Sample records for earth-like extrasolar planets

  1. Searching for and characterising extrasolar Earth-like planets and moons

    NASA Astrophysics Data System (ADS)

    Schneider, Jean

    2002-10-01

    The physical bases of the detection and characterisation of extrasolar Earth-like planets and moons in the reflected light and thermal emission regimes are reviewed. They both have their advantages and disadvantages, including artefacts, in the determination of planet physical parameters (mass, size, albedo, surface and atmospheric conditions etc.). After a short panorama of detection methods and the first findings, new perspectives for these different aspects are also presented. Finally brief account of the ground based programmes and space-based projects and their potentialities for Earth-like planets is made and discussed.

  2. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  3. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  4. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  5. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  6. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  7. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  8. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  9. From Extrasolar Planets to Exo-Earths

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    2018-06-01

    The ancient Greeks debated whether the Earth was unique, or innumerable worlds existed around other Suns. Twenty five years ago, technology and human ingenuity enabled the discovery of the first extrasolar planet candidates. The architectures of these first systems, with gas giant planets in star-skirting orbits, were unexpected and again raised an echo of that ancient question: is the Earth typical or unique? We are interested in this seemingly anthropocentric question because with all of our searching and discoveries, Earth is the only place where life has been found. It is the question of whether life exists elsewhere that energizes the search for exoplanets. The trajectory of this field has been stunning. After a steady stream of detections with the radial velocity method, a burst of discovery was made possible with the NASA Kepler mission. While thousands of smaller planets have now been found, true Earth analogs have eluded robust detection. However, we are sharpening the knives of our technology and without a doubt we now stand at the threshold of detecting hundreds of Earth analogs. Using Gaia, TESS, WFIRST, JWST and new ground-based spectrographs, we will learn the names and addresses of the worlds that orbit nearby stars and we will be ready to probe their atmospheres. We will finally resolve the ancient question of whether life is unique or common.

  10. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  11. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  12. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  13. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  14. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  15. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  16. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  17. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  18. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  19. The Prevalence of Earth-size Planets Orbiting Sun-like Stars

    NASA Astrophysics Data System (ADS)

    Petigura, Erik; Marcy, Geoffrey W.; Howard, Andrew

    2015-01-01

    In less than two decades since the discovery of the first planet orbiting another Sun-like star, the study of extrasolar planets has matured beyond individual discoveries to detailed characterization of the planet population as a whole. No mission has played more of a role in this paradigm shift than NASA's Kepler mission. Kepler photometry has shown that planets like Earth are common throughout the Milky Way Galaxy. Our group performed an independent search of Kepler photometry using our custom transit-finding pipeline, TERRA, and produced our own catalog of planet candidates. We conducted spectroscopic follow-up of their host stars in order to rule out false positive scenarios and to better constrain host star properties. We measured TERRA's sensitivity to planets of different sizes and orbital periods by injecting synthetic planets into raw Kepler photometry and measuring the recovery rate. Correcting for orbital tilt and survey completeness, we found that ~80% of GK stars harbor one or more planets within 1 AU and that ~22% of Sun-like stars harbor an Earth-size planet that receives similar levels of stellar radiation as Earth. I will present the latest results from our efforts to characterize the demographics of small planets revealed by Kepler.

  20. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  1. Habitability in the Solar System and on Extrasolar Planets and Moons

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  2. Habitability in The Solar System and on Extrasolar Planets and Moons

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    2015-12-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitable environments in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  3. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  4. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  5. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  6. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  7. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  8. Direct Imaging of Warm Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different frommore » our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that

  9. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  10. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  11. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  12. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  13. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  14. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  15. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  16. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  17. Habitable Planetary Systems (un)like our own: Which of the Known Extra-Solar Systems Could Harbor Earth-like Planets?

    NASA Astrophysics Data System (ADS)

    Raymond, Sean; Mandell, A.; Sigurdsson, S.

    2006-12-01

    Gas giant planets are far easier than terrestrial planets to detect around other stars, and are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the final stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can harbor potentially habitable, Earth-like planets. We combine two recent studies (1,2) and establish rough inner and outer limits for the giant planet orbits that allow terrestrial planets of at least 0.3 Earth masses to form in the habitable zone (HZ). For a star like the Sun, potentially habitable planets can form in systems with relatively low-eccentricity giant planets inside 0.5 Astronomical Units (AU) or outside 2.5 AU. More than one third of the currently known giant planet systems could have formed and now harbor a habitable planet. We thank NASA Astrobiology Institute for funding, through the Penn State, NASA Goddard, Virtual Planetary Laboratory, and University of Colorado lead teams. (1. Raymond, S.N., 2006, ApJ, 643, L131.; 2. Raymond, S.N., Mandell, A.M., Sigurdsson, S. 2006, Science, 313, 1413).

  18. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  19. Spectral Fingerprints of Earth-like Planets Around FGK Stars

    PubMed Central

    Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-01-01

    Abstract We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions. Key Words: Habitability—Planetary atmospheres—Extrasolar terrestrial planets—Spectroscopic biosignatures. Astrobiology 13, 251–269. PMID:23537136

  20. The Problem of Extraterrestrial Civilizations and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.

  1. New Extra-Solar Planet - thermal state and structure

    NASA Astrophysics Data System (ADS)

    Valencia, D.; O'Connell, R. J.; Sasselov, D.

    2005-12-01

    For the last decade astronomers have found more than 160 planets orbiting stars other than our sun. All but three of them are gaseous planets. The variety of characteristics of these newly discovered planets opens a new field with questions about planetary formation, structure and evolution, as well as the possibility of existence of life beyond our solar system. Planetary formation models suggested the existence of terrestrial extra-solar planets with masses up to 10 times the mass of the Earth. In June of 2005 the first Super-Earth was discovered orbiting a star 15 light years away with a mass that is about 7.5 times the mass of the Earth and a period of 1.94 days. The composition of this planet is unknown but probably has an Earth-like composition. Astronomers believe the surface temperature ranges between ~500 K and ~700 K. Liquid water can exist at temperatures above T=400K at high pressures (above 10 MPa) allowing for the possibility of a water layer on top of a rocky core. Our work focuses on determining scaling relationships with mass, internal structure parameters and thermal state. We explore the effects of a water/icy layer above a rocky core as well as other types of compositions in determining the internal structure. This water layer may convect causing the planet to have two layer convection. We explore the effects of a layer convection mode versus whole mantle convection for a Super-Earth. Due to the closeness of this planet to its parent star we can expect substantial tidal heating that can affect the thermal state of this planet. We explore the effects of tidal heating in the internal structure of a planet. Differences in composition have much larger effects in the mass-radius relationship than the uncertainties in thermodynamic parameters of the minerals composing the planet.

  2. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  3. A scientometric prediction of the discovery of the first potentially habitable planet with a mass similar to Earth.

    PubMed

    Arbesman, Samuel; Laughlin, Gregory

    2010-10-04

    The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields.

  4. Three regimes of extrasolar planet radius inferred from host star metallicities.

    PubMed

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  5. Three regimes of extrasolar planet radius inferred from host star metallicities

    PubMed Central

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544

  6. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David, E-mail: robinson@astro.washington.ed

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability ofmore » glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.« less

  7. Detecting Oceans on Extrasolar Planets Using the Glint Effect

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-01

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  8. A Scientometric Prediction of the Discovery of the First Potentially Habitable Planet with a Mass Similar to Earth

    PubMed Central

    Arbesman, Samuel; Laughlin, Gregory

    2010-01-01

    Background The search for a habitable extrasolar planet has long interested scientists, but only recently have the tools become available to search for such planets. In the past decades, the number of known extrasolar planets has ballooned into the hundreds, and with it, the expectation that the discovery of the first Earth-like extrasolar planet is not far off. Methodology/Principal Findings Here, we develop a novel metric of habitability for discovered planets and use this to arrive at a prediction for when the first habitable planet will be discovered. Using a bootstrap analysis of currently discovered exoplanets, we predict the discovery of the first Earth-like planet to be announced in the first half of 2011, with the likeliest date being early May 2011. Conclusions/Significance Our predictions, using only the properties of previously discovered exoplanets, accord well with external estimates for the discovery of the first potentially habitable extrasolar planet and highlight the the usefulness of predictive scientometric techniques to understand the pace of scientific discovery in many fields. PMID:20957226

  9. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  10. Topics in Extrasolar Planet Characterization

    NASA Astrophysics Data System (ADS)

    Howe, Alex Ryan

    I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.

  11. Earthshine and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Traub, W. A.; Kaltenegger, L.; Turnbull, M. C.; Jucks, K. W.

    2006-05-01

    The search for life on extrasolar planets requires first that we find terrestrial-mass planets around nearby stars, and second that we determine habitability and search for signs of life. The Terrestrial Planet Finder missions, a Coronagraph (TPF-C) and an Interferometer (TPF-I in the US, also Darwin in Europe) are designed to carry out these tasks. This talk will focus on how we could determine habitability and search for signs of life with these missions. In the visible and near-infrared, TPF-C could measure O2, H2O, O3, Rayleigh scattering, and the red-edge reflection of land planet leaves; on an early-Earth twin it also could measure CO2 and CH4. In the mid-infrared, TPF-I/Darwin could measure CO2, O3, H2O, and temperature. To validate some of these expectations, we observed Earthshine spectra in the visible and near-infrared, and modeled these spectra with our line-by-line radiative transfer code. We find that the major gas and reflection components are present in the data, and that a simple model of the Earth is adequate to represent the data, within the observational uncertainties. We determined that the Earth appears to be habitable, and also shows signs of life. However to validate the time variable features, including the continent-ocean differences, the presence of weather patterns, the large-scale variability of cloud types and altitude, and the rotation period of the planet, we need to obtain a continuous time-series of observations covering multiple rotations; these observations could be carried out in the coming years, using, for example, a site at the South Pole.

  12. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  13. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  14. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  15. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  16. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Astrophysics Data System (ADS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  17. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  18. An Earth-sized planet with an Earth-like density.

    PubMed

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  19. From Hot Jupiters to Super-Earths: Characterizing the Atmospheres of Extrasolar Planets with the Spitzer Space Telescope

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2009-05-01

    The Spitzer Space Telescope has been a remarkably successful platform for studies of exoplanet atmospheres, with notable results including the first detection of the light emitted by an extrasolar planet (Deming et al. 2005, Charbonneau et al. 2005), the first spectrum of an extrasolar planet (Richardson et al. 2007, Grillmair et al. 2007), and the first map of the flux distribution across the surface of an extrasolar planet (Knutson et al. 2007). These observations have allowed us to characterize the pressure-temperature profiles, chemistry, clouds, and circulation patterns of a select subset of the massive, close-in planets known as hot Jupiters, along with the hot Saturn HD 149026b and the cooler Neptune-mass planet GJ 436b. In my talk I will review the current status of Spitzer observations of transiting planets at the end of the cryogenic mission and look ahead to the observations planned for the two-year warm mission, which will begin this summer after the last of Spitzer's cryogen is exhausted.

  20. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

  1. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planetmore » system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.« less

  2. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  3. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    PubMed

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  4. Magnetic Fields of Extrasolar Planets: Planetary Interiors and Habitability

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph

    2018-06-01

    Ground-based observations showed that Jupiter's radio emission is linked to its planetary-scale magnetic field, and subsequent spacecraft observations have shown that most planets, and some moons, have or had a global magnetic field. Generated by internal dynamos, magnetic fields are one of the few remote sensing means of constraining the properties of planetary interiors. For the Earth, its magnetic field has been speculated to be partially responsible for its habitability, and knowledge of an extrasolar planet's magnetic field may be necessary to assess its habitability. The radio emission from Jupiter and other solar system planets is produced by an electron cyclotron maser, and detections of extrasolar planetary electron cyclotron masers will enable measurements of extrasolar planetary magnetic fields. Based on experience from the solar system, such observations will almost certainly require space-based observations, but they will also be guided by on-going and near-future ground-based observations.This work has benefited from the discussion and participants of the W. M. Keck Institute of Space Studies "Planetary Magnetic Fields: Planetary Interiors and Habitability" and content within a white paper submitted to the National Academy of Science Committee on Exoplanet Science Strategy. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  6. Extrasolar Planet Inferometric Survey (EPIcS)

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  7. Extrasolar Planets & The Power of the Dark Side

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charbonneau, David

    It is only in the last decade that we have direct evidence for planets orbiting nearby Sun-like stars. If such planets happen to pass in front of their stars, we are presented with a golden opportunity to learn about the nature of these objects. Measurements of the dimming of starlight and gravitational wobble allow us to derive the planetary radius and mass, and, by inference, its composition. Recently, we used the Hubble Telescope to detect and study the atmosphere of an extrasolar planet for the first time. I will describe what we have learned about these planets 

  8. Prevalence of Earth-size planets orbiting Sun-like stars.

    PubMed

    Petigura, Erik A; Howard, Andrew W; Marcy, Geoffrey W

    2013-11-26

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration's Kepler mission. We found 603 planets, including 10 that are Earth size ( ) and receive comparable levels of stellar energy to that of Earth (1 - 2 R[Symbol: see text] ). We account for Kepler's imperfect detectability of such planets by injecting synthetic planet-caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ~200 d. Extrapolating, one finds 5.7(-2.2)(+1.7)% of Sun-like stars harbor an Earth-size planet with orbital periods of 200-400 d.

  9. Prevalence of Earth-size planets orbiting Sun-like stars

    PubMed Central

    Petigura, Erik A.; Howard, Andrew W.; Marcy, Geoffrey W.

    2013-01-01

    Determining whether Earth-like planets are common or rare looms as a touchstone in the question of life in the universe. We searched for Earth-size planets that cross in front of their host stars by examining the brightness measurements of 42,000 stars from National Aeronautics and Space Administration’s Kepler mission. We found 603 planets, including 10 that are Earth size () and receive comparable levels of stellar energy to that of Earth (). We account for Kepler’s imperfect detectability of such planets by injecting synthetic planet–caused dimmings into the Kepler brightness measurements and recording the fraction detected. We find that 11 ± 4% of Sun-like stars harbor an Earth-size planet receiving between one and four times the stellar intensity as Earth. We also find that the occurrence of Earth-size planets is constant with increasing orbital period (P), within equal intervals of logP up to ∼200 d. Extrapolating, one finds % of Sun-like stars harbor an Earth-size planet with orbital periods of 200–400 d. PMID:24191033

  10. Rapid heating of the atmosphere of an extrasolar planet.

    PubMed

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  11. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2003-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  12. Kepler Mission to Detect Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    2002-01-01

    Kepler Mission to detect Earth-like planets in our Milky Way galaxy was approved by NASA in December 2001 for a 4-5 year mission. The launch is planned in about 5 years. The Kepler observatory will be placed in an Earth-trailing orbit. The unique feature of the Kepler Mission is its ability to detect Earth-like planets orbiting around solar-type stars at a distance similar to that of Earth (from our Sun); such an orbit could provide an environment suitable for supporting life as we know it. The Kepler observatory accomplishes this feat by looking for the transits of planetary object in front of their suns; Kepler has a photometric precision of 10E-5 (0.00001) to achieve such detections. Other ongoing planetary detection programs (based mostly on a technique that looks for the shifting of spectral lines of the primary star due to its planetary companions' motions around it) have detected massive planets (with masses in the range of Jupiter); such massive planets are not considered suitable for supporting life. If our current theories for the formation of planetary systems are valid, we expect to detect about 50 Earth-like planets during Kepler's 4-year mission (assuming a random distribution of the planetary orbital inclinations with respect to the line of sight from Kepler). The number of detection will increase about 640 planets if the planets to be detected are Jupiter-sized.

  13. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  14. The Potential Feasibility of Chlorinic Photosynthesis on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Haas, Johnson

    2009-09-01

    It is highly likely that the first convincing evidence of extrasolar life will arrive in the form of atmospheric absorption spectra. The modern search for life-bearing extrasolar planets emphasizes the potential detection of O2 and O3 absorption spectra in exoplanetary atmospheres as archetypal signatures of biology. However, oxygenic photosynthesis apparently failed to evolve independently more than once on Earth, and is thus unlikely to be reliably ubiquitous throughout the universe. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This study examines the potential feasibility of one such exotic metabolism: chlorinic photosynthesis (CPS), defined as biologically-mediated halogenation of aqueous chloride to HClO, Cl2 or partially-oxidized intermediates (e.g. haloalkanes, haloacids, haloaromatics), coupled with photosynthetic CO2 fixation. This metabolic couple is feasible thermodynamically and appears to be geochemically plausible under approximately terrestrial conditions. This study hypothesizes that planetary biospheres dominated by CPS would develop atmospheres enriched with dihalogens and other halogenated compounds, evolve a highly oxidizing surface geochemical environment, and foster biological selection pressures favoring halogen resistance and eventual metazoan heterotrophy based on dihalogen and halocarbon respiration. Planets favoring the evolution of CPS would probably receive equivalent or greater surface UV flux than Earth did in the Paleoarchean (promoting abiotic photo-oxidation of aqueous halides, and establishing a strong biological selective pressure toward their accommodation), and would orbit stars having equivalent or greater bulk metallicities (promoting greater planetary halide abundances) relative to the Sun. Directed searches for such worlds should probably focus on A, F and G0 spectral class stars having bulk

  15. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases

  16. The Survival of Water Within Extrasolar Minor Planets

    NASA Astrophysics Data System (ADS)

    Jura, M.; Xu, S.

    2010-11-01

    We compute that extrasolar minor planets can retain much of their internal H2O during their host star's red giant evolution. The eventual accretion of a water-rich body or bodies onto a helium white dwarf might supply an observable amount of atmospheric hydrogen, as seems likely for GD 362. More generally, if hydrogen pollution in helium white dwarfs typically results from accretion of large parent bodies rather than interstellar gas as previously supposed, then H2O probably constitutes at least 10% of the aggregate mass of extrasolar minor planets. One observational test of this possibility is to examine the atmospheres of externally polluted white dwarfs for oxygen in excess of that likely contributed by oxides such as SiO2. The relatively high oxygen abundance previously reported in GD 378 can be explained plausibly but not uniquely by accretion of an H2O-rich parent body or bodies. Future ultraviolet observations of white dwarf pollutions can serve to investigate the hypothesis that environments with liquid water that are suitable habitats for extremophiles are widespread in the Milky Way.

  17. Two Earth-sized planets orbiting Kepler-20.

    PubMed

    Fressin, Francois; Torres, Guillermo; Rowe, Jason F; Charbonneau, David; Rogers, Leslie A; Ballard, Sarah; Batalha, Natalie M; Borucki, William J; Bryson, Stephen T; Buchhave, Lars A; Ciardi, David R; Désert, Jean-Michel; Dressing, Courtney D; Fabrycky, Daniel C; Ford, Eric B; Gautier, Thomas N; Henze, Christopher E; Holman, Matthew J; Howard, Andrew; Howell, Steve B; Jenkins, Jon M; Koch, David G; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Quinn, Samuel N; Ragozzine, Darin; Sasselov, Dimitar D; Seager, Sara; Barclay, Thomas; Mullally, Fergal; Seader, Shawn E; Still, Martin; Twicken, Joseph D; Thompson, Susan E; Uddin, Kamal

    2011-12-20

    Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earth's radius (R(⊕)), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R(⊕)) and the other smaller than the Earth (0.87R(⊕)), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.

  18. Polarimetry Of Planetary Atmospheres: From The Solar System Gas Giants To Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Buenzli, Esther; Bazzon, A.; Schmid, H. M.

    2011-09-01

    The polarization of light reflected from a planet provides unique information on the atmosphere structure and scattering properties of particles in the upper atmosphere. The solar system planets show a large variety of atmospheric polarization properties, from the thick, highly polarizing haze on Titan and the poles of Jupiter, Rayleigh scattering by molecules on Uranus and Neptune, to clouds in the equatorial region of Jupiter or on Venus. Polarimetry is also a promising differential technique to search for and characterize extra-solar planets, e.g. with the future VLT planet finder instrument SPHERE. For the preparation of the SPHERE planet search program we have made a suite of polarimetric observations and models for the solar system gas giants. The phase angles for the outer planets are small for Earth bound observations and the integrated polarization is essentially zero due to the symmetric backscattering situation. However, a second order scattering effect produces a measurable limb polarization for resolved planetary disks. We have made a detailed model for the spectropolarimetric signal of the limb polarization of Uranus between 520 and 935 nm to derive scattering properties of haze and cloud particles and to predict the polarization signal from an extra-solar point of view. We are also investigating imaging polarimetry of the thick haze layers on Titan and the poles of Jupiter. Additionally, we have calculated a large grid of intensity and polarization phase curves for simpler atmosphere models of extrasolar planets.

  19. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    PubMed

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  20. Automatic Telescope Search for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Henry, Gregory W.

    1998-01-01

    We are using automatic photoelectric telescopes at the Tennessee State University Center for Automated Space Science to search for planets around nearby stars in our galaxy. Over the past several years, wc have developed the capability to make extremely precise measurements of brightness changes in Sun-like stars with automatic telescopes. Extensive quality control and calibration measurements result in a precision of 0.l% for a single nightly observation and 0.0270 for yearly means, far better than previously thought possible with ground-based observations. We are able, for the first time, to trace brightness changes in Sun-like stars that are of similar amplitude to brightness changes in the Sun, whose changes can be observed only with space-based radiometers. Recently exciting discoveries of the first extrasolar planets have been announced, based on the detection of very small radial-velocity variations that imply the existence of planets in orbit around several Sun-like stars. Our precise brightness measurements have been crucial for the confirmation of these discoveries by helping to eliminate alternative explanations for the radial-velocity variations. With our automatic telescopes, we are also searching for transits of these planets across the disks of their stars in order to conclusively verify their existence. The detection of transits would provide the first direct measurements of the sizes, masses, and densities of these planets and, hence, information on their compositions and origins.

  1. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  2. Climate stability of habitable Earth-like planets

    NASA Astrophysics Data System (ADS)

    Menou, Kristen

    2015-11-01

    The carbon-silicate cycle regulates the atmospheric CO2 content of terrestrial planets on geological timescales through a balance between the rates of CO2 volcanic outgassing and planetary intake from rock weathering. It is thought to act as an efficient climatic thermostat on Earth and, by extension, on other habitable planets. If, however, the weathering rate increases with the atmospheric CO2 content, as expected on planets lacking land vascular plants, the carbon-silicate cycle feedback can become severely limited. Here we show that Earth-like planets receiving less sunlight than current Earth may no longer possess a stable warm climate but instead repeatedly cycle between unstable glaciated and deglaciated climatic states. This has implications for the search for life on exoplanets in the habitable zone of nearby stars.

  3. Glimpses of far away places: Intensive atmosphere characterization of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    Exoplanet atmosphere characterization has the potential to reveal the origins, nature, and even habitability of distant worlds. This thesis represents a step towards realizing that potential for a diverse group of four extrasolar planets. Here, I present the results of intensive observational campaigns with the Hubble and Spitzer Space Telescopes to study the atmospheres of the super-Earth GJ 1214b and the hot Jupiters WASP-43b, WASP-12b, and WASP-103b. I measured an unprecedentedly precise near-infrared transmission spectrum for GJ 1214b that definitively reveals the presence of clouds in the planet's atmosphere. For WASP-43b and WASP-12b, I also measured very precise spectra that exhibit water features at high confidence (>7 sigma). The retrieved water abundance for WASP-43b extends the well-known Solar System trend of decreasing atmospheric metallicity with increasing planet mass. The detection of water for WASP-12b marks the first spectroscopic identification of a molecule in the planet's atmosphere and implies that it has solar composition, ruling out carbon-to-oxygen ratios greater than unity. For WASP-103b, I present preliminary results from the new technique of phase-resolved spectroscopy to determine the planet's temperature structure, dynamics, and energy budget. In addition to these observations, I also describe the BATMAN code, an open-source Python package for fast and flexible modeling of transit light curves. Taken together, these results provide a foundation for comparative planetology beyond the Solar System and the investigation of Earth-like, potentially habitable planets with future observing facilities.

  4. Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2010-12-01

    Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a

  5. An adaptive optics search for young extrasolar planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Max, C. E.; Olivier, S.

    2000-10-01

    In the past five years, many extrasolar planets have been detected indirectly, through radial velocity variations induced in their parent stars. Advances in technology now open up the possibility of directly detecting extrasolar planets through the photons they emit. Direct detection would allow determination of the temperature, radius, and composition of a planet, particularly one in a wide orbit - an important complement to radial velocity techniques. Seeing a planet against the halo of scattered light from its parent star is extremely challenging, but adaptive optics (AO) on 8-10 m telescopes can make this possible. The first such large-telescope AO system is now operational on the 10-m W.M. Keck II telescope. Its current performance is sufficient to detect objects at contrast ratios of 105 at separations of 1" and 106 at 2". This is insufficient to detect the reflected light from a mature Jupiter-like planet, but we can easily detect the near-infrared thermal emission from young (<10-50 MYr) planets, or older brown dwarfs. We are carrying out a search for such planetary companions to young nearby stars, including the TW Hydrae association. We present preliminary results from this survey, including sensitivity limits and follow-up of candidate companions originally detected by NICMOS. We have also imaged the Epsilon Eridani system, and present upper limits on the brightness of the planet detected via radial velocity variations by Cochran et al. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive Optics under the STC Program of the National Science Foundation under Agreement No. AST-9876783

  6. Intercomparison of general circulation models for hot extrasolar planets

    NASA Astrophysics Data System (ADS)

    Polichtchouk, I.; Cho, J. Y.-K.; Watkins, C.; Thrastarson, H. Th.; Umurhan, O. M.; de la Torre Juárez, M.

    2014-02-01

    We compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ‘cubed-sphere’ grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: (1) steady-state, (2) nonlinearly evolving baroclinic wave, and (3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should-except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in pseudospectral models (only). However, exact numerical convergence is still not achieved across the pseudospectral models: amplitudes and phases are observably different. When subject to a typical ‘hot-Jupiter’-like forcing, all five models show quantitatively different behavior-although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, pseudospectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst.

  7. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  8. Un-Earth-like interiors of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Shim, S. H. D.; Nisr, C.; Pagano, M.; Chen, H.; Ko, B.; Noble, S.; Leinenweber, K. D.; Young, P.; Desch, S. J.

    2015-12-01

    A number of exoplanets have been described as "Earth-like" planets (or even exo-earths) based on the mass-radius relations. Yet, significant variations have been documented in elemental abundances of planet-hosting stars, which will result in very different structures and processes in the interiors of rocky exoplanets. Recent data suggest that the Mg/Si ratio can be as small as less than 1 and as large as more than 2, opening the possibilities for the upper mantles to be dominated by pyroxene and olivine, respectively, and the lower mantles to be dominated by bridgmanite and ferropericlase, respectively. The changes in mineralogy will alter key properties, such as discontinuity structures (and therefore scale of mantle mixing), viscosity, and volatiles storage, of the mantle. Partial melting of such mantles would result in different compositions of the crusts, affecting the tectonics. However, the prediction should be made carefully because oxygen fugacity and contents of volatiles can change the mineralogy even for the same bulk composition. In extremely reducing proto-planetary disks, carbides will form instead of oxides and silicates, and become main constituents of planets in the system. Because carbides have high thermal conductivity and low thermal expansivity, internal heat transport of such planets may be dominated by conduction and mantle mixing would be much more limited than that of the Earth. However, the behaviors and properties of carbides need to be understood better at high pressure and high temperature. Some rocky exoplanets may have very thick layers of water and other icy materials. Interactions between ice (or fluid) and rock at extreme conditions would be the key to understand dynamics and habitability of such exoplanets.

  9. Maximum number of habitable planets at the time of Earth's origin: new hints for panspermia?

    PubMed

    von Bloh, Werner; Franck, Siegfried; Bounama, Christine; Schellnhuber, Hans-Joachim

    2003-04-01

    New discoveries have fuelled the ongoing discussion of panspermia, i.e. the transport of life from one planet to another within the solar system (interplanetary panspermia) or even between different planetary systems (interstellar panspermia). The main factor for the probability of interstellar panspermia is the average density of stellar systems containing habitable planets. The combination of recent results for the formation rate of Earth-like planets with our estimations of extrasolar habitable zones allows us to determine the number of habitable planets in the Milky Way over cosmological time scales. We find that there was a maximum number of habitable planets around the time of Earth's origin. If at all, interstellar panspermia was most probable at that time and may have kick-started life on our planet.

  10. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  11. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  12. Climate variations on Earth-like circumbinary planets

    PubMed Central

    Popp, Max; Eggl, Siegfried

    2017-01-01

    The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially. PMID:28382929

  13. Birth of an Earth-like Planet (Artist concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's conception shows a binary-star, or two-star, system, called HD 113766, where astronomers suspect a rocky Earth-like planet is forming around one of the stars. At approximately 10 to 16 million years old, astronomers suspect this star is at just the right age for forming rocky planets. The system is located approximately 424 light-years away from Earth.

    The two yellow spots in the image represent the system's two stars. The brown ring of material circling closest to the central star depicts a huge belt of dusty material, more than 100 times as much as in our asteroid belt, or enough to build a Mars-size planet or larger. The rocky material in the belt represents the early stages of planet formation, when dust grains clump together to form rocks, and rocks collide to form even more massive rocky bodies called planetesimals. The belt is located in the middle of the system's terrestrial habitable zone, or the region around a star where liquid water could exist on any rocky planets that might form. Earth is located in the middle of our sun's terrestrial habitable zone.

    Using NASA's Spitzer Space Telescope, astronomers learned that the belt material in HD 113866 is more processed than the snowball-like stuff that makes up infant solar systems and comets, which contain pristine ingredients from the early solar system. However, it is not as processed as the stuff found in mature planets and asteroids. This means that the dust belt is made out of just the right mix of materials to be forming an Earth-like planet. It is composed mainly of rocky silicates and metal sulfides (like fool's gold), similar to the material found in lava flows.

    The white outer ring shows a concentration of icy dust also detected in the system. This material is at the equivalent position of the asteroid belt in our solar system, but only contains about one-sixth as much material as the inner ring. Astronomers say it is not clear from the Spitzer observations if

  14. An Earth-sized exoplanet with a Mercury-like composition

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Brugger, B.; Armstrong, D. J.; Adibekyan, V.; Lillo-Box, J.; Gosselin, H.; Aguichine, A.; Almenara, J.-M.; Barrado, D.; Barros, S. C. C.; Bayliss, D.; Boisse, I.; Bonomo, A. S.; Bouchy, F.; Brown, D. J. A.; Deleuil, M.; Delgado Mena, E.; Demangeon, O.; Díaz, R. F.; Doyle, A.; Dumusque, X.; Faedi, F.; Faria, J. P.; Figueira, P.; Foxell, E.; Giles, H.; Hébrard, G.; Hojjatpanah, S.; Hobson, M.; Jackman, J.; King, G.; Kirk, J.; Lam, K. W. F.; Ligi, R.; Lovis, C.; Louden, T.; McCormac, J.; Mousis, O.; Neal, J. J.; Osborn, H. P.; Pepe, F.; Pollacco, D.; Santos, N. C.; Sousa, S. G.; Udry, S.; Vigan, A.

    2018-05-01

    Earth, Venus, Mars and some extrasolar terrestrial planets1 have a mass and radius that is consistent with a mass fraction of about 30% metallic core and 70% silicate mantle2. At the inner frontier of the Solar System, Mercury has a completely different composition, with a mass fraction of about 70% metallic core and 30% silicate mantle3. Several formation or evolution scenarios are proposed to explain this metal-rich composition, such as a giant impact4, mantle evaporation5 or the depletion of silicate at the inner edge of the protoplanetary disk6. These scenarios are still strongly debated. Here, we report the discovery of a multiple transiting planetary system (K2-229) in which the inner planet has a radius of 1.165 ± 0.066 Earth radii and a mass of 2.59 ± 0.43 Earth masses. This Earth-sized planet thus has a core-mass fraction that is compatible with that of Mercury, although it was expected to be similar to that of Earth based on host-star chemistry7. This larger Mercury analogue either formed with a very peculiar composition or has evolved, for example, by losing part of its mantle. Further characterization of Mercury-like exoplanets such as K2-229 b will help to put the detailed in situ observations of Mercury (with MESSENGER and BepiColombo8) into the global context of the formation and evolution of solar and extrasolar terrestrial planets.

  15. Biosignatures from Earth-like planets around M dwarfs.

    PubMed

    Segura, Antígona; Kasting, James F; Meadows, Victoria; Cohen, Martin; Scalo, John; Crisp, David; Butler, Rebecca A H; Tinetti, Giovanna

    2005-12-01

    Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.

  16. Convection and plate tectonics on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Grasset, O.; Schubert, G.

    2012-04-01

    The number of potential Earth-like exoplanets is still very limited compared to the overall number of detected exoplanets. But the different methods keep improving, giving hope for this number to increase significantly in the coming years. Based on the relationship between mass and radius, two of the easiest parameters that can be known for exoplanets, four categories of planets have been identified: (i) the gas giants including hot Jupiters, (ii) the icy giants that can be like their solar system cousins Uranus and Neptune or that can have lost their H2-He atmosphere and have become the so-called ocean planets, (iii) the Earth-like planets with a fraction of silicates and iron similar to that of the Earth, and (iv) the Mercury like planet that have a much larger fraction of iron. The hunt for exoplanets is very much focused on Earth-like planets because of the desire to find alien forms of life and the science goal to understand how life started and developed on Earth. One science question is whether heat transfer by subsolidus convection can lead to plate tectonics, a process that allows material to be recycled in the interior on timescales of hundreds of millions of years. Earth-like exoplanets may have conditions quite different from Earth. For example, COROT-7b is so close to its star that it is likely locked in synchronous orbit with one very hot hemisphere and one very cold hemisphere. It is also worth noting that among the three Earth-like planets of the solar system (Earth, Venus and Mars), only Earth is subject to plate tectonics at present time. Venus may have experienced plate tectonics before the resurfacing event that erased any clue that such a process existed. This study investigates some of the parameters that can influence the transition from stagnant-lid convection to mobile-lid convection. Numerical simulations of convective heat transfer have been performed in 3D spherical geometry in order to determine the stress field generated by convection

  17. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  18. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  19. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  20. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  1. Planet formation: constraints from transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    Ten extrasolar planets with masses between 105 and 430M⊕ are known to transit their star. The knowledge of their mass and radius allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. This is illustrated by HD209458b and XO-1b, two planets that appear to be larger than models would predict. Using a relatively simple evolution model, we show that the radius anomaly, i.e. the difference between the measured and theoretically calculated radii, is anticorrelated with the metallicity of the parent star. This implies that the present size, structure and composition of these planets is largely determined by the initial metallicity of the protoplanetary disk, and not, or to a lesser extent, by other processes such as the differences in the planets' orbital evolutions, tides due to finite eccentricities/inclinations and planet evaporation. Using evolution models including the presence of a core and parametrized missing physics, we show that all nine planets belong to a same ensemble characterized by a mass of heavy elements MZ that is a steep function of the stellar metallicity: from ˜ 10 M⊕ around a solar composition star, to ˜ 100 M⊕ for twice the solar metallicity. Together with the observed lack of giant planets in close orbits around metal-poor stars, these results imply that heavy elements play a key role in the formation of close-in giant planets. The large values of MZ and of the planet enrichments for metal-rich stars shows the need for alternative theories of planet formation including migration and subsequent collection of planetesimals.

  2. Spectral fingerprints of Earth-like planets around FGK stars.

    PubMed

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  3. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  4. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  5. Intercomparison of General Circulation Models for Hot Extrasolar Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Cho, James

    2013-11-01

    In this collaborative work with I. Polichtchouk, C. Watkins, H. Th. Thrastarson, O. M. Umurhan, and M. de la Torre-Juárez, we compare five general circulation models (GCMs) which have been recently used to study hot extrasolar planet atmospheres (BOB, CAM, IGCM, MITgcm, and PEQMOD), under three test cases useful for assessing model convergence and accuracy. Such a broad, detailed intercomparison has not been performed thus far for extrasolar planets study. The models considered all solve the traditional primitive equations, but employ different numerical algorithms or grids (e.g., pseudospectral and finite volume, with the latter separately in longitude-latitude and ``cubed-sphere'' grids). The test cases are chosen to cleanly address specific aspects of the behaviors typically reported in hot extrasolar planet simulations: 1) steady-state, 2) nonlinearly evolving baroclinic wave, and 3) response to fast timescale thermal relaxation. When initialized with a steady jet, all models maintain the steadiness, as they should--except MITgcm in cubed-sphere grid. A very good agreement is obtained for a baroclinic wave evolving from an initial instability in spectral models (only). However, exact numerical convergence is still not achieved across the spectral models: amplitudes and phases are observably different. When subject to a typical ``hot-Jupiter''-like forcing, all five models show quantitatively different behavior--although qualitatively similar, time-variable, quadrupole-dominated flows are produced. Hence, as have been advocated in several past studies, specific quantitative predictions (such as the location of large vortices and hot regions) by GCMs should be viewed with caution. Overall, in the tests considered here, spectral models in pressure coordinate (PEBOB and PEQMOD) perform the best and MITgcm in cubed-sphere grid performs the worst. This work has been supported by the Science and Technology Facilities Council, Westfield Small Grant, NASA Postdoctoral

  6. A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N. C.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    2006-07-01

    Context.Nine extrasolar planets with masses between 110 and 430 M_⊕ are known to transit their star. The knowledge of their masses and radii allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately.Aims.We seek to better understand the composition of transiting extrasolar planets by considering them as an ensemble, and by comparing the obtained planetary properties to that of the parent stars.Methods.We use evolution models and constraints on the stellar ages to derive the mass of heavy elements present in the planets. Possible additional energy sources like tidal dissipation due to an inclined orbit or to downward kinetic energy transport are considered.Results.We show that the nine transiting planets discovered so far belong to a quite homogeneous ensemble that is characterized by a mass of heavy elements that is a relatively steep function of the stellar metallicity, from less than 20 earth masses of heavy elements around solar composition stars, to up to ~100 M_⊕ for three times the solar metallicity (the precise values being model-dependant). The correlation is still to be ascertained however. Statistical tests imply a worst-case 1/3 probability of a false positive.Conclusions.Together with the observed lack of giant planets in close orbits around metal-poor stars, these results appear to imply that heavy elements play a key role in the formation of close-in giant planets. The large masses of heavy elements inferred for planets orbiting metal rich stars was not anticipated by planet formation models and shows the need for alternative theories including migration and subsequent collection of planetesimals.

  7. Electrodynamics on extrasolar giant planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of Hmore » and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can

  8. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  9. Portraits of distant worlds: Characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Knutson, Heather Ann

    2009-06-01

    This thesis presents observational studies of the atmospheres of extrasolar planets, including the first longitudinal temperature profile of an extrasolar planet and the first detection of a temperature inversion in the atmosphere of an extrasolar planet. Our observations target four eclipsing gas-giant planets known as "hot Jupiters"; as a result of their short orbital periods we expect these planets to be tidally locked, with day-night circulation patterns and atmospheric chemistries that differ significantly from those of Jupiter. The first two chapters of this thesis describe infrared observations of the secondary eclipses of HD 209458b and TrES-4 with the Spitzer Space Telescope . By measuring the decrease in flux as the planet passes behind its parent star, we can characterize the infrared emission spectra of these planets and from that learn something about their dayside pressure-temperature profiles. Our observations reveal that these two planets have spectra with water bands in emission, requiring the presence of an atmospheric temperature inversion between 0.1 - 0.01 bars. The third chapter describes a ground-based search for thermal emission from TrES-1 using L -band grism spectroscopy with the NIRI instrument on Gemini North. Unlike Spitzer photometry, which is limited to broad bandpasses at these wavelengths, grism spectroscopy offers the opportunity to resolve specific features in the planetary emission spectrum. We find that our precision is limited by our ability to correct for time-varying slit losses from pointing drift and seeing changes, and place an upper limit on the depth of the planet's secondary eclipse in this band. The fourth and fifth chapters describe observations of the infrared phase variations of the hot Jupiter HD 189733b in the 8 and 24 mm Spitzer bands. By monitoring the changes in the brightness of this planet as it rotates around its parent star we can determine how much energy is circulated from the perpetually-illuminated day

  10. Microlensing for extrasolar planets : improving the photometry

    NASA Astrophysics Data System (ADS)

    Bajek, David J.

    2013-08-01

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  11. Division F Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, Alain; Minniti, Dante; Boss, Alan; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Jayawardhana, Ray; Kokubo, Eiichiro; Mardling, Rosemary; Queloz, Didier; Rauer, Heike; Zhao, Gang

    2016-04-01

    The IAU Working Group on Extrasolar Planets (WGESP) was created by the Executive Council as a Working Group of Division III. This decision took place in June 1999, that is only 7 years after the discovery of planets around the pulsar PSR B1257+12 and 4 years after the discovery of 51 Peg b. This working group was renewed for 3 years at the General Assembly in 2003 in Sydney, Australia. It was chaired by Alan Boss from Carnegie Institution of Washington. The WGESP members were Paul Butler, William Hubbard, Philip Ianna, Martin Kürster, Jack Lissauer, Michel Mayor, Karen Meech, Francois Mignard, Alan Penny, Andreas Quirrenbach, Jill Tarter, and Alfred Vidal-Madjar.

  12. Evolution of Earth Like Planets

    NASA Astrophysics Data System (ADS)

    Monroy-Rodríguez, M. A.; Vega, K. M.

    2017-07-01

    In order to study and explain the evolution of our own planet we have done a review of works related to the evolution of Earth-like planets. From the stage of proto-planet to the loss of its atmosphere. The planetary formation from the gas and dust of the proto-planetary disk, considering the accretion by the process of migration, implies that the material on the proto-planet is very mixed. The newborn planet is hot and compact, it begins its process of stratification by gravity separation forming a super dense nucleus, an intermediate layer of convective mantle and an upper mantle that is less dense, with material that emerges from zones at very high pressure The surface with low pressure, in this process the planet expands and cools. This process also releases gas to the surface, forming the atmosphere, with the gas gravitationally bounded. The most important thing for the life of the planet is the layer of convective mantle, which produces the magnetic field, when it stops the magnetic field disappears, as well as the rings of van allen and the solar wind evaporates the atmosphere, accelerating the evolution and cooling of the planet. In a natural cycle of cataclysms and mass extinctions, the solar system crosses the galactic disk every 30 million years or so, the increase in the meteorite fall triggers the volcanic activity and the increase in the release of CO2 into the atmosphere reaching critical levels (4000 billion tons) leads us to an extinction by overheating that last 100 000 years, the time it takes CO2 to sediment to the ocean floor. Human activity will lead us to reach critical levels of CO2 in approximately 300 years.

  13. Biosignatures of early earths

    NASA Technical Reports Server (NTRS)

    Pilcher, Carl B.

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  14. Biosignatures of early earths.

    PubMed

    Pilcher, Carl B

    2003-01-01

    A major goal of NASA's Origins Program is to find habitable planets around other stars and determine which might harbor life. Determining whether or not an extrasolar planet harbors life requires an understanding of what spectral features (i.e., biosignatures) might result from life's presence. Consideration of potential biosignatures has tended to focus on spectral features of gases in Earth's modern atmosphere, particularly ozone, the photolytic product of biogenically produced molecular oxygen. But life existed on Earth for about 1(1/2) billion years before the buildup of atmospheric oxygen. Inferred characteristics of Earth's earliest biosphere and studies of modern microbial ecosystems that share some of those characteristics suggest that organosulfur compounds, particularly methanethiol (CH(3)SH, the sulfur analog of methanol), may have been biogenic products on early Earth. Similar production could take place on extrasolar Earth-like planets whose biota share functional chemical characteristics with Earth life. Since methanethiol and related organosulfur compounds (as well as carbon dioxide) absorb at wavelengths near or overlapping the 9.6-microm band of ozone, there is potential ambiguity in interpreting a feature around this wavelength in an extrasolar planet spectrum.

  15. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  16. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.ed

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period ofmore » equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.« less

  17. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  18. Project Orion: A Design Study of a System for Detecting Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor)

    1980-01-01

    A design concept for a ground based astrometric telescope that could significantly increase the potential accuracy of astrometric observations is considered. The state of current techniques and instrumentation is examined in the context of detecting extrasolar planets. Emphasis is placed on the direct detection of extrasolar planets at either visual or infrared wavelengths. The design concept of the imaging stellar interferometer (ISI), developed under Project Orion, is described. The Orion ISI employs the state-of-the-art technology and is theoretically capable of attaining 0.00010 arc sec/yr accuracy in relative astrometric observations.

  19. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  20. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  1. Photometric Detection of Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Hatzes, Artie P.; Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported the TEMPEST Texas McDonald Photometric Extrasolar Search for Transits) program at McDonald Observatory, which searches for transits of extrasolar planets across the disks of their parent stars. The basic approach is to use a wide-field ground-based telescope (in our case the McDonald Observatory 0.76m telescope and it s Prime Focus Corrector) to search for transits of short period (1-15 day orbits) of close-in hot-Jupiter planets in orbit around a large sample of field stars. The next task is to search these data streams for possible transit events. We collected our first set of test data for this program using the 0.76 m PFC in the summer of 1998. From those data, we developed the optimal observing procedures, including tailoring the stellar density, exposure times, and filters to best-suit the instrument and project. In the summer of 1999, we obtained the first partial season of data on a dedicated field in the constellation Cygnus. These data were used to develop and refine the reduction and analysis procedures to produce high-precision photometry and search for transits in the resulting light curves. The TeMPEST project subsequently obtained three full seasons of data on six different fields using the McDonald Observatory 0.76m PFC.

  2. The changing phases of extrasolar planet CoRoT-1b.

    PubMed

    Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon

    2009-05-28

    Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

  3. Formation, habitability, and detection of extrasolar moons.

    PubMed

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  4. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  5. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.

    1996-01-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  6. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  7. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  8. Discovering Extrasolar Planets with Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  9. Two drastically different climate states on an Earth-like terra-planet

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Reick, Christian H.; Raddatz, Thomas; Claussen, Martin

    2018-06-01

    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an

  10. Planet-Planet Scattering in Planetesimal Disks. II. Predictions for Outer Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-01

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ("planetesimals"). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M ⊕ from 10 to 20 AU. For large planet masses (M >~ M Sat), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a <~ 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence—which is in the opposite sense from that predicted by the simplest scattering models—as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity measurements capable

  11. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  12. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  13. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, M.

    2003-01-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  14. Selections from 2017: Atmosphere Around an Earth-Like Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 bPublished March2017Main takeaway:An atmosphere was detected around the roughly Earth-size exoplanet GJ 1132 b using a telescope at the European Southern Observatory in Chile. A team of scientists led byJohn Southworth (Keele University) found features indicating the presence of an atmosphere in theobservationsof this 1.6-Earth-mass planet as it transits an M-dwarf host star. This is the lowest-mass planet with a detected atmosphere thus far.Why its interesting:M dwarfs are among the most common stars in our galaxy, and weve found manyEarth-sizeexoplanets in or near the habitable zones around M-dwarf hosts. But M dwarfs are also more magnetically active than stars like our Sun, suggesting that the planets in M-dwarfhabitable zones may not be able to support life due to stellar activity eroding their atmospheres. The detection of an atmosphere around GJ 1132 b suggests that some planets orbiting M dwarfsare able to retain their atmospheres which meansthat these planetsmay be an interesting place to search for life after all.How the atmosphere was detected:The measured planetary radius for GJ 1132 b as a function of the wavelength used to observe it. [Southworth et al. 2017]When measuring the radius of GJ 1132 b based on its transits, the authors noticed that the planet appeared to be largerwhen observed in some wavelengths than in others. This can beexplained if the planet has asurface radius of 1.4 Earth radii, overlaid by an atmosphere that extends out another few tenths of an Earth radius. The atmosphere, which may consist of water vapor or methane, is transparent to some wavelengths and absorbs others which is why the apparent size of the planet changes

  15. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  16. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  17. Infrared spectroscopy of the transiting extrasolar planet HD 209458 b during secondary eclipse

    NASA Astrophysics Data System (ADS)

    Richardson, Lee Jeremy

    2003-10-01

    We present spectroscopic observations that place strong limits on the atmospheric structure of the transiting extrasolar planet HD 209458 b. The discovery of the transit has led to several new observations that have provided the most de tailed information on the physical properties of a planet outside the solar system. These observations have concentrated on the primary eclipse, the time at which the planet crosses in front of the star as seen from Earth. The measurements have determined the basic physical characteristics of the planet, including radius, mass, average density, and orbital inclination, and have even refined values of the stellar mass and radius. Transmission spectroscopy of the system during primary eclipse resulted in the first detection of the atmosphere of an extrasolar planet, with the measurement of the sodium doublet. The present work discusses the first reported attempts to detect the secondary eclipse, or the disappearance of the planet behind the star, in the infrared. We devise the method of ‘occultation spectroscopy’ to detect the planetary spectrum, by searching in combined light for subtle changes in the shape of the spectrum as the planet passes behind the star. Predicted secondary eclipse events were observed from the Very Large Telescope (VLT) on UT 8 and 15 July 2001 using the Infrared Spectrometer and Array Camera (3.5 3.7 μm). Further observations from the NASA Infrared Telescope Facility (IRTF) using the SpeX instrument (1.9 4.2 μm) included two predicted secondary eclipse events on UT 20 and 27 September 2001. Analysis of these data reveal a statistically significant non- detection of the planetary spectrum. The results place strong limits on the structure of the planetary atmosphere and reject widely-accepted models for the planet that assume the incident stellar radiation is completely absorbed and re-emitted in the substellar hemisphere. Situations that remain consistent with our data include an isothermal atmosphere or

  18. Earth-class Planets Line Up

    NASA Image and Video Library

    2011-12-20

    This chart compares the first Earth-size planets found around a sun-like star to planets in our own solar system, Earth and Venus. NASA Kepler mission discovered the newfound planets, called Kepler-20e and Kepler-20f.

  19. A PILOT SEARCH FOR EVIDENCE OF EXTRASOLAR EARTH-ANALOG PLATE TECTONICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jura, M.; Klein, B.; Xu, S.

    Relative to calcium, both strontium and barium are markedly enriched in Earth's continental crust compared to the basaltic crusts of other differentiated rocky bodies within the solar system. Here, we both re-examine available archived Keck spectra to place upper bounds on n(Ba)/n(Ca) and revisit published results for n(Sr)/n(Ca) in two white dwarfs that have accreted rocky planetesimals. We find that at most only a small fraction of the pollution is from crustal material that has experienced the distinctive elemental enhancements induced by Earth-analog plate tectonics. In view of the intense theoretical interest in the physical structure of extrasolar rocky planets,more » this search should be extended to additional targets.« less

  20. Factors Affecting the Habitability of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital

  1. Hot Science with a "Warm" Telescope: Observations of Extrasolar Planets During the Spitzer Warm Mission

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl J.; Carey, S.; Helou, G.; Hurt, R.; Rebull, L.; Soifer, T.; Squires, G. K.; Storrie-Lombardi, L.

    2007-12-01

    The Spitzer Space Telescope will exhaust its cryogen supply sometime around March of 2009. However, the observatory is expected to remain operational until early 2014 with undiminished 3.6 and 4.5 micron imaging capabilities over two 5'x5’ fields-of-view. During this "warm” mission, Spitzer will operate with extremely high efficiency and provide up to 35,000 hours of science observing time. This will enable unprecedented opportunities to address key scientific questions requiring large allocations of observing time, while maintaining opportunities for broad community use with more "traditional” time allocations. Spitzer will remain a particularly valuable resource for studies of extrasolar planets, with applications including: 1) transit timing observations and precise radius measurements of Earth-sized planets transiting nearby M-dwarfs, 2) measuring thermal emission and distinguishing between broad band emission and absorption in the atmospheres of transiting hot Jupiters, 3) measuring orbital phase variations of thermal emission for both transiting and non-transiting, close-in planets, and 4) sensitive imaging searches for young planets at large angular separations from their parent stars.

  2. Extrasolar planets as a probe of modified gravity

    NASA Astrophysics Data System (ADS)

    Vargas dos Santos, Marcelo; Mota, David F.

    2017-06-01

    We propose a new method to test modified gravity theories, taking advantage of the available data on extrasolar planets. We computed the deviations from the Kepler third law and use that to constrain gravity theories beyond General Relativity. We investigate gravity models which incorporate three screening mechanisms: the Chameleon, the Symmetron and the Vainshtein. We find that data from exoplanets orbits are very sensitive to the screening mechanisms putting strong constraints in the parameter space for the Chameleon models and the Symmetron, complementary and competitive to other methods, like interferometers and solar system. With the constraints on Vainshtein we are able to work beyond the hypothesis that the crossover scale is of the same order of magnitude than the Hubble radius rc ∼ H0-1, which makes the screening work automatically, testing how strong this hypothesis is and the viability of other scales.

  3. Two drastically different climate states on an Earth-like land planet with overland water recycling

    NASA Astrophysics Data System (ADS)

    Kalidindi, S.; Reick, C. H.; Raddatz, T.; Claussen, M.

    2017-12-01

    Prior studies have demonstrated that habitable areas on low-obliquity land planets are confined to the edges of frozen ice caps. Whether such dry planets can maintain long-lived liquid water is unclear. Leconte et al. 2013 argue that on such planets mechanisms like gravity driven ice flows and geothermal flux can maintain liquid water at the edges of thick ice caps and this water may flow back to the lower latitudes through rivers. However, there exists no modelling study which investigates the climate of an Earth-like land planet with an overland recycling mechanism bringing fresh water back from higher to lower latitudes. In our study, by using a comprehensive climate model ICON, we find that an Earth-like land planet with an overland recycling mechanism can exist in two drastically different climate states for the same set of boundary conditions and parameter values: A Cold and Wet (CW) state with dominant low-latitude precipitation and, a Hot and Dry (HD) state with only high-latitude precipitation. For perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo (α) while above that only the CW state is stable. Starting from the HD state and increasing α above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35°C globally which is of the order of the temperature difference between the present-day and the Snowball Earth state. In contrast to the Snowball Earth instability, we find that the sudden cooling in our study is driven by the cloud albedo feedback rather than the snow-albedo feedback. Also, when α in the CW state is reduced back to zero the land planet does not display a closed hysteresis. Our study also has implications for the habitability of Earth-like land planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer

  4. Evidence for water in the rocky debris of a disrupted extrasolar minor planet.

    PubMed

    Farihi, J; Gänsicke, B T; Koester, D

    2013-10-11

    The existence of water in extrasolar planetary systems is of great interest because it constrains the potential for habitable planets and life. We have identified a circumstellar disk that resulted from the destruction of a water-rich and rocky extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating that the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.

  5. Early Direct Imaging and Spectral Characterization of Extrasolar Planets with the SCExAO/CHARIS

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Guyon, Olivier; Kasdin, Jeremy; Brandt, Timothy; Groff, Tyler; Jovanovic, Nemanja; Lozi, Julien; Chilcote, Jeffrey K.; Uyama, Taichi; Ascensio-Torres, Ruben; Tamura, Motohide; Norris, Barnaby

    2018-01-01

    We present selected direct imaging/spectroscopy results from Subaru’s extreme adaptive optics system, SCExAO, coupled with the CHARIS integral field spectrograph obtained from the first full year of CHARIS’s operation. SCExAO/CHARIS yields high signal-to-noise detections and 1.1—2.4 micron spectra of benchmark directly-imaged companions like HR 8799 cde and kappa And b that clarify their atmospheric properties. We describe these results and multi-epoch, multi-wavelength imaging of LkCa 15 to assess the (non-)existence of protoplanetary companions, and briefly describe upgrades to SCExAO that will allow it to image and characterize even fainter self-luminous extrasolar planets and eventually mature planets in reflected light.

  6. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  7. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  8. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  9. GLANCING VIEWS OF THE EARTH: FROM A LUNAR ECLIPSE TO AN EXOPLANETARY TRANSIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Munoz, A.; Barrena, R.; Montanes-Rodriguez, P.

    2012-08-20

    It has been posited that lunar eclipse observations may help predict the in-transit signature of Earth-like extrasolar planets. However, a comparative analysis of the two phenomena addressing in detail the transport of stellar light through the planet's atmosphere has not yet been presented. Here, we proceed with the investigation of both phenomena by making use of a common formulation. Our starting point is a set of previously unpublished near-infrared spectra collected at various phases during the 2008 August lunar eclipse. We then take the formulation to the limit of an infinitely distant observer in order to investigate the in-transit signaturemore » of the Earth-Sun system as being observed from outside our solar system. The refraction bending of sunlight rays that pass through Earth's atmosphere is a critical factor in the illumination of the eclipsed Moon. Likewise, refraction will have an impact on the in-transit transmission spectrum for specific planet-star systems depending on the refractive properties of the planet's atmosphere, the stellar size, and the planet's orbital distance. For the Earth-Sun system, at mid-transit, refraction prevents the remote observer's access to the lower {approx}12-14 km of the atmosphere and, thus, also to the bulk of the spectroscopically active atmospheric gases. We demonstrate that the effective optical radius of the Earth in-transit is modulated by refraction and varies by {approx}12 km from mid-transit to internal contact. The refractive nature of atmospheres, a property which is rarely accounted for in published investigations, will pose additional challenges to the characterization of Earth-like extrasolar planets. Refraction may have a lesser impact for Earth-like extrasolar planets within the habitable zone of some M-type stars.« less

  10. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.edu

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute tomore » the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.« less

  11. Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.

    PubMed

    Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A

    2014-09-02

    Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.

  12. The upper atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Lellouch, E.

    2003-04-01

    Over 100 extrasolar planets have been already detected, the vast majority of which by radial velocity measurements. While numerous models have been developed to describe their thermal structure, composition, spectrum, dynamics and evolution, the physical characterization of these objects remains remarkably poor, since in most cases only an estimate of the object's mass is available. Most observational efforts have so far been focused on close, short-period exoplanets ("hot Jupiters"), in particular on HD 209458B which appears to transit across its parent star and was confirmed to be as a genuine hydrogen-rich exoplanet . A highlight of these observations was the detection of sodium in its atmosphere (Charbonneau et al. 2002). Observational results and prospects will be briefly reviewed.

  13. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  14. Toward a Model for Detecting Life on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Rye, R.; Storrie-Lombardi, M.

    2001-12-01

    The search for life extraterrestrial life has rapidly expanded during the past several years. In addition to missions to Mars and Europa, NASA now envisions launching an orbiting telescope, Terrestrial Planet Finder (TPF), capable of resolving Earth-sized planets around stars as far away as 50 parsecs within the next 10-15 years. By that time we need to develop our understanding of the effects of life on such planets in order to confidently distinguish inhabited planets from barren ones. Our group is in the process of developing a fully coupled generalized 1-D radiative transfer-atmospheric chemistry model. Around this core we are building the Virtual Planetary Laboratory (VPL) to generate synthetic spectra of hypothetical extrasolar terrestrial planets. Computational modules mimicking the influence of life on atmospheric chemistry/climate are of central importance for analyzing data from TPF and related missions. Here we describe our rationale and initial efforts to parameterize the effects of life using a Virtual Microbial Community (VMC). At first glance, the task of modeling hypothetical inhabited planets appears intractable. However, we may assume that most planets settle into a fairly small number of stable climate/chemistry regimes during their history. These regimes are maintained by negative feedback loops. Transitions from one stable solution to another are singularities, times during which the system is unregulated and may vary wildly. In this context, life is one of several processes modifying the chemical composition of a planetary atmosphere, potentially modifying climate. We seek to elucidate those processes and signatures unique to life and visible from space. The VMC is a first attempt at quantifying the possible range of effects of life on the atmosphere of a planet. We start from the presumption that kinetics and thermodynamics are the same throughout the universe. Given the remarkable metabolic diversity of life on Earth, we assume that all

  15. Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars.

    PubMed

    Segura, Antígona; Krelove, Kara; Kasting, James F; Sommerlatt, Darrell; Meadows, Victoria; Crisp, David; Cohen, Martin; Mlawer, Eli

    2003-01-01

    Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.

  16. Measuring the Infrared Spectrum of the Transiting Extrasolar Planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Richardson, L. Jeremy; Cho, James; Deming, Drake; Hansen, Brad; Harrington, Joseph; Menou, Kristen; Seager, Sara

    2005-06-01

    Researchers from two independent groups recently detected the first infrared signal from an extrasolar planet. Deming et. al. (2005a) detected the 24-micron flux density of HD 209458b using MIPS at secondary eclipse, and Charbonneau et. al. (2005) detected the infrared signal of TrES-1 using IRAC at 4.5 and 8 microns. These results have dramatically demonstrated the ability of Spitzer to characterize extrasolar planets. We propose to build on these observations with IRS spectroscopy of HD 209458b from 7.4 to 14.5 microns. By observing the system both during and outside of secondary eclipse, we will derive the planetary spectrum from the change in the shape of the continuum spectrum in combined light. These observations will lead directly to a measurement of the temperature gradient in the planetary atmosphere and the column density of water above the clouds, and we will search for variability due to atmospheric dynamics.

  17. Extrasolar Planets: Towards Comparative Planetology beyond the Solar System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2012-09-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  18. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  19. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory

    NASA Technical Reports Server (NTRS)

    Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.

    1996-01-01

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  20. Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus

    NASA Astrophysics Data System (ADS)

    Kuhn, Jeff R.; Berdyugina, Svetlana V.

    2015-07-01

    Earth-like civilizations generate heat from the energy that they utilize. The thermal radiation from this heat can be a thermodynamic marker for civilizations. Here we model such planetary radiation on Earth-like planets and propose a strategy for detecting such an alien unintentional thermodynamic electromagnetic biomarker. We show that astronomical infrared (IR) civilization biomarkers may be detected within an interestingly large cosmic volume using a 70 m-class or larger telescope. In particular, the Colossus telescope with achievable coronagraphic and adaptive optics performance may reveal Earth-like civilizations from visible and IR photometry timeseries' taken during an exoplanetary orbit period. The detection of an alien heat signature will have far-ranging implications, but even a null result, given 70 m aperture sensitivity, could also have broad social implications.

  1. Global warming as a detectable thermodynamic marker of Earth-like extrasolar civilizations: the case for a telescope like Colossus.

    PubMed

    Kuhn, Jeff R; Berdyugina, Svetlana V

    2015-07-01

    Earth-like civilizations generate heat from the energy that they utilize. The thermal radiation from this heat can be a thermodynamic marker for civilizations. Here we model such planetary radiation on Earth-like planets and propose a strategy for detecting such an alien unintentional thermodynamic electromagnetic biomarker. We show that astronomical infrared (IR) civilization biomarkers may be detected within an interestingly large cosmic volume using a 70 m-class or larger telescope. In particular, the Colossus telescope with achievable coronagraphic and adaptive optics performance may reveal Earth-like civilizations from visible and IR photometry timeseries' taken during an exoplanetary orbit period. The detection of an alien heat signature will have far-ranging implications, but even a null result, given 70 m aperture sensitivity, could also have broad social implications.

  2. A map of the day-night contrast of the extrasolar planet HD 189733b.

    PubMed

    Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas

    2007-05-10

    'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

  3. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowballmore » climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.« less

  4. Transits of extrasolar moons around luminous giant planets

    NASA Astrophysics Data System (ADS)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  5. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-08-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with Teff = 2300 K to Teff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4-20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. To observe signatures of life—O2/O3 in combination with reducing species like CH4—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3Cl could become detectable, depending on the depth of the overlapping N2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  6. Understanding Divergent Evolution Among Earth-like Planets, the Case for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    2001-11-01

    Venus was once considered to be Earth's twin because of its similar size, mass, and solar distance. Prevailing theories early in the 20th century alternately characterized it as a hot, lifeless desert or a cool, habitable swamp. Venus was therefore the target of intense scrutiny during the first three decades of the space age. Those studies found that although Venus and Earth apparently formed in similar parts of the solar nebula, sharing common inventories of refractory and volatile constituents, these two planets followed dramatically different evolutionary paths. While the Earth evolved into the only known oasis for life, Venus developed an almost unimaginably inhospitable environment for such an Earth-like planet. Some features of Venus can be understood as products of its location in the solar system, but other properties and processes governing the evolution and present state of its interior, surface, and climate remain mysterious or even contradictory. A more comprehensive understanding of these factors is clearly essential as NASA embarks on efforts to detect and then characterize Earth-like planets in other solar systems. As part of the National Research Council's effort to identify themes and priorities for solar system exploration over the next decade, an open community panel was formed to provide input on future Venus exploration. A comprehensive investigation of the processes driving the divergent evolution of Venus is emerging as the primary focus. In other words, why is Venus a failed Earth? From this theme, we will define specific measurement objectives, instrument requirements, and mission requirements. Priorities will then be based on a number of factors including the needs for simultaneous or correlative measurements, technology readiness, and available opportunities.

  7. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Sasselov, D.; Segura, A.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less

  8. The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets.

    PubMed

    Moskovitz, Nicholas A; Gaidos, Eric; Williams, Darren M

    2009-04-01

    We have investigated the influence of lunarlike satellites on the infrared orbital light curves of Earth-analog extrasolar planets. Such light curves will be obtained by NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin missions as a consequence of repeat observations to confirm the companion status of a putative planet and determine its orbit. We used an energy balance model to calculate disk-averaged infrared (bolometric) fluxes from planet-satellite systems over a full orbital period (one year). The satellites are assumed to lack an atmosphere, have a low thermal inertia like that of the Moon, and span a range of plausible radii. The planets are assumed to have thermal and orbital properties that mimic those of Earth, while their obliquities and orbital longitudes of inferior conjunction remain free parameters. Even if the gross thermal properties of the planet can be independently constrained (e.g., via spectroscopy or visible-wavelength detection of specular glint from a surface ocean), only the largest (approximately Mars-sized) lunarlike satellites can be detected by light curve data from a TPF-like instrument (i.e., one that achieves a photometric signal-to-noise ratio of 10 to 20 at infrared wavelengths). Nondetection of a lunarlike satellite can obfuscate the interpretation of a given system's infrared light curve so that it may resemble a single planet with high obliquity, different orbital longitude of vernal equinox relative to inferior conjunction, and in some cases drastically different thermal characteristics. If the thermal properties of the planet are not independently established, then the presence of a lunarlike satellite cannot be inferred from infrared data, which would thus demonstrate that photometric light curves alone can only be used for preliminary study, and the addition of spectroscopic data will be necessary.

  9. Fast spin of the young extrasolar planet β Pictoris b.

    PubMed

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  10. The NGCSU Extrasolar Planet Transit Project

    NASA Astrophysics Data System (ADS)

    Jones, J. H.

    2000-12-01

    Since the first published reports of the detection of the extra-solar planet transit of HD 209458 (Henry, et al. 2000, ApJ, 529, L41; Charbonneau, et al. 2000, ApJ, 529, L45), we have been attempting to detect and measure the transits with high enough accuracy for useful data analysis of the light curves. Our goal is to improve our observational and data analysis techniques, and hopefully upgrade our equipment, until we are able to reliably acquire milli-magnitude multiband photometry of HD 209458 both on and off transit. We believe our observatory can fill a useful niche in the long term monitoring of HD 209458 and other such planet-transit stars that will surely be discovered in the future. There is also an important astronomy education component to our project as well. The chance for our undergraduate Physics majors to participate in important publishable research can be a great motivating factor for them to continue their academic careers into graduate school. Furthermore, the fact that they have participated in such a project makes our graduates more "marketable" to the graduate schools. We also have a high school teacher and student currently participating in our project. This shows the project is useful in providing astronomy outreach beyond our local institution. We report here on our first detection of the planet-transit during the night of August 15-16, 2000 and also present our data from a series of transits during the month of October, 2000. Finally, we will present the project's current status at the time of the meeting.

  11. The Leonard Award Address: On the Difficulties of Making Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart Ross

    1999-05-01

    in addition to explaining the angular momentum, orbital characteristics and unique composition of the Moon. Plate tectonics, unique among the terrestrial planets, led to the development of the continental crust on the Earth, an essential platform for the evolution of Homo sapiens. Random major impacts have punctuated the geological record, accentuating the directionless course of evolution. Thus a massive asteroidal impact terminated the Cretaceous Period, resulted in the extinction of at least 70% of species living at that time and led to the rise of mammals. This sequence of events that resulted in the formation and evolution of our planet were thus unique within our system. The individual nature of the eight planets is repeated among the 60-odd satellites: no two seem identical. This survey of our solar system raises the question whether the random sequence of events that led to the formation of the Earth are likely to be repeated in detail elsewhere. Preliminary evidence from the 'new planets' is not reassuring. The discovery of other planetary systems has removed the previous belief that they would consist of a central star surrounded by an inner zone of rocky planets and an outer zone of giant planets beyond a few AU. Jupiter-sized bodies in close orbits around other stars probably formed in a similar manner to our giant planets at several AU from their parent star and subsequently migrated inwards becoming stranded in close but stable orbits as 'hot Jupiters', when the nebula gas was depleted. Such events would prevent the formation of terrestrial-type planets in such systems.

  12. Astronomy: A small star with an Earth-like planet

    NASA Astrophysics Data System (ADS)

    Deming, Drake

    2015-11-01

    A rocky planet close in size to Earth has been discovered in the cosmic vicinity of our Sun. The small size and proximity of the associated star bode well for studies of the planet's atmosphere. See Letter p.204

  13. The Stability of Hydrogen-Rich Atmospheres of Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin

    2016-01-01

    Understanding hydrogen escape is essential to understanding the limits to habitability, both for liquid water where the Sun is bright, but also to assess the true potential of H2 as a greenhouse gas where the Sun is faint. Hydrogen-rich primary atmospheres of Earth-like planets can result either from gravitational capture of solar nebular gases (with helium), or from impact shock processing of a wide variety of volatile-rich planetesimals (typically accompanied by H2O, CO2, and under the right circumstances, CH4). Most studies of hydrogen escape from planets focus on determining how fast the hydrogen escapes. In general this requires solving hydro- dynamic equations that take into account the acceleration of hydrogen through a critical transonic point and an energy budget that should include radiative heating and cooling, thermal conduction, the work done in lifting the hydrogen against gravity, and the residual heat carried by the hydrogen as it leaves. But for planets from which hydrogen escape is modest or insignificant, the atmosphere can be approximated as hydrostatic, which is much simpler, and for which a relatively full-featured treatment of radiative cooling by embedded molecules, atoms, and ions such as CO2 and H3+ is straightforward. Previous work has overlooked the fact that the H2 molecule is extremely efficient at exciting non-LTE CO2 15 micron emission, and thus that radiative cooling can be markedly more efficient when H2 is abundant. We map out the region of phase space in which terrestrial planets keep hydrogen-rich atmospheres, which is what we actually want to know for habitability. We will use this framework to reassess Tian et al's hypothesis that H2-rich atmospheres may have been rather long-lived on Earth itself. Finally, we will address the empirical observation that rocky planets with thin or negligible atmospheres are rarely or never bigger than 1.6 Earth radii.

  14. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  15. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  16. The Potential for Volcanism and Tectonics on Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Roberge, Aki

    2018-01-01

    JWST and other next-generation space telescopes (e.g., LUVOIR, HabEx, & OST) will usher in a new era of exoplanet characterization that may lead to the identification of habitable, Earth-like worlds. Like the planets and moons in our solar system, the surfaces and interiors of terrestrial exoplanets may be shaped by volcanism and tectonics (Fu et al., 2010; van Summeren et al., 2011; Henning and Hurford, 2014). The magnitude and rate of occurrence of these dynamic processes can either facilitate or preclude the existence of habitable environments. Likewise, it has been suggested that detections of cryovolcanism on icy exoplanets, in the form of geyser-like plumes, could indicate the presence of subsurface oceans (Quick et al., 2017).The presence of volcanic and tectonic activity on solid exoplanets will be intimately linked to planet size and heat output in the form of radiogenic and/or tidal heating. In order to place bounds on the potential for such activity, we estimated the heat output of a variety of exoplanets observed by Kepler. We considered planets whose masses and radii range from 0.067 ME (super-Ganymede) to 8 ME (super-Earth), and 0.5 to 1.8 RE, respectively. These heat output estimates were then compared to those of planets, moons, and dwarf planets in our solar system for which we have direct evidence for the presence/absence of volcanic and tectonic activity. After exoplanet heating rates were estimated, depths to putative molten layers in their interiors were also calculated. For planets such as TRAPPIST-1h, whose densities, orbital parameters, and effective temperatures are consistent with the presence of significant amounts of H2O (Luger et al., 2017), these calculations reveal the depths to internal oceans which may serve as habitable niches beneath surface ice layers.

  17. The Discovery of Extrasolar Planets via Transits

    NASA Astrophysics Data System (ADS)

    Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.

    2014-01-01

    The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.

  18. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  19. Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars

    PubMed Central

    Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.

    2014-01-01

    Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169

  20. Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.

    2011-08-01

    After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the

  1. A SUPER-EARTH-SIZED PLANET ORBITING IN OR NEAR THE HABITABLE ZONE AROUND A SUN-LIKE STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, Thomas; Burke, Christopher J.; Howell, Steve B.

    We present the discovery of a super-Earth-sized planet in or near the habitable zone of a Sun-like star. The host is Kepler-69, a 13.7 mag G4V-type star. We detect two periodic sets of transit signals in the 3-year flux time series of Kepler-69, obtained with the Kepler spacecraft. Using the very high precision Kepler photometry, and follow-up observations, our confidence that these signals represent planetary transits is >99.3%. The inner planet, Kepler-69b, has a radius of 2.24{sup +0.44}{sub -0.29} R{sub Circled-Plus} and orbits the host star every 13.7 days. The outer planet, Kepler-69c, is a super-Earth-sized object with a radiusmore » of 1.7{sup +0.34}{sub -0.23} R{sub Circled-Plus} and an orbital period of 242.5 days. Assuming an Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 {+-} 19 K, which places the planet close to the habitable zone around the host star. This is the smallest planet found by Kepler to be orbiting in or near the habitable zone of a Sun-like star and represents an important step on the path to finding the first true Earth analog.« less

  2. Mid-Infrared Imaging of Exo-Earths: Impact of Exozodiacal Disk Structures

    NASA Technical Reports Server (NTRS)

    Defrere, Denis; Absil, O.; Stark, C.; den Hartog, R.; Danchi, W.

    2011-01-01

    The characterization of Earth-like extrasolar planets in the mid-infrared is a significant observational challenge that could be tackled by future space-based interferometers. The presence of large amounts of exozodiacal dust around nearby main sequence stars represents however a potential hurdle to obtain mid-infrared spectra of Earth-like planets. Whereas the disk brightness only affects the integration time, the emission of resonant dust structures mixes with the planet signal at the output of the interferometer and could jeopardize the spectroscopic analysis of an Earth-like planet. Fortunately, the high angular resolution provided by space-based interferometry is sufficient to spatially distinguish most of the extended exozodiacal emission from the planetary signal and only the dust located near the planet significantly contributes to the noise level. Considering modeled resonant structures created by Earth-like planets, we address in this talk the role of exozodiacal dust in two different cases: the characterization of Super-Earth planets with single space-based Bracewell interferometers (e.g., the FKSI mission) and the characterization of Earth-like planets with 4-telescope space-based nulling interferometers (e.g., the TPF-I and Darwin projects). In each case, we derive constraints on the disk parameters that can be tolerated without jeopardizing the detection of Earth-like planets

  3. Terrestrial planet formation in the presence of migrating super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, André; Morbidelli, Alessandro; Raymond, Sean N., E-mail: izidoro.costa@gmail.com, E-mail: morbidelli@oca.eu, E-mail: rayray.sean@gmail.com

    Super-Earths with orbital periods less than 100 days are extremely abundant around Sun-like stars. It is unlikely that these planets formed at their current locations. Rather, they likely formed at large distances from the star and subsequently migrated inward. Here we use N-body simulations to study the effect of super-Earths on the accretion of rocky planets. In our simulations, one or more super-Earths migrate inward through a disk of planetary embryos and planetesimals embedded in a gaseous disk. We tested a wide range of migration speeds and configurations. Fast-migrating super-Earths (τ{sub mig} ∼ 0.01-0.1 Myr) only have a modest effectmore » on the protoplanetary embryos and planetesimals. Sufficient material survives to form rocky, Earth-like planets on orbits exterior to the super-Earths'. In contrast, slowly migrating super-Earths shepherd rocky material interior to their orbits and strongly deplete the terrestrial planet-forming zone. In this situation any Earth-sized planets in the habitable zone are extremely volatile-rich and are therefore probably not Earth-like.« less

  4. Atmospheric mass-loss of extrasolar planets orbiting magnetically active host stars

    NASA Astrophysics Data System (ADS)

    Lalitha, Sairam; Schmitt, J. H. M. M.; Dash, Spandan

    2018-06-01

    Magnetic stellar activity of exoplanet hosts can lead to the production of large amounts of high-energy emission, which irradiates extrasolar planets, located in the immediate vicinity of such stars. This radiation is absorbed in the planets' upper atmospheres, which consequently heat up and evaporate, possibly leading to an irradiation-induced mass-loss. We present a study of the high-energy emission in the four magnetically active planet-bearing host stars, Kepler-63, Kepler-210, WASP-19, and HAT-P-11, based on new XMM-Newton observations. We find that the X-ray luminosities of these stars are rather high with orders of magnitude above the level of the active Sun. The total XUV irradiation of these planets is expected to be stronger than that of well-studied hot Jupiters. Using the estimated XUV luminosities as the energy input to the planetary atmospheres, we obtain upper limits for the total mass- loss in these hot Jupiters.

  5. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Ida, S.; Lin, D. N. C.

    2004-03-01

    In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by ``isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ``ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of

  6. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert A.

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevantmore » 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be

  7. MODELING THE INFRARED SPECTRUM OF THE EARTH-MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D., E-mail: robinson@astro.washington.edu

    2011-11-01

    The Moon maintains large surface temperatures on its illuminated hemisphere and can contribute significant amounts of flux to spatially unresolved thermal infrared (IR) observations of the Earth-Moon system, especially at wavelengths where Earth's atmosphere is absorbing. In this paper we investigate the effects of an unresolved companion on IR observations of Earthlike exoplanets. For an extrasolar twin Earth-Moon system observed at full phase at IR wavelengths, the Moon consistently comprises about 20% of the total signal, approaches 30% of the signal in the 9.6 {mu}m ozone band and the 15 {mu}m carbon dioxide band, makes up as much as 80%more » of the signal in the 6.3 {mu}m water band, and more than 90% of the signal in the 4.3 {mu}m carbon dioxide band. These excesses translate to inferred brightness temperatures for Earth that are too large by 20-40 K and demonstrate that the presence of undetected satellites can have significant impacts on the spectroscopic characterization of exoplanets. The thermal flux contribution from an airless companion depends strongly on phase, implying that observations of exoplanets should be taken when the star-planet-observer angle (i.e., phase angle) is as large as feasibly possible if contributions from companions are to be minimized. We show that, by differencing IR observations of an Earth twin with a companion taken at both gibbous and crescent phases, Moonlike satellites may be detectable by future exoplanet characterization missions for a wide range of system inclinations.« less

  8. ExSPO: A Discovery Class Apodized Square Aperture (ASA) Expo-Planet Imaging Space Telescope Concept

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Harwit, M.; Lyon, R.; Melnick, G.; Papaliolos, G.; Ridgeway, S.; Woodruff, R.; Nisenson, P.; Oegerle, William (Technical Monitor)

    2002-01-01

    ExSPO is a Discovery Class (approx. 4 meter) apodized square aperture (ASA) space telescope mission designed for direct imaging of extrasolar Earth-like planets, as a precursor to TPF. The ASA telescope concept, instrument design, capabilities, mission plan and science goals are described.

  9. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  10. Modeling the Surface Temperature of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Vladilo, Giovanni; Silva, Laura; Murante, Giuseppe; Filippi, Luca; Provenzale, Antonello

    2015-05-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface energy balance model (EBM) complemented by: radiative-convective atmospheric column calculations, a set of physically based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (ɛ ≲ 45{}^\\circ ). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ≈ 5 K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5≲ {Ω }/{{{Ω }}\\oplus }≲ 2, 0.75≲ S/{{S}\\circ }≲ 1.25, 0.3≲ p/(1 bar)≲ 10, and 0.5≲ R/{{R}\\oplus }≲ 2, respectively. The ESTM has an extremely low computational cost and can be used when the planetary parameters are scarcely known (as for most exoplanets) and/or whenever many runs for different parameter configurations are needed. Model simulations of a test-case exoplanet (Kepler-62e) indicate that an uncertainty in surface pressure within the range expected for terrestrial planets may impact the mean temperature by ˜ 60 K. Within the limits of validity of the ESTM, the impact of surface pressure is larger than that predicted by uncertainties in rotation rate, axis obliquity, and ocean fractions. We discuss the possibility of performing a statistical ranking of planetary habitability taking advantage of the flexibility of the ESTM.

  11. Planetary habitability: is Earth commonplace in the Milky Way?

    NASA Astrophysics Data System (ADS)

    Franck, S.; Block, A.; Bloh, W.; Bounama, C.; Garrido, I.; Schellnhuber, H.-J.

    2001-08-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  12. Planetary habitability: is Earth commonplace in the Milky Way?

    PubMed

    Franck, S; Block, A; von Bloh, W; Bounama, C; Garrido, I; Schellnhuber, H J

    2001-10-01

    Is there life beyond planet Earth? This is one of the grand enigmas which humankind tries to solve through scientific research. Recent progress in astronomical measurement techniques has confirmed the existence of a multitude of extra-solar planets. On the other hand, enormous efforts are being made to assess the possibility of life on Mars. All these activities have stimulated several investigations about the habitability of cosmic bodies. The habitable zone (HZ) around a given central star is defined as the region within which an Earth-like planet might enjoy the moderate surface temperatures required for advanced life forms. At present, there are several models determining the HZ. One class of models utilises climate constraints for the existence of liquid water on a planetary surface. Another approach is based on an integrated Earth system analysis that relates the boundaries of the HZ to the limits of photosynthetic processes. Within the latter approach, the evolution of the HZ for our solar system over geological time scales is calculated straightforwardly, and a convenient filter can be constructed that picks the candidates for photosynthesis-based life from all the extra-solar planets discovered by novel observational methods. These results can then be used to determine the average number of planets per planetary system that are within the HZ. With the help of a segment of the Drake equation, the number of "Gaias" (i.e. extra-solar terrestrial planets with a globally acting biosphere) is estimated. This leads to the thoroughly educated guess that there should exist half a million Gaias in the Milky Way.

  13. Systems level feasibility study for the detection of extra-solar planets. Volume 1: Infrared interferometer (IRIS) known as the Stanford Concept

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A sensor system for the direct detection of extrasolar planets from an Earth orbit is evaluated: a spinning, infrared interferometer (IRIS). It is shuttle deployed, free flying, requires no on-orbit assembly and no reservicing over a design life of five years. The sensor concept and the mission objectives are reviewed, and the performance characteristics of a baseline sensor for standard observation conditions are derived. A baseline sensor design is given and the enabling technology discussed. Cost and weight estimates are performed; and a schedule for an IRIS program including technology development and assessment of risk are given. Finally, the sensor is compared with the apodized visual telescope sensor (APOTS) proposed for the same mission. The major conclusions are: that with moderate to strong technology advances, particularly in the fields of long life cryogenics, dynamical control, mirror manufacturing, and optical alignment, the detection of a Jupiter like planet around a Sunlike star at a distance of 30 light years is feasible, with a 3 meter aperture and an observation time of 1 hour. By contrast, major and possibly unlikely breakthroughs in mirror technology are required for APOTS to match this performance.

  14. On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.; Burrows, Christopher J.

    1990-01-01

    The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.

  15. Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-Like Planets around quiescent M Dwarfs

    NASA Astrophysics Data System (ADS)

    Navarro, Karina F.; Navarro-Gonzalez, Rafael; McKay, Christopher P.

    Nitrous oxide (N _{2}O) is uniformly mixed in the troposphere with a concentration of about 310 ppb but disappears in the stratosphere (Prinn et al., 1990); N _{2}O is mostly emitted at a rate of 1x10 (13) g yr (-1) as a byproduct of microbial activity in soils and in the ocean by two processes: a) denitrification (reduction of nitrate and nitrite), and b) nitrification (oxidation of ammonia) (Maag and Vinther, 1996). The abiotic emission of N _{2}O in the contemporaneous Earth is small, mostly arising from lightning activity (2x10 (9) g yr (-1) , Hill et al., 1984) and by reduction of nitrite by Fe(II)-minerals in soils in Antarctica (Samarkin et al., 2010). Since N _{2}O has absorption bands in the mid-IR (7.8, 8.5, and 17 mumm) that makes it detectable by remote sensing (Topfer et al., 1997; Des Marais et al., 2002), it has been suggested as a potential biosignature in the search for life in extrasolar planets (Churchill and Kasting, 2000). However, the minimum required concentration for positive identification is 10,000 ppb with missions like Terrestrial Planet Finder and Darwin (Churchill and Kasting, 2000). Therefore, it is not a suitable biomarker for extrasolar Earth-like planets orbiting stars similar to the Sun. Because N _{2}O is protected in the troposphere from UV photolysis by the stratospheric ozone layer, its concentration would decrease with decreasing oxygen (O _{2}) concentrations, if the biological source strength remains constant (Kasting and Donahue, 1980). For a primitive Earth-like (Hadean) atmosphere dominated by CO _{2}, and no free O _{2}, the expected N _{2}O concentration would be about 3 ppb with the current microbial N _{2}O flux (Churchill and Kasting, 2000). The resulting N _{2}O spectral signature of this atmosphere would be undetectable unless the N _{2}O microbial flux would be 10 (4) greater than its present value (Churchill and Kasting, 2000). Since this flux is unlikely, it is impossible to use it as a biomarker in anoxic CO

  16. New worlds on the horizon: Earth-sized planets close to other stars.

    PubMed

    Gaidos, Eric; Haghighipour, Nader; Agol, Eric; Latham, David; Raymond, Sean; Rayner, John

    2007-10-12

    The search for habitable planets like Earth around other stars fulfills an ancient imperative to understand our origins and place in the cosmos. The past decade has seen the discovery of hundreds of planets, but nearly all are gas giants like Jupiter and Saturn. Recent advances in instrumentation and new missions are extending searches to planets the size of Earth but closer to their host stars. There are several possible ways such planets could form, and future observations will soon test those theories. Many of these planets we discover may be quite unlike Earth in their surface temperature and composition, but their study will nonetheless inform us about the process of planet formation and the frequency of Earth-like planets around other stars.

  17. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Sheppard, Kyle

    2017-05-01

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar-planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope/WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

  18. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  19. CO2 condensation is a serious limit to the deglaciation of Earth-like planets

    NASA Astrophysics Data System (ADS)

    Turbet, Martin; Forget, Francois; Leconte, Jeremy; Charnay, Benjamin; Tobie, Gabriel

    2017-10-01

    It is widely believed that the carbonate-silicate cycle is the main agent, through volcanism, to trigger deglaciations by CO2 greenhouse warming on Earth and on Earth-like planets when they get in a frozen state. Here we use a 3D Global Climate Model to simulate the ability of planets initially completely frozen to escape from glaciation episodes by accumulating enough gaseous CO2. The model includes CO2 condensation and sublimation processes and the water cycle. We find that planets with Earth-like characteristics (size, mass, obliquity, rotation rate, etc.) orbiting a Sun-like star may never be able to escape from a glaciation era, if their orbital distance is greater than ∼1.27 Astronomical Units (Flux < 847 Wm-2 or 62% of the Solar constant), because CO2 would condense at the poles - here the cold traps - forming permanent CO2 ice caps. This limits the amount of CO2 in the atmosphere and thus its greenhouse effect. Furthermore, our results indicate that for (1) high rotation rates (Prot < 24 h), (2) low obliquity (obliquity <23.5°), (3) low background gas partial pressures (<1 bar), and (4) high water ice albedo (H2O albedo > 0.6), this critical limit could occur at a significantly lower equivalent distance (or higher insolation). For each possible configuration, we show that the amount of CO2 that can be trapped in the polar caps depends on the efficiency of CO2 ice to flow laterally as well as its gravitational stability relative to subsurface water ice. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5, 4.5 and 15 bars of dry ice at the poles, for internal heat fluxes of 100, 30 and 10 mW m-2, respectively. But these amounts are in fact lower limits. For planets with a significant water ice cover, we show that CO2 ice deposits should be gravitationally unstable. They get buried beneath the water ice cover in geologically short timescales of ∼104 yrs, mainly controlled by the viscosity of water ice

  20. EXOFIT: orbital parameters of extrasolar planets from radial velocities

    NASA Astrophysics Data System (ADS)

    Balan, Sreekumar T.; Lahav, Ofer

    2009-04-01

    Retrieval of orbital parameters of extrasolar planets poses considerable statistical challenges. Due to sparse sampling, measurement errors, parameters degeneracy and modelling limitations, there are no unique values of basic parameters, such as period and eccentricity. Here, we estimate the orbital parameters from radial velocity data in a Bayesian framework by utilizing Markov Chain Monte Carlo (MCMC) simulations with the Metropolis-Hastings algorithm. We follow a methodology recently proposed by Gregory and Ford. Our implementation of MCMC is based on the object-oriented approach outlined by Graves. We make our resulting code, EXOFIT, publicly available with this paper. It can search for either one or two planets as illustrated on mock data. As an example we re-analysed the orbital solution of companions to HD 187085 and HD 159868 from the published radial velocity data. We confirm the degeneracy reported for orbital parameters of the companion to HD 187085, and show that a low-eccentricity orbit is more probable for this planet. For HD 159868, we obtained slightly different orbital solution and a relatively high `noise' factor indicating the presence of an unaccounted signal in the radial velocity data. EXOFIT is designed in such a way that it can be extended for a variety of probability models, including different Bayesian priors.

  1. Lightning chemistry on Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan

    2017-09-01

    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ˜3.4 and ˜6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  2. Precursor Science for the Terrestrial Planet Finder

    NASA Technical Reports Server (NTRS)

    Lawson, P. R. (Editor); Unwin, S. C. (Editor); Beichman, C. A. (Editor)

    2004-01-01

    This document outlines a path for the development of the field of extrasolar planet research, with a particular emphasis on the goals of the Terrestrial Planet Finder (TPF). Over the past decade, a new field of research has developed, the study of extrasolar planetary systems, driven by the discovery of massive planets around nearby stars. The planet count now stands at over 130. Are there Earth-like planets around nearby stars? Might any of those planets be conducive to the formation and maintenance of life? These arc the questions that TPF seeks to answer. TPF will be implemented as a suite of two space observatories, a 6-m class optical coronagraph, to be launched around 20 14, and a formation flying mid-infrared interferometer, to be launched sometime prior to 2020. These facilities will survey up to 165 or more nearby stars and detect planets like Earth should they be present in the 'habitable zone' around each star. With observations over a broad wavelength range, TPF will provide a robust determination of the atmospheric composition of planets to assess habitability and the presence of life. At this early stage of TPF's development, precursor observational and theoretical programs are essential to help define the mission, to aid our understanding of the planets that TPF could discover, and to characterize the stars that TPF will eventually study. This document is necessarily broad in scope because the significance of individual discoveries is greatly enhanced when viewed in thc context of the field as a whole. This document has the ambitious goal of taking us from our limited knowledge today, in 2004, to the era of TPF observations in the middle of the next decade. We must use the intervening years wisely. This document will be reviewed annually and updated as needed. The most recent edition is available online at http://tpf.jpl.nasa.gov/ or by email request to lawson@hucy.jpl.nasa.gov

  3. Melting-induced crustal production helps plate tectonics on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Lourenço, Diogo L.; Rozel, Antoine; Tackley, Paul J.

    2016-04-01

    Within our Solar System, Earth is the only planet to be in a mobile-lid regime. It is generally accepted that the other terrestrial planets are currently in a stagnant-lid regime, with the possible exception of Venus that may be in an episodic-lid regime (Armann and Tackley, JGR 2012). Using plastic yielding to self-consistently generate plate tectonics on an Earth-like planet with strongly temperature-dependent viscosity is now well-established, but such models typically focus on purely thermal convection, whereas compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. For example, Rolf and Tackley (GRL, 2011) showed that the addition of a continent can reduce the critical yield stress for mobile-lid behaviour by a factor of around two. Moreover, it has been shown that the final tectonic state of the system can depend on the initial condition (Tackley, G3 2000 - part 2). Weller and Lenardic (GRL, 2012) found that the parameter range in which two solutions are obtained increases with viscosity contrast. We can also say that partial melting has a major role in the long-term evolution of rocky planets: (1) partial melting causes differentiation in both major elements and trace elements, which are generally incompatible (Hofmann, Nature 1997). Trace elements may contain heat-producing isotopes, which contribute to the heat loss from the interior; (2) melting and volcanism are an important heat loss mechanism at early times that act as a strong thermostat, buffering mantle temperatures and preventing it from getting too hot (Xie and Tackley, JGR 2004b); (3) mantle melting dehydrates and hardens the shallow part of the mantle (Hirth and Kohlstedt, EPSL 1996) and introduces viscosity and compositional stratifications in the shallow mantle due to viscosity variations with the loss of hydrogen upon melting (Faul and Jackson, JGR 2007; Korenaga and Karato, JGR 2008). We present a set of 2D spherical

  4. Cryptic photosynthesis--extrasolar planetary oxygen without a surface biological signature.

    PubMed

    Cockell, Charles S; Kaltenegger, Lisa; Raven, John A

    2009-09-01

    On Earth, photosynthetic organisms are responsible for the production of virtually all the oxygen in the atmosphere. On land, vegetation reflects in the visible and leads to a "red edge," which developed about 450 million years ago on Earth and has been proposed as a biosignature for life on extrasolar planets. However, in many regions on Earth, particularly where surface conditions are extreme--in hot and cold deserts, for example--photosynthetic organisms can be driven into and under substrates where light is still sufficient for photosynthesis. These communities exhibit no detectable surface spectral signature to indicate life. The same is true of the assemblages of photosynthetic organisms at more than a few meters' depth in water bodies. These communities are widespread and dominate local photosynthetic productivity. We review known cryptic photosynthetic communities and their productivity. We have linked geomicrobiology with observational astronomy by calculating the disk-averaged spectra of cryptic habitats and identifying detectable features on an exoplanet dominated by such a biota. The hypothetical cryptic photosynthesis worlds discussed here are Earth analogues that show detectable atmospheric biosignatures like our own planet but do not exhibit a discernable biological surface feature in the disc-averaged spectrum.

  5. Migrating Jupiter up to the habitable zone: Earth-like planet formation and water delivery

    NASA Astrophysics Data System (ADS)

    Darriba, L. A.; de Elía, G. C.; Guilera, O. M.; Brunini, A.

    2017-11-01

    Context. Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes around Sun-like stars. Aims: We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet at intermediate distances ranging from 1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-like planets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamical stability of the resulting systems. Methods: A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at 2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. We developed sixty N-body simulations to describe the dynamical processes involved during and after the migration of the gas giant. Results: Our simulations produce three different classes of planets in the HZ: "water worlds", with masses between 2.75 M⊕ and 3.57 M⊕ and water contents of 58% and 75% by mass, terrestrial-like planets, with masses ranging from 0.58 M⊕ to 3.8 M⊕ and water contents less than 1.2% by mass, and "dry worlds", simulations of which show no water. A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentage of water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stable for at least 1 Gyr. Conclusions: Systems with a Jupiter-mass planet located at 1.5-2 au around solar-type stars are of astrobiological interest. These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.

  6. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV

  7. Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Shaklan, Stuart B.

    1996-01-01

    The detection of extrasolar planets around stars like the Sun remains an important goal of astronomy. We present results from Palomar 5 m observations of the open cluster NGC 2420 in which we measure some of the sources of noise that will be present in an astrometric search for extrasolar planets. This is the first time that such a large aperture has been used for high-precision astrometry. We find that the atmospheric noise is 150 micro-arcsec hr(exp 1/2) across a 90 sec field of view and that differential chromatic refraction (DCR) can be calibrated to 128 micro-arcsec for observations within 1 hr of the meridian and 45 deg of zenith. These results confirm that a model for astrometric measurements can be extrapolated to large apertures. We demonstrate, based upon these results, that a large telescope achieves the sensitivity required to perform a statistically significant search for extra solar planets. We describe an astrometric technique to detect planets, the astrometric signals expected, the role of reference stars, and the sources of measurement noise: photometric noise, atmospheric motion between stars, sky background, instrumental noise, and DCR. For the latter, we discuss a method to reduce the noise further to 66 micro-arcsecond for observations within 1 hr of the meridian and 45 deg of zenith. We discuss optimal lists of target stars taken from the latest Gliese & Jahreiss catalog of nearby stars with the largest potential astrometric signals, declination limits for both telescope accessibility and reduced DCR, and galactic latitude limits for a sufficiant number of reference stars. Two samples are described from which one can perform statistically significant searches for gas giant planets around nearby stars. One sample contains 100 "solar class" stars with an average stellar mass of 0.82 solar mass; the other maximizes the number of stars, 574, by searching mainly low-mass M stars. We perform Monte Carlo simulations of the statistical significance of

  8. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; hide

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  9. THE NASA-UC ETA-EARTH PROGRAM. II. A PLANET ORBITING HD 156668 WITH A MINIMUM MASS OF FOUR EARTH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard

    2011-01-10

    We report the discovery of HD 156668 b, an extrasolar planet with a minimum mass of M{sub P} sin i = 4.15 M{sub +}. This planet was discovered through Keplerian modeling of precise radial velocities from Keck-HIRES and is the second super-Earth to emerge from the NASA-UC Eta-Earth Survey. The best-fit orbit is consistent with circular and has a period of P = 4.6455 days. The Doppler semi-amplitude of this planet, K = 1.89 m s{sup -1}, is among the lowest ever detected, on par with the detection of GJ 581 e using HARPS. A longer period (P {approx} 2.3more » years), low-amplitude signal of unknown origin was also detected in the radial velocities and was filtered out of the data while fitting the short-period planet. Additional data are required to determine if the long-period signal is due to a second planet, stellar activity, or another source. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 156668 (an old, quiet K3 dwarf) is photometrically constant over the radial velocity period to 0.1 mmag, supporting the existence of the planet. No transits were detected down to a photometric limit of {approx}3 mmag, ruling out transiting planets dominated by extremely bloated atmospheres, but not precluding a transiting solid/liquid planet with a modest atmosphere.« less

  10. An Earth-sized planet in the habitable zone of a cool star.

    PubMed

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  11. Plate Tectonics on Earth-like Planets: Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Noack, L.; Breuer, D.

    2011-12-01

    Plate tectonics has been suggested to be essential for life (see e.g. [1]) due to the replenishment of nutrients and its role in the stabilization of the atmosphere temperature through the carbon-silicate cycle. Whether plate tectonics can prevail on a planet should depend on several factors, e.g. planetary mass, age of the planet, water content (at the surface and in the interior), surface temperature, mantle rheology, density variations in the mantle due to partial melting, and life itself by promoting erosion processes and perhaps even the production of continental rock [2]. In the present study, we have investigated how planetary mass, internal heating, surface temperature and water content in the mantle would factor for the probability of plate tectonics to occur on a planet. We allow the viscosity to be a function of pressure [3], an effect mostly neglected in previous discussions of plate tectonics on exoplanets [4, 5]. With the pressure-dependence of viscosity allowed for, the lower mantle may become too viscous in massive planets for convection to occur. When varying the planetary mass between 0.1 and 10 Earth masses, we find a maximum for the likelihood of plate tectonics to occur for planetary masses around a few Earth masses. For these masses the convective stresses acting at the base of the lithosphere are strongest and may become larger than the lithosphere yield strength. The optimum planetary mass varies slightly depending on the parameter values used (e.g. wet or dry rheology; initial mantle temperature). However, the peak in likelihood of plate tectonics remains roughly in the range of one to five Earth masses for reasonable parameter choices. Internal heating has a similar effect on the occurrence of plate tectonics as the planetary mass, i.e. there is a peak in the probability of plate tectonics depending on the internal heating rate. This result suggests that a planet may evolve as a consequence of radioactive decay into and out of the plate

  12. Exoplanets: the quest for Earth twins.

    PubMed

    Mayor, Michel; Udry, Stephane; Pepe, Francesco; Lovis, Christophe

    2011-02-13

    Today, more than 400 extra-solar planets have been discovered. They provide strong constraints on the structure and formation mechanisms of planetary systems. Despite this huge amount of data, we still have little information concerning the constraints for extra-terrestrial life, i.e. the frequency of Earth twins in the habitable zone and the distribution of their orbital eccentricities. On the other hand, these latter questions strongly excite general interest and trigger future searches for life in the Universe. The status of the extra-solar planets field--in particular with respect to very-low-mass planets--will be discussed and an outlook on the search for Earth twins will be given in this paper.

  13. Fixed Delay Interferometry for Doppler Extrasolar Planet Detection

    NASA Astrophysics Data System (ADS)

    Ge, Jian

    2002-06-01

    We present a new technique based on fixed delay interferometry for high-throughput, high-precision, and multiobject Doppler radial velocity (RV) surveys for extrasolar planets. The Doppler measurements are conducted by monitoring the stellar fringe phase shifts of the interferometer instead of absorption-line centroid shifts as in state-of-the-art echelle spectroscopy. High Doppler sensitivity is achieved through optimizing the optical delay in the interferometer and reducing photon noise by measuring multiple fringes over a broad band. This broadband operation is performed by coupling the interferometer with a low- to medium-resolution postdisperser. The resulting fringing spectra over the bandpass are recorded on a two-dimensional detector, with fringes sampled in the slit spatial direction and the spectrum sampled in the dispersion direction. The resulting total Doppler sensitivity is, in theory, independent of the dispersing power of the postdisperser, which allows for the development of new-generation RV machines with much reduced size, high stability, and low cost compared to echelles. This technique has the potential to improve RV survey efficiency by 2-3 orders of magnitude over the cross-dispersed echelle spectroscopy approach, which would allow a full-sky RV survey of hundreds of thousands of stars for planets, brown dwarfs, and stellar companions once the instrument is operated as a multiobject instrument and is optimized for high throughput. The simple interferometer response potentially allows this technique to be operated at other wavelengths independent of popular iodine reference sources, being actively used in most of the current echelles for Doppler planet searches, to search for planets around early-type stars, white dwarfs, and M, L, and T dwarfs for the first time. The high throughput of this instrument could also allow investigation of extragalactic objects for RV variations at high precision.

  14. Transit spectroscopy of the extrasolar planet HD 209458B: The search for water

    NASA Astrophysics Data System (ADS)

    Rojo, Patricio Michel

    This dissertation describes an attempt to detect water in the atmosphere of the extrasolar planet HD 209458b using transit spectroscopy. It first discusses the importance of water detection and reviews the state of knowledge about extrasolar planets. This review discusses the main statistical trends and describes the detection methods employed to this date. The importance of the transiting planets and the many measurements of the known ones are also discussed. A radiative transfer model designed and built specifically for this project predicts, given a planetary temperature/pressure/composition profile, the dependence in wavelength of the stellar spectrum modulation due to a transiting planet. A total of 352 spectra around 1.8 [mu]m were obtained on four nights (three in transit) of observations on August 3--4, September 26, and October 3 of 2002 using ISAAC at the Very Large Telescope. Correlating the modeled modulation with the infrared spectra yields a nondetection of water in the atmosphere of HD 209458b. It is found that the nondetection is due to an unfortunate choice of observing parameters and conditions that made it impossible to reach the required sensitivity. Nonetheless, the results are scaled with synthetic spectra to place strong limits on the planetary system configurations for which the observing parameters and telluric conditions would have yielded a successful detection. None of the 10 other known transiting planets would be detectable with the choice of parameters and conditions for this observation. A quantitative model of an improved observing strategy for future observations of this kind is developed. The improvements include: airmass and timing constraints, the simultaneous observation of a calibrator star, and a new method to find the optimal wavelength range. The data-reduction process includes several original techniques that were developed during this work, such as a method to remove fringes from flat fields and several methods to correct

  15. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  16. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Sheppard, Kyle

    We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at highmore » spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.« less

  17. Star Masses and Star-Planet Distances for Earth-like Habitability.

    PubMed

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ < M < 1.04 M ⊙ , and the range for planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  18. Star Masses and Star-Planet Distances for Earth-like Habitability

    PubMed Central

    2017-01-01

    Abstract This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M⊙ < M < 1.04 M⊙, and the range for planets with at least simple life is 0.57 M⊙ < M < 1.64 M⊙. Key Words: Habitability—Habitable zone—Anthropic—Red dwarfs—Initial mass function. Astrobiology 17, 61–77. PMID:28103107

  19. K2 Finds Earth-Sized Planets Artist Concept

    NASA Image and Video Library

    2016-07-18

    This artist's concept shows NASA's Kepler Space Telescope on its K2 mission. In July 2016, an international team of astronomers announced they had discovered more than 100 new planets using this telescope. The batch includes four planets in the size range of Earth that are orbiting a single dwarf star, depicted in this illustration. Two of these planets are too hot to support life as we know it, but two are in the star's "habitable" zone, where liquid water could exist on the surface. These small, rocky worlds are far closer to their star than Mercury is to our sun. But because the star is smaller and cooler than ours, its habitable zone is much closer. One of the two planets in the habitable zone, K2-72c, has a "year" about 15 Earth-days long -- the time it takes to complete one orbit. This closer planet is likely about 10 percent warmer than Earth. The slightly more distant planet in the habitable zone, K2-72e, has a year lasting 24 Earth days, and would be about 6 percent colder than Earth. http://photojournal.jpl.nasa.gov/catalog/PIA20698

  20. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  1. A Model of the Temporal Variability of Optical Light from Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Ford, E. B.; Seager, S.; Turner, E. L.

    2001-05-01

    New observatories such as TPF (NASA) and Darwin (ESA) are being designed to detect light directly from terrestrial-mass planets. Such observations will provide new data to constrain theories of planet formation and may identify the possible presence of liquid water and even spectroscopic signatures suggestive of life. We model the light scattered by Earth-like planets focusing on temporal variability due to planetary rotation and weather. Since a majority of the scattered light comes from only a small fraction of the planet's surface, significant variations in brightness are possible. The variations can be as large as a factor of two for a cloud-free planet which has a range of albedos similar to those of the different surfaces found on Earth. If a significant fraction of the observed light is scattered by the planet's atmosphere, including clouds, then the amplitude of variations due to surface features will be diluted. Atmospheric variability (e.g. clouds) itself is extremely interesting because it provides evidence for weather. The planet's rotation period, fractional ice and cloud cover, gross distribution of land and water on the surface, large scale weather patterns, large regions of unusual reflectivity or color (such as major desserts or vegetation's "red edge") as well as the geometry of its spin, orbit, and illumination relative to the observer all have substantial effects on the planet's rotational light curve.

  2. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    PubMed Central

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  3. IMPACT OF η{sub Earth} ON THE CAPABILITIES OF AFFORDABLE SPACE MISSIONS TO DETECT BIOSIGNATURES ON EXTRASOLAR PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Léger, Alain; Defrère, Denis; Malbet, Fabien

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a functionmore » of η{sub Earth}. When Kepler gives its final estimation for η{sub Earth}, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η{sub Earth} = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.« less

  4. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    NASA Astrophysics Data System (ADS)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J.; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  5. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    PubMed

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  6. DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca

    2016-02-20

    The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less

  7. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  8. Transit visibility zones of the Solar system planets

    NASA Astrophysics Data System (ADS)

    Wells, R.; Poppenhaeger, K.; Watson, C. A.; Heller, R.

    2018-01-01

    The detection of thousands of extrasolar planets by the transit method naturally raises the question of whether potential extrasolar observers could detect the transits of the Solar system planets. We present a comprehensive analysis of the regions in the sky from where transit events of the Solar system planets can be detected. We specify how many different Solar system planets can be observed from any given point in the sky, and find the maximum number to be three. We report the probabilities of a randomly positioned external observer to be able to observe single and multiple Solar system planet transits; specifically, we find a probability of 2.518 per cent to be able to observe at least one transiting planet, 0.229 per cent for at least two transiting planets, and 0.027 per cent for three transiting planets. We identify 68 known exoplanets that have a favourable geometric perspective to allow transit detections in the Solar system and we show how the ongoing K2 mission will extend this list. We use occurrence rates of exoplanets to estimate that there are 3.2 ± 1.2 and 6.6^{+1.3}_{-0.8} temperate Earth-sized planets orbiting GK and M dwarf stars brighter than V = 13 and 16, respectively, that are located in the Earth's transit zone.

  9. Extrasolar Planets Observed with JWST and the ELTs

    NASA Technical Reports Server (NTRS)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  10. THE PROJECT: an Observatory / Transport Spaceship for Discovering and Populating Habitable Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kilston, S.

    1998-12-01

    Recent extrasolar planet discoveries and related progress in astrophysics have refined our knowledge of the implications of the Drake equation. The Space Interferometry Mission and the planned Terrestrial Planet Finder will deepen this understanding, and begin pointing the way to places we need to explore at closer range. If the correct resolution of the Fermi paradox regarding intelligent extraterrestrials (``where are they?") is found to lie in the actual scarcity of such beings, it may turn out that we are more advanced than most other life-forms in our galaxy. In this case, a main purpose in finding planets may be to find places for us to go: astronomy will once again play a major role in human navigation and migration. We describe a strawman design concept for an astronomical observatory ship designed for launch beyond our solar system within several hundred years. This ship design would employ plausible physics, biology, technology, sociology, and economics to carry one million passengers in a one-G environment shielded from space radiation. A cruising speed under 0.01 c, slower than in many science-fiction concepts, minimizes power requirements and the danger from collisional impacts. The ship would contain all subsystems needed to sustain multi-generational life on a voyage of thousands of years, as well as the observatories to identify for human settlement a habitable extrasolar planet. Even the modestly advanced technology described here could spread intelligent life throughout our galaxy within 40 million years, a very small fraction of the galaxy's age. Motivation for such an ambitious project is three-fold: expanding our knowledge of the universe, enlisting the efforts and enthusiasms of humankind toward a very grand goal which will stimulate progress in all aspects of our cultures and technologies, and participating in the process of spreading life so its survivability and fruition are enhanced.

  11. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739. PMID:23855332

  12. Studying planet populations with Einstein's blip.

    PubMed

    Dominik, Martin

    2010-08-13

    Although Einstein originally judged that 'there is no great chance of observing this phenomenon', the 'most curious effect' of the bending of starlight by the gravity of intervening foreground stars--now commonly referred to as 'gravitational microlensing'--has become one of the successfully applied techniques to detect planets orbiting stars other than the Sun, while being quite unlike any other. With more than 400 extra-solar planets known altogether, the discovery of a true sibling of our home planet seems to have become simply a question of time. However, in order to properly understand the origin of Earth, carrying all its various life forms, models of planet formation and orbital evolution need to be brought into agreement with the statistics of the full variety of planets like Earth and unlike Earth. Given the complementarity of the currently applied planet detection techniques, a comprehensive picture will only arise from a combination of their respective findings. Gravitational microlensing favours a range of orbital separations that covers planets whose orbital periods are too long to allow detection by other indirect techniques, but which are still too close to their host star to be detected by means of their emitted or reflected light. Rather than being limited to the Solar neighbourhood, a unique opportunity is provided for inferring a census of planets orbiting stars belonging to two distinct populations within the Milky Way, with a sensitivity not only reaching down to Earth mass, but even below, with ground-based observations. The capabilities of gravitational microlensing extend even to obtaining evidence of a planet orbiting a star in another galaxy.

  13. The Carbonate-Silicate Cycle on Earth-like Planets Near The End Of Their Habitable Lifetimes

    NASA Astrophysics Data System (ADS)

    Rushby, A. J.; Mills, B.; Johnson, M.; Claire, M.

    2016-12-01

    The terrestrial cycle of silicate weathering and metamorphic outgassing buffers atmospheric CO2 and global climate over geological time on Earth. To first order, the operation of this cycle is assumed to occur on Earth-like planets in the orbit of other main-sequence stars in the galaxy that exhibit similar continent/ocean configurations. This has important implications for studies of planetary habitability, atmospheric and climatic evolution, and our understanding of the potential distribution of life in the Universe. We present results from a simple biogeochemical carbon cycle model developed to investigate the operation of the carbonate-silicate cycle under conditions of differing planet mass and position within the radiative habitable zone. An active carbonate-silicate cycle does extend the length of a planet's habitable period through the regulation of the CO2 greenhouse. However, the breakdown of the negative feedback between temperature, pCO2, and weathering rates towards the end of a planet's habitable lifespan results in a transitory regime of `carbon starvation' that would inhibit the ability of oxygenic photoautotrophs to metabolize, and result in the collapse of any putative biosphere supported by these organisms, suggesting an earlier limit for the initiation of inhabitable conditions than when considering temperature alone. This conclusion stresses the importance of considering the full suite of planetary properties when determining potential habitability. A small sample of exoplanets was tested using this model, and the length of their habitable periods were found to be significantly longer than that of the Earth, primarily as a function of the differential rates of stellar evolution expected from their host stars. Furthermore, we carried out statistical analysis of a series of model input parameters, determining that both the mass of the planet and the sensitivity of seafloor weathering processes to dissolved CO2 exhibit significant controls on the

  14. HABITABILITY OF EARTH-MASS PLANETS AND MOONS IN THE KEPLER-16 SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quarles, B.; Musielak, Z. E.; Cuntz, M., E-mail: billyq@uta.edu, E-mail: zmusielak@uta.edu, E-mail: cuntz@uta.edu

    2012-05-01

    We demonstrate that habitable Earth-mass planets and moons can exist in the Kepler-16 system, known to host a Saturn-mass planet around a stellar binary, by investigating their orbital stability in the standard and extended habitable zone (HZ). We find that Earth-mass planets in satellite-like (S-type) orbits are possible within the standard HZ in direct vicinity of Kepler-16b, thus constituting habitable exomoons. However, Earth-mass planets cannot exist in planetary-like (P-type) orbits around the two stellar components within the standard HZ. Yet, P-type Earth-mass planets can exist superior to the Saturnian planet in the extended HZ pertaining to considerably enhanced back-warming inmore » the planetary atmosphere if facilitated. We briefly discuss the potential detectability of such habitable Earth-mass moons and planets positioned in satellite and planetary orbits, respectively. The range of inferior and superior P-type orbits in the HZ is between 0.657-0.71 AU and 0.95-1.02 AU, respectively.« less

  15. ON THE NOTION OF WELL-DEFINED TECTONIC REGIMES FOR TERRESTRIAL PLANETS IN THIS SOLAR SYSTEM AND OTHERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenardic, A.; Crowley, J. W., E-mail: ajns@rice.edu, E-mail: jwgcrowley@gmail.com

    2012-08-20

    A model of coupled mantle convection and planetary tectonics is used to demonstrate that history dependence can outweigh the effects of a planet's energy content and material parameters in determining its tectonic state. The mantle convection-surface tectonics system allows multiple tectonic modes to exist for equivalent planetary parameter values. The tectonic mode of the system is then determined by its specific geologic and climatic history. This implies that models of tectonics and mantle convection will not be able to uniquely determine the tectonic mode of a terrestrial planet without the addition of historical data. Historical data exists, to variable degrees,more » for all four terrestrial planets within our solar system. For the Earth, the planet with the largest amount of observational data, debate does still remain regarding the geologic and climatic history of Earth's deep past but constraints are available. For planets in other solar systems, no such constraints exist at present. The existence of multiple tectonic modes, for equivalent parameter values, points to a reason why different groups have reached different conclusions regarding the tectonic state of extrasolar terrestrial planets larger than Earth ({sup s}uper-Earths{sup )}. The region of multiple stable solutions is predicted to widen in parameter space for more energetic mantle convection (as would be expected for larger planets). This means that different groups can find different solutions, all potentially viable and stable, using identical models and identical system parameter values. At a more practical level, the results argue that the question of whether extrasolar terrestrial planets will have plate tectonics is unanswerable and will remain so until the temporal evolution of extrasolar planets can be constrained.« less

  16. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  17. The Terrestrial Planet Finder and Darwin Missions

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2004-01-01

    Both in the United States and in Europe, teams of scientists and engineers are exploring the feasibility of the Terrestrial Planet Finder (TPF) and Darwin missions, which are designed to search for Earth-like planets in the habitable zone of nearby stars. In the US, the TPF Science Working Group is studying four options - small (4m by 6 m primary mirror) and large (4m by 10 m primary mirror) coronagraphs for planet detection at visible wavelengths, and structurally connected and free-flyer interferometers at thermal infrared wavelengths. The US TPF-SWG is charged with selecting an option for NASA by the end of 2006. In Europe the Darwin Terrestrial Exo-planet Advisory Team (TE- SAT) is exploring the free-flyer interferometer option only at this time. I will discuss the vurtures and difficulties of detecting and characterizing extra-solar planets in both wavelength regions as well as some of the technical challenges and progress in the past year.

  18. Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Taylor, John

    2011-09-01

    We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of all known transiting planetary systems using homogeneous techniques (Southworth 2008, 2009, 2010, 2011 in preparation). Careful attention is paid to the treatment of limb darkening, contaminating light, correlated noise, numerical integration, orbital eccentricity and orientation, systematic errors from theoretical stellar models, and empirical constraints. Complete error budgets are calculated for each system and can be used to determine which type of observation would be most useful for improving the parameter measurements. Known correlations between the orbital periods, masses, surface gravities, and equilibrium temperatures of transiting planets can be explored more safely due to the homogeneity of the properties. I give a sneak preview of Homogeneous Studies Paper 4, which includes the properties of thirty transiting planetary systems observed by the CoRoT, Kepler and Deep Impact space missions. Future opportunities are discussed, plus remaining problems with our understanding of transiting planets. I acknowledge funding from the UK STFC in the form of an Advanced Fellowship.

  19. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  20. Giant Transiting Planets Observations GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.; Henning, Th.; Weldrake, D.; Mazeh, T.; Dreizler, S.

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last recent years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits ({ AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telescope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  1. One or more bound planets per Milky Way star from microlensing observations.

    PubMed

    Cassan, A; Kubas, D; Beaulieu, J-P; Dominik, M; Horne, K; Greenhill, J; Wambsganss, J; Menzies, J; Williams, A; Jørgensen, U G; Udalski, A; Bennett, D P; Albrow, M D; Batista, V; Brillant, S; Caldwell, J A R; Cole, A; Coutures, Ch; Cook, K H; Dieters, S; Prester, D Dominis; Donatowicz, J; Fouqué, P; Hill, K; Kains, N; Kane, S; Marquette, J-B; Martin, R; Pollard, K R; Sahu, K C; Vinter, C; Warren, D; Watson, B; Zub, M; Sumi, T; Szymański, M K; Kubiak, M; Poleski, R; Soszynski, I; Ulaczyk, K; Pietrzyński, G; Wyrzykowski, L

    2012-01-11

    Most known extrasolar planets (exoplanets) have been discovered using the radial velocity or transit methods. Both are biased towards planets that are relatively close to their parent stars, and studies find that around 17-30% (refs 4, 5) of solar-like stars host a planet. Gravitational microlensing, on the other hand, probes planets that are further away from their stars. Recently, a population of planets that are unbound or very far from their stars was discovered by microlensing. These planets are at least as numerous as the stars in the Milky Way. Here we report a statistical analysis of microlensing data (gathered in 2002-07) that reveals the fraction of bound planets 0.5-10 AU (Sun-Earth distance) from their stars. We find that 17(+6)(-9)% of stars host Jupiter-mass planets (0.3-10 M(J), where M(J) = 318 M(⊕) and M(⊕) is Earth's mass). Cool Neptunes (10-30 M(⊕)) and super-Earths (5-10 M(⊕)) are even more common: their respective abundances per star are 52(+22)(-29)% and 62(+35)(-37)%. We conclude that stars are orbited by planets as a rule, rather than the exception.

  2. Simulating super earth atmospheres in the laboratory

    NASA Astrophysics Data System (ADS)

    Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.

    2016-01-01

    Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.

  3. Planet logy : Towards Comparative Planet logy beyond the Solar Earth System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2011-10-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  4. Modeling the Entry of Micrometeoroids into the Atmospheres of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Pevyhouse, A. R.; Kress, M. E.

    2011-01-01

    The temperature profiles of micrometeors entering the atmospheres of Earth-like planets are calculated to determine the altitude at which exogenous organic compounds may be released. Previous experiments have shown that flash-heated micrometeorite analogs release organic compounds at temperatures from roughly 500 to 1000 K [1]. The altitude of release is of great importance because it determines the fate of the compound. Organic compounds that are released deeper in the atmosphere are more likely to rapidly mix to lower altitudes where they can accumulate to higher abundances or form more complex molecules and/or aerosols. Variables that are explored here are particle size, entry angle, atmospheric density profiles, spectral type of the parent star, and planet mass. The problem reduces to these questions: (1) How much atmosphere does the particle pass through by the time it is heated to 500 K? (2) Is the atmosphere above sufficient to attenuate stellar UV such that the mixing timescale is shorter than the photochemical timescale for a particular compound? We present preliminary results that the effect of the planetary and particle parameters have on the altitude of organic release.

  5. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  6. Giant Transiting Planets Observations - GITPO

    NASA Astrophysics Data System (ADS)

    Afonso, C.

    2006-08-01

    The search for extrasolar planets is nowadays one of the most promising science drivers in Astronomy. The radial velocity technique proved to be successful in planet hunting, harvesting more than a hundred planets to date. In these last years, the transit method has come to fruition, with the detection of seven Jupiter-mass extrasolar transiting planets in close-in orbits (< 0.05 AU). Currently, the radius of planets can only be determined from transiting planets, representing the principal motivation and strength of this technique. The MPIA is presently building the Large Area Imager (LAIWO) for the 1m telescope in the Wise Observatory, Israel. LAIWO will have a field of view of one square degree. An intensive search for extra-solar planets will be performed with the 1m Wise telecope, together with the 1.2m MONET telescope in Texas. We will monitor three fields at a given time during three years and more than 200 nights per year. We expect several dozens of extra-solar planets.

  7. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    PubMed

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  8. A Moire Fringing Spectrometer for Extra-Solar Planet Searches

    NASA Astrophysics Data System (ADS)

    van Eyken, J. C.; Ge, J.; Mahadevan, S.; De Witt, C.; Ramsey, L. W.; Berger, D.; Shaklan, S.; Pan, X.

    2001-12-01

    We have developed a prototype moire fringing spectrometer for high precision radial velocity measurements for the detection of extra-solar planets. This combination of Michelson interferometer and spectrograph overlays an interferometer comb on a medium resolution stellar spectrum, producing Moire patterns. Small changes in the doppler shift of the spectrum lead to corresponding large shifts in the Moire pattern (Moire magnification). The sinusoidal shape of the Moire fringes enables much simpler measurement of these shifts than in standard echelle spectrograph techniques, facilitating high precision measurements with a low cost instrument. Current data analysis software we have developed has produced short-term repeatability (over a few hours) to 5-10m/s, and future planned improvements based on previous experiments should reduce this significantly. We plan eventually to carry out large scale surveys for low mass companions around other stars. This poster will present new results obtained in the lab and at the HET and Palomar 5m telescopes, the theory of the instrument, and data analysis techniques.

  9. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  10. A new statistical method for characterizing the atmospheres of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Henderson, Cassandra S.; Skemer, Andrew J.; Morley, Caroline V.; Fortney, Jonathan J.

    2017-10-01

    By detecting light from extrasolar planets, we can measure their compositions and bulk physical properties. The technologies used to make these measurements are still in their infancy, and a lack of self-consistency suggests that previous observations have underestimated their systemic errors. We demonstrate a statistical method, newly applied to exoplanet characterization, which uses a Bayesian formalism to account for underestimated errorbars. We use this method to compare photometry of a substellar companion, GJ 758b, with custom atmospheric models. Our method produces a probability distribution of atmospheric model parameters including temperature, gravity, cloud model (fsed) and chemical abundance for GJ 758b. This distribution is less sensitive to highly variant data and appropriately reflects a greater uncertainty on parameter fits.

  11. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    content of its host star. All very massive planetary systems are found around massive and metal-rich stars, while the four lowest-mass systems are found around lower-mass and metal-poor stars [5]. Such properties confirm current theoretical models. The discovery is announced today at the international colloquium "Detection and dynamics of transiting exoplanets", at the Observatoire de Haute-Provence, France. Notes [1] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [2] (added 30 August 2010) HD 10180b would be the lowest mass exoplanet discovered orbiting a "normal" star like our Sun. However, lower mass exoplanets have been previously discovered orbiting the pulsar PSR B1257+12 (a highly magnetised rotating neutron star). [3] On average the planets in the inner region of the HD 10180 system have 20 times the mass of the Earth, whereas the inner planets in our own Solar System (Mercury, Venus, Earth and Mars) have an average mass of half that of the Earth. [4] The Titius-Bode law states that the distances of the planets from the Sun follow a simple pattern. For the outer planets, each planet is predicted to be roughly twice as far away from the Sun as the previous object. The hypothesis correctly predicted the orbits of Ceres and Uranus, but failed as a predictor of Neptune's orbit. [5] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. Rocky planets are made of "metals". More information This research was presented in a paper submitted to Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets. XXVII. Up to

  12. Searching for Life: Early Earth, Mars and Beyond

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    We might be entering a golden age for exploring life throughout time and space. Rapid gene sequencing will better define our most distant ancestors. The earliest geologic evidence of life is now 3.8 billion years old. Organic matter and submicron-sized morphologies have been preserved in the martian crust for billions of years. Several new missions to Mars are planned, with a high priority on the search for life, past or present. The recent discovery of large extrasolar planets has heightened interest in spacecraft to detect small, earth-like planets. A recent workshop discussed strategies for life detection on such planets. There is much to anticipate in the near future.

  13. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  14. Colors of extreme exo-Earth environments.

    PubMed

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  15. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  16. Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Lourenco, D.; Tackley, P. J.; Rozel, A.; Ballmer, M.

    2017-09-01

    Plate tectonics on Earth-like planets is typically modelling using a strongly temperature-dependent visco-plastic rheology. Previous analyses have generally focussed on purely thermal convection. However, we have shown that the influence of compositional heterogeneity in the form of continental or oceanic crust can greatly influence plate tectonics by making it easier (i.e. it occurs at a lower yield stress or friction coefficient). Here we present detailed results on this topic, in particular focussing on the influence of intrusive vs. extrusive magmatism on the tectonic mode.

  17. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  18. Elemental Compositions of Extrasolar Planetesimals

    NASA Astrophysics Data System (ADS)

    Xu, Siyi; Jura, M.

    2014-01-01

    The composition of extrasolar rocky planets is essential for understanding the formation and evolution of these alien worlds. Studying externally-polluted white dwarfs provides the only method to directly measure the elemental compositions of extrasolar planetesimals, the building blocks of planets. The standard model is that some planetesimals can survive to the white dwarf phase, get perturbed, enter into the tidal radius of the white dwarf and get accreted, polluting its pure hydrogen or helium atmosphere. We have been performing high-resolution spectroscopic observations on a number of polluted white dwarfs to measure the bulk compositions of the accreted objects. To have a full picture of the abundance pattern, we gathered data from both Keck/HIRES and HST/COS. I will present the analysis for one of the most interesting objects -- G29-38. It is the first white dwarf identified with an infrared excess from debris of pulverized planetesimals and among the very first identified polluted hydrogen atmosphere white dwarfs. Our analysis indicates that the accreted extrasolar planetesimal is enhanced in refractory elements and depleted in volatile elements. A detailed comparison with solar system objects show that the observed composition can be best interpreted as a blend of chondritic object with some refractory-rich material, a result from post-nebular processing. When all polluted white dwarfs are viewed as an ensemble, we find that the elemental compositions of accreted extrasolar planetesimals resemble to those of solar system objects to zeroth order. (i) The big four elements, O, Fe, Mg and Si are also dominant. Objects with exotic compositions, e.g. diamond planets and refractory-dominated planets, are yet to be found. (ii) Volatiles, such as carbon and water, are only trace constituents. In terms of bulk composition, solar system objects are essentially normal.

  19. Microlensing Discovery of an Earth-Mass Planet

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    What do we know about planet formation around stars that are so light that they cant fuse hydrogen in their cores? The new discovery of an Earth-mass planet orbiting what is likely a brown dwarf may help us better understand this process.Planets Around Brown Dwarfs?Comparison of the sizes of the Sun, a low-mass star, a brown dwarf, Jupiter, and Earth. [NASA/JPL-Caltech/UCB]Planets are thought to form from the material inprotoplanetary disks around their stellar hosts. But the lowest-mass end of the stellar spectrum brown dwarfs, substellar objects so light that they straddle the boundary between planet and star will have correspondingly light disks. Do brown dwarfs disks typically have enough mass to form Earth-mass planets?To answer this question, scientists have searched for planets around brown dwarfs with marginal success. Thus far, only four such planets have been found and these systems may not be typical, since they were discovered via direct imaging. To build a more representative sample, wed like to discover exoplanets around brown dwarfs via a method that doesnt rely on imaging the faint light of the system.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]Lensed Light as a GiveawayConveniently, such a method exists and its recently been used to make a major discovery! The planet OGLE-2016-BLG-1195Lb was detected as a result of a gravitational microlensing event that was observed both from the ground and from space.The discovery of a planet via microlensing occurs when the light of a distant source star is magnified by a passing foreground star hosting a planet. The light curve of the source shows a distinctive magnification signature as a result of the gravitational lensing from the foreground star, and the gravitational field of the lensing stars planet can add its own detectable blip to the curve.OGLE-2016-BLG-1195LbThe magnification curve of OGLE-2016-BLG-1195

  20. Light-curve analysis of KOI 2700b: the second extrasolar planet with a comet-like tail

    NASA Astrophysics Data System (ADS)

    Garai, Z.

    2018-03-01

    Context. The Kepler object KOI 2700b (KIC 8639908b) was discovered recently as the second exoplanet with a comet-like tail. It exhibits a distinctly asymmetric transit profile, likely indicative of the emission of dusty effluents and reminiscent of KIC 12557548b, the first exoplanet with a comet-like tail. Aim. The scientific goal of this work is to verify the disintegrating-planet scenario of KOI 2700b by modeling its light curve and to put constraints on various tail and planet properties, as was done in the case of KIC 12557548b. Methods: We obtained the phase-folded and binned transit light curve of KOI 2700b, which we subsequently iteratively modeled using the radiative-transfer code SHELLSPEC. We modeled the comet-like tail as part of a ring around the parent star and we also included the solid body of the planet in the model. During the modeling we applied selected species and dust particle sizes. Results: We confirmed the disintegrating-planet scenario of KOI 2700b. Furthermore, via modeling, we derived some interesting features of KOI 2700b and its comet-like tail. It turns out that the orbital plane of the planet and its tail are not edge-on, but the orbital inclination angle is from the interval [85.1, 88.6] deg. In comparison with KIC 12557548b, KOI 2700b exhibits a relatively low dust density decreasing in its tail. We also derived the dust density at the beginning of the ring and the highest optical depth through the tail in front of the star, based on a tail-model with a cross-section of 0.05 × 0.05 R⊙ at the beginning and 0.09 × 0.09 R⊙ at its end. Our results show that the dimension of the planet is Rp/Rs ≤ 0.014 (Rp ≤ 0.871 R⊕, or ≤5551 km). We also estimated the mass-loss rate from KOI 2700b, and we obtained Ṁ values from the interval [5.05 × 107, 4.41 × 1015] g s-1. On the other hand, we could not draw any satisfactory conclusions about the typical grain size in the dust tail.

  1. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  2. European astronomers observe first evaporating planet

    NASA Astrophysics Data System (ADS)

    2003-03-01

    The scorched planet called HD 209458b orbits ‘only’ 7 million kilometres from its yellow Sun-like star. By comparison, Jupiter, the closest gas giant in our Solar System, orbits 780 million kilometres from our Sun. NASA/ESA Hubble Space telescope observations reveal a hot and puffed-up evaporating hydrogen atmosphere surrounding the planet. This huge envelope of hydrogen resembles a comet with a tail trailing behind the planet. The planet circles the parent star in a tight 3.5-day orbit. Earth also has an extended atmosphere of escaping hydrogen gas, but the loss rate is much lower. A mainly European team led by Alfred Vidal-Madjar (Institut d’Astrophysique de Paris, CNRS, France) reports this discovery in the 13 March edition of Nature. "We were astonished to see that the hydrogen atmosphere of this planet extends over 200 000 kilometres," says Vidal-Madjar. Studying extrasolar planets, especially if they are very close to their parent stars, is not easy because the starlight is usually too blinding. The planet was also too close to the star for Hubble to photograph directly in this case. However, astronomers were able to observe the planet indirectly since it blocks light from a small part of the star during transits across the disc of the star, thereby dimming it slightly. Light passing through the atmosphere around the planet is scattered and acquires a signature from the atmosphere. In a similar way, the Sun’s light is reddened as it passes obliquely through the Earth’s atmosphere at sunset. Astronomers used Hubble’s space telescope imaging spectrograph (STIS) to measure how much of the planet's atmosphere filters light from the star. They saw a startling drop in the star's hydrogen emission. A huge, puffed-up atmosphere can best explain this result. What is causing the atmosphere to escape? The planet’s outer atmosphere is extended and heated so much by the nearby star that it starts to escape the planet's gravity. Hydrogen boils off in the

  3. Estrellas asociadas con planetas extrasolares vs. estrellas de tipo β Pictoris

    NASA Astrophysics Data System (ADS)

    Chavero, C.; Gómez, M.

    In this contribution we initially confront physical properties of two groups of stars: the Planet Host Stars and the Vega-like objects. The Planet Host Star group has one or more planet mass object associated and the Vega-like stars have circumstellar disks. We have compiled magnitudes, colors, parallaxes, spectral types, etc. for these objects from the literature and analyzed the distribution of both groups. We find that the samples are very similar in metallicities, ages, and spatial distributions. Our analysis suggests that the circumstellar environments are probably different while the central objects have similar physical properties. This difference may explain, at least in part, why the Planet Host Stars form extra-solar planetary objects such as those detected by the Doppler effect while the Vega-like objects are not commonly associated with these planet-mass bodies.

  4. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    NASA Technical Reports Server (NTRS)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  5. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin I of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  6. Assessing the Chemistry of Tidally Locked Earth-like Planets around M-type Stars Using a 3D Coupled Chemistry-Climate Model (CESM/WACCM)

    NASA Astrophysics Data System (ADS)

    Lanzano, Alexander

    2016-10-01

    Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.

  7. Climate of an Earth-Like World with Changing Eccentricity

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding

  8. Magnetospheric Emission from Extrasolar Planets

    DTIC Science & Technology

    2010-01-01

    their habitability—can only be accomplished from space. The most promising location for a telescope designed to detect AKR from extrasolar...Laboratory A . Lecacheux, Observatoire de Paris W. Majid, Jet Propulsion Laboratory R. Osten, STScI E. Shkolnik, Carnegie Institute of Washington I. Stevens...Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a

  9. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    PubMed

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.

  10. Production of Star-Grazing and Star-Impacting Planetestimals via Orbital Migration of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Holman, M.

    2000-01-01

    During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.

  11. Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds.

    PubMed

    Kiang, Nancy Y; Segura, Antígona; Tinetti, Giovanna; Govindjee; Blankenship, Robert E; Cohen, Martin; Siefert, Janet; Crisp, David; Meadows, Victoria S

    2007-02-01

    As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.

  12. The Formation of the Earth-Moon System and the Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  13. Kepler Confirms First Earth-Sized Planet Outside Our Solar System (Kepler-20) (Reporter Package)

    NASA Image and Video Library

    2011-12-19

    NASA's Kepler mission has confirmed the discovery of the first Earth-size planets outside our solar system orbiting a sun-like star. Located about 1,000 light years from Earth, the Kepler-20 solar system has five planets orbiting a star similar to the Sun. Kepler-20f, the 4th planet in the system, is about 90 percent the size of Earth. Kepler-20f is slightly larger than Earth,with a radius that is 3 percent larger.

  14. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  15. The runaway Greenhouse revisited: it's "theoretically possible for an Earth-like planet at 1 AU", plus implications for more diverse planets

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Zahnle, K. J.; Crisp, D.; Robinson, T. D.

    2013-12-01

    For water-vapour rich atmospheres, there is an asymptotic limit on thermal emission to space. If more sunlight is absorbed than this limit, energy balance is no longer possible and runaway heating occurs, evaporating the ocean and sterilizing the planet en route. Here, we present recently published work (Goldblatt et al., 2013) which was the first full re-evaluation of the problem since classic 1980's era work (e.g. Watson et al., 1984; Abe & Matsui, 1988; Kasting, 1988). With modern molecular absorption databases and a line-by-line resolution model, we find that the thermal limit is lower than previous estimates (282Wm-2, down from 310Wm-2) and that much more sunlight is absorbed by a steam atmosphere (294Wm-2, up from 222Wm-2). The immediate implication is that a cloud-free moist atmosphere on Earth would cause a runaway greenhouse. Triggering it would simply be a matter of sufficient heating, with around 30,000ppmv being sufficient in our most Earth-like model. This is substantially different than previous calculations, where weak solar absorption meant that a higher solar flux was required. Our published calculations are for the limit of clear-skies; any clouds would reduce both the thermal radiation emitted and the solar radiation absorbed, so clouds could make the runaway greenhouse either more or less likely. It can be shown that and excess of cloud reflection over cloud greenhouse is required to maintain temperate climate on Earth today - but how clouds will change in a warming atmosphere is far from clear. Work in progress (and hopefully ready by December!) on cloudy runaway greenhouse models will hopefully constrain this better. Wider implications for planetary stability will also be discussed. For example, water-world planets, with minimal background gas in the atmosphere may be highly susceptible to runaway greenhouses (heating Europa might take it directly from a snowball to a runaway). High CO2 levels after previous Snowball Earth events did not

  16. The HARPS search for southern extra-solar planets. XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti

    NASA Astrophysics Data System (ADS)

    Astudillo-Defru, N.; Díaz, R. F.; Bonfils, X.; Almenara, J. M.; Delisle, J.-B.; Bouchy, F.; Delfosse, X.; Forveille, T.; Lovis, C.; Mayor, M.; Murgas, F.; Pepe, F.; Santos, N. C.; Ségransan, D.; Udry, S.; Wünsche, A.

    2017-09-01

    Exoplanet surveys have shown that systems with multiple low-mass planets on compact orbits are common. Except for a few cases, however, the masses of these planets are generally unknown. At the very end of the main sequence, host stars have the lowest mass and hence offer the largest reflect motion for a given planet. In this context, we monitored the low-mass (0.13 M⊙) M dwarf YZ Cet (GJ 54.1, HIP 5643) intensively and obtained radial velocities and stellar-activity indicators derived from spectroscopy and photometry, respectively. We find strong evidence that it is orbited by at least three planets in compact orbits (POrb = 1.97, 3.06, 4.66 days), with the inner two near a 2:3 mean-motion resonance. The minimum masses are comparable to the mass of Earth (M sin I = 0.75 ± 0.13, 0.98 ± 0.14, and 1.14 ± 0.17 M⊕), and they are also the lowest masses measured by radial velocity so far. We note the possibility for a fourth planet with an even lower mass of M sin I = 0.472 ± 0.096 M⊕ at POrb = 1.04 days. An n-body dynamical model is used to place further constraints on the system parameters. At 3.6 parsecs, YZ Cet is the nearest multi-planet system detected to date. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope under the program IDs 180.C-0886(A), 183.C-0437(A), and 191.C-0873(A) at Cerro La Silla (Chile).Radial velocity data (Table B.4) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/L11

  17. Development of a Model of Geophysical and Geochemical Controls on Abiotic Carbon Cycling on Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Felton, R.; Domagal-Goldman, S. D.; Desch, S. J.; Arney, G. N.

    2017-12-01

    About 20 Earth-sized planets (0.6-1.6 Earth masses and radii) have now been discovered beyond our solar system [1]. Although such planets are prime targets in the upcoming search for atmospheric biosignatures, their composition, geology, and climate are essentially unconstrained. Yet, developing an understanding of how these factors influence planetary evolution through time and space is essential to establishing abiotic backgrounds against which any deviations can provide evidence for biological activity. To this end, we are building coupled geophysical-geochemical models of abiotic carbon cycling on such planets. Our models are controlled by atmospheric factors such as temperature and composition, and compute interior inputs to atmospheric species. They account for crustal weathering, ocean-atmosphere equilibria, and exchange with the deep interior as a function of planet composition and size (and, eventually, age).Planets in other solar systems differ from the Earth not only in their bulk physical properties, but also likely in their bulk chemical composition [2], which influences key parameters such as the vigor of mantle convection and the near-surface redox state. Therefore, simulating how variations in such parameters affect carbon cycling requires us to simulate the above processes from first principles, rather than by using arbitrary parameterizations derived from observations as is often done with models of carbon cycling on Earth [3] or extrapolations thereof [4]. As a first step, we have developed a kinetic model of crustal weathering using the PHREEQC code [5] and kinetic data from [6]. We will present the ability of such a model to replicate Earth's carbon cycle using, for the time being, parameterizations for surface-interior-atmosphere exchange processes such as volcanism (e.g., [7]).[1] exoplanet.eu, 7/28/2017.[2] Young et al. (2014) Astrobiology 14, 603-626.[3] Lerman & Wu (2008) Kinetics of Global Geochemical Cycles. In Kinetics of Water

  18. Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2002-01-01

    This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.

  19. Comparative Study on Hot Atom Coronae of Solar and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Shematovich, Valery

    Solar/stellar forcing on the upper atmospheres of the solar and extrasolar planets via both absorption of the XUV (soft X-rays and extreme ultraviolet) radiation and atmospheric sputtering results in the formation of an extended neutral corona populated by the suprathermal (hot) H, C, N, and O atoms (see, e.g., Johnson et al., 2008). The hot corona, in turn, is altered by an inflow of the solar wind/magnetospheric plasma and local pick-up ions onto the planetary exosphere. Such inflow results in the formation of the superthermal atoms (energetic neutral atoms - ENAs) due to the charge exchange with the high-energy precipitating ions and can affect the long-term evolution of the atmosphere due to the atmospheric escape. The origin, kinetics and transport of the suprathermal H, C, N, and O atoms in the transition regions (from thermosphere to exosphere) of the planetary atmospheres are discussed. Reactions of dissociative recombination of the ionospheric ions CO _{2} (+) , CO (+) , O _{2} (+) , and N _{2} (+) with thermal electrons are the main photochemical sources of hot atoms. The dissociation of atmospheric molecules by the solar/stellar XUV radiation and accompanying photoelectron fluxes and the induced exothermic photochemistry are also the important sources of the suprathermal atoms. Such kinetic systems with the non-thermal processes are usually investigated with the different (test particles, DSMC, and hybrid) versions of the kinetic Monte Carlo method. In our studies the kinetic energy distribution functions of suprathermal and superthermal atoms were calculated using the stochastic model of the hot planetary corona (Shematovich, 2004, 2010; Groeller et al., 2014), and the Monte Carlo model (Shematovich et al., 2011, 2013) of the high-energy proton and hydrogen atom precipitation into the atmosphere respectively. These functions allowed us to estimate the space distribution of suprathermals in the planetary transition regions. An application of these

  20. Survival of extrasolar giant planet moons in planet-planet scattering

    NASA Astrophysics Data System (ADS)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  1. Tidal effects on Earth, Planets, Sun by far visiting moons

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  2. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  3. FRESIP: A Discovery Mission Concept To Find Earth-Sized Planets Around Solar Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Cullers, D.; Webster, L.; Granados, A.; Ford, C.; Reitsema, H.; Cochran, W.; Bell, J.; hide

    1994-01-01

    The current nebular theory postulates that planets are. a consequence of the formation of stars from viscous accretion disks. Condensation from the accretion disk favors the formation of small rocky planets in the hot inner region, and the formation of gas giants in the cool outer region. Consequently, terrestrial-type planet in inner orbits should be commonplace. From geometrical considerations , Borucki and Summers have shown that 1% of planetary systems resembling our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large detector array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To differentiate regularly recurring transits from statistical fluctuations of the stellar flux, one must observe over several orbital periods so that the false positive rate can be reduced to one event or less. A one-meter aperture telescope placed in a halo orbit about either the L1 or L2 Lagrange points and viewing perpendicular to both the orbital and ecliptic planes can view continuously for the required period because neither the Sun, Earth, or Moon would enter the field of view. Model calculations show that the observations should provide statistically significant estimates of the distributions of planetary size, orbital radius, coplanarity, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbiting either one or both of the stars can also be determined.

  4. Rainbows, polarization, and the search for habitable planets.

    PubMed

    Bailey, Jeremy

    2007-04-01

    Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.

  5. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  6. Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    NASA Astrophysics Data System (ADS)

    Mann, Andrew W.; Vanderburg, Andrew; Rizzuto, Aaron C.; Kraus, Adam L.; Berlind, Perry; Bieryla, Allyson; Calkins, Michael L.; Esquerdo, Gilbert A.; Latham, David W.; Mace, Gregory N.; Morris, Nathan R.; Quinn, Samuel N.; Sokal, Kimberly R.; Stefanik, Robert P.

    2018-01-01

    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth ({0.99}-0.04+0.06{R}\\oplus ), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of {2.91}-0.10+0.11{R}\\oplus and {1.45}-0.08+0.11{R}\\oplus , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts.

  7. Jupiter and the Extrasolar Giant Planets: Composition and origin of atmospheres

    NASA Astrophysics Data System (ADS)

    Atreya, S.; Wong, A.; Mahaffy, P.; Niemann, H.; Wong, M.; Owen, T.

    In this paper, we will discuss the related issues of the composition and origin of Jupiter's atmosphere, and how this can help in understanding the atmospheres of the extrasolar giant planets (EGP). In the case of Jupiter, a wealth of data on the planet's atmosphere is available, largely as a result of the successful spacecraft observations by the Galileo Orbiter and Probe, ISO and Voyager, complemented by ground-based observations (Atreya et al., PSS 47, 1243, 1999; Encrenaz et al., PSS, 47, 1223, 1999; Atreya et al., PSS, 2002, in press). Although the atmosphere is made up of mostly H and He, trace amounts of CH4 and its products, H O, NH 3, H2S,22 heavy noble gases (Ne, Ar, Kr, Xe), and disequilibrium species (PH3, CO, CO2, GeH4, AsH3), are also detected. From measurements of the trace constituents in Jupiter's upper and the deep well-mixed troposphere by the Galileo Probe, it has been possible to determine the "bulk" abundance of the heavy elements, which is key to understanding the origin and evolution of the planet's atmosphere. C, N, S, Ar, Kr and Xe are all found to be enriched by a factor of 2-4 relative to their solar ratios to H. This unexpected finding led Owen et al. (Nature, 402, 269, 1999) to suggest that the icy planetesimals that formed Jupiter must have had a low temperature (=30 K) origin in order for them to trap the volatiles containing the heavy elements. An alternate hypothesis - according to which the volatiles were trapped in clathrate hydrates instead (Gautier et al., Ap. J., 550, L227, 2001) - overestimates Jupiter's sulfur abundance, and it too requires a remarkably low temperature of =38 K for argon clathration (Gautier et al., Ap. J., 559, L183, 2001) Could the known composition of Jupiter help in understanding the atmospheres of the EGP's? So far, only sodium has been detected in the atmosphere of an EGP that orbits a sun-like star, HD 209458, at 0.0468 AU (Charbonneau et al., Ap. J., 568, 377, 2002). However, sodium has not been

  8. A direct comparison of exoEarth yields for starshades and coronagraphs

    NASA Astrophysics Data System (ADS)

    Stark, Christopher C.; Cady, Eric J.; Clampin, Mark; Domagal-Goldman, Shawn; Lisman, Doug; Mandell, Avi M.; McElwain, Michael W.; Roberge, Aki; Robinson, Tyler D.; Savransky, Dmitry; Shaklan, Stuart B.; Stapelfeldt, Karl R.

    2016-07-01

    The scale and design of a future mission capable of directly imaging extrasolar planets will be influenced by the detectable number (yield) of potentially Earth-like planets. Currently, coronagraphs and starshades are being considered as instruments for such a mission. We will use a novel code to estimate and compare the yields for starshade- and coronagraph-based missions. We will show yield scaling relationships for each instrument and discuss the impact of astrophysical and instrumental noise on yields. Although the absolute yields are dependent on several yet-unknown parameters, we will present several limiting cases allowing us to bound the yield comparison.

  9. Discovery of Temperate Earth-Sized Planets Transiting a Nearby Ultracool Dwarf Star

    NASA Technical Reports Server (NTRS)

    Jehin, Emmanuel; Gillon, Michael; Lederer, Susan M.; Delrez, Laetitia; De Wit, Julien; Burdanov, Artem; Van Grootel, Valerie; Burgasser, Adam; Triaud, Amaury; Demory, Brice-Olivier; hide

    2016-01-01

    We report the discovery of three short-period Earth-sized planets transiting a nearby ultracool dwarf star using data collected by the Liège TRAPPIST telescope, located in la Silla (Chile). TRAPPIST-1 is an isolated M8.0+/-0.5-type dwarf star at a distance of 12.0+/-0.4 parsecs as measured by its trigonometric parallax, with an age constrained to be > 500 Myr, and with a luminosity, mass, and radius of 0.05%, 8% and 11.5% those of the Sun, respectively. The small size of the host star, only slightly larger than Jupiter, translates into Earth-like radii for the three discovered planets, as deduced from their transit depths. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Several orbits remain possible for the third planet based on our current data. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system.

  10. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  11. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  12. The sustainability of habitability on terrestrial planets: Insights, questions, and needed measurements from Mars for understanding the evolution of Earth-like worlds

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Anderson, F. S.; Andrews-Hanna, J.; Catling, D. C.; Christensen, P. R.; Cohen, B. A.; Dressing, C. D.; Edwards, C. S.; Elkins-Tanton, L. T.; Farley, K. A.; Fassett, C. I.; Fischer, W. W.; Fraeman, A. A.; Golombek, M. P.; Hamilton, V. E.; Hayes, A. G.; Herd, C. D. K.; Horgan, B.; Hu, R.; Jakosky, B. M.; Johnson, J. R.; Kasting, J. F.; Kerber, L.; Kinch, K. M.; Kite, E. S.; Knutson, H. A.; Lunine, J. I.; Mahaffy, P. R.; Mangold, N.; McCubbin, F. M.; Mustard, J. F.; Niles, P. B.; Quantin-Nataf, C.; Rice, M. S.; Stack, K. M.; Stevenson, D. J.; Stewart, S. T.; Toplis, M. J.; Usui, T.; Weiss, B. P.; Werner, S. C.; Wordsworth, R. D.; Wray, J. J.; Yingst, R. A.; Yung, Y. L.; Zahnle, K. J.

    2016-10-01

    understanding the factors driving the divergent evolutionary paths of the Earth, Venus, and thousands of small rocky extrasolar planets yet to be discovered.

  13. Disk-integrated reflection light curves of planets

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.

    2014-03-01

    The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus

  14. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-02

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  15. Challenges in Discerning Atmospheric Composition in Directly Imaged Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    2017-01-01

    One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.

  16. General Astrophysics and Comparative Planetology with the Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J. (Editor)

    2005-01-01

    This document discusses the potential of the Terrestrial Planet Finder (TPF) for general astrophysics beyond its base mission, focusing on science obtainable with no or minimal modifications to the mission design, but also exploring possible modifications of TPF with high scientific merit and no impact on the basic search for extrasolar Earth analogs.

  17. A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.

    2012-12-01

    Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are

  18. Correcting Estimates of the Occurrence Rate of Earth-like Exoplanets for Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Cantor, Elliot; Dressing, Courtney D.; Ciardi, David R.; Christiansen, Jessie

    2018-06-01

    One of the most prominent questions in the exoplanet field has been determining the true occurrence rate of potentially habitable Earth-like planets. NASA’s Kepler mission has been instrumental in answering this question by searching for transiting exoplanets, but follow-up observations of Kepler target stars are needed to determine whether or not the surveyed Kepler targets are in multi-star systems. While many researchers have searched for companions to Kepler planet host stars, few studies have investigated the larger target sample. Regardless of physical association, the presence of nearby stellar companions biases our measurements of a system’s planetary parameters and reduces our sensitivity to small planets. Assuming that all Kepler target stars are single (as is done in many occurrence rate calculations) would overestimate our search completeness and result in an underestimate of the frequency of potentially habitable Earth-like planets. We aim to correct for this bias by characterizing the set of targets for which Kepler could have detected Earth-like planets. We are using adaptive optics (AO) imaging to reveal potential stellar companions and near-infrared spectroscopy to refine stellar parameters for a subset of the Kepler targets that are most amenable to the detection of Earth-like planets. We will then derive correction factors to correct for the biases in the larger set of target stars and determine the true frequency of systems with Earth-like planets. Due to the prevalence of stellar multiples, we expect to calculate an occurrence rate for Earth-like exoplanets that is higher than current figures.

  19. The Kepler Mission: Search for Habitable Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Likins, B.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    Detecting extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The difficulties encountered with direct imaging of Earth-size planets from space are expected to be resolved in the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). This method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. Its capabilities and strengths are presented.

  20. The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf.

    PubMed

    Segura, Antígona; Walkowicz, Lucianne M; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-09-01

    Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 10⁸ protons cm⁻² sr⁻¹ s⁻¹ for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity.

  1. An independent planet search in the Kepler dataset. II. An extremely low-density super-Earth mass planet around Kepler-87

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv; Dreizler, Stefan; Zechmeister, Mathias; Husser, Tim-Oliver

    2014-01-01

    Context. The primary goal of the Kepler mission is the measurement of the frequency of Earth-like planets around Sun-like stars. However, the confirmation of the smallest of Kepler's candidates in long periods around FGK dwarfs is extremely difficult or even beyond the limit of current radial velocity technology. Transit timing variations (TTVs) may offer the possibility for these confirmations of near-resonant multiple systems by the mutual gravitational interaction of the planets. Aims: We previously detected the second planet candidate in the KOI 1574 system. The two candidates have relatively long periods (about 114 d and 191 d) and are in 5:3 resonance. We therefore searched for TTVs in this particularly promising system. Methods: The full Kepler data was detrended with the proven SARS pipeline. The entire data allowed one to search for TTVs of the above signals, and to search for additional transit-like signals. Results: We detected strong anti-correlated TTVs of the 114 d and 191 d signals, dynamically confirming them as members of the same system. Dynamical simulations reproducing the observed TTVs allowed us to also determine the masses of the planets. We found KOI 1574.01 (hereafter Kepler-87 b) to have a radius of 13.49 ± 0.55 R⊕ and a mass of 324.2 ± 8.8 M⊕, and KOI 1574.02 (Kepler-87 c) to have a radius of 6.14 ± 0.29 R⊕ and a mass of 6.4 ± 0.8 M⊕. Both planets have low densities of 0.729 and 0.152 g cm-3, respectively, which is non-trivial for such cold and old (7-8 Gyr) planets. Specifically, Kepler-87 c is the lowest-density planet in the super-Earth mass range. Both planets are thus particularly amenable to modeling and planetary structure studies, and also present an interesting case where ground-based photometric follow-up of Kepler planets is very desirable. Finally, we also detected two more short-period super-Earth sized (<2 R⊕) planetary candidates in the system, making the relatively high multiplicity of this system notable

  2. A super-Earth transiting a nearby low-mass star.

    PubMed

    Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-12-17

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

  3. Kepler Mission: a Discovery-Class Mission Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-Like Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Caldwell, Douglas; Kondo, Yoji; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 in aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. Extending the mission to six years doubles the expected number of Earth-size planets in the HZ. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current Doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  4. A septet of Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; SPECULOOS Team; TRAPPIST-1 Team

    2017-10-01

    Understanding the astronomical requirements for life to emerge, and to persist, on a planet is one of the most important and exciting scientific endeavours, yet without empirical answers. To resolve this, multiple planets whose sizes and surface temperatures are similar to the Earth, need to be discovered. Those planets also need to possess properties enabling detailed atmospheric characterisation with forthcoming facilities, from which chemical traces produced by biological activity can in principle be identified.I will describe a dedicated search for such planets called SPECULOOS. Our first detection is the TRAPPIST-1 system. Intensive ground-based and space-based observations have revealed that at least seven planets populate this system. We measured their radii and obtained first estimates of their masses thanks to transit-timing variations. I will describe our on-going observational efforts aiming to reduce our uncertainties on the planet properties. The incident flux on the planets ranges from Mercury to Ceres, comprising the Earth, and permitting climatic comparisons between each of those worlds such as is not possible within our Solar system. All seven planets have the potential to harbour liquid water on at least a fraction of their surfaces, given some atmospheric and geological conditions.

  5. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  6. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  7. The Kepler Mission: A Photometric Search for Earthlike Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)

    1998-01-01

    If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.

  8. Increased insolation threshold for runaway greenhouse processes on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-01

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  9. Increased insolation threshold for runaway greenhouse processes on Earth-like planets.

    PubMed

    Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée

    2013-12-12

    The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.

  10. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Huntress, Wesley T.

    1990-01-01

    The rationale behind Mission to Planet Earth is presented, and the program plan is described in detail. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to collect muultidisciplinary data. A sophisticated data system will process and archive an unprecedented large amount of information about the earth and how it functions as a system. Attention is given to the space observatories, the data and information systems, and the interdisciplinary research.

  11. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  12. Effects of Variable Eccentricity on the Climate of an Earth-Like World

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  13. Planetary radio astronomy: Earth, giant planets, and beyond

    NASA Astrophysics Data System (ADS)

    Rucker, H. O.; Panchenko, M.; Weber, C.

    2014-11-01

    The magnetospheric phenomenon of non-thermal radio emission is known since the serendipitous discovery of Jupiter as radio planet in 1955, opening the new field of "Planetary Radio Astronomy". Continuous ground-based observations and, in particular, space-borne measurements have meanwhile produced a comprehensive picture of a fascinating research area. Space missions as the Voyagers to the Giant Planets, specifically Voyager 2 further to Uranus and Neptune, Galileo orbiting Jupiter, and now Cassini in orbit around Saturn since July 2004, provide a huge amount of radio data, well embedded in other experiments monitoring space plasmas and magnetic fields. The present paper as a condensation of a presentation at the Kleinheubacher Tagung 2013 in honour of the 100th anniversary of Prof. Karl Rawer, provides an introduction into the generation mechanism of non-thermal planetary radio waves and highlights some new features of planetary radio emission detected in the recent past. As one of the most sophisticated spacecraft, Cassini, now in space for more than 16 years and still in excellent health, enabled for the first time a seasonal overview of the magnetospheric variations and their implications for the generation of radio emission. Presently most puzzling is the seasonally variable rotational modulation of Saturn kilometric radio emission (SKR) as seen by Cassini, compared with early Voyager observations. The cyclotron maser instability is the fundamental mechanism under which generation and sufficient amplification of non-thermal radio emission is most likely. Considering these physical processes, further theoretical investigations have been started to investigate the conditions and possibilities of non-thermal radio emission from exoplanets, from potential radio planets in extrasolar systems.

  14. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth#s atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  15. NASA’s Spitzer Reveals Largest Batch of Earth-Size, Habitable-Zone Planets Around a Single Star

    NASA Image and Video Library

    2017-02-22

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the Spitzer Space Telescope of seven Earth-sized planets around a tiny, nearby, ultra-cool dwarf star. Three of these planets are in the habitable zone, the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone, and the first time so many Earth-sized planets have been found around the same star. The finding of this planetary system, called TRAPPIST-1, is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds

  16. The hottest planet.

    PubMed

    Harrington, Joseph; Luszcz, Statia; Seager, Sara; Deming, Drake; Richardson, L Jeremy

    2007-06-07

    Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties. Previous reports of planetary thermal emission give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets' received radiation, assuming a Bond albedo of approximately 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 +/- 200 K at 8 microm. The planet's predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 microm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

  17. Beyond Kepler: Direct Imaging of Earth-like Planets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  18. The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M Dwarf

    PubMed Central

    Walkowicz, Lucianne M.; Meadows, Victoria; Kasting, James; Hawley, Suzanne

    2010-01-01

    Abstract Main sequence M stars pose an interesting problem for astrobiology: their abundance in our galaxy makes them likely targets in the hunt for habitable planets, but their strong chromospheric activity produces high-energy radiation and charged particles that may be detrimental to life. We studied the impact of the 1985 April 12 flare from the M dwarf AD Leonis (AD Leo), simulating the effects from both UV radiation and protons on the atmospheric chemistry of a hypothetical, Earth-like planet located within its habitable zone. Based on observations of solar proton events and the Neupert effect, we estimated a proton flux associated with the flare of 5.9 × 108 protons cm−2 sr−1 s−1 for particles with energies >10 MeV. Then we calculated the abundance of nitrogen oxides produced by the flare by scaling the production of these compounds during a large solar proton event called the Carrington event. The simulations were performed with a 1-D photochemical model coupled to a 1-D radiative/convective model. Our results indicate that the UV radiation emitted during the flare does not produce a significant change in the ozone column depth of the planet. When the action of protons is included, the ozone depletion reaches a maximum of 94% two years after the flare for a planet with no magnetic field. At the peak of the flare, the calculated UV fluxes that reach the surface, in the wavelength ranges that are damaging for life, exceed those received on Earth during less than 100 s. Therefore, flares may not present a direct hazard for life on the surface of an orbiting habitable planet. Given that AD Leo is one of the most magnetically active M dwarfs known, this conclusion should apply to planets around other M dwarfs with lower levels of chromospheric activity. Key Words: M dwarf—Flare—Habitable zone—Planetary atmospheres. Astrobiology 10, 751–771. PMID:20879863

  19. Photometric variability in earthshine observations.

    PubMed

    Langford, Sally V; Wyithe, J Stuart B; Turner, Edwin L

    2009-04-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23% per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.

  20. A Direct Path to Finding Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Linder, Don J.

    2009-01-01

    As envisaged by the 2000 astrophysics decadal survey panel: The main goal of Terrestrial Planet Finder (TPF) is nothing less than to search for evidence of life on terrestrial planets around nearby stars . Here, we consider how an optical telescope paired with a free-flying occulter blocking light from the star can reach this goal directly, without knowledge of results from prior astrometric, doppler, or transit exoplanet observations. Using design reference missions and other simulations, we explore the potential of TPF-O to find planets in the habitable zone around their central stars, to spectrally characterize the atmospheres of detected planets, and to obtain rudimentary information about their orbits. We emphasize the importance of ozone absorption in the UV spectrum of a planet as a marker of photosynthesis by plants, algae, and cyanobacteria.

  1. ESA to test the smartest technique for detecting extrasolar planets from the ground

    NASA Astrophysics Data System (ADS)

    2002-03-01

    . In nulling interferometry, however, the peaks are lined up with the troughs so they cancel out to nothing and the star disappears. Planets in orbit around the star show up, however, because they are offset from the central star and their light takes different paths through the telescope system. ESA and ESO will build a new instrument called GENIE (Ground-based European Nulling Interferometer Experiment) to perform nulling interferometry using ESO's Very Large Telescope (VLT), a collection of four 8-metre telescopes in Chile. It will be the biggest investigation of nulling interferometry to date. "It's being tested in the lab in a number of places but we can do more," says Malcolm Fridlund, project scientist for the Darwin mission at the European Space Research and Technology Centre, the Netherlands. "We intend to use the world's largest telescope and the world's largest interferometer to get very high resolution." Using GENIE to perfect this technique will provide invaluable information for engineers about how to build the 'hub' spacecraft of the Darwin flotilla. Scheduled for launch in the middle of the next decade Darwin is a collection of six space telescopes and two other spacecraft, which will together search for Earth-like planets around nearby stars. The hub will combine the light from the telescopes. "If you see the way of getting to Darwin as being outlined by a number of technological milestones this is one of the most important ones," says Malcolm Fridlund. Once up and running, GENIE will also provide a training ground for astronomers who will later use Darwin. For example, it will allow them to perfect their methods of interpreting Darwin data because, as well as the engineering tests, GENIE will be capable of real science. One of its greatest tasks will be to develop the target list of stars for Darwin to study. As recently discovered by ESA's Ulysses spaceprobe, the signature of a planetary system is probably a ring of dust surrounding the central star

  2. An Earth-mass planet orbiting α Centauri B.

    PubMed

    Dumusque, Xavier; Pepe, Francesco; Lovis, Christophe; Ségransan, Damien; Sahlmann, Johannes; Benz, Willy; Bouchy, François; Mayor, Michel; Queloz, Didier; Santos, Nuno; Udry, Stéphane

    2012-11-08

    Exoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance).

  3. The Chemical Composition of an Extrasolar Kuiper-Belt-Object

    NASA Astrophysics Data System (ADS)

    Xu, S.; Zuckerman, B.; Dufour, P.; Young, E. D.; Klein, B.; Jura, M.

    2017-02-01

    The Kuiper Belt of our solar system is a source of short-period comets that may have delivered water and other volatiles to Earth and the other terrestrial planets. However, the distribution of water and other volatiles in extrasolar planetary systems is largely unknown. We report the discovery of an accretion of a Kuiper-Belt-Object analog onto the atmosphere of the white dwarf WD 1425+540. The heavy elements C, N, O, Mg, Si, S, Ca, Fe, and Ni are detected, with nitrogen observed for the first time in extrasolar planetary debris. The nitrogen mass fraction is ∼2%, comparable to that in comet Halley and higher than in any other known solar system object. The lower limit to the accreted mass is ∼1022 g, which is about one hundred thousand times the typical mass of a short-period comet. In addition, WD 1425+540 has a wide binary companion, which could facilitate perturbing a Kuiper-Belt-Object analog into the white dwarf’s tidal radius. This finding shows that analogs to objects in our Kuiper Belt exist around other stars and could be responsible for the delivery of volatiles to terrestrial planets beyond the solar system. Part of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among Caltech, the University of California and NASA. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  4. A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaufman, Kevin C., E-mail: kschlauf@mit.edu

    2015-02-01

    It has long been known that stars with high metallicity are more likely to host giant planets than stars with low metallicity. Yet the connection between host star metallicity and the properties of small planets is only just beginning to be investigated. It has recently been argued that the metallicity distribution of stars with exoplanet candidates identified by Kepler provides evidence for three distinct clusters of exoplanets, distinguished by planet radius boundaries at 1.7 R{sub ⨁} and 3.9 R{sub ⨁}. This would suggest that there are three distinct planet formation pathways for super-Earths, mini-Neptunes, and giant planets. However, as Imore » show through three independent analyses, there is actually no evidence for the proposed radius boundary at 1.7 R{sub ⨁}. On the other hand, a more rigorous calculation demonstrates that a single, continuous relationship between planet radius and metallicity is a better fit to the data. The planet radius and metallicity data therefore provides no evidence for distinct categories of small planets. This suggests that the planet formation process in a typical protoplanetary disk produces a continuum of planet sizes between 1 R{sub ⨁} and 4 R{sub ⨁}. As a result, the currently available planet radius and metallicity data for solar-metallicity F and G stars give no reason to expect that the amount of solid material in a protoplanetary disk determines whether super-Earths or mini-Neptunes are formed.« less

  5. Dependence of the Onset of the Runaway Greenhouse Effect on the Latitudinal Surface Water Distribution of Earth-Like Planets

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Nitta, A.; Genda, H.; Takao, Y.; O'ishi, R.; Abe-Ouchi, A.; Abe, Y.

    2018-02-01

    Liquid water is one of the most important materials affecting the climate and habitability of a terrestrial planet. Liquid water vaporizes entirely when planets receive insolation above a certain critical value, which is called the runaway greenhouse threshold. This threshold forms the inner most limit of the habitable zone. Here we investigate the effects of the distribution of surface water on the runaway greenhouse threshold for Earth-sized planets using a three-dimensional dynamic atmosphere model. We considered a 1 bar atmosphere whose composition is similar to the current Earth's atmosphere with a zonally uniform distribution of surface water. As previous studies have already showed, we also recognized two climate regimes: the land planet regime, which has dry low-latitude and wet high-latitude regions, and the aqua planet regime, which is globally wet. We showed that each regime is controlled by the width of the Hadley circulation, the amount of surface water, and the planetary topography. We found that the runaway greenhouse threshold varies continuously with the surface water distribution from about 130% (an aqua planet) to 180% (the extreme case of a land planet) of the present insolation at Earth's orbit. Our results indicate that the inner edge of the habitable zone is not a single sharp boundary, but a border whose location varies depending on planetary surface condition, such as the amount of surface water. Since land planets have wider habitable zones and less cloud cover, land planets would be good targets for future observations investigating planetary habitability.

  6. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  7. The elemental abundances (with uncertainties) of the most Earth-like planet

    NASA Astrophysics Data System (ADS)

    Wang, Haiyang S.; Lineweaver, Charles H.; Ireland, Trevor R.

    2018-01-01

    To first order, the Earth as well as other rocky planets in the Solar System and rocky exoplanets orbiting other stars, are refractory pieces of the stellar nebula out of which they formed. To estimate the chemical composition of rocky exoplanets based on their stellar hosts' elemental abundances, we need a better understanding of the devolatilization that produced the Earth. To quantify the chemical relationships between the Earth, the Sun and other bodies in the Solar System, the elemental abundances of the bulk Earth are required. The key to comparing Earth's composition with those of other objects is to have a determination of the bulk composition with an appropriate estimate of uncertainties. Here we present concordance estimates (with uncertainties) of the elemental abundances of the bulk Earth, which can be used in such studies. First we compile, combine and renormalize a large set of heterogeneous literature values of the primitive mantle (PM) and of the core. We then integrate standard radial density profiles of the Earth and renormalize them to the current best estimate for the mass of the Earth. Using estimates of the uncertainties in i) the density profiles, ii) the core-mantle boundary and iii) the inner core boundary, we employ standard error propagation to obtain a core mass fraction of 32.5 ± 0.3 wt%. Our bulk Earth abundances are the weighted sum of our concordance core abundances and concordance PM abundances. Unlike previous efforts, the uncertainty on the core mass fraction is propagated to the uncertainties on the bulk Earth elemental abundances. Our concordance estimates for the abundances of Mg, Sn, Br, B, Cd and Be are significantly lower than previous estimates of the bulk Earth. Our concordance estimates for the abundances of Na, K, Cl, Zn, Sr, F, Ga, Rb, Nb, Gd, Ta, He, Ar, and Kr are significantly higher. The uncertainties on our elemental abundances usefully calibrate the unresolved discrepancies between standard Earth models under

  8. Earth-Like Exoplanets: The Science of NASA's Navigator Program

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Traub, Wesley A. (Editor)

    2006-01-01

    This book outlines the exoplanet science content of NASA's Navigator Program, and it identifies the exoplanet research priorities. The goal of Navigator Program missions is to detect and characterize Earth-like planets in the habitable zone of nearby stars and to search for signs of life on those planets.

  9. How did Earth not End up like Venus?

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  10. Exo-geneology: Stellar Abundances in Solar-like Stars with Planets

    NASA Astrophysics Data System (ADS)

    Teske, Johanna; SDSS-IV APOGEE-2

    2018-01-01

    Through the process of star and planet formation, we think that the chemical abundances, or ``genes’’, of host stars are passed on to their orbiting planets. One prominent example of this is the giant planet-metallicity (iron abundance) correlation, but could other stellar ``genes’’ help explain the growing menagerie of exoplanets? Particularly interesting is the relative importance of C, O, Mg, and Si – for instance, are giant planet cores dominated by ice-forming or rock-forming elements? The ratios of these elements in terrestrial planets also control their interior structure and mineralogy, and can thus affect their similarity (or not) to Earth. In this talk I will discuss how high resolution spectroscopic studies of host stars have been and are being used to investigate how/to what extent planet properties are dependent on host star properties, focusing on solar-like (FGK) stars. I will also highlight the role that upcoming facilities can play in understanding the diversity of planets in the Galaxy.

  11. Kepler: NASA's First Mission Capable of Finding Earth-Size Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William J.

    2009-01-01

    Kepler, a NASA Discovery mission, is a spaceborne telescope designed to search a nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is that region around a start where the temperature permits water to be liquid on the surface of a planet. Liquid water is considered essential forth existence of life. Mission Phases: Six mission phases have been defined to describe the different periods of activity during Kepler's mission. These are: launch; commissioning; early science operations, science operations: and decommissioning

  12. Shock Temperatures of Major Silicates in Rocky Planets

    NASA Astrophysics Data System (ADS)

    Davies, E.; Root, S.; Spaulding, D.; Kraus, R. G.; Stewart, S. T.; Jacobsen, S. B.; Mattsson, T. R.

    2016-12-01

    Rocky extra-solar planets have been discovered with very high masses that challenge our theoretical understanding of planetary structures and notions of planet formation. In order to constrain models and understand mechanisms of both the formation and subsequent evolution of these planets, it is imperative to determine the properties of materials within the interiors of large Earth-like planets. The major minerals olivine [(Mg,Fe)2SiO4] and enstatite [(Mg,Fe)SiO3], along with Fe-rich metal (with 5% Ni), are the most abundant solids from which Earth-like planets accrete. These materials are subject to ultra-high pressures and temperatures (approaching 10TPa and 10,000 K) during planetary formation and in the present day interiors of large rocky planets. Here, we present results of shock compression experiments on the Sandia Z machine. Shock compression experiments with the Sandia Z machine use large current and field densities that generate magnetic pressures up to 650 GPa that can accelerate flyer plates up to 40 km/s. We report shock temperatures for pressures greater than 270 GPa for forsterite (Mg2SiO4) and enstatite. Our results, together with prior data, demonstrate discrepancies in shock temperatures on forsterite in the region of possible incongruent melting on the Hugoniot. Key gaps in the Hugoniot contribute to this uncertainty. EOS formalisms such as M-ANEOS, which are commonly used in planetary impact simulations, over predict temperatures above 200 GPa with significant disagreement above 500 GPa. As a result, the amount of material subject to shock-induced vaporization during giant impacts is larger than currently estimated. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This work was performed under the auspices of the U

  13. A radiogenic heating evolution model for cosmochemically Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Frank, Elizabeth A.; Meyer, Bradley S.; Mojzsis, Stephen J.

    2014-11-01

    Discoveries of rocky worlds around other stars have inspired diverse geophysical models of their plausible structures and tectonic regimes. Severe limitations of observable properties require many inexact assumptions about key geophysical characteristics of these planets. We present the output of an analytical galactic chemical evolution (GCE) model that quantitatively constrains one of those key properties: radiogenic heating. Earth's radiogenic heat generation has evolved since its formation, and the same will apply to exoplanets. We have fit simulations of the chemical evolution of the interstellar medium in the solar annulus to the chemistry of our Solar System at the time of its formation and then applied the carbonaceous chondrite/Earth's mantle ratio to determine the chemical composition of what we term ;cosmochemically Earth-like; exoplanets. Through this approach, predictions of exoplanet radiogenic heat productions as a function of age have been derived. The results show that the later a planet forms in galactic history, the less radiogenic heat it begins with; however, due to radioactive decay, today, old planets have lower heat outputs per unit mass than newly formed worlds. The long half-life of 232Th allows it to continue providing a small amount of heat in even the most ancient planets, while 40K dominates heating in young worlds. Through constraining the age-dependent heat production in exoplanets, we can infer that younger, hotter rocky planets are more likely to be geologically active and therefore able to sustain the crustal recycling (e.g. plate tectonics) that may be a requirement for long-term biosphere habitability. In the search for Earth-like planets, the focus should be made on stars within a billion years or so of the Sun's age.

  14. Effects of Variable Eccentricity on the Climate of an Earth-like World

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  15. The Detectability of Exo-Earths and Super-Earths via Resonant Signatures in Exozodiacal Clouds

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Kuchner, Marc

    2008-01-01

    Directly imaging extrasolar terrestrial planets necessarily means contending with the astrophysical noise of exozodiacal dust and the resonant structures created by these planets in exozodiacal clouds. Using a custom tailored hybrid symplectic integrator we have constructed 120 models of resonant structures created by exo-Earths and super-Earths on circular orbits interacting with collisionless steady-state dust clouds around a Sun-like star. Our models include enough particles to overcome the limitations of previous simulations that were often dominated by a handful of long-lived particles, allowing us to quantitatively study the contrast of the resulting ring structures. We found that in the case of a planet on a circular orbit, for a given star and dust source distribution, the morphology and contrast of the resonant structures depend on only two parameters: planet mass and (square root)ap/Beta, where ap is the planet's semi-major axis and Beta is the ratio of radiation pressure force to gravitational force on a grain. We constructed multiple-grain-size models of 25,000 particles each and showed that in a collisionless cloud, a Dohnanyi crushing law yields a resonant ring whose optical depth is dominated by the largest grains in the distribution, not the smallest. We used these models to estimate the mass of the lowest-mass planet that can be detected through observations of a resonant ring for a variety of assumptions about the dust cloud and the planet's orbit. Our simulations suggest that planets with mass as small as a few times Mars' mass may produce detectable signatures in debris disks at ap greater than or approximately equal to 10 AU.

  16. Forming a Moon with an Earth-like composition via a giant impact.

    PubMed

    Canup, Robin M

    2012-11-23

    In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.

  17. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less

  18. Equilibrium Temperatures and Albedos of Habitable Earth-Like Planets in a Coupled Atmosphere-Ocean GCM

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell

    2017-01-01

    The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?

  19. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  20. The Thermal States of Accreting Planets: From Mars-like Embryos to a MAD Earth

    NASA Astrophysics Data System (ADS)

    Stewart, S. T.; Lock, S. J.

    2015-12-01

    The thermal states of rocky planets can vary widely during the process of accretion. The thermal structure affects several major processes on the growing planet, including the mechanics of core formation, pressure-temperature conditions for metal-silicate equilibration, mixing, and atmospheric erosion. Because impact energy is distributed heterogeneously, accretional energy is preferentially deposited in the gravitationally re-equilibrated outer layers of the planet for both small and giant impacts. The resulting stably stratified structure inhibits complete mixing within the mantle. Initially, the specific energy of giant impacts between Mars-mass embryos leads to melting of the mantle. However, as planet formation progresses, the specific energies of giant impacts increase and can drive the mantle into a transient supercritical state. In the hottest regions of the planet, metal and silicates are miscible, and metal exsolution occurs as the structure cools. The cooling time of the supercritical structure is typically longer than the timescale for metal segregation to the core. Thus, these high temperature excursions during planet formation are significant for understanding metal-silicate equilibration. Furthermore, when a supercritical planet is also rapidly rotating, the mantle, atmosphere and disk (MAD) form a continuous dynamic and thermodynamic structure. Lunar origin by condensation from a MAD Earth can explain the major characteristics of the Moon (Lock et al., this meeting). One of the greatest uncertainties in understanding the thermal states of planets during accretion is the changing composition and mass of the atmosphere. After the dispersal of the solar nebula, the thermal boundary condition imposed by the atmosphere can vary between silicate vapor and condensed ices. The coupled problem of atmospheric origin and planetary accretion can be used to constrain the many uncertainties in the growth and divergence of the terrestrial planets in our solar

  1. Prospects for the Detection of Earths Orbiting Other Stars

    NASA Technical Reports Server (NTRS)

    Bourcki, William J.; Koch, David G.; Jenkins, Jon M.; Lissauer, Jack J.; Dunham, Edward W.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Extrasolar planets have been detected by timing the radio signals from millisecond pulsars, from Doppler velocity changes in the spectra of main sequence stars, and most recently by the white-light transit of HD209458. Detection of Earth-sized planets in and near the habitable zone of main-sequence stars appears to be extremely difficult, if not impossible, from ground-based observatories because of noise introduced by scintillation and transparency changes in the Earth's atmosphere. To overcome these difficulties, several spaceborne photometric missions have been proposed. The COROT mission is a CNES/ESA mission with a 30 cm aperture telescope that will monitor each of several star fields for five months to find short period planets. The Kepler project is a USA effort designed to monitor 100,000 solar-like stars in a single field of view for a period of four years. The long duration enables the reliable detection of planets with orbital periods from a few days to as long as two years. Thus it should be able to determine the frequency of planets in and near the habitable zone and associate them with stellar spectral types. Canadian and Scandinavian missions are also being developed. This paper compares these missions and discusses their expected contribution to our understanding of the frequency of terrestrial-sized planets around other stars.

  2. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  3. Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Townsend, William F.

    1996-01-01

    NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.

  4. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    NASA Technical Reports Server (NTRS)

    Sada, Pedro V.; Jennings, Donald E.; Deming, Drake; Jennings, Donald E.; Jackson, Brian; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; hide

    2012-01-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z0-band and B-band photometry (plus two H(alpha) filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being RpRJ0:0017 0:979RpRvis. (2) We observe starspot crossings during the transit of WASP-11HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  5. Line Bisector Variations in Stars with Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.

    1999-12-01

    We present the results from a high-resolution, synoptic spectroscopic program of observation of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations attributed to the presence of one or more substellar companions. The observations were obtained from 1998 March to 1999 February using the 1.52-m NSO McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph. The spectra were acquired with a resolving power of approximately 1.2 x 105. The line bisector was then derived from unblended photospheric features. In particular, we define the velocity displacement of the spectral line bisector and determine the bisector amplitude for the Fe I absorption line at 625.26 nm in order to search for variations in the line asymmetry over time. Such variations could mimic Doppler shifts in observations with lower spectral resolution. Examination of the bisector velocity displacement over the time span of our observations reveals no substantial difference between stars with planetary companions and those without reported companions. We find no correlation between the bisector variations and the orbital phase of a substellar companion in any of our target stars. Simulations of a periodic signal with noise levels based on our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m s-1. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity. This work was supported by a NASA grant to the NOAO under the auspices of the Origins of Solar Systems Program. MP gratefully acknowledges support from the NSF-sponsored Research Experience for Undergraduates (REU) program at the NOAO. The NOAO is operated by AURA, Inc., under a cooperative agreement with the NSF.

  6. A Program to Detect and Characterize Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lindstrom, David (Technical Monitor); Noyes, Robert W.

    2003-01-01

    We initiated a significant hardware upgrade to the AFOE, to increase its efficiency for precise radial velocity studies to the level where we can continue to contribute usefully to extrasolar planet research on relatively bright stars. The AFOE, at a 1.5-m telescope, will of course not have the sensitivity of radial velocity instruments at larger telescopes, such as the HIRES on Keck or the Hectochelle on the MMT telescope (about to come on line). However, it has been possible to increase its efficiency for precise radial velocity studies by a factor of 4 to 5, which-combined with the large amount of telescope time available at the 1.5-m telescope-will permit us to do intensive follow-up observations of stars brighter than about 8 magnitude. The AFOE was originally designed primarily for asteroseismology using a ThAr reference. This provided useful wavelength stability over tens of minutes as required for asteroseismology, but we were unable to get a long-term (month-to-month) velocity precision better than about 15 m/s with that setup. Hence, we implemented an iodine cell as a wavelength reference for extrasolar planet studies. However, the optical design of the original AFOE did not completely span the wavelength range covered by the iodine absorption spectrum, and furthermore the optics suffered significant light loss through optical obscuration in the camera secondary. To remedy this, we replaced the AFOE grating with a new one that covered the entire iodine spectral range at somewhat lower spectral resolution, and replaced the camera with a transmitting lens. (The use of a lens was made possible by restricting the spectral range covered by the upgraded AFOE to only the iodine region.) These upgrades were successfully completed, and the instrument was tested for three nights in fall of 2002. The expected improvement in sensitivity by a factor of 4 to 5 was observed: that is, the same velocity precision as previously attained (of order 5 to 7 m/s) was now

  7. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  8. Terraforming the Planets and Climate Change Mitigation on Earth

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  9. Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2010-11-01

    I derive the physical properties of 30 transiting extrasolar planetary systems using a homogeneous analysis of published data. The light curves are modelled with the JKTEBOP code, with special attention paid to the treatment of limb darkening, orbital eccentricity and error analysis. The light from some systems is contaminated by faint nearby stars, which if ignored will systematically bias the results. I show that it is not realistically possible to account for this using only transit light curves: light-curve solutions must be constrained by measurements of the amount of contaminating light. A contamination of 5 per cent is enough to make the measurement of a planetary radius 2 per cent too low. The physical properties of the 30 transiting systems are obtained by interpolating in tabulated predictions from theoretical stellar models to find the best match to the light-curve parameters and the measured stellar velocity amplitude, temperature and metal abundance. Statistical errors are propagated by a perturbation analysis which constructs complete error budgets for each output parameter. These error budgets are used to compile a list of systems which would benefit from additional photometric or spectroscopic measurements. The systematic errors arising from the inclusion of stellar models are assessed by using five independent sets of theoretical predictions for low-mass stars. This model dependence sets a lower limit on the accuracy of measurements of the physical properties of the systems, ranging from 1 per cent for the stellar mass to 0.6 per cent for the mass of the planet and 0.3 per cent for other quantities. The stellar density and the planetary surface gravity and equilibrium temperature are not affected by this model dependence. An external test on these systematic errors is performed by comparing the two discovery papers of the WASP-11/HAT-P-10 system: these two studies differ in their assessment of the ratio of the radii of the components and the

  10. Development and Application of the Transit Timing Planet Detection Technique

    NASA Astrophysics Data System (ADS)

    Steffen, J. H.; Agol, E.

    2005-12-01

    We present the development and application of a new planet detection technique that uses the transit timing of a known, transiting planet. The transits of a solitary planet orbiting a star occur at equally spaced intervals in time. If a second planet is present, then dynamical interactions within the system will cause the time interval between transits to vary. These transit time variations (TTV) can be used to infer the orbital elements and mass of the unseen, perturbing planet. In some cases, particularly near mean-motion resonances, this technique could detect planets with masses less than the mass of the Earth---a capability not yet achieved by other planet detection schemes. We present an analysis of the set of transit times of the TrES-1 system given by Charbonneau et al. (2005). While no convincing evidence for a second planet in the TrES-1 system was found from that data, we constrain the mass that a perturbing planet could have as a function of the semi-major axis ratio of the two planets and the eccentricity of the perturbing planet. Near low-order, mean-motion resonances (within about 1% fractional deviation), we find that a secondary planet must generally have a mass comparable to or less than the mass of the Earth--showing that this data is the first to have sensitivity to sub Earth-mass planets. We present results from our studies that use simulated data and from an ongoing analysis of the HD209458 system. These results show that TTV will be an important tool in the detection and characterization of extrasolar planetary systems.

  11. Nebula-based Primordial Atmospheres of Planets Around Solar-Like Stars Revised

    NASA Astrophysics Data System (ADS)

    Scherf, Manuel; Lammer, H.; Leitzinger, M.; Odert, P.; Güdel, M.; Hanslmeier, A.

    2012-05-01

    At the beginning of a planetary system, in the stage of the stellar nebula and the growing-phase of the planets, planetesimals and Earth-like proto-planets accumulate a remarkable amount of gas, mainly consisting of hydrogen and helium. The mass of such a primordial atmosphere was first estimated for the proto-Earth by Hayashi et al. (1979), with up to 1026 g accumulated within 106 years. Furthermore it is commonly expected that these primordial atmospheres will be completely dissipated due to irradiation of the stellar EUV-flux during the first 108 years. Recent observations of young solar-like stars indicate that the efficiency and effect of the EUV-flux after the nebula disappeared, was highly overestimated by previous studies. We show that parts of these dense hydrogen/helium-gas envelopes may sustain this early active stage of a young star. Implications on the habitability are also discussed.

  12. Exoplanets, Exo-Solar Life, and Human Significance

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    With the recent detection of over 500 extrasolar planets, the existence of "other worlds", perhaps even other Earths, is no longer in the realm of science fiction. The study of exoplanets rapidly moved from an activity on the fringe of astronomy to one of the highest priorities of the world's astronomical programs. Actual images of extrasolar planets were revealed over the past two years for the first time. NASA's Hubble Space Telescope is already characterizing the atmospheres of Jupiter-like planets, in other systems. And the recent launch of the NASA Kepler space telescope is enabling the first statistical assessment of how common solar systems like our own really are. As we begin to characterize these "other worlds" and assess their habitability, the question of the significance and uniqueness of life on Earth will impact our society as never before. I will provide a comprehensive overview of the techniques and status of exoplanet detection, followed by reflections as to the societal impact of finding out that Earths are common, or rare. Will finding other potentially habitable planets create another "Copernican Revolution"? Will perceptions of the significance of life on Earth change when we find other Earth-like planets? I will discuss the plans of the scientific community for future telescopes that will be abe to survey our solar neighborhood for Earth-like planets, study their atmospheres, and search for biological signs of life.

  13. Kepler Mission: Detecting Earth-sized Planets in Habitable Zones

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.

  14. A common mass scaling for satellite systems of gaseous planets.

    PubMed

    Canup, Robin M; Ward, William R

    2006-06-15

    The Solar System's outer planets that contain hydrogen gas all host systems of multiple moons, which notably each contain a similar fraction of their respective planet's mass (approximately 10(-4)). This mass fraction is two to three orders of magnitude smaller than that of the largest satellites of the solid planets (such as the Earth's Moon), and its common value for gas planets has been puzzling. Here we model satellite growth and loss as a forming giant planet accumulates gas and rock-ice solids from solar orbit. We find that the mass fraction of its satellite system is regulated to approximately 10(-4) by a balance of two competing processes: the supply of inflowing material to the satellites, and satellite loss through orbital decay driven by the gas. We show that the overall properties of the satellite systems of Jupiter, Saturn and Uranus arise naturally, and suggest that similar processes could limit the largest moons of extrasolar Jupiter-mass planets to Moon-to-Mars size.

  15. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    PubMed

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-02

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  16. The sun,the planets and life on Earth

    NASA Astrophysics Data System (ADS)

    Claudia, Tacu Cristina

    2017-04-01

    We all knowthat Earth,our planet,it's not alone in the Universe.We will discover together a few of its secrets: 0 The influence of the sun on our planet is very important.It provides us thelight ,the warnith and the enery without whice life on Earth wouldn't be possible. 0 Thank to the Sun and the endless spinning of our planet around its own axe and, at the same time around this star,we receive as a gift the day,the night,the seasons. 0In our Solar System there are other spheres appart from the Sun and planets -the asteroids ,wandering pieces of stone.It is said that many milions of years ago it they made a lot of plants and animals disappear. If I have arisen your curiosity,let's go!

  17. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  18. Kepler Mission: A Wide-FOV Photometer Designed to Determine the Frequency of Earth-Size and Larger Planets Around Solar-like stars

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Lissauer, Jack; Basri, Gibor; Caldwell, John; Cochran, William; Dunham, Edward W.; Gilliland, Ronald; Jenkins, Jon M.; Caldwell, Douglas; hide

    2002-01-01

    The first step in discovering the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is designed around a 0.95 m aperture Schmidt-type telescope with an array of 42 CCDs designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The photometer is scheduled to be launched into heliocentric orbit in 2007. Measurements of the depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the position relative to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare. Based on the results of the current doppler-velocity discoveries, detection of a thousand giant planets is expected. Information on their albedos and densities of those giants showing transits will be obtained.

  19. Searching for Water Earths in the Near-infrared

    NASA Astrophysics Data System (ADS)

    Zugger, M. E.; Kasting, J. F.; Williams, D. M.; Kane, T. J.; Philbrick, C. R.

    2011-09-01

    Over 500 extrasolar planets (exoplanets) have now been discovered, but only a handful are small enough that they might be rocky terrestrial planets like Venus, Earth, and Mars. Recently, it has been proposed that observations of variability in scattered light (both polarized and total flux) from such terrestrial-sized exoplanets could be used to determine if they possess large surface oceans, an important indicator of potential habitability. Observing such oceans at visible wavelengths would be difficult, however, in part because of obscuration by atmospheric scattering. Here, we investigate whether observations performed in the near-infrared (NIR), where Rayleigh scattering is reduced, could improve the detectability of exoplanet oceans. We model two wavebands of the NIR which are "window regions" for an Earth-like atmosphere: 1.55-1.75 μm and 2.1-2.3 μm. Our model confirms that obscuration in these bands from Rayleigh scattering is very low, but aerosols are generally the limiting factor throughout the wavelength range for Earth-like atmospheres. As a result, observations at NIR wavelengths are significantly better at detecting oceans than those at visible wavelengths only when aerosols are very thin by Earth standards. Clouds further dilute the ocean reflection signature. Hence, other techniques, e.g., time-resolved color photometry, may be more effective in the search for liquid water on exoplanet surfaces. Observing an exo-Earth at NIR wavelengths does open the possibility of detecting water vapor or other absorbers in the atmosphere, by comparing scattered light in window regions to that in absorption bands.

  20. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    NASA Technical Reports Server (NTRS)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  1. Planet Earth: Can Other Planets Tell Us Where We Are Going?

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Adams, Gerald E.

    1994-01-01

    Makes comparisons between the Earth and other planets to suggest a possible vehicle for predicting the effects of human-made or natural disasters on our Earth. Also included are brief discussions of the following topics: (1) the atmosphere and greenhouse effect; (2) alterations of the biosphere; (3) climate and climatic change; (4) the water…

  2. Bayesian analysis of the astrobiological implications of life's early emergence on Earth.

    PubMed

    Spiegel, David S; Turner, Edwin L

    2012-01-10

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth's history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe.

  3. The HARPS search for southern extra-solar planets . XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone

    NASA Astrophysics Data System (ADS)

    Lo Curto, G.; Mayor, M.; Benz, W.; Bouchy, F.; Hébrard, G.; Lovis, C.; Moutou, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Segransan, D.; Udry, S.

    2013-03-01

    The vast diversity of planetary systems detected to date is defying our capability of understanding their formation and evolution. Well-defined volume-limited surveys are the best tool at our disposal to tackle the problem, via the acquisition of robust statistics of the orbital elements. We are using the HARPS spectrograph to conduct our survey of ≈850 nearby solar-type stars, and in the course of the past nine years we have monitored the radial velocity of HD 103774, HD 109271, and BD-061339. In this work we present the detection of five planets orbiting these stars, with msin (i) between 0.6 and 7 Neptune masses, four of which are in two multiple systems, comprising one super-Earth and one planet within the habitable zone of a late-type dwarf. Although for strategic reasons we chose efficiency over precision in this survey, we have the capability to detect planets down to the Neptune and super-Earth mass range as well as multiple systems, provided that enough data points are made available. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla (Chile), under the GTO program ID 072.C-0488 and the regular programs: 085.C-0019, 087.C-0831 and 089.C-0732. RV data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A59

  4. Dynamics of the Final Stages of Terrestrial Planet Growth and the Formation of the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Rivera, Eugenio J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    An overview of current theories of star and planet formation, with emphasis on terrestrial planet accretion and the formation of the Earth-Moon system is presented. These models predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant impacts during the final stages of growth can produce large planetary satellites, such as Earth's Moon. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  5. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The United States spends approximately four million dollars each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.

  6. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-06-10

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less

  7. How Do Earth-Sized, Short-Period Planets Form?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Matching theory to observation often requires creative detective work. In a new study, scientists have used a clever test to reveal clues about the birth of speedy, Earth-sized planets.Former Hot Jupiters?Artists impression of a hot Jupiter with an evaporating atmosphere. [NASA/Ames/JPL-Caltech]Among the many different types of exoplanets weve observed, one unusual category is that of ultra-short-period planets. These roughly Earth-sized planets speed around their host stars at incredible rates, with periods of less than a day.How do planets in this odd category form? One popular theory is that they were previously hot Jupiters, especially massive gas giants orbiting very close to their host stars. The close orbit caused the planets atmospheres to be stripped away, leaving behind only their dense cores.In a new study, a team of astronomers led by Joshua Winn (Princeton University) has found a clever way to test this theory.Planetary radius vs. orbital period for the authors three statistical samples (colored markers) and the broader sample of stars in the California Kepler Survey. [Winn et al. 2017]Testing MetallicitiesStars hosting hot Jupiters have an interesting quirk: they typically have metallicities that are significantly higher than an average planet-hosting star. It is speculated that this is because planets are born from the same materials as their host stars, and hot Jupiters require the presence of more metals to be able to form.Regardless of the cause of this trend, if ultra-short-period planets are in fact the solid cores of former hot Jupiters, then the two categories of planets should have hosts with the same metallicity distributions. The ultra-short-period-planet hosts should therefore also be weighted to higher metallicities than average planet-hosting stars.To test this, the authors make spectroscopic measurements and gather data for a sample of stellar hosts split into three categories:64 ultra-short-period planets (orbital period shorter than a

  8. A Population of planetary systems characterized by short-period, Earth-sized planets.

    PubMed

    Steffen, Jason H; Coughlin, Jeffrey L

    2016-10-25

    We analyze data from the Quarter 1-17 Data Release 24 (Q1-Q17 DR24) planet candidate catalog from NASA's Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined ([Formula: see text]17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  9. A Population of planetary systems characterized by short-period, Earth-sized planets

    PubMed Central

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-01-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters. PMID:27790984

  10. Blue Marble: Remote Characterization of Habitable Planets

    NASA Technical Reports Server (NTRS)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  11. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars

    PubMed Central

    Kasting, James F.; Kopparapu, Ravikumar; Ramirez, Ramses M.; Harman, Chester E.

    2014-01-01

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet’s atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, “Dune” planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, Seff, the recently recalculated HZ boundaries are: recent Venus—1.78; runaway greenhouse—1.04; moist greenhouse—1.01; maximum greenhouse—0.35; and early Mars—0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4–0.5. PMID:24277805

  12. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.

    PubMed

    Heller, René; Pudritz, Ralph E

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  13. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone

    NASA Astrophysics Data System (ADS)

    Heller, René; Pudritz, Ralph E.

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 105 K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 104) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  14. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P., E-mail: tsasaki@vandals.uidaho.edu, E-mail: jwbarnes@uidaho.edu, E-mail: obrien@psi.edu

    2012-07-20

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion ofmore » lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.« less

  15. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    PubMed

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  16. A Planet for Goldilocks: The Search for Evidence of Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    Batalha, Natalie M.

    2018-01-01

    A Planet for Goldilocks: The Search for Evidence of Life Beyond Earth "Not too hot, not too cold" begins the prescription for a world that's just right for life as we know it. Finding evidence of life beyond Earth is one of the primary goals of science agencies around the world thanks in large part to NASA's Kepler Mission which launched in 2009 with the objective of finding Goldilocks planets orbiting other stars like our Sun. Indeed, the space telescope opened our eyes to the terrestrial-sized planets that populate the galaxy as well as exotic worlds unlike anything that exists in the solar system. The mission ignited the search for life beyond earth via remote detection of atmospheric biosignatures on exoplanets. Most recently, our collective imagination was awakened by the discovery of Goldilocks worlds orbiting some of the nearest neighbors to the Sun, turning abstractions into destinations. Dr. Batalha will give an overview of the science legacy of the Kepler Mission and other key discoveries. She'll give a preview of what's to come by highlighting the missions soon to launch and those that are concepts taking shape on the drawing board.

  17. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  18. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  19. Technology Plan for the Terrestrial Planet Finder Interferometer

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R. (Editor); Dooley, Jennifer A. (Editor)

    2005-01-01

    The technology plan for the Terrestrial Planet Finder Interferometer (TPF-I) describes the breadth of technology development currently envisaged to enable TPF-I to search for habitable worlds around nearby stars. TPF-I is currently in Pre-Phase A (the Advanced Study Phase) of its development. For planning purposes, it is expected to enter into Phase A in 2010 and be launched sometime before 2020. TPF-I is being developed concurrently with the Terrestrial Planet Finder Coronagraph (TPF-C), whose launch is anticipated in 201 6. The missions are being designed with the capability to detect Earth-like planets should they exist in the habitable zones of Sun-like (F,G, and K) stars out to a distance of about 60 light-years. Each mission will have the starlight-suppression and spectroscopic capability to enable the characterization of extrasolar planetary atmospheres, identifying biomarkers and signs of life. TPF-C is designed as a visible-light coronagraph; TPF-I is designed as a mid-infrared formation-flying interferometer. The two missions, working together, promise to yield unambiguous detections and characterizations of Earth-like planets. The challenges of planet detections with mid-infrared formation-flying interferometry are described within this technology plan. The approach to developing the technology is described through roadmaps that lead from our current state of the art through the different phases of mission development to launch. Technology metrics and milestones are given to measure progress. The emphasis of the plan is development and acquisition of technology during pre-Phase A to establish feasibility of the mission to enter Phase A sometime around 2010. Plans beyond 2010 are outlined. The plan contains descriptions of the development of new component technology as well as testbeds that demonstrate the viability of new techniques and technology required for the mission. Starlight-suppression (nulling) and formation-flying technology are highlighted

  20. Eccentricity Evolution of Migrating Planets

    NASA Technical Reports Server (NTRS)

    Murray, N.; Paskowitz, M.; Holman, M.

    2002-01-01

    We examine the eccentricity evolution of a system of two planets locked in a mean motion resonance, in which either the outer or both planets lose energy and angular momentum. The sink of energy and angular momentum could be a gas or planetesimal disk. We analytically calculate the eccentricity damping rate in the case of a single planet migrating through a planetesimal disk. When the planetesimal disk is cold (the average eccentricity is much less than 1), the circularization time is comparable to the inward migration time, as previous calculations have found for the case of a gas disk. If the planetesimal disk is hot, the migration time can be an order of magnitude shorter. We show that the eccentricity of both planetary bodies can grow to large values, particularly if the inner body does not directly exchange energy or angular momentum with the disk. We present the results of numerical integrations of two migrating resonant planets showing rapid growth of eccentricity. We also present integrations in which a Jupiter-mass planet is forced to migrate inward through a system of 5-10 roughly Earth-mass planets. The migrating planets can eject or accrete the smaller bodies; roughly 5% of the mass (averaged over all the integrations) accretes onto the central star. The results are discussed in the context of the currently known extrasolar planetary systems.

  1. Kepler Mission: A Mission to Find Earth-size Planets in the Habitable Zone

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    2003-01-01

    The Kepler Mission is a Discovery-class mission designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. It is a wide field of view photometer Schmidt-type telescope with an array of 42 CCDs. It has a 0.95 m aperture and 1.4 m primary and is designed to attain a photometric precision of 2 parts in 10(exp 5) for 12th magnitude solar-like stars for a 6 hr transit duration. It will continuously observe 100,000 main-sequence stars from 9th to 14th magnitude in the Cygnus constellation for a period of four years with a cadence of 4/hour. An additional 250 stars can be monitored at a cadence of l/minute to do astro-seismology of stars brighter than 11.5 mv. The photometer is scheduled to be launched into heliocentric orbit in 2007. When combined with ground-based spectrometric observations of these stars, the positions of the planets relative to the habitable zone can be found. The spectra of the stars are also used to determine the relationships between the characteristics of terrestrial planets and the characteristics of the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler-velocity discoveries, over a thousand giant planets will also be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of Earth-size planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ are very rare and that life might also be quite rare.

  2. A Kepler Mission, A Search for Habitable Planets: Concept, Capabilities and Strengths

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, Jack; Dunham, Edward; Jenkins, Jon; DeVincenzi, D. (Technical Monitor)

    1998-01-01

    The detection of extrasolar terrestrial planets orbiting main-sequence stars is of great interest and importance. Current ground-based methods are only capable of detecting objects about the size or mass of Jupiter or larger. The technological challenges of direct imaging of Earth-size planets from space are expected to be resolved over the next twenty years. Spacebased photometry of planetary transits is currently the only viable method for detection of terrestrial planets (30-600 times less massive than Jupiter). The method searches the extended solar neighborhood, providing a statistically large sample and the detailed characteristics of each individual case. A robust concept has been developed and proposed as a Discovery-class mission. The concept, its capabilities and strengths are presented.

  3. Ground-based Search of Earth-mass Exoplanets using Transit-Timing Variations

    NASA Astrophysics Data System (ADS)

    Fernandez, J. M.

    2010-10-01

    This work presents recent results from a ground-based transit follow-up program of the extrasolar planet XO-2b in order to find Earth-mass companions. It also introduces the future use of the MONET 1m-class robotic telescopes as part of the effort to overcome the difficulties of this kind of project.

  4. The ExtraSolar Planetary Imaging Coronagraph

    NASA Astrophysics Data System (ADS)

    Clampin, M.; Lyon, R.

    2010-10-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a 1.65-m telescope employing a visible nulling coronagraph (VNC) to deliver high-contrast images of extrasolar system architectures. EPIC will survey the architectures of exosolar systems, and investigate the physical nature of planets in these solar systems. EPIC will employ a Visible Nulling Coronagraph (VNC), featuring an inner working angle of ≤2λ/D, and offers the ideal balance between performance and feasibility of implementation, while not sacrificing science return. The VNC does not demand unrealistic thermal stability from its telescope optics, achieving its primary mirror surface figure requires no new technology, and pointing stability is within state of the art. The EPIC mission will be launched into a drift-away orbit with a five-year mission lifetime.

  5. Title: Characterizing a Frozen Extrasolar World

    NASA Technical Reports Server (NTRS)

    Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; Faherty, Jacqueline K.; Bjoraker, Gordon L.

    2016-01-01

    The recently discovered brown dwarf WISE 0855 presents our first opportunity to study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs-near infrared spectroscopy-is not currently feasible as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 micrometers spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter. The spectrum is high enough quality to allow the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but this time on an extrasolar world.

  6. On evolutionary climate tracks in deep mantle volatile cycle computed from numerical mantle convection simulations and its impact on the habitability of the Earth-like planets

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.; Tajika, E.; Kadoya, S.

    2017-12-01

    Discussing an impact of evolution and dynamics in the Earth's deep interior on the surface climate change for the last few decades (see review by Ehlmann et al., 2016), the mantle volatile (particularly carbon) degassing in the mid-oceanic ridges seems to play a key role in understanding the evolutionary climate track for Earth-like planets (e.g. Kadoya and Tajika, 2015). However, since the mantle degassing occurs not only in the mid-oceanic ridges but also in the wedge mantle (island arc volcanism) and hotspots, to incorporate more accurate estimate of mantle degassing flux into the climate evolution framework, we developed a coupled model of surface climate-deep Earth evolution in numerical mantle convection simulations, including more accurate deep water and carbon cycle (e.g. Nakagawa and Spiegelman, 2017) with an energy balance theory of climate change. Modeling results suggest that the evolution of planetary climate computed from a developed model is basically consistent with an evolutionary climate track in simplified mantle degassing model (Kadoya and Tajika, 2015), but an occurrence timing of global (snowball) glaciation is strongly dependent on mantle degassing rate occurred with activities of surface plate motions. With this implication, the surface plate motion driven by deep mantle dynamics would play an important role in the planetary habitability of such as the Earth and Earth-like planets over geologic time-scale.

  7. On the history and future of cosmic planet formation

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Peeples, Molly S.

    2015-12-01

    We combine constraints on galaxy formation histories with planet formation models, yielding the Earth-like and giant planet formation histories of the Milky Way and the Universe as a whole. In the Hubble volume (1013 Mpc3), we expect there to be ˜1020 Earth-like and ˜1020 giant planets; our own galaxy is expected to host ˜109 and ˜1010 Earth-like and giant planets, respectively. Proposed metallicity thresholds for planet formation do not significantly affect these numbers. However, the metallicity dependence for giant planets results in later typical formation times and larger host galaxies than for Earth-like planets. The Solar system formed at the median age for existing giant planets in the Milky Way, and consistent with past estimates, formed after 80 per cent of Earth-like planets. However, if existing gas within virialized dark matter haloes continues to collapse and form stars and planets, the Universe will form over 10 times more planets than currently exist. We show that this would imply at least a 92 per cent chance that we are not the only civilization the Universe will ever have, independent of arguments involving the Drake equation.

  8. On The History and Future of Cosmic Planet Formation

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter

    2016-03-01

    We combine constraints on galaxy formation histories with planet formation models, yielding the Earth-like and giant planet formation histories of the Milky Way and the Universe as a whole. In the Hubble Volume (1013 Mpc3), we expect there to be ~1020 Earth-like and ~1020 giant planets; our own galaxy is expected to host ~109 and ~1010 Earth-like and giant planets, respectively. Proposed metallicity thresholds for planet formation do not significantly affect these numbers. However, the metallicity dependence for giant planets results in later typical formation times and larger host galaxies than for Earth-like planets. The Solar System formed at the median age for existing giant planets in the Milky Way, and consistent with past estimates, formed after 80% of Earth-like planets. However, if existing gas within virialised dark matter haloes continues to collapse and form stars and planets, the Universe will form over 10 times more planets than currently exist. We show that this would imply at least a 92% chance that we are not the only civilisation the Universe will ever have, independent of arguments involving the Drake Equation.

  9. Subaru HDS transmission spectroscopy of the transiting extrasolar planet HD209458b

    NASA Astrophysics Data System (ADS)

    Narita, N.; Suto, Y.; Winn, J. N.; Turner, E. L.; Aoki, W.; Leigh, C. J.; Sato, B.; Tamura, M.; Yamada, T.

    2006-02-01

    We have searched for absorption in several common atomic species due to the atmosphere or exosphere of the transiting extrasolar planet HD 209458b, using high precision optical spectra obtained with the Subaru High Dispersion Spectrograph (HDS). Previously we reported an upper limit on Hα absorption of 0.1% (3σ) within a 5.1Å band. Using the same procedure, we now report upper limits on absorption due to the optical transitions of Na D, Li, Hα, Hβ, Hγ, Fe, and Ca. The 3σ upper limit for each transition is approximately 1% within a 0.3Å band (the core of the line), and a few tenths of a per cent within a 2Å band (the full line width). The wide-band results are close to the expected limit due to photon-counting (Poisson) statistics, although in the narrow-band case we have encountered unexplained systematic errors at a few times the Poisson level. These results are consistent with all previously reported detections (Charbonneau et al. 2002, ApJ, 568, 377) and upper limits (Bundy & Marcy 2000, PASP, 112, 1421; Moutou et al. 2001, A&A, 371, 260), but are significantly more sensitive yet achieved from ground based observations.

  10. Development of educational programs using Dagik Earth, a four dimensional display of the Earth and planets

    NASA Astrophysics Data System (ADS)

    Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.

    2010-12-01

    We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.

  11. Organic Haze as a Biosignature in Anoxic Earth-Like Atmospheres

    NASA Technical Reports Server (NTRS)

    Arney, Giada; Domagal-Goldman, Shawn D.; Meadows, Victoria S.

    2017-01-01

    Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and anM4Vdwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 approx. 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/ CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 microns, likely the most accessible CO2 feature on an Archean-like exoplanet.

  12. Limits on Line Bisector Variability for Stars with Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Povich, M. S.; Giampapa, M. S.; Valenti, J. A.; Tilleman, T.; Barden, S.; Deming, D.; Livingston, W. C.; Pilachowski, C.

    2000-01-01

    We present an analysis of high-resolution synoptic spectra of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations due to the presence of one or more substellar companions. We searched for subtle periodic variations in photospheric line asymmetry, as characterized by line bisectors. In principle, periodic variations in line asymmetry observed at lower spectral resolution could mimic the radial velocity signature of a companion, but we find no significant evidence of such behavior in our data. Observations were obtained from 1998 March to 1999 February using the National Solar Observatory (NSO) 1.52-m McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph, achieving a resolving power of 1.2x10(exp5). To characterize line asymmetry, we first measured line bisectors for the unblended Fe I photospheric line at 625.26 nm. To improve sensitivity to small fluctuations, we then combined points in each bisector to form a velocity displacement with respect to the line core. We searched for periodic variations in this displacement, finding no substantial difference between stars with substellar companions and those without reported companions. We find no correlation between bisector velocity displacement and the known orbital phase of substellar companions around our target stars. Simulations of a periodic signal with noise levels that mimic our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m/s. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity.

  13. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

    PubMed Central

    Domagal-Goldman, Shawn D.; Meadows, Victoria S.

    2018-01-01

    Abstract Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8–2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ∼ 0.2, but at 30× the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 μm, likely the most accessible CO2 feature on an Archean-like exoplanet. Key Words: Organic haze—Organic sulfur gases—Biosignatures—Archean Earth

  14. Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres.

    PubMed

    Arney, Giada; Domagal-Goldman, Shawn D; Meadows, Victoria S

    2018-03-01

    Early Earth may have hosted a biologically mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient Sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS 2 , OCS, CH 3 SH, and CH 3 SCH 3 ), photochemistry involving these gases can drive haze formation at lower CH 4 /CO 2 ratios than methane photochemistry alone. For a planet orbiting the Sun, at 30× the modern organic sulfur gas flux, haze forms at a CH 4 /CO 2 ratio 20% lower than at 1× the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1× the modern Earth organic sulfur flux, a substantial haze forms at CH 4 /CO 2 ∼ 0.2, but at 30× the organic sulfur flux, the CH 4 /CO 2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH 4 /CO 2 ratio could suggest the influence of these biogenic sulfur gases and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH 4 and CO 2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO 2 feature at 1.57 μm, likely the most accessible CO 2 feature on an Archean-like exoplanet. Key Words: Organic haze-Organic sulfur gases-Biosignatures-Archean Earth

  15. Bayesian analysis of the astrobiological implications of life’s early emergence on Earth

    PubMed Central

    Spiegel, David S.; Turner, Edwin L.

    2012-01-01

    Life arose on Earth sometime in the first few hundred million years after the young planet had cooled to the point that it could support water-based organisms on its surface. The early emergence of life on Earth has been taken as evidence that the probability of abiogenesis is high, if starting from young Earth-like conditions. We revisit this argument quantitatively in a Bayesian statistical framework. By constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the data that life emerged fairly early in Earth’s history and that, billions of years later, curious creatures noted this fact and considered its implications. We find that, given only this very limited empirical information, the choice of Bayesian prior for the abiogenesis probability parameter has a dominant influence on the computed posterior probability. Although terrestrial life's early emergence provides evidence that life might be abundant in the universe if early-Earth-like conditions are common, the evidence is inconclusive and indeed is consistent with an arbitrarily low intrinsic probability of abiogenesis for plausible uninformative priors. Finding a single case of life arising independently of our lineage (on Earth, elsewhere in the solar system, or on an extrasolar planet) would provide much stronger evidence that abiogenesis is not extremely rare in the universe. PMID:22198766

  16. Atmospheric reconnaissance of the habitable-zone Earth-sized planets orbiting TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Wakeford, Hannah R.; Lewis, Nikole K.; Delrez, Laetitia; Gillon, Michaël; Selsis, Frank; Leconte, Jérémy; Demory, Brice-Olivier; Bolmont, Emeline; Bourrier, Vincent; Burgasser, Adam J.; Grimm, Simon; Jehin, Emmanuël; Lederer, Susan M.; Owen, James E.; Stamenković, Vlada; Triaud, Amaury H. M. J.

    2018-03-01

    Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted atmospheres3-6. Hydrogen in particular is a powerful greenhouse gas that may prevent the habitability of inner planets while enabling the habitability of outer ones6-8. An atmosphere largely dominated by hydrogen, if cloud-free, should yield prominent spectroscopic signatures in the near-infrared detectable during transits. Observations of the innermost planets have ruled out such signatures9. However, the outermost planets are more likely to have sustained such a Neptune-like atmosphere10, 11. Here, we report observations for the four planets within or near the system's habitable zone, the circumstellar region where liquid water could exist on a planetary surface12-14. These planets do not exhibit prominent spectroscopic signatures at near-infrared wavelengths either, which rules out cloud-free hydrogen-dominated atmospheres for TRAPPIST-1 d, e and f, with significance of 8σ, 6σ and 4σ, respectively. Such an atmosphere is instead not excluded for planet g. As high-altitude clouds and hazes are not expected in hydrogen-dominated atmospheres around planets with such insolation15, 16, these observations further support their terrestrial and potentially habitable nature.

  17. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  18. The potential of planets orbiting red dwarf stars to support oxygenic photosynthesis and complex life

    NASA Astrophysics Data System (ADS)

    Gale, Joseph; Wandel, Amri

    2017-01-01

    We review the latest findings on extra-solar planets and their potential of having environmental conditions that could support Earth-like life. Focusing on planets orbiting red dwarf (RD) stars, the most abundant stellar type in the Milky Way, we show that including RDs as potential life supporting host stars could increase the probability of finding biotic planets by a factor of up to a thousand, and reduce the estimate of the distance to our nearest biotic neighbour by up to 10. We argue that binary and multiple star systems need to be taken into account when discussing habitability and the abundance of biotic exoplanets, in particular RDs in such systems. Early considerations indicated that conditions on RD planets would be inimical to life, as their habitable zones would be so close to the host star as to make planets tidally locked. This was thought to cause an erratic climate and expose life forms to flares of ionizing radiation. Recent calculations show that these negative factors are less severe than originally thought. It has also been argued that the lesser photon energy of the radiation of the relatively cool RDs would not suffice for oxygenic photosynthesis (OP) and other related energy expending reactions. Numerous authors suggest that OP on RD planets may evolve to utilize photons in the infrared. We however argue, by analogy to the evolution of OP and the environmental physiology and distribution of land-based vegetation on Earth, that the evolutionary pressure to utilize infrared radiation would be small. This is because vegetation on RD planets could enjoy continuous illumination of moderate intensity, containing a significant component of photosynthetic 400-700 nm radiation. We conclude that conditions for OP could exist on RD planets and consequently the evolution of complex life might be possible. Furthermore, the huge number and the long lifetime of RDs make it more likely to find planets with photosynthesis and life around RDs than around

  19. Long-Term Obliquity Variations of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lissauer, J. J.; Chambers, J. E.

    2012-05-01

    Earth's present-day obliquity varies by +/-1.2 degrees over 100,000-year timescales. Without the Moon's gravity increasing the rotation axis precession rate, prior theory predicted that a moonless Earth's obliquity would be allowed to vary between 0 and 85 degrees -- moreso even than present-day Mars (0 - 60 degrees). We use a modified version of the symplectic orbital integrator `mercury' to numerically investigate the obliquity evolution of hypothetical moonless Earths. Contrary to the large theoretically allowed range, we find that moonless Earths more typically experience obliquity variations of just +/- 10 degrees over Gyr timescales. Some initial conditions for the moonless Earth's rotation rate and obliquity yield slightly greater variations, but the majority have smaller variations. In particular, retrograde rotators are quite stable and should constitute 50% of the population if initial terrestrial planet rotation is isotropic. Our results have important implications for the prospects of long-term habitability of moonless planets in extrasolar systems.

  20. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  1. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  2. Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Luque, A.; Dubrovin, D.; Gordillo-Vázquez, F. J.; Ebert, U.; Parra-Rojas, F. C.; Yair, Y.; Price, C.

    2014-10-01

    Atmospheric electricity has been detected in all gaseous giants of our solar system and is therefore likely present also in extrasolar planets. Building upon measurements from Saturn and Jupiter, we investigate how the electromagnetic pulse emitted by a lightning stroke affects upper layers of a gaseous giant. This effect is probably significantly stronger than that on Earth. We find that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial "elve."

  3. Earth-based planet finders power up

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-01-01

    NASA's Kepler spacecraft has racked up thousands of exoplanet discoveries since its launch in 2009, but before Kepler, the workhorses of exoplanet identification were ground-based instruments that measure tiny stellar wobbles caused by the gravity of an orbiting planet. They are now undergoing a quiet renaissance. The new generation of these devices may be precise enough to find a true Earth twin: a planet with the same mass as ours, orbiting a sunlike star once a year. That's something Kepler—sensitive to planet size, but not mass—can't do. Over the past few months, two new third-generation instruments have opened their eyes to the sky and nearly two dozen others are either under construction or have recently begun service.

  4. Our Mission to Planet Earth: A guide to teaching Earth system science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  5. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  6. Predicted Exoplanet Yields for the HabEx Mission Concept

    NASA Astrophysics Data System (ADS)

    Stark, Christopher; Mennesson, Bertrand; HabEx STDT

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is a concept for a flagship mission to directly image and characterize extrasolar planets around nearby stars and to enable a broad range of general astrophysics. The HabEx Science and Technology Definition Team (STDT) is currently studying two architectures for HabEx. Here we summarize the exoplanet science yield of Architecture A, a 4 m monolithic off-axis telescope that uses a vortex coronagraph and a 72m external starshade occulter. We summarize the instruments' capabilities, present science goals and observation strategies, and discuss astrophysical assumptions. Using a yield optimization code, we predict the yield of potentially Earth-like extrasolar planets that could be detected, characterized, and searched for signs of habitability and/or life by HabEx. We demonstrate that HabEx could also detect and characterize a wide variety of exoplanets while searching for potentially Earth-like planets.

  7. Propiedades espectroscópicas de planetas extrasolares y de enanas marrones

    NASA Astrophysics Data System (ADS)

    Martínez, C. F.; Gómez, M.

    In this contribution we present a comparison of the spectroscopic properties of three groups of objects: brown dwarfs, "Hot Jupiter" extrasolar planets and giant solar system planets, in particular Jupiter and Saturn. We col- lect all published spectra from the literature and compare their characteris- tics. Elements such as water vapor (H2 O) and methane (CH4 ) are present in practical all analyzed objects. On the contrary molecules such as carbon monoxide (CO) and carbon dioxide (CO2 ) are only detected in the spectra of planets. FULL TEXT IN SPANISH

  8. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  9. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    PubMed

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  10. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    NASA Technical Reports Server (NTRS)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  11. Book Review: Distant wanderers / Copernicus Books/Springer , 2001/2002

    NASA Astrophysics Data System (ADS)

    Bhatt, H. C.

    2002-06-01

    Are we alone in the Universe? The Earth, teeming with life, as we know it, is only one amongst the nine planets (wanderers) that wander around the Sun in more or less circular orbits. Do distant stars also have planets circling them? Are some of them similar to Earth and support life? These questions have long occupied the human mind. However, until the closing years of the twentieth century, the idea that there are stars, other than the Sun, that have planets orbiting them, remained a subject of speculation and controversy because the astronomical observing techniques used for the detection of planetary companions of stars did not have the necessary precision. During the past several years, advances in technology and dedicated efforts of planet-hunting astronomers have made it possible to detect Jupiter-like or more massive planets around nearby stars. So far about 70 such extra-solar planets have been discovered indicating that our solar system is not unique and distant wanderers are not uncommon. Distant Wanderers narrates the story of the search for extra-solar planets, even as the search is becoming more vigorous with newer instruments pushing the limits of sensitivity that has often resulted in the detection of planetary systems with totally unexpected characteristics. The book is primarily aimed at non specialists, but practicing scientists, including astronomers, will find the narrative very interesting and sometimes offering a perspective that is unfamiliar to professionals. The book begins with an introduction to some basic astronomical facts about the Universe, evolution of stars, supernovae and formation of pulsars. The first extra-solar planets were discovered in 1992 around a radio pulsar (PSR 1257+12) by measuring the oscillatory perturbations in the pulse arrival times from the pulsar caused by the presence of orbiting earth-sized planets as their gravity forces the pulsar also to move in orbit around the system barycenter. Such planetary systems

  12. Short-period terrestrial planets and radial velocity stellar jitter.

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar jitter is the main limitation to ultra-precise radial velocity (RV) measurements. It currently precludes our ability to detect a planet like the Earth. Short-period terrestrial planets present first the advantage of inducing a stronger RV signal. In addition, the signal produced by these planets have a period completely different than stellar activity. This allows us, when the observational strategy is adequate, to decorrelate the planetary signal from the jitter induced by the star using filtering techniques. I will show the examples of Kepler-78b and Corot-7b, where the amplitude of the planetary signal can be detected, despite the stellar activity jitter that is 5 and 3 times larger, respectively. The cases of Alpha Cen Bb will also be reviewed, with a new reduction of the published data that increases the significance of the planetary signal.This project is funded by ETAEARTH, a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.

  13. Kepler’s DR25 Most Earth-like Planet Candidates: What To Know Before You Go

    NASA Astrophysics Data System (ADS)

    Thompson, Susan E.; Kepler Team

    2018-01-01

    The Kepler mission’s latest catalog of planet candidates (data release 25 KOI catalog at the NASA exoplanet archive) was released in June of 2017. The catalog contains 4034 candidates including a significant population of terrestrial-size planets in the habitable zone of FGK dwarf stars. I will highlight what we know about these planet candidates in the DR25 catalog and discuss some of the caveats when working with these detections. Specifically, I will discuss how the noise in the Kepler light curves (from both the instrument and the stars) is known to occasionally produce weak, transit-like signals. We use simulations of this noise to measure how often these signals sneak into the catalog. I will also demonstrate ways to select a high-reliability sample using information available in the catalog. Such considerations may prove useful for anyone planning to use these planet candidates for occurrence rate calculations, choosing targets for follow-up, or deciding which planet to visit on his/her next holiday.

  14. The Earth is a Planet Too!

    NASA Technical Reports Server (NTRS)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  15. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  16. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones.

    PubMed

    Khodachenko, Maxim L; Ribas, Ignasi; Lammer, Helmut; Griessmeier, Jean-Mathias; Leitner, Martin; Selsis, Franck; Eiroa, Carlos; Hanslmeier, Arnold; Biernat, Helfried K; Farrugia, Charles J; Rucker, Helmut O

    2007-02-01

    Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances

  17. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2006-05-01

    This volume addresses fundamental questions concerning the formation of planetary systems in general, and of our solar system in particular. Drawing from recent advances in observational, experimental, and theoretical research, it summarises our current understanding of the planet formation processes, and addresses major open questions and research issues. Chapters are written by leading experts in the field of planet formation and extrasolar planet studies. The book is based on a meeting held at Ringberg Castle in Bavaria, where experts gathered together to present and exchange their ideas and findings. It is a comprehensive resource for graduate students and researchers, and is written to be accessible to newcomers to the field.

  18. The fate of water within Earth and super-Earths and implications for plate tectonics

    PubMed Central

    2017-01-01

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’. PMID:28416729

  19. The fate of water within Earth and super-Earths and implications for plate tectonics.

    PubMed

    Tikoo, Sonia M; Elkins-Tanton, Linda T

    2017-05-28

    The Earth is likely to have acquired most of its water during accretion. Internal heat of planetesimals by short-lived radioisotopes would have caused some water loss, but impacts into planetesimals were insufficiently energetic to produce further drying. Water is thought to be critical for the development of plate tectonics, because it lowers viscosities in the asthenosphere, enabling subduction. The following issue persists: if water is necessary for plate tectonics, but subduction itself hydrates the upper mantle, how is the upper mantle initially hydrated? The giant impacts of late accretion created magma lakes and oceans, which degassed during solidification to produce a heavy atmosphere. However, some water would have remained in the mantle, trapped within crystallographic defects in nominally anhydrous minerals. In this paper, we present models demonstrating that processes associated with magma ocean solidification and overturn may segregate sufficient quantities of water within the upper mantle to induce partial melting and produce a damp asthenosphere, thereby facilitating plate tectonics and, in turn, the habitability of Earth-like extrasolar planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Authors.

  20. The effects of circumstellar gas on terrestrial planet formation: Theory and observation

    NASA Astrophysics Data System (ADS)

    Mandell, Avram M.

    the remaining planets would be located in the Habitable Zone, suggesting that planetary systems with close-in giant planets are viable targets for searches for Earth-like habitable planets around other stars. I then present more realistic dynamical simulations of the effects of a migrating giant planet on a disk of protoplanetary material embedded in a gaseous disk, and the subsequent post-scattering evolution of the planetary system. I numerically investigate the dynamics of several types of post-migration planetary systems over 200 million years: a model with a single migrating giant planet, a model with one migrating and one nonmigrating giant planet, and a model excluding the effects of the gas disk. Material that is shepherded in front of the migrating giant planet by moving mean motion resonances accretes into "hot Earths", but survival of these bodies is strongly dependent on dynamical damping. Furthermore, a significant amount of material scattered outward by the giant planet survives in highly excited orbits; the orbits of these scattered bodies are then damped by gas drag and dynamical friction over the remaining accretion time. In all simulations Earth-mass planets accrete on approximately 100 Myr timescales, often with orbits in the Habitable Zone. These planets range in mass and water content, with both quantities increasing with the presence of a gas disk and decreasing with the presence of an outer giant planet. I use scaling arguments and previous results to derive a simple recipe that constrains which giant planet systems are able to form and harbor Earth-like planets in the Habitable Zone, demonstrating that roughly one third of the known planetary systems are potentially habitable. Finally, I present results from a search for new molecular tracers of warm gas in circumstellar disks using the NIRSPEC instrument on the Keck II telescope. I have detected emission from multiple ro-vibrational transitions in the v = 1--0 band of hydroxyl (OH) located in

  1. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    PubMed

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ < planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  2. Earth-type planets (Mercury, Venus, and Mars)

    NASA Technical Reports Server (NTRS)

    Marov, M. Y.; Davydov, V. D.

    1975-01-01

    Spacecraft- and Earth-based studies on the physical nature of the planets Mercury, Venus, and Mars are reported. Charts and graphs are presented on planetary surface properties, rotational parameters, atmospheric compositions, and astronomical characteristics.

  3. Gemini Planet Imager: Preliminary Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macintosh, B

    2007-05-10

    For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is

  4. On the Effects of the Evolution of Microbial Mats and Land Plants on the Earth as a Planet. Photometric and Spectroscopic Light Curves of Paleo-Earths

    NASA Astrophysics Data System (ADS)

    Sanromá, E.; Pallé, E.; García Munõz, A.

    2013-04-01

    Understanding the spectral and photometric variability of the Earth and the rest of the solar system planets has become of utmost importance for the future characterization of rocky exoplanets. As this is not only interesting at present times but also along the planetary evolution, we studied the effect that the evolution of microbial mats and plants over land has had on the way our planet looks from afar. As life evolved, continental surfaces changed gradually and non-uniformly from deserts through microbial mats to land plants, modifying the reflective properties of the ground and most likely the distribution of moisture and cloudiness. Here, we used a radiative transfer model of the Earth, together with geological paleo-records of the continental distribution and a reconstructed cloud distribution, to simulate the visible and near-IR radiation reflected by our planet as a function of Earth's rotation. We found that the evolution from deserts to microbial mats and to land plants produces detectable changes in the globally averaged Earth's reflectance. The variability of each surface type is located in different bands and can induce reflectance changes of up to 40% in period of hours. We conclude that by using photometric observations of an Earth-like planet at different photometric bands it would be possible to discriminate between different surface types. While recent literature proposes the red-edge feature of vegetation near 0.7 μm as a signature for land plants, observations in near-IR bands can be equally or even better suited for this purpose.

  5. Editorial: Special issue “Planetary evolution and life”

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman

    2014-08-01

    Given the enormous number of stars in the universe and the number of confirmed and postulated planets in our galaxy, it is generally agreed that our home planet Earth is not likely to be unique (e.g., Sagan, 1980; Bignami et al., 2005; Hawking and Mlodinow, 2010). But is it? Although the number of known extrasolar planets grows almost by the day, observational bias caused by the technological challenges of finding Earth-size, rocky extrasolar planets and determining their masses and sizes have thus far prohibited the detection of a second Earth. But even if a second Earth were to be found-located in what is termed the habitable zone (e.g., Kasting et al., 1993)-can we expect that life would have originated there and have evolved beyond the most primitive forms? Is the universe "bio-friendly" as Paul Davies said (cited after Sullivan and Baross, 2007) using the Anthropic Principle (Barrow and Tipler, 1986) or is the origin of life so complex and our home planet so peculiar (Ward and Brownlee, 2000) that we are the unlikely product of a chain of unlikely events (Gould, 1989)? And if life existed on a second Earth or on many other planets, would we be able to detect it? Would life have shaped these planets such as life has shaped the Earth?

  6. Is Jupiter's magnetosphere like a pulsar's or earth's?

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1974-01-01

    The application of pulsar physics to determine the magnetic structure in the planet Jupiter outer magnetosphere is discussed. A variety of theoretical models are developed to illuminate broad areas of consistency and conflict between theory and experiment. Two possible models of Jupiter's magnetosphere, a pulsar-like radial outflow model and an earth-like convection model, are examined. A compilation of the simple order of magnitude estimates derivable from the various models is provided.

  7. TeMPEST: the Texas, McDonald Photometric Extrasolar Search for Transits

    NASA Astrophysics Data System (ADS)

    Baliber, N. R.; Cochran, W. D.

    2001-11-01

    The TeMPEST project is a photometric search for transits of extrasolar giant planets orbiting at distances < ~ 0.1 AU to their parent stars. As is the case with HD 209458, the only known transiting system, measurements of the photometric dimming of stars with transiting planets, along with radial velocity (RV) data, will provide information on physical characteristics (mass, radius, and mean density) of these planets. Further study of HD 209458 b and planets like it might reveal their reflectivity, putting further constraints on their surface temperatures, as well as allow measurement of the composition of their outer atmospheres. To detect these types of systems, we use the McDonald Observatory 0.76m Prime Focus Camera (PFC), which provides a 46.2 arcmin square field. We are currently obtaining our first full season of data, and by early 2002 will have sufficient data to follow approximately 5,000 stars with the precision necessary to detect transits of close-orbiting Jovian planets. We also present data of the detection of the transit of the planet orbiting HD 209458 using the 0.76m PFC. These data are consistent with the partial occultation of the light from the star caused by the transit of an opaque disc of radius 1.4 R Jup. The TeMPEST project is funded by the NASA Origins program.

  8. Does the Galactic Bulge Have Fewer Planets?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    The Milky Ways dense central bulge is a very different environment than the surrounding galactic disk in which we live. Do the differences affect the ability of planets to form in the bulge?Exploring Galactic PlanetsSchematic illustrating how gravitational microlensing by an extrasolar planet works. [NASA]Planet formation is a complex process with many aspects that we dont yet understand. Do environmental properties like host star metallicity, the density of nearby stars, or the intensity of the ambient radiation field affect the ability of planets to form? To answer these questions, we will ultimately need to search for planets around stars in a large variety of different environments in our galaxy.One way to detect recently formed, distant planets is by gravitational microlensing. In this process, light from a distant source star is bent by a lens star that is briefly located between us and the source. As the Earth moves, this momentary alignment causes a blip in the sources light curve that we can detect and planets hosted by the lens star can cause an additional observable bump.Artists impression of the Milky Way galaxy. The central bulge is much denserthan the surroundingdisk. [ESO/NASA/JPL-Caltech/M. Kornmesser/R. Hurt]Relative AbundancesMost source stars reside in the galactic bulge, so microlensing events can probe planetary systems at any distance between the Earth and the galactic bulge. This means that planet detections from microlensing could potentially be used to measure the relative abundances of exoplanets in different parts of our galaxy.A team of scientists led by Matthew Penny, a Sagan postdoctoral fellow at Ohio State University, set out to do just that. The group considered a sample of 31 exoplanetary systems detected by microlensing and asked the following question: are the planet abundances in the galactic bulge and the galactic disk the same?A Paucity of PlanetsTo answer this question, Penny and collaborators derived the expected

  9. DETERMINATION OF THE INTERIOR STRUCTURE OF TRANSITING PLANETS IN MULTIPLE-PLANET SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Gregory, E-mail: kbatygin@gps.caltech.ed

    Tidal dissipation within a short-period transiting extrasolar planet perturbed by a companion object can drive orbital evolution of the system to a so-called tidal fixed point, in which the apses of the transiting planet and its perturber are aligned, and variations in orbital eccentricities vanish. Significant contribution to the apsidal precession rate is made by gravitational quadrupole fields, created by the transiting planets tidal and rotational distortions. The fixed-point orbital eccentricity of the inner planet is therefore a strong function of its interior structure. We illustrate these ideas in the specific context of the recently discovered HAT-P-13 exoplanetary system, andmore » show that one can already glean important insights into the physical properties of the inner transiting planet. We present structural models of the planet, which indicate that its observed radius can be maintained for a one-parameter sequence of models that properly vary core mass and tidal energy dissipation in the interior. We use an octupole-order secular theory of the orbital dynamics to derive the dependence of the inner planet's eccentricity, e{sub b} , on its tidal Love number, k {sub 2b}. We find that the currently measured eccentricity, e{sub b} = 0.021 +- 0.009, implies 0.116 < k {sub 2b} < 0.425, 0 M {sub +} < M {sub core} < 120 M {sub +}, and 10, 000 < Q{sub b} < 300, 000. Improved measurement of the eccentricity will soon allow for far tighter limits to be placed on all of these quantities, and will provide an unprecedented probe into the interior structure of an extrasolar planet.« less

  10. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  11. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana E.; Freedman, Richard; Visscher, Channon

    2017-06-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure.In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations.We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 ≤ Teff ≤ 2400 K and 2.5 ≤ log g ≤ 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  12. Pantheon of Planets Similar to Earth Artist Concept

    NASA Image and Video Library

    2015-07-23

    A newly discovered exoplanet, Kepler-452b, comes the closest of any found so far to matching our Earth-sun system. This artist's conception of a planetary lineup shows habitable-zone planets with similarities to Earth: from left, Kepler-22b, Kepler-69c, the just announced Kepler-452b, Kepler-62f and Kepler-186f. Last in line is Earth itself. http://photojournal.jpl.nasa.gov/catalog/PIA19830

  13. Tectonic asymmetry of the earth and other planets

    NASA Technical Reports Server (NTRS)

    Pushcharovskiy, Y. M.; Kozlov, V. V.; Sulidi-Kondratyev, Y. D.

    1978-01-01

    The structures of Earth, Mars, Venus, and the Moon are examined and compared. Global tectonic characteristics are presented for each. A comparison of the tectonics reveals the structural asymetry of these planets and the moon. Tectonic asymmetry information for the group is used to interpret certain aspects of the earth's geological past.

  14. Eyes on Planet Earth! Exploring Your Local Watershed

    ERIC Educational Resources Information Center

    Smith, Michael J.; Southard, John B.

    2003-01-01

    The American Geological Institute is helping teachers and geoscientists to emphasize the importance of inquiry and active investigation of the world around by selecting "Eyes on Planet Earth: Monitoring Our Changing World" as the theme of this year's Earth Science Week. The activity on the back of this month's poster insert, "Monitoring the…

  15. Modelling exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Rauer, Heike

    While the number of known extrasolar planets is steadily increasing recent years have shown the beginning of a new phase of our understanding of exoplanets due to the spectroscopic determi-nation of their atmospheric composition. Atmospheres of hot extrasolar giant gas planets have already been investigated by UV, optical and IR spectroscopy today. In future, spectroscopy of large, terrestrial planets ("super-Earth"), in particular planets in the habitable zone of their parent star, will be a major goal of investigation. Planning future space satellite observations of super-Earths requires modelling of atmospheres of terrestrial planets in different environments, such as e.g. central star type, orbital distance, as well as different atmospheric compositions. Whether planets able to support life "as we know it" exist outside our solar system is one of the most profound questions today. It can be addressed by characterizing the atmospheres of ter-restrial extrasolar planets searching for spectroscopic absorption bands of biomarker molecules. An overview of expected planetary conditions in terms of their habitability will be presented for several model scenarios of terrestrial extrasolar planets.

  16. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  17. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    PubMed Central

    Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.

    2018-01-01

    The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632

  18. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE PAGES

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...

    2018-04-25

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  19. Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.

    In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less

  20. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  1. Selections from 2015: Earth-Sized Planet Found in Star's Habitable Zone

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.Discovery and Validation of Kepler-452b: a 1.6 R Super Earth Exoplanet in the Habitable Zone of a G2 StarPublished July2015Main takeaway:A phase-folded light curve showing the transit of Kepler-452b. Its transit lasts 10.5 hours, and its period is 385 days. [Jenkins et al. 2015]A team led by Jon Jenkins (NASA Ames Research Center) announced the discovery and confirmation of Kepler-452b, an exoplanet only 60% larger than Earth and located in the habitable zone of its G2 star. This planet orbits its star at a distance of just over 1 AU, taking 385 days to complete an orbit. Kepler-452b also stands a good chance of being rocky, according to estimates.Why its interesting:Kepler-452b is the first near-Earth-sized planet to be found in the habitable zone of a Sun-like star making this the closest analog to the Earth-Sun system found in the Kepler dataset so far.About the history of the system (and the future of ours?):The authors estimate that the system is ~6 billion years old, and that Kepler-452b has been in the habitable zone of its star throughout its lifetime a substantially longer time than Earth has been around and habitable! Kepler-452bs host star, in addition to being 1.5 billion years older than the Sun, is roughly 10% larger. This system might therefore provide a glimpse of what Earths environment may be like in the future, as the Sun slowly expands on its way to becoming a red giant.CitationJon M. Jenkins et al 2015 AJ 150 56. doi:10.1088/0004-6256/150/2/56

  2. Telescope array for extrasolar planet detection from the far side of the Moon.

    PubMed

    Galan, Maximilian; Strojnik, Marija; Garcia-Torales, Guillermo; Kirk, Maureen S

    2016-12-01

    We propose that an array of 4×4 small-diameter telescopes, possibly 1 m in radius, be placed on the far side of the Moon for continuous monitoring of nearby stars for the existence of a planetary companion, similar to the Earth, and feasible for human colonization. The advantages of this location include long intervals of darkness, availability of a rigid platform in the form of a moon body, and most importantly, the absence of the atmosphere that allows the complete transmission of radiation in the spectral range from UV to millimeter waves. The task is facilitated in that the telescopes would act as light "buckets" to collect photons during long integration periods. All other technology has already been demonstrated, as humans in person delivered optical elements to the Moon's surface during the Apollo era. The disadvantages are primarily operational, in terms of requiring the establishment of a human habitat on the Moon. Likewise, all aspects of constructing a large 75 m by 75 m mirror array on the Moon's surface will be challenging. Simultaneously, the decreased gravity requires less effort and less energy to perform the construction tasks. The absence of atmosphere permits the search to extend from less than 10 to 300 μm to find Earth-like or even much colder planets.

  3. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    TECHNICAL BACKGROUND: An advanced adaptive secondary mirror (ASM) with 585 actuators was commissioned at the 6.5-m Magellan Telescope at one of the world’s best sites (Las Campanas Observatory; LCO) in Chile. By the end of the commissioning run (April 2013) the MagAO system was regularly producing the highest spatial resolution deep images to date (0.023” deep images at Halpha (0.656 microns); Close et al. 2013). This is due to its 378 corrective modes at 1kHz on a 6.5-m telescope. Strehl ratis>20% at Halpha were obtained in 75% of the seeing statistics at the site. We propose here to utilize MagAO’s absolutely unique ability to take Halpha, continuum (0.643 microns), and L’ (3.8 microns) thermal images (all simultaneously) to carry out a novel survey to: Discover a population of the lowest mass young accreting extrasolar planets imaged to date. to characterize the spatial distribution, and estimate accretion rates, of young extrasolar planets >5AU, to understand the influence of planets on transitional disk gaps. THEORY BACKGROUND: Extrasolar planets are very difficult to image directly since planets become very faint below ~8 Mjup (Jupiter masses) for ages >1 Myr and such massive planets are rare. There is a class of young stars that are still accreting yet have SED (and often imaging) evidence of a lack of dust and gas inside a r=5-140 AU “gap”. These “transitional disks” are believed to be transitioning into “disk free” stars. These gaps are believed to be maintained by planets that continuously clear (though scattering or accretion) the optically thin gaps. Indeed large >10 AU gaps (>few Hill spheres) must be maintained by multiple ~1 Mjup planets (Dodson-Robinson & Salyk 2011). Since gas must pass through each of these gaps to continuously supply the accreting star, simulations suggest that these “gap planets” are also crossing points for these gas streamers on their way to the star. These streamers “force-feed” these planets a

  4. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine

  5. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  6. Ionization in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, R. L.; Helling, Ch.; Hodosán, G.

    2014-03-20

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning)more » and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10{sup 8}-10{sup 10} m{sup 3}) than in a giant gas planet (10{sup 4}-10{sup 6} m{sup 3}). Our results suggest that the total dissipated energy in one event is <10{sup 12} J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH{sub 2} at the expense of CO and CH{sub 4}. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.« less

  7. WFIRST: Retrieval Studies of Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, Mark; Lupu, Roxana; Lewis, Nikole K.; WFIRST Coronagraph SITs

    2018-01-01

    The typical direct imaging and spectroscopy target for the WFIRST Coronagraph will be a mature Jupiter-mass giant planet at a few AU from an FGK star. The spectra of such planets is expected to be shaped primarily by scattering from H2O clouds and absorption by gaseous NH3 and CH4. We have computed forward model spectra of such typical planets and applied noise models to understand the quality of photometry and spectra we can expect. Using such simulated datasets we have conducted Markov Chain Monte Carlo and MultiNest retrievals to derive atmospheric abundance of CH4, cloud scattering properties, gravity, and other parameters for various planets and observing modes. Our focus has primarily been to understand which combinations of photometry and spectroscopy at what SNR allow retrievals of atmospheric methane mixing ratios to within a factor of ten of the true value. This is a challenging task for directly imaged planets as the planet mass and radius--and thus surface gravity--are not as well constrained as in the case of transiting planets. We find that for plausible planets and datasets of the quality expected to be obtained by WFIRST it should be possible to place such constraints, at least for some planets. We present some examples of our retrieval results and explain how they have been utilized to help set design requirements on the coronagraph camera and integrated field spectrometer.

  8. Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets

    NASA Astrophysics Data System (ADS)

    Louro Lourenço, Diogo; Rozel, Antoine; Ballmer, Maxim; Tackley, Paul

    2017-04-01

    It is now well established that compositional variations in the lithosphere can alter the stress state and greatly influence the likelihood of plate tectonics. Mechanisms that have been found to facilitate plate tectonics include: water circulation [Regenauer-Lieb et al., Science 2001; Dymkova and Gerya, GRL 2013], presence of continents [Rolf and Tackley, GRL 2011], and melting [Korenaga, GJI 2009; Armann and Tackley, JGR 2012]. In a recent work by Lourenço et al. [EPSL 2016], it has been shown that Earth-like plate tectonics is more likely to occur in planets that can produce a crust of variable thickness and density through melt extraction from the mantle. The authors employed a first-order approximation by assuming that all magmatism was extrusive. However, volumes of intruded magmas are observed to be around 4- 9 times more present on Earth than erupted magmas [Crisp, J. Volcanol. Geotherm. Res. 1984]. Therefore, intrusive magmatism is thought to play a role in the dynamics of the lithosphere on Earth [Cawood et al., Geol. Soc. Am. Bull. 2013] and other Earth-like planets. We extend the work of Lourenço et al. [2016] by taking into account intrusive magmatism, and systematically investigate the effect of plutonism, in conjugation with eruptive volcanism. We present a set of 2D spherical annulus simulations of thermo-compositional global mantle convection using StagYY [Tackley, PEPI 2008], which uses a finite-volume discretization of the governing compressible anelastic Stokes equations. Tracers are used to track composition and to allow for the treatment of partial melting and crustal formation. A direct solver is employed to obtain a solution of the Stokes and continuity equations, using the PETSc toolkit. The heat equation is solved in two steps: advection is performed using the MPDATA scheme and diffusion is then solved implicitly using a PETSc solver. Results show that three common convection regimes are usually reached in simulations when using a visco

  9. Physical Conditions and Exobiology Potential of Icy Satellites of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Simakov, M. B.

    2017-05-01

    All giant planets of the Solar system have a big number of satellites. A small part of them consist very large bodies, quite comparable to planets of terrestrial type, but including very significant share of water ice. Galileo spacecraft has given indications, primarily from magnetometer and gravity data, of the possibility that three of Jupiter's four large moons, Europa, Ganymede and Callisto have internal oceans. Formation of such satellites is a natural phenomenon, and satellite systems definitely should exist at extrasolar planets. The most recent models of the icy satellites interior lead to the conclusion that a substantial liquid layer exists today under relatively thin ice cover inside. The putative internal water ocean provide some exobiological niches on these bodies. We can see all conditions needed for origin and evolution of biosphere - liquid water, complex organic chemistry and energy sources for support of biological processes - are on the moons. The existing of liquid water ocean within icy world can be consequences of the physical properties of water ice, and they neither require the addition of antifreeze substances nor any other special conditions. On Earth life exists in all niches where water exists in liquid form for at least a portion of the year. Possible metabolic processes, such as nitrate/nitrite reduction, sulfate reduction and methanogenesis could be suggested for internal oceans of Titan and Jovanian satellites. Excreted products of the primary chemoautotrophic organisms could serve as a source for other types of microorganisms (heterotrophes). Subglacial life may be widespread among such planetary bodies as satellites of extrasolar giant planets, detected in our Galaxy.

  10. An international approach to Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Lawrence, Robert M.; Sadeh, Willy Z.; Tsygichko, Viktor N.

    1992-01-01

    The new international political constellation resulting from the disintegration of the Soviet Union opens up unique opportunities for cooperation in the space arena. Precedents since 1955 indicate a pervasive interest in mutual cooperation to use military reconnaissance and surveillance satellites for space observations to enforce treaty verification and compliance. One of the avenues that offer immediate prospects for fruitful cooperation is the incorporation of the military reconnaissance and surveillance satellite capabilities of both U.S. and Russia into the Mission to Planet Earth. Formation of a United Nations Satellite (UNSAT) fleet drawn from the American and Russian space assets is proposed. The role of UNSAT is to provide world wide monitoring of both military and enviromental activities under the umbrella of the Mission to Planet Earth.

  11. Detecting extrasolar moons akin to solar system satellites with an orbital sampling effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, René, E-mail: rheller@physics.mcmaster.ca

    2014-05-20

    Despite years of high accuracy observations, none of the available theoretical techniques has yet allowed the confirmation of a moon beyond the solar system. Methods are currently limited to masses about an order of magnitude higher than the mass of any moon in the solar system. I here present a new method sensitive to exomoons similar to the known moons. Due to the projection of transiting exomoon orbits onto the celestial plane, satellites appear more often at larger separations from their planet. After about a dozen randomly sampled observations, a photometric orbital sampling effect (OSE) starts to appear in themore » phase-folded transit light curve, indicative of the moons' radii and planetary distances. Two additional outcomes of the OSE emerge in the planet's transit timing variations (TTV-OSE) and transit duration variations (TDV-OSE), both of which permit measurements of a moon's mass. The OSE is the first effect that permits characterization of multi-satellite systems. I derive and apply analytical OSE descriptions to simulated transit observations of the Kepler space telescope assuming white noise only. Moons as small as Ganymede may be detectable in the available data, with M stars being their most promising hosts. Exomoons with the ten-fold mass of Ganymede and a similar composition (about 0.86 Earth radii in radius) can most likely be found in the available Kepler data of K stars, including moons in the stellar habitable zone. A future survey with Kepler-class photometry, such as Plato 2.0, and a permanent monitoring of a single field of view over five years or more will very likely discover extrasolar moons via their OSEs.« less

  12. Gas Planet Orbits

    NASA Image and Video Library

    2008-08-19

    Jupiter, Saturn, Uranus, and Neptune are known as the jovian Jupiter-like planets because they are all gigantic compared with Earth, and they have a gaseous nature. This diagram shows the approximate distance of the jovian planets from the Sun.

  13. A Google Earth Grand Tour of the Terrestrial Planets

    ERIC Educational Resources Information Center

    De Paor, Declan; Coba, Filis; Burgin, Stephen

    2016-01-01

    Google Earth is a powerful instructional resource for geoscience education. We have extended the virtual globe to include all terrestrial planets. Downloadable Keyhole Markup Language (KML) files (Google Earth's scripting language) associated with this paper include lessons about Mercury, Venus, the Moon, and Mars. We created "grand…

  14. Impact processes and the atmospheric composition of giant planets: lessons learned from the Solar System

    NASA Astrophysics Data System (ADS)

    Turrini, Diego; Grassi, Davide; Adriani, Alberto; Piccioni, Giuseppe; Altieri, Francesca; Barbieri, Mauro

    Over the last twenty years, the search for extrasolar planets revealed us the rich diversity of the outcomes of the processes shaping the formation and evolution of planetary systems. More recently, ground-based and space-based observations started to complement this information with the first data on the atmospheric composition of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in growing number in the near future, however, requires that we improve our understanding of what are the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications on the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. Here we will discuss what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.

  15. Formation of Planetary Satellites and Prospects for Exomoons

    NASA Astrophysics Data System (ADS)

    Barr, A.

    2014-04-01

    The formation of planetary satellites is thought to be a natural by-product of terrestrial and giant planet formation. I will discuss the proposed methods of satellite formation including fission, co-accretion, giant impact, and capture and where these modes of formation might operate in extrasolar planetary systems. Giant impacts like the event that formed Earth's Moon are thought to be common during the late stages of terrestrial planet formation; it is currently thought that Mercury, Mars, and the Earth were hit by objects of planetary size during their early history. I will discuss the effects that large impacts may have on rocky exoplanets, including moon formation and compositional changes, which can affect prospects for habitability on these worlds. The giant planets in our solar system harbor dozens of planet-size rocky and icy moons, some of which have habitats that may be dissimilar to Earth but could still be suitable for life. Because the accretion of regular satellites is thought to be a by-product of gas inflow to growing gas giants, it seems likely that many extrasolar planets may have created regular satellite systems as well. I will discuss the types of satellite systems we have in our solar system and whether those are likely to occur elsewhere. I will also discuss the conditions on the "front-runners" for habitable giant planet moons in our solar system including Europa, Enceladus, and Titan.

  16. Sonora: A New Generation Model Atmosphere Grid for Brown Dwarfs and Young Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.; Saumon, Didier; Fortney, Jonathan J.; Morley, Caroline; Lupu, Roxana Elena; Freedman, Richard; Visscher, Channon

    2017-01-01

    Brown dwarf and giant planet atmospheric structure and composition has been studied both by forward models and, increasingly so, by retrieval methods. While indisputably informative, retrieval methods are of greatest value when judged in the context of grid model predictions. Meanwhile retrieval models can test the assumptions inherent in the forward modeling procedure. In order to provide a new, systematic survey of brown dwarf atmospheric structure, emergent spectra, and evolution, we have constructed a new grid of brown dwarf model atmospheres. We ultimately aim for our grid to span substantial ranges of atmospheric metallilcity, C/O ratios, cloud properties, atmospheric mixing, and other parameters. Spectra predicted by our modeling grid can be compared to both observations and retrieval results to aid in the interpretation and planning of future telescopic observations. We thus present Sonora, a new generation of substellar atmosphere models, appropriate for application to studies of L, T, and Y-type brown dwarfs and young extrasolar giant planets. The models describe the expected temperature-pressure profile and emergent spectra of an atmosphere in radiative-convective equilibrium for ranges of effective temperatures and gravities encompassing 200 less than or equal to T(sub eff) less than or equal to 2400 K and 2.5 less than or equal to log g less than or equal to 5.5. In our poster we briefly describe our modeling methodology, enumerate various updates since our group's previous models, and present our initial tranche of models for cloudless, solar metallicity, and solar carbon-to-oxygen ratio, chemical equilibrium atmospheres. These models will be available online and will be updated as opacities and cloud modeling methods continue to improve.

  17. Very high-density planets: a possible remnant of gas giants.

    PubMed

    Mocquet, A; Grasset, O; Sotin, C

    2014-04-28

    Data extracted from the Extrasolar Planets Encyclopaedia (see http://exoplanet.eu) show the existence of planets that are more massive than iron cores that would have the same size. After meticulous verification of the data, we conclude that the mass of the smallest of these planets is actually not known. However, the three largest planets, Kepler-52b, Kepler-52c and Kepler-57b, which are between 30 and 100 times the mass of the Earth, have indeed density larger than an iron planet of the same size. This observation triggers this study that investigates under which conditions these planets could represent the naked cores of gas giants that would have lost their atmospheres during their migration towards the star. This study shows that for moderate viscosity values (10(25) Pa s or lower), large values of escape rate and associated unloading stress rate during the atmospheric loss process lead to the explosion of extremely massive planets. However, for moderate escape rate, the bulk viscosity and finite-strain incompressibility of the cores of giant planets can be large enough to retain a very high density during geological time scales. This would make those a new kind of planet, which would help in understanding the interior structure of the gas giants. However, this new family of exoplanets adds some degeneracy for characterizing terrestrial exoplanets.

  18. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on

  19. Systems of Multiple Planets

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.; Fischer, D. A.; Butler, R. P.; Vogt, S. S.

    To date, 10 stars are known which harbor two or three planets. These systems reveal secular and mean motion resonances in some systems and consist of widely separated, eccentric orbits in others. Both of the triple planet systems, namely Upsilon And and 55 Cancri, exhibit evidence of resonances. The two planets orbiting GJ 876 exhibit both mean-motion and secular resonances and they perturb each other so strongly that the evolution of the orbits is revealed in the Doppler measurements. The common occurrence of resonances suggests that delicate dynamical processes often shape the architecture of planetary systems. Likely processes include planet migration in a viscous disk, eccentricity pumping by the planet-disk interaction, and resonance capture of two planets. We find a class of "hierarchical" double-planet systems characterized by two planets in widely separated orbits, defined to have orbital period ratios greater than 5 to 1. In such systems, resonant interactions are weak, leaving high-order interactions and Kozai resonances plausibly important. We compare the planets that are single with those in multiple systems. We find that neither the two mass distributions nor the two eccentricity distributions are significantly different. This similarity in single and multiple systems suggests that similar dynamical processes may operate in both. The origin of eccentricities may stem from a multi-planet past or from interactions between planets and disk. Multiple planets in resonances can pump their eccentricities pumping resulting in one planet being ejected from the system or sent into the star, leaving a (more massive) single planet in an eccentric orbit. The distribution of semimajor axes of all known extrasolar planets shows a rise toward larger orbits, portending a population of gas-giant planets that reside beyond 3 AU, arguably in less perturbed, more circular orbits.

  20. Characterising the Atmospheres of Transiting Planets with a Dedicated Space Telescope

    NASA Astrophysics Data System (ADS)

    Tessenyi, M.; Ollivier, M.; Tinetti, G.; Beaulieu, J. P.; Coudé du Foresto, V.; Encrenaz, T.; Micela, G.; Swinyard, B.; Ribas, I.; Aylward, A.; Tennyson, J.; Swain, M. R.; Sozzetti, A.; Vasisht, G.; Deroo, P.

    2011-10-01

    Transiting super-Earths orbiting M dwarfs are excellent targets for the prospect of studying potentially habitable extrasolar planets. While most of the currently known Exoplanets are of the Hot Jupiter and Neptune type, attention is now turning to these super- Earths. Two recent examples are GJ 1214b, found by Charbonneau et al. in 2009, and Cancri 55 e, found by Winn et al. in 2011. These candidates offer the opportunity of obtaining spectral signatures of their atmospheres in transiting scenarios, via data obtained by ground based and space observatories, compared to simulated climate scenarios. With the recent selection of the Exoplanet Characterisation Observatory (EChO) mission by ESA for further studies, I present observational strategies and time requirements for a range of targets characterisable by EChO, with a view to super-Earths orbiting M dwarfs.

  1. Understanding stellar activity and flares to search for Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Del Sordo, Fabio

    2015-08-01

    The radial velocity method is a powerful way to search for exoplanetary systems and it led to many discoveries of exoplanets in the last 20 years. Nowadays, understanding stellar activity, flares and noise is a key factor for achieving a substantial improvement in such technique.Radial-velocity data are time-series containing the effect of both planets and stellar disturbances: the detection of Earth-like planets requires to improve the signal-to-noise ratio, i.e. it is central to understand the noise present in the data. Noise is caused by physical processes which operate on different time-scales, oftentimes acting in a non-periodic fashion. We present here an approach to such problem: to look for multifractal structures in the time-series coming from radial velocity measurements, identifying the underlying long-range correlations and fractal scaling properties, connecting them to the underlying physical processes (stellar oscillations, stellar wind, granulation, rotation, magnetic activity). This method has been previously applied to satellite data related to Arctic sea albedo, relevant for identify trends and noise in the Arctic sea ice (Agarwal, Moon, Wettlaufer, 2012). Here we suggest to use such analysis for exoplanetary data related to possible Earth-like planets.

  2. Jovian Planet Finder optical system

    NASA Astrophysics Data System (ADS)

    Krist, John E.; Clampin, Mark; Petro, Larry; Woodruff, Robert A.; Ford, Holland C.; Illingworth, Garth D.; Ftaclas, Christ

    2003-02-01

    The Jovian Planet Finder (JPF) is a proposed NASA MIDEX mission to place a highly optimized coronagraphic telescope on the International Space Station (ISS) to image Jupiter-like planets around nearby stars. The optical system is an off-axis, unobscured telescope with a 1.5 m primary mirror. A classical Lyot coronagraph with apodized occulting spots is used to reduce diffracted light from the central star. In order to provide the necessary contrast for detection of a planet, scattered light from mid-spatial-frequency errors is reduced by using super-smooth optics. Recent advances in polishing optics for extreme-ultraviolet lithography have shown that a factor of >30 reduction in midfrequency errors relative to those in the Hubble Space Telescope is possible (corresponding to a reduction in scattered light of nearly 1000x). The low level of scattered and diffracted light, together with a novel utilization of field rotation introduced by the alt-azimuth ISS telescope mounting, will provide a relatively low-cost facility for not only imaging extrasolar planets, but also circumstellar disks, host galaxies of quasars, and low-mass substellar companions such as brown dwarfs.

  3. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  4. The Runaway Greenhouse Effect on Earth and other Planets

    NASA Technical Reports Server (NTRS)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  5. Educational And Public Outreach Software On Planet Detection For The Macintosh (TM)

    NASA Technical Reports Server (NTRS)

    Koch, David; Brady, Victoria; Cannara, Rachel; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The possibility of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections has only heightened the interest in the topic. School children are particularly interested in learning about space. Astronomers have the knowledge and responsibility to present this information in both an understandable and interesting format. Since most classrooms and homes are now equipped with computers this media can be utilized to provide more than a traditional "flat" presentation. An interactive "stack" has been developed using Hyperstudio (TM). The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Earth-Sized Planets"; and "A Mission Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program stacks to determine the orbit and planet size, the planet's temperature and surface gravity, and finally determines if the planet is habitable. Additional related sections are also included. Many of the figures are animated to assist in comprehension of the material. A set of a dozen lesson plans for the middle school has also been drafted.

  6. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  7. The Effect of the Transit of Venus on ACRIM's Total Solar Irradiance Measurements: Implications for Transit Studies of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Pasachoff, J. M.; Willson, Richard C.

    2006-04-01

    We have used the 2004 June 8 transit of Venus (ToV) as a surrogate to test observing methods, strategies, and techniques that are being contemplated for future space missions to detect and characterize extrasolar terrestrial planets (ETPs) as they transit their host stars, notably NASA's Kepler mission, planned for 2008. As an analog to ``Kepler-like'' photometric transit observations, we obtained (spatially unresolved) radiometric observations with the ACRIM 3 instrument on ACRIMSAT at a sampling cadence of 131 s to follow the effect of the ToV on the total solar irradiance (TSI). Contemporaneous high-resolution broadband imagery with NASA's TRACE spacecraft provided, directly, measures of the stellar (solar) astrophysical noise that can intrinsically limit such transit observations. During the Venus transit, which lasted ~5.5 hr, the planet's angular diameter was approximately 1/32 the solar diameter, thus covering ~0.1% of the stellar surface. With our ACRIM 3 data, we measure temporal changes in TSI with a 1 σ per sample (unbinned) uncertainty of approximately 100 mW m-2 (0.007%). A diminution in TSI of ~1.4 W m-2 (~0.1%, closely corresponding to the geometrically occulted area of the photosphere) was measured at mid-transit compared with a mean pre-/post-transit TSI of ~1365.9 W m-2. The radiometric light curve is complex because of the parallactic motion of Venus induced by ACRIMSAT's near-polar orbit, but exhibits the characteristic signature of photospheric limb darkening. These observations serve as a surrogate for future photometric observations of ETPs, such as Kepler will deliver. Detailed analysis of the ToV, a rare event within our own solar system, with time-resolved radiometry augmented with high-resolution imagery, provides a useful analog for investigating the detectability and characterization of ETPs from observations that are anticipated in the near future.

  8. Extreme Water Loss and Abiotic O2 Buildup on Planets Throughout the Habitable Zones of M Dwarfs

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract We show that terrestrial planets in the habitable zones of M dwarfs older than ∼1 Gyr could have been in runaway greenhouses for several hundred million years following their formation due to the star's extended pre-main sequence phase, provided they form with abundant surface water. Such prolonged runaway greenhouses can lead to planetary evolution divergent from that of Earth. During this early runaway phase, photolysis of water vapor and hydrogen/oxygen escape to space can lead to the loss of several Earth oceans of water from planets throughout the habitable zone, regardless of whether the escape is energy-limited or diffusion-limited. We find that the amount of water lost scales with the planet mass, since the diffusion-limited hydrogen escape flux is proportional to the planet surface gravity. In addition to undergoing potential desiccation, planets with inefficient oxygen sinks at the surface may build up hundreds to thousands of bar of abiotically produced O2, resulting in potential false positives for life. The amount of O2 that builds up also scales with the planet mass; we find that O2 builds up at a constant rate that is controlled by diffusion: ∼5 bar/Myr on Earth-mass planets and up to ∼25 bar/Myr on super-Earths. As a result, some recently discovered super-Earths in the habitable zone such as GJ 667Cc could have built up as many as 2000 bar of O2 due to the loss of up to 10 Earth oceans of water. The fate of a given planet strongly depends on the extreme ultraviolet flux, the duration of the runaway regime, the initial water content, and the rate at which oxygen is absorbed by the surface. In general, we find that the initial phase of high luminosity may compromise the habitability of many terrestrial planets orbiting low-mass stars. Key Words: Astrobiology—Biosignatures—Extrasolar terrestrial planets—Habitability—Planetary atmospheres. Astrobiology 15, 119–143. PMID:25629240

  9. Entry Probe Missions to the Giant Planets

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Atreya, S. K.; Colaprete, A.; Cuzzi, J. N.; Spilker, L. J.; Coustenis, A.; Venkatapathy, E.; Reh, K.; Frampton, R.

    2009-12-01

    The primary motivation for in situ probe missions to the outer planets derives from the need to constrain models of solar system formation and the origin and evolution of atmospheres, to provide a basis for comparative studies of the gas and ice giants, and to provide a valuable link to extrasolar planetary systems. As time capsules of the solar system, the gas and ice giants offer a laboratory to better understand the atmospheric chemistries, dynamics, and interiors of all the planets, including Earth; and it is within the atmospheres and interiors of the giant planets that material diagnostic of the epoch of formation can be found, providing clues to the local chemical and physical conditions existing at the time and location at which each planet formed. Measurements of current conditions and processes in those atmospheres inform us about their evolution since formation and into the future, providing information about our solar system’s evolution, and potentially establishing a framework for recognizing extrasolar giant planets in different stages of their evolution. Detailed explorations and comparative studies of the gas and ice giant planets will provide a foundation for understanding the integrated dynamic, physical, and chemical origins, formation, and evolution of the solar system. To allow reliable conclusions from comparative studies of gas giants Jupiter and Saturn, an entry probe mission to Saturn is needed to complement the Galileo Probe measurements at Jupiter. These measurements provide the basis for a significantly better understanding of gas giant formation in the context of solar system formation. A probe mission to either Uranus or Neptune will be needed for comparative studies of the gas giants and the ice giants, adding knowledge of ice giant origins and thus making further inroads in our understanding of solar system formation. Recognizing Jupiter’s spatial variability and the need to understand its implications for global composition

  10. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind.

    PubMed

    Lugaz, Noé; Farrugia, Charles J; Huang, Chia-Lin; Winslow, Reka M; Spence, Harlan E; Schwadron, Nathan A

    2016-10-03

    The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000-100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets.

  11. RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, Rebekah I.; Fabrycky, Daniel C., E-mail: rdawson@cfa.harvard.ed, E-mail: daniel.fabrycky@gmail.co

    2010-10-10

    Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude andmore » phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 {+-} 0.4) M{sub +}. For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 {+-} 0.3) M{sub +}. This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.« less

  12. On the radius of habitable planets

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2014-01-01

    Context. The conditions that a planet must fulfill to be habitable are not precisely known. However, it is comparatively easier to define conditions under which a planet is very likely not habitable. Finding such conditions is important as it can help select, in an ensemble of potentially observable planets, which ones should be observed in greater detail for characterization studies. Aims: Assuming, as in the Earth, that the presence of a C-cycle is a necessary condition for long-term habitability, we derive, as a function of the planetary mass, a radius above which a planet is likely not habitable. We compute the maximum radius a planet can have to fulfill two constraints: surface conditions compatible with the existence of liquid water, and no ice layer at the bottom of a putative global ocean. We demonstrate that, above a given radius, these two constraints cannot be met. Methods: We compute internal structure models of planets, using a five-layer model (core, inner mantle, outer mantle, ocean, and atmosphere), for different masses and composition of the planets (in particular, the Fe/Si ratio of the planet). Results: Our results show that for planets in the super-Earth mass range (1-12 M⊕), the maximum that a planet, with a composition similar to that of the Earth, can have varies between 1.7 and 2.2 R⊕. This radius is reduced when considering planets with higher Fe/Si ratios and taking radiation into account when computing the gas envelope structure. Conclusions: These results can be used to infer, from radius and mass determinations using high-precision transit observations like those that will soon be performed by the CHaracterizing ExOPlanet Satellite (CHEOPS), which planets are very likely not habitable, and therefore which ones should be considered as best targets for further habitability studies.

  13. Passive isolator design for jitter reduction in the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Blaurock, Carl; Liu, Kuo-Chia; Dewell, Larry; Alexander, James

    2005-01-01

    Terrestrial Planet Finder (TPF) is a mission to locate and study extrasolar Earth-like planets. The TPF Coronagraph (TPF-C), planned for launch in the latter half of the next decade, will use a coronagraphic mask and other optics to suppress the light of the nearby star in order to collect visible light from such planets. The required contrast ratio of 5e-11 can only be achieved by maintaining pointing accuracy to 4 milli-arcseconds, and limiting optics jitter to below 5 nm. Numerous mechanical disturbances act to induce jitter. This paper concentrates on passive isolation techniques to minimize the optical degradation introduced by disturbance sources. A passive isolation system, using compliant mounts placed at an energy bottleneck to reduce energy transmission above a certain frequency, is a low risk, flight proven design approach. However, the attenuation is limited, compared to an active system, so the feasibility of the design must be demonstrated by analysis. The paper presents the jitter analysis for the baseline TPF design, using a passive isolation system. The analysis model representing the dynamics of the spacecraft and telescope is described, with emphasis on passive isolator modeling. Pointing and deformation metrics, consistent with the TPF-C error budget, are derived. Jitter prediction methodology and results are presented. Then an analysis of the critical design parameters that drive the TPF-C jitter response is performed.

  14. Searching for Extrasolar Trojan Planets: A Status Report

    NASA Astrophysics Data System (ADS)

    Caton, D. B.; Davis, S. A.; Kluttz, K. A.; Stamilio, R. J.; Wohlman, K. D.

    2001-05-01

    We are exploring the light curves of eclipsing binaries for the photometric signature of planets that may exist at the L4 and L5 Lagrange points of the stellar system. While no binaries are known to exist that strictly satisfy the stellar mass ratio constraint for the restricted three-body problem, the general solution would allow a planet formed at the L-point to remain there if there are no major perturbing bodies such as an additional planet. We have coined such objects "Trojan planets." The advantage of this approach is that the phases of the planetary eclipses are known. We picked systems with deep primary eclipses, to maximize the amount of system light eclipsed by the planet when in front of the hotter star. We also scanned the Finding List for Observers of Interactive Binary Stars, for G dwarf systems, but found only a few that were high inclination and detached. The target list includes QY Aql, YZ Aql, V442 Cas, SS Cet, S Cnc, VW Cyg, WW Cyg, RR Dra, RX Gem, RY Gem, VW Hya, Y Leo, TV Mon, BN Sct, UW Vir, AC UMa, and GSC 1657. We have concentrated on V442 Cas and YZ Aql, based on initial results that show anomalies in the light curves near the phases where a Trojan planet eclipse is expected. New work is being done on brighter systems by using a "spot filter," similar to that developed by Castellano (PASP 112, 821-6),2000), to allow longer exposures that provide brighter comparison stars. We will report on the observations made to date on several systems. We gratefully acknowledge the support of the National Science Foundation, through grants AST-9731062 and AST-0089248. We also appreciate the support of the Fund for Astrophysical Research. Gregory Shelton and Brenda Corbin, at the U.S. naval Observatory Library, have been indispensable in providing references for these binary systems. This research has made use of the Simbad database, operated at CDS, Strasbourg, France

  15. The Most Earth Size, Habitable Zone Planets around a Single Star on This Week @NASA – 02/24/2017

    NASA Image and Video Library

    2017-02-24

    NASA held a news conference Feb. 22 at the agency’s headquarters to discuss the finding by the agency’s Spitzer Space Telescope of seven Earth-sized planets around a tiny, relatively nearby, ultra-cool dwarf star. Three of the planets in this system, known as TRAPPIST-1, are in the habitable zone – the region around the star in which liquid water is most likely to thrive on a rocky planet. This is the first time so many planets have been found in a single star's habitable zone outside our solar system, and is the best target yet for studying the atmospheres of potentially habitable, Earth-sized worlds. Also, Kennedy’s Pad 39A, Back in Business, Russian Cargo Ship Arrives at Space Station, RS-25 Engine Tests Resume at Stennis, Structural Testing Begins on SLS Hardware, and 55th Anniversary of Friendship 7 Flight!

  16. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kipping, D. M.; Bakos, G. A.; Buchhave, L.

    2012-05-10

    Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt formore » Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, {eta} leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.« less

  17. Occurrence of earth-like bodies in planetary systems

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    1991-01-01

    Present theories of terrestrial planet formation predict the rapid 'runaway formation' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then emerge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to 'Jupiter' does not form, an earth-sized planet is almost always found near earth's heliocentric distance. These results suggest that occurrence of earthlike planets may be a common feature of planetary systems.

  18. Check-Up of Planet Earth at the Turn of the Millennium: Anticipated New Phase in Earth Sciences

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Ramanathan, V.

    1998-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-AM) will repeat Langley's experiment, but for the entire planet, thus pioneering calibrated spectral observations from space. Conceived in response to real environmental problems, EOS-AM, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-AM can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment.

  19. Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Ammann, M.; Brodholt, J. P.; Dobson, D. P.; Valencia, D.

    2013-07-01

    The discovery of extra-solar "super-Earth" planets with sizes up to twice that of Earth has prompted interest in their possible lithosphere and mantle dynamics and evolution. Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigour in the deep mantle, which, if extralopated to the largest super-Earths might, according to conventional thinking, result in no convection in their deep mantles due to the very low effective Rayleigh number. Here we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa, for both slowest diffusion (upper-bound rheology) and fastest diffusion (lower-bound rheology) directions. Along a 1600 K adiabat the upper-bound rheology would lead to a post-perovskite layer of a very high (˜1030 Pa s) but relatively uniform viscosity, whereas the lower-bound rheology leads to a post-perovskite viscosity increase of ˜7 orders of magnitude with depth; in both cases the deep mantle viscosity would be too high for convection. Second, we use these DFT-calculated values in statistically steady-state numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induced plate-like lithospheric behaviour. Results confirm the likelihood of plate tectonics for planets with Earth-like surface conditions (temperature and water) and show a self-regulation of deep mantle temperature. The deep mantle is not adiabatic; instead feedback between internal heating, temperature and viscosity regulates the temperature such that the viscosity has the

  20. Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Maindl, T. I.; Varvoglis, H.; Dvorak, R.

    2017-03-01

    Along the subject line of this workshop, the common topic of the submissions is the field of extrasolar planetary systems with its multitude of facets ? from orbital dynamics to mutually destructive collisions, from binary star systems to Trojan planets to exocomets, from captured free-floating objects to artificial satellites. Despite the comparatively small number of participants ? ranging from graduate student to senior professor level ? we are proud of the submitted papers covering this wide range of aspects. In order to work towards a consistent quality-level, each of the manuscripts went through an independent review process before being accepted as a paper contribution to this volume. We would like to cordially thank the referees for their timely response-cycles, which helped tremendously in keeping our ambitious schedule.

  1. Elemental compositions of two extrasolar rocky planetesimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S.; Jura, M.; Klein, B.

    2014-03-10

    We report Keck/HIRES and Hubble Space Telescope/COS spectroscopic studies of extrasolar rocky planetesimals accreted onto two hydrogen atmosphere white dwarfs, G29-38 and GD 133. In G29-38, eight elements are detected, including C, O, Mg, Si, Ca, Ti, Cr, and Fe while in GD 133, O, Si, Ca, and marginally Mg are seen. These two extrasolar planetesimals show a pattern of refractory enhancement and volatile depletion. For G29-38, the observed composition can be best interpreted as a blend of a chondritic object with some refractory-rich material, a result from post-nebular processing. Water is very depleted in the parent body accreted ontomore » G29-38, based on the derived oxygen abundance. The inferred total mass accretion rate in GD 133 is the lowest of all known dusty white dwarfs, possibly due to non-steady state accretion. We continue to find that a variety of extrasolar planetesimals all resemble to zeroth order the elemental composition of bulk Earth.« less

  2. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  3. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  4. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  5. Imaging plasmas at the Earth and other planets

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.

    2006-05-01

    The field of space physics, both at Earth and at other planets, was for decades a science based on local observations. By stitching together measurements of plasmas and fields from multiple locations either simultaneously or for similar conditions over time, and by comparing those measurements against models of the physical systems, great progress was made in understanding the physics of Earth and planetary magnetospheres, ionospheres, and their interactions with the solar wind. However, the pictures of the magnetospheres were typically statistical, and the large-scale global models were poorly constrained by observation. This situation changed dramatically with global auroral imaging, which provided snapshots and movies of the effects of field aligned currents and particle precipitation over the entire auroral oval during quiet and disturbed times. And with the advent of global energetic neutral atom (ENA) and extreme ultraviolet (EUV) imaging, global constraints have similarly been added to ring current and plasmaspheric models, respectively. Such global constraints on global models are very useful for validating the physics represented in those models, physics of energy and momentum transport, electric and magnetic field distribution, and magnetosphere-ionosphere coupling. These techniques are also proving valuable at other planets. For example with Hubble Space Telescope imaging of Jupiter and Saturn auroras, and ENA imaging at Jupiter and Saturn, we are gaining new insights into the magnetic fields, gas-plasma interactions, magnetospheric dynamics, and magnetosphere-ionosphere coupling at the giant planets. These techniques, especially ENA and EUV imaging, rely on very recent and evolving technological capabilities. And because ENA and EUV techniques apply to optically thin media, interpretation of their measurements require sophisticated inversion procedures, which are still under development. We will discuss the directions new developments in imaging are

  6. Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind

    PubMed Central

    Lugaz, Noé; Farrugia, Charles J.; Huang, Chia-Lin; Winslow, Reka M.; Spence, Harlan E.; Schwadron, Nathan A.

    2016-01-01

    The interaction between Earth's magnetic field and the solar wind results in the formation of a collisionless bow shock 60,000–100,000 km upstream of our planet, as long as the solar wind fast magnetosonic Mach (hereafter Mach) number exceeds unity. Here, we present one of those extremely rare instances, when the solar wind Mach number reached steady values <1 for several hours on 17 January 2013. Simultaneous measurements by more than ten spacecraft in the near-Earth environment reveal the evanescence of the bow shock, the sunward motion of the magnetopause and the extremely rapid and intense loss of electrons in the outer radiation belt. This study allows us to directly observe the state of the inner magnetosphere, including the radiation belts during a type of solar wind-magnetosphere coupling which is unusual for planets in our solar system but may be common for close-in extrasolar planets. PMID:27694887

  7. Education And Public Outreach For NASA's EPOXI Mission

    NASA Astrophysics Data System (ADS)

    McFadden, Lucy-Ann A.; Warner, E. M.; Crow, C. A.; Ristvey, J. D.; Counley, J.

    2008-09-01

    NASA's EPOXI mission has two scientific objectives in using the Deep Impact flyby spacecraft for further studies of comets and adding studies of extra-solar planets around other stars. During the Extrasolar Planetary Observations and Characterization (EPOCh) phase of the mission, observations of extrasolar planets transiting their parent stars are observed to further knowledge and understanding of planetary systems. Observations of Earth allow for comparison with Earth-like planets around other stars. A movie of Earth during a day when the Moon passed between Earth and the spacecraft is an educational highlight with scientific significance. The Deep Impact Extended Investigation (DIXI) continues the Deep Impact theme of investigating comets with a flyby of comet Hartley 2 in November 2010 to further explore the properties of comets and their formation. The EPOXI Education and Public Outreach (E/PO) program builds upon existing materials related to exploring comets and the Deep Impact mission, updating and modifying activities based on results from Deep Impact. An educational activity called Comparing Comets is under development that will guide students in conducting analyses similar to those that DIXI scientists will perform after observing comet Hartley 2. Existing educational materials related to planet finding from other NASA programs are linked from EPOXI's web page. Journey Through the Universe at the National Air and Space Museum encourages education in family and community groups and reaches out to underrepresented minorities. EPOXI's E/PO program additionally offers a newsletter to keep the public, teachers, and space enthusiasts apprised of mission activities. For more information visit: http://epoxi.umd.edu.

  8. Detectability of molecular signatures in the atmospheres of Giant and Terrestrial Exoplanets

    NASA Astrophysics Data System (ADS)

    Tinetti, G. T.; Vidal-Madjar, A.; Lecavelier Des Etangs, A.; Ehrenreich, D.; Liang, M. C.; Yung, Y.

    In the past decade over 160 planets orbiting other stars extrasolar planets were discovered using indirect detection techniques The known sample is constrained by the currently achievable detection techniques which are more sensitive to larger worlds To extend the detection ability down to Earth-sized planets both the European Space Agency ESA and National Aeronautics and Space Administration NASA are developing large and technologically challenging space-borne observatories The first of these missions is due for launch as early as 2015 and will provide our first opportunity to spectroscopically study the global characteristics of Earth-like planets beyond our solar system to search for signs of habitability and life Almost a decade in advance to the launch of ESA-Darwin or NASA-Terrestrial Planet Finders most recent observations of primary and secondary eclipses with Hubble Space Telescope and Spitzer of transiting extrasolar giant planets EGPs Charbonneau et al 2002 2005 Vidal-Madjar et al 2003 2004 Deming et al 2005 suggest that emitted and transmission spectra of EGPs can be used to infer many properties of their atmospheres and internal structure including chemical element abundances hydrodynamic escape cloud heights temperature-pressure profiles density composition and evolution The next generation of space telescopes James Webb Space Telescope JWST will have the capability of acquiring more precise spectra in the visible and infrared of these extrasolar worlds The ultimate extension of such searches will be to

  9. Kepler Mission: A Search for Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Koch, D.; Borucki, W.; Jenkens, J.; Dunham, E.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Kepler Mission is a search for terrestrial planets by monitoring a large ensemble of stars for the periodic transits of planets. The mission consists of a 95-cm aperture photometer with 105 square deg field of view that monitors 100,000 dwarf stars for four years. The mission is unique in its ability to detect Earth-size planets in the habitable zone of other stars in the extended solar neighborhood. An Earth-size transit of a solar-like star causes a change in brightness of about 100 ppm. Laboratory testing has demonstrated that a total system noise level of 20 ppm is readily achievable on the timescale of transits. Earth-like transits have been created and reliably measured in an end-to-end system test that has all known sources of noise including, spacecraft jitter. To detect Earth-size planets, the photometer must be spaceborne; this also eliminates the day-night and seasonal cycle interruptions of ground-based observing. The photometer will stare at a single field of stars for four years, with an option to continue for two more years. This allows for detection of four transits of planets in Mars-like orbits and detection of planets even smaller than Earth especially for short period orbits, since the signal to noise improves as the square root of the number of transits observed. In addition to detection of planets, Kepler data are also useful for understanding the activity cycles and rotation rates of the stars observed. For the 3,000 stars brighter than mv= 11.4 p-mode oscillations are measured. The mission has been selected as one of three candidates for NASA's next Discovery mission.

  10. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  11. Atomic Spectroscopy of the Solar Atmosphere to Enable Earth-like Exoplanet Detection

    NASA Astrophysics Data System (ADS)

    Milbourne, Timothy; Langellier, Nicholas; Ravi, Aakash; Dolliff, Christian; Phillips, David; Walsworth, Ronald

    2017-04-01

    The radial velocity (RV) method has proved to be one of the most prolific means of exoplanet detection. This technique uses measurements of periodic Doppler shifts of the stellar spectrum to deduce the mass and semi-major axis of orbiting exoplanets. The detection an Earth-like exoplanet orbiting a Sun-like star requires RV sensitivity below 10 cm/s (corresponding to kHz shifts of GHz-wide spectral lines). The installation of a laser-frequency ``astro-comb'' at the High Accuracy Radial velocity Planet Search for the Northern Hemisphere (HARPS-N) spectrograph on La Palma has enabled such observations. Exoplanet measurements is now limited by the noise of the stars themselves: sunspots, convection, and other types of stellar activity produce RV variations on the order of m/s, far above the detection threshold for Earth-like planets. Here, we use the Sun as a test case to better understand RV variations due to stellar activity. By comparing solar spectra taken by a purpose-built Solar Telescope on La Palma with images taken by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), we hope to identify feature in the solar spectrum which are correlated with solar activity. Such correlates will allow us to build more sophisticated models of stellar activity, and will enable more precise measurements of Earth-like exoplanets.

  12. Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.

    2017-12-01

    Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.

  13. First Planet Confirmation with a Dispersed Fixed-Delay Interferometer

    NASA Astrophysics Data System (ADS)

    van Eyken, J. C.; Ge, J.; Mahadevan, S.; DeWitt, C.

    2004-01-01

    The Exoplanet Tracker is a prototype of a new type of fiber-fed instrument for performing high-precision relative Doppler measurements to detect extrasolar planets. A combination of Michelson interferometer and medium-resolution spectrograph, this low-cost instrument facilitates radial velocity measurements with high throughput over a small bandwidth (~300 Å) and has the potential to be designed for multiobject operation with moderate bandwidths (~1000 Å). We present the first planet detection with this new type of instrument, a successful confirmation of the well-established planetary companion to 51 Peg, showing an rms precision of 11.5 m s-1 over 5 days. We also show comparison measurements of the radial velocity stable star, η Cas, showing an rms precision of 7.9 m s-1 over 7 days. These new results are starting to approach the precision levels obtained with traditional radial velocity techniques based on cross-dispersed echelles. We anticipate that this new technique could have an important impact in the search for extrasolar planets.

  14. Looking for planetary moons in the spectra of distant Jupiters.

    PubMed

    Williams, D M; Knacke, R F

    2004-01-01

    More than 100 nearby stars are known to have at least one Jupiter-sized planet. Whether any of these giant gaseous planets has moons is unknown, but here we suggest a possible way of detecting Earth-sized moons with future technology. The planned Terrestrial Planet Finder observatory, for example, will be able to detect objects comparable in size to Earth. Such Earth-sized objects might orbit their stars either as isolated planets or as moons to giant planets. Moons of Jovian-sized planets near the habitable zones of main-sequence stars should be noticeably brighter than their host planets in the near-infrared (1-4 microm) if their atmospheres contain methane, water, and water vapor, because of efficient absorption of starlight by these atmospheric components. By taking advantage of this spectral contrast, future space observatories will be able to discern which extrasolar giant planets have Earth-like moons capable of supporting life.

  15. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    .9+/-0.4 degrees, making the planet misaligned by 2.9+/-0.5 degrees from the main disk, consistent with other observations that beta Pic b is misaligned with the main disk, and part of the misaligned inner disk. In 2009 & 2012 we find a projected orbital separation of 312.8 +/- 18.3 and 466.35 +/- 8.4 milliarcseconds consistent with an orbital period of ˜ 20 years, and a semi-major axis of ˜ 9 AU as found by Macintosh et al. (2014). During the first commissioning observations with the Gemini Planet Imager (GPI), my collaborators and I took the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. The spectrum has a resolving power of ˜ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1650 +/- 50K and a surface gravity of log(g) = 4.0 +/- 0.25 (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 MJup and age between 10 and 20 Myrs. The spectrum is very similar to a known low mass field brown dwarf but has more flux at the long wavelength end of the filters compared to models. Given the very high signal-to-noise of our spectrum this likely indicates additional physics such as patchy clouds that need to be included in the model.

  16. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    PubMed

    Kasting, J F

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?

  17. Planetary atmosphere evolution: do other habitable planets exist and can we detect them?

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1996-01-01

    The goal of this conference is to consider whether it is possible within the next few decades to detect Earth-like planets around other stars using telescopes or interferometers on the ground or in space. Implicit in the term "Earth-like" is the idea that such planets might be habitable by Earth-like organisms, or that they might actually be inhabited. Here, I shall address two questions from the standpoint of planetary atmosphere evolution. First, what are the chances that habitable planets exist around other stars? And, second, if inhabited planets exist, what would be the best way to detect them?.

  18. Earth as an Exoplanet: Lessons in Recognizing Planetary Habitability

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; Robinson, Tyler; Misra, Amit; Ennico, Kimberly; Sparks, William B.; Claire, Mark; Crisp, David; Schwieterman, Edward; Bussey, D. Ben J.; Breiner, Jonathan

    2015-01-01

    Earth will always be our best-studied example of a habitable world. While extrasolar planets are unlikely to look exactly like Earth, they may share key characteristics, such as oceans, clouds and surface inhomogeneity. Earth's globally-averaged characteristics can therefore help us to recognize planetary habitability in data-limited exoplanet observations. One of the most straightforward ways to detect habitability will be via detection of 'glint', specular reflectance from an ocean (Robinson et al., 2010). Other methods include undertaking a census of atmospheric greenhouse gases, or attempting to measure planetary surface temperature and pressure, to determine if liquid water would be feasible on the planetary surface. Here we present recent research on detecting planetary habitability, led by the NASA Astrobiology Institute's Virtual Planetary Laboratory Team. This work includes a collaboration with the NASA Lunar Science Institute on the detection of ocean glint and ozone absorption using Lunar Crater Observation and Sensing Satellite (LCROSS) Earth observations (Robinson et al., 2014). This data/model comparison provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths. We find that the VPL spectral Earth model is in excellent agreement with the LCROSS Earth data, and can be used to reliably predict Earth's appearance at a range of phases relevant to exoplanet observations. Determining atmospheric surface pressure and temperature directly for a potentially habitable planet will be challenging due to the lack of spatial-resolution, presence of clouds, and difficulty in spectrally detecting many bulk constituents of terrestrial atmospheres. Additionally, Rayleigh scattering can be masked by absorbing gases and absorption from the underlying surface. However, new techniques using molecular dimers of oxygen (Misra et al., 2014) and nitrogen

  19. Alpha Centauri's siren call has frustrated planet hunters

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2018-04-01

    Alpha Centauri, a three-star system just 4 light-years away that is the sun's nearest neighbor, ought to be a great place to look for Earth-like planets. But last week, at a meeting of the European Astronomical Society here, astronomers lamented that the system has so far thwarted discovery efforts—and announced new schemes to probe it. The two sunlike stars, Alpha Centauri A and B, orbit each other closely while Proxima Centauri, a tempestuous red dwarf, hangs onto the system tenuously in a much more distant orbit. In 2016, astronomers discovered an Earth-mass planet around Proxima Centauri, but few think the planet, blasted by radiation and fierce stellar winds, is habitable. Astrobiologists believe the other two stars are more likely to host temperate, Earth-like worlds.

  20. Kepler’s Earth-like Planets Should Not Be Confirmed without Independent Detection: The Case of Kepler-452b

    NASA Astrophysics Data System (ADS)

    Mullally, Fergal; Thompson, Susan E.; Coughlin, Jeffrey L.; Burke, Christopher J.; Rowe, Jason F.

    2018-05-01

    We show that the claimed confirmed planet Kepler-452b (a.k.a., K07016.01, KIC 8311864) cannot be confirmed using a purely statistical validation approach. Kepler detects many more periodic signals from instrumental effects than it does from transits, and it is likely impossible to confidently distinguish the two types of events at low signal-to-noise. As a result, the scenario that the observed signal is due to an instrumental artifact cannot be ruled out with 99% confidence, and the system must still be considered a candidate planet. We discuss the implications for other confirmed planets in or near the habitable zone.