apply to a genetic data set; thus, genetic distances among a set of individuals resemble geographical distances among their origins. Its main goal is to allow users to first apply a by-view Procrustes method to visually learn whether this model holds. To do that, the user can choose the exact geographical area from an on line 2D or 3D world map by using, respectively, Google Maps or Google Earth, and rotate, flip, and resize the images. GeneOnEarth can also compute the optimal rotation angle using Procrustes analysis and assess statistical evidence of similarity when a different rotation angle has been chosen by the user. An online version of GeneOnEarth is available for testing and using purposes at http://bios.ugr.es/GeneOnEarth.

  5. Characterize Aerosols from MODIS/MISR/OMI/MERRA-2: Dynamic Image Browse Perspective

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Shen, S.; Zhao, P.; Albayrak, A.; Johnson, J. E.; Kempler, S. J.; Pham, L.

    2016-12-01

    Among the known atmospheric constituents, aerosols still represent the greatest uncertainty in climate research. To understand the uncertainty is to bring altogether of observational (in-situ and remote sensing) and modeling datasets and inter-compare them synergistically for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if these earth science data (satellite and modeling) are well utilized and interpreted. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite-borne sensors routinely measure aerosols. There is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) have developed multiple MAPSS (Multi-sensor Aerosol Products Sampling System) applications as a part of Giovanni (Geospatial Interactive Online Visualization and Analysis Interface) data visualization and analysis tool since 2007. The MAPSS database provides spatio-temporal statistics for multiple spatial spaceborne Level 2 aerosol products (MODIS Terra, MODIS Aqua, MISR, POLDER, OMI, CALIOP, SeaWiFS Deep Blue, and VIIRS) sampled over AERONET ground stations. In this presentation, I will demonstrate a new visualization service (NASA Level 2 Data Quality Visualization, DQViz) supporting various visualization and data accessing capabilities from satellite Level 2 (MODIS/MISR/OMI) and long term assimilated aerosols from NASA Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2 displaying at their own native physical-retrieved spatial resolution. Functionality will include selecting data sources (e.g., multiple parameters under the same measurement), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting.

  6. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser

    PubMed Central

    Müller, R. Dietmar; Qin, Xiaodong; Sandwell, David T.; Dutkiewicz, Adriana; Williams, Simon E.; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of ‘big data’ and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth’s gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. PMID:26960151

  7. High resolution renderings and interactive visualization of the 2006 Huntington Beach experiment

    NASA Astrophysics Data System (ADS)

    Im, T.; Nayak, A.; Keen, C.; Samilo, D.; Matthews, J.

    2006-12-01

    The Visualization Center at the Scripps Institution of Oceanography investigates innovative ways to represent graphically interactive 3D virtual landscapes and to produce high resolution, high quality renderings of Earth sciences data and the sensors and instruments used to collect the data . Among the Visualization Center's most recent work is the visualization of the Huntington Beach experiment, a study launched in July 2006 by the Southern California Ocean Observing System (http://www.sccoos.org/) to record and synthesize data of the Huntington Beach coastal region. Researchers and students at the Visualization Center created visual presentations that combine bathymetric data provided by SCCOOS with USGS aerial photography and with 3D polygonal models of sensors created in Maya into an interactive 3D scene using the Fledermaus suite of visualization tools (http://www.ivs3d.com). In addition, the Visualization Center has produced high definition (HD) animations of SCCOOS sensor instruments (e.g. REMUS, drifters, spray glider, nearshore mooring, OCSD/USGS mooring and CDIP mooring) using the Maya modeling and animation software and rendered over multiple nodes of the OptIPuter Visualization Cluster at Scripps. These visualizations are aimed at providing researchers with a broader context of sensor locations relative to geologic characteristics, to promote their use as an educational resource for informal education settings and increasing public awareness, and also as an aid for researchers' proposals and presentations. These visualizations are available for download on the Visualization Center website at http://siovizcenter.ucsd.edu/sccoos/hb2006.php.

  8. The Value of Data and Metadata Standardization for Interoperability in Giovanni

    NASA Astrophysics Data System (ADS)

    Smit, C.; Hegde, M.; Strub, R. F.; Bryant, K.; Li, A.; Petrenko, M.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a data exploration and visualization tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC). It has been around in one form or another for more than 15 years. Giovanni calculates simple statistics and produces 22 different visualizations for more than 1600 geophysical parameters from more than 90 satellite and model products. Giovanni relies on external data format standards to ensure interoperability, including the NetCDF CF Metadata Conventions. Unfortunately, these standards were insufficient to make Giovanni's internal data representation truly simple to use. Finding and working with dimensions can be convoluted with the CF Conventions. Furthermore, the CF Conventions are silent on machine-friendly descriptive metadata such as the parameter's source product and product version. In order to simplify analyzing disparate earth science data parameters in a unified way, we developed Giovanni's internal standard. First, the format standardizes parameter dimensions and variables so they can be easily found. Second, the format adds all the machine-friendly metadata Giovanni needs to present our parameters to users in a consistent and clear manner. At a glance, users can grasp all the pertinent information about parameters both during parameter selection and after visualization. This poster gives examples of how our metadata and data standards, both external and internal, have both simplified our code base and improved our users' experiences.

  9. A smarter way to search, share and utilize open-spatial online data for energy R&D - Custom machine learning and GIS tools in U.S. DOE's virtual data library & laboratory, EDX

    NASA Astrophysics Data System (ADS)

    Rose, K.; Bauer, J.; Baker, D.; Barkhurst, A.; Bean, A.; DiGiulio, J.; Jones, K.; Jones, T.; Justman, D.; Miller, R., III; Romeo, L.; Sabbatino, M.; Tong, A.

    2017-12-01

    As spatial datasets are increasingly accessible through open, online systems, the opportunity to use these resources to address a range of Earth system questions grows. Simultaneously, there is a need for better infrastructure and tools to find and utilize these resources. We will present examples of advanced online computing capabilities, hosted in the U.S. DOE's Energy Data eXchange (EDX), that address these needs for earth-energy research and development. In one study the computing team developed a custom, machine learning, big data computing tool designed to parse the web and return priority datasets to appropriate servers to develop an open-source global oil and gas infrastructure database. The results of this spatial smart search approach were validated against expert-driven, manual search results which required a team of seven spatial scientists three months to produce. The custom machine learning tool parsed online, open systems, including zip files, ftp sites and other web-hosted resources, in a matter of days. The resulting resources were integrated into a geodatabase now hosted for open access via EDX. Beyond identifying and accessing authoritative, open spatial data resources, there is also a need for more efficient tools to ingest, perform, and visualize multi-variate, spatial data analyses. Within the EDX framework, there is a growing suite of processing, analytical and visualization capabilities that allow multi-user teams to work more efficiently in private, virtual workspaces. An example of these capabilities are a set of 5 custom spatio-temporal models and data tools that form NETL's Offshore Risk Modeling suite that can be used to quantify oil spill risks and impacts. Coupling the data and advanced functions from EDX with these advanced spatio-temporal models has culminated with an integrated web-based decision-support tool. This platform has capabilities to identify and combine data across scales and disciplines, evaluate potential environmental, social, and economic impacts, highlight knowledge or technology gaps, and reduce uncertainty for a range of `what if' scenarios relevant to oil spill prevention efforts. These examples illustrate EDX's growing capabilities for advanced spatial data search and analysis to support geo-data science needs.

  10. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  11. Using Immersive Visualizations to Improve Decision Making and Enhancing Public Understanding of Earth Resource and Climate Issues

    NASA Astrophysics Data System (ADS)

    Yu, K. C.; Raynolds, R. G.; Dechesne, M.

    2008-12-01

    New visualization technologies, from ArcGIS to Google Earth, have allowed for the integration of complex, disparate data sets to produce visually rich and compelling three-dimensional models of sub-surface and surface resource distribution patterns. The rendering of these models allows the public to quickly understand complicated geospatial relationships that would otherwise take much longer to explain using traditional media. We have impacted the community through topical policy presentations at both state and city levels, adult education classes at the Denver Museum of Nature and Science (DMNS), and public lectures at DMNS. We have constructed three-dimensional models from well data and surface observations which allow policy makers to better understand the distribution of groundwater in sandstone aquifers of the Denver Basin. Our presentations to local governments in the Denver metro area have allowed resource managers to better project future ground water depletion patterns, and to encourage development of alternative sources. DMNS adult education classes on water resources, geography, and regional geology, as well as public lectures on global issues such as earthquakes, tsunamis, and resource depletion, have utilized the visualizations developed from these research models. In addition to presenting GIS models in traditional lectures, we have also made use of the immersive display capabilities of the digital "fulldome" Gates Planetarium at DMNS. The real-time Uniview visualization application installed at Gates was designed for teaching astronomy, but it can be re-purposed for displaying our model datasets in the context of the Earth's surface. The 17-meter diameter dome of the Gates Planetarium allows an audience to have an immersive experience---similar to virtual reality CAVEs employed by the oil exploration industry---that would otherwise not be available to the general public. Public lectures in the dome allow audiences of over 100 people to comprehend dynamically- changing geospatial datasets in an exciting and engaging fashion. In our presentation, we will demonstrate how new software tools like Uniview can be used to dramatically enhance and accelerate public comprehension of complex, multi-scale geospatial phenomena.

  12. Imagining Deep Time (Invited)

    NASA Astrophysics Data System (ADS)

    Talasek, J.

    2013-12-01

    Imagining Deep Time '...the mind seemed to grow giddy by looking so far into the abyss of time.' John Playfair (1748 -1819), scientist and mathematician "Man cannot afford to conceive of nature and exclude himself." Emmit Gowin, photographer 'A person would have to take themselves out of the human context to begin to think in terms of geologic time. They would have to think like a rock.' Terry Falke, photographer The term Deep Time refers to the vastness of the geological time scale. First conceived in the 18th century, the development of this perspective on time has been pieced together like a jigsaw puzzle of information and observations drawn from the study of the earth's structure and discovered fossilized flora and fauna. Deep time may possibly be the greatest contribution made by the discipline of geology forever impacting our perception of earth and our relationship to it. How do we grasp such vast concepts as deep time which relates to the origins of the earth or cosmic time which relates to the origins of the universe - concepts that exist far beyond the realm of human experience? Further more how do we communicate this? The ability to visualize is a powerful tool of discovery and communication for the scientist and it is part and parcel of the work of visual artists. The scientific process provides evidence yet it is imagination on the part of the scientists and artists alike that is needed to interpret that information. This exhibition represents an area where both rational and intuitive thinking come together to explore this question of how we relate to the vastness of time. The answer suggested by the combination of art work assembled here suggests that we do so through a combination of visual metaphors (cycles, circles, arrows, trajectories) and visual evidence (rock formations, strata, fossils of fauna and flora) while being mediated through various technologies. One provides factual and empirical evidence while the other provides a way of grasping and relating to a vast concept on a personal level. This exhibition explores the usefulness as well as the limitations of the visualization of deep time.

  13. IEDA Integrated Services: Improving the User Experience for Interdisciplinary Earth Science Research

    NASA Astrophysics Data System (ADS)

    Carter-Orlando, M.; Ferrini, V. L.; Lehnert, K.; Carbotte, S. M.; Richard, S. M.; Morton, J. J.; Shane, N.; Ash, J.; Song, L.

    2017-12-01

    The Interdisciplinary Earth Data Alliance (IEDA) is an NSF-funded data facility that provides data tools and services to support the Ocean, Earth, and Polar Sciences. IEDA systems, developed and maintained primarily by the IEDA partners EarthChem and the Marine Geoscience Data System (MGDS), serve as primary community data collections for global geochemistry and marine geoscience research and support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types. Individual IEDA systems originated independently and differ from one another in purpose and scope. Some IEDA systems are data repositories (EarthChem Library, Marine Geo-Digital Library), while others are actively maintained data syntheses (GMRT, PetDB, EarthChem Portal, Geochron). Still others are data visualization and analysis tools (GeoMapApp). Although the diversity of IEDA's data types, tools, and services is a major strength and of high value to investigators, it can be a source of confusion. And while much of the data managed in IEDA systems is appropriate for interdisciplinary research, investigators may be unfamiliar with the user interfaces and services of each system, especially if it is not in their primary discipline. This presentation will highlight new ways in which IEDA helps researchers to more efficiently navigate data submission and data access. It will also discuss how IEDA promotes discovery and access within and across its systems, to serve interdisciplinary science while also remaining aware of and responsive to the more specific needs of its disciplinary user communities. The IEDA Data Submission Hub (DaSH), which is currently under development, aspires to streamline the submission process for both the science data contributor and for the repository data curator. Instead of users deciding a priori, which system they should contribute their data to, the DaSH helps route them to the appropriate repository based primarily on data type, and to efficiently gather the necessary documentation for data accession. Similarly, for those looking for data, the IEDA Data Browser provides cross-system browse and discovery of data in a map interface presented in both Mercator and South Polar projections.

  14. Earth Observations for Early Detection of Agricultural Drought: Contributions of the Famine Early Warning Systems Network (FEWS NET)

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Funk, C.; Husak, G. J.; Peterson, P.; Rowland, J.; Senay, G. B.; Verdin, J. P.

    2016-12-01

    The U.S. Geological Survey (USGS) has a long history of supporting the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET) program. The use of remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and changing climatic regimes has been a core activity in monitoring FEWS NET countries. In recent years, it has become a requirement that FEWS NET apply monitoring and modeling frameworks at global scales to assess emerging crises in regions that FEWS NET does not traditionally monitor. USGS FEWS NET, in collaboration with the University of California, Santa Barbara, has developed a number of new global applications of satellite observations, derived products, and efficient tools for visualization and analyses to address these requirements. (1) A 35-year quasi-global (+/- 50 degrees latitude) time series of gridded rainfall estimates, the Climate Hazards Infrared Precipitation with Stations (CHIRPS) dataset, based on infrared satellite imagery and station observations. Data are available as 5-day (pentadal) accumulations at 0.05 degree spatial resolution. (2) Global actual evapotranspiration data based on application of the Simplified Surface Energy Balance (SSEB) model using 10-day MODIS Land Surface Temperature composites at 1-km resolution. (3) Production of global expedited MODIS (eMODIS) 10-day NDVI composites updated every 5 days. (4) Development of an updated Early Warning eXplorer (EWX) tool for data visualization, analysis, and sharing. (5) Creation of stand-alone tools for enhancement of gridded rainfall data and trend analyses. (6) Establishment of an agro-climatology analysis tool and knowledge base for more than 90 countries of interest to FEWS NET. In addition to these new products and tools, FEWS NET has partnered with the GEOGLAM community to develop a Crop Monitor for Early Warning (CM4EW) which brings together global expertise in agricultural monitoring to reach consensus on growing season status of "countries at risk". Such engagements will result in enhanced capabilities for extending our monitoring efforts globally.

  15. Exploratory visualization of earth science data in a Semantic Web context

    NASA Astrophysics Data System (ADS)

    Ma, X.; Fox, P. A.

    2012-12-01

    Earth science data are increasingly unlocked from their local 'safes' and shared online with the global science community as well as the average citizen. The European Union (EU)-funded project OneGeology-Europe (1G-E, www.onegeology-europe.eu) is a typical project that promotes works in that direction. The 1G-E web portal provides easy access to distributed geological data resources across participating EU member states. Similar projects can also be found in other countries or regions, such as the geoscience information network USGIN (www.usgin.org) in United States, the groundwater information network GIN-RIES (www.gw-info.net) in Canada and the earth science infrastructure AuScope (www.auscope.org.au) in Australia. While data are increasingly made available online, we currently face a shortage of tools and services that support information and knowledge discovery with such data. One reason is that earth science data are recorded in professional language and terms, and people without background knowledge cannot understand their meanings well. The Semantic Web provides a new context to help computers as well as users to better understand meanings of data and conduct applications. In this study we aim to chain up Semantic Web technologies (e.g., vocabularies/ontologies and reasoning), data visualization (e.g., an animation underpinned by an ontology) and online earth science data (e.g., available as Web Map Service) to develop functions for information and knowledge discovery. We carried out a case study with data of the 1G-E project. We set up an ontology of geological time scale using the encoding languages of SKOS (Simple Knowledge Organization System) and OWL (Web Ontology Language) from W3C (World Wide Web Consortium, www.w3.org). Then we developed a Flash animation of geological time scale by using the ActionScript language. The animation is underpinned by the ontology and the interrelationships between concepts of geological time scale are visualized in the animation. We linked the animation and the ontology to the online geological data of 1G-E project and developed interactive applications. The animation was used to show legends of rock age layers in geological maps dynamically. In turn, these legends were used as control panels to filter out and generalize geospatial features of certain rock ages on map layers. We tested the functions with maps of various EU member states. As a part of the initial results, legends for rock age layers of EU individual national maps were generated respectively, and the functions for filtering and generalization were examined with the map of United Kingdom. Though new challenges are rising in the tests, like those caused by synonyms (e.g., 'Lower Cambrian' and 'Terreneuvian'), the initial results achieved the designed goals of information and knowledge discovery by using the ontology-underpinned animation. This study shows that (1) visualization lowers the barrier of ontologies, (2) integrating ontologies and visualization adds value to online earth science data services, and (3) exploratory visualization supports the procedure of data processing as well as the display of results.

  16. AF-GEOSpace Version 2.0: Space Environment Software Products for 2002

    NASA Astrophysics Data System (ADS)

    Hilmer, R. V.; Ginet, G. P.; Hall, T.; Holeman, E.; Tautz, M.

    2002-05-01

    AF-GEOSpace Version 2.0 (release 2002 on WindowsNT/2000/XP) is a graphics-intensive software program developed by AFRL with space environment models and applications. It has grown steadily to become a development tool for automated space weather visualization products and helps with a variety of tasks: orbit specification for radiation hazard avoidance; satellite design assessment and post-event analysis; solar disturbance effects forecasting; frequency and antenna management for radar and HF communications; determination of link outage regions for active ionospheric conditions; and physics research and education. The object-oriented C++ code is divided into five module classes. Science Modules control science models to give output data on user-specified grids. Application Modules manipulate these data and provide orbit generation and magnetic field line tracing capabilities. Data Modules read and assist with the analysis of user-generated data sets. Graphics Modules enable the display of features such as plane slices, magnetic field lines, line plots, axes, the Earth, stars, and satellites. Worksheet Modules provide commonly requested coordinate transformations and calendar conversion tools. Common input data archive sets, application modules, and 1-, 2-, and 3-D visualization tools are provided to all models. The code documentation includes detailed examples with click-by-click instructions for investigating phenomena that have well known effects on communications and spacecraft systems. AF-GEOSpace Version 2.0 builds on the success of its predecessors. The first release (Version 1.21, 1996/IRIX on SGI) contained radiation belt particle flux and dose models derived from CRRES satellite data, an aurora model, an ionosphere model, and ionospheric HF ray tracing capabilities. Next (Version 1.4, 1999/IRIX on SGI) science modules were added related to cosmic rays and solar protons, low-Earth orbit radiation dosages, single event effects probability maps, ionospheric scintillation, and shock propagation models. New application modules for estimating linear energy transfer (LET) and single event upset (SEU) rates in solid-state devices, and graphic modules for visualizing radar fans, communication domes, and satellite detector cones and links were added. Automated FTP scripts permitted users to update their global input parameter set directly from NOAA/SEC. What?s New? Version 2.0 includes the first true dynamic run capabilities and offers new and enhanced graphical and data visualization tools such as 3-D volume rendering and eclipse umbra and penumbra determination. Animations of all model results can now be displayed together in all dimensions. There is a new realistic day-to-day ionospheric scintillation simulation generator (IONSCINT), an upgrade to the WBMOD scintillation code, a simplified HF ionospheric ray tracing module, and applications built on the NASA AE-8 and AP-8 radiation belt models. User-generated satellite data sets can now be visualized along with their orbital ephemeris. A prototype tool for visualizing MHD model results stored in structured grids provides a hint of where future space weather model development efforts are headed. A new graphical user interface (GUI) with improved module tracking and renaming features greatly simplifies software operation. AF-GEOSpace is distributed by the Space Weather Center of Excellence in the Space Vehicles Directorate of AFRL. Recently released for WindowsNT/2000/XP, versions for UNIX and LINUX operating systems will follow shortly. To obtain AF-GEOSpace Version 2.0, please send an e-mail request to the first author.

  17. Y0: An innovative tool for spatial data analysis

    NASA Astrophysics Data System (ADS)

    Wilson, Jeremy C.

    1993-08-01

    This paper describes an advanced analysis and visualization tool, called Y0 (pronounced ``Why not?!''), that has been developed to directly support the scientific process for earth and space science research. Y0 aids the scientific research process by enabling the user to formulate algorithms and models within an integrated environment, and then interactively explore the solution space with the aid of appropriate visualizations. Y0 has been designed to provide strong support for both quantitative analysis and rich visualization. The user's algorithm or model is defined in terms of algebraic formulas in cells on worksheets, in a similar fashion to spreadsheet programs. Y0 is specifically designed to provide the data types and rich function set necessary for effective analysis and manipulation of remote sensing data. This includes various types of arrays, geometric objects, and objects for representing geographic coordinate system mappings. Visualization of results is tailored to the needs of remote sensing, with straightforward methods of composing, comparing, and animating imagery and graphical information, with reference to geographical coordinate systems. Y0 is based on advanced object-oriented technology. It is implemented in C++ for use in Unix environments, with a user interface based on the X window system. Y0 has been delivered under contract to Unidata, a group which provides data and software support to atmospheric researches in universities affiliated with UCAR. This paper will explore the key concepts in Y0, describe its utility for remote sensing analysis and visualization, and will give a specific example of its application to the problem of measuring glacier flow rates from Landsat imagery.

  18. Introducing GHOST: The Geospace/Heliosphere Observation & Simulation Tool-kit

    NASA Astrophysics Data System (ADS)

    Murphy, J. J.; Elkington, S. R.; Schmitt, P.; Wiltberger, M. J.; Baker, D. N.

    2013-12-01

    Simulation models of the heliospheric and geospace environments can provide key insights into the geoeffective potential of solar disturbances such as Coronal Mass Ejections and High Speed Solar Wind Streams. Advanced post processing of the results of these simulations greatly enhances the utility of these models for scientists and other researchers. Currently, no supported centralized tool exists for performing these processing tasks. With GHOST, we introduce a toolkit for the ParaView visualization environment that provides a centralized suite of tools suited for Space Physics post processing. Building on the work from the Center For Integrated Space Weather Modeling (CISM) Knowledge Transfer group, GHOST is an open-source tool suite for ParaView. The tool-kit plugin currently provides tools for reading LFM and Enlil data sets, and provides automated tools for data comparison with NASA's CDAweb database. As work progresses, many additional tools will be added and through open-source collaboration, we hope to add readers for additional model types, as well as any additional tools deemed necessary by the scientific public. The ultimate end goal of this work is to provide a complete Sun-to-Earth model analysis toolset.

  19. Building A Collaborative And Distributed E&O Program For EarthScope

    NASA Astrophysics Data System (ADS)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  20. SLIVISU, an Interactive Visualisation Framework for Analysis of Geological Sea-Level Indicators

    NASA Astrophysics Data System (ADS)

    Klemann, V.; Schulte, S.; Unger, A.; Dransch, D.

    2011-12-01

    Flanking data analysis in earth system sciences by advanced visualisation tools is a striking feature due to rising complexity, amount and variety of available data. With respect to sea-level indicators (SLIs), their analysis in earth-system applications, such as modelling and simulation on regional or global scales, demands the consideration of large amounts of data - we talk about thousands of SLIs - and, so, to go ahead of analysing single sea-level curves. On the other hand, a gross analysis by means of statistical methods is hindered by the often heterogeneous and individual character of the single SLIs, i.e., the spatio-temporal context and often heterogenous information is difficult to handle or to represent in an objective way. Therefore a concept of integrating automated analysis and visualisation is mandatory. This is provided by visual analytics. As an implementation of this concept, we present the visualisation framework SLIVISU, developed at GFZ, which bases on multiple linked views and provides a synoptic analysis of observational data, model configurations, model outputs and results of automated analysis in glacial isostatic adjustment. Starting as a visualisation tool for an existing database of SLIs, it now serves as an analysis tool for the evaluation of model simulations in studies of glacial-isostatic adjustment.

  1. Moon Color Visualizations

    NASA Image and Video Library

    1996-01-29

    These color visualizations of the Moon were obtained by NASA Galileo spacecraft as it left the Earth after completing its first Earth Gravity Assist. The images were acquired Dec. 8-9, 1990. http://photojournal.jpl.nasa.gov/catalog/PIA00075

  2. Federated Giovanni: A Distributed Web Service for Analysis and Visualization of Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Lynnes, Chris

    2014-01-01

    The Geospatial Interactive Online Visualization and Analysis Interface (Giovanni) is a popular tool for users of the Goddard Earth Sciences Data and Information Services Center (GES DISC) and has been in use for over a decade. It provides a wide variety of algorithms and visualizations to explore large remote sensing datasets without having to download the data and without having to write readers and visualizers for it. Giovanni is now being extended to enable its capabilities at other data centers within the Earth Observing System Data and Information System (EOSDIS). This Federated Giovanni will allow four other data centers to add and maintain their data within Giovanni on behalf of their user community. Those data centers are the Physical Oceanography Distributed Active Archive Center (PO.DAAC), MODIS Adaptive Processing System (MODAPS), Ocean Biology Processing Group (OBPG), and Land Processes Distributed Active Archive Center (LP DAAC). Three tiers are supported: Tier 1 (GES DISC-hosted) gives the remote data center a data management interface to add and maintain data, which are provided through the Giovanni instance at the GES DISC. Tier 2 packages Giovanni up as a virtual machine for distribution to and deployment by the other data centers. Data variables are shared among data centers by sharing documents from the Solr database that underpins Giovanni's data management capabilities. However, each data center maintains their own instance of Giovanni, exposing the variables of most interest to their user community. Tier 3 is a Shared Source model, in which the data centers cooperate to extend the infrastructure by contributing source code.

  3. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    PubMed

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.

  4. Visualization: A pathway to enhanced scientific productivity in the expanding missions of Space and Earth Sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1995-01-01

    The movement toward the solution of problems involving large-scale system science, the ever-increasing capabilities of three-dimensional, time-dependent numerical models, and the enhanced capabilities of 'in situ' and remote sensing instruments bring a new era of scientific endeavor that requires an important change in our approach to mission planning and the task of data reduction and analysis. Visualization is at the heart of the requirements for a much-needed enhancement in scientific productivity as we face these new challenges. This article draws a perspective on the problem as it crosses discipline boundaries from solar physics to atmospheric and ocean sciences. It also attempts to introduce visualization as a new approach to scientific discovery and a tool which expedites and improves our insight into physically complex problems. A set of simple illustrations demonstrates a number of visualization techniques and the discussion emphasizes the trial-and-error and search-and-discover modes that are necessary for the techniques to reach their full potential. Further discussions also point to the importance of integrating data access, management, mathematical operations, and visualization into a single system. Some of the more recent developments in this area are reviewed.

  5. Unified User Interface to Support Effective and Intuitive Data Discovery, Dissemination, and Analysis at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Hegde, M.; Bryant, K.; Johnson, J. E.; Ritrivi, A.; Shen, S.; Volmer, B.; Pham, L. B.

    2015-01-01

    Goddard Earth Sciences Data and Information Services Center (GES DISC) has been providing access to scientific data sets since 1990s. Beginning as one of the first Earth Observing System Data and Information System (EOSDIS) archive centers, GES DISC has evolved to offer a wide range of science-enabling services. With a growing understanding of needs and goals of its science users, GES DISC continues to improve and expand on its broad set of data discovery and access tools, sub-setting services, and visualization tools. Nonetheless, the multitude of the available tools, a partial overlap of functionality, and independent and uncoupled interfaces employed by these tools often leave the end users confused as of what tools or services are the most appropriate for a task at hand. As a result, some the services remain underutilized or largely unknown to the users, significantly reducing the availability of the data and leading to a great loss of scientific productivity. In order to improve the accessibility of GES DISC tools and services, we have designed and implemented UUI, the Unified User Interface. UUI seeks to provide a simple, unified, and intuitive one-stop shop experience for the key services available at GES DISC, including sub-setting (Simple Subset Wizard), granule file search (Mirador), plotting (Giovanni), and other services. In this poster, we will discuss the main lessons, obstacles, and insights encountered while designing the UUI experience. We will also present the architecture and technology behind UUI, including NodeJS, Angular, and Mongo DB, as well as speculate on the future of the tool at GES DISC as well as in a broader context of the Space Science Informatics.

  6. Bridging the Gap between NASA Hydrological Data and the Geospatial Community

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Teng, Bill; Vollmer, Bruce; Mocko, David M.; Beaudoing, Hiroko K.; Nigro, Joseph; Gary, Mark; Maidment, David; Hooper, Richard

    2011-01-01

    There is a vast and ever increasing amount of data on the Earth interconnected energy and hydrological systems, available from NASA remote sensing and modeling systems, and yet, one challenge persists: increasing the usefulness of these data for, and thus their use by, the geospatial communities. The Hydrology Data and Information Services Center (HDISC), part of the Goddard Earth Sciences DISC, has continually worked to better understand the hydrological data needs of the geospatial end users, to thus better able to bridge the gap between NASA data and the geospatial communities. This paper will cover some of the hydrological data sets available from HDISC, and the various tools and services developed for data searching, data subletting ; format conversion. online visualization and analysis; interoperable access; etc.; to facilitate the integration of NASA hydrological data by end users. The NASA Goddard data analysis and visualization system, Giovanni, is described. Two case examples of user-customized data services are given, involving the EPA BASINS (Better Assessment Science Integrating point & Non-point Sources) project and the CUAHSI Hydrologic Information System, with the common requirement of on-the-fly retrieval of long duration time series for a geographical point

  7. CLICK: The new USGS center for LIDAR information coordination and knowledge

    USGS Publications Warehouse

    Stoker, Jason M.; Greenlee, Susan K.; Gesch, Dean B.; Menig, Jordan C.

    2006-01-01

    Elevation data is rapidly becoming an important tool for the visualization and analysis of geographic information. The creation and display of three-dimensional models representing bare earth, vegetation, and structures have become major requirements for geographic research in the past few years. Light Detection and Ranging (lidar) has been increasingly accepted as an effective and accurate technology for acquiring high-resolution elevation data for bare earth, vegetation, and structures. Lidar is an active remote sensing system that records the distance, or range, of a laser fi red from an airborne or space borne platform such as an airplane, helicopter or satellite to objects or features on the Earth’s surface. By converting lidar data into bare ground topography and vegetation or structural morphologic information, extremely accurate, high-resolution elevation models can be derived to visualize and quantitatively represent scenes in three dimensions. In addition to high-resolution digital elevation models (Evans et al., 2001), other lidar-derived products include quantitative estimates of vegetative features such as canopy height, canopy closure, and biomass (Lefsky et al., 2002), and models of urban areas such as building footprints and three-dimensional city models (Maas, 2001).

  8. An Interactive Virtual 3D Tool for Scientific Exploration of Planetary Surfaces

    NASA Astrophysics Data System (ADS)

    Traxler, Christoph; Hesina, Gerd; Gupta, Sanjeev; Paar, Gerhard

    2014-05-01

    In this paper we present an interactive 3D visualization tool for scientific analysis and planning of planetary missions. At the moment scientists have to look at individual camera images separately. There is no tool to combine them in three dimensions and look at them seamlessly as a geologist would do (by walking backwards and forwards resulting in different scales). For this reason a virtual 3D reconstruction of the terrain that can be interactively explored is necessary. Such a reconstruction has to consider multiple scales ranging from orbital image data to close-up surface image data from rover cameras. The 3D viewer allows seamless zooming between these various scales, giving scientists the possibility to relate small surface features (e.g. rock outcrops) to larger geological contexts. For a reliable geologic assessment a realistic surface rendering is important. Therefore the material properties of the rock surfaces will be considered for real-time rendering. This is achieved by an appropriate Bidirectional Reflectance Distribution Function (BRDF) estimated from the image data. The BRDF is implemented to run on the Graphical Processing Unit (GPU) to enable realistic real-time rendering, which allows a naturalistic perception for scientific analysis. Another important aspect for realism is the consideration of natural lighting conditions, which means skylight to illuminate the reconstructed scene. In our case we provide skylights from Mars and Earth, which allows switching between these two modes of illumination. This gives geologists the opportunity to perceive rock outcrops from Mars as they would appear on Earth facilitating scientific assessment. Besides viewing the virtual reconstruction on multiple scales, scientists can also perform various measurements, i.e. geo-coordinates of a selected point or distance between two surface points. Rover or other models can be placed into the scene and snapped onto certain location of the terrain. These are important features to support the planning of rover paths. In addition annotations can be placed directly into the 3D scene, which also serve as landmarks to aid navigation. The presented visualization and planning tool is a valuable asset for scientific analysis of planetary mission data. It complements traditional methods by giving access to an interactive virtual 3D reconstruction, which is realistically rendered. Representative examples and further information about the interactive 3D visualization tool can be found on the FP7-SPACE Project PRoViDE web page http://www.provide-space.eu/interactive-virtual-3d-tool/. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 312377 'PRoViDE'.

  9. KML Tours: A New Platform for Exploring and Sharing Geospatial Data

    NASA Astrophysics Data System (ADS)

    Barcay, D. P.; Weiss-Malik, M.

    2009-12-01

    Google Earth and other virtual globes have allowed millions of people to explore the world from their own home. This technology has also raised the bar for professional visualizations: enabling interactive 3D visualizations to be created from massive data-sets, and shared using the KML language. For academics and professionals alike, an engaging presentation of your geospatial data is generally expected and can be the most effective form of advertisement. To that end, we released 'Touring' in Google Earth 5.0: a new medium for cinematic expression, visualized in Google Earth and written as extensions to the KML language. In a KML tour, the author has fine-grained control over the entire visual experience: precisely moving the virtual camera through the world while dynamically modifying the content, style, position, and visibility of the displayed data. An author can synchronize audio to this experience, bringing further immersion to a visualization. KML tours can help engage a broad user-base and conveying subtle concepts that aren't immediately apparent in traditional geospatial content. Unlike a pre-rendered video, a KML Tour maintains the rich interactivity of Google Earth, allowing users to continue exploring your content, and to mash-up other content with your visualization. This session will include conceptual explanations of the Touring feature in Google Earth, the structure of the touring KML extensions, as well as examples of compelling tours.

  10. Utilizing Visual Effects Software for Efficient and Flexible Isostatic Adjustment Modelling

    NASA Astrophysics Data System (ADS)

    Meldgaard, A.; Nielsen, L.; Iaffaldano, G.

    2017-12-01

    The isostatic adjustment signal generated by transient ice sheet loading is an important indicator of past ice sheet extent and the rheological constitution of the interior of the Earth. Finite element modelling has proved to be a very useful tool in these studies. We present a simple numerical model for 3D visco elastic Earth deformation and a new approach to the design of such models utilizing visual effects software designed for the film and game industry. The software package Houdini offers an assortment of optimized tools and libraries which greatly facilitate the creation of efficient numerical algorithms. In particular, we make use of Houdini's procedural work flow, the SIMD programming language VEX, Houdini's sparse matrix creation and inversion libraries, an inbuilt tetrahedralizer for grid creation, and the user interface, which facilitates effortless manipulation of 3D geometry. We mitigate many of the time consuming steps associated with the authoring of efficient algorithms from scratch while still keeping the flexibility that may be lost with the use of commercial dedicated finite element programs. We test the efficiency of the algorithm by comparing simulation times with off-the-shelf solutions from the Abaqus software package. The algorithm is tailored for the study of local isostatic adjustment patterns, in close vicinity to present ice sheet margins. In particular, we wish to examine possible causes for the considerable spatial differences in the uplift magnitude which are apparent from field observations in these areas. Such features, with spatial scales of tens of kilometres, are not resolvable with current global isostatic adjustment models, and may require the inclusion of local topographic features. We use the presented algorithm to study a near field area where field observations are abundant, namely, Disko Bay in West Greenland with the intention of constraining Earth parameters and ice thickness. In addition, we assess how local topographic features may influence the differential isostatic uplift in the area.

  11. The Clue to Minimizing the Developer-User Divide by Good Practice in Earth and Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Messerotti, M.

    2009-04-01

    Earth and Space Science research, as well as many other disciplines, can nowadays benefit from advanced data handling techniques and tools capable to significantly relieve the scientist of the burden of data search, retrieval, visualization and manipulation, and to exploit the data information content. Some typical examples are Virtual Observatories (VO) specific to a variety of sub-disciplines but anyway interlinked, a feature intrinsic to the VO architecture, Virtual Globes as advanced 3D selection and visualization interfaces to distributed data repositories, and the Global Earth Observation System of Systems. These information systems are proving also effective in education and outreach activities as they are usable via web interfaces to give access to, to display and to download nonhomogeneous datasets in order to raise the awareness of the students and the public on the relevant disciplines. Despite of that, all of this effective machineries are still poorly used both by the scientific community and by the community active in education and outreach. All such infrastructures are designed and developed according to the state-of-the-art information and computer engineering techniques and are provided with top features such as ontology- and semantics-based data management, and advanced unified web-based interfaces. Anyway, a careful analysis of the issue mentioned above indicates a key aspect that play a major role, i.e., the inadequate interaction with the users' communities during the design, the development, the deployment and the test phases. Even the best technical tool can appear inadequate to the final user when it does not meet the user's requirements in terms of achievable goals and use friendliness. In this work, we consider the user-side features to be taken into account for the optimum exploitation of an information system in the framework of the interaction among the design engineers and the target communities towards the setting of a good practice for minimizing the developer-user divide.

  12. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  13. ASTEROID SIZING BY RADIOGALAXY OCCULTATION AT 5 GHZ

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtinen, K.; Muinonen, K.; Poutanen, M.

    Stellar occultations by asteroids observed at visual wavelengths have been an important tool for studying the size and shape of asteroids and for revising the orbital parameters of asteroids. At radio frequencies, a shadow of an asteroid on the Earth is dominated by diffraction effects. Here, we show, for the first time, that a single observation of an occultation of a compact radio source at a frequency of 5 GHz can be used to derive the effective size of the occulting object and to derive the distance between the observer and the center of the occultation path on the Earth.more » The derived diameter of the occulting object, asteroid (115) Thyra, is 75 ± 6 km. The observed occultation profile shows features that cannot be explained by diffraction of a single asteroid.« less

  14. Giovanni: The Bridge between Data and Science

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Lynnes, Christopher; Kempler, Steven J.

    2012-01-01

    NASA Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a web-based remote sensing and model data visualization and analysis system developed by the Goddard Earth Sciences Data and Information Services Center (GES DISC). This web-based tool facilitates data discovery, exploration and analysis of large amount of global and regional data sets, covering atmospheric dynamics, atmospheric chemistry, hydrology, oceanographic, and land surface. Data analysis functions include Lat-Lon map, time series, scatter plot, correlation map, difference, cross-section, vertical profile, and animation etc. Visualization options enable comparisons of multiple variables and easier refinement. Recently, new features have been developed, such as interactive scatter plots and maps. The performance is also being improved, in some cases by an order of magnitude for certain analysis functions with optimized software. We are working toward merging current Giovanni portals into a single omnibus portal with all variables in one (virtual) location to help users find a variable easily and enhance the intercomparison capability

  15. Interfaces Visualize Data for Airline Safety, Efficiency

    NASA Technical Reports Server (NTRS)

    2014-01-01

    As the A-Train Constellation orbits Earth to gather data, NASA scientists and partners visualize, analyze, and communicate the information. To this end, Langley Research Center awarded SBIR funding to Fairfax, Virginia-based WxAnalyst Ltd. to refine the company's existing user interface for Google Earth to visualize data. Hawaiian Airlines is now using the technology to help manage its flights.

  16. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  17. An Automated Method to Identify Mesoscale Convective Complexes in the Regional Climate Model Evaluation System

    NASA Astrophysics Data System (ADS)

    Whitehall, K. D.; Jenkins, G. S.; Mattmann, C. A.; Waliser, D. E.; Kim, J.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Whittell, J.; Zimdars, P. A.

    2012-12-01

    Mesoscale convective complexes (MCCs) are large (2 - 3 x 105 km2) nocturnal convectively-driven weather systems that are generally associated with high precipitation events in short durations (less than 12hrs) in various locations through out the tropics and midlatitudes (Maddox 1980). These systems are particularly important for climate in the West Sahel region, where the precipitation associated with them is a principal component of the rainfall season (Laing and Fritsch 1993). These systems occur on weather timescales and are historically identified from weather data analysis via manual and more recently automated processes (Miller and Fritsch 1991, Nesbett 2006, Balmey and Reason 2012). The Regional Climate Model Evaluation System (RCMES) is an open source tool designed for easy evaluation of climate and Earth system data through access to standardized datasets, and intrinsic tools that perform common analysis and visualization tasks (Hart et al. 2011). The RCMES toolkit also provides the flexibility of user-defined subroutines for further metrics, visualization and even dataset manipulation. The purpose of this study is to present a methodology for identifying MCCs in observation datasets using the RCMES framework. TRMM 3 hourly datasets will be used to demonstrate the methodology for 2005 boreal summer. This method promotes the use of open source software for scientific data systems to address a concern to multiple stakeholders in the earth sciences. A historical MCC dataset provides a platform with regards to further studies of the variability of frequency on various timescales of MCCs that is important for many including climate scientists, meteorologists, water resource managers, and agriculturalists. The methodology of using RCMES for searching and clipping datasets will engender a new realm of studies as users of the system will no longer be restricted to solely using the datasets as they reside in their own local systems; instead will be afforded rapid, effective, and transparent access, processing and visualization of the wealth of remote sensing datasets and climate model outputs available.

  18. CEO Sites Mission Management System (SMMS)

    NASA Technical Reports Server (NTRS)

    Trenchard, Mike

    2014-01-01

    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team uses the SMMS for three general functions - database queries of content and status, individual site creation and updates, and mission planning. The CEO administrator of the science site database is able to create or modify the content of sites and activate or deactivate them based on the requirements of the sponsors. The administrator supports and implements ISS mission planning by assembling, reporting, and activating mission-specific site selections for management; deactivating sites as requirements are met; and creating new sites, such as International Charter sites for disasters, as circumstances warrant. In addition to the above CEO internal uses, when site planning for a specific ISS mission is complete and approved, the SMMS can produce and export those essential site database elements for the mission into XML format for use by onboard Earth-location systems, such as Worldmap. The design, development, and implementation of the SMMS resulted in a superior database management system for CEO science sites by focusing on the functions and applications of the database alone instead of integrating the database with the multipurpose configuration of the AMPS. Unlike the AMPS, it can function and be modified within the existing Windows 7 environment. The functions and applications of the SMMS were expanded to accommodate more database elements, report products, and a streamlined interface for data entry and review. A particularly elegant enhancement in data entry was the integration of the Google Earth application for the visual display and definition of site coordinates for site areas defined by multiple coordinates. Transfer between the SMMS and Google Earth is accomplished with a Keyhole Markup Language (KML) expression of geographic data (see figures 3 and 4). Site coordinates may be entered into the SMMS panel directly for display in Google Earth, or the coordinates may be defined on the Google Earth display as a mouse-controlled polygonal definition and transferred back into the SMMS as KML input. This significantly reduces the possibility of errors in coordinate entries and provides visualization of the scale of the site being defined. CEO now has a powerful tool for managing and defining sites on the Earth's surface for both targets of astronaut photography or other onboard remote sensing systems. It can also record and track results by sponsor, collaborator, or type of study.

  19. Earth Science Multimedia Theater

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1998-01-01

    The presentation will begin with the latest 1998 NASA Earth Science Vision for the next 25 years. A compilation of the 10 days of animations of Hurricane Georges which were supplied daily on NASA to Network television will be shown. NASA's visualizations of Hurricane Bonnie which appeared in the Sept 7 1998 issue of TIME magazine. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1 -min GOES images that will appear in the October BAMS. The visualizations are produced by the Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the "Digital-HyperRes-Panorama" Earth Science ETheater'98 recently presented in Tokyo, Paris and Phoenix. The presentation in Paris used a SGI/CRAY Onyx Infinite Reality Super Graphics Workstation at 2560 X 1024 resolution with dual synchronized video Epson 71 00 projectors on a 20ft wide screen. Earth Science Electronic Theater '999 is being prepared for a December 1 st showing at NASA HQ in Washington and January presentation at the AMS meetings in Dallas. The 1999 version of the Etheater will be triple wide with at resolution of 3840 X 1024 on a 60 ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense Hyperimage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, Hyperimage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing Hyperimage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed Image SpreadSheet (DISS).

  20. GeolOkit 1.0: a new Open Source, Cross-Platform software for geological data visualization in Google Earth environment

    NASA Astrophysics Data System (ADS)

    Triantafyllou, Antoine; Bastin, Christophe; Watlet, Arnaud

    2016-04-01

    GIS software suites are today's essential tools to gather and visualise geological data, to apply spatial and temporal analysis and in fine, to create and share interactive maps for further geosciences' investigations. For these purposes, we developed GeolOkit: an open-source, freeware and lightweight software, written in Python, a high-level, cross-platform programming language. GeolOkit software is accessible through a graphical user interface, designed to run in parallel with Google Earth. It is a super user-friendly toolbox that allows 'geo-users' to import their raw data (e.g. GPS, sample locations, structural data, field pictures, maps), to use fast data analysis tools and to plot these one into Google Earth environment using KML code. This workflow requires no need of any third party software, except Google Earth itself. GeolOkit comes with large number of geosciences' labels, symbols, colours and placemarks and may process : (i) multi-points data, (ii) contours via several interpolations methods, (iii) discrete planar and linear structural data in 2D or 3D supporting large range of structures input format, (iv) clustered stereonets and rose diagram, (v) drawn cross-sections as vertical sections, (vi) georeferenced maps and vectors, (vii) field pictures using either geo-tracking metadata from a camera built-in GPS module, or the same-day track of an external GPS. We are looking for you to discover all the functionalities of GeolOkit software. As this project is under development, we are definitely looking to discussions regarding your proper needs, your ideas and contributions to GeolOkit project.

  1. CloudSat Reflectivity Data Visualization Inside Hurricanes

    NASA Technical Reports Server (NTRS)

    Suzuki, Shigeru; Wright, John R.; Falcon, Pedro C.

    2011-01-01

    Animations and other outreach products have been created and released to the public quickly after the CloudSat spacecraft flew over hurricanes. The automated script scans through the CloudSat quicklook data to find significant atmospheric moisture content. Once such a region is found, data from multiple sources is combined to produce the data products and the animations. KMZ products are quickly generated from the quicklook data for viewing in Google Earth and other tools. Animations are also generated to show the atmospheric moisture data in context with the storm cloud imagery. Global images from GOES satellites are shown to give context. The visualization provides better understanding of the interior of the hurricane storm clouds, which is difficult to observe directly. The automated process creates the finished animation in the High Definition (HD) video format for quick release to the media and public.

  2. Digital surveying and mapping of forest road network for development of a GIS tool for the effective protection and management of natural ecosystems

    NASA Astrophysics Data System (ADS)

    Drosos, Vasileios C.; Liampas, Sarantis-Aggelos G.; Doukas, Aristotelis-Kosmas G.

    2014-08-01

    In our time, the Geographic Information Systems (GIS) have become important tools, not only in the geosciences and environmental sciences, as well as virtually for all researches that require monitoring, planning or land management. The purpose of this paper was to develop a planning tool and decision making tool using AutoCAD Map software, ArcGIS and Google Earth with emphasis on the investigation of the suitability of forest roads' mapping and the range of its implementation in Greece in prefecture level. Integrating spatial information into a database makes data available throughout the organization; improving quality, productivity, and data management. Also working in such an environment, you can: Access and edit information, integrate and analyze data and communicate effectively. To select desirable information such as forest road network in a very early stage in the planning of silviculture operations, for example before the planning of the harvest is carried out. The software programs that were used were AutoCAD Map for the export in shape files for the GPS data, and ArcGIS in shape files (ArcGlobe), while Google Earth with KML files (Keyhole Markup Language) in order to better visualize and evaluate existing conditions, design in a real-world context and exchange information with government agencies, utilities, and contractors in both CAD and GIS data formats. The automation of the updating procedure and transfer of any files between agencies-departments is one of the main tasks of the integrated GIS-tool among the others should be addressed.

  3. HyperPASS, a New Aeroassist Tool

    NASA Technical Reports Server (NTRS)

    Gates, Kristin; McRonald, Angus; Nock, Kerry

    2005-01-01

    A new software tool designed to perform aeroassist studies has been developed by Global Aerospace Corporation (GAC). The Hypersonic Planetary Aeroassist Simulation System (HyperPASS) [1] enables users to perform guided aerocapture, guided ballute aerocapture, aerobraking, orbit decay, or unguided entry simulations at any of six target bodies (Venus, Earth, Mars, Jupiter, Titan, or Neptune). HyperPASS is currently being used for trade studies to investigate (1) aerocapture performance with alternate aeroshell types, varying flight path angle and entry velocity, different gload and heating limits, and angle of attack and angle of bank variations; (2) variable, attached ballute geometry; (3) railgun launched projectile trajectories, and (4) preliminary orbit decay evolution. After completing a simulation, there are numerous visualization options in which data can be plotted, saved, or exported to various formats. Several analysis examples will be described.

  4. Interactive intelligent remote operations: application to space robotics

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.

    1999-11-01

    A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.

  5. The GPlates Portal: Cloud-based interactive 3D and 4D visualization of global geological and geophysical data and models in a browser

    NASA Astrophysics Data System (ADS)

    Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2017-04-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry. This technology offers many future opportunities for providing additional functionality, especially on-the-fly big data analytics. Müller, R.D., Qin, X., Sandwell, D.T., Dutkiewicz, A., Williams, S.E., Flament, N., Maus, S. and Seton, M, 2016, The GPlates Portal: Cloud-based interactive 3D visualization of global geophysical and geological data in a web browser, PLoS ONE 11(3): e0150883. doi:10.1371/ journal.pone.0150883

  6. SpacePy - a Python-based library of tools for the space sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morley, Steven K; Welling, Daniel T; Koller, Josef

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks tomore » promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the analysis methods employed in scientific studies and will give access to advanced tools to all space scientists regardless of affiliation or circumstance.« less

  7. Two NextGen Air Safety Tools: An ADS-B Equipped UAV and a Wake Turbulence Estimator

    NASA Astrophysics Data System (ADS)

    Handley, Ward A.

    Two air safety tools are developed in the context of the FAA's NextGen program. The first tool addresses the alarming increase in the frequency of near-collisions between manned and unmanned aircraft by equipping a common hobby class UAV with an ADS-B transponder that broadcasts its position, speed, heading and unique identification number to all local air traffic. The second tool estimates and outputs the location of dangerous wake vortex corridors in real time based on the ADS-B data collected and processed using a custom software package developed for this project. The TRansponder based Position Information System (TRAPIS) consists of data packet decoders, an aircraft database, Graphical User Interface (GUI) and the wake vortex extension application. Output from TRAPIS can be visualized in Google Earth and alleviates the problem of pilots being left to imagine where invisible wake vortex corridors are based solely on intuition or verbal warnings from ATC. The result of these two tools is the increased situational awareness, and hence safety, of human pilots in the National Airspace System (NAS).

  8. Fostering Team Awareness in Earth System Modeling Communities

    NASA Astrophysics Data System (ADS)

    Easterbrook, S. M.; Lawson, A.; Strong, S.

    2009-12-01

    Existing Global Climate Models are typically managed and controlled at a single site, with varied levels of participation by scientists outside the core lab. As these models evolve to encompass a wider set of earth systems, this central control of the modeling effort becomes a bottleneck. But such models cannot evolve to become fully distributed open source projects unless they address the imbalance in the availability of communication channels: scientists at the core site have access to regular face-to-face communication with one another, while those at remote sites have access to only a subset of these conversations - e.g. formally scheduled teleconferences and user meetings. Because of this imbalance, critical decision making can be hidden from many participants, their code contributions can interact in unanticipated ways, and the community loses awareness of who knows what. We have documented some of these problems in a field study at one climate modeling centre, and started to develop tools to overcome these problems. We report on one such tool, TracSNAP, which analyzes the social network of the scientists contributing code to the model by extracting the data in an existing project code repository. The tool presents the results of this analysis to modelers and model users in a number of ways: recommendation for who has expertise on particular code modules, suggestions for code sections that are related to files being worked on, and visualizations of team communication patterns. The tool is currently available as a plugin for the Trac bug tracking system.

  9. The seismic signatures of the solar system

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Kedar, Sharon; van Driel, Martin; Vance, Steven D.; Panning, Mark P.

    2017-04-01

    Seismology is a powerful tool to image the interior of planetary bodies. At the same time, its results are often difficult to visualize. The spectral-element solver AxiSEM (Nissen-Meyer et al. 2014) enables calculations of the broadband seismic response of terrestrial bodies with solid crusts and mantles, as well as icy moons with solid ice crusts overlying liquid oceans. In its database mode, Instaseis (van Driel et al. 2015), AxiSEM can efficiently calculate the seismic response for earthquakes at arbitrary distances and depths. We use this method to present a set of global stacks of seismograms, similar to the iconic global stack that Astiz and Shearer (1996) created for IRIS from thousands of seismograms on Earth. We present these stacks for models of Europa, Enceladus, Ganymede, Mercury, Venus, Moon and - for comparison - Earth. The results are based on thermodynamical modeling for the icy moons and orbital observations for the terrestrial planets. The results visualize how each planet and moon has its own unique seismic wavefield and which observables exist to infer its detailed structure by future lander missions. Astiz, L., P. Earle and P. Shearer, Global stacking of broadband seismograms, Seis. Res. Lett., 67, 8-18, 1996. M. van Driel, L. Krischer, S.C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015), "Instaseis: instant global seismograms based on a broadband waveform database," Solid Earth, 6, 701-717, doi:10.5194/se-6-701-2015. Nissen-Meyer, T., van Driel, M., Stähler, S. C., Hosseini, K., Hempel, S., Auer, L., … Fournier, A. (2014). AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth, 5(1), 425-445. https://doi.org/10.5194/se-5-425-2014

  10. Integrated visualization of remote sensing data using Google Earth

    NASA Astrophysics Data System (ADS)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.

    2009-09-01

    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type (satellite, radar, or lightning) to be treated. For each type of data, the time of launching is different, and goes from 5 (satellite and lightning) to 6 minutes (radar). The second part is the use of IDL and ENVI programs, which search in each archive file the last images in one hour. In the case of lightning data, the files are generated for the procedure, while for the others the procedure searches for existing imagery. Finally, the procedure generates metadata information required by GE, kml files, and sends them to the internal server. At the same time, in the local computer where GE is running, there exists kml files which update the information referring to the server ones. Another application that has been evaluated is the analysis of past events. In this sense, further work is devoted to develop access procedures to archived data via cgi scripts in order to retrieve and convert the information in a format suitable for GE. The presentation includes examples of the evaluation of the use of GE, and a brief comparison with other existing visualization systems available within the SMC.

  11. Using McIDAS-V data analysis and visualization software as an educational tool for understanding the atmosphere

    NASA Astrophysics Data System (ADS)

    Achtor, T. H.; Rink, T.

    2010-12-01

    The University of Wisconsin’s Space Science and Engineering Center (SSEC) has been at the forefront in developing data analysis and visualization tools for environmental satellites and other geophysical data. The fifth generation of the Man-computer Interactive Data Access System (McIDAS-V) is Java-based, open-source, freely available software that operates on Linux, Macintosh and Windows systems. The software tools provide powerful new data manipulation and visualization capabilities that work with geophysical data in research, operational and educational environments. McIDAS-V provides unique capabilities to support innovative techniques for evaluating research results, teaching and training. McIDAS-V is based on three powerful software elements. VisAD is a Java library for building interactive, collaborative, 4 dimensional visualization and analysis tools. The Integrated Data Viewer (IDV) is a reference application based on the VisAD system and developed by the Unidata program that demonstrates the flexibility that is needed in this evolving environment, using a modern, object-oriented software design approach. The third tool, HYDRA, allows users to build, display and interrogate multi and hyperspectral environmental satellite data in powerful ways. The McIDAS-V software is being used for training and education in several settings. The McIDAS User Group provides training workshops at its annual meeting. Numerous online tutorials with training data sets have been developed to aid users in learning simple and more complex operations in McIDAS-V, all are available online. In a University of Wisconsin-Madison undergraduate course in Radar and Satellite Meteorology, McIDAS-V is used to create and deliver laboratory exercises using case study and real time data. At the high school level, McIDAS-V is used in several exercises in our annual Summer Workshop in Earth and Atmospheric Sciences to provide young scientists the opportunity to examine data with friendly and powerful tools. This presentation will describe the McIDAS-V software and demonstrate some of the capabilities of McIDAS-V to analyze and display many types of global data. The presentation will also focus on describing how McIDAS-V can be used as an educational window to examine global geophysical data. Consecutive polar orbiting passes of NASA MODIS and CALIPSO observations

  12. Communicating and visualizing data quality through Web Map Services

    NASA Astrophysics Data System (ADS)

    Roberts, Charles; Blower, Jon; Maso, Joan; Diaz, Daniel; Griffiths, Guy; Lewis, Jane

    2014-05-01

    The sharing and visualization of environmental data through OGC Web Map Services is becoming increasingly common. However, information about the quality of data is rarely presented. (In this presentation we consider mostly data uncertainty as a measure of quality, although we acknowledge that many other quality measures are relevant to the geoscience community.) In the context of the GeoViQua project (http://www.geoviqua.org) we have developed conventions and tools for using WMS to deliver data quality information. The "WMS-Q" convention describes how the WMS specification can be used to publish quality information at the level of datasets, variables and individual pixels (samples). WMS-Q requires no extensions to the WMS 1.3.0 specification, being entirely backward-compatible. (An earlier version of WMS-Q was published as OGC Engineering Report 12-160.) To complement the WMS-Q convention, we have also developed extensions to the OGC Symbology Encoding (SE) specification, enabling uncertain geoscience data to be portrayed using a variety of visualization techniques. These include contours, stippling, blackening, whitening, opacity, bivariate colour maps, confidence interval triangles and glyphs. There may also be more extensive applications of these methods beyond the visual representation of uncertainty. In this presentation we will briefly describe the scope of the WMS-Q and "extended SE" specifications and then demonstrate the innovations using open-source software based upon ncWMS (http://ncwms.sf.net). We apply the tools to a variety of datasets including Earth Observation data from the European Space Agency's Climate Change Initiative. The software allows uncertain raster data to be shared through Web Map Services, giving the user fine control over data visualization.

  13. The visualization and availability of experimental research data at Elsevier

    NASA Astrophysics Data System (ADS)

    Keall, Bethan

    2014-05-01

    In the digital age, the visualization and availability of experimental research data is an increasingly prominent aspect of the research process and of the scientific output that researchers generate. We expect that the importance of data will continue to grow, driven by technological advancements, requirements from funding bodies to make research data available, and a developing research data infrastructure that is supported by data repositories, science publishers, and other stakeholders. Elsevier is actively contributing to these efforts, for example by setting up bidirectional links between online articles on ScienceDirect and relevant data sets on trusted data repositories. A key aspect of Elsevier's "Article of the Future" program, these links enrich the online article and make it easier for researchers to find relevant data and articles and help place data in the right context for re-use. Recently, we have set up such links with some of the leading data repositories in Earth Sciences, including the British Geological Survey, Integrated Earth Data Applications, the UK Natural Environment Research Council, and the Oak Ridge National Laboratory DAAC. Building on these links, Elsevier has also developed a number of data integration and visualization tools, such as an interactive map viewer that displays the locations of relevant data from PANGAEA next to articles on ScienceDirect. In this presentation we will give an overview of these and other capabilities of the Article of the Future, focusing on how they help advance communication of research in the digital age.

  14. Interactive investigations into planetary interiors

    NASA Astrophysics Data System (ADS)

    Rose, I.

    2015-12-01

    Many processes in Earth science are difficult to observe or visualize due to the large timescales and lengthscales over which they operate. The dynamics of planetary mantles are particularly challenging as we cannot even look at the rocks involved. As a result, much teaching material on mantle dynamics relies on static images and cartoons, many of which are decades old. Recent improvements in computing power and technology (largely driven by game and web development) have allowed for advances in real-time physics simulations and visualizations, but these have been slow to affect Earth science education.Here I demonstrate a teaching tool for mantle convection and seismology which solves the equations for conservation of mass, momentum, and energy in real time, allowing users make changes to the simulation and immediately see the effects. The user can ask and answer questions about what happens when they add heat in one place, or take it away from another place, or increase the temperature at the base of the mantle. They can also pause the simulation, and while it is paused, create and visualize seismic waves traveling through the mantle. These allow for investigations into and discussions about plate tectonics, earthquakes, hot spot volcanism, and planetary cooling.The simulation is rendered to the screen using OpenGL, and is cross-platform. It can be run as a native application for maximum performance, but it can also be embedded in a web browser for easy deployment and portability.

  15. Online learning tools in an M.Ed. in Earth Sciences program

    NASA Astrophysics Data System (ADS)

    Richardson, E.

    2011-12-01

    Penn State's Master of Education in Earth Sciences program is a fully online 30-credit degree program serving mid-career secondary science teachers. Teachers in the program have a diverse background in science and math, are usually many years removed from their most recent degree, and are often deficient in the same geoscience skills as are beginning undergraduates. For example, they habitually assign incorrect causal relationships to concepts that are taught at the same time (such as sea-floor spreading and magnetic field reversals), and they have trouble with both object and spatial visualization. Program faculty also observe anecdotally that many teachers enter the program lacking the ability to describe their mental model of a given Earth science process, making it difficult to identify teachers' knowledge gaps. We have implemented many technical strategies to enhance program content delivery while trying to minimize the inherent barriers to completing quantitative assignments online and at a distance. These barriers include competence with and access to sophisticated data analysis and plotting programs commonly used by scientists. Here, I demonstrate two technical tools I use frequently to strengthen online content delivery and assessment. The first, Jing, is commercially-available, free, and platform-independent. Jing allows the user to make screencasts with narration and embed them into a web page as a flash movie or as an external link. The second is a set of simple sketching tools I have created using the programming language Processing, which is a free, open source, platform-independent language built on Java. The integration of easy-to-use drawing tools into problem sets and other assessments has enabled faculty to appraise a learner's grasp of the material without the steep technical learning curve and expense inherent in most computer graphics packages. A serendipitous benefit of teaching with these tools is that they are easy to learn and freely available and so the teachers in the program learn to use them, too. Qualitative assessment of feedback from the teachers in the program shows that they find the explanations, screencasts, animations, and discussions arising from these tools not only enhance their own learning but also inspire them to try them in their classrooms.

  16. Data visualization in interactive maps and time series

    NASA Astrophysics Data System (ADS)

    Maigne, Vanessa; Evano, Pascal; Brockmann, Patrick; Peylin, Philippe; Ciais, Philippe

    2014-05-01

    State-of-the-art data visualization has nothing to do with plots and maps we used few years ago. Many opensource tools are now available to provide access to scientific data and implement accessible, interactive, and flexible web applications. Here we will present a web site opened November 2013 to create custom global and regional maps and time series from research models and datasets. For maps, we explore and get access to data sources from a THREDDS Data Server (TDS) with the OGC WMS protocol (using the ncWMS implementation) then create interactive maps with the OpenLayers javascript library and extra information layers from a GeoServer. Maps become dynamic, zoomable, synchroneaously connected to each other, and exportable to Google Earth. For time series, we extract data from a TDS with the Netcdf Subset Service (NCSS) then display interactive graphs with a custom library based on the Data Driven Documents javascript library (D3.js). This time series application provides dynamic functionalities such as interpolation, interactive zoom on different axes, display of point values, and export to different formats. These tools were implemented for the Global Carbon Atlas (http://www.globalcarbonatlas.org): a web portal to explore, visualize, and interpret global and regional carbon fluxes from various model simulations arising from both human activities and natural processes, a work led by the Global Carbon Project.

  17. Internet-Based Software Tools for Analysis and Processing of LIDAR Point Cloud Data via the OpenTopography Portal

    NASA Astrophysics Data System (ADS)

    Nandigam, V.; Crosby, C. J.; Baru, C.; Arrowsmith, R.

    2009-12-01

    LIDAR is an excellent example of the new generation of powerful remote sensing data now available to Earth science researchers. Capable of producing digital elevation models (DEMs) more than an order of magnitude higher resolution than those currently available, LIDAR data allows earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible, yet essential for their appropriate representation. Along with these high-resolution datasets comes an increase in the volume and complexity of data that the user must efficiently manage and process in order for it to be scientifically useful. Although there are expensive commercial LIDAR software applications available, processing and analysis of these datasets are typically computationally inefficient on the conventional hardware and software that is currently available to most of the Earth science community. We have designed and implemented an Internet-based system, the OpenTopography Portal, that provides integrated access to high-resolution LIDAR data as well as web-based tools for processing of these datasets. By using remote data storage and high performance compute resources, the OpenTopography Portal attempts to simplify data access and standard LIDAR processing tasks for the Earth Science community. The OpenTopography Portal allows users to access massive amounts of raw point cloud LIDAR data as well as a suite of DEM generation tools to enable users to generate custom digital elevation models to best fit their science applications. The Cyberinfrastructure software tools for processing the data are freely available via the portal and conveniently integrated with the data selection in a single user-friendly interface. The ability to run these tools on powerful Cyberinfrastructure resources instead of their own labs provides a huge advantage in terms of performance and compute power. The system also encourages users to explore data processing methods and the variations in algorithm parameters since all of the processing is done remotely and numerous jobs can be submitted in sequence. The web-based software also eliminates the need for users to deal with the hassles and costs associated with software installation and licensing while providing adequate disk space for storage and personal job archival capability. Although currently limited to data access and DEM generation tasks, the OpenTopography system is modular in design and can be modified to accommodate new processing tools as they become available. We are currently exploring implementation of higher-level DEM analysis tasks in OpenTopography, since such processing is often computationally intensive and thus lends itself to utilization of cyberinfrastructure. Products derived from OpenTopography processing are available in a variety of formats ranging from simple Google Earth visualizations of LIDAR-derived hillshades to various GIS-compatible grid formats. To serve community users less interested in data processing, OpenTopography also hosts 1 km^2 digital elevation model tiles as well as Google Earth image overlays for a synoptic view of the data.

  18. Topographic Science

    USGS Publications Warehouse

    Poppenga, Sandra K.; Evans, Gayla; Gesch, Dean; Stoker, Jason M.; Queija, Vivian R.; Worstell, Bruce; Tyler, Dean J.; Danielson, Jeff; Bliss, Norman; Greenlee, Susan

    2010-01-01

    The mission of U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Topographic Science is to establish partnerships and conduct research and applications that facilitate the development and use of integrated national and global topographic datasets. Topographic Science includes a wide range of research and applications that result in improved seamless topographic datasets, advanced elevation technology, data integration and terrain visualization, new and improved elevation derivatives, and development of Web-based tools. In cooperation with our partners, Topographic Science is developing integrated-science applications for mapping, national natural resource initiatives, hazards, and global change science. http://topotools.cr.usgs.gov/.

  19. Multilayer perceptron with local constraint as an emerging method in spatial data analysis

    NASA Astrophysics Data System (ADS)

    de Bollivier, M.; Dubois, G.; Maignan, M.; Kanevsky, M.

    1997-02-01

    The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.

  20. The Magnetics Information Consortium (MagIC) Online Database: Uploading, Searching and Visualizing Paleomagnetic and Rock Magnetic Data

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A.; Tauxe, L.; Constable, C.; Pisarevsky, S. A.; Jackson, M.; Solheid, P.; Banerjee, S.; Johnson, C.

    2006-12-01

    The Magnetics Information Consortium (MagIC) is commissioned to implement and maintain an online portal to a relational database populated by both rock and paleomagnetic data. The goal of MagIC is to archive all measurements and the derived properties for studies of paleomagnetic directions (inclination, declination) and intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). MagIC is hosted under EarthRef.org at http://earthref.org/MAGIC/ and has two search nodes, one for paleomagnetism and one for rock magnetism. Both nodes provide query building based on location, reference, methods applied, material type and geological age, as well as a visual map interface to browse and select locations. The query result set is displayed in a digestible tabular format allowing the user to descend through hierarchical levels such as from locations to sites, samples, specimens, and measurements. At each stage, the result set can be saved and, if supported by the data, can be visualized by plotting global location maps, equal area plots, or typical Zijderveld, hysteresis, and various magnetization and remanence diagrams. User contributions to the MagIC database are critical to achieving a useful research tool. We have developed a standard data and metadata template (Version 2.1) that can be used to format and upload all data at the time of publication in Earth Science journals. Software tools are provided to facilitate population of these templates within Microsoft Excel. These tools allow for the import/export of text files and provide advanced functionality to manage and edit the data, and to perform various internal checks to maintain data integrity and prepare for uploading. The MagIC Contribution Wizard at http://earthref.org/MAGIC/upload.htm executes the upload and takes only a few minutes to process several thousand data records. The standardized MagIC template files are stored in the digital archives of EarthRef.org where they remain available for download by the public (in both text and Excel format). Finally, the contents of these template files are automatically parsed into the online relational database, making the data available for online searches in the paleomagnetic and rock magnetic search nodes. The MagIC database contains all data transferred from the IAGA paleomagnetic poles database (GPMDB), the lava flow paleosecular variation database (PSVRL), lake sediment database (SECVR) and the PINT database. Additionally, a substantial number of data compiled under the Time Averaged Field Investigations project is now included plus a significant fraction of the data collected at SIO and the IRM. Ongoing additions of legacy data include over 40 papers from studies on the Hawaiian Islands and Mexico, data compilations from archeomagnetic studies and updates to the lake sediment dataset.

  1. Immersive Environment Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John R.; Hartman, Frank

    2000-01-01

    JPL's charter includes the unmanned exploration of the Solar System. One of the tools for exploring other planets is the rover as exemplified by Sojourner on the Mars Pathfinder mission. The light speed turnaround time between Earth and the outer planets precludes the use of teleoperated rovers so autonomous operations are built in to the current and upcoming generation devices. As the level of autonomy increases, the mode of operations shifts from low-level specification of activities to a higher-level specification of goals. To support this higher-level activity, it is necessary to provide the operator with an effective understanding of the in-situ environment and also the tools needed to specify the higher-level goals. Immersive environments provide the needed sense of presence to achieve this goal. Use of immersive environments at JPL has two main thrusts that will be discussed in this talk. One is the generation of 3D models of the in-situ environment, in particular the merging of models from different sensors, different modes (orbital, descent, and lander), and even different missions. The other is the use of various tools to visualize the environment within which the rover will be operating to maximize the understanding by the operator. A suite of tools is under development which provide an integrated view into the environment while providing a variety of modes of visualization. This allows the operator to smoothly switch from one mode to another depending on the information and presentation desired.

  2. Challenges in integrating multidisciplinary data into a single e-infrastructure

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew

    2015-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and as such need to be harmonized and provided within the ICS. In order to develop a metadata catalogue and the ICS system, the content from the entire spectrum of services included in TCS, ICS-Ds as well as CES activities, need to be organized in a systematic manner taking into account global and European IT-standards, while complying with the user needs and data provider requirements.

  3. The Role of Motor Learning in Spatial Adaptation near a Tool

    PubMed Central

    Brown, Liana E.; Doole, Robert; Malfait, Nicole

    2011-01-01

    Some visual-tactile (bimodal) cells have visual receptive fields (vRFs) that overlap and extend moderately beyond the skin of the hand. Neurophysiological evidence suggests, however, that a vRF will grow to encompass a hand-held tool following active tool use but not after passive holding. Why does active tool use, and not passive holding, lead to spatial adaptation near a tool? We asked whether spatial adaptation could be the result of motor or visual experience with the tool, and we distinguished between these alternatives by isolating motor from visual experience with the tool. Participants learned to use a novel, weighted tool. The active training group received both motor and visual experience with the tool, the passive training group received visual experience with the tool, but no motor experience, and finally, a no-training control group received neither visual nor motor experience using the tool. After training, we used a cueing paradigm to measure how quickly participants detected targets, varying whether the tool was placed near or far from the target display. Only the active training group detected targets more quickly when the tool was placed near, rather than far, from the target display. This effect of tool location was not present for either the passive-training or control groups. These results suggest that motor learning influences how visual space around the tool is represented. PMID:22174944

  4. Two wide-angle imaging neutral-atom spectrometers (TWINS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D.J.; Blake, B.; Burch, J.

    1998-11-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will providemore » a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.« less

  5. NASA/NOAA: Earth Science Electronic Theater 1999. Earth Science Observations, Analysis and Visualization: Roots in the 60s - Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966, to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA''s visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization & Analysis Laboratory, and Scientific Visualization Studio, as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science ETheater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space Museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed Image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April 198 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; etc. will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach.

  6. ODM2 Admin Pilot Project- a Data Management Application for Observations of the Critical Zone.

    NASA Astrophysics Data System (ADS)

    Leon, M.; McDowell, W. H.; Mayorga, E.; Setiawan, L.; Hooper, R. P.

    2017-12-01

    ODM2 Admin is a tool to manage data stored in a relational database using the Observation Data Model 2 (ODM2) information model. Originally developed by the Luquillo Critical Zone Observatory (CZO) to manage a wide range of Earth observations, it has now been deployed at 6 projects: the Catalina Jemez CZO, the Dry Creek Experimental Forest, Au Sable and Manistee River sites managed by Michigan State, Tropical Response to Altered Climate Experiment (TRACE) and the Critical Zone Integrative Microbial Ecology Activity (CZIMEA) EarthCube project; most of these deployments are hosted on a Microsoft Azure cloud server managed by CUAHSI. ODM2 Admin is a web application built on the Python open-source Django framework and available for download from GitHub and DockerHub. It provides tools for data ingestion, editing, QA/QC, data visualization, browsing, mapping and documentation of equipment deployment, methods, and citations. Additional features include the ability to generate derived data values, automatically or manually create data annotations and create datasets from arbitrary groupings of results. Over 22 million time series values for more than 600 time series are being managed with ODM2 Admin across the 6 projects as well as more than 12,000 soil profiles and other measurements. ODM2 Admin links with external identifier systems through DOIs, ORCiDs and IGSNs, so cited works, details about researchers and earth sample meta-data can be accessed directly from ODM2 Admin. This application is part of a growing open source ODM2 application ecosystem under active development. ODM2 Admin can be deployed alongside other tools from the ODM2 ecosystem, including ODM2API and WOFpy, which provide access to the underlying ODM2 data through a Python API and Water One Flow web services.

  7. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires large quantity of memory as well as large and fast parallel storage systems. The entire system temperature is controlled by an energy and space efficient cooling solution, based on large rear door liquid cooled heat exchangers. This state-of-the-art infrastructure will boost research activities in the region, offer a powerful scientific tool for teaching at undergraduate and graduate levels, and enhance association and cooperation with business-oriented organizations.

  8. Comparison of User Performance with Interactive and Static 3d Visualization - Pilot Study

    NASA Astrophysics Data System (ADS)

    Herman, L.; Stachoň, Z.

    2016-06-01

    Interactive 3D visualizations of spatial data are currently available and popular through various applications such as Google Earth, ArcScene, etc. Several scientific studies have focused on user performance with 3D visualization, but static perspective views are used as stimuli in most of the studies. The main objective of this paper is to try to identify potential differences in user performance with static perspective views and interactive visualizations. This research is an exploratory study. An experiment was designed as a between-subject study and a customized testing tool based on open web technologies was used for the experiment. The testing set consists of an initial questionnaire, a training task and four experimental tasks. Selection of the highest point and determination of visibility from the top of a mountain were used as the experimental tasks. Speed and accuracy of each task performance of participants were recorded. The movement and actions in the virtual environment were also recorded within the interactive variant. The results show that participants deal with the tasks faster when using static visualization. The average error rate was also higher in the static variant. The findings from this pilot study will be used for further testing, especially for formulating of hypotheses and designing of subsequent experiments.

  9. Visions of our Planet's Atmosphere, Land & Oceans

    NASA Technical Reports Server (NTRS)

    Hasler, Arthur F.

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra MODIS data, Landsat data and 1m IKONOS "Spy Satellite" data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we present science to the public. See dust storms and flooding in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the north and south polar ice packs and with icebergs on the coasts of Greenland and off the coast of Antarctica. Spectacular new visualizations of the global land, atmosphere & oceans are shown. Listen to the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The presentation will be made using the latest HDTV and video projection technology that is now done from a laptop computer through an entirely digital path.

  10. Immersive Visualization of the Solid Earth

    NASA Astrophysics Data System (ADS)

    Kreylos, O.; Kellogg, L. H.

    2017-12-01

    Immersive visualization using virtual reality (VR) display technology offers unique benefits for the visual analysis of complex three-dimensional data such as tomographic images of the mantle and higher-dimensional data such as computational geodynamics models of mantle convection or even planetary dynamos. Unlike "traditional" visualization, which has to project 3D scalar data or vectors onto a 2D screen for display, VR can display 3D data in a pseudo-holographic (head-tracked stereoscopic) form, and does therefore not suffer the distortions of relative positions, sizes, distances, and angles that are inherent in 2D projection and interfere with interpretation. As a result, researchers can apply their spatial reasoning skills to 3D data in the same way they can to real objects or environments, as well as to complex objects like vector fields. 3D Visualizer is an application to visualize 3D volumetric data, such as results from mantle convection simulations or seismic tomography reconstructions, using VR display technology and a strong focus on interactive exploration. Unlike other visualization software, 3D Visualizer does not present static visualizations, such as a set of cross-sections at pre-selected positions and orientations, but instead lets users ask questions of their data, for example by dragging a cross-section through the data's domain with their hands and seeing data mapped onto that cross-section in real time, or by touching a point inside the data domain, and immediately seeing an isosurface connecting all points having the same data value as the touched point. Combined with tools allowing 3D measurements of positions, distances, and angles, and with annotation tools that allow free-hand sketching directly in 3D data space, the outcome of using 3D Visualizer is not primarily a set of pictures, but derived data to be used for subsequent analysis. 3D Visualizer works best in virtual reality, either in high-end facility-scale environments such as CAVEs, or using commodity low-cost virtual reality headsets such as HTC's Vive. The recent emergence of high-quality commodity VR means that researchers can buy a complete VR system off the shelf, install it and the 3D Visualizer software themselves, and start using it for data analysis immediately.

  11. Visualization of Earth and Space Science Data at JPL's Science Data Processing Systems Section

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1996-01-01

    This presentation will provide an overview of systems in use at NASA's Jet Propulsion Laboratory for processing data returned by space exploration and earth observations spacecraft. Graphical and visualization techniques used to query and retrieve data from large scientific data bases will be described.

  12. Visualizing Moon Data and Imagery with Google Earth

    NASA Astrophysics Data System (ADS)

    Weiss-Malik, M.; Scharff, T.; Nefian, A.; Moratto, Z.; Kolb, E.; Lundy, M.; Hancher, M.; Gorelick, N.; Broxton, M.; Beyer, R. A.

    2009-12-01

    There is a vast store of planetary geospatial data that has been collected by NASA but is difficult to access and visualize. Virtual globes have revolutionized the way we visualize and understand the Earth, but other planetary bodies including Mars and the Moon can be visualized in similar ways. Extraterrestrial virtual globes are poised to revolutionize planetary science, bring an exciting new dimension to science education, and allow ordinary users to explore imagery being sent back to Earth by planetary science satellites. The original Google Moon Web site was a limited series of maps and Apollo content. The new Moon in Google Earth feature provides a similar virtual planet experience for the Moon as we have for the Earth and Mars. We incorporated existing Clementine and Lunar Orbiter imagery for the basemaps and a combination of Kaguya LALT topography and some terrain created from Apollo Metric and Panoramic images. We also have information about the Apollo landings and other robotic landers on the surface, as well as historic maps and charts, and guided tours. Some of the first-released LROC imagery of the Apollo landing sites has been put in place, and we look forward to incorporating more data as it is released from LRO, Chandraayan-1, and Kaguya. These capabilities have obvious public outreach and education benefits, but the potential benefits of allowing planetary scientists to rapidly explore these large and varied data collections — in geological context and within a single user interface — are also becoming evident. Because anyone can produce additional KML content for use in Google Earth, scientists can customize the environment to their needs as well as publish their own processed data and results for others to use. Many scientists and organizations have begun to do this already, resulting in a useful and growing collection of planetary-science-oriented Google Earth layers. Screen shot of Moon in Google Earth, a freely downloadable application for visualizing Moon imagery and data.

  13. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    NASA Astrophysics Data System (ADS)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its early stages, high school and college teachers, as well as researchers have expressed interest in using and extending these tools for visualizing and interacting with data on Earth and other planetary bodies.

  14. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  15. The use of visual cues in gravity judgements on parabolic motion.

    PubMed

    Jörges, Björn; Hagenfeld, Lena; López-Moliner, Joan

    2018-06-21

    Evidence suggests that humans rely on an earth gravity prior for sensory-motor tasks like catching or reaching. Even under earth-discrepant conditions, this prior biases perception and action towards assuming a gravitational downwards acceleration of 9.81 m/s 2 . This can be particularly detrimental in interactions with virtual environments employing earth-discrepant gravity conditions for their visual presentation. The present study thus investigates how well humans discriminate visually presented gravities and which cues they use to extract gravity from the visual scene. To this end, we employed a Two-Interval Forced-Choice Design. In Experiment 1, participants had to judge which of two presented parabolas had the higher underlying gravity. We used two initial vertical velocities, two horizontal velocities and a constant target size. Experiment 2 added a manipulation of the reliability of the target size. Experiment 1 shows that participants have generally high discrimination thresholds for visually presented gravities, with weber fractions of 13 to beyond 30%. We identified the rate of change of the elevation angle (ẏ) and the visual angle (θ) as major cues. Experiment 2 suggests furthermore that size variability has a small influence on discrimination thresholds, while at the same time larger size variability increases reliance on ẏ and decreases reliance on θ. All in all, even though we use all available information, humans display low precision when extracting the governing gravity from a visual scene, which might further impact our capabilities of adapting to earth-discrepant gravity conditions with visual information alone. Copyright © 2018. Published by Elsevier Ltd.

  16. NASA/NOAA Earth Science Electronic Theater 1999. Earth Science Observations, Analysis and Visualization: Roots in the 60s: Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  17. LEARNERS: Interdisciplinary Learning Technology Projects Provide Visualizations and Simulations for Use of Geospatial Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Farrell, N.; Hoban, S.

    2001-05-01

    The NASA Leading Educators to Applications, Research and NASA-related Educational Resources in Science (LEARNERS) initiative supports seven projects for enhancing kindergarten-to-high school science, geography, technology and mathematics education through Internet-based products derived from content on NASA's mission. Topics incorporated in LEARNERS projects include remote sensing of the Earth for agriculture and weather/climate studies, virtual exploration of remote worlds using robotics and digital imagery. Learners are engaged in inquiry or problem-based learning, often assuming the role of an expert scientist as part of an interdisciplinary science team, to study and explain practical problems using real-time NASA data. The presentation/poster will demonstrate novel uses of remote sensing data for K-12 and Post-Secondary students. This will include the use of visualizations, tools for educators, datasets, and classroom scenarios.

  18. Electronic-Theater 2001: Visions of Our Planet's Atmosphere, Land and Oceans

    NASA Technical Reports Server (NTRS)

    Hasler, Authur; Starr, David OC. (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Wisconsin, Madison and the Monona Terrace Center. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using I m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s pioneered by UW. Scientists and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7 that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortices and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nina/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx 11 Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With five projectors on a giant IMAX sized 18 x 72 ft screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "nightvision" DMSP military satellite.

  19. Visions of Our Planet's Atmosphere, Land and Oceans Electronic-Theater 2001

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Fredericton New Brunswick. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA and Canadian remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7, and Radarsat that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx II Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With multiple projectors on a giant screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  20. A Perspective of Our Planet's Atmosphere, Land, and Oceans: A View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Graham, Steven M.

    2002-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in true high definition (HD) format. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. Marvel at visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. Spectacular new visualizations of the global atmosphere & oceans will be shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  1. A browser-based 3D Visualization Tool designed for comparing CERES/CALIOP/CloudSAT level-2 data sets.

    NASA Astrophysics Data System (ADS)

    Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Doelling, D. R.

    2017-12-01

    In Langley NASA, Clouds and the Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS) are merged with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat Cloud Profiling Radar (CPR). The CERES merged product (C3M) matches up to three CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved using the CERES algorithms, are included in C3M with the matched CALIPSO and CloudSat products along with radiances from 18 MODIS channels. The dataset is used to validate the CERES retrieved MODIS cloud properties and the computed TOA and surface flux difference using MODIS or CALIOP/CloudSAT retrieved clouds. This information is then used to tune the computed fluxes to match the CERES observed TOA flux. A visualization tool will be invaluable to determine the cause of these large cloud and flux differences in order to improve the methodology. This effort is part of larger effort to allow users to order the CERES C3M product sub-setted by time and parameter as well as the previously mentioned visualization capabilities. This presentation will show a new graphical 3D-interface, 3D-CERESVis, that allows users to view both passive remote sensing satellites (MODIS and CERES) and active satellites (CALIPSO and CloudSat), such that the detailed vertical structures of cloud properties from CALIPSO and CloudSat are displayed side by side with horizontally retrieved cloud properties from MODIS and CERES. Similarly, the CERES computed profile fluxes whether using MODIS or CALIPSO and CloudSat clouds can also be compared. 3D-CERESVis is a browser-based visualization tool that makes uses of techniques such as multiple synchronized cursors, COLLADA format data and Cesium.

  2. Introducing Earthdata 3.0: An All-New Way of Creating and Publishing Content

    NASA Astrophysics Data System (ADS)

    Bagwell, R.; Wong, M. M.; Siarto, J.; Reese, M.; Berrick, S. W.

    2015-12-01

    Since the launch of the National Aeronautics and Space Administration (NASA) Earthdata website (https://earthdata.nasa.gov) in the later part of 2011, there has been an emphasis on improving the user experience and providing more enriched content to the user, ultimately with the focus to bring the "pixels to the people" or to ensure that a user clicks the fewest amount of times to get to the data, tools, or information which they seek. NASA Earthdata was founded to be a single source of information as a conglomeration between over 20 different websites. With an increased focus on access to Earth science data, the recognition is now on transforming Earthdata from a static website to one that is a dynamic, data-driven site full of enriched content. This poster will present the process of utilizing a custom-built Content Management System (CMS) called "Conduit" to manage and publish content into the new Earthdata website, with examples of the various components of the CMS, as well as featured areas from the new website design. NASA Earthdata is a part of the Earth Observing System Data and Information System (EOSDIS) project. EOSDIS is a key core capability in NASA's Earth Science Data Systems Program. It provides end-to-end capabilities for managing NASA's Earth science data from various sources - satellites, aircraft, field measurements, and various other programs. It is comprised of twelve Distributed Active Archive Centers (DAACs), Science Computing Facilities (SCFs), data discovery and service access client (Reverb and Earthdata Search), dataset directory (Global Change Master Directory - GCMD), near real-time data (Land Atmosphere Near real-time Capability for EOS - LANCE), Worldview (an imagery visualization interface), Global Imagery Browse Services, the Earthdata Code Collaborative and a host of other discipline specific data discovery, data access, data subsetting and visualization tools. In the near future, Earthdata will have a number of components that will drive the access to the data, such as the Earthdata Search Client and the Common Metadata Repository (CMR). The focus on content curation will be to leverage the use of these components to provide an enriched content environment and a better overall user experience, with an emphasis on Earthdata being "powered by EOSDIS" components and services.

  3. GLOBE Program's Data and Information System

    NASA Astrophysics Data System (ADS)

    Memarsadeghi, N.; Overoye, D.; Lewis, C.; Butler, D. M.; Ramapriyan, H.

    2016-12-01

    "The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that provides students and the public worldwide with the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment" (www.globe.gov ). GLOBE Program has a rich community of students, teachers, scientists, trainers, country coordinators, and alumni across the world, technologically spanning both high- and low-end users. There are 117 GLOBE participating countries from around the world. GLOBE's Science data protocols and educational material span atmosphere, biosphere, hydrosphere, soil (pedosphere), and Earth as a System scientific areas (http://www.globe.gov/do-globe/globe-teachers-guide). GLOBE's Data and Information System (DIS), when first introduced in 1995, was a cutting edge system that was well-received and innovative for its time. However, internet-based technologies have changed dramatically since then. Projects to modernize and evolve the GLOBE DIS started in 2010, resulting in today's GLOBE DIS. The current GLOBE DIS is now built upon the latest information technologies and is engaging and supporting the user community with advanced tools and services to further the goals of the GLOBE Program. GLOBE DIS consists of over 20 years of observation and training data, a rich set of software systems and applications for data entry, visualization, and analysis, as well as tools for training users in various science data protocols and enabling collaborations among members of the international user community. We present the existing GLOBE DIS, application technologies, and lessons learned for their operations, development, sustaining engineering, and data management practices. Examples of GLOBE DIS technologies include Liferay System for integrated user and content management, a Postgress/PostGIS database, Ruby on Rails for Data Entry systems, and OpenGeo for Visualization system.

  4. EarthScope Plate Boundary Observatory Data in the College Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    Eriksson, S. C.; Olds, S. E.

    2009-12-01

    The Plate Boundary Observatory (PBO) is the geodetic component of the EarthScope project, designed to study the 3-D strain field across the active boundary zone between the Pacific and North American tectonics plates in the western United States. All PBO data are freely available to scientific and educational communities and have been incorporated into a variety of activities for college and university classrooms. UNAVCO Education and Outreach program staff have worked closely with faculty users, scientific researchers, and facility staff to create materials that are scientifically and technically accurate as well as useful to the classroom user. Availability of processed GPS data is not new to the geoscience community. However, PBO data staff have worked with education staff to deliver data that are readily accessible to educators. The UNAVCO Data for Educators webpage, incorporating an embedded Google Map with PBO GPS locations and providing current GPS time series plots and downloadable data, extends and updates the datasets available to our community. Google Earth allows the visualization GPS data with other types of datasets, e.g. LiDAR, while maintaining the self-contained and easy-to-use interface of UNAVCO’s Jules Verne Voyager map tools, which have multiple sets of geological and geophysical data. Curricular materials provide scaffolds for using EarthScope data in a variety of forms for different learning goals. Simple visualization of earthquake epicenters and locations of volcanoes can be used with velocity vectors to make simple deductions of plate boundary behaviors. Readily available time series plots provide opportunities for additional science skills, and there are web and paper-based support materials for downloading data, manipulating tables, and using plotting programs for processed GPS data. Scientists have provided contextual materials to explore the importance of these data in interpreting the structure and dynamics of the Earth. These data and their scientific context are now incorporated into the Active Earth Display developed by IRIS. Formal and informal evaluations during the past five years have provided useful data for revision and on-line implementation.

  5. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Astrophysics Data System (ADS)

    Goodman, M.; Blakeslee, R.; Hardin, D.; Hall, J.; He, Y.; Regner, K.

    2008-12-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual earth application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. RTMM has received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for planning discussions, as well as comparisons to real time flight tracks in progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.

  6. Developing Tests of Visual Dependency

    NASA Technical Reports Server (NTRS)

    Kindrat, Alexandra N.

    2011-01-01

    Astronauts develop neural adaptive responses to microgravity during space flight. Consequently these adaptive responses cause maladaptive disturbances in balance and gait function when astronauts return to Earth and are re-exposed to gravity. Current research in the Neuroscience Laboratories at NASA-JSC is focused on understanding how exposure to space flight produces post-flight disturbances in balance and gait control and developing training programs designed to facilitate the rapid recovery of functional mobility after space flight. In concert with these disturbances, astronauts also often report an increase in their visual dependency during space flight. To better understand this phenomenon, studies were conducted with specially designed training programs focusing on visual dependency with the aim to understand and enhance subjects ability to rapidly adapt to novel sensory situations. The Rod and Frame test (RFT) was used first to assess an individual s visual dependency, using a variety of testing techniques. Once assessed, subjects were asked to perform two novel tasks under transformation (both the Pegboard and Cube Construction tasks). Results indicate that head position cues and initial visual test conditions had no effect on an individual s visual dependency scores. Subjects were also able to adapt to the manual tasks after several trials. Individual visual dependency correlated with ability to adapt manual to a novel visual distortion only for the cube task. Subjects with higher visual dependency showed decreased ability to adapt to this task. Ultimately, it was revealed that the RFT may serve as an effective prediction tool to produce individualized adaptability training prescriptions that target the specific sensory profile of each crewmember.

  7. Delving into the deep Earth: Using comics as a learning tool

    NASA Astrophysics Data System (ADS)

    Lee, K. K.; Wallenta, A.

    2011-12-01

    The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. As part of an NSF CAREER-funded outreach program, we use this medium to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books' contents are provided by the PI, while the design and layout is produced by a professional illustrator and certified Connecticut public school teacher. The comic books are aimed at 5th and 8th grade students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The NHPS has an enrollment of nearly 21,000 students K-12, of which 89% are minorities. In order to comply with NHPS, a review process will be followed that will incorporate a panel of NHPS science teachers and administration to check for pedagogy.

  8. EARTH SYSTEM ATLAS: A Platform for Access to Peer-Reviewed Information about process and change in the Earth System

    NASA Astrophysics Data System (ADS)

    Sahagian, D.; Prentice, C.

    2004-12-01

    A great deal of time, effort and resources have been expended on global change research to date, but dissemination and visualization of the key pertinent data sets has been problematical. Toward that end, we are constructing an Earth System Atlas which will serve as a single compendium describing the state of the art in our understanding of the Earth system and how it has responded to and is likely to respond to natural and anthropogenic perturbations. The Atlas is an interactive web-based system of data bases and data manipulation tools and so is much more than a collection of pre-made maps posted on the web. It represents a tool for assembling, manipulating, and displaying specific data as selected and customized by the user. Maps are created "on the fly" according to user-specified instructions. The information contained in the Atlas represents the growing body of data assembled by the broader Earth system research community, and can be displayed in the form of maps and time series of the various relevant parameters that drive and are driven by changes in the Earth system at various time scales. The Atlas is designed to display the information assembled by the global change research community in the form of maps and time series of all the relevant parameters that drive or are driven by changes in the Earth System at various time scales. This will serve to provide existing data to the community, but also will help to highlight data gaps that may hinder our understanding of critical components of the Earth system. This new approach to handling Earth system data is unique in several ways. First and foremost, data must be peer-reviewed. Further, it is designed to draw on the expertise and products of extensive international research networks rather than on a limited number of projects or institutions. It provides explanatory explanations targeted to the user's needs, and the display of maps and time series can be customize by the user. In general, the Atlas is designed provide the research community with a new opportunity for data observation and manipulation, enabling new scientific discoveries in the coming years. An initial prototype of the Atlas has been developed and can be manipulated in real time.

  9. Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.

    2017-12-01

    On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45, 375-378.

  10. Automating Visualization Service Generation with the WATT Compiler

    NASA Astrophysics Data System (ADS)

    Bollig, E. F.; Lyness, M. D.; Erlebacher, G.; Yuen, D. A.

    2007-12-01

    As tasks and workflows become increasingly complex, software developers are devoting increasing attention to automation tools. Among many examples, the Automator tool from Apple collects components of a workflow into a single script, with very little effort on the part of the user. Tasks are most often described as a series of instructions. The granularity of the tasks dictates the tools to use. Compilers translate fine-grained instructions to assembler code, while scripting languages (ruby, perl) are used to describe a series of tasks at a higher level. Compilers can also be viewed as transformational tools: a cross-compiler can translate executable code written on one computer to assembler code understood on another, while transformational tools can translate from one high-level language to another. We are interested in creating visualization web services automatically, starting from stand-alone VTK (Visualization Toolkit) code written in Tcl. To this end, using the OCaml programming language, we have developed a compiler that translates Tcl into C++, including all the stubs, classes and methods to interface with gSOAP, a C++ implementation of the Soap 1.1/1.2 protocols. This compiler, referred to as the Web Automation and Translation Toolkit (WATT), is the first step towards automated creation of specialized visualization web services without input from the user. The WATT compiler seeks to automate all aspects of web service generation, including the transport layer, the division of labor and the details related to interface generation. The WATT compiler is part of ongoing efforts within the NSF funded VLab consortium [1] to facilitate and automate time-consuming tasks for the science related to understanding planetary materials. Through examples of services produced by WATT for the VLab portal, we will illustrate features, limitations and the improvements necessary to achieve the ultimate goal of complete and transparent automation in the generation of web services. In particular, we will detail the generation of a charge density visualization service applicable to output from the quantum calculations of the VLab computation workflows, plus another service for mantle convection visualization. We also discuss WATT-LIVE [2], a web-based interface that allows users to interact with WATT. With WATT-LIVE users submit Tcl code, retrieve its C++ translation with various files and scripts necessary to locally install the tailor-made web service, or launch the service for a limited session on our test server. This work is supported by NSF through the ITR grant NSF-0426867. [1] Virtual Laboratory for Earth and Planetary Materials, http://vlab.msi.umn.edu, September 2007. [2] WATT-LIVE website, http://vlab2.scs.fsu.edu/watt-live, September 2007.

  11. Tools and Data Services from the NASA Earth Satellite Observations for Climate Applications

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.

    2005-01-01

    Climate science and applications require access to vast amounts of archived high quality data, software tools and services for data manipulation and information extraction. These on the other hand require gaining detailed understanding of the data's internal structure and physical implementation to data reduction, combination and data product production. This time-consuming task must be undertaken before the core investigation can begin and is an especially difficult challenge when science objectives require users to deal with large multi-sensor data sets of different formats, structures, and resolutions. In order to address these issues the Goddard Space Flight Center (GSFC) Earth Sciences (GES), Data and Information Service Center (DISC) Distributed Active Archive Center (DAAC) has made great progress in facilitating science and applications research by developing innovative tools and data services applied to the Earth sciences atmospheric and climate data. The GES/DISC/DAAC has successfully implemented and maintained a long-term climate satellite data archive and developed tools and services to a variety of atmospheric science missions including AIRS, AVHRR, MODIS, SeaWiFS, SORCE, TOMS, TOVS, TRMM, and UARS and Aura instruments providing researchers with excellent opportunities to acquire accurate and continuous atmospheric measurements. Since the number of climate science products from these various missions is steadily increasing as a result of more sophisticated sensors and new science algorithms, the main challenge for data centers like the GES/DISC/DAAC is to guide users through the variety of data sets and products, provide tools to visualize and reduce the volume of the data and secure uninterrupted and reliable access to data and related products. This presentation will describe the effort at the GES/DISC/DAAC to build a bridge between multi-sensor data and the effective scientific use of the data, with an emphasis on the heritage satellite observations and science products for climate applications. The intent is to inform users of the existence of this large collection of data and products; suggest starting points for cross-platform science projects and data mining activities and provide data services and tools information. More information about the GES/DISC/DAAC satellite data and products, tools, and services can be found at http://daac.gsfc.nasa.gov.

  12. Implementing virtual reality interfaces for the geosciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.; Jacobsen, J.; Austin, A.

    1996-06-01

    For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter threemore » or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.« less

  13. Diagrammatic Representational Constraints of Spatial Scale in Earth-Moon System Astronomy Instruction

    ERIC Educational Resources Information Center

    Taylor, Roger S.; Grundstrom, Erika D.

    2011-01-01

    Given that astronomy heavily relies on visual representations it is especially likely for individuals to assume that instructional materials, such as visual representations of the Earth-Moon system (EMS), would be relatively accurate. However, in our research, we found that images in middle-school textbooks and educational webpages were commonly…

  14. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Development of Techniques for Visualization of Scalar and Vector Fields in the Immersive Environment

    NASA Technical Reports Server (NTRS)

    Bidasaria, Hari B.; Wilson, John W.; Nealy, John E.

    2005-01-01

    Visualization of scalar and vector fields in the immersive environment (CAVE - Cave Automated Virtual Environment) is important for its application to radiation shielding research at NASA Langley Research Center. A complete methodology and the underlying software for this purpose have been developed. The developed software has been put to use for the visualization of the earth s magnetic field, and in particular for the study of the South Atlantic Anomaly. The methodology has also been put to use for the visualization of geomagnetically trapped protons and electrons within Earth's magnetosphere.

  16. NASA Planetary Visualization Tool

    NASA Astrophysics Data System (ADS)

    Hogan, P.; Kim, R.

    2004-12-01

    NASA World Wind allows one to zoom from satellite altitude into any place on Earth, leveraging the combination of high resolution LandSat imagery and SRTM elevation data to experience Earth in visually rich 3D, just as if they were really there. NASA World Wind combines LandSat 7 imagery with Shuttle Radar Topography Mission (SRTM) elevation data, for a dramatic view of the Earth at eye level. Users can literally fly across the world's terrain from any location in any direction. Particular focus was put into the ease of usability so people of all ages can enjoy World Wind. All one needs to control World Wind is a two button mouse. Additional guides and features can be accessed though a simplified menu. Navigation is automated with single clicks of a mouse as well as the ability to type in any location and automatically zoom to it. NASA World Wind was designed to run on recent PC hardware with the same technology used by today's 3D video games. NASA World Wind delivers the NASA Blue Marble, spectacular true-color imagery of the entire Earth at 1-kilometer-per-pixel. Using NASA World Wind, you can continue to zoom past Blue Marble resolution to seamlessly experience the extremely detailed mosaic of LandSat 7 data at an impressive 15-meters-per-pixel resolution. NASA World Wind also delivers other color bands such as the infrared spectrum. The NASA Scientific Visualization Studio at Goddard Space Flight Center (GSFC) has produced a set of visually intense animations that demonstrate a variety of subjects such as hurricane dynamics and seasonal changes across the globe. NASA World Wind takes these animations and plays them directly on the world. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) produces a set of time relevant planetary imagery that's updated every day. MODIS catalogs fires, floods, dust, smoke, storms and volcanic activity. NASA World Wind produces an easily customized view of this information and marks them directly on the globe. When one of these color coded markers are clicked, it downloads the full image and displays it in the full context of its location on Earth. MODIS images are publication quality material at resolutions up to 250-meters-per-pixel. NASA World Wind provides a full catalog of countries, capitals, counties, cities, towns, and even historical references. The names appear dynamically, increasing in number as the user zooms in. World Wind is capable of browsing through and displaying GLOBE data based on any date one wishes planetary data for. That means one can download today's (or any previous day's) temperature across the world, or rainfall, barometric pressure, cloud cover, or even the GLOBE students' global distribution of collected data. This program is free and available for further development via the NASA Open Source Agreement guidelines.

  17. Building Virtual Mars

    NASA Astrophysics Data System (ADS)

    Abercrombie, S. P.; Menzies, A.; Goddard, C.

    2017-12-01

    Virtual and augmented reality enable scientists to visualize environments that are very difficult, or even impossible to visit, such as the surface of Mars. A useful immersive visualization begins with a high quality reconstruction of the environment under study. This presentation will discuss a photogrammetry pipeline developed at the Jet Propulsion Laboratory to reconstruct 3D models of the surface of Mars using stereo images sent back to Earth by the Curiosity Mars rover. The resulting models are used to support a virtual reality tool (OnSight) that allows scientists and engineers to visualize the surface of Mars as if they were standing on the red planet. Images of Mars present challenges to existing scene reconstruction solutions. Surface images of Mars are sparse with minimal overlap, and are often taken from extremely different viewpoints. In addition, the specialized cameras used by Mars rovers are significantly different than consumer cameras, and GPS localization data is not available on Mars. This presentation will discuss scene reconstruction with an emphasis on coping with limited input data, and on creating models suitable for rendering in virtual reality at high frame rate.

  18. Real-Time 3D Visualization

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Butler Hine, former director of the Intelligent Mechanism Group (IMG) at Ames Research Center, and five others partnered to start Fourth Planet, Inc., a visualization company that specializes in the intuitive visual representation of dynamic, real-time data over the Internet and Intranet. Over a five-year period, the then NASA researchers performed ten robotic field missions in harsh climes to mimic the end- to-end operations of automated vehicles trekking across another world under control from Earth. The core software technology for these missions was the Virtual Environment Vehicle Interface (VEVI). Fourth Planet has released VEVI4, the fourth generation of the VEVI software, and NetVision. VEVI4 is a cutting-edge computer graphics simulation and remote control applications tool. The NetVision package allows large companies to view and analyze in virtual 3D space such things as the health or performance of their computer network or locate a trouble spot on an electric power grid. Other products are forthcoming. Fourth Planet is currently part of the NASA/Ames Technology Commercialization Center, a business incubator for start-up companies.

  19. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  20. Cross-Cutting Interoperability in an Earth Science Collaboratory

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Ramachandran, Rahul; Kuo, Kuo-Sen

    2011-01-01

    An Earth Science Collaboratory is: A rich data analysis environment with: (1) Access to a wide spectrum of Earth Science data, (3) A diverse set of science analysis services and tools, (4) A means to collaborate on data, tools and analysis, and (5)Supports sharing of data, tools, results and knowledge

  1. Testing the impact on natural risks' awareness of visual communication through an exhibition

    NASA Astrophysics Data System (ADS)

    Charrière, Marie; Bogaard, Thom; Junier, Sandra; Malet, Jean-Philippe; Mostert, Erik

    2014-05-01

    The need to communicate about natural disasters in order to improve the awareness of communities at risk is not a matter for debate anymore. However, communication can be implemented using different media and tools, and their effectiveness may be difficult to grasp. Current research on the topic is usually focused on assessing whether communication practices meet users' needs, whereas impact assessment is mostly left out. It can be explained by difficulties arising from (1) the definition of the impact to measure, i.e. awareness, and the appropriate indicators to measure it and its variations, and (2) the implementation of a research design that allows assessing these impacts without bias. This research aims at both developing a methodology to measure risk awareness and to use it for testing the effectiveness of visual communication. The testing was conducted in the Ubaye Valley in France, an alpine area affected by multiple hazards, from December 2013 to mid-February 2014. The setting consisted of an exhibition in the public library of the main town, Barcelonnette. The main natural hazards of the study case (i.e. landslides, avalanches, flooding, debris flows and earthquakes), as well as structural and non-structural measures were presented to the general public using local examples of hazards events and mitigation. Various visualization tools were used: videos, Google earth map, interactive timeline, objects, mock-ups, technical devices as well as posters with pictures, drawings and graphs. In order to assess the effects of the exhibition on risk awareness, several groups of children and adults were submitted to a research design, consisting of 1) a pre-test, 2) the visit of the exhibition and 3) a post-test similar to the pre-test. Close-ended questions addressed the awareness indicators according to the literature, i.e. worry level, previous experiences with natural hazards events, exposure to awareness raising, ability to mitigate/respond/prepare, attitude to risk and demographics. In addition, the post-test included several satisfaction questions concerning the visual tools displayed in the exhibition. A statistical analysis of the changes between the pre- and post- tests allows to verify whether the exhibition has an impact on risk awareness or not. In order to deduce the attractiveness of each visual tool independently, the visitors' paths are tracked using RFID (Radio Frequency Identification) technique, from which their time spent around certain visuals can be assessed. These results also help to analyze the changes in risk awareness measured by the pre-test/post-test design. Direct observation of visitors' reactions and behaviors completed the methodology. This research hence helps to assess which visual tools are more suitable to communicate such topics not only to a community as a whole, but also to its sub-categories (e.g. adults vs. children, people with experience of natural disasters vs. people without). Moreover, it provides methodological improvements concerning effectiveness research in the field of risk communication. The first results of this research will be presented and discussed.

  2. A-Train Data Depot: Integrating, Visualizing, and Extracting Cloudsat, CALIPSO, MODIS, and AIRS Atmospheric Measurements Along the A-Train Tracks

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Stephens, Graeme; Winkler, Dave; Leptoukh, Greg; Reinke, Don; Smith, Peter

    2006-01-01

    The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the ATrain. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000). The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be foilowed by associated measurements from TVILS, =MI, HIRDLS, sad TES. Given the independent nature of instrumentlplatform development, the ATDD project has been met with many interesting challenges that, once resolved, will provide a much greater understanding of the relative flight dynamics and data co-registration of the suite of A-Train instruments, thus greatly increasing the accuracy of A-Train data analysis. Some of these challenges will be illustrated and discussed. The project's early visualizations and analysis efforts illustrate the importance of managing data so that measurements from various missions can be combined to enhance the understanding of the atmosphere. A-Train data management coordination, as performed here, is extremely significant in facilitating the A-Train science of clouds, precipitation, aerosol and chemistry.

  3. A-Train Data Depot: Integrating, Visualizing, and Extracting Cloudsat, CALIPSO, MODIS, and AIRS Atmospheric Measurements Along the A-Train Tracks

    NASA Astrophysics Data System (ADS)

    Kempler, S.; Stephens, G.; Winker, D.; Leptoukh, G.; Reinke, D.; Smith, P.; Savtchenko, A.; Kummerer, R.; Mao, J.

    2006-12-01

    The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the A-Train. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000) The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be followed by associated measurements from MLS, OMI, HIRDLS, and TES. Given the independent nature of instrument/platform development, the ATDD project has been met with many interesting challenges that, once resolved, will provide a much greater understanding of the relative flight dynamics and data co-registration of the suite of A-Train instruments, thus greatly increasing the accuracy of A-Train data analysis. Some of these challenges will be illustrated and discussed. The project's early visualizations and analysis efforts illustrate the importance of managing data so that measurements from various missions can be combined to enhance the understanding of the atmosphere. A-Train data management coordination, as performed here, is extremely significant in facilitating the A-Train science of clouds, precipitation, aerosol and chemistry.

  4. NASA GIBS & Worldview - Lesson Ready Visualizations

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Gunnoe, T.; Wong, M. M.; Schmaltz, J. E.; De Luca, A. P.; King, J.; Roberts, J. T.; Rodriguez, J.; Thompson, C. K.; Alarcon, C.; De Cesare, C.; Pressley, N. N.

    2016-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has operated dozens of remote sensing satellites collecting 14 Petabytes of data that span thousands of science parameters. Within these observations are keys the Earth Scientists have used to unlock many things that we understand about our planet. Also contained within these observations are a myriad of opportunities for learning and education. The trick is making them accessible to educators and students in convenient and simple ways so that effort can be spent on lesson enrichment and not overcoming technical hurdles. The NASA Global Imagery Browse Services (GIBS) system and NASA Worldview website provide a unique view into EOS data through daily full resolution visualizations of hundreds of earth science parameters. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. Accompanying the visualizations are visual aids such as color legends, place names, and orbit tracks. By using these visualizations, educators and students can observe natural phenomena that enrich a scientific education. This presentation will provide an overview of the visualizations available in NASA GIBS and Worldview and how they are accessed. We will also provide real-world examples of how the visualizations have been used in educational settings including planetariums, visitor centers, hack-a-thons, and public organizations.

  5. IEDA: Making Small Data BIG Through Interdisciplinary Partnerships Among Long-tail Domains

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V. L.; Hsu, L.; Song, L.; Ghiorso, M. S.; Walker, D. J.

    2014-12-01

    The Big Data world in the Earth Sciences so far exists primarily for disciplines that generate massive volumes of observational or computed data using large-scale, shared instrumentation such as global sensor networks, satellites, or high-performance computing facilities. These data are typically managed and curated by well-supported community data facilities that also provide the tools for exploring the data through visualization or statistical analysis. In many other domains, especially those where data are primarily acquired by individual investigators or small teams (known as 'Long-tail data'), data are poorly shared and integrated, lacking a community-based data infrastructure that ensures persistent access, quality control, standardization, and integration of data, as well as appropriate tools to fully explore and mine the data within the context of broader Earth Science datasets. IEDA (Integrated Earth Data Applications, www.iedadata.org) is a data facility funded by the US NSF to develop and operate data services that support data stewardship throughout the full life cycle of observational data in the solid earth sciences, with a focus on the data management needs of individual researchers. IEDA builds on a strong foundation of mature disciplinary data systems for marine geology and geophysics, geochemistry, and geochronology. These systems have dramatically advanced data resources in those long-tail Earth science domains. IEDA has strengthened these resources by establishing a consolidated, enterprise-grade infrastructure that is shared by the domain-specific data systems, and implementing joint data curation and data publication services that follow community standards. In recent years, other domain-specific data efforts have partnered with IEDA to take advantage of this infrastructure and improve data services to their respective communities with formal data publication, long-term preservation of data holdings, and better sustainability. IEDA hopes to foster such partnerships with streamlined data services, including user-friendly, single-point interfaces for data submission, discovery, and access across the partner systems to support interdisciplinary science.

  6. Use and Evaluation of 3D GeoWall Visualizations in Undergraduate Space Science Classes

    NASA Astrophysics Data System (ADS)

    Turner, N. E.; Hamed, K. M.; Lopez, R. E.; Mitchell, E. J.; Gray, C. L.; Corralez, D. S.; Robinson, C. A.; Soderlund, K. M.

    2005-12-01

    One persistent difficulty many astronomy students face is the lack of 3- dimensional mental model of the systems being studied, in particular the Sun-Earth-Moon system. Students without such a mental model can have a very hard time conceptualizing the geometric relationships that cause, for example, the cycle of lunar phases or the pattern of seasons. The GeoWall is a recently developed and affordable projection mechanism for three-dimensional stereo visualization which is becoming a popular tool in classrooms and research labs for use in geology classes, but as yet very little work has been done involving the GeoWall for astronomy classes. We present results from a large study involving over 1000 students of varied backgrounds: some students were tested at the University of Texas at El Paso, a large public university on the US-Mexico border and other students were from the Florida Institute of Technology, a small, private, technical school in Melbourne Florida. We wrote a lecture tutorial-style lab to go along with a GeoWall 3D visual of the Earth-Moon system and tested the students before and after with several diagnostics. Students were given pre and post tests using the Lunar Phase Concept Inventory (LPCI) as well as a separate evaluation written specifically for this project. We found the lab useful for both populations of students, but not equally effective for all. We discuss reactions from the students and their improvement, as well as whether the students are able to correctly assess the usefullness of the project for their own learning.

  7. Viewpoints: Interactive Exploration of Large Multivariate Earth and Space Science Data Sets

    NASA Astrophysics Data System (ADS)

    Levit, C.; Gazis, P. R.

    2006-05-01

    Analysis and visualization of extremely large and complex data sets may be one of the most significant challenges facing earth and space science investigators in the forthcoming decades. While advances in hardware speed and storage technology have roughly kept up with (indeed, have driven) increases in database size, the same is not of our abilities to manage the complexity of these data. Current missions, instruments, and simulations produce so much data of such high dimensionality that they outstrip the capabilities of traditional visualization and analysis software. This problem can only be expected to get worse as data volumes increase by orders of magnitude in future missions and in ever-larger supercomputer simulations. For large multivariate data (more than 105 samples or records with more than 5 variables per sample) the interactive graphics response of most existing statistical analysis, machine learning, exploratory data analysis, and/or visualization tools such as Torch, MLC++, Matlab, S++/R, and IDL stutters, stalls, or stops working altogether. Fortunately, the graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform application which leverages much of the power latent in the GPU to enable smooth interactive exploration and analysis of large high- dimensional data using a variety of classical and recent techniques. The targeted application is the interactive analysis of large, complex, multivariate data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 106-108.

  8. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  9. ISS Mini AERCam Radio Frequency (RF) Coverage Analysis Using iCAT Development Tool

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Vazquez, Luis; Sham, Catherine; Fredrickson, Steven; Fink, Patrick; Cox, Jan; Phan, Chau; Panneton, Robert

    2003-01-01

    The long-term goals of the National Aeronautics and Space Administration's (NASA's) Human Exploration and Development of Space (HEDS) enterprise may require the development of autonomous free-flier (FF) robotic devices to operate within the vicinity of low-Earth orbiting spacecraft to supplement human extravehicular activities (EVAs) in space. Future missions could require external visual inspection of the spacecraft that would be difficult, or dangerous, for humans to perform. Under some circumstance, it may be necessary to employ an un-tethered communications link between the FF and the users. The interactive coverage analysis tool (ICAT) is a software tool that has been developed to perform critical analysis of the communications link performance for a FF operating in the vicinity of the International Space Station (ISS) external environment. The tool allows users to interactively change multiple parameters of the communications link parameters to efficiently perform systems engineering trades on network performance. These trades can be directly translated into design and requirements specifications. This tool significantly reduces the development time in determining a communications network topology by allowing multiple parameters to be changed, and the results of link coverage to be statistically characterized and plotted interactively.

  10. Data in the Classroom: New Tools for Engaging Students with Data

    NASA Astrophysics Data System (ADS)

    Dean, A.; Pisut, D.

    2017-12-01

    The ability to understand and analyze data effectively can increase students ability to understand current and historical global change. Since 2009, NOAA Data in the Classroom Project has been offering formal education resources and tools aimed at helping teachers to build data and environmental literacy in their classrooms. Currently, NOAA is modernizing its Data in the Classroom resources using a web application within Esri's web-based GIS platform, Story Maps. Story Maps have been used for a wide variety of purposes, including teaching and instruction, for more than a decade. This technology can help to engage students in a story, like El Niño, while harnessing the power of data - using maps, data visualizations and data query tools. The aim is to create an effective education tool that allows students access to user-friendly, relevant data sets from NOAA, ultimately providing the opportunity to explore dynamic Earth processes and understand the impact of environmental events on a regional or global scale. This presentation will include demonstrations of the recently launched web-based curricular modules, highlighting the Esri web technology used to build and distribute each module and the interactive data tools that are unique to this project.

  11. Online Analysis Enhances Use of NASA Earth Science Data

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Leptoukh, Gregory

    2007-01-01

    Giovanni, the Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization and Analysis Infrastructure, has provided researchers with advanced capabilities to perform data exploration and analysis with observational data from NASA Earth observation satellites. In the past 5-10 years, examining geophysical events and processes with remote-sensing data required a multistep process of data discovery, data acquisition, data management, and ultimately data analysis. Giovanni accelerates this process by enabling basic visualization and analysis directly on the World Wide Web. In the last two years, Giovanni has added new data acquisition functions and expanded analysis options to increase its usefulness to the Earth science research community.

  12. The Joy of Playing with Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Smith, A. T.; Xing, Z.; Armstrong, E. M.; Thompson, C. K.; Huang, T.

    2013-12-01

    The web is no longer just an after thought. It is no longer just a presentation layer filled with HTML, CSS, JavaScript, Frameworks, 3D, and more. It has become the medium of our communication. It is the database of all databases. It is the computing platform of all platforms. It has transformed the way we do science. Web service is the de facto method for communication between machines over the web. Representational State Transfer (REST) has standardized the way we architect services and their interfaces. In the Earth Science domain, we are familiar with tools and services such as Open-Source Project for Network Data Access Protocol (OPeNDAP), Thematic Realtime Environmental Distributed Data Services (THREDDS), and Live Access Server (LAS). We are also familiar with various data formats such as NetCDF3/4, HDF4/5, GRIB, TIFF, etc. One of the challenges for the Earth Science community is accessing information within these data. There are community-accepted readers that our users can download and install. However, the Application Programming Interface (API) between these readers is not standardized, which leads to non-portable applications. Webification (w10n) is an emerging technology, developed at the Jet Propulsion Laboratory, which exploits the hierarchical nature of a science data artifact to assign a URL to each element within the artifact. (e.g. a granule file). By embracing standards such as JSON, XML, and HTML5 and predictable URL, w10n provides a simple interface that enables tool-builders and researchers to develop portable tools/applications to interact with artifacts of various formats. The NASA Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is the designated data center for observational products relevant to the physical state of the ocean. Over the past year PO.DAAC has been evaluating w10n technology by webifying its archive holdings to provide simplified access to oceanographic science artifacts and as a service to enable future tools and services development. In this talk, we will focus on a w10n-based system called Distributed Oceanographic Webification Service (DOWS) being developed at PO.DAAC to provide a newer and simpler method for working with observational data artifacts. As a continued effort at PO.DAAC to provide better tools and services to visualize our data, the talk will discuss the latest in web-based data visualization tools/frameworks (such as d3.js, Three.js, Leaflet.js, and more) and techniques for working with webified oceanographic science data in both a 2D and 3D web approach.

  13. Visualization of volumetric seismic data

    NASA Astrophysics Data System (ADS)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  14. Viewing the Earth with Closed Eyes.

    ERIC Educational Resources Information Center

    Kaschner, Susan K.

    1978-01-01

    Describes earth science activities for the visually impaired student. Includes soil type identification, stream table erosion, and relief map activities. Recommends a multisensory approach to the teaching of earth science and hands-on activities. (MA)

  15. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  16. Iterating between Tools to Create and Edit Visualizations.

    PubMed

    Bigelow, Alex; Drucker, Steven; Fisher, Danyel; Meyer, Miriah

    2017-01-01

    A common workflow for visualization designers begins with a generative tool, like D3 or Processing, to create the initial visualization; and proceeds to a drawing tool, like Adobe Illustrator or Inkscape, for editing and cleaning. Unfortunately, this is typically a one-way process: once a visualization is exported from the generative tool into a drawing tool, it is difficult to make further, data-driven changes. In this paper, we propose a bridge model to allow designers to bring their work back from the drawing tool to re-edit in the generative tool. Our key insight is to recast this iteration challenge as a merge problem - similar to when two people are editing a document and changes between them need to reconciled. We also present a specific instantiation of this model, a tool called Hanpuku, which bridges between D3 scripts and Illustrator. We show several examples of visualizations that are iteratively created using Hanpuku in order to illustrate the flexibility of the approach. We further describe several hypothetical tools that bridge between other visualization tools to emphasize the generality of the model.

  17. Planetary plasma data analysis and 3D visualisation tools of the CDPP in the IMPEx infrastructure

    NASA Astrophysics Data System (ADS)

    Gangloff, Michel; Génot, Vincent; Khodachenko, Maxim; Modolo, Ronan; Kallio, Esa; Alexeev, Igor; Al-Ubaidi, Tarek; Scherf, Manuel; André, Nicolas; Bourrel, Nataliya; Budnik, Elena; Bouchemit, Myriam; Dufourg, Nicolas; Beigbeder, Laurent

    2015-04-01

    The CDPP (Centre de Données de la Physique des Plasmas,(http://cdpp.eu/), the French data center for plasma physics, is engaged for more than a decade in the archiving and dissemination of plasma data products from space missions and ground observatories. Besides these activities, the CDPP developed services like AMDA (http://amda.cdpp.eu/) which enables in depth analysis of a large amount of data through dedicated functionalities such as: visualization, conditional search, cataloguing, and 3DView (http://3dview.cdpp.eu/) which provides immersive visualisations in planetary environments and is further developed to include simulation and observational data. Both tools provide an interface to the IMPEx infrastructure (http://impexfp7.oeaw.ac.at) which facilitates the joint access to outputs of simulations (MHD or Hybrid models) in planetary sciences from providers like LATMOS, FMI as well as planetary plasma observational data provided by the CDPP. Several magnetospheric models are implemented in 3Dview (e.g. Tsyganenko for the Earth, and Cain for Mars). Magnetospheric models provided by SINP for the Earth, Jupiter, Saturn and Mercury as well as Hess models for Jupiter can also be used in 3DView, through the IMPEx infrastructure. A use case demonstrating the new capabilities offered by these tools and their interaction, including magnetospheric models, will be presented together with the IMPEx simulation metadata model used for the interface to simulation databases and model providers.

  18. A web-based subsetting service for regional scale MODIS land products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SanthanaVannan, Suresh K; Cook, Robert B; Holladay, Susan K

    2009-12-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor has provided valuable information on various aspects of the Earth System since March 2000. The spectral, spatial, and temporal characteristics of MODIS products have made them an important data source for analyzing key science questions relating to Earth System processes at regional, continental, and global scales. The size of the MODIS product and native HDF-EOS format are not optimal for use in field investigations at individual sites (100 - 100 km or smaller). In order to make MODIS data readily accessible for field investigations, the NASA-funded Distributed Active Archive Center (DAAC) for Biogeochemicalmore » Dynamics at Oak Ridge National Laboratory (ORNL) has developed an online system that provides MODIS land products in an easy-to-use format and in file sizes more appropriate to field research. This system provides MODIS land products data in a nonproprietary comma delimited ASCII format and in GIS compatible formats (GeoTIFF and ASCII grid). Web-based visualization tools are also available as part of this system and these tools provide a quick snapshot of the data. Quality control tools and a multitude of data delivery options are available to meet the demands of various user communities. This paper describes the important features and design goals for the system, particularly in the context of data archive and distribution for regional scale analysis. The paper also discusses the ways in which data from this system can be used for validation, data intercomparison, and modeling efforts.« less

  19. The ASP Sensor Network: Infrastructure for the Next Generation of NASA Airborne Science

    NASA Astrophysics Data System (ADS)

    Myers, J. S.; Sorenson, C. E.; Van Gilst, D. P.; Duley, A.

    2012-12-01

    A state-of-the-art real-time data communications network is being implemented across the NASA Airborne Science Program core platforms. Utilizing onboard Ethernet networks and satellite communications systems, it is intended to maximize the science return from both single-platform missions and complex multi-aircraft Earth science campaigns. It also provides an open platform for data visualization and synthesis software tools, for use by the science instrument community. This paper will describe the prototype implementations currently deployed on the NASA DC-8 and Global Hawk aircraft, and the ongoing effort to expand the capability to other science platforms. Emphasis will be on the basic network architecture, the enabling hardware, and new standardized instrument interfaces. The new Mission Tools Suite, which provides an web-based user interface, will be also described; together with several example use-cases of this evolving technology.

  20. Deriving Tools from Real-Time Runs: A New CCMC Support for SEC and AFWA

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha

    2007-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. In particular, the CCMC provides to the research community the execution of "runs-on-request" for specific events of interest to space science researchers. Through this activity and the concurrent development of advanced visualization tools, CCMC provides, to the general science community, unprecedented access to a large number of state-of-the-art research models. CCMC houses models that cover the entire domain from the Sun to the Earth. In this presentation, we will provide an overview of CCMC modeling services that are available to support activities at the Space Environment Center, or at the Air Force Weather Agency.

  1. Data Curation for the Exploitation of Large Earth Observation Products Databases - The MEA system

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Cavicchi, Mario; Della Vecchia, Andrea

    2014-05-01

    National Space Agencies under the umbrella of the European Space Agency are performing a strong activity to handle and provide solutions to Big Data and related knowledge (metadata, software tools and services) management and exploitation. The continuously increasing amount of long-term and of historic data in EO facilities in the form of online datasets and archives, the incoming satellite observation platforms that will generate an impressive amount of new data and the new EU approach on the data distribution policy make necessary to address technologies for the long-term management of these data sets, including their consolidation, preservation, distribution, continuation and curation across multiple missions. The management of long EO data time series of continuing or historic missions - with more than 20 years of data available already today - requires technical solutions and technologies which differ considerably from the ones exploited by existing systems. Several tools, both open source and commercial, are already providing technologies to handle data and metadata preparation, access and visualization via OGC standard interfaces. This study aims at describing the Multi-sensor Evolution Analysis (MEA) system and the Data Curation concept as approached and implemented within the ASIM and EarthServer projects, funded by the European Space Agency and the European Commission, respectively.

  2. Evaluating Educational Resources for Inclusion in the Dig Texas Instructional Blueprints for Earth & Space Science

    NASA Astrophysics Data System (ADS)

    Jacobs, B. E.; Bohls-Graham, E.; Martinez, A. O.; Ellins, K. K.; Riggs, E. M.; Serpa, L. F.; Stocks, E.; Fox, S.; Kent, M.

    2014-12-01

    Today's instruction in Earth's systems requires thoughtful selection of curricula, and in turn, high quality learning activities that address modern Earth science. The Next Generation Science Standards (NGSS), which are intended to guide K-12 science instruction, further demand a discriminating selection process. The DIG (Diversity & Innovation in Geoscience) Texas Instructional Blueprints attempt to fulfill this practice by compiling vetted educational resources freely available online into units that are the building blocks of the blueprints. Each blueprint is composed of 9 three-week teaching units and serves as a scope and sequence for teaching a one-year Earth science course. In the earliest stages of the project, teams explored the Internet for classroom-worthy resources, including laboratory investigations, videos, visualizations, and readings, and submitted the educational resources deemed suitable for the project into the project's online review tool. Each team member evaluated the educational resources chosen by fellow team members according to a set of predetermined criteria that had been incorporated into the review tool. Resources rated as very good or excellent by all team members were submitted to the project PIs for approval. At this stage, approved resources became candidates for inclusion in the blueprint units. Team members tagged approved resources with descriptors for the type of resource and instructional strategy, and aligned these to the Texas Essential Knowledge and Skills for Earth and Space Science and the Earth Science Literacy Principles. Each team then assembled and sequenced resources according to content strand, balancing the types of learning experiences within each unit. Once units were packaged, teams then considered how they addressed the NGSS and identified the relevant disciplinary core ideas, crosscutting concepts, and science and engineering practices. In addition to providing a brief overview of the project, this presentation will detail the intensive review process educators utilized to determine the viability of the resources included in the blueprints. A short summary of first-year implementation results will be shared, along with the second year now in progress.

  3. A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.

    2016-12-01

    Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.

  4. NASA Enterprise Architecture and Its Use in Transition of Research Results to Operations

    NASA Astrophysics Data System (ADS)

    Frisbie, T. E.; Hall, C. M.

    2006-12-01

    Enterprise architecture describes the design of the components of an enterprise, their relationships and how they support the objectives of that enterprise. NASA Stennis Space Center leads several projects involving enterprise architecture tools used to gather information on research assets within NASA's Earth Science Division. In the near future, enterprise architecture tools will link and display the relevant requirements, parameters, observatories, models, decision systems, and benefit/impact information relationships and map to the Federal Enterprise Architecture Reference Models. Components configured within the enterprise architecture serving the NASA Applied Sciences Program include the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool. The Earth Science Components Knowledge Base systematically catalogues NASA missions, sensors, models, data products, model products, and network partners appropriate for consideration in NASA Earth Science applications projects. The Systems Components database is a centralized information warehouse of NASA's Earth Science research assets and a critical first link in the implementation of enterprise architecture. The Earth Science Architecture Tool is used to analyze potential NASA candidate systems that may be beneficial to decision-making capabilities of other Federal agencies. Use of the current configuration of NASA enterprise architecture (the Earth Science Components Knowledge Base, the Systems Components database, and the Earth Science Architecture Tool) has far exceeded its original intent and has tremendous potential for the transition of research results to operational entities.

  5. Web-based visualization of gridded dataset usings OceanBrowser

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie

    2015-04-01

    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).

  6. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  7. Integrated Data Visualization and Virtual Reality Tool

    NASA Technical Reports Server (NTRS)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  8. The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Sloan, Caroline

    2014-01-01

    The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…

  9. Enhancing Geologic Education in Grades 5-12: Creating Virtual Field Trips

    NASA Astrophysics Data System (ADS)

    Vitek, J. D.; Gamache, K. R.; Giardino, J. R.; Schroeder, C. E.

    2011-12-01

    New tools of technology enhance and facilitate the ability to bring the "field experience" into the classroom as part of the effort necessary to turn students onto the geosciences. The real key is high-speed computers and high-definition cameras with which to capture visual images. Still and movie data are easily obtained as are large and small-scale images from space, available through "Google Earth°". GPS information provides accurate location data to enhance mapping efforts. One no longer needs to rely on commercial ventures to show students any aspect of the "real" world. The virtual world is a viable replacement. The new cost-effective tools mean everyone can be a producer of information critical to understanding Earth. During the last four summers (2008-2011), Texas teachers have participated in G-Camp, an effort to instill geologic and geomorphic knowledge such that the information will make its way into classrooms. Teachers have acquired thousands of images and developed concepts that are being used to enhance their ability to promote geology in their classrooms. Texas will soon require four years of science at the high-school level, and we believe that geology or Earth science needs to be elevated to the required level of biology, chemistry and physics. Teachers need to be trained and methodology developed that is exciting to students. After all, everyone on Earth needs to be aware of the hazardous nature of geologic events not just to pass an exam, but for a lifetime. We use a video, which is a composite of our ventures, to show how data collected during these trips can be used in the classroom. . Social media, Facebook°, blogs, and email facilitate sharing information such that everyone can learn from each other about the best way to do things. New tools of technology are taking their place in every classroom to take advantage of the skills students bring to the learning environment. Besides many of these approaches are common to video gaming, and certainly, education cannot be too far behind.

  10. Accessing and Utilizing Remote Sensing Data for Vectorborne Infectious Diseases Surveillance and Modeling

    NASA Technical Reports Server (NTRS)

    Kiang, Richard; Adimi, Farida; Kempler, Steven

    2008-01-01

    Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial intelligence based techniques. Conclusions: Remote sensing data relevant to the transmission of vectorborne infectious diseases can be conveniently accessed at NASA and some other websites. These data are useful for vectorborne infectious disease surveillance and modeling.

  11. NASA/NOAA: Earth Science Electronic Theater 1999

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many new Earth sensing satellites, HyperImage datasets, because they have such high resolution in the spectral, temporal, spatial, and dynamic range domains. The traditional numerical spreadsheet paradigm has been extended to develop a scientific visualization approach for processing HyperImage datasets and 3D model results interactively. The advantages of extending the powerful spreadsheet style of computation to multiple sets of images and organizing image processing were demonstrated using the Distributed image SpreadSheet (DISS). The DISS is being used as a high performance testbed Next Generation Internet (NGI) VisAnalysis of: 1) El Nino SSTs and NDVI response 2) Latest GOES 10 5-min rapid Scans of 26 day 5000 frame movie of March & April '98 weather and tornadic storms 3) TRMM rainfall and lightning 4)GOES 9 satellite images/winds and NOAA aircraft radar of hurricane Luis, 5) lightning detector data merged with GOES image sequences, 6) Japanese GMS, TRMM, & ADEOS data 7) Chinese FY2 data 8) Meteosat & ERS/ATSR data 9) synchronized manipulation of multiple 3D numerical model views; and others will be illustrated. The Image SpreadSheet has been highly successful in producing Earth science visualizations for public outreach. Many of these visualizations have been widely disseminated through the world wide web pages of the HPCC/LTP/RSD program which can be found at http://rsd.gsfc.nasa.gov/rsd The one min interval animations of Hurricane Luis on ABC Nightline and the color perspective rendering of Hurricane Fran published by TIME, LIFE, Newsweek, Popular Science, National Geographic, Scientific American, and the "Weekly Reader" are some of the examples which will be shown.

  12. Listening to data from the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Aiken, C.; Kilb, D. L.; Shelly, D. R.; Enescu, B.

    2011-12-01

    It is important for seismologists to effectively convey information about catastrophic earthquakes, such as the magnitude 9.0 earthquake in Tohoku-Oki, Japan, to general audience who may not necessarily be well-versed in the language of earthquake seismology. Given recent technological advances, previous approaches of using "snapshot" static images to represent earthquake data is now becoming obsolete, and the favored venue to explain complex wave propagation inside the solid earth and interactions among earthquakes is now visualizations that include auditory information. Here, we convert seismic data into visualizations that include sounds, the latter being a term known as 'audification', or continuous 'sonification'. By combining seismic auditory and visual information, static "snapshots" of earthquake data come to life, allowing pitch and amplitude changes to be heard in sync with viewed frequency changes in the seismograms and associated spectragrams. In addition, these visual and auditory media allow the viewer to relate earthquake generated seismic signals to familiar sounds such as thunder, popcorn popping, rattlesnakes, firecrackers, etc. We present a free software package that uses simple MATLAB tools and Apple Inc's QuickTime Pro to automatically convert seismic data into auditory movies. We focus on examples of seismic data from the 2011 Tohoku-Oki earthquake. These examples range from near-field strong motion recordings that demonstrate the complex source process of the mainshock and early aftershocks, to far-field broadband recordings that capture remotely triggered deep tremor and shallow earthquakes. We envision audification of seismic data, which is geared toward a broad range of audiences, will be increasingly used to convey information about notable earthquakes and research frontiers in earthquake seismology (tremor, dynamic triggering, etc). Our overarching goal is that sharing our new visualization tool will foster an interest in seismology, not just for young scientists but also for people of all ages.

  13. Using Visual Simulation Tools And Learning Outcomes-Based Curriculum To Help Transportation Engineering Students And Practitioners To Better Understand And Design Traffic Signal Control Systems

    DOT National Transportation Integrated Search

    2012-06-01

    The use of visual simulation tools to convey complex concepts has become a useful tool in education as well as in research. : This report describes a project that developed curriculum and visualization tools to train transportation engineering studen...

  14. Earth Walk: Touring Our Planet's Inner Structure.

    ERIC Educational Resources Information Center

    Muller, Eric P.

    1995-01-01

    Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)

  15. Global Visualization (GloVis) Viewer

    USGS Publications Warehouse

    ,

    2005-01-01

    GloVis (http://glovis.usgs.gov) is a browse image-based search and order tool that can be used to quickly review the land remote sensing data inventories held at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS). GloVis was funded by the AmericaView project to reduce the difficulty of identifying and acquiring data for user-defined study areas. Updated daily with the most recent satellite acquisitions, GloVis displays data in a mosaic, allowing users to select any area of interest worldwide and immediately view all available browse images for the following Landsat data sets: Multispectral Scanner (MSS), Multi-Resolution Land Characteristics (MRLC), Orthorectified, Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and ETM+ Scan Line Corrector-off (SLC-off). Other data sets include Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS, and the Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion data.

  16. Geoinformatics 2008 - Data to Knowledge

    USGS Publications Warehouse

    Brady, Shailaja R.; Sinha, A. Krishna; Gundersen, Linda C.

    2008-01-01

    Geoinformatics is the term used to describe a variety of efforts to promote collaboration between the computer sciences and the geosciences to solve complex scientific questions. It refers to the distributed, integrated digital information system and working environment that provides innovative means for the study of the Earth systems, as well as other planets, through use of advanced information technologies. Geoinformatics activities range from major research and development efforts creating new technologies to provide high-quality, sustained production-level services for data discovery, integration and analysis, to small, discipline-specific efforts that develop earth science data collections and data analysis tools serving the needs of individual communities. The ultimate vision of Geoinformatics is a highly interconnected data system populated with high quality, freely available data, as well as, a robust set of software for analysis, visualization, and modeling. This volume is a collection of extended abstracts for oral papers presented at the Geoinformatics 2008 conference, June 11 and 13, 2008, in Potsdam, Germany.

  17. Communications Effects Server (CES) Model for Systems Engineering Research

    DTIC Science & Technology

    2012-01-31

    Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components  Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army

  18. An Information Management System for CHIKYU Operation and its Future

    NASA Astrophysics Data System (ADS)

    Kuramoto, S.; Matsuda, S.; Ito, H.

    2005-12-01

    The CDEX (Center for Deep Earth Exploration, JAMSTEC) is an implementing organization of a riser drilling vessel, CHIKYU ("Earth"). CHIKYU has a large capability to produce a wide variety of data, core measurement data, logging data, mud logging data, cuttings data and monitoring data in boreholes, etc. Also CDEX conducts site survey for safety drilling and publication before and after cruises. It is critical that these diverse data be managed using a unified, coherent method, and that they be organized and provided to users in an intuitive, clearly understandable way that reflects the aims and underlying philosophies of the IODP and JAMSTEC. It is crucial that these data are accessible to users through an integrated interface in which all data formats, management tools, and procedures are standardized. Meeting these goals will assure total usability for scientists, administrators, and the public, from data creation to uploading and cataloging, to end use and publication. CDEX is developing an integrated information management system, call "SIO7" (Scientific Information from 7 Oceans) for CHIKYU operation, and would like to extend to adopt various information handling systems in geosciences. The SIO7 composed of 2 major systems, J-CORES (JAMSTEC Core Systematics) and DEXIS (Deep Earth Exploration Information System) (see http://sio7.jamstec.go.jp/ for the details). J-CORES is a database system designated to manage all aspects of core data. The system is modeled on the JANUS system developed by and for ODP, but implements an extended, somewhat modified data model. The functions that support onboard and real time data input operations have also been strengthened. A variety of data visualization and visual core description functions have been added, and data loading from those applications has been automated, making the system as a whole both powerful and easy to use. On the other hand, DEXIS is developed based on the combination and integration of existing off-the-shelf application software that are tuned-up and optimized. DEXIS comprised two main functions: data browsing and data interpretation. The functions are available to use though an internet at anytime and from anywhere users want. Most standard data format are accepted for site survey data and logging data and GIS functions are involved. We will coordinate more data items in SIO7 with other JAMSTEC data that archived and provided data services by different systems. Also we will try to provide data tools and/or applications to contribute international colleagues who are working in geoscience fields. J-CORES is an open source application, and we encourage users to educate how to use the tools.

  19. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and satellite overpass intersections. The resultant flight plan is then generated in KML and quickly posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and then compare it to the actual real time flight progress. A description of the system architecture, components, and applications along with reviews and animations of RTMM during the field campaigns, plus planned enhancements and future opportunities will be presented.

  20. Visualizing Space Weather: The Planeterrella Auroral Simulator as a Heliophysics Public Outreach Tool

    NASA Astrophysics Data System (ADS)

    Masongsong, E. V.; Lilensten, J.; Booth, M. J.; Suri, G.; Heflinger, T. G.; Angelopoulos, V.

    2014-12-01

    The NASA THEMIS and ARTEMIS satellite missions study "space weather," which describes the solar wind influence on Earth's protective magnetic shield, the magnetosphere. Space weather is important to study and predict because it can damage critical GPS and communications satellites, harm space travelers, and even disable our global electrical grid. The Planeterrella is an innovative heliophysics outreach demonstration, expanding public awareness of space weather by visualizing the sun-Earth connection up close and in-person. Using a glass vacuum chamber, two magnetized spheres and a 1kV power supply, the device can simulate plasma configurations of the solar corona, solar wind, Van Allen radiation belts, and auroral ovals, all of which are observable only by satellites. This "aurora in a bottle" is a modernized version of the original Terrella built by Kristian Birkeland in the 1890s to show that the aurora are electrical in nature. Adapted from plans by Lilensten et al. at CNRS-IPAG, the UCLA Planeterrella was completed in Nov. 2013, the second device of its kind in the U.S., and the centerpiece of the THEMIS/ARTEMIS mobile public outreach exhibit. In combination with captivating posters, 3D magnetic field models, dazzling aurora videos and magnetosphere animations, the Planeterrella has already introduced over 1200 people to the electrical link between our sun and the planets. Most visitors had seen solar flare images in the news, however the Planeterrella experience enhanced their appreciation of the dynamic solar wind and its effects on Earth's invisible magnetic field. Most importantly, visitors young and old realized that magnets are not just cool toys or only for powering hybrid car motors and MRIs, they are a fundamental aspect of ongoing life on Earth and are key to the formation and evolution of planets, moons, and stars, extending far beyond our galaxy to other planetary systems throughout the universe. Novel visualizations such as the Planeterrella can significantly increase awareness of space weather and act as a catalyst for the pursuit of STEM careers by allowing students to form a personalized, emotional connection to the incredible phenomena surrounding our planet. This can translate into greater support for the heliophysics satellite infrastrucure that safeguards our modern society.

  1. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabian, Frank V

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previouslymore » used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated infrastructure. The digital globes also provide highly accurate terrain mapping for better geospatial context and allow detailed 3-D perspectives of all sites or areas of interest. 3-D modeling software (i.e., Google's SketchUp6 newly available in 2007) when used in conjunction with these digital globes can significantly enhance individual building characterization and visualization (including interiors), allowing for better assessments including walk-arounds or fly-arounds and perhaps better decision making on multiple levels (e.g., the best placement for International Atomic Energy Agency (IAEA) video monitoring cameras).« less

  2. Multi-Instrument Tools and Services to Access NASA Earth Science Data from the GSFC Earth Sciences Data and Information Services Center

    NASA Technical Reports Server (NTRS)

    Kempler, Steve; Leptoukh, Greg; Lynnes, Chris

    2010-01-01

    The presentation purpose is to describe multi-instrument tools and services that facilitate access and usability of NASA Earth science data at Goddard Space Flight Center (GSFC). NASA's Earth observing system includes 14 satellites. Topics include EOSDIS facilities and system architecture, and overview of GSFC Earth Science Data and Information Services Center (GES DISC) mission, Mirador data search, Giovanni, multi-instrument data exploration, Google Earth[TM], data merging, and applications.

  3. Advanced control techniques for teleoperation in earth orbit

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Brooks, T. L.

    1980-01-01

    Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.

  4. Programs Visualize Earth and Space for Interactive Education

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.

  5. Visualizing Data from EarthScope's USArray

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Frassetto, A.; Adinolfi, A.

    2012-12-01

    The EarthScope USArray program has generated a large volume of data from across the North American continent. The Transportable Array (TA) component of USArray has deployed over 400 seismic stations in a grid with 70 km spacing between stations. The TA has rolled the array across the contiguous US states over a ten-year period, and will have occupied over 1600 distinct sites from the Pacific Ocean to the Atlantic Ocean by the end of 2013. All stations transmit multiple channels of 40 samples per second data continuously, in near real time. Each station records and transmits seismic, barometric pressure, and infrasound data, as well as various state-of-health data streams. All data are immediately open and unrestricted. The TA provides a unique tool for visualizing large-scale seismic wave phenomena. The power of this tool is particularly apparent when displaying simultaneous signals from all stations as a function of time, as well as rendering multiple channels of data from each station. In this situation it is challenging to convey the 3D motion at each station as well as the aggregate 3D motion across the entire set of 400 stations. Creating movies of the data becomes essential to illustrate the time dependence of the observations. Typically the rendering of such movies requires the use of programming language that is suitable for both data analysis and graphics, as it is essential to explore different data pre-processing strategies (often filtering, but also including other pre-processing steps). Different visualization strategies provide a means for dealing with the very large volume of data generated by the TA. Typical data review strategies include a survey mode to scan large volumes of data for signals of interest, or zooming in on fine features using combinations of specialized data processing and frame-by-frame time-steps, or going back and forth between the two modes. The data visualizations are continuously evolving to explore new ideas. The movie-based representations of the data also provide an excellent medium for education and outreach. Complex wave phenomena become immediately visible to both the trained and untrained eye. Yet there are challenges in conveying an understanding of how the output of a single sensor relates to the output of multiple sensors, and how color variations are used to represent at least one of the dimensions. Conventions that are common to a scientific audience may not be familiar to other audiences. We have explored strategies for trying to add a perspective view and a sense of spatial orientation to the visualizations to make them more useful in educational settings. Some of these visualizations are now routinely produced as data products to support research and education. We will provide examples of the visualization results, including movies of seismic surface waves spreading out on the planet and the use of perspective views, cross-sections, contours, and other graphical techniques as a means to gain insight into the data. We will also provide examples of the time and spatial evolution of barometric pressure variations, seismic background noise, and solar irradiance. Examples of data visualizations created for both specialists and non-specialists will be included.

  6. Leveraging Available Technologies for Improved Interoperability and Visualization of Remote Sensing and In-situ Oceanographic data at the PO.DAAC

    NASA Astrophysics Data System (ADS)

    Tsontos, V. M.; Arms, S. C.; Thompson, C. K.; Quach, N.; Lam, T.

    2016-12-01

    Earth science applications increasingly rely on the integration of multivariate data from diverse observational platforms. Whether for satellite mission cal/val, science or decision support, the coupling of remote sensing and in-situ field data is integral also to oceanographic workflows. This has prompted archives such as the PO.DAAC, NASA's physical oceanographic data archive, that historically has had a remote sensing focus, to adapt to better accommodate complex field campaign datasets. However, the inherent heterogeneity of in-situ datasets and their variable adherence to meta/data standards poses a significant impediment to interoperability, a problem originating early in the data lifecycle and significantly impacting stewardship and usability of these data long-term. Here we introduce a new initiative underway at PO.DAAC that seeks to catalyze efforts to address these challenges. It involves the enhancement and integration of available high TRL (Technology Readiness level) components for improved interoperability and support of in-situ data with a focus on a novel yet representative class of oceanographic field data: data from electronic tags deployed on a variety of marine species as biological sampling platforms in support of fisheries management and ocean observation efforts. This project seeks to demonstrate, deliver and ultimately sustain operationally a reusable and accessible set of tools to: 1) mediate reconciliation of heterogeneous source data into a tractable number of standardized formats consistent with earth science data standards; 2) harmonize existing metadata models for satellite and field datasets; 3) demonstrate the value added of integrated data access via a range of available tools and services hosted at the PO.DAAC, including a web-based visualization tool for comprehensive mapping of satellite and in-situ data. An innovative part of our project plan involves partnering with the leading electronic tag manufacturer to promote the adoption of appropriate data standards in their processing software. The proposed project thus adopts a model lifecycle approach complimented by broadly applicable technologies to address key data management and interoperability issues for in-situ data

  7. Using Integrated Earth and Social Science Data for Disaster Risk Assessment

    NASA Astrophysics Data System (ADS)

    Downs, R. R.; Chen, R. S.; Yetman, G.

    2016-12-01

    Society faces many different risks from both natural and technological hazards. In some cases, disaster risk managers focus on only a few risks, e.g., in regions where a single hazard such as earthquakes dominate. More often, however, disaster risk managers deal with multiple hazards that pose diverse threats to life, infrastructure, and livelihoods. From the viewpoint of scientists, hazards are often studied based on traditional disciplines such as seismology, hydrology, climatology, and epidemiology. But from the viewpoint of disaster risk managers, data are needed on all hazards in a specific region and on the exposure and vulnerability of population, infrastructure, and economic resources and activity. Such managers also need to understand how hazards, exposures, and vulnerabilities may interact, and human and environmental systems respond, to hazard events, as in the case of the Fukushima nuclear disaster that followed from the Sendai earthquake and tsunami. In this regard, geospatial tools that enable visualization and analysis of both Earth and social science data can support the use case of disaster risk managers who need to quickly assess where specific hazard events occur relative to population and critical infrastructure. Such information can help them assess the potential severity of actual or predicted hazard events, identify population centers or key infrastructure at risk, and visualize hazard dynamics, e.g., earthquakes and their aftershocks or the paths of severe storms. This can then inform efforts to mitigate risks across multiple hazards, including reducing exposure and vulnerability, strengthening system resiliency, improving disaster response mechanisms, and targeting mitigation resources to the highest or most critical risks. We report here on initial efforts to develop hazard mapping tools that draw on open web services and support simple spatial queries about population exposure. The NASA Socioeconomic Data and Applications Center (SEDAC) Hazards Mapper, a web-based mapping tool, enables users to estimate population living in areas subject to flood or tornado warnings, near recent earthquakes, or around critical infrastructure. The HazPop mobile app, implemented for iOS devices, utilizes location services to support disaster risk managers working in field conditions.

  8. The Basic Radar Altimetry Toolbox for Sentinel 3 Users

    NASA Astrophysics Data System (ADS)

    Lucas, Bruno; Rosmorduc, Vinca; Niemeijer, Sander; Bronner, Emilie; Dinardo, Salvatore; Benveniste, Jérôme

    2013-04-01

    The Basic Radar Altimetry Toolbox (BRAT) is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2006 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales). The latest version of the software, 3.1, was released on March 2012. The tools enable users to interact with the most common altimetry data formats, being the most used way, the Graphical User Interface (BratGui). This GUI is a front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with Matlab/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. The BratDisplay (graphic visualizer) can be launched from BratGui, or used as a stand-alone tool to visualize netCDF files - it is distributed with another ESA toolbox (GUT) as the visualizer. The most frequent uses of BRAT are teaching remote sensing, altimetry data reading (all missions from ERS-1 to Saral and soon Sentinel-3), quick data visualization/export and simple computation on the data fields. BRAT can be used for importing data and having a quick look at his contents, with several different types of plotting available. One can also use it to translate the data into other formats such as netCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BratGui involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas (MSS, -SSH, MSLA, editing of spurious data, etc.). The documentation collection includes the standard user manual explaining all the ways to interact with the set of software tools but the most important item is the Radar Altimeter Tutorial, that contains a strong introduction to altimetry, showing its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "data use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The upcoming release that is on the forge will focus on Sentinel 3 Surface Topography Mission that is build on the successful heritage of ERS, Envisat and Cryosat. The first of the two sentinel is expected to be launched in 2014. It will have on-board a dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter and will provide measurements at a resolution of ~300m in SAR mode along track. Sentinel 3 will provide exact measurements of sea-surface height along with accurate topography measurements over sea ice, ice sheets, rivers and lakes. The future version will provide, among other enhancements, support for reading the upcoming S3 datasets and specific "use-cases" for SAR altimetry in order to train the users and made them aware of the great potential of SAR altimetery for coastal and inland applications. The BRAT software is distributed under the GNU GPL open-source license and can be obtained, along with all the documentation (including the tutorial), on the webstite: http://earth.esa.int/brat

  9. Scalable Visual Analytics of Massive Textual Datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Manoj Kumar; Bohn, Shawn J.; Cowley, Wendy E.

    2007-04-01

    This paper describes the first scalable implementation of text processing engine used in Visual Analytics tools. These tools aid information analysts in interacting with and understanding large textual information content through visual interfaces. By developing parallel implementation of the text processing engine, we enabled visual analytics tools to exploit cluster architectures and handle massive dataset. The paper describes key elements of our parallelization approach and demonstrates virtually linear scaling when processing multi-gigabyte data sets such as Pubmed. This approach enables interactive analysis of large datasets beyond capabilities of existing state-of-the art visual analytics tools.

  10. Preparing Precipitation Data Access, Value-added Services and Scientific Exploration Tools for the Integrated Multi-satellitE Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.

    2013-12-01

    The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc.); Data ingest, processing, distribution from on-line archive; Google-like Mirador data search and access engine; electronic distribution, Subscriptions; Uses semantic technology to help manage large amounts of multi-sensor data and their relationships; Data drill down and search capabilities; Data access through various web services, i.e., OPeNDAP, GDS, WMS, WCS; Conversion into various formats, e.g., netCDF, HDF, KML (for Google Earth), ascii; Exploration, visualization and statistical online analysis through Giovanni; Visualization and analysis of L2 data profiles and maps; Generation of derived products, such as, daily products; Parameter and spatial subsetting; Time and temporal aggregation; Regridding; Data version control and provenance; Data Stewardship - Continuous archive verification; Documentation; Science support for proper data usage, help desk; Monitoring services for applications; Expertise in data related standards and interoperability. This presentation will further describe the data services at the PDISC that are currently being utilized by precipitation science and application researchers, and the preparation plan for IMERG. Comments and feedback are welcome.

  11. A graph algebra for scalable visual analytics.

    PubMed

    Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V

    2012-01-01

    Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.

  12. The Multisensory Attentional Consequences of Tool Use: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Holmes, Nicholas P.; Spence, Charles; Hansen, Peter C.; Mackay, Clare E.; Calvert, Gemma A.

    2008-01-01

    Background Tool use in humans requires that multisensory information is integrated across different locations, from objects seen to be distant from the hand, but felt indirectly at the hand via the tool. We tested the hypothesis that using a simple tool to perceive vibrotactile stimuli results in the enhanced processing of visual stimuli presented at the distal, functional part of the tool. Such a finding would be consistent with a shift of spatial attention to the location where the tool is used. Methodology/Principal Findings We tested this hypothesis by scanning healthy human participants' brains using functional magnetic resonance imaging, while they used a simple tool to discriminate between target vibrations, accompanied by congruent or incongruent visual distractors, on the same or opposite side to the tool. The attentional hypothesis was supported: BOLD response in occipital cortex, particularly in the right hemisphere lingual gyrus, varied significantly as a function of tool position, increasing contralaterally, and decreasing ipsilaterally to the tool. Furthermore, these modulations occurred despite the fact that participants were repeatedly instructed to ignore the visual stimuli, to respond only to the vibrotactile stimuli, and to maintain visual fixation centrally. In addition, the magnitude of multisensory (visual-vibrotactile) interactions in participants' behavioural responses significantly predicted the BOLD response in occipital cortical areas that were also modulated as a function of both visual stimulus position and tool position. Conclusions/Significance These results show that using a simple tool to locate and to perceive vibrotactile stimuli is accompanied by a shift of spatial attention to the location where the functional part of the tool is used, resulting in enhanced processing of visual stimuli at that location, and decreased processing at other locations. This was most clearly observed in the right hemisphere lingual gyrus. Such modulations of visual processing may reflect the functional importance of visuospatial information during human tool use. PMID:18958150

  13. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  14. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  15. Visualization and Analytics Tools for Infectious Disease Epidemiology: A Systematic Review

    PubMed Central

    Carroll, Lauren N.; Au, Alan P.; Detwiler, Landon Todd; Fu, Tsung-chieh; Painter, Ian S.; Abernethy, Neil F.

    2014-01-01

    Background A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) Identify public health user needs and preferences for infectious disease information visualization tools; (2) Identify existing infectious disease information visualization tools and characterize their architecture and features; (3) Identify commonalities among approaches applied to different data types; and (4) Describe tool usability evaluation efforts and barriers to the adoption of such tools. Methods We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. Results A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. Discussion and Conclusion As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. PMID:24747356

  16. Visualization and analytics tools for infectious disease epidemiology: a systematic review.

    PubMed

    Carroll, Lauren N; Au, Alan P; Detwiler, Landon Todd; Fu, Tsung-Chieh; Painter, Ian S; Abernethy, Neil F

    2014-10-01

    A myriad of new tools and algorithms have been developed to help public health professionals analyze and visualize the complex data used in infectious disease control. To better understand approaches to meet these users' information needs, we conducted a systematic literature review focused on the landscape of infectious disease visualization tools for public health professionals, with a special emphasis on geographic information systems (GIS), molecular epidemiology, and social network analysis. The objectives of this review are to: (1) identify public health user needs and preferences for infectious disease information visualization tools; (2) identify existing infectious disease information visualization tools and characterize their architecture and features; (3) identify commonalities among approaches applied to different data types; and (4) describe tool usability evaluation efforts and barriers to the adoption of such tools. We identified articles published in English from January 1, 1980 to June 30, 2013 from five bibliographic databases. Articles with a primary focus on infectious disease visualization tools, needs of public health users, or usability of information visualizations were included in the review. A total of 88 articles met our inclusion criteria. Users were found to have diverse needs, preferences and uses for infectious disease visualization tools, and the existing tools are correspondingly diverse. The architecture of the tools was inconsistently described, and few tools in the review discussed the incorporation of usability studies or plans for dissemination. Many studies identified concerns regarding data sharing, confidentiality and quality. Existing tools offer a range of features and functions that allow users to explore, analyze, and visualize their data, but the tools are often for siloed applications. Commonly cited barriers to widespread adoption included lack of organizational support, access issues, and misconceptions about tool use. As the volume and complexity of infectious disease data increases, public health professionals must synthesize highly disparate data to facilitate communication with the public and inform decisions regarding measures to protect the public's health. Our review identified several themes: consideration of users' needs, preferences, and computer literacy; integration of tools into routine workflow; complications associated with understanding and use of visualizations; and the role of user trust and organizational support in the adoption of these tools. Interoperability also emerged as a prominent theme, highlighting challenges associated with the increasingly collaborative and interdisciplinary nature of infectious disease control and prevention. Future work should address methods for representing uncertainty and missing data to avoid misleading users as well as strategies to minimize cognitive overload. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.

  18. Data-Driven Geospatial Visual Analytics for Real-Time Urban Flooding Decision Support

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D.; Rodriguez, A.; Marini, L.; Kooper, R.; Myers, J.; Wu, X.; Minsker, B. S.

    2009-12-01

    Urban flooding is responsible for the loss of life and property as well as the release of pathogens and other pollutants into the environment. Previous studies have shown that spatial distribution of intense rainfall significantly impacts the triggering and behavior of urban flooding. However, no general purpose tools yet exist for deriving rainfall data and rendering them in real-time at the resolution of hydrologic units used for analyzing urban flooding. This paper presents a new visual analytics system that derives and renders rainfall data from the NEXRAD weather radar system at the sewershed (i.e. urban hydrologic unit) scale in real-time for a Chicago stormwater management project. We introduce a lightweight Web 2.0 approach which takes advantages of scientific workflow management and publishing capabilities developed at NCSA (National Center for Supercomputing Applications), streaming data-aware semantic content management repository, web-based Google Earth/Map and time-aware KML (Keyhole Markup Language). A collection of polygon-based virtual sensors is created from the NEXRAD Level II data using spatial, temporal and thematic transformations at the sewershed level in order to produce persistent virtual rainfall data sources for the animation. Animated color-coded rainfall map in the sewershed can be played in real-time as a movie using time-aware KML inside the web browser-based Google Earth for visually analyzing the spatiotemporal patterns of the rainfall intensity in the sewershed. Such system provides valuable information for situational awareness and improved decision support during extreme storm events in an urban area. Our further work includes incorporating additional data (such as basement flooding events data) or physics-based predictive models that can be used for more integrated data-driven decision support.

  19. Exploiting Aura OMI Level 2 Data with High Resolution Visualization

    NASA Astrophysics Data System (ADS)

    Wei, J. C.; Yang, W.; Johnson, J. E.; Zhao, P.; Gerasimov, I. V.; Pham, L.; Vicente, G. A.; Shen, S.

    2014-12-01

    Satellite data products are important for a wide variety of applications that can bring far-reaching benefits to the science community and the broader society. These benefits can best be achieved if the satellite data are well utilized and interpreted, such as model inputs from satellite, or extreme event (such as volcano eruption, dust storm, …etc) interpretation from satellite. Unfortunately, this is not always the case, despite the abundance and relative maturity of numerous satellite data products provided by NASA and other organizations. One way to help users better understand the satellite data is to provide data along with 'Images', including accurate pixel-level (Level 2) information, pixel coverage area delineation, and science team recommended quality screening for individual geophysical parameters. Goddard Earth Sciences Data and Information Services Center (GES DISC) always strives to best support (i.e., Software-as-a-service, SaaS) the user-community for NASA Earth Science Data. In this case, we will present a new visualization tool that helps users exploiting Aura Ozone Monitoring Instrument (OMI) Level 2 data. This new visualization service utilizes Open Geospatial Consortium (OGC) standard-compliant Web Mapping Service (WMS) and Web Coverage Service (WCS) calls in the backend infrastructure. The functionality of the service allows users to select data sources (e.g., multiple parameters under the same measurement, like NO2 and SO2 from OMI Level 2 or same parameter with different methods of aggregation, like NO2 in OMNO2G and OMNO2D products), defining area-of-interest and temporal extents, zooming, panning, overlaying, sliding, and data subsetting and reformatting. The interface will also be able to connect to other OGC WMS and WCS servers, which will greatly enhance its expandability to integrate additional outside data/map sources (such as Global Imagery Browse Services (GIBS)).

  20. Visual illusion of tool use recalibrates tactile perception

    PubMed Central

    Miller, Luke E.; Longo, Matthew R.; Saygin, Ayse P.

    2018-01-01

    Brief use of a tool recalibrates multisensory representations of the user’s body, a phenomenon called tool embodiment. Despite two decades of research, little is known about its boundary conditions. It has been widely argued that embodiment requires active tool use, suggesting a critical role for somatosensory and motor feedback. The present study used a visual illusion to cast doubt on this view. We used a mirror-based setup to induce a visual experience of tool use with an arm that was in fact stationary. Following illusory tool use, tactile perception was recalibrated on this stationary arm, and with equal magnitude as physical use. Recalibration was not found following illusory passive tool holding, and could not be accounted for by sensory conflict or general interhemispheric plasticity. These results suggest visual tool-use signals play a critical role in driving tool embodiment. PMID:28196765

  1. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication opportunities can be displayed, and line-of-sight blockage due to interference by the vehicle structure (or the Earth) can be seen easily. Additional features in BEV display targets on the ground and in-orbit, including cities, communication sites, landmarks, satellites, and special sites of scientific interest for Earth observation and photography. Any target can be selected and tracked. This gives the user a continual line-of-sight to the target of current interest, and real-time knowledge about its visibility. Similarly, the vehicle ground-track, and an option to show "visibility circles" around displayed ground sites, provide continuous insight regarding current and future visibility to any target BEV was designed with inputs from many disciplines in the flight control and operations community both at NASA and from the International Partners. As such, BEV is setting the standards for interactive 3-D graphics for spacecraft applications. One important contribution of BEV is a generic graphical interface for camera control that can be used for any 3-D applications. This interface has become part of the International Display and Graphics Standards for the 16-nation ISS partnership. Many other standards related to camera properties, and the display of 3-D data, also have been defined by BEV. Future enhancements to BEV will include capabilities related to simulating ahead of the current time. This will give the user tools for analyzing off-nominal and future scenarios, as well as for planning future operations.

  2. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    PubMed Central

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W.; Brown, Paul D.; Dunin-Borkowski, Rafal E.

    2014-01-01

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information. PMID:25300366

  3. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles.

    PubMed

    Almeida, Trevor P; Kasama, Takeshi; Muxworthy, Adrian R; Williams, Wyn; Nagy, Lesleis; Hansen, Thomas W; Brown, Paul D; Dunin-Borkowski, Rafal E

    2014-10-10

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent magnetization within Fe3O4 particles in the size range dominant in rocks, confirming that oxidation can modify the original stored magnetic information.

  4. Technical Note: Estimation of Micro-Watershed Topographic Parameters Using Earth Observatory Tools

    EPA Science Inventory

    The study set out to analyze the feasibility of using Earth observatory tools to derive elevations to characterize topographic parameters of slope gradient and area useful in predicting erosion and for natural resources engineering education and instruction. Earth obseravtory too...

  5. The Hico Image Processing System: A Web-Accessible Hyperspectral Remote Sensing Toolbox

    NASA Astrophysics Data System (ADS)

    Harris, A. T., III; Goodman, J.; Justice, B.

    2014-12-01

    As the quantity of Earth-observation data increases, the use-case for hosting analytical tools in geospatial data centers becomes increasingly attractive. To address this need, HySpeed Computing and Exelis VIS have developed the HICO Image Processing System, a prototype cloud computing system that provides online, on-demand, scalable remote sensing image processing capabilities. The system provides a mechanism for delivering sophisticated image processing analytics and data visualization tools into the hands of a global user community, who will only need a browser and internet connection to perform analysis. Functionality of the HICO Image Processing System is demonstrated using imagery from the Hyperspectral Imager for the Coastal Ocean (HICO), an imaging spectrometer located on the International Space Station (ISS) that is optimized for acquisition of aquatic targets. Example applications include a collection of coastal remote sensing algorithms that are directed at deriving critical information on water and habitat characteristics of our vulnerable coastal environment. The project leverages the ENVI Services Engine as the framework for all image processing tasks, and can readily accommodate the rapid integration of new algorithms, datasets and processing tools.

  6. Spinoff 2013

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Topics covered include: Innovative Software Tools Measure Behavioral Alertness; Miniaturized, Portable Sensors Monitor Metabolic Health; Patient Simulators Train Emergency Caregivers; Solar Refrigerators Store Life-Saving Vaccines; Monitors Enable Medication Management in Patients' Homes; Handheld Diagnostic Device Delivers Quick Medical Readings; Experiments Result in Safer, Spin-Resistant Aircraft; Interfaces Visualize Data for Airline Safety, Efficiency; Data Mining Tools Make Flights Safer, More Efficient; NASA Standards Inform Comfortable Car Seats; Heat Shield Paves the Way for Commercial Space; Air Systems Provide Life Support to Miners; Coatings Preserve Metal, Stone, Tile, and Concrete; Robots Spur Software That Lends a Hand; Cloud-Based Data Sharing Connects Emergency Managers; Catalytic Converters Maintain Air Quality in Mines; NASA-Enhanced Water Bottles Filter Water on the Go; Brainwave Monitoring Software Improves Distracted Minds; Thermal Materials Protect Priceless, Personal Keepsakes; Home Air Purifiers Eradicate Harmful Pathogens; Thermal Materials Drive Professional Apparel Line; Radiant Barriers Save Energy in Buildings; Open Source Initiative Powers Real-Time Data Streams; Shuttle Engine Designs Revolutionize Solar Power; Procedure-Authoring Tool Improves Safety on Oil Rigs; Satellite Data Aid Monitoring of Nation's Forests; Mars Technologies Spawn Durable Wind Turbines; Programs Visualize Earth and Space for Interactive Education; Processor Units Reduce Satellite Construction Costs; Software Accelerates Computing Time for Complex Math; Simulation Tools Prevent Signal Interference on Spacecraft; Software Simplifies the Sharing of Numerical Models; Virtual Machine Language Controls Remote Devices; Micro-Accelerometers Monitor Equipment Health; Reactors Save Energy, Costs for Hydrogen Production; Cameras Monitor Spacecraft Integrity to Prevent Failures; Testing Devices Garner Data on Insulation Performance; Smart Sensors Gather Information for Machine Diagnostics; Oxygen Sensors Monitor Bioreactors and Ensure Health and Safety; Vision Algorithms Catch Defects in Screen Displays; and Deformable Mirrors Capture Exoplanet Data, Reflect Lasers.

  7. Visualizing Complex Environments in the Geo- and BioSciences

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Fox, P. A.; Zhong, H.; Eleish, A.; Ma, X.; Zednik, S.; Morrison, S. M.; Moore, E. K.; Muscente, D.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's living and non-living components have co-evolved for 4 billion years through numerous positive and negative feedbacks. Earth and life scientists have amassed vast amounts of data in diverse fields related to planetary evolution through deep time-mineralogy and petrology, paleobiology and paleontology, paleotectonics and paleomagnetism, geochemistry and geochrononology, genomics and proteomics, and more. Integrating the data from these complimentary disciplines is very useful in gaining an understanding of the evolution of our planet's environment. The integrated data however, represent many extremely complex environments. In order to gain insights and make discoveries using this data, it is important for us to model and visualize these complex environments. As part of work in understanding the "Co-Evolution of Geo and Biospheres using Data Driven Methodologies," we have developed several visualizations to help represent the information stored in the datasets from complimentary disciplines. These visualizations include 2D and 3D force directed Networks, Chord Diagrams, 3D Klee Diagrams. Evolving Network Diagrams, Skyline Diagrams and Tree Diagrams. Combining these visualizations with the results of machine learning and data analysis methods leads to a powerful way to discover patterns and relationships about the Earth's past and today's changing environment.

  8. BioMon: A Google Earth Based Continuous Biomass Monitoring System (Demo Paper)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    2009-01-01

    We demonstrate a Google Earth based novel visualization system for continuous monitoring of biomass at regional and global scales. This system is integrated with a back-end spatiotemporal data mining system that continuously detects changes using high temporal resolution MODIS images. In addition to the visualization, we demonstrate novel query features of the system that provides insights into the current conditions of the landscape.

  9. An Integrated Tool for System Analysis of Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.

    2012-01-01

    The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.

  10. J-Earth: An Essential Resource for Terrestrial Remote Sensing and Data Analysis

    NASA Astrophysics Data System (ADS)

    Dunn, S.; Rupp, J.; Cheeseman, S.; Christensen, P. R.; Prashad, L. C.; Dickenshied, S.; Anwar, S.; Noss, D.; Murray, K.

    2011-12-01

    There is a need for a software tool that has the ability to display and analyze various types of earth science and social data through a simple, user-friendly interface. The J-Earth software tool has been designed to be easily accessible for download and intuitive use, regardless of the technical background of the user base. This tool does not require courses or text books to learn to use, yet is powerful enough to allow a more general community of users to perform complex data analysis. Professions that will benefit from this tool range from geologists, geographers, and climatologists to sociologists, economists, and ecologists as well as policy makers. J-Earth was developed by the Arizona State University Mars Space Flight Facility as part of the JMARS (Java Mission-planning and Analysis for Remote Sensing) suite of open-source tools. The program is a Geographic Information Systems (GIS) application used for viewing and processing satellite and airborne remote sensing data. While the functionality of JMARS has historically focused on the research needs of the planetary science community, J-Earth has been designed for a much broader Earth-based user audience. NASA instrument products accessible within J-Earth include data from ASTER, GOES, Landsat, MODIS, and TIMS. While J-Earth contains exceptionally comprehensive and high resolution satellite-derived data and imagery, this tool also includes many socioeconomic data products from projects lead by international organizations and universities. Datasets used in J-Earth take the form of grids, rasters, remote sensor "stamps", maps, and shapefiles. Some highly demanded global datasets available within J-Earth include five levels of administrative/political boundaries, climate data for current conditions as well as models for future climates, population counts and densities, land cover/land use, and poverty indicators. While this application does share the same powerful functionality of JMARS, J-Earth's apperance is enhanced for much easier data analysis. J-Earth utilizes a layering system to view data from different sources which can then be exported, scaled, colored and superimposed for quick comparisons. Users may now perform spatial analysis over several diverse datasets with respect to a defined geographic area or the entire globe. In addition, several newly acquired global datasets contain a temporal dimension which when accessed through J-Earth, make this a unique and powerful tool for spatial analysis over time. The functionality and ease of use set J-Earth apart from all other terrestrial GIS software packages and enable endless social, political, and scientific possibilities

  11. Screening methods for post-stroke visual impairment: a systematic review.

    PubMed

    Hanna, Kerry Louise; Hepworth, Lauren Rachel; Rowe, Fiona

    2017-12-01

    To provide a systematic overview of the various tools available to screen for post-stroke visual impairment. A review of the literature was conducted including randomised controlled trials, controlled trials, cohort studies, observational studies, systematic reviews and retrospective medical note reviews. All languages were included and translation was obtained. Participants included adults ≥18 years old diagnosed with a visual impairment as a direct cause of a stroke. We searched a broad range of scholarly online resources and hand-searched articles registers of published, unpublished and on-going trials. Search terms included a variety of MESH terms and alternatives in relation to stroke and visual conditions. Study selection was performed by two authors independently. The quality of the evidence and risk of bias were assessed using the STROBE, GRACE and PRISMA statements. A total of 25 articles (n = 2924) were included in this review. Articles appraised reported on tools screening solely for visual impairments or for general post-stroke disabilities inclusive of vision. The majority of identified tools screen for visual perception including visual neglect (VN), with few screening for visual acuity (VA), visual field (VF) loss or ocular motility (OM) defects. Six articles reported on nine screening tools which combined visual screening assessment alongside screening for general stroke disabilities. Of these, three included screening for VA; three screened for VF loss; three screened for OM defects and all screened for VN. Two tools screened for all visual impairments. A further 19 articles were found which reported on individual vision screening tests in stroke populations; two for VF loss; 11 for VN and six for other visual perceptual defects. Most tools cannot accurately account for those with aphasia or communicative deficits, which are common problems following a stroke. There is currently no standardised visual screening tool which can accurately assess all potential post-stroke visual impairments. The current tools screen for only a number of potential stroke-related impairments, which means many visual defects may be missed. The sensitivity of those which screen for all impairments is significantly lowered when patients are unable to report their visual symptoms. Future research is required to develop a tool capable of assessing stroke patients which encompasses all potential visual deficits and can also be easily performed by both the patients and administered by health care professionals in order to ensure all stroke survivors with visual impairment are accurately identified and managed. Implications for Rehabilitation Over 65% of stroke survivors will suffer from a visual impairment, whereas 45% of stroke units do not assess vision. Visual impairment significantly reduces the quality of life, such as being unable to return to work, driving and depression. This review outlines the available screening methods to accurately identify stroke survivors with visual impairments. Identifying visual impairment after stroke can aid general rehabilitation and thus, improve the quality of life for these patients.

  12. Computer Visualizations for K-8 Science Teachers: One Component of Professional Development Workshops at the Planetary Science Institute

    NASA Astrophysics Data System (ADS)

    Kortenkamp, S.; Baldridge, A. M.; Bleamaster, L. F.; Buxner, S.; Canizo, T.; Crown, D. A.; Lebofsky, L. A.

    2012-12-01

    The Planetary Science Institute (PSI), in partnership with the Tucson Regional Science Center, offers a series of professional development workshops targeting K-8 science teachers in southern Arizona. Using NASA data sets, research results, and a team of PSI scientists and educators, our workshops provide teachers with in-depth content knowledge of fundamental concepts in astronomy, geology, and planetary science. Current workshops are: The Earth-Moon System, Exploring the Terrestrial Planets, Impact Cratering, The Asteroid-Meteorite Connection, Volcanoes of the Solar System, Deserts of the Solar System, and Astrobiology and the Search for Extrasolar Planets. Several workshops incorporate customized computer visualizations developed at PSI. These visualizations are designed to help teachers overcome the common misconceptions students have in fundamental areas of space science. For example, the simple geometric relationship between the sun, the moon, and Earth is a concept that is rife with misconceptions. How can the arrangement of these objects account for the constantly changing phases of the moon as well as the occasional eclipses of the sun and moon? Students at all levels often struggle to understand the explanation for phases and eclipses even after repeated instruction over many years. Traditional classroom techniques have proven to be insufficient at rooting out entrenched misconceptions. One problem stems from the difficulty of developing an accurate mental picture of the Earth-Moon system in space when a student's perspective has always been firmly planted on the ground. To address this problem our visualizations take the viewers on a journey beyond Earth, giving them a so-called "god's eye" view of how the Earth-Moon system would look from a distance. To make this journey as realistic as possible we use ray-tracing software, incorporate NASA mission images, and accurately portray rotational and orbital motion. During a workshop our visualizations are used in conjunction with more traditional classroom techniques. This combination instills a greater confidence in teachers' understanding of the concepts and therefore increases their ability to teach their students. To date we have produced over 100 unique visualizations to demonstrate many different fundamental concepts in the Earth and space sciences. Participants in each workshop are provided with digital copies of the visualizations in a variety of file formats. They also receive Keynote and PowerPoint templates pre-embedded with the visualizations to facility straightforward use on Macs or PCs in their classrooms. A measure of the success of PSI's workshops is that nearly 50% of our teachers have attended multiple workshops, and teachers often cite the visualizations as one of the top benefits of their experience. Details of our workshops as well as downloadable examples of some visualizations can be found at: www.psi.edu/epo. This work is supported by NASA EPOESS award NNX10AE56G: Workshops in Science Education and Resources (WISER): Planetary Perspectives.

  13. Mission to Earth: LANDSAT Views the World. [Color imagery of the earth's surface

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Lowman, P. D., Jr.; Freden, S. C.; Finch, W. A., Jr.

    1976-01-01

    The LANDSAT program and system is described. The entire global land surface of Earth is visualized in 400 color plates at a scale and resolution that specify natural land cultural features in man's familiar environments. A glossary is included.

  14. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  15. Fostering Inquiry and Scientific Investigation in Students by Using GPS Data to Explore Plate Tectonics and Volcanic Deformation

    NASA Astrophysics Data System (ADS)

    Olds, S. E.; Eriksson, S.

    2007-12-01

    The Education and Outreach program at UNAVCO has developed free instructional materials using authentic high-precision GPS data for secondary education and undergraduate students in Earth science courses. Using inquiry-based, data-rich activities, students investigate crustal deformation and plate motion using GPS data and learn how these measurements are important to scientific discovery and understanding natural hazards and the current state of prediction. Because this deformation is expressed on Earth's surface over familiar time scales and on easily visualized orders of magnitude, GPS data represent an effective method for illustrating the geomorphic effects of plate tectonics and, in essence, allow students to 'see' plates move and volcanoes deform. The activities foster student skills to critically assess different forms of data, to visualize abstract concepts, and to evaluate multiple lines of evidence to analyze scientific problems. The activities are scaffolded to begin with basic concepts about GPS data and analyzing simple plate motion and move towards data analyses for more complex motion and crustal deformation. As part of assessment, students can apply new knowledge to explore other geographic regions independently. Learning activities currently include exploring motion along the San Andreas Fault, monitoring volcano deformation and ground movement at the Yellowstone Caldera, and analyzing ground motion along the subduction zone in the Cascadia region. To support educators and their students in their investigations, UNAVCO has developed the Data for Educators portal; http://www.unavco.org/edu_outreach/data.html. This portal provides a Google-map displaying the locations of GPS stations, web links to numerical GPS data that illustrate specific Earth processes, and educational activities that incorporate this data. The GPS data is freely available in a format compatible with standard spreadsheet and graphing programs as well as visualization and analysis tools such as the Integrated Data Viewer (IDV). After becoming familiar with the data available through the Data for Educators portal, students are more prepared to use the full UNAVCO data archive to conduct their own independent investigations.

  16. Learn to Teach Chemistry Using Visual Media Tools

    ERIC Educational Resources Information Center

    Turkoguz, Suat

    2012-01-01

    The aim of this study was to investigate undergraduate students' attitudes to using visual media tools in the chemistry laboratory. One hundred and fifteen undergraduates studying science education at Dokuz Eylul University, Turkey participated in the study. They video-recorded chemistry experiments with visual media tools and assessed them on a…

  17. Visualizing how Seismic Waves Propagate Across Seismic Arrays using the IRIS DMS Ground Motion Visualization (GMV) Products and Codes

    NASA Astrophysics Data System (ADS)

    Taber, J.; Bahavar, M.; Bravo, T. K.; Butler, R. F.; Kilb, D. L.; Trabant, C.; Woodward, R.; Ammon, C. J.

    2011-12-01

    Data from dense seismic arrays can be used to visualize the propagation of seismic waves, resulting in animations effective for teaching both general and advanced audiences. One of the first visualizations of this type was developed using Objective C code and EarthScope/USArray data, which was then modified and ported to the Matlab platform and has now been standardized and automated as an IRIS Data Management System (IRIS-DMS) data product. These iterative code developments and improvements were completed by C. Ammon, R. Woodward and M. Bahavar, respectively. Currently, an automated script creates Ground Motion Visualizations (GMVs) for all global earthquakes over magnitude 6 recorded by EarthScope's USArray Transportable Array (USArray TA) network. The USArray TA network is a rolling array of 400 broadband stations deployed on a uniform 70-km grid. These near real-time GMV visualizations are typically available for download within 4 hours or less of their occurrence (see: www.iris.edu/dms/products/usarraygmv/). The IRIS-DMS group has recently added a feature that allows users to highlight key elements within the GMVs, by providing an online tool for creating customized GMVs. This new interface allows users to select the stations, channels, and time window of interest, adjust the mapped areal extent of the view, and specify high and low pass filters. An online tutorial available from the IRIS Education and Public Outreach (IRIS-EPO) website, listed below, steps through a teaching sequence that can be used to explain the basic features of the GMVs. For example, they can be used to demonstrate simple concepts such as relative P, S and surface wave velocities and corresponding wavelengths for middle-school students, or more advanced concepts such as the influence of focal mechanism on waveforms, or how seismic waves converge at an earthquake's antipode. For those who desire a greater level of customization, including the ability to use the GMV framework with data sets not stored within the IRIS-DMS, the Matlab GMV code is now also available from the IRIS-DMS website. These GMV codes have been applied to sac-formatted data from the Quake Catcher Network (QCN). Through a collaboration between NSF-funded programs and projects (e.g., IRIS and QCN) we are striving to make these codes user friendly enough to be routinely incorporated in undergraduate and graduate seismology classes. In this way, we will help provide a research tool for students to explore never-looked-at-before data, similar to actual seismology research. As technology is advancing quickly, we now have more data than seismologists can easily examine. Given this, we anticipate students using our codes can perform a 'citizen scientist' role in that they can help us identify key signals within the unexamined vast data streams we are acquiring.

  18. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618

  19. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the Geosciences.

  20. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.

    2014-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the evolution of mantle convection as well as the sustainment of a magnetic field and habitable conditions. We believe that high-quality tax-funded science visualizations should not exclusively be used for communication among scientists, but also recycled to raise the public's awareness and appreciation of the geosciences.

  1. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    ERIC Educational Resources Information Center

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  2. Visual Illusions: An Interesting Tool to Investigate Developmental Dyslexia and Autism Spectrum Disorder

    PubMed Central

    Gori, Simone; Molteni, Massimo; Facoetti, Andrea

    2016-01-01

    A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders. PMID:27199702

  3. Landforms in Lidar: Building a Catalog of Digital Landforms for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Kleber, E.; Crosby, C.; Olds, S. E.; Arrowsmith, R.

    2012-12-01

    Lidar (Light Detection and Ranging) has emerged as a fundamental tool in the earth sciences. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be spatially represented in at sub-meter resolution and in three dimensions. While the growing availability of lidar has led to numerous new scientific findings, these data also have tremendous value for earth science education. The study of landforms is an essential and basic element of earth science education that helps students to grasp fundamental earth system processes and how they manifest themselves in the world around us. Historically students are introduced to landforms and related processes through diagrams and images seen in earth science textbooks. Lidar data, coupled with free tools such as Google Earth, provide a means to allow students and the interested public to visualize, explore, and interrogate these same landforms in an interactive manner not possible in two-dimensional remotely sensed imagery. The NSF-funded OpenTopography facility hosts data collected for geologic, hydrologic, and biological research, covering a diverse range of landscapes, and thus provides a wealth of data that could be incorporated into educational materials. OpenTopography, in collaboration with UNAVCO, are developing a catalog of classic geologic landforms depicted in lidar. Beginning with textbook-examples of features such as faults and tectonic landforms, dunes, fluvial and glacial geomorphology, and natural hazards such as landslides and volcanoes, the catalog will be an online resource for educators and the interested public. Initially, the landforms will be sourced from pre-existing datasets hosted by OpenTopography. Users will see an image representative of the landform then have the option to download the data in Google Earth KMZ format, as a digital elevation model, or the original lidar point cloud file. By providing the landform in a range of data types, educators can choose to load the image into a presentation, work with the data in a GIS, or do more advanced data analysis on the original point cloud data. In addition, for each landform, links to additional online resources and a bibliography of select publications will be provided. OpenTopography will initially seed the lidar landform catalog, but ultimately the goal is to solicit community contributions as well. We envision the catalog development as the first phase of this activity, and hope that later activities will focus on building curriculum that leverages the catalog and lidar data to teach earth system processes.

  4. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  5. Operational Monitoring of Volcanoes Using Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Dehn, J.; Bailey, J. E.; Webley, P.

    2007-12-01

    Volcanoes are some of the most geologically powerful, dynamic, visually appealing structures on the Earth's landscape. Volcanic eruptions are hard to predict, difficult to quantify and impossible to prevent, making effective monitoring a difficult proposition. In Alaska, volcanoes are an intrinsic part of the culture, with over 100 volcanoes and volcanic fields that have been active in historic time monitored by the Alaska Volcano Observatory (AVO). Observations and research are performed using a suite of methods and tools in the fields of remote sensing, seismology, geodesy and geology, producing large volumes of geospatial data. Keyhole Markup Language (KML) offers a context in which these different, and in the past disparate, data can be displayed simultaneously. Dynamic links keep these data current, allowing it to be used in an operational capacity. KML is used to display information from the aviation color codes and activity alert levels for volcanoes to locations of thermal anomalies, earthquake locations and ash plume modeling. The dynamic refresh and time primitive are used to display volcano webcam and satellite image overlays in near real-time. In addition a virtual globe browser using KML, such as Google Earth, provides an interface to further information using the hyperlink, rich- text and flash-embedding abilities supported within object description balloons. By merging these data sets in an easy to use interface, a virtual globe browser provides a better tool for scientists and emergency managers alike to mitigate volcanic crises.

  6. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  7. AppEEARS: A Simple Tool that Eases Complex Data Integration and Visualization Challenges for Users

    NASA Astrophysics Data System (ADS)

    Maiersperger, T.

    2017-12-01

    The Application for Extracting and Exploring Analysis-Ready Samples (AppEEARS) offers a simple and efficient way to perform discovery, processing, visualization, and acquisition across large quantities and varieties of Earth science data. AppEEARS brings significant value to a very broad array of user communities by 1) significantly reducing data volumes, at-archive, based on user-defined space-time-variable subsets, 2) promoting interoperability across a wide variety of datasets via format and coordinate reference system harmonization, 3) increasing the velocity of both data analysis and insight by providing analysis-ready data packages and by allowing interactive visual exploration of those packages, and 4) ensuring veracity by making data quality measures more apparent and usable and by providing standards-based metadata and processing provenance. Development and operation of AppEEARS is led by the National Aeronautics and Space Administration (NASA) Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC also partners with several other archives to extend the capability across a larger federation of geospatial data providers. Over one hundred datasets are currently available, covering a diversity of variables including land cover, population, elevation, vegetation indices, and land surface temperature. Many hundreds of users have already used this new web-based capability to make the complex tasks of data integration and visualization much simpler and more efficient.

  8. NOAA Miami Regional Library > Home

    Science.gov Websites

    Services & Education Social Networking & Other Web Tools for Earth Science Library Catalog AOML ; Education|Social Networking & Other Web Tools for Earth Science 4301 Rickenbacker Causeway, Miami, Fl

  9. A new generation of cyberinfrastructure and data services for earth system science education and research

    NASA Astrophysics Data System (ADS)

    Ramamurthy, M. K.

    2006-06-01

    A revolution is underway in the role played by cyberinfrastructure and modern data services in the conduct of research and education. We live in an era of an unprecedented data volume from diverse sources, multidisciplinary analysis and synthesis, and active, learner-centered education emphasis. Complex environmental problems such as global change and water cycle transcend disciplinary and geographic boundaries, and their solution requires integrated earth system science approaches. Contemporary education strategies recommend adopting an Earth system science approach for teaching the geosciences, employing pedagogical techniques such as enquiry-based learning. The resulting transformation in geoscience education and research creates new opportunities for advancement and poses many challenges. The success of the scientific enterprise depends heavily on the availability of a state-of-the-art, robust, and flexible cyberinfrastructure, and on the timely access to quality data, products, and tools to process, manage, analyze, integrate, publish, and visualize those data. Concomittantly, rapid advances in computing, communication, and information technologies have revolutionized the provision and use of data, tools and services. The profound consequences of Moore's Law and the explosive growth of the Internet are well known. On the other hand, how other technological trends have shaped the development of data services is less well understood. For example, the advent of digital libraries, web services, open standards and protocols have been important factors in shaping a new generation of cyberinfrastructure for solving key scientific and educational problems. This paper presents a broad overview of these issues, along with a survey of key information technology trends, and discuses how those trends are enabling new approaches to applying data services for solving geoscientific problems.

  10. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is difficult or absent.

  11. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  12. Enabling data access and interoperability at the EOS Land Processes Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Gallo, K. P.

    2009-12-01

    The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental case studies are presented, including the MODIS Reprojection Tool (MRT), the scheduling of ASTER for emergency response, the inclusion of Landsat metadata in the EOS Clearinghouse (ECHO), and the distribution of a global digital elevation model (GDEM) developed from ASTER. A software re-use case study describes integrating the MRT and the USGS Global Visualization tool (GloVis) into the MRTWeb service, developed to provide on-the-fly reprojection and reformatting of MODIS land products. Current LP DAAC activities are presented, such as the Open geographic information systems (GIS) Consortium (OGC) services provided in support of NASA’s Making Earth Science Data Records for Use in Research Environments (MEaSUREs). Near-term opportunities are discussed, such as the design and development of services in support of the soon-to-be completed on-line archive of all LP DAAC ASTER and MODIS data products. Finally, several case studies for future tools are services are explored, such as bringing algorithms to data centers, using the North American ASTER Land Emissivity Database as an example, as well as the potential for integrating data discovery and retrieval services for LP DAAC, Landsat and USGS Long-term Archive holdings.

  13. Visualizing global change: earth and biodiversity sciences for museum settings using HDTV

    NASA Astrophysics Data System (ADS)

    Duba, A.; Gardiner, N.; Kinzler, R.; Trakinski, V.

    2006-12-01

    Science Bulletins, a production group at the American Museum of Natural History (New York, USA), brings biological and Earth system science data and concepts to over 10 million visitors per year at 27 institutions around the U.S.A. Our target audience is diverse, from novice to expert. News stories and visualizations use the capabilities of satellite imagery to focus public attention on four general themes: human influences on species and ecosystems across all observable spatial extents; biotic feedbacks with the Earth's physical system; characterizing species and ecosystems; and recent events such as natural changes to ecosystems, major findings and publications, or recent syntheses. For Earth science, we use recent natural events to explain the broad scientific concepts of tectonic activity and the processes that underlie climate and weather events. Visualizations show the global, dynamic distribution of atmospheric constituents, ocean temperature and temperature anomaly, and sea ice. Long-term changes are set in contrast to seasonal and longer-term cycles so that viewers appreciate the variety of forces that affect Earth's physical system. We illustrate concepts at a level appropriate for a broad audience to learn more about the dynamic nature of Earth's biota and physical processes. Programming also includes feature stories that explain global change phenomena from the perspectives of eminent scientists and managers charged with implementing public policy based on the best available science. Over the past two and one-half years, biological science stories have highlighted applied research addressing lemur conservation in Madagascar, marine protected areas in the Bahamas, effects of urban sprawl on wood turtles in New England, and taxonomic surveys of marine jellies in Monterey Bay. Earth science stories have addressed the volcanic history of present-day Yellowstone National Park, tsunamis, the disappearance of tropical mountain glaciers, the North Atlantic Oscillation, and the oxygenation of the atmosphere. All of these visualizations and HD videos are accessible via the worldwide web with accompanying explanatory material. Periodic surveys of visitors indicate that these media are popular and are effective at communicating important biological and Earth system science concepts to the general public.

  14. Earth Science Observations, Analysis and Visualization: Roots in the 60's: Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  15. Earth Science Observations, Analysis and Visualization: Roots in the 60's - Vision for the Next Millennium

    NASA Technical Reports Server (NTRS)

    Hasler, A. Fritz; Allen, Jesse

    1999-01-01

    The Etheater presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape in standard and HDTV that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  16. Analysis of Sea Level Rise in Action

    NASA Astrophysics Data System (ADS)

    Gill, K. M.; Huang, T.; Quach, N. T.; Boening, C.

    2016-12-01

    NASA's Sea Level Change Portal provides scientists and the general public with "one-stop" source for current sea level change information and data. Sea Level Rise research is a multidisciplinary research and in order to understand its causes, scientists must be able to access different measurements and to be able to compare them. The portal includes an interactive tool, called the Data Analysis Tool (DAT), for accessing, visualizing, and analyzing observations and models relevant to the study of Sea Level Rise. Using NEXUS, an open source, big data analytic technology developed at the Jet Propulsion Laboratory, the DAT is able provide user on-the-fly data analysis on all relevant parameters. DAT is composed of three major components: A dedicated instance of OnEarth (a WMTS service), NEXUS deep data analytic platform, and the JPL Common Mapping Client (CMC) for web browser based user interface (UI). Utilizing the global imagery, a user is capable of browsing the data in a visual manner and isolate areas of interest for further study. The interfaces "Analysis" tool provides tools for area or point selection, single and/or comparative dataset selection, and a range of options, algorithms, and plotting. This analysis component utilizes the Nexus cloud computing platform to provide on-demand processing of the data within the user-selected parameters and immediate display of the results. A RESTful web API is exposed for users comfortable with other interfaces and who may want to take advantage of the cloud computing capabilities. This talk discuss how DAT enables on-the-fly sea level research. The talk will introduce the DAT with an end-to-end tour of the tool with exploration and animating of available imagery, a demonstration of comparative analysis and plotting, and how to share and export data along with images for use in publications/presentations. The session will cover what kind of data is available, what kind of analysis is possible, and what are the outputs.

  17. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want) to get some initial images loaded. Then, additional images corresponding to the region you are browsing will be loaded automatically. So far, you have access to all the co-added images. But you still do not have the galaxy cluster position information to look at. In order to see the galaxy clusters, you need to download another kmz file that tell Google Earth where to find the galaxy clusters in the co-added data region. We provide a kmz file for a few galaxy clusters in the stripe 82 region and you can download and open it with Google Earth. In the SDSS co-added region (stripe 82 region), the imagery from Google Earth itself is from the Digitized Sky Survey (2007), which is in very poor quality. In Figure1 and Figure2, we show screenshots of a cluster with and without the new co-added imagery in Google Earth. Much more details have been revealed with the deep images.« less

  18. Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.

    2017-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.

  19. Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Fremaux, C. Michael

    2013-01-01

    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV.

  20. MODIS algorithm development and data visualization using ACTS

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1992-01-01

    The study of the Earth as a system will require the merger of scientific and data resources on a much larger scale than has been done in the past. New methods of scientific research, particularly in the development of geographically dispersed, interdisciplinary teams, are necessary if we are to understand the complexity of the Earth system. Even the planned satellite missions themselves, such as the Earth Observing System, will require much more interaction between researchers and engineers if they are to produce scientifically useful data products. A key component in these activities is the development of flexible, high bandwidth data networks that can be used to move large amounts of data as well as allow researchers to communicate in new ways, such as through video. The capabilities of the Advanced Communications Technology Satellite (ACTS) will allow the development of such networks. The Pathfinder global AVHRR data set and the upcoming SeaWiFS Earthprobe mission would serve as a testbed in which to develop the tools to share data and information among geographically distributed researchers. Our goal is to develop a 'Distributed Research Environment' that can be used as a model for scientific collaboration in the EOS era. The challenge is to unite the advances in telecommunications with the parallel advances in computing and networking.

  1. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    NASA Astrophysics Data System (ADS)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  2. Spatiotemporal Visualization of Time-Series Satellite-Derived CO2 Flux Data Using Volume Rendering and Gpu-Based Interpolation on a Cloud-Driven Digital Earth

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yan, Y.; Du, Z.; Zhang, F.; Liu, R.

    2017-10-01

    The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  3. Volcanic eruptions, hazardous ash clouds and visualization tools for accessing real-time infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Webley, P.; Dehn, J.; Dean, K. G.; Macfarlane, S.

    2010-12-01

    Volcanic eruptions are a global hazard, affecting local infrastructure, impacting airports and hindering the aviation community, as seen in Europe during Spring 2010 from the Eyjafjallajokull eruption in Iceland. Here, we show how remote sensing data is used through web-based interfaces for monitoring volcanic activity, both ground based thermal signals and airborne ash clouds. These ‘web tools’, http://avo.images.alaska.edu/, provide timely availability of polar orbiting and geostationary data from US National Aeronautics and Space Administration, National Oceanic and Atmosphere Administration and Japanese Meteorological Agency satellites for the North Pacific (NOPAC) region. This data is used operationally by the Alaska Volcano Observatory (AVO) for monitoring volcanic activity, especially at remote volcanoes and generates ‘alarms’ of any detected volcanic activity and ash clouds. The webtools allow the remote sensing team of AVO to easily perform their twice daily monitoring shifts. The web tools also assist the National Weather Service, Alaska and Kamchatkan Volcanic Emergency Response Team, Russia in their operational duties. Users are able to detect ash clouds, measure the distance from the source, area and signal strength. Within the web tools, there are 40 x 40 km datasets centered on each volcano and a searchable database of all acquired data from 1993 until present with the ability to produce time series data per volcano. Additionally, a data center illustrates the acquired data across the NOPAC within the last 48 hours, http://avo.images.alaska.edu/tools/datacenter/. We will illustrate new visualization tools allowing users to display the satellite imagery within Google Earth/Maps, and ArcGIS Explorer both as static maps and time-animated imagery. We will show these tools in real-time as well as examples of past large volcanic eruptions. In the future, we will develop the tools to produce real-time ash retrievals, run volcanic ash dispersion models from detected ash clouds and develop the browser interfaces to display other remote sensing datasets, such as volcanic sulfur dioxide detection.

  4. Geospatial Visualization of Scientific Data Through Keyhole Markup Language

    NASA Astrophysics Data System (ADS)

    Wernecke, J.; Bailey, J. E.

    2008-12-01

    The development of virtual globes has provided a fun and innovative tool for exploring the surface of the Earth. However, it has been the paralleling maturation of Keyhole Markup Language (KML) that has created a new medium and perspective through which to visualize scientific datasets. Originally created by Keyhole Inc., and then acquired by Google in 2004, in 2007 KML was given over to the Open Geospatial Consortium (OGC). It became an OGC international standard on 14 April 2008, and has subsequently been adopted by all major geobrowser developers (e.g., Google, Microsoft, ESRI, NASA) and many smaller ones (e.g., Earthbrowser). By making KML a standard at a relatively young stage in its evolution, developers of the language are seeking to avoid the issues that plagued the early World Wide Web and development of Hypertext Markup Language (HTML). The popularity and utility of Google Earth, in particular, has been enhanced by KML features such as the Smithsonian volcano layer and the dynamic weather layers. Through KML, users can view real-time earthquake locations (USGS), view animations of polar sea-ice coverage (NSIDC), or read about the daily activities of chimpanzees (Jane Goodall Institute). Perhaps even more powerful is the fact that any users can create, edit, and share their own KML, with no or relatively little knowledge of manipulating computer code. We present an overview of the best current scientific uses of KML and a guide to how scientists can learn to use KML themselves.

  5. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  6. A Visual Training Tool for Teaching Kanji to Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ikeshita-Yamazoe, Hanae; Miyao, Masutomo

    2016-01-01

    We developed a visual training tool to assist children with developmental dyslexia in learning to recognize and understand Chinese characters (kanji). The visual training tool presents the strokes of a kanji character as separate shapes and requires students to use these fragments to construct the character. Two types of experiments were conducted…

  7. An Exploratory Study of Interactivity in Visualization Tools: "Flow" of Interaction

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Parsons, Paul C.; Wu, Hsien-Chi; Sedig, Kamran

    2010-01-01

    This paper deals with the design of interactivity in visualization tools. There are several factors that can be used to guide the analysis and design of the interactivity of these tools. One such factor is flow, which is concerned with the duration of interaction with visual representations of information--interaction being the actions performed…

  8. AR4VI: AR as an Accessibility Tool for People with Visual Impairments

    PubMed Central

    Coughlan, James M.; Miele, Joshua

    2017-01-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness – an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well. PMID:29303163

  9. AR4VI: AR as an Accessibility Tool for People with Visual Impairments.

    PubMed

    Coughlan, James M; Miele, Joshua

    2017-10-01

    Although AR technology has been largely dominated by visual media, a number of AR tools using both visual and auditory feedback have been developed specifically to assist people with low vision or blindness - an application domain that we term Augmented Reality for Visual Impairment (AR4VI). We describe two AR4VI tools developed at Smith-Kettlewell, as well as a number of pre-existing examples. We emphasize that AR4VI is a powerful tool with the potential to remove or significantly reduce a range of accessibility barriers. Rather than being restricted to use by people with visual impairments, AR4VI is a compelling universal design approach offering benefits for mainstream applications as well.

  10. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.

  11. The Whole World In Your Hands: Using an Interactive Virtual Reality Sandbox for Geospatial Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clucas, T.; Wirth, G. S.; Broderson, D.

    2014-12-01

    Traditional geospatial education tools such as maps and computer screens don't convey the rich topography present on Earth. Translating lines on a contour lines on a topo map to relief in a landscape can be a challenging concept to convey.A partnership between Alaska EPSCoR and the Geographic Information Network of Alaska has successfully constructed an Interactive Virtual Reality Sandbox, an education tool that in real-time projects and updates topographic contours on the surface of a sandbox. The sandbox has been successfully deployed at public science events as well as professional geospatial and geodesy conferences. Landscape change, precipitation, and evaporation can all be modeled, much to the delight of our enthusiasts, who range in age from 3 to 90. Visually, as well as haptically, demonstrating the effects of events (such as dragging a hand through the sand) on a landscape, as well as the intuitive realization of meaning of topographic contour lines, has proven to be engaging.

  12. Lifemap: Exploring the Entire Tree of Life.

    PubMed

    de Vienne, Damien M

    2016-12-01

    The Tree of Life (ToL) is meant to be a unique representation of the evolutionary relationships between all species on earth. Huge efforts are made to assemble such a large tree, helped by the decrease of sequencing costs and improved methods to reconstruct and combine phylogenies, but no tool exists today to explore the ToL in its entirety in a satisfying manner. By combining methods used in modern cartography, such as OpenStreetMap, with a new way of representing tree-like structures, I created Lifemap, a tool allowing the exploration of a complete representation of the ToL (between 800,000 and 2.2 million species depending on the data source) in a zoomable interface. A server version of Lifemap also allows users to visualize their own trees. This should help researchers in ecology and evolutionary biology in their everyday work, but may also permit the diffusion to a broader audience of our current knowledge of the evolutionary relationships linking all organisms.

  13. Scientific Benefits of Space Science Models Archiving at Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Kuznetsova, Maria M.; Berrios, David; Chulaki, Anna; Hesse, Michael; MacNeice, Peter J.; Maddox, Marlo M.; Pulkkinen, Antti; Rastaetter, Lutz; Taktakishvili, Aleksandre

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the-art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. CCMC provides a web-based Run-on-Request system, by which the interested scientist can request simulations for a broad range of space science problems. To allow the models to be driven by data relevant to particular events CCMC developed a tool that automatically downloads data from data archives and transform them to required formats. CCMC also provides a tailored web-based visualization interface for the model output, as well as the capability to download the simulation output in portable format. CCMC offers a variety of visualization and output analysis tools to aid scientists in interpretation of simulation results. During eight years since the Run-on-request system became available the CCMC archived the results of almost 3000 runs that are covering significant space weather events and time intervals of interest identified by the community. The simulation results archived at CCMC also include a library of general purpose runs with modeled conditions that are used for education and research. Archiving results of simulations performed in support of several Modeling Challenges helps to evaluate the progress in space weather modeling over time. We will highlight the scientific benefits of CCMC space science model archive and discuss plans for further development of advanced methods to interact with simulation results.

  14. A Dedicated Environmental Remote Sensing Facility for the Columbia Earth Institute

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.; Small, Christopher

    1999-01-01

    This paper presents a final technical report on a dedicated environmental remote sensing facility for the Columbia Earth Institute. The above-referenced award enabled the Lamont-Doherty Earth Observatory to establish a state-of-the-art remote sensing image analysis and data visualization facility to serve the research and educational needs of students and staff at Lamont and the Columbia Earth Institute.

  15. Exploring and Visualizing A-Train Instrument Data

    NASA Technical Reports Server (NTRS)

    Kempler, S.; Leptoukh, G.; Berrick, S.; Stephens, G.; Winker, D.; Reinke, D.

    2007-01-01

    The succession of US and international satellites that follow each other in close succession, known as the A-Train, affords an opportunity to atmospheric researchers that no single platform could provide: Increasing the number of observations at any given geographic location.. . a more complete "virtual science platform". However, vertically and horizontally, co-registering and regridding datasets from independently developed missions, Aqua, Calipso, Cloudsat, Parasol, and Aura, so that they can be inter-compared can be daunting to some, and may be repeated by many. Scientists will individually spend much of their time and resources acquiring A-Train datasets of interest residing at various locations, developing algorithms to match up and graph datasets along the A-Train track, and search through large amounts of data for areas and/or phenomena of interest. The aggregate amount of effort that can be expended on repeating pre-science tasks could climb into the tens of millions of dollars. The goal of the A-Train Data Depot (ATDD) is to enable free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) is accomplished by through the ATDDs Giovanni data analysis and visualization tool. Giovanni brings together data from Aqua (MODIS, AIRS, AMSR-E), Cloudsat (cloud profiling radar) and Calipso (CALIOP, IIR), as well as the Aura (OMI, MLS, HIRDLS, TES) to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. This easy to learn and use exploration tool will allow users to create vertical profiles of any desired A-Train dataset, for any given time of choice. This presentation shows the power of Giovanni by describing and illustrating how this tool facilitates and aids A-Train science and research. A web based display system Giovanni provides users with the capability of creating co-located profile images of temperature and humidity data from the MODIS, MLS and AIRS instruments for a user specified time and spatial area. In addition, Cloud and Aerosol profiles may also be displayed for the Cloudsat and Caliop instruments. The ability to modify horizontal and vertical axis range, data range and dynamic color range is also provided. Two dimensional strip plots of MODIS, AIRS, OM1 and POLDER parameters, co-located along the Cloudsat reference track, can also be plotted along with the Cloudsat cloud profiling data. Center swath pixels for the same parameters can also be shown as line plots overlaying the Cloudsat or Calipso profile images. Images and subsetted data produced in each analysis run may be downloaded. Users truly can explore and discover data specific to their needs prior to ever transferring data to their analysis tools.

  16. Earth Regime Network Evolution Study (ERNESt)

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  17. World Wind 3D Earth Viewing

    NASA Technical Reports Server (NTRS)

    Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom

    2007-01-01

    World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.

  18. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  19. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  20. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. The EPOS Thematic Services will rely in part on strong and sustainable participation by national organisations and international consortia. While this distributed architecture will contribute to ensure pan European involvement in EPOS, it also raises specific challenges: ensuring similar granularity of services, compatibility of technical solutions, homogeneous legal agreements and sustainable financial engagement from the partner institutions and organisations. EPOS is engaging actions to address all of these issues during 2016-2017, after which the services will enter a final validation phase by the EPOS Board of Governmental Representatives.

  1. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  2. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  3. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  4. Building a cloud based distributed active archive data center

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-04-01

    NASA's Earth Science Data System (ESDS) Program serves as a central cog in facilitating the implementation of NASA's Earth Science strategic plan. Since 1994, the ESDS Program has committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data. An independent review was conducted in 2015 to holistically review the EOSDIS in order to identify gaps. The review recommendations were to investigate two areas: one, whether commercial cloud providers offer potential for storage, processing, and operational efficiencies, and two, the potential development of new data access and analysis paradigms. In response, ESDS has initiated several prototypes investigating the advantages and risks of leveraging cloud computing. This poster will provide an overview of one such prototyping activity, "Cumulus". Cumulus is being designed and developed as a "native" cloud-based data ingest, archive and management system that can be used for all future NASA Earth science data streams. The long term vision for Cumulus, its requirements, overall architecture, and implementation details, as well as lessons learned from the completion of the first phase of this prototype will be covered. We envision Cumulus will foster design of new analysis/visualization tools to leverage collocated data from all of the distributed DAACs as well as elastic cloud computing resources to open new research opportunities.

  5. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  6. New Hypervelocity Terminal Intercept Guidance Systems for Deflecting/Disrupting Hazardous Asteroids

    NASA Astrophysics Data System (ADS)

    Lyzhoft, Joshua Richard

    Computational modeling and simulations of visual and infrared (IR) sensors are investigated for a new hypervelocity terminal guidance system of intercepting small asteroids (50 to 150 meters in diameter). Computational software tools for signal-to-noise ratio estimation of visual and IR sensors, estimation of minimum and maximum ranges of target detection, and GPU (Graphics Processing Units)-accelerated simulations of the IR-based terminal intercept guidance systems are developed. Scaled polyhedron models of known objects, such as the Rosetta mission's Comet 67P/C-G, NASA's OSIRIS-REx Bennu, and asteroid 433 Eros, are utilized in developing a GPU-based simulation tool for the IR-based terminal intercept guidance systems. A parallelized-ray tracing algorithm for simulating realistic surface-to-surface shadowing of irregular-shaped asteroids or comets is developed. Polyhedron solid-angle approximation is also considered. Using these computational models, digital image processing is investigated to determine single or multiple impact locations to assess the technical feasibility of new planetary defense mission concepts of utilizing a Hypervelocity Asteroid Intercept Vehicle (HAIV) or a Multiple Kinetic-energy Interceptor Vehicle (MKIV). Study results indicate that the IR-based guidance system outperforms the visual-based system in asteroid detection and tracking. When using an IR sensor, predicting impact locations from filtered images resulted in less jittery spacecraft control accelerations than conducting missions with a visual sensor. Infrared sensors have also the possibility to detect asteroids at greater distances, and if properly used, can aid in terminal phase guidance for proper impact location determination for the MKIV system. Emerging new topics of the Minimum Orbit Intersection Distance (MOID) estimation and the Full-Two-Body Problem (F2BP) formulation are also investigated to assess a potential near-Earth object collision risk and the proximity gravity effects of an irregular-shaped binary-asteroid target on a standoff nuclear explosion mission.

  7. Enabling Research Tools for Sustained Climate Assessment

    NASA Technical Reports Server (NTRS)

    Leidner, Allison K.; Bosilovich, Michael G.; Jasinski, Michael F.; Nemani, Ramakrishna R.; Waliser, Duane Edward; Lee, Tsengdar J.

    2016-01-01

    The U.S. Global Change Research Program Sustained Assessment process benefits from long-term investments in Earth science research that enable the scientific community to conduct assessment-relevant science. To this end, NASA initiated several research programs over the past five years to support the Earth observation community in developing indicators, datasets, research products, and tools to support ongoing and future National Climate Assessments. These activities complement NASA's ongoing Earth science research programs. One aspect of the assessment portfolio funds four "enabling tools" projects at NASA research centers. Each tool leverages existing capacity within the center, but has developed tailored applications and products for National Climate Assessments. The four projects build on the capabilities of a global atmospheric reanalysis (MERRA-2), a continental U.S. land surface reanalysis (NCA-LDAS), the NASA Earth Exchange (NEX), and a Regional Climate Model Evaluation System (RCMES). Here, we provide a brief overview of each enabling tool, highlighting the ways in which it has advanced assessment science to date. We also discuss how the assessment community can access and utilize these tools for National Climate Assessments and other sustained assessment activities.

  8. Survey of Network Visualization Tools

    DTIC Science & Technology

    2007-12-01

    Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to

  9. Analysis of the Pointing Accuracy of a 6U CubeSat Mission for Proximity Operations and Resident Space Object Imaging

    DTIC Science & Technology

    2013-05-29

    not necessarily express the views of and should not be attributed to ESA. 1 and visual navigation to maneuver autonomously to reduce the size of the...successful orbit and three-dimensional imaging of an RSO, using passive visual -only navigation and real-time near-optimal guidance. The mission design...Kit ( STK ) in the Earth-centered Earth-fixed (ECF) co- ordinate system, loaded to Simulink and transformed to the BFF for calculation of the SRP

  10. Visualizing the Fundamental Physics of Rapid Earth Penetration Using Transparent Soils

    DTIC Science & Technology

    2015-03-01

    L R E P O R T DTRA-TR-14-80 Visualizing the Fundamental Physics of Rapid Earth Penetration Using Transparent Soils Approved for public... ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...dose absorbed) roentgen shake slug torr (mm Hg, 0 C) *The bacquerel (Bq) is the SI unit of radioactivity ; 1 Bq = 1 event/s. **The Gray (GY) is

  11. Do Bedside Visual Tools Improve Patient and Caregiver Satisfaction? A Systematic Review of the Literature.

    PubMed

    Goyal, Anupama A; Tur, Komalpreet; Mann, Jason; Townsend, Whitney; Flanders, Scott A; Chopra, Vineet

    2017-11-01

    Although common, the impact of low-cost bedside visual tools, such as whiteboards, on patient care is unclear. To systematically review the literature and assess the influence of bedside visual tools on patient satisfaction. Medline, Embase, SCOPUS, Web of Science, CINAHL, and CENTRAL. Studies of adult or pediatric hospitalized patients reporting physician identification, understanding of provider roles, patient-provider communication, and satisfaction with care from the use of visual tools were included. Outcomes were categorized as positive, negative, or neutral based on survey responses for identification, communication, and satisfaction. Two reviewers screened studies, extracted data, and assessed the risk of study bias. Sixteen studies met the inclusion criteria. Visual tools included whiteboards (n = 4), physician pictures (n = 7), whiteboard and picture (n = 1), electronic medical record-based patient portals (n = 3), and formatted notepads (n = 1). Tools improved patients' identification of providers (13/13 studies). The impact on understanding the providers' roles was largely positive (8/10 studies). Visual tools improved patient-provider communication (4/5 studies) and satisfaction (6/8 studies). In adults, satisfaction varied between positive with the use of whiteboards (2/5 studies) and neutral with pictures (1/5 studies). Satisfaction related to pictures in pediatric patients was either positive (1/3 studies) or neutral (1/3 studies). Differences in tool format (individual pictures vs handouts with pictures of all providers) and study design (randomized vs cohort) may explain variable outcomes. The use of bedside visual tools appears to improve patient recognition of providers and patient-provider communication. Future studies that include better design and outcome assessment are necessary before widespread use can be recommended. © 2017 Society of Hospital Medicine

  12. Visual Impairment Screening Assessment (VISA) tool: pilot validation.

    PubMed

    Rowe, Fiona J; Hepworth, Lauren R; Hanna, Kerry L; Howard, Claire

    2018-03-06

    To report and evaluate a new Vision Impairment Screening Assessment (VISA) tool intended for use by the stroke team to improve identification of visual impairment in stroke survivors. Prospective case cohort comparative study. Stroke units at two secondary care hospitals and one tertiary centre. 116 stroke survivors were screened, 62 by naïve and 54 by non-naïve screeners. Both the VISA screening tool and the comprehensive specialist vision assessment measured case history, visual acuity, eye alignment, eye movements, visual field and visual inattention. Full completion of VISA tool and specialist vision assessment was achieved for 89 stroke survivors. Missing data for one or more sections typically related to patient's inability to complete the assessment. Sensitivity and specificity of the VISA screening tool were 90.24% and 85.29%, respectively; the positive and negative predictive values were 93.67% and 78.36%, respectively. Overall agreement was significant; k=0.736. Lowest agreement was found for screening of eye movement and visual inattention deficits. This early validation of the VISA screening tool shows promise in improving detection accuracy for clinicians involved in stroke care who are not specialists in vision problems and lack formal eye training, with potential to lead to more prompt referral with fewer false positives and negatives. Pilot validation indicates acceptability of the VISA tool for screening of visual impairment in stroke survivors. Sensitivity and specificity were high indicating the potential accuracy of the VISA tool for screening purposes. Results of this study have guided the revision of the VISA screening tool ahead of full clinical validation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Audio-video decision support for patients: the documentary genré as a basis for decision aids.

    PubMed

    Volandes, Angelo E; Barry, Michael J; Wood, Fiona; Elwyn, Glyn

    2013-09-01

    Decision support tools are increasingly using audio-visual materials. However, disagreement exists about the use of audio-visual materials as they may be subjective and biased. This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio-visual materials. Three concerns arising from documentary film studies as they apply to the use of audio-visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio-visual materials (selection bias) and how to ensure objectivity (editorial bias). Decision science needs to start a debate about how audio-visual materials are to be used in decision support tools. Simply because audio-visual materials may be subjective and open to bias does not mean that we should not use them. Methods need to be found to ensure consensus around balance and editorial control, such that audio-visual materials can be used. © 2011 John Wiley & Sons Ltd.

  14. Audio‐video decision support for patients: the documentary genré as a basis for decision aids

    PubMed Central

    Volandes, Angelo E.; Barry, Michael J.; Wood, Fiona; Elwyn, Glyn

    2011-01-01

    Abstract Objective  Decision support tools are increasingly using audio‐visual materials. However, disagreement exists about the use of audio‐visual materials as they may be subjective and biased. Methods  This is a literature review of the major texts for documentary film studies to extrapolate issues of objectivity and bias from film to decision support tools. Results  The key features of documentary films are that they attempt to portray real events and that the attempted reality is always filtered through the lens of the filmmaker. The same key features can be said of decision support tools that use audio‐visual materials. Three concerns arising from documentary film studies as they apply to the use of audio‐visual materials in decision support tools include whose perspective matters (stakeholder bias), how to choose among audio‐visual materials (selection bias) and how to ensure objectivity (editorial bias). Discussion  Decision science needs to start a debate about how audio‐visual materials are to be used in decision support tools. Simply because audio‐visual materials may be subjective and open to bias does not mean that we should not use them. Conclusion  Methods need to be found to ensure consensus around balance and editorial control, such that audio‐visual materials can be used. PMID:22032516

  15. Design of Scalable and Effective Earth Science Collaboration Tool

    NASA Astrophysics Data System (ADS)

    Maskey, M.; Ramachandran, R.; Kuo, K. S.; Lynnes, C.; Niamsuwan, N.; Chidambaram, C.

    2014-12-01

    Collaborative research is growing rapidly. Many tools including IDEs are now beginning to incorporate new collaborative features. Software engineering research has shown the effectiveness of collaborative programming and analysis. In particular, drastic reduction in software development time resulting in reduced cost has been highlighted. Recently, we have witnessed the rise of applications that allow users to share their content. Most of these applications scale such collaboration using cloud technologies. Earth science research needs to adopt collaboration technologies to reduce redundancy, cut cost, expand knowledgebase, and scale research experiments. To address these needs, we developed the Earth science collaboration workbench (CWB). CWB provides researchers with various collaboration features by augmenting their existing analysis tools to minimize learning curve. During the development of the CWB, we understood that Earth science collaboration tasks are varied and we concluded that it is not possible to design a tool that serves all collaboration purposes. We adopted a mix of synchronous and asynchronous sharing methods that can be used to perform collaboration across time and location dimensions. We have used cloud technology for scaling the collaboration. Cloud has been highly utilized and valuable tool for Earth science researchers. Among other usages, cloud is used for sharing research results, Earth science data, and virtual machine images; allowing CWB to create and maintain research environments and networks to enhance collaboration between researchers. Furthermore, collaborative versioning tool, Git, is integrated into CWB for versioning of science artifacts. In this paper, we present our experience in designing and implementing the CWB. We will also discuss the integration of collaborative code development use cases for data search and discovery using NASA DAAC and simulation of satellite observations using NASA Earth Observing System Simulation Suite (NEOS3).

  16. Earth Science Mobile App Development for Non-Programmers

    NASA Astrophysics Data System (ADS)

    Oostra, D.; Crecelius, S.; Lewis, P.; Chambers, L. H.

    2012-08-01

    A number of cloud based visual development tools have emerged that provide methods for developing mobile applications quickly and without previous programming experience. The MY NASA DATA (MND) team would like to begin a discussion on how we can best leverage current mobile app technologies and available Earth science datasets. The MY NASA DATA team is developing an approach based on two main ideas. The first is to teach our constituents how to create mobile applications that interact with NASA datasets; the second is to provide web services or Application Programming Interfaces (APIs) that create sources of data that educators, students and scientists can use in their own mobile app development. This framework allows data providers to foster mobile application development and interaction while not becoming a software clearing house. MY NASA DATA's research has included meetings with local data providers, educators, libraries and individuals. A high level of interest has been identified from initial discussions and interviews. This overt interest combined with the marked popularity of mobile applications in our societies has created a new channel for outreach and communications with and between the science and educational communities.

  17. Ionospheric Simulation System for Satellite Observations and Global Assimilative Model Experiments - ISOGAME

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga; Stephens, Philip; Iijima, Bryron A.

    2013-01-01

    Modeling and imaging the Earth's ionosphere as well as understanding its structures, inhomogeneities, and disturbances is a key part of NASA's Heliophysics Directorate science roadmap. This invention provides a design tool for scientific missions focused on the ionosphere. It is a scientifically important and technologically challenging task to assess the impact of a new observation system quantitatively on our capability of imaging and modeling the ionosphere. This question is often raised whenever a new satellite system is proposed, a new type of data is emerging, or a new modeling technique is developed. The proposed constellation would be part of a new observation system with more low-Earth orbiters tracking more radio occultation signals broadcast by Global Navigation Satellite System (GNSS) than those offered by the current GPS and COSMIC observation system. A simulation system was developed to fulfill this task. The system is composed of a suite of software that combines the Global Assimilative Ionospheric Model (GAIM) including first-principles and empirical ionospheric models, a multiple- dipole geomagnetic field model, data assimilation modules, observation simulator, visualization software, and orbit design, simulation, and optimization software.

  18. Operational Space-Assisted Irrigation Advisory Services: Overview Of And Lessons Learned From The Project DEMETER

    NASA Astrophysics Data System (ADS)

    Osann Jochum, M. A.; Demeter Partners

    2006-08-01

    The project DEMETER (DEMonstration of Earth observation TEchnologies in Routine irrigation advisory services) was dedicated to assessing and demonstrating improvements introduced by Earth observation (EO) and Information and Communication Technologies (ICT) in farm and Irrigation Advisory Service (IAS) day-to-day operations. The DEMETER concept of near-real-time delivery of EO-based irrigation scheduling information to IAS and farmers has proven to be valid. The operationality of the space segment was demonstrated for Landsat 5-TM in the Barrax pilot zone during the 2004 and 2005 irrigation campaigns. Extra-fast image delivery and quality controlled operational processing make the EO-based crop coefficient maps available at the same speed and quality as ground-based data (point samples), while significantly extending the spatial coverage and reducing service cost. Leading-edge online analysis and visualization tools provide easy, intuitive access to the information and personalized service to users. First feedback of users at IAS and farmer level is encouraging. The paper gives an overview of the project and its main achievements.

  19. Visual perception and interception of falling objects: a review of evidence for an internal model of gravity.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-09-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. However, there are limitations in the visual system that raise questions about the general validity of these theories. Most notably, vision is poorly sensitive to arbitrary accelerations. How then does the brain deal with the motion of objects accelerated by Earth's gravity? Here we review evidence in favor of the view that the brain makes the best estimate about target motion based on visually measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from the expected kinetics in the Earth's gravitational field.

  20. Using Enabling Technologies to Facilitate the Comparison of Satellite Observations with the Model Forecasts for Hurricane Study

    NASA Astrophysics Data System (ADS)

    Li, P.; Knosp, B.; Hristova-Veleva, S. M.; Niamsuwan, N.; Johnson, M. P.; Shen, T. P. J.; Tanelli, S.; Turk, J.; Vu, Q. A.

    2014-12-01

    Due to their complexity and volume, the satellite data are underutilized in today's hurricane research and operations. To better utilize these data, we developed the JPL Tropical Cyclone Information System (TCIS) - an Interactive Data Portal providing fusion between Near-Real-Time satellite observations and model forecasts to facilitate model evaluation and improvement. We have collected satellite observations and model forecasts in the Atlantic Basin and the East Pacific for the hurricane seasons since 2010 and supported the NASA Airborne Campaigns for Hurricane Study such as the Genesis and Rapid Intensification Processes (GRIP) in 2010 and the Hurricane and Severe Storm Sentinel (HS3) from 2012 to 2014. To enable the direct inter-comparisons of the satellite observations and the model forecasts, the TCIS was integrated with the NASA Earth Observing System Simulator Suite (NEOS3) to produce synthetic observations (e.g. simulated passive microwave brightness temperatures) from a number of operational hurricane forecast models (HWRF and GFS). An automated process was developed to trigger NEOS3 simulations via web services given the location and time of satellite observations, monitor the progress of the NEOS3 simulations, display the synthetic observation and ingest them into the TCIS database when they are done. In addition, three analysis tools, the joint PDF analysis of the brightness temperatures, ARCHER for finding the storm-center and the storm organization and the Wave Number Analysis tool for storm asymmetry and morphology analysis were integrated into TCIS to provide statistical and structural analysis on both observed and synthetic data. Interactive tools were built in the TCIS visualization system to allow the spatial and temporal selections of the datasets, the invocation of the tools with user specified parameters, and the display and the delivery of the results. In this presentation, we will describe the key enabling technologies behind the design of the TCIS interactive data portal and analysis tools, including the spatial database technology for the representation and query of the level 2 satellite data, the automatic process flow using web services, the interactive user interface using the Google Earth API, and a common and expandable Python wrapper to invoke the analysis tools.

  1. Experience Report: Visual Programming in the Real World

    NASA Technical Reports Server (NTRS)

    Baroth, E.; Hartsough, C

    1994-01-01

    This paper reports direct experience with two commercial, widely used visual programming environments. While neither of these systems is object oriented, the tools have transformed the development process and indicate a direction for visual object oriented tools to proceed.

  2. To crash or not to crash: how do hoverflies cope with free-fall situations and weightlessness?

    PubMed

    Goulard, Roman; Vercher, Jean-Louis; Viollet, Stéphane

    2016-08-15

    Insects' aptitude to perform hovering, automatic landing and tracking tasks involves accurately controlling their head and body roll and pitch movements, but how this attitude control depends on an internal estimation of gravity orientation is still an open question. Gravity perception in flying insects has mainly been studied in terms of grounded animals' tactile orientation responses, but it has not yet been established whether hoverflies use gravity perception cues to detect a nearly weightless state at an early stage. Ground-based microgravity simulators provide biologists with useful tools for studying the effects of changes in gravity. However, in view of the cost and the complexity of these set-ups, an alternative Earth-based free-fall procedure was developed with which flying insects can be briefly exposed to microgravity under various visual conditions. Hoverflies frequently initiated wingbeats in response to an imposed free fall in all the conditions tested, but managed to avoid crashing only in variably structured visual environments, and only episodically in darkness. Our results reveal that the crash-avoidance performance of these insects in various visual environments suggests the existence of a multisensory control system based mainly on vision rather than gravity perception. © 2016. Published by The Company of Biologists Ltd.

  3. Can Interactive Visualization Tools Engage and Support Pre-University Students in Exploring Non-Trivial Mathematical Concepts?

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2010-01-01

    Many students find it difficult to engage with mathematical concepts. As a relatively new class of learning tools, visualization tools may be able to promote higher levels of engagement with mathematical concepts. Often, development of new tools may outpace empirical evaluations of the effectiveness of these tools, especially in educational…

  4. Integrated Web-Based Access to and use of Satellite Remote Sensing Data for Improved Decision Making in Hydrologic Applications

    NASA Astrophysics Data System (ADS)

    Teng, W.; Chiu, L.; Kempler, S.; Liu, Z.; Nadeau, D.; Rui, H.

    2006-12-01

    Using NASA satellite remote sensing data from multiple sources for hydrologic applications can be a daunting task and requires a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time-consuming task that must be undertaken before the core investigation can begin. In order to facilitate such investigations, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has developed the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure or "Giovanni," which supports a family of Web interfaces (instances) that allow users to perform interactive visualization and analysis online without downloading any data. Two such Giovanni instances are particularly relevant to hydrologic applications: the Tropical Rainfall Measuring Mission (TRMM) Online Visualization and Analysis System (TOVAS) and the Agricultural Online Visualization and Analysis System (AOVAS), both highly popular and widely used for a variety of applications, including those related to several NASA Applications of National Priority, such as Agricultural Efficiency, Disaster Management, Ecological Forecasting, Homeland Security, and Public Health. Dynamic, context- sensitive Web services provided by TOVAS and AOVAS enable users to seamlessly access NASA data from within, and deeply integrate the data into, their local client environments. One example is between TOVAS and Florida International University's TerraFly, a Web-enabled system that serves a broad segment of the research and applications community, by facilitating access to various textual, remotely sensed, and vector data. Another example is between AOVAS and the U.S. Department of Agriculture Foreign Agricultural Service (USDA FAS)'s Crop Explorer, the primary decision support tool used by FAS to monitor the production, supply, and demand of agricultural commodities worldwide. AOVAS is also part of GES DISC's Agricultural Information System (AIS), which can operationally provide satellite remote sensing data products (e.g., near- real-time rainfall) and analysis services to agricultural users. AIS enables the remote, interoperable access to distributed data, by using the GrADS-Data Server (GDS) and the Open Geospatial Consortium (OGC)- compliant MapServer. The latter allows the access of AIS data from any OGC-compliant client, such as the Earth-Sun System Gateway (ESG) or Google Earth. The Giovanni system is evolving towards a Service- Oriented Architecture and is highly customizable (e.g., adding new products or services), thus availing the hydrologic applications user community of Giovanni's simple-to-use and powerful capabilities to improve decision-making.

  5. Seamless online science workflow development and collaboration using IDL and the ENVI Services Engine

    NASA Astrophysics Data System (ADS)

    Harris, A. T.; Ramachandran, R.; Maskey, M.

    2013-12-01

    The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL Workbench, coupled with ESE for execution in the cloud, asynchronous workflows could be executed in batch mode on large data in the cloud. We envision that a scientist will initially develop a scientific workflow locally on a small set of data. Once tested, the scientist will deploy the workflow to the cloud for execution. Depending on the results, the scientist may share the workflow and results, allowing them to be stored in a community catalog and instantly loaded into the IDL Workbench of other scientists. Thereupon, scientists can clone and modify or execute the workflow with different input parameters. The Collaborative Workbench will provide a platform for collaboration in the cloud, helping Earth scientists solve big-data problems in the Earth and planetary sciences.

  6. Got Graphs? An Assessment of Data Visualization Tools

    NASA Technical Reports Server (NTRS)

    Schaefer, C. M.; Foy, M.

    2015-01-01

    Graphs are powerful tools for simplifying complex data. They are useful for quickly assessing patterns and relationships among one or more variables from a dataset. As the amount of data increases, it becomes more difficult to visualize potential associations. Lifetime Surveillance of Astronaut Health (LSAH) was charged with assessing its current visualization tools along with others on the market to determine whether new tools would be useful for supporting NASA's occupational surveillance effort. It was concluded by members of LSAH that the current tools hindered their ability to provide quick results to researchers working with the department. Due to the high volume of data requests and the many iterations of visualizations requested by researchers, software with a better ability to replicate graphs and edit quickly could improve LSAH's efficiency and lead to faster research results.

  7. Delivery of Forecasted Atmospheric Ozone and Dust for the New Mexico Environmental Public Health Tracking System - An Open Source Geospatial Solution

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Sanchez-Silva, R.; Cavner, J. A.

    2010-12-01

    New Mexico's Environmental Public Health Tracking System (EPHTS), funded by the Centers for Disease Control (CDC) Environmental Public Health Tracking Network (EPHTN), aims to improve health awareness and services by linking health effects data with levels and frequency of environmental exposure. As a public health decision-support system, EPHTS systems include: state-of-the-art statistical analysis tools; geospatial visualization tools; data discovery, extraction, and delivery tools; and environmental/public health linkage information. As part of its mandate, EPHTS issues public health advisories and forecasts of environmental conditions that have consequences for human health. Through a NASA-funded partnership between the University of New Mexico and the University of Arizona, NASA Earth Science results are fused into two existing models (the Dust Regional Atmospheric Model (DREAM) and the Community Multiscale Air Quality (CMAQ) model) in order to improve forecasts of atmospheric dust, ozone, and aerosols. The results and products derived from the outputs of these models are made available to an Open Source mapping component of the New Mexico EPHTS. In particular, these products are integrated into a Django content management system using GeoDjango, GeoAlchemy, and other OGC-compliant geospatial libraries written in the Python and C++ programming languages. Capabilities of the resultant mapping system include indicator-based thematic mapping, data delivery, and analytical capabilities. DREAM and CMAQ outputs can be inspected, via REST calls, through temporal and spatial subsetting of the atmospheric concentration data across analytical units employed by the public health community. This paper describes details of the architecture and integration of NASA Earth Science into the EPHTS decision-support system.

  8. HydroViz: A web-based hydrologic observatory for enhancing hydrology and earth-science education

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Ma, Y.; Williams, D.

    2010-12-01

    The main goal of this study is to develop a virtual hydrologic observatory (HydroViz) that integrates hydrologic field observations with numerical simulations by taking advantage of advances in hydrologic field & remote sensing data, computer modeling, scientific visualization, and web resources and internet accessibility. The HydroViz system is a web-based teaching tool that can run on any web browsers. It leverages the strength of Google Earth to provide authentic and hands-on activities to improve learning. Evaluation of the HydroViz was performed in three engineering courses (a senior level course and two Introductory courses at two different universities). Evaluation results indicate that HydroViz provides an improvement over existing engineering hydrology curriculum. HydroViz was effective in facilitating students’ learning and understanding of hydrologic concepts & increasing related skills. HydroViz was much more effective for students in engineering hydrology classes rather than at the freshmen introduction to civil engineering class. We found that HydroViz has great potential for freshmen audience. Even though HydroViz was challenging to some freshmen, most of them still learned the key concepts and the tool increased the enthusiasm for half of the freshmen. The evaluation provided suggestions to create a simplified version of HydroViz for freshmen-level courses students. It identified concepts and tasks that might be too challenging or irrelevant to the freshmen and areas where we could provide more guidance in the tool. After the first round of evaluation, the development team has made significant improvements to HydroViz, which would further improve its effectiveness for next round of class applications which is planned for the Fall of 2010 to take place in 5 classes at 4 different institutions.

  9. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics

    NASA Astrophysics Data System (ADS)

    Hobley, Daniel E. J.; Adams, Jordan M.; Nudurupati, Sai Siddhartha; Hutton, Eric W. H.; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Tucker, Gregory E.

    2017-01-01

    The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing (1) a set of tools and existing grid structures - including both regular and irregular grids - to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third-party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.

  10. Using component technologies for web based wavelet enhanced mammographic image visualization.

    PubMed

    Sakellaropoulos, P; Costaridou, L; Panayiotakis, G

    2000-01-01

    The poor contrast detectability of mammography can be dealt with by domain specific software visualization tools. Remote desktop client access and time performance limitations of a previously reported visualization tool are addressed, aiming at more efficient visualization of mammographic image resources existing in web or PACS image servers. This effort is also motivated by the fact that at present, web browsers do not support domain-specific medical image visualization. To deal with desktop client access the tool was redesigned by exploring component technologies, enabling the integration of stand alone domain specific mammographic image functionality in a web browsing environment (web adaptation). The integration method is based on ActiveX Document Server technology. ActiveX Document is a part of Object Linking and Embedding (OLE) extensible systems object technology, offering new services in existing applications. The standard DICOM 3.0 part 10 compatible image-format specification Papyrus 3.0 is supported, in addition to standard digitization formats such as TIFF. The visualization functionality of the tool has been enhanced by including a fast wavelet transform implementation, which allows for real time wavelet based contrast enhancement and denoising operations. Initial use of the tool with mammograms of various breast structures demonstrated its potential in improving visualization of diagnostic mammographic features. Web adaptation and real time wavelet processing enhance the potential of the previously reported tool in remote diagnosis and education in mammography.

  11. Use of Open Standards and Technologies at the Lunar Mapping and Modeling Project

    NASA Astrophysics Data System (ADS)

    Law, E.; Malhotra, S.; Bui, B.; Chang, G.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Sadaqathulla, S.; Rodriguez, L.

    2011-12-01

    The Lunar Mapping and Modeling Project (LMMP), led by the Marshall Space Flight center (MSFC), is tasked by NASA. The project is responsible for the development of an information system to support lunar exploration activities. It provides lunar explorers a set of tools and lunar map and model products that are predominantly derived from present lunar missions (e.g., the Lunar Reconnaissance Orbiter (LRO)) and from historical missions (e.g., Apollo). At Jet Propulsion Laboratory (JPL), we have built the LMMP interoperable geospatial information system's underlying infrastructure and a single point of entry - the LMMP Portal by employing a number of open standards and technologies. The Portal exposes a set of services to users to allow search, visualization, subset, and download of lunar data managed by the system. Users also have access to a set of tools that visualize, analyze and annotate the data. The infrastructure and Portal are based on web service oriented architecture. We designed the system to support solar system bodies in general including asteroids, earth and planets. We employed a combination of custom software, commercial and open-source components, off-the-shelf hardware and pay-by-use cloud computing services. The use of open standards and web service interfaces facilitate platform and application independent access to the services and data, offering for instances, iPad and Android mobile applications and large screen multi-touch with 3-D terrain viewing functions, for a rich browsing and analysis experience from a variety of platforms. The web services made use of open standards including: Representational State Transfer (REST); and Open Geospatial Consortium (OGC)'s Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS). Its data management services have been built on top of a set of open technologies including: Object Oriented Data Technology (OODT) - open source data catalog, archive, file management, data grid framework; openSSO - open source access management and federation platform; solr - open source enterprise search platform; redmine - open source project collaboration and management framework; GDAL - open source geospatial data abstraction library; and others. Its data products are compliant with Federal Geographic Data Committee (FGDC) metadata standard. This standardization allows users to access the data products via custom written applications or off-the-shelf applications such as GoogleEarth. We will demonstrate this ready-to-use system for data discovery and visualization by walking through the data services provided through the portal such as browse, search, and other tools. We will further demonstrate image viewing and layering of lunar map images from the Internet, via mobile devices such as Apple's iPad.

  12. Tools for visually exploring biological networks.

    PubMed

    Suderman, Matthew; Hallett, Michael

    2007-10-15

    Many tools exist for visually exploring biological networks including well-known examples such as Cytoscape, VisANT, Pathway Studio and Patika. These systems play a key role in the development of integrative biology, systems biology and integrative bioinformatics. The trend in the development of these tools is to go beyond 'static' representations of cellular state, towards a more dynamic model of cellular processes through the incorporation of gene expression data, subcellular localization information and time-dependent behavior. We provide a comprehensive review of the relative advantages and disadvantages of existing systems with two goals in mind: to aid researchers in efficiently identifying the appropriate existing tools for data visualization; to describe the necessary and realistic goals for the next generation of visualization tools. In view of the first goal, we provide in the Supplementary Material a systematic comparison of more than 35 existing tools in terms of over 25 different features. Supplementary data are available at Bioinformatics online.

  13. Visual quality assessment of alternative silvicultural practices in upland hardwood management

    Treesearch

    Tim McDonald; Bryce Stokes

    1997-01-01

    Visual impacts of forest operations are of increasing concern to forest managers. Tools are available for evaluating, and potentially avoiding, problems in visual quality resulting from poorly designed harvest unit boundaries. One of these visualization tools is applied in comparing various harvest unit shape alternatives in an upland hardwood stand on steeply sloping...

  14. Application of Frameworks in the Analysis and (Re)design of Interactive Visual Learning Tools

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive visual learning tools (IVLTs) are software environments that encode and display information visually and allow learners to interact with the visual information. This article examines the application and utility of frameworks in the analysis and design of IVLTs at the micro level. Frameworks play an important role in any design. They…

  15. Examining Chemistry Students Visual-Perceptual Skills Using the VSCS Tool and Interview Data

    ERIC Educational Resources Information Center

    Christian, Caroline

    2010-01-01

    The Visual-Spatial Chemistry Specific (VSCS) assessment tool was developed to test students' visual-perceptual skills, which are required to form a mental image of an object. The VSCS was designed around the theoretical framework of Rochford and Archer that provides eight distinct and well-defined visual-perceptual skills with identified problems…

  16. Earth Regimes Network Evolution Study (ERNESt): Introducing the Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Menrad, Bob

    2016-01-01

    Speaker and Presenter at the Lincoln Laboratory Communications Workshop on April 5, 2016 at the Massachusetts Institute of Technology Lincoln Laboratory in Lexington, MA. A visual presentation titled Earth Regimes Network Evolution Study (ERNESt).

  17. Community Coordinated Modeling Center Support of Science Needs for Integrated Data Environment

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M. M.; Hesse, M.; Rastatter, L.; Maddox, M.

    2007-01-01

    Space science models are essential component of integrated data environment. Space science models are indispensable tools to facilitate effective use of wide variety of distributed scientific sources and to place multi-point local measurements into global context. The Community Coordinated Modeling Center (CCMC) hosts a set of state-of-the- art space science models ranging from the solar atmosphere to the Earth's upper atmosphere. The majority of models residing at CCMC are comprehensive computationally intensive physics-based models. To allow the models to be driven by data relevant to particular events, the CCMC developed an online data file generation tool that automatically downloads data from data providers and transforms them to required format. CCMC provides a tailored web-based visualization interface for the model output, as well as the capability to download simulations output in portable standard format with comprehensive metadata and user-friendly model output analysis library of routines that can be called from any C supporting language. CCMC is developing data interpolation tools that enable to present model output in the same format as observations. CCMC invite community comments and suggestions to better address science needs for the integrated data environment.

  18. Guiding Users to Sea Level Change Data Through Content

    NASA Astrophysics Data System (ADS)

    Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Huang, T.; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Boeck, A.; Moore, B.; Moore, J.

    2017-12-01

    The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is an immersive and innovative web portal for sea level change research that addresses the needs of diverse audiences, from scientists across disparate disciplines to the general public to policy makers and businesses. Since sea level change research involves vast amounts of data from multiple fields, it becomes increasingly important to come up with novel and effective ways to guide users to the data they need. News articles published on the portal contains links to relevant data. The Missions section highlights missions and projects as well as provide a logical grouping of the data. Tools available on the portal, such as the Data Analysis Tool, a data visualization and high-performance environment for sea level analysis, and the Virtual Earth System Laboratory, a 3D simulation application, describes and links to the source data. With over 30K Facebook followers and over 23K Twitter follower, the portal outreach team also leverages social media to guide users to relevant data. This presentation focuses on how the portal uses news articles, mission and project pages, tools, and social media to connect users to the data.

  19. Trajectory Browser Website

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  20. Visualization experiences and issues in Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene

    2003-01-01

    The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.

Top