Sample records for earthquake anatomic sites

  1. Site Response for Micro-Zonation from Small Earthquakes

    NASA Astrophysics Data System (ADS)

    Gospe, T. B.; Hutchings, L.; Liou, I. Y. W.; Jarpe, S.

    2017-12-01

    We have developed a method to obtain absolute geologic site response from small earthquakes using inexpensive instrumentation that enables us to perform micro-zonation inexpensively and in a short amount of time. We record small earthquakes (M<3) at several sites simultaneously and perform inversion to obtain actual absolute site response. The key to the inversion is that recordings at several stations from an earthquake have the same moment, source corner frequency and whole path Q effect on their spectra, but have individual Kappa and spectral amplification as a function of frequency. When these source and path effects are removed and corrections for different propagation distances are performed, we are left with actual site response. We develop site response functions from 0.5 to 25.0 Hz. Cities situated near active and dangerous faults experience small earthquakes on a regular basis. We typically record at least ten small earthquakes over time to stabilize the uncertainly. Of course, dynamic soil modeling is necessary to scale our linear site response to non-linear regime for large earthquakes. Our instrumentation is very inexpensive and virtually disposable, and can be placed throughout a city at a high density. Operation only requires turning on a switch, and data processing is automated to minimize human labor. We have installed a test network and implemented our full methodology in upper Napa Valley, California where there is variable geology and nearby rock outcrop sites, and a supply of small earthquakes from the nearby Geysers development area. We test several methbods of obtaining site response. We found that rock sites have a site response of their own and distort the site response estimate based upon spectral ratios with soil sites. Also, rock sites may not even be available near all sites throughout a city. Further, H/V site response estimates from earthquakes are marginally better, but vertical motion also has a site response of its own. H

  2. SITE AMPLIFICATION OF EARTHQUAKE GROUND MOTION.

    USGS Publications Warehouse

    Hays, Walter W.

    1986-01-01

    When analyzing the patterns of damage in an earthquake, physical parameters of the total earthquake-site-structure system are correlated with the damage. Soil-structure interaction, the cause of damage in many earthquakes, involves the frequency-dependent response of both the soil-rock column and the structure. The response of the soil-rock column (called site amplification) is controversial because soil has strain-dependent properties that affect the way the soil column filters the input body and surface seismic waves, modifying the amplitude and phase spectra and the duration of the surface ground motion.

  3. Utah FORGE Site Earthquake Animation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe Moore

    This is a .kml earthquake animation covering the period of 1991 - 2011 for the Utah Milford FORGE site. It displays seismic events using different sized bubbles according to magnitude. It covers the general Utah FORGE area (large shaded rectangle) with the final site displayed as a smaller polygon along the northwestern margin. Earthquakes are subdivide into clusters and the time, date, and magnitude of each event is included. Nearby seismic stations are symbolized with triangles. This was created by the University of Utah Seismograph Stations (UUSS).

  4. HPV Vaccine Effective at Multiple Anatomic Sites

    Cancer.gov

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  5. Earthquake-related versus non-earthquake-related injuries in spinal injury patients: differentiation with multidetector computed tomography

    PubMed Central

    2010-01-01

    Introduction In recent years, several massive earthquakes have occurred across the globe. Multidetector computed tomography (MDCT) is reliable in detecting spinal injuries. The purpose of this study was to compare the features of spinal injuries resulting from the Sichuan earthquake with those of non-earthquake-related spinal trauma using MDCT. Methods Features of spinal injuries of 223 Sichuan earthquake-exposed patients and 223 non-earthquake-related spinal injury patients were retrospectively compared using MDCT. The date of non-earthquake-related spinal injury patients was collected from 1 May 2009 to 22 July 2009 to avoid the confounding effects of seasonal activity and clothing. We focused on anatomic sites, injury types and neurologic deficits related to spinal injuries. Major injuries were classified according to the grid 3-3-3 scheme of the Magerl (AO) classification system. Results A total of 185 patients (82.96%) in the earthquake-exposed cohort experienced crush injuries. In the earthquake and control groups, 65 and 92 patients, respectively, had neurologic deficits. The anatomic distribution of these two cohorts was significantly different (P < 0.001). Cervical spinal injuries were more common in the control group (risk ratio (RR) = 2.12, P < 0.001), whereas lumbar spinal injuries were more common in the earthquake-related spinal injuries group (277 of 501 injured vertebrae; 55.29%). The major types of injuries were significantly different between these cohorts (P = 0.002). Magerl AO type A lesions composed most of the lesions seen in both of these cohorts. Type B lesions were more frequently seen in earthquake-related spinal injuries (RR = 1.27), while we observed type C lesions more frequently in subjects with non-earthquake-related spinal injuries (RR = 1.98, P = 0.0029). Conclusions Spinal injuries sustained in the Sichuan earthquake were located mainly in the lumbar spine, with a peak prevalence of type A lesions and a high occurrence of

  6. Nonlinear site response in medium magnitude earthquakes near Parkfield, California

    USGS Publications Warehouse

    Rubinstein, Justin L.

    2011-01-01

    Careful analysis of strong-motion recordings of 13 medium magnitude earthquakes (3.7 ≤ M ≤ 6.5) in the Parkfield, California, area shows that very modest levels of shaking (approximately 3.5% of the acceleration of gravity) can produce observable changes in site response. Specifically, I observe a drop and subsequent recovery of the resonant frequency at sites that are part of the USGS Parkfield dense seismograph array (UPSAR) and Turkey Flat array. While further work is necessary to fully eliminate other models, given that these frequency shifts correlate with the strength of shaking at the Turkey Flat array and only appear for the strongest shaking levels at UPSAR, the most plausible explanation for them is that they are a result of nonlinear site response. Assuming this to be true, the observation of nonlinear site response in small (M M 6.5 San Simeon earthquake and the 2004 M 6 Parkfield earthquake).

  7. Multiple injuries after earthquakes: a retrospective analysis on 1,871 injured patients from the 2008 Wenchuan earthquake.

    PubMed

    Lu-Ping, Zhao; Rodriguez-Llanes, Jose Manuel; Qi, Wu; van den Oever, Barbara; Westman, Lina; Albela, Manuel; Liang, Pan; Gao, Chen; De-Sheng, Zhang; Hughes, Melany; von Schreeb, Johan; Guha-Sapir, Debarati

    2012-05-17

    Multiple injuries have been highlighted as an important clinical dimension of the injury profile following earthquakes, but studies are scarce. We investigated the pattern and combination of injuries among patients with two injuries following the 2008 Wenchuan earthquake. We also described the general injury profile, causes of injury and socio-demographic characteristics of the injured patients. A retrospective hospital-based analysis of 1,871 earthquake injured patients, totaling 3,177 injuries, admitted between 12 and 31 May 2008 to the People's Hospital of Deyang city (PHDC). An electronic, webserver-based database with International Classification of Diseases (ICD)-10-based classification of earthquake-related injury diagnoses (IDs), anatomical sites and additional background variables of the inpatients was used. We analyzed this dataset for injury profile and number of injuries per patient. We then included all patients (856) with two injuries for more in-depth analysis. Possible spatial anatomical associations were determined a priori. Cross-tabulation and more complex frequency matrices for combination analyses were used to investigate the injury profile. Out of the 1,871 injured patients, 810 (43.3%) presented with a single injury. The rest had multiple injuries; 856 (45.8%) had two, 169 (9.0%) patients had three, 32 (1.7%) presented with four injuries, while only 4 (0.2%) were diagnosed with five injuries. The injury diagnoses of patients presenting with two-injuries showed important anatomical intra-site or neighboring clustering, which explained 49.1% of the combinations. For fractures, the result was even more marked as spatial clustering explained 57.9% of the association pattern. The most frequent combination of IDs was a double-fracture, affecting 20.7% of the two-injury patients (n = 177). Another 108 patients (12.6%) presented with fractures associated with crush injury and organ-soft tissue injury. Of the 3,177 injuries, 1,476 (46.5%) were

  8. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia.

    PubMed

    Yong, Paul J; Williams, Christina; Yosef, Ali; Wong, Fontayne; Bedaiwy, Mohamed A; Lisonkova, Sarka; Allaire, Catherine

    2017-09-01

    Deep dyspareunia negatively affects women's sexual function. There is a known association between deep dyspareunia and endometriosis of the cul-de-sac or uterosacral ligaments in reproductive-age women; however, other factors are less clear in this population. To identify anatomic sites and associated clinical factors for deep dyspareunia in reproductive-age women at a referral center. This study involved the analysis of cross-sectional baseline data from a prospective database of 548 women (87% consent rate) recruited from December 2013 through April 2015 at a tertiary referral center for endometriosis and/or pelvic pain. Exclusion criteria included menopausal status, age at least 50 years, previous hysterectomy or oophorectomy, and not sexually active. We performed a standardized endovaginal ultrasound-assisted pelvic examination to palpate anatomic structures for tenderness and reproduce deep dyspareunia. Multivariable regression was used to determine which tender anatomic structures were independently associated with deep dyspareunia severity and to identify clinical factors independently associated with each tender anatomic site. Severity of deep dyspareunia on a numeric pain rating scale of 0 to 10. Severity of deep dyspareunia (scale = 0-10) was independently associated with tenderness of the bladder (b = 0.88, P = .018), pelvic floor (levator ani) (b = 0.66, P = .038), cervix and uterus (b = 0.88, P = .008), and cul-de-sac or uterosacral ligaments (b = 1.39, P < .001), but not with the adnexa (b = -0.16, P = 0.87). The number of tender anatomic sites was significantly correlated with more severe deep dyspareunia (Spearman r = 0.34, P < .001). For associated clinical factors, greater depression symptom severity was specifically associated with tenderness of the bladder (b = 1.05, P = .008) and pelvic floor (b = 1.07, P < .001). A history of miscarriage was specifically associated with tenderness of the cervix and uterus (b = 2.24, P = .001

  9. Source Spectra and Site Response for Two Indonesian Earthquakes: the Tasikmalaya and Kerinci Events of 2009

    NASA Astrophysics Data System (ADS)

    Gunawan, I.; Cummins, P. R.; Ghasemi, H.; Suhardjono, S.

    2012-12-01

    Indonesia is very prone to natural disasters, especially earthquakes, due to its location in a tectonically active region. In September-October 2009 alone, intraslab and crustal earthquakes caused the deaths of thousands of people, severe infrastructure destruction and considerable economic loss. Thus, both intraslab and crustal earthquakes are important sources of earthquake hazard in Indonesia. Analysis of response spectra for these intraslab and crustal earthquakes are needed to yield more detail about earthquake properties. For both types of earthquakes, we have analysed available Indonesian seismic waveform data to constrain source and path parameters - i.e., low frequency spectral level, Q, and corner frequency - at reference stations that appear to be little influenced by site response.. We have considered these analyses for the main shocks as well as several aftershocks. We obtain corner frequencies that are reasonably consistent with the constant stress drop hypothesis. Using these results, we consider using them to extract information about site response form other stations form the Indonesian strong motion network that appear to be strongly affected by site response. Such site response data, as well as earthquake source parameters, are important for assessing earthquake hazard in Indonesia.

  10. A simulation of Earthquake Loss Estimation in Southeastern Korea using HAZUS and the local site classification Map

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, K.

    2013-12-01

    Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.

  11. Non-Invasive Seismic Methods for Earthquake Site Classification Applied to Ontario Bridge Sites

    NASA Astrophysics Data System (ADS)

    Bilson Darko, A.; Molnar, S.; Sadrekarimi, A.

    2017-12-01

    How a site responds to earthquake shaking and its corresponding damage is largely influenced by the underlying ground conditions through which it propagates. The effects of site conditions on propagating seismic waves can be predicted from measurements of the shear wave velocity (Vs) of the soil layer(s) and the impedance ratio between bedrock and soil. Currently the seismic design of new buildings and bridges (2015 Canadian building and bridge codes) requires determination of the time-averaged shear-wave velocity of the upper 30 metres (Vs30) of a given site. In this study, two in situ Vs profiling methods; Multichannel Analysis of Surface Waves (MASW) and Ambient Vibration Array (AVA) methods are used to determine Vs30 at chosen bridge sites in Ontario, Canada. Both active-source (MASW) and passive-source (AVA) surface wave methods are used at each bridge site to obtain Rayleigh-wave phase velocities over a wide frequency bandwidth. The dispersion curve is jointly inverted with each site's amplification function (microtremor horizontal-to-vertical spectral ratio) to obtain shear-wave velocity profile(s). We apply our non-invasive testing at three major infrastructure projects, e.g., five bridge sites along the Rt. Hon. Herb Gray Parkway in Windsor, Ontario. Our non-invasive testing is co-located with previous invasive testing, including Standard Penetration Test (SPT), Cone Penetration Test and downhole Vs data. Correlations between SPT blowcount and Vs are developed for the different soil types sampled at our Ontario bridge sites. A robust earthquake site classification procedure (reliable Vs30 estimates) for bridge sites across Ontario is evaluated from available combinations of invasive and non-invasive site characterization methods.

  12. Earthquake-induced burial of archaeological sites along the southern Washington coast about A.D. 1700

    USGS Publications Warehouse

    Cole, S.C.; Atwater, B.F.; McCutcheon, P.T.; Stein, J.K.; Hemphill-Haley, E.

    1996-01-01

    Although inhabited by thousands of people when first reached by Europeans, the Pacific coast of southern Washington has little recognized evidence of prehistoric human occupation. This apparent contradiction may be explained partly by geologic evidence for coastal submergence during prehistoric earthquakes on the Cascadia subduction zone. Recently discovered archaeological sites, exposed in the banks of two tidal streams, show evidence for earthquake-induced submergence and consequent burial by intertidal mud about A.D. 1700. We surmise that, because of prehistoric earthquakes, other archaeological sites may now lie hidden beneath the surfaces of modern tidelands. Such burial of archaeological sites raises questions about the estimation of prehistoric human population densities along coasts subject to earthquake-induced submergence. ?? 1996 John Wiley & Sons, Inc.

  13. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less

  14. Multi-Sensor Observations of Earthquake Related Atmospheric Signals over Major Geohazard Validation Sites

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Davindenko, D.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    We are conducting a scientific validation study involving multi-sensor observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several atmospheric and environmental parameters, which we found, are associated with the earthquakes, namely: thermal infrared radiation, outgoing long-wavelength radiation, ionospheric electron density, and atmospheric temperature and humidity. For first time we applied this approach to selected GEOSS sites prone to earthquakes or volcanoes. This provides a new opportunity to cross validate our results with the dense networks of in-situ and space measurements. We investigated two different seismic aspects, first the sites with recent large earthquakes, viz.- Tohoku-oki (M9, 2011, Japan) and Emilia region (M5.9, 2012,N. Italy). Our retrospective analysis of satellite data has shown the presence of anomalies in the atmosphere. Second, we did a retrospective analysis to check the re-occurrence of similar anomalous behavior in atmosphere/ionosphere over three regions with distinct geological settings and high seismicity: Taiwan, Japan and Kamchatka, which include 40 major earthquakes (M>5.9) for the period of 2005-2009. We found anomalous behavior before all of these events with no false negatives; false positives were less then 10%. Our initial results suggest that multi-instrument space-borne and ground observations show a systematic appearance of atmospheric anomalies near the epicentral area that could be explained by a coupling between the observed physical parameters and earthquake preparation processes.

  15. Site Effects in the City of Port au Prince (Haiti) Inferred From 2010 Earthquake Aftershocks Recordings.

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier De Lepinay, B. F.; Boisson, D.; Prepetit, C.; Hough, S. E.

    2014-12-01

    The Haitian earthquake of 12 January 2010 (Mw=7) caused an unprecedented disaster in Port-au-Prince as well as in smaller cities close to the epicenter. The extent of damage appears to be initially attributed to the proximity of the earthquake in Port-au-Prince, the extreme vulnerability of many structures, and a high population density. However, the damage distribution for this earthquake suggests a general correlation of damage with small-scale topographical features and local geological structure. The main objective of this work is to investigate site effects in the city of Port-au-Prince. It is also to better define the response of different sites to earthquakes and establish transfer functions between each site and a particular site defined as a reference site. Specific soil columns is determined in the vicinity of each station in order to carry out 1D simulations of soil response at these sites. About 90 earthquakes (2sites. To quantify site effects under each station, we have used classical spectral ratio methods. In a first step, the HVSR earthquake method (Horizontal over Vertical ratio) was used to choose a reference station in Port au Prince that should be ideally a station without any site effects. We selected HCEA station as reference station. In a second step, we estimated the transfer function at each station by the SSR (Standard Spectral Ratio). Finally, these transfer functions estimated by the spectral ratios technique were compared

  16. Analog earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed.more » A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.« less

  17. Integration of paleoseismic data from multiple sites to develop an objective earthquake chronology: Application to the Weber segment of the Wasatch fault zone, Utah

    USGS Publications Warehouse

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Lund, William R.

    2011-01-01

    We present a method to evaluate and integrate paleoseismic data from multiple sites into a single, objective measure of earthquake timing and recurrence on discrete segments of active faults. We apply this method to the Weber segment (WS) of the Wasatch fault zone using data from four fault-trench studies completed between 1981 and 2009. After systematically reevaluating the stratigraphic and chronologic data from each trench site, we constructed time-stratigraphic OxCal models that yield site probability density functions (PDFs) of the times of individual earthquakes. We next qualitatively correlated the site PDFs into a segment-wide earthquake chronology, which is supported by overlapping site PDFs, large per-event displacements, and prominent segment boundaries. For each segment-wide earthquake, we computed the product of the site PDF probabilities in common time bins, which emphasizes the overlap in the site earthquake times, and gives more weight to the narrowest, best-defined PDFs. The product method yields smaller earthquake-timing uncertainties compared to taking the mean of the site PDFs, but is best suited to earthquakes constrained by broad, overlapping site PDFs. We calculated segment-wide earthquake recurrence intervals and uncertainties using a Monte Carlo model. Five surface-faulting earthquakes occurred on the WS at about 5.9, 4.5, 3.1, 1.1, and 0.6 ka. With the exception of the 1.1-ka event, we used the product method to define the earthquake times. The revised WS chronology yields a mean recurrence interval of 1.3 kyr (0.7–1.9-kyr estimated two-sigma [2δ] range based on interevent recurrence). These data help clarify the paleoearthquake history of the WS, including the important question of the timing and rupture extent of the most recent earthquake, and are essential to the improvement of earthquake-probability assessments for the Wasatch Front region.

  18. Integration of paleoseismic data from multiple sites to develop an objective earthquake chronology: Application to the Weber segment of the Wasatch fault zone, Utah

    USGS Publications Warehouse

    DuRoss, C.B.; Personius, S.F.; Crone, A.J.; Olig, S.S.; Lund, W.R.

    2011-01-01

    We present a method to evaluate and integrate paleoseismic data from multiple sites into a single, objective measure of earthquake timing and recurrence on discrete segments of active faults. We apply this method to the Weber segment (WS) of the Wasatch fault zone using data from four fault-trench studies completed between 1981 and 2009. After systematically reevaluating the stratigraphic and chronologic data from each trench site, we constructed time-stratigraphic OxCal models that yield site probability density functions (PDFs) of the times of individual earthquakes. We next qualitatively correlated the site PDFs into a segment-wide earthquake chronology, which is supported by overlapping site PDFs, large per-event displacements, and prominent segment boundaries. For each segment-wide earthquake, we computed the product of the site PDF probabilities in common time bins, which emphasizes the overlap in the site earthquake times, and gives more weight to the narrowest, best-defined PDFs. The product method yields smaller earthquake-timing uncertainties compared to taking the mean of the site PDFs, but is best suited to earthquakes constrained by broad, overlapping site PDFs. We calculated segment-wide earthquake recurrence intervals and uncertainties using a Monte Carlo model. Five surface-faulting earthquakes occurred on the WS at about 5.9, 4.5, 3.1, 1.1, and 0.6 ka. With the exception of the 1.1-ka event, we used the product method to define the earthquake times. The revised WS chronology yields a mean recurrence interval of 1.3 kyr (0.7-1.9-kyr estimated two-sigma [2??] range based on interevent recurrence). These data help clarify the paleoearthquake history of the WS, including the important question of the timing and rupture extent of the most recent earthquake, and are essential to the improvement of earthquake-probability assessments for the Wasatch Front region.

  19. Health behaviors of victims and related factors in Wenchuan earthquake resettlement sites.

    PubMed

    Liu, Qiaolan; Zhou, Hongyu; Zhou, Huan; Yang, Yang; Yang, Xiaoyan; Yu, Lingyun; Qiu, Peiyuan; Ma, Xiao

    2011-03-01

    The purpose of this study was to describe the health behaviors of earthquake victims related to gastrointestinal and respiratory infectious diseases in the centralized transitional earthquake resettlement sites in Wenchuan, China; and to identify key factors related to health behaviors that may inform local infectious diseases prevention and control strategies. Data were collected using a questionnaire that included questions about socio-demographic characteristics and health beliefs and behaviors. In total, 1411 participants were included through a two-stage random sampling strategy. A bivariate multilevel model was used to explore the related factors. Approximately 67% of the participants wash their hands after going to lavatories every time, and 87% felt uncomfortable spitting on the ground. The more the participants perceived their susceptibility to and the severity of infectious diseases, the better their health-related behaviors (P < 0.05). Both health-related behaviors were influenced by communication modes of health education (P = 0.01) and socio-demographic characteristics. There was heterogeneity of health-related behaviors among different resettlement sites (P < 0.01). Health education intervention, based on the Health Belief Model, is one of the main preventative strategies that should be implemented to inspire self-efficacy and to enhance better health-related behaviors among earthquake victims. Appropriate health education communication modes should be considered among different resettlement sites. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Site Effects Study In Athens (greece) Using The 7th September 1999 Earthquake Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Serpetsidaki, A.; Sokos, E.

    On 7 September 1999 at 11:56:50 GMT, an earthquake of Mw=5.9 occurred at Athens capital of Greece. The epicenter was located in the Northwest area of Parnitha Moun- tain at 18km distance from the city centre. This earthquake was one of the most de- structive in Greece during the modern times. The intensity of the earthquake reached IX in the Northwest territories of the city and caused the death of 143 people and seri- ous structural damage in many buildings. On the 13th of September the Seismological Laboratory of Patras University, installed a seismic network of 30 stations in order to observe the evolution of the aftershock sequence. This temporary seismic network remained in the area of Attika for 50 days and recorded a significant part of the af- tershock sequence. In this paper we use the high quality recordings of this network to investigate the influence of the surface geology to the seismic motion, on sites within the epicentral area, which suffered the most during this earthquake. We applied the horizontal-to-vertical (H/V) spectral ratio method on noise and on earthquake records and the obtained results exhibit very good agreement. Finally we compare the results with the geological conditions of the study area and the damage distribution. Most of the obtained amplification levels were low with an exemption in the site of Ano Liosia were a significant amount of damage was observed and the results indicate that the earthquake motion was amplified four times. Based on the above we conclude that the damages in the city of Athens were due to source effects rather than site effects.

  1. Ground motion in Anchorage, Alaska, from the 2002 Denali fault earthquake: Site response and Displacement Pulses

    USGS Publications Warehouse

    Boore, D.M.

    2004-01-01

    Data from the 2002 Denali fault earthquake recorded at 26 sites in and near Anchorage, Alaska, show a number of systematic features important in studies of site response and in constructing long-period spectra for use in earthquake engineering. The data demonstrate that National Earthquake Hazards Reduction Program (NEHRP) site classes are a useful way of grouping stations according to site amplification. In general, the sites underlain by lower shear-wave velocities have higher amplification. The amplification on NEHRP class D sites exceeds a factor of 2 relative to an average of motions on class C sites. The amplifications are period dependent. They are in rough agreement with those from previous studies, but the new data show that the amplifications extend to at least 10 sec, periods longer than considered in previous studies. At periods longer than about 14 sec, all sites have motion of similar amplitude, and the ground displacements are similar in shape, polarization, and amplitude for all stations. The displacement ground motion is dominated by a series of four pulses, which are associated with the three subevents identified in inversion studies (the first pulse is composed of P waves from the first subevent). Most of the high-frequency ground motion is associated with the S waves from subevent 1. The pulses from subevents 1 and 2, with moment releases corresponding to M 7.1 and 7.0, are similar to the pulse of displacement radiated by the M 7.1 Hector Mine earthquake. The signature from the largest subevent (M 7.6) is more subdued than those from the first two subevents. The two largest pulses produce response spectra with peaks at a period of about 15 sec. The spectral shape at long periods is in good agreement with the recent 2003 NEHRP code spectra but is in poor agreement with the shape obtained from Eurocode 8.

  2. Archaeoseismology in Algeria: observed damages related to probable past earthquakes on archaeological remains on Roman sites (Tel Atlas of Algeria)

    NASA Astrophysics Data System (ADS)

    Roumane, Kahina; Ayadi, Abdelhakim

    2017-04-01

    The seismological catalogue for Algeria exhibits significant lack for the period before 1365. Some attempts led to retrieve ancient earthquakes evidenced by historical documents and achieves. Archaeoseismology allows a study of earthquakes that have affected archaeological sites, based on the analysis of damage observed on remains. We have focused on the Antiquity period that include Roman, Vandal and Byzantine period from B.C 146 to A.D. 533. This will contribute significantly to the understanding of seismic hazard of the Tell Atlas region known as an earthquake prone area. The Tell Atlas (Algeria) experienced during its history many disastrous earthquakes their impacts are graved on landscape and archaeological monuments. On Roman sites such, Lambaesis (Lambèse), Thamugadi (Timgad) Thibilis (Salaoua Announa) or Thevest (Tebessa), damage were observed on monuments and remains related to seismic events following strong shacking or other ground deformation (subsidence, landslide). Examples of observed damage and disorders on several Roman sites are presented as a contribution to Archaeoseismology in Algeria based on effects of earthquakes on ancient structures and monuments. Keywords : Archaeoseismology. Lambaesis. Drop columns. Aspecelium. Ancient earthquakes

  3. Earthquake damage orientation to infer seismic parameters in archaeological sites and historical earthquakes

    NASA Astrophysics Data System (ADS)

    Martín-González, Fidel

    2018-01-01

    Studies to provide information concerning seismic parameters and seismic sources of historical and archaeological seismic events are used to better evaluate the seismic hazard of a region. This is of especial interest when no surface rupture is recorded or the seismogenic fault cannot be identified. The orientation pattern of the earthquake damage (ED) (e.g., fallen columns, dropped key stones) that affected architectonic elements of cities after earthquakes has been traditionally used in historical and archaeoseismological studies to infer seismic parameters. However, in the literature depending on the authors, the parameters that can be obtained are contradictory (it has been proposed: the epicenter location, the orientation of the P-waves, the orientation of the compressional strain and the fault kinematics) and authors even question these relations with the earthquake damage. The earthquakes of Lorca in 2011, Christchurch in 2011 and Emilia Romagna in 2012 present an opportunity to measure systematically a large number and wide variety of earthquake damage in historical buildings (the same structures that are used in historical and archaeological studies). The damage pattern orientation has been compared with modern instrumental data, which is not possible in historical and archaeoseismological studies. From measurements and quantification of the orientation patterns in the studied earthquakes, it is observed that there is a systematic pattern of the earthquake damage orientation (EDO) in the proximity of the seismic source (fault trace) (<10 km). The EDO in these earthquakes is normal to the fault trend (±15°). This orientation can be generated by a pulse of motion that in the near fault region has a distinguishable acceleration normal to the fault due to the polarization of the S-waves. Therefore, the earthquake damage orientation could be used to estimate the seismogenic fault trend of historical earthquakes studies where no instrumental data are available.

  4. Observed TEC Anomalies by GNSS Sites Preceding the Aegean Sea Earthquake of 2014

    NASA Astrophysics Data System (ADS)

    Ulukavak, Mustafa; Yal&ccedul; ınkaya, Mualla

    2016-11-01

    In recent years, Total Electron Content (TEC) data, obtained from Global Navigation Satellites Systems (GNSS) receivers, has been widely used to detect seismo-ionospheric anomalies. In this study, Global Positioning System - Total Electron Content (GPS-TEC) data were used to investigate ionospheric abnormal behaviors prior to the 2014 Aegean Sea earthquake (40.305°N 25.453°E, 24 May 2014, 09:25:03 UT, Mw:6.9). The data obtained from three Continuously Operating Reference Stations in Turkey (CORS-TR) and two International GNSS Service (IGS) sites near the epicenter of the earthquake is used to detect ionospheric anomalies before the earthquake. Solar activity index (F10.7) and geomagnetic activity index (Dst), which are both related to space weather conditions, were used to analyze these pre-earthquake ionospheric anomalies. An examination of these indices indicated high solar activity between May 8 and 15, 2014. The first significant increase (positive anomalies) in Vertical Total Electron Content (VTEC) was detected on May 14, 2014 or 10 days before the earthquake. This positive anomaly can be attributed to the high solar activity. The indices do not imply high solar or geomagnetic activity after May 15, 2014. Abnormal ionospheric TEC changes (negative anomaly) were observed at all stations one day before the earthquake. These changes were lower than the lower bound by approximately 10-20 TEC unit (TECU), and may be considered as the ionospheric precursor of the 2014 Aegean Sea earthquake

  5. Evidence for large earthquakes on the San Andreas fault at the Wrightwood, California paleoseismic site: A.D. 500 to present

    USGS Publications Warehouse

    Fumal, T.E.; Weldon, R.J.; Biasi, G.P.; Dawson, T.E.; Seitz, G.G.; Frost, W.T.; Schwartz, D.P.

    2002-01-01

    We present structural and stratigraphic evidence from a paleoseismic site near Wrightwood, California, for 14 large earthquakes that occurred on the southern San Andreas fault during the past 1500 years. In a network of 38 trenches and creek-bank exposures, we have exposed a composite section of interbedded debris flow deposits and thin peat layers more than 24 m thick; fluvial deposits occur along the northern margin of the site. The site is a 150-m-wide zone of deformation bounded on the surface by a main fault zone along the northwest margin and a secondary fault zone to the southwest. Evidence for most of the 14 earthquakes occurs along structures within both zones. We identify paleoearthquake horizons using infilled fissures, scarps, multiple rupture terminations, and widespread folding and tilting of beds. Ages of stratigraphic units and earthquakes are constrained by historic data and 72 14C ages, mostly from samples of peat and some from plant fibers, wood, pine cones, and charcoal. Comparison of the long, well-resolved paleoseimic record at Wrightwood with records at other sites along the fault indicates that rupture lengths of past earthquakes were at least 100 km long. Paleoseismic records at sites in the Coachella Valley suggest that each of the past five large earthquakes recorded there ruptured the fault at least as far northwest as Wrightwood. Comparisons with event chronologies at Pallett Creek and sites to the northwest suggests that approximately the same part of the fault that ruptured in 1857 may also have failed in the early to mid-sixteenth century and several other times during the past 1200 years. Records at Pallett Creek and Pitman Canyon suggest that, in addition to the 14 earthquakes we document, one and possibly two other large earthquakes ruptured the part of the fault including Wrightwood since about A.D. 500. These observations and elapsed times that are significantly longer than mean recurrence intervals at Wrightwood and sites to

  6. EUROGIN 2014 Roadmap: Differences in HPV infection natural history, transmission, and HPV-related cancer incidence by gender and anatomic site of infection

    PubMed Central

    Giuliano, Anna R.; Nyitray, Alan G.; Kreimer, Aimée R.; Pierce Campbell, Christine M.; Goodman, Marc T.; Sudenga, Staci L.; Monsonego, Joseph; Franceschi, Silvia

    2014-01-01

    Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar, and vaginal cancers in women and oropharyngeal, anal, and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal, and less than 50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. PMID:25043222

  7. Design of Visco-Elastic Dampers for RC Frame for Site-Specific Earthquake

    NASA Astrophysics Data System (ADS)

    Kamatchi, P.; Rama Raju, K.; Ravisankar, K.; Iyer, Nagesh R.

    2016-12-01

    Number of Reinforced Concrete (RC) framed buildings have got damaged at Ahmedabad city, India located at about 240 km away from epicenter during January 2001, 7.6 moment magnitude (Mw) Bhuj earthquake. In the present study, two dimensional nonlinear time history dynamic analyses of a typical 13 storey frame assumed to be located at Ahmedabad is carried out with the rock level and surface level site-specific ground motion for scenario earthquake of Mw 7.6 from Bhuj. Artificial ground motions are generated using extended finite source stochastic model with seismological parameters reported in literature for 2001 Bhuj earthquake. Surface level ground motions are obtained for a typical soil profile of 100 m depth reported in literature through one dimensional equivalent linear wave propagation analyses. From the analyses, failure of frame is observed for surface level ground motions which indicates that, in addition to the in-adequacy of the cross sections and reinforcement of the RC members of the frame chosen, the rich energy content of the surface level ground motion near the fundamental time period of the frame has also contributed for the failure of frame. As a part of retrofitting measure, five Visco-elastic Dampers (VED) in chevron bracing are added to frame. For the frame considered in the present study, provision of VED is found to be effective to mitigate damage for the soil site considered.

  8. Site response for seattle and source parameters of earthquakes in the puget sound region

    USGS Publications Warehouse

    Frankel, A.; Carver, D.; Cranswick, E.; Meremonte, M.; Bice, T.; Overturf, D.

    1999-01-01

    We analyzed seismograms from 21 earthquakes (M(L) 2.0-4.9) recorded by digital seismographs we deployed in urban Seatte to determine site response and earthquake stress drops. The seismometers were situated on a wide variety of geologic units, including artificial fill (e.g., Kingdome, Harbor Island), Pleistocene age soils (glacial till and outwash deposits of Seattle's hills), modified land (downtown Seattle, Space Needle), and Tertiary sedimentary rock. Two mainshock-aftershock sequences were recorded: the June 1997 Bremerton sequence (mainshock M(L) 4.9) and the February 1997 South Seattle sequence (mainshock M(L) 3.5), along with other events in the Puget Sound region. We developed a new inversion procedure to estimate site response, source corner frequencies, and seismic moments from the S-wave spectra. This inversion uses corner frequencies determined from spectral ratios of mainshock-aftershock pairs as constraints. The site responses found from the inversion are not relative to the rock site but are relative to an idealized site with a flat frequency response. The response of the rock site is also found from the inversion. The inversion results show high response for the sites on artificial fill, more moderate amplication for most sites on stiff Pleistocene soils or modified land, and low response for the rock site. Some sites display resonances, such as a strong 2-Hz resonance at our site near the Kingdome, which is caused by the surficial layers of fill and younger alluvium. The sites in West Seattle exhibit high amplification, even though they are on relatively stiff soils of glacial outwash. This may be partly caused by basin surface waves produced by conversion of incident S waves. This high response in West Seattle is consistent with damage reports from the 1949 (m(b) 7.1) and 1965 (m(b) 6.5) earthquakes. Stress-drop estimates for the events we recorded were generally low, between 0.4 and 25 bars, although some of the events may have had higher stress

  9. An international ecological study of adult height in relation to cancer incidence for 24 anatomical sites.

    PubMed

    Jiang, Yannan; Marshall, Roger J; Walpole, Sarah C; Prieto-Merino, David; Liu, Dong-Xu; Perry, Jo K

    2015-03-01

    Anthropometric indices associated with childhood growth and height attained in adulthood, have been associated with an increased incidence of certain malignancies. To evaluate the cancer-height relationship, we carried out a study using international data, comparing various cancer rates with average adult height of women and men in different countries. An ecological analysis of the relationship between country-specific cancer incidence rates and average adult height was conducted for twenty-four anatomical cancer sites. Age-standardized rates were obtained from GLOBOCAN 2008. Average female (112 countries) and male (65 countries) heights were sourced and compiled primarily from national health surveys. Graphical and weighted regression analysis was conducted, taking into account BMI and controlling for the random effect of global regions. A significant positive association between a country's average adult height and the country's overall cancer rate was observed in both men and women. Site-specific cancer incidence for females was positively associated with height for most cancers: lung, kidney, colorectum, bladder, melanoma, brain and nervous system, breast, non-Hodgkin lymphoma, multiple myeloma, corpus uteri, ovary, and leukemia. A significant negative association was observed with cancer of the cervix uteri. In males, site-specific cancer incidence was positively associated with height for cancers of the brain and nervous system, kidney, colorectum, non-Hodgkin lymphoma, multiple myeloma, prostate, testicular, lip and oral cavity, and melanoma. Incidence of cancer was associated with tallness in the majority of anatomical/cancer sites investigated. The underlying biological mechanisms are unclear, but may include nutrition and early-life exposure to hormones, and may differ by anatomical site.

  10. Recognition of earthquake-related damage in archaeological sites: Examples from the Dead Sea fault zone

    NASA Astrophysics Data System (ADS)

    Marco, Shmuel

    2008-06-01

    Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.

  11. Deterministic earthquake scenario for the Basel area: Simulating strong motions and site effects for Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    OpršAl, Ivo; FäH, Donat; Mai, P. Martin; Giardini, Domenico

    2005-04-01

    The Basel earthquake of 18 October 1356 is considered one of the most serious earthquakes in Europe in recent centuries (I0 = IX, M ≈ 6.5-6.9). In this paper we present ground motion simulations for earthquake scenarios for the city of Basel and its vicinity. The numerical modeling combines the finite extent pseudodynamic and kinematic source models with complex local structure in a two-step hybrid three-dimensional (3-D) finite difference (FD) method. The synthetic seismograms are accurate in the frequency band 0-2.2 Hz. The 3-D FD is a linear explicit displacement formulation using an irregular rectangular grid including topography. The finite extent rupture model is adjacent to the free surface because the fault has been recognized through trenching on the Reinach fault. We test two source models reminiscent of past earthquakes (the 1999 Athens and the 1989 Loma Prieta earthquake) to represent Mw ≈ 5.9 and Mw ≈ 6.5 events that occur approximately to the south of Basel. To compare the effect of the same wave field arriving at the site from other directions, we considered the same sources placed east and west of the city. The local structural model is determined from the area's recently established P and S wave velocity structure and includes topography. The selected earthquake scenarios show strong ground motion amplification with respect to a bedrock site, which is in contrast to previous 2-D simulations for the same area. In particular, we found that the edge effects from the 3-D structural model depend strongly on the position of the earthquake source within the modeling domain.

  12. Development of regional earthquake early warning and structural health monitoring system and real-time ground motion forecasting using front-site waveform data (Invited)

    NASA Astrophysics Data System (ADS)

    Motosaka, M.

    2009-12-01

    This paper presents firstly, the development of an integrated regional earthquake early warning (EEW) system having on-line structural health monitoring (SHM) function, in Miyagi prefecture, Japan. The system makes it possible to provide more accurate, reliable and immediate earthquake information for society by combining the national (JMA/NIED) EEW system, based on advanced real-time communication technology. The author has planned to install the EEW/SHM system to the public buildings around Sendai, a million city of north-eastern Japan. The system has been so far implemented in two buildings; one is in Sendai, and the other in Oshika, a front site on the Pacific Ocean coast for the approaching Miyagi-ken Oki earthquake. The data from the front-site and the on-site are processed by the analysis system which was installed at the analysis center of Disaster Control Research Center, Tohoku University. The real-time earthquake information from JMA is also received at the analysis center. The utilization of the integrated EEW/SHM system is addressed together with future perspectives. Examples of the obtained data are also described including the amplitude depending dynamic characteristics of the building in Sendai before, during, and after the 2008/6/14 Iwate-Miyagi Nairiku Earthquake, together with the historical change of dynamic characteristics for 40 years. Secondary, this paper presents an advanced methodology based on Artificial Neural Networks (ANN) for forward forecasting of ground motion parameters, not only PGA, PGV, but also Spectral information before S-wave arrival using initial part of P-waveform at a front site. The estimated ground motion information can be used as warning alarm for earthquake damage reduction. The Fourier Amplitude Spectra (FAS) estimated before strong shaking with high accuracy can be used for advanced engineering applications, e.g. feed-forward structural control of a building of interest. The validity and applicability of the method

  13. Geophysical investigation of liquefaction and surface ruptures at selected sites in Oklahoma post the 2016 Mw 5.8 Pawnee, OK earthquake

    NASA Astrophysics Data System (ADS)

    Kolawole, F.; Ismail, A. M.; Pickens, C. M.; Beckendorff, D.; Mayle, M. V.; Goussi, J. F.; Nyalugwe, V.; Aghayan, A.; Tim, S.; Atekwana, E. A.

    2016-12-01

    To date, the Mw 5.8 Pawnee, Oklahoma, earthquake on September 3, 2016 produced the largest moment release in the central and eastern United States, linked to saline waste water injection into the underlying formations. This earthquake occurred in a region of complex fault interactions, and typical of most of the earthquake activity in Oklahoma the earthquake ruptured a previously unknown left-lateral strike-slip fault striking 109°. Moreover, unlike the 2011 Mw 5.7 Prague, Oklahoma earthquake, the Pawnee earthquake produced surface deformation including fractures and liquefaction features. In this study, we use high resolution electrical resistivity, ground penetrating radar (GPR) and surface fracture mapping to image the zones of surface disruption. Our objective was to report some of the near-surface deformations that are associated with the recent earthquake and compare them with deep structures. We selected two sites for this study. We observed linear fractures and liquefaction at the first site which is 5 km away from the earthquake epicenter, while the second site, 7.5 km away from the epicenter, showed mostly curvilinear fractures. The resistivity and GPR sections showed indication of saturated sediments at about 2 m - 5 m below ground surface and settlement-sag structure within the liquefaction dominated area, and less saturated sediments in areas dominated by fractures only. GPS mapping of fractures at the first site revealed a pattern of en-echelon fractures oriented 93°-116°, sub-parallel to the orientation of the slip direction of the earthquake, while the fractures at the second site trend along the bank of a river meander. We infer that the liquefaction was enhanced by the occurrence of loose, wet, fluvial deposits of the Arkansas River flood plain and adequate near-surface pore pressure at the liquefaction dominated areas. Our results suggest the greater influence of surface morphological heterogeneity on the ruptures farther away from the

  14. History of late Holocene earthquakes at the Willow Creek site on the Nephi segment, Wasatch fault zone, Utah

    USGS Publications Warehouse

    Crone, Anthony J.; Personius, Stephen F.; Duross, Christopher; Machette, Michael N.; Mahan, Shannon

    2014-01-01

    This 43-page report presents new data from the Willow Creek site that provides well-defined and narrow bounds on the times of the three youngest earthquakes on the southern strand of the Nephi segment, Wasatch Fault zone, and refines the time of the youngest earthquake to about 200 years ago. This is the youngest surface rupture on the entire Wasatch fault zone, which occurred about a century or less before European settles arrived in Utah. Two trenches at the Willow Creek site exposed three scarp-derived colluvial wedges that are evidence of three paleoearthquakes. OxCal modeling of ages from Willow Creek indicate that paleoearthquake WC1 occurred at 0.2 ± 0.1 ka, WC2 occurred at 1.2 ± 0.1 ka, and WC3 occurred at 1.9 ± 0.6 ka. Stratigraphic constraints on the time of paleoearthquake WC4 are extremely poor, so OxCal modeling only yields a broadly constrained age of 4.7 ± 1.8 ka. Results from the Willow Creek site significantly refine the times of late Holocene earthquakes on the Southern strand of the Nephi segment, and this result, when combined with a reanalysis of the stratigraphic and chronologic information from previous investigations at North Creek and Red Canyon, yield a stronger basis of correlating individual earthquakes between all three sites.

  15. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  16. Variable anelastic attenuation and site effect in estimating source parameters of various major earthquakes including M w 7.8 Nepal and M w 7.5 Hindu kush earthquake by using far-field strong-motion data

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Kumar, Parveen; Chauhan, Vishal; Hazarika, Devajit

    2017-10-01

    Strong-motion records of recent Gorkha Nepal earthquake ( M w 7.8), its strong aftershocks and seismic events of Hindu kush region have been analysed for estimation of source parameters. The M w 7.8 Gorkha Nepal earthquake of 25 April 2015 and its six aftershocks of magnitude range 5.3-7.3 are recorded at Multi-Parametric Geophysical Observatory, Ghuttu, Garhwal Himalaya (India) >600 km west from the epicentre of main shock of Gorkha earthquake. The acceleration data of eight earthquakes occurred in the Hindu kush region also recorded at this observatory which is located >1000 km east from the epicentre of M w 7.5 Hindu kush earthquake on 26 October 2015. The shear wave spectra of acceleration record are corrected for the possible effects of anelastic attenuation at both source and recording site as well as for site amplification. The strong-motion data of six local earthquakes are used to estimate the site amplification and the shear wave quality factor ( Q β) at recording site. The frequency-dependent Q β( f) = 124 f 0.98 is computed at Ghuttu station by using inversion technique. The corrected spectrum is compared with theoretical spectrum obtained from Brune's circular model for the horizontal components using grid search algorithm. Computed seismic moment, stress drop and source radius of the earthquakes used in this work range 8.20 × 1016-5.72 × 1020 Nm, 7.1-50.6 bars and 3.55-36.70 km, respectively. The results match with the available values obtained by other agencies.

  17. Implications of next generation attenuation ground motion prediction equations for site coefficients used in earthquake resistant design

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2014-01-01

    Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value  of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. 

  18. EUROGIN 2014 roadmap: differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection.

    PubMed

    Giuliano, Anna R; Nyitray, Alan G; Kreimer, Aimée R; Pierce Campbell, Christine M; Goodman, Marc T; Sudenga, Staci L; Monsonego, Joseph; Franceschi, Silvia

    2015-06-15

    Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar and vaginal cancers in women and oropharyngeal, anal and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal and <50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often, mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet, HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or the penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. © 2014 UICC.

  19. High-risk human papillomavirus infection involving multiple anatomic sites of the female lower genital tract: a multiplex real-time polymerase chain reaction-based study.

    PubMed

    Hui, Yiang; Manna, Pradip; Ou, Joyce J; Kerley, Spencer; Zhang, Cunxian; Sung, C James; Lawrence, W Dwayne; Quddus, M Ruhul

    2015-09-01

    High-risk human papillomavirus infection usually is seen at one anatomic site in an individual. Rarely, infection at multiple anatomic sites of the female lower genital tract in the same individual is encountered either simultaneously and/or at a later date. The current study identifies the various subtypes of high-risk human papillomavirus infection in these scenarios and analyzes the potential significance of these findings. High-risk human papillomavirus infection involving 22 anatomic sites from 7 individuals was identified after institutional review board approval. Residual paraffin-embedded tissue samples were retrieved, and all 15 high-risk human papillomavirus were identified and viral load quantified using multiplex real-time polymerase chain reaction-based method. Multiple high-risk human papillomavirus subtypes were identified in 32% of the samples and as many as 5 different subtypes of high-risk human papillomavirus infection in a single anatomic site. In general, each anatomic site has unique combination of viral subtypes, although one individual showed overlapping subtypes in the vagina, cervix, and vulvar samples. Higher viral load and rare subtypes are more frequent in younger patients and in dysplasia compared with carcinoma. Follow-up ranging from 3 to 84 months revealed persistent high-risk human papillomavirus infection in 60% of cases. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Multi-method Near-surface Geophysical Surveys for Site Response and Earthquake Damage Assessments at School Sites in Washington, USA

    NASA Astrophysics Data System (ADS)

    Cakir, R.; Walsh, T. J.; Norman, D. K.

    2017-12-01

    We, Washington Geological Survey (WGS), have been performing multi-method near surface geophysical surveys to help assess potential earthquake damage at public schools in Washington. We have been conducting active and passive seismic surveys, and estimating Shear-wave velocity (Vs) profiles, then determining the NEHRP soil classifications based on Vs30m values at school sites in Washington. The survey methods we have used: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2ST-SPAC to measure Vs and Vp at shallow (0-70m) and greater depths at the sites. We have also run Ground Penetrating Radar (GPR) surveys at the sites to check possible horizontal subsurface variations along and between the seismic survey lines and the actual locations of the school buildings. The seismic survey results were then used to calculate Vs30m for determining the NEHRP soil classifications at school sites, thus soil amplification effects on the ground motions. Resulting shear-wave velocity profiles generated from these studies can also be used for site response and liquefaction potential studies, as well as for improvement efforts of the national Vs30m database, essential information for ShakeMap and ground motion modeling efforts in Washington and Pacific Northwest. To estimate casualties, nonstructural, and structural losses caused by the potential earthquakes in the region, we used these seismic site characterization results associated with structural engineering evaluations based on ASCE41 or FEMA 154 (Rapid Visual Screening) as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis. Compelling example surveys will be presented for the school sites in western and eastern Washington.

  1. Earthquake site response in Santa Cruz, California

    USGS Publications Warehouse

    Carver, D.; Hartzell, S.H.

    1996-01-01

    Aftershocks of the 1989 Loma Prieta, California, earthquake are used to estimate site response in a 12-km2 area centered on downtown Santa Cruz. A total of 258 S-wave records from 36 aftershocks recorded at 33 sites are used in a linear inversion for site-response spectra. The inversion scheme takes advantage of the redundancy of the large data set for which several aftershocks are recorded at each site. The scheme decomposes the observed spectra into source, path, and site terms. The path term is specified before the inversion. The undetermined degree of freedom in the decomposition into source and site spectra is removed by specifying the site-response factor to be approximately 1.0 at two sites on crystalline bedrock. The S-wave site responses correlate well with the surficial geology and observed damage pattern of the mainshock. The site-response spectra of the floodplain sites, which include the heavily damaged downtown area, exhibit significant peaks. The largest peaks are between 1 and 4 Hz. Five floodplain sites have amplification factors of 10 or greater. Most of the floodplain site-response spectra also have a smaller secondary peak between 6 and 8 Hz. Residential areas built on marine terraces above the flood-plain experienced much less severe damage. Site-response spectra for these areas also have their largest peaks between 1 and 4 Hz, but the amplification is generally below 6. Several of these sites also have a secondary peak between 6 and 8 Hz. The response peaks seen at nearly all sites between 1 and 4 Hz are probably caused by the natural resonance of the sedimentary rock column. The higher amplifications at floodplain sites may be caused by surface waves generated at the basin margins. The secondary peak between 6 and 8 Hz at many sites may be a harmonic of the 1- to 4-Hz peaks. We used waveforms from a seven-station approximately linear array located on the floodplain to calculate the apparent velocity and azimuth of propagation of coherent

  2. Probabilistic liquefaction hazard analysis at liquefied sites of 1956 Dunaharaszti earthquake, in Hungary

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Tóth, László; Bán, Zoltán; Horváth, Tibor

    2017-04-01

    about 5 km from the southern boundary of Budapest. The quake caused serious damages in the epicentral area and in the southern districts of the capital. The epicentral area of the earthquake is located along the Danube River. Sand boils were observed in some locations that indicated the occurrence of liquefaction. Because their exact locations were recorded at the time of the earthquake, in situ geotechnical measurements (CPT and SPT) could be performed at two (Dunaharaszti and Taksony) sites. The different types of measurements enabled the probabilistic liquefaction hazard computations at the two studied sites. We have compared the return periods of liquefaction that were computed using different built-in simplified stress based methods.

  3. Annualized earthquake loss estimates for California and their sensitivity to site amplification

    USGS Publications Warehouse

    Chen, Rui; Jaiswal, Kishor; Bausch, D; Seligson, H; Wills, C.J.

    2016-01-01

    Input datasets for annualized earthquake loss (AEL) estimation for California were updated recently by the scientific community, and include the National Seismic Hazard Model (NSHM), site‐response model, and estimates of shear‐wave velocity. Additionally, the Federal Emergency Management Agency’s loss estimation tool, Hazus, was updated to include the most recent census and economic exposure data. These enhancements necessitated a revisit to our previous AEL estimates and a study of the sensitivity of AEL estimates subjected to alternate inputs for site amplification. The NSHM ground motions for a uniform site condition are modified to account for the effect of local near‐surface geology. The site conditions are approximated in three ways: (1) by VS30 (time‐averaged shear‐wave velocity in the upper 30 m) value obtained from a geology‐ and topography‐based map consisting of 15 VS30 groups, (2) by site classes categorized according to National Earthquake Hazards Reduction Program (NEHRP) site classification, and (3) by a uniform NEHRP site class D. In case 1, ground motions are amplified using the Seyhan and Stewart (2014) semiempirical nonlinear amplification model. In cases 2 and 3, ground motions are amplified using the 2014 version of the NEHRP site amplification factors, which are also based on the Seyhan and Stewart model but are approximated to facilitate their use for building code applications. Estimated AELs are presented at multiple resolutions, starting with the state level assessment and followed by detailed assessments for counties, metropolitan statistical areas (MSAs), and cities. AEL estimate at the state level is ∼$3.7  billion, 70% of which is contributed from Los Angeles–Long Beach–Santa Ana, San Francisco–Oakland–Fremont, and Riverside–San Bernardino–Ontario MSAs. The statewide AEL estimate is insensitive to alternate assumptions of site amplification. However, we note significant differences in AEL estimates

  4. Important Earthquake Engineering Resources

    Science.gov Websites

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research Engineering Resources Site Map Search Important Earthquake Engineering Resources - American Concrete Institute Motion Observation Systems (COSMOS) - Consortium of Universities for Research in Earthquake Engineering

  5. Evaluation of Site Amplification Functions For Generalized Soil Types Using Earthquake Records and Spectral Models

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Loh, C. H.; Wen, K. L.

    When evaluating the local site influence on seismic ground motion, in certain cases (e.g. building codes provisions) it is sufficient to describe the variety of soil condi- tions by a few number of generalized site classes. The site classification system that is widely used at present is based on on the properties of top 30 m of soil column, dis- regarding the characteristics of the deeper geology. Six site categories are defined on the basis of averaged shear waves velocity, namely: A - hard rock; B - rock; C - very dense or stiff soil; D - stiff soil; E - soft soil; F - soils requiring special studies. The generalized site amplification curves were developed for several site classes in west- ern US (Boore and Joyner, 1997) and Greece (Klimis et al., 1999) using available geotechnical data from near-surface boreholes. We propose to evaluate the amplifica- tion functions as the ratios between the spectra of real earthquakes recordings and the spectra modeled for "very hard rock" (VHR) conditions. The VHR spectra (regional source scaling and attenuation models) are constructed on the basis of ground motion records. The approach allows, on the one hand, to analyze all obtained records. On the other hand, it is possible to test applicability of the used spectral model. Moreover, the uncertainty of site response may be evaluated and described in terms of random variable characteristics to be considered in seismic hazard analysis. The results of the approach application are demonstrated for the case of Taiwan region. The char- acteristics of site amplification functions (mean values and standard deviation) were determined and analyzed in frequency range of 0.2-13 Hz for site classes B and C us- ing recordings of the 1999 Chi-Chi, Taiwan, earthquake (M=7.6), strong aftershocks (M=6.8), and several earthquakes (M < 6.5) occurred in the region in 1995-1998. When comparing the empirical amplification function resulting from the Taiwan data with that proposed for western US

  6. Earthquake Shaking - Finding the "Hot Spots"

    USGS Publications Warehouse

    Field, Edward; Jones, Lucile; Jordan, Tom; Benthien, Mark; Wald, Lisa

    2001-01-01

    A new Southern California Earthquake Center study has quantified how local geologic conditions affect the shaking experienced in an earthquake. The important geologic factors at a site are softness of the rock or soil near the surface and thickness of the sediments above hard bedrock. Even when these 'site effects' are taken into account, however, each earthquake exhibits unique 'hotspots' of anomalously strong shaking. Better predictions of strong ground shaking will therefore require additional geologic data and more comprehensive computer simulations of individual earthquakes.

  7. Evidence for Ancient Mesoamerican Earthquakes

    NASA Astrophysics Data System (ADS)

    Kovach, R. L.; Garcia, B.

    2001-12-01

    Evidence for past earthquake damage at Mesoamerican ruins is often overlooked because of the invasive effects of tropical vegetation and is usually not considered as a casual factor when restoration and reconstruction of many archaeological sites are undertaken. Yet the proximity of many ruins to zones of seismic activity would argue otherwise. Clues as to the types of damage which should be soughtwere offered in September 1999 when the M = 7.5 Oaxaca earthquake struck the ruins of Monte Alban, Mexico, where archaeological renovations were underway. More than 20 structures were damaged, 5 of them seriously. Damage features noted were walls out of plumb, fractures in walls, floors, basal platforms and tableros, toppling of columns, and deformation, settling and tumbling of walls. A Modified Mercalli Intensity of VII (ground accelerations 18-34 %b) occurred at the site. Within the diffuse landward extension of the Caribbean plate boundary zone M = 7+ earthquakes occur with repeat times of hundreds of years arguing that many Maya sites were subjected to earthquakes. Damage to re-erected and reinforced stelae, walls, and buildings were witnessed at Quirigua, Guatemala, during an expedition underway when then 1976 M = 7.5 Guatemala earthquake on the Motagua fault struck. Excavations also revealed evidence (domestic pttery vessels and skeleton of a child crushed under fallen walls) of an ancient earthquake occurring about the teim of the demise and abandonment of Quirigua in the late 9th century. Striking evidence for sudden earthquake building collapse at the end of the Mayan Classic Period ~A.D. 889 was found at Benque Viejo (Xunantunich), Belize, located 210 north of Quirigua. It is argued that a M = 7.5 to 7.9 earthquake at the end of the Maya Classic period centered in the vicinity of the Chixoy-Polochic and Motagua fault zones cound have produced the contemporaneous earthquake damage to the above sites. As a consequences this earthquake may have accelerated the

  8. NGA-West 2 GMPE average site coefficients for use in earthquake-resistant design

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2015-01-01

    Site coefficients corresponding to those in tables 11.4–1 and 11.4–2 of Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers (Standard ASCE/SEI 7-10) are derived from four of the Next Generation Attenuation West2 (NGA-W2) Ground-Motion Prediction Equations (GMPEs). The resulting coefficients are compared with those derived by other researchers and those derived from the NGA-West1 database. The derivation of the NGA-W2 average site coefficients provides a simple procedure to update site coefficients with each update in the Maximum Considered Earthquake Response MCER maps. The simple procedure yields average site coefficients consistent with those derived for site-specific design purposes. The NGA-W2 GMPEs provide simple scale factors to reduce conservatism in current simplified design procedures.

  9. A case for bone canaliculi as the anatomical site of strain generated potentials

    NASA Technical Reports Server (NTRS)

    Cowin, S. C.; Weinbaum, S.; Zeng, Y.

    1995-01-01

    We address the question of determining the anatomical site that is the source of the experimentally observed strain generated potentials (SGPs) in bone tissue. There are two candidates for the anatomical site that is the SGP source, the collagen-hydroxyapatite porosity and the larger size lacunar-canalicular porosity. In the past it has been argued, on the basis of experimental data and a reasonable model, that the site of the SGPs in bone is the collagen-hydroxyapatite porosity. The theoretically predicted pore radius necessary for the SGPs to reside in this porosity is 16 nm, which is somewhat larger than the pore radii estimated from gas adsorption data where the preponderance of the pores were estimated to be in the range 5-12.5 nm. However, this pore size is significantly larger than the 2 nm size of the small tracer, microperoxidase, which appears to be excluded from the mineralized matrix. In this work a similar model, but one in which the effects of fluid dynamic drag of the cell surface matrix in the bone canaliculi are included, is used to show that it is possible for the generation of SGPs to be associated with the larger size lacunar-canalicular porosity when the hydraulic drag and electrokinetic contribution of the bone fluid passage through the cell coat (glycocalyx) is considered. The consistency of the SGP data with this model is demonstrated. A general boundary condition is introduced to allow for current leakage at the bone surface. The results suggest that the current leakage is small for the in vitro studies in which the strain generated potentials have been measured.

  10. SEISMIC SITE RESPONSE ESTIMATION IN THE NEAR SOURCE REGION OF THE 2009 L’AQUILA, ITALY, EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Bertrand, E.; Azzara, R.; Bergamashi, F.; Bordoni, P.; Cara, F.; Cogliano, R.; Cultrera, G.; di Giulio, G.; Duval, A.; Fodarella, A.; Milana, G.; Pucillo, S.; Régnier, J.; Riccio, G.; Salichon, J.

    2009-12-01

    The 6th of April 2009, at 3:32 local time, a Mw 6.3 earthquake hit the Abruzzo region (central Italy) causing more than 300 casualties. The epicenter of the earthquake was 95km NE of Rome and 10km from the center of the city of L’Aquila, the administrative capital of the Abruzzo region. This city has a population of about 70,000 and was severely damaged by the earthquake, the total cost of the buildings damage being estimated around 3 Bn €. Historical masonry buildings particularly suffered from the seismic shaking, but some reinforced concrete structures from more modern construction were also heavily damaged. To better estimate the seismic solicitation of these structures during the earthquake, we deployed temporary arrays in the near source region. Downtown L’Aquila, as well as a rural quarter composed of ancient dwelling-centers located western L’Aquila (Roio area), have been instrumented. The array set up downtown consisted of nearly 25 stations including velocimetric and accelerometric sensors. In the Roio area, 6 stations operated for almost one month. The data has been processed in order to study the spectral ratios of the horizontal component of ground motion at the soil site and at a reference site, as well as the spectral ratio of the horizontal and the vertical movement at a single recording site. Downtown L’Aquila is set on a Quaternary fluvial terrace (breccias with limestone boulders and clasts in a marly matrix), which forms the left bank of the Aterno River and slopes down in the southwest direction towards the Aterno River. The alluvial are lying on lacustrine sediments reaching their maximum thickness (about 250m) in the center of L’Aquila. After De Luca et al. (2005), these quaternary deposits seem to lead in an important amplification factor in the low frequency range (0.5-0.6 Hz). However, the level of amplification varies strongly from one point to the other in the center of the city. This new experimentation allows new and more

  11. Holocene surface-faulting earthquakes at the Spring Lake and North Creek Sites on the Wasatch Fault Zone: Evidence for complex rupture of the Nephi Segment

    USGS Publications Warehouse

    Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon

    2017-01-01

    The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers

  12. A Method to Recognize Anatomical Site and Image Acquisition View in X-ray Images.

    PubMed

    Chang, Xiao; Mazur, Thomas; Li, H Harold; Yang, Deshan

    2017-12-01

    A method was developed to recognize anatomical site and image acquisition view automatically in 2D X-ray images that are used in image-guided radiation therapy. The purpose is to enable site and view dependent automation and optimization in the image processing tasks including 2D-2D image registration, 2D image contrast enhancement, and independent treatment site confirmation. The X-ray images for 180 patients of six disease sites (the brain, head-neck, breast, lung, abdomen, and pelvis) were included in this study with 30 patients each site and two images of orthogonal views each patient. A hierarchical multiclass recognition model was developed to recognize general site first and then specific site. Each node of the hierarchical model recognized the images using a feature extraction step based on principal component analysis followed by a binary classification step based on support vector machine. Given two images in known orthogonal views, the site recognition model achieved a 99% average F1 score across the six sites. If the views were unknown in the images, the average F1 score was 97%. If only one image was taken either with or without view information, the average F1 score was 94%. The accuracy of the site-specific view recognition models was 100%.

  13. High Frequency Cut-off Characteristics of Strong Ground Motion Records at Hard Sites, Subduction and Intra-Slab Earthquakes

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Tsurugi, M.; Irikura, K.

    2006-12-01

    A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).

  14. A combined source and site-effect study of ground motions generated by an earthquake in Port au Prince (Haiti)

    NASA Astrophysics Data System (ADS)

    St Fleur, Sadrac; Courboulex, Francoise; Bertrand, Etienne; Deschamps, Anne; Mercier de Lepinay, Bernard; Prepetit, Claude; Hough, Suzan

    2013-04-01

    We present the preliminary results of a study with the aim of understanding how some combinations of source and site effects can generate extreme ground motions in the city of Port au Prince. For this study, we have used the recordings of several tens of earthquakes with magnitude larger than 3.0 at 3 to 14 stations from three networks: 3 stations of the Canadian Broad-band network (RNCan), 2 stations of the educational French network (SaE) and 9 stations of the accelerometric network (Bureau des Mines et de l'Energie of Port au Prince and US Geological survey). In order to estimate site effects under each station, we have applied classical spectral ratio methods: The H/V (Horizontal/Vertical) method was first used to select a reference station, which was itself used in a site/reference method. Because a true reference station was not available, we have used successively stations HCEA, then station PAPH, then an average value of 3 stations. In the frequency range studied (0.5 - 20 Hz), we found a site-to-reference ratio up to 3 to 8. However, these values present a large variability, depending on the earthquake recordings. This may indicate that the observed amplification from one station to the other depends not only from the local site effect but also from the source. We then used the same earthquake recordings as Empirical Green's Functions (EGF) in order to simulate the ground motions generated by a virtual earthquake. For this simulation, we have used a stochastic EGF summation method. We have worked on the simulation of a magnitude Mw=6.8 using successively 2 smaller events that occurred on the Leogane fault as EGF. The results obtained using the two events are surprisingly very different. Using the first EGF, we obtained almost the same ground motion values at each station in Port au Prince, whereas with the second EGF, the results highlight large differences. The large variability obtained in the results indicates that a particular combination of site and

  15. Estimating secular velocities from GPS data contaminated by postseismic motion at sites with limited pre-earthquake data

    NASA Astrophysics Data System (ADS)

    Murray, J. R.; Svarc, J. L.

    2016-12-01

    Constant secular velocities estimated from Global Positioning System (GPS)-derived position time series are a central input for modeling interseismic deformation in seismically active regions. Both postseismic motion and temporally correlated noise produce long-period signals that are difficult to separate from secular motion and can bias velocity estimates. For GPS sites installed post-earthquake it is especially challenging to uniquely estimate velocities and postseismic signals and to determine when the postseismic transient has decayed sufficiently to enable use of subsequent data for estimating secular rates. Within 60 km of the 2003 M6.5 San Simeon and 2004 M6 Parkfield earthquakes in California, 16 continuous GPS sites (group 1) were established prior to mid-2001, and 52 stations (group 2) were installed following the events. We use group 1 data to investigate how early in the post-earthquake time period one may reliably begin using group 2 data to estimate velocities. For each group 1 time series, we obtain eight velocity estimates using observation time windows with successively later start dates (2006 - 2013) and a parameterization that includes constant velocity, annual, and semi-annual terms but no postseismic decay. We compare these to velocities estimated using only pre-San Simeon data to find when the pre- and post-earthquake velocities match within uncertainties. To obtain realistic velocity uncertainties, for each time series we optimize a temporally correlated noise model consisting of white, flicker, random walk, and, in some cases, band-pass filtered noise contributions. Preliminary results suggest velocities can be reliably estimated using data from 2011 to the present. Ongoing work will assess velocity bias as a function of epicentral distance and length of post-earthquake time series as well as explore spatio-temporal filtering of detrended group 1 time series to provide empirical corrections for postseismic motion in group 2 time series.

  16. Earthquakes: Recurrence and Interoccurrence Times

    NASA Astrophysics Data System (ADS)

    Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.

    2008-04-01

    The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.

  17. Dating Informed Correlations and Large Earthquake Recurrence at the Hokuri Creek Paleoseismic Site, Alpine Fault, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Biasi, G. P.; Clark, K.; Berryman, K. R.; Cochran, U. A.; Prior, C.

    2010-12-01

    The Hokuri Creek paleoseismic site on the Alpine fault in south Westland, New Zealand has yielded a remarkable history of fault activity spanning the past ~7000 years. Evidence for earthquake occurrence and timing has been developed primarily from natural exposures created after a geologically major incision event a few hundred years ago. Prior to this event, the elevation of the spillway of Hokuri Creek into its previous drainage was controlled by NE translation of a shutter ridge during earthquakes. Each event increased the base level for sediment accumulation upstream by decimetres to perhaps a metre. Each increase in base level is associated with a period of accumulation principally of clean fine silts and rock flour. With infilling and time, the wetlands reestablish and sedimentation transitions to a slower and more organic-rich phase (Clark et al., this meeting). At least 18 such cycles have been identified at the site. Carbonaceous material is abundant in almost all layers. Much of the dating is done on macrofossils - individual beech tree leaves, reeds, and similar fragile features. Reworking is considered unlikely due to the fragility of the samples. All dates were developed by the Rafter Radiocarbon Laboratory of the National Isotope Centre at GNS. Delta 13C was measured and used to correct for fractionation. Dating earthquakes at the Hokuri Creek site presents some special challenges. Individual stratigraphic sections around the site expose different time intervals. The Main Section series provides the most complete single section, with over 5000 years of represented. Nearby auxiliary exposures cover nearly 1500 years more. Date series from individual exposures tend to be internally very consistent with stratigraphic ordering, but by virtue of their spatial separation, correlations between sections are more difficult. We find, however, that the distinctive layering and the typical 2-4 centuries between primary silt layers provides a way to cross

  18. Site response, shallow shear-wave velocity, and damage in Los Gatos, California, from the 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Williams, R.A.

    2001-01-01

    Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.

  19. Earthquakes in the United States

    USGS Publications Warehouse

    Stover, C.

    1977-01-01

    To supplement data in the report Preliminary Determination of Epicenters (PDE), the National earthquake Information Service (NEIS) also publishes a quarterly circular, Earthquakes in the United States. This provides information on the felt area of U.S earthquakes and their intensity. The main purpose is to describe the larger effects of these earthquakes so that they can be used in seismic risk studies, site evaluations for nuclear power plants, and answering inquiries by the general public.

  20. Numerical Simulation of Strong Ground Motion at Mexico City:A Hybrid Approach for Efficient Evaluation of Site Amplification and Path Effects for Different Types of Earthquakes

    NASA Astrophysics Data System (ADS)

    Cruz, H.; Furumura, T.; Chavez-Garcia, F. J.

    2002-12-01

    The estimation of scenarios of the strong ground motions caused by future great earthquakes is an important problem in strong motion seismology. This was pointed out by the great 1985 Michoacan earthquake, which caused a great damage in Mexico City, 300 km away from the epicenter. Since the seismic wavefield is characterized by the source, path and site effects, the pattern of strong motion damage from different types of earthquakes should differ significantly. In this study, the scenarios for intermediate-depth normal-faulting, shallow-interplate thrust faulting, and crustal earthquakes have been estimated using a hybrid simulation technique. The character of the seismic wavefield propagating from the source to Mexico City for each earthquake was first calculated using the pseudospectral method for 2D SH waves. The site amplifications in the shallow structure of Mexico City are then calculated using the multiple SH wave reverberation theory. The scenarios of maximum ground motion for both inslab and interplate earthquakes obtained by the simulation show a good agreement with the observations. This indicates the effectiveness of the hybrid simulation approach to investigate the strong motion damage for future earthquakes.

  1. Evaluation and implementation of an improved methodology for earthquake ground response analysis : uniform treatment source, path and site effects.

    DOT National Transportation Integrated Search

    2008-12-01

    Shortly after the 1994 Northridge Earthquake, Caltrans geotechnical engineers charged with developing site-specific : response spectra for high priority California bridges initiated a research project aimed at broadening their perspective : from simp...

  2. Squamous cell carcinoma – similarities and differences among anatomical sites

    PubMed Central

    Yan, Wusheng; Wistuba, Ignacio I; Emmert-Buck, Michael R; Erickson, Heidi S

    2011-01-01

    Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole. PMID:21938273

  3. Brain structural plasticity in survivors of a major earthquake

    PubMed Central

    Lui, Su; Chen, Long; Yao, Li; Xiao, Yuan; Wu, Qi-Zhu; Zhang, Jun-Ran; Huang, Xiao-Qi; Zhang, Wei; Wang, Yu-Qin; Chen, Hua-Fu; Chan, Raymond C.K.; Sweeney, John A.; Gong, Qi-Yong

    2013-01-01

    Background Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. Methods Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13–25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. Results We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). Limitations Differences in the variance of survivor and control data could impact study findings. Conclusion Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal–limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal. PMID

  4. Evaluation of ground deformations induced by the 1999 Kocaeli earthquake (Turkey) at selected sites on shorelines

    NASA Astrophysics Data System (ADS)

    Aydan, Ömer; Ulusay, Reşat; Atak, Veysel Okan

    2008-03-01

    The Kocaeli earthquake ( M w = 7.4) of 17 August 1999 occurred in the Eastern Marmara Region of Turkey along the North Anadolu Fault and resulted in a very serious loss of life and property. One of the most important geotechnical issues of this event was the permanent ground deformations because of both liquefaction and faulting. These deformations occurred particularly along the southern shores of İzmit Bay and Sapanca Lake between the cities of Yalova and Adapazarı in the west and east, respectively. In this study, three sites founded on delta fans, namely Değirmendere Nose, Yeniköy tea garden at Seymen on the coast of İzmit Bay, and Vakıf Hotel site on the coast of Sapanca Lake were selected as typical cases. The main causes of the ground deformations at these sites were then investigated. Geotechnical characterization of the ground, derivation of displacement vectors from the pre- and post-earthquake aerial photographs, liquefaction assessments based on field performance data, and analyses carried out using the sliding body method have been fundamental in this study. The displacement vectors determined from photogrammetric evaluations conducted at Değirmendere and Seymen showed a combined movement of faulting and liquefaction. But except the movements in the close vicinity of shorelines, the dominant factor in this movement was faulting. The results obtained from the analyses suggested that the ground failure at Değirmendere was a submarine landslide mainly because of earthquake shaking rather than liquefaction. On the other hand, the ground failures at the Yeniköy tea garden on the coast of Seymen and the hotel area in Sapanca town resulted from liquefaction-induced lateral spreading. It was also obtained that the ground deformations estimated from the sliding body method were quite close to those measured by aerial photogrammetry technique.

  5. Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination

    DTIC Science & Technology

    2008-09-01

    explosions from earthquakes, using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites ...Battone et al., 2002). For example, in Figure 1 we compare an earthquake and an explosion at each of four major test sites (rows), bandpass filtered...explosions as the frequency increases. Note also there are interesting differences between the test sites , indicating that emplacement conditions (depth

  6. An integrated observational site for monitoring pre-earthquake processes in Peloponnese, Greece. Preliminary results.

    NASA Astrophysics Data System (ADS)

    Tsinganos, Kanaris; Karastathis, Vassilios K.; Kafatos, Menas; Ouzounov, Dimitar; Tselentis, Gerassimos; Papadopoulos, Gerassimos A.; Voulgaris, Nikolaos; Eleftheriou, Georgios; Mouzakiotis, Evangellos; Liakopoulos, Spyridon; Aspiotis, Theodoros; Gika, Fevronia; E Psiloglou, Basil

    2017-04-01

    We are presenting the first results of developing a new integrated observational site in Greece to study pre-earthquake processes in Peloponnese, lead by the National Observatory of Athens. We have developed a prototype of multiparameter network approach using an integrated system aimed at monitoring and thorough studies of pre-earthquake processes at the high seismicity area of the Western Hellenic Arc (SW Peloponnese, Greece). The initial prototype of the new observational systems consists of: (1) continuous real-time monitoring of Radon accumulation in the ground through a network of radon sensors, consisting of three gamma radiation detectors [NaI(Tl) scintillators], (2) nine-station seismic array installed to detect and locate events of low magnitude (less than 1.0 R) in the offshore area of the Hellenic arc, (3) real-time weather monitoring systems (air temperature, relative humidity, precipitation, pressure) and (4) satellite thermal radiation from AVHRR/NOAA-18 polar orbit sensing. The first few moths of operations revealed a number of pre-seismic radon variation anomalies before several earthquakes (M>3.6). The radon increases systematically before the larger events. For example a radon anomaly was predominant before the event of Sep 28, M 5.0 (36.73°N, 21.87°E), 18 km ESE of Methoni. The seismic array assists in the evaluation of current seismicity and may yield identification of foreshock activity. Thermal anomalies in satellite images are also examined as an additional tool for evaluation and verification of the Radon increase. According to the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) concept, atmospheric thermal anomalies observed before large seismic events are associated with the increase of Radon concentration on the ground. Details about the integrating ground and space observations, overall performance of the observational sites, future plans in advancing the cooperation in observations will be discussed.

  7. Radon anomaly in soil gas as an earthquake precursor.

    PubMed

    Miklavcić, I; Radolić, V; Vuković, B; Poje, M; Varga, M; Stanić, D; Planinić, J

    2008-10-01

    The mechanical processes of earthquake preparation are always accompanied by deformations; afterwards, the complex short- or long-term precursory phenomena can appear. Anomalies of radon concentrations in soil gas are registered a few weeks or months before many earthquakes. Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors at site A (Osijek) during a 4-year period, as well as by the Barasol semiconductor detector at site B (Kasina) during 2 years. We investigated the influence of the meteorological parameters on the temporal radon variations, and we determined the equation of the multiple regression that enabled the reduction (deconvolution) of the radon variation caused by the barometric pressure, rainfall and temperature. The pre-earthquake radon anomalies at site A indicated 46% of the seismic events, on criterion M>or=3, R<200 km, and 21% at site B. Empirical equations between earthquake magnitude, epicenter distance and precursor time enabled estimation or prediction of an earthquake that will rise at the epicenter distance R from the monitoring site in expecting precursor time T.

  8. Modified Mercalli Intensities (MMI) for some earthquakes in eastern North America (ENA) and empirical MMI site corrections for towns in ENA

    USGS Publications Warehouse

    Bakun, W.H.; Johnston, A.C.; Hopper, M.G.

    2002-01-01

    Modified Mercalli Intensity (MMI) assignments for earthquakes in eastern North America (ENA) were used by Bakun et al. (submitted) to develop a model for eastern North America for estimating the location and moment magnitude M of earthquakes from MMI observations. MMI assignments for most of the earthquakes considered by Bakun et al. (submitted) are published. MMI assignments for 6 other earthquakes used by Bakun et al. (submitted) are listed in this report: November 18, 1755 near Cape Ann, Massachusetts; January 5, 1843 near Marked Tree, Arkansas; October 31, 1895 in southern Illinois; November 18, 1929 on the Grand Banks, Newfoundland; September 26, 1990 in southeast Missouri; and May 4, 1991 near Risco, Missouri. MMI empirical site corrections developed and used by Bakun et al. (submitted) are also listed in this report.

  9. Rare normal faulting earthquake induced by subduction megaquake: example from 2011 Tohoku-oki earthquake

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.

    2012-04-01

    A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m

  10. Lg Attenuation and Site Response in the SiChuan basin and the Bayan Har block before the 2008 Ms8.0 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2017-12-01

    On 12 May, 2008, the Sichuan province in China suffered the catastrophic Wenchuan earthquake (MS 8). Prior to the event, a large number of small to moderate earthquakes occurred in the area were recorded at stations of SiChuan Seismic Network (SCSN). The wave data were collected during the years 2006-2008, The Fourier amplitude spectra of Lg wave are used to determine attenuation and site responses. We analyze over 3300 seismograms for Lg-wave propagation from 291 local and regional earthquakes recorded at distances from 100 to 700 km, the earthquakes varied in ML2.0 and 5.7.A joint inversion method estimating attenuation and site responses from seismic spectral ratios is implemented in the study; modeling errors are determined using a delete-j jackknife resampling technique.Variations of the Lg attenuation in a chronological order are studied. The event occurred on the Longmen Shan Fault (LSF), the LSF constitutes boundary betweeb Bayan Har block and eastern. The data are divided into two subgroups based on the seismic ray paths which contained entirely within the SiChuan basin or the Bayan Har block. The waveforms were processed in a frequency range of 1-7 Hz with an interval of 0.2 Hz. On the vertical component, Lg Attenuation in the Bayan Har block are fit by a frequency-dependent function Q(f)=250.2±13.7f0.52±0.03,the SiChuan basin is characterized by function Q(f)=193±23f0.0.81±0.05. The obtained attenuation curves indicate that the spectral amplitudes decay faster in the SiChuan basin than in the Bayan Har block. Site responses from the 48 stations are estimated, the site responses vary among these stations by more than a factor of 10 within the frequency range of interest.The results from the regrouping of data in chronological order show that when the Whenchuan earthquake is approaching, the changes in attenuation occur significantly, but the changes in site responses do not occur.

  11. Wave propagation modelling of induced earthquakes at the Groningen gas production site

    NASA Astrophysics Data System (ADS)

    Paap, Bob; Kraaijpoel, Dirk; Bakker, Marcel; Gharti, Hom Nath

    2018-06-01

    Gas extraction from the Groningen natural gas field, situated in the Netherlands, frequently induces earthquakes in the reservoir that cause damage to buildings and pose a safety hazard and a nuisance to the local population. Due to the dependence of the national heating infrastructure on Groningen gas, the short-term mitigation measures are mostly limited to a combination of spatiotemporal redistribution of gas production and strengthening measures for buildings. All options become more effective with a better understanding of both source processes and seismic wave propagation. Detailed wave propagation simulations improve both the inference of source processes from observed ground motions and the forecast of ground motions as input for hazard studies and seismic network design. The velocity structure at the Groningen site is relatively complex, including both deep high-velocity and shallow low-velocity deposits showing significant thickness variations over relatively small spatial extents. We performed a detailed three-dimensional wave propagation modelling study for an induced earthquake in the Groningen natural gas field using the spectral-element method. We considered an earthquake that nucleated along a normal fault with local magnitude of {{{M}}_{{L}}} = 3. We created a dense mesh with element size varying from 12 to 96 m, and used a source frequency of 7 Hz, such that frequencies generated during the simulation were accurately sampled up to 10 Hz. The velocity/density model is constructed using a three-dimensional geological model of the area, including both deep high-velocity salt deposits overlying the source region and shallow low-velocity sediments present in a deep but narrow tunnel valley. The results show that the three-dimensional density/velocity model in the Groningen area clearly play a large role in the wave propagation and resulting surface ground motions. The 3d structure results in significant lateral variations in site response. The high

  12. Incidence of oral cavity and pharyngeal cancers by anatomical sites in population-based registries in Puerto Rico and the United States of America.

    PubMed

    Suárez, Erick; González, Lorena; Díaz-Toro, Elba C; Calo, William A; Bermúdez, Francisco; Ortiz, Ana P

    2013-12-01

    Puerto Rico's (PR) epidemiological data on each oral cavity and pharynx cancer (OCPC) site is yet largely unexplored. Our aim was to compare OCPC incidence in PR, by anatomical site, with that of non-Hispanic whites (NHW), non-Hispanic blacks (NHB), and Hispanic (USH) individuals in the USA. Data from the Surveillance Epidemiology and End Results program and the PR Central Cancer Registry were collected and analyzed. Age-standardized rates, percent changes, and standardized rate ratios were estimated with 95% confidence intervals. Although declining incidence rates were observed for most anatomical sites in most racial/ethnic groups and in both sexes, the incidence of oropharynx cancers slightly increased for cancers in the oropharynx among PR women, both in the base of tongue and soft palate/other oropharynx (p>0.05). The incidence of soft palate/other oropharynx cancers in PR men was about 2.8 times higher than in USH men (p<0.05) and about 1.4 times higher than in NHW men but 21% lower than in NHB men (p>0.05). Significant interactions terms formed with racial/ethnic group and age were shown in various sites. The largest differences between sexes were consistently noted in PR. Further research in PR should assess the effect of the HPV infection, as well as of other risk factors, in OCPC incidence by anatomical site in younger populations. These data could explain more precisely the reasons for the differences observed in this study, particularly among sexes in PR.

  13. Anatomical Individualized ACL Reconstruction.

    PubMed

    Rahnemai-Azar, Amir Ata; Sabzevari, Soheil; Irarrázaval, Sebastián; Chao, Tom; Fu, Freddie H

    2016-10-01

    The anterior cruciate ligament (ACL) is composed of two bundles, which work together to provide both antero-posterior and rotatory stability of the knee. Understanding the anatomy and function of the ACL plays a key role in management of patients with ACL injury. Anatomic ACL reconstruction aims to restore the function of the native ACL. Femoral and tibial tunnels should be placed in their anatomical location accounting for both the native ACL insertion site and bony landmarks. One main component of anatomical individualized ACL reconstruction is customizing the treatment according to each patient's individual characteristics, considering preoperative and intraoperative evaluation of the native ACL and knee bony anatomy. Anatomical individualized reconstruction surgery should also aim to restore the size of the native ACL insertion as well. Using this concept, while single bundle ACL reconstruction can restore the function of the ACL in some patients, double bundle reconstruction is indicated in others to achieve optimal outcome.

  14. Twitter earthquake detection: Earthquake monitoring in a social world

    USGS Publications Warehouse

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Concordance of Beta-papillomavirus across anogenital and oral anatomic sites of men: The HIM Study.

    PubMed

    Nunes, Emily M; López, Rossana V M; Sudenga, Staci L; Gheit, Tarik; Tommasino, Massimo; Baggio, Maria L; Ferreira, Silvaneide; Galan, Lenice; Silva, Roberto C; Lazcano-Ponce, Eduardo; Giuliano, Anna R; Villa, Luisa L; Sichero, Laura

    2017-10-01

    We evaluated the concordance between β-HPVs detected in external genital skin, anal canal, and oral cavity specimens collected simultaneously from 717 men that were participating in the multinational HIM Study. Viral genotyping was performed using the Luminex technology. Species- and type-specific concordance was measured using kappa statistics for agreement. Overall, concordance of β-HPVs across sites was low and mainly observed among paired genital/anal canal samples. When grouped by species, solely β-4 HPVs showed moderate concordance in genital/anal pairs (κ = 0.457), which could be attributed to the substantial concordance of HPV-92 in men from Brazil and Mexico (κ > 0.610). β-HPV type concordance was higher in Mexico, where HPV-19 was consistently concordant in all anatomic site combinations. Our analysis indicates that type-specific concordance across sites is limited to few viral types; however, these infections seem to occur more often than would be expected by chance, suggesting that although rare, there is agreement among sites. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rupture directivity and local site effects: the M7.3 Honduras earthquake of May 23, 2009

    NASA Astrophysics Data System (ADS)

    Shulman, D.; Mooney, W. D.

    2009-12-01

    On May 28, 2009, at 2:24 AM local time, a M 7.3 earthquake struck off the coast of Honduras on the Motagua-Swan Fault System (MSFS), part of the boundary between the North America and Caribbean plates. This plate boundary has an average slip rate of 20 mm/year. This left-lateral earthquake had an average slip of 1.5 m on a 100-km-long near-vertical fault plane (Hayes and Ji, 2009). The hypocenter depth is estimated at 10 km. The main shock caused 130 structures, including homes and office buildings, to collapse or suffer significant damage in northern Honduras. Seven deaths were reported. Due to a lack of recordings in the area, the available documentation of the local effects of this earthquake are the USGS "Did you feel it?" responses and the data collected during our field seismic intensity investigation. We conducted a field investigation in Honduras between May 30 and June 6, 2009, focused on areas with local reports of damage, including the cities of La Ceiba, El Progresso, San Pedro Sula, Puerto Cortes in northern Honduras and the island of Roatan in the Caribbean Sea. The damage ascertained at these five sites shows that the severity of damage did not decrease with distance from the epicenter as predicted by standard attenuation relations. Instead, a concentration of damage was observed in El Progresso, approximately 75 km directly south from the SW end of the rupture and 160 km from the epicenter. The island of Roatan, just 30 km from the epicenter, was graded as VI on the Modified Mercalli Intensity scale while, El Progresso was graded as VIII (one unit higher than “Did you feel it?”). These intensity anomalies can be explained by two factors: (1) SW-directed rupture propagation and proximity to a localized 3.0m slip pulse (asperity) that occurred near the SW end of the fault (Hayes and Ji, 2009) that focused energy toward the city of El Progress on the mainland and; (2) local site effects, particularly the Precambrian schists and gneisses on the

  17. Tohoku-Oki Earthquake Tsunami Runup and Inundation Data for Sites Around the Island of Hawaiʻi

    USGS Publications Warehouse

    Trusdell, Frank A.; Chadderton, Amy; Hinchliffe, Graham; Hara, Andrew; Patenge, Brent; Weber, Tom

    2012-01-01

    At 0546 U.t.c. March 11, 2011, a Mw 9.0 ("great") earthquake occurred near the northeast coast of Honshu Island, Japan, generating a large tsunami that devastated the east coast of Japan and impacted many far-flung coastal sites around the Pacific Basin. After the earthquake, the Pacific Tsunami Warning Center issued a tsunami alert for the State of Hawaii, followed by a tsunami-warning notice from the local State Civil Defense on March 10, 2011 (Japan is 19 hours ahead of Hawaii). After the waves passed the islands, U.S. Geological Survey (USGS) scientists from the Hawaiian Volcano Observatory (HVO) measured inundation (maximum inland distance of flooding), runup (elevation at maximum extent of inundation) and took photographs in coastal areas around the Island of Hawaiʻi. Although the damage in West Hawaiʻi is well documented, HVO's mapping revealed that East Hawaiʻi coastlines were also impacted by the tsunami. The intent of this report is to provide runup and inundation data for sites around the Island of Hawaiʻi.

  18. School Site Preparedness for the Safety of California's Children K-12. Official Report of the Northridge Earthquake Task Force on Education.

    ERIC Educational Resources Information Center

    California State Legislature, Sacramento. Senate Select Committee on the Northridge Earthquake.

    This report asserts that disaster preparedness at all school sites must become a major and immediate priority. Should a disaster equaling the magnitude of the Northridge earthquake occur, the current varying levels of site preparedness may not adequately protect California's children. The report describes why the state's children are not safe and…

  19. Evaluation of sexual history-based screening of anatomic sites for chlamydia trachomatis and neisseria gonorrhoeae infection in men having sex with men in routine practice.

    PubMed

    Peters, Remco P H; Verweij, Stephan P; Nijsten, Noëmi; Ouburg, Sander; Mutsaers, Johan; Jansen, Casper L; van Leeuwen, A Petra; Morré, Servaas A

    2011-07-26

    Sexually transmitted infection (STI) screening programmes are implemented in many countries to decrease burden of STI and to improve sexual health. Screening for Chlamydia trachomatis and Neisseria gonorrhoeae has a prominent role in these protocols. Most of the screening programmes concerning men having sex with men (MSM) are based on opportunistic urethral testing. In The Netherlands, a history-based approach is used. The aim of this study is to evaluate the protocol of screening anatomic sites for C. trachomatis and N. gonorrhoeae infection based on sexual history in MSM in routine practice in The Netherlands. All MSM visiting the clinic for STI in The Hague are routinely asked about their sexual practice during consulting. As per protocol, tests for urogenital, oropharyngeal and anorectal infection are obtained based on reported site(s) of sexual contact. All consultations are entered into a database as part of the national STI monitoring system. Data of an 18 months period were retrieved from this database and analysed. A total of 1455 consultations in MSM were registered during the study period. The prevalence of C. trachomatis and N. gonorrhoeae per anatomic site was: urethral infection 4.0% respectively and 2.8%, oropharynx 1.5% and 4.2%, and anorectum 8.2% and 6.0%. The majority of chlamydia cases (72%) involved a single anatomic site, which was especially manifest for anorectal infections (79%), while 42% of gonorrhoea cases were single site. Twenty-six percent of MSM with anorectal chlamydia and 17% with anorectal gonorrhoea reported symptoms of proctitis; none of the oropharyngeal infections were symptomatic. Most cases of anorectal infection (83%) and oropharyngeal infection (100%) would have remained undiagnosed with a symptom-based protocol. The current strategy of sexual-history based screening of multiple anatomic sites for chlamydia and gonorrhoea in MSM is a useful and valid guideline which is to be preferred over a symptom-based screening

  20. From Tornadoes to Earthquakes: Forecast Verification for Binary Events Applied to the 1999 Chi-Chi, Taiwan, Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, C.; Rundle, J. B.; Holliday, J. R.; Nanjo, K.; Turcotte, D. L.; Li, S.; Tiampo, K. F.

    2005-12-01

    Forecast verification procedures for statistical events with binary outcomes typically rely on the use of contingency tables and Relative Operating Characteristic (ROC) diagrams. Originally developed for the statistical evaluation of tornado forecasts on a county-by-county basis, these methods can be adapted to the evaluation of competing earthquake forecasts. Here we apply these methods retrospectively to two forecasts for the m = 7.3 1999 Chi-Chi, Taiwan, earthquake. These forecasts are based on a method, Pattern Informatics (PI), that locates likely sites for future large earthquakes based on large change in activity of the smallest earthquakes. A competing null hypothesis, Relative Intensity (RI), is based on the idea that future large earthquake locations are correlated with sites having the greatest frequency of small earthquakes. We show that for Taiwan, the PI forecast method is superior to the RI forecast null hypothesis. Inspection of the two maps indicates that their forecast locations are indeed quite different. Our results confirm an earlier result suggesting that the earthquake preparation process for events such as the Chi-Chi earthquake involves anomalous changes in activation or quiescence, and that signatures of these processes can be detected in precursory seismicity data. Furthermore, we find that our methods can accurately forecast the locations of aftershocks from precursory seismicity changes alone, implying that the main shock together with its aftershocks represent a single manifestation of the formation of a high-stress region nucleating prior to the main shock.

  1. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites

    PubMed Central

    BENJAMIN, M.; McGONAGLE, D.

    2001-01-01

    The 2 major categories of idiopathic inflammatory arthritis are rheumatoid arthritis and the seronegative spondyloarthropathies. Whilst the synovium is the primary site of joint disease in the former, the primary site in the latter is less well defined. However, it has recently been proposed that enthesitis-associated changes in the spondyloarthropathies are primary and that all other joint manifestations are secondary. Nevertheless, some of the sites of disease localisation have not been adequately explained in terms of enthesitis. This article summarises current knowledge of the structure, function, blood supply, innervation, molecular composition and histopathology of the classic enthesis (i.e. the bony attachment of a tendon or ligament) and introduces the concept of ‘functional’ and articular ‘fibrocartilaginous’ entheses. The former are regions where tendons or ligaments wrap-around bony pulleys, but are not attached to them, and the latter are synovial joints that are lined by fibrocartilage rather than hyaline cartilage. We describe how these 3 types of entheses relate to other, and how all are prone to pathological changes in spondyloarthropathy. We propose that the inflammatory responses characteristic of spondyloarthropathies are triggered at these seemingly diverse sites, in genetically susceptible individuals, by a combination of anatomical factors which lead to higher levels of tissue microtrauma, and the deposition of microbes. PMID:11760883

  2. Causes and anatomical site of blindness and severe visual loss in Isfahan, Islamic Republic of Iran.

    PubMed

    Dehghan, A; Kianersi, F; Moazam, E; Ghanbari, H

    2010-02-01

    This study in 2005 evaluated the causes and major anatomical site of blindness and severe visual loss at a school for blind children in Isfahan province, Islamic Republic of Iran. All 211 students were examined according to the modified WHO/PBL eye examination record: 70.4% were blind, 24.3% had severe visual loss and 5.3% were visually impaired. The major causes of abnormality were hereditary factors (42.7%), prenatal/neonatal (18.5%) and unknown etiology (35.5%). The main sites of abnormality were the retina (62.6%), whole globe (17.5%), lens (7.1%) and optic nerve (7.1%). A high proportion of parents were in a consanguineous marriage (49.2%). The pattern of blindness in Isfahan encompasses characteristics of both developed and developing countries.

  3. Long-term change of site response after the M W 9.0 Tohoku earthquake in Japan

    NASA Astrophysics Data System (ADS)

    Wu, Chunquan; Peng, Zhigang

    2012-12-01

    The recent M W 9.0 off the Pacific coast of Tohoku earthquake is the largest recorded earthquake in Japan's history. The Tohoku main shock and its aftershocks generated widespread strong shakings as large as ~3000 Gal along the east coast of Japan. Wu and Peng (2011) found clear drop of resonant frequency of up to 70% during the Tohoku main shock at 6 sites and correlation of resonance (peak) frequency and peak ground acceleration (PGA) during the main shock. Here we follow that study and systematically analyze long-term changes of material properties in the shallow crust from one year before to 5 months after the Tohoku main shock, using seismic data recorded by the Japanese Strong Motion Network KiK-Net. We use sliding window spectral ratios computed from a pair of surface and borehole stations to track the temporal changes in the site response of 6 sites. Our results show two stages of logarithmic recovery after a sharp drop of resonance frequency during the Tohoku main shock. The first stage is a rapid recovery within several hundred seconds to several hours, and the second stage is a slow recovery of more than five months. We also investigate whether the damage caused by the Tohoku main shock could make the near surface layers more susceptible to further damages, but we do not observe clear changes in susceptibility to further damage before and after the Tohoku main shock.

  4. Hybrid wireless sensor network for rescue site monitoring after earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  5. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  6. The role of complex site and basin response in Wellington city, New Zealand, during the 2016 Mw 7.8 Kaikōura earthquake and other recent earthquake sequences.

    NASA Astrophysics Data System (ADS)

    Kaiser, A. E.; McVerry, G.; Wotherspoon, L.; Bradley, B.; Gerstenberger, M.; Benites, R. A.; Bruce, Z.; Bourguignon, S.; Giallini, S.; Hill, M.

    2017-12-01

    We present analysis of ground motion and complex amplification characteristics in Wellington during recent earthquake sequences and an overview of the 3D basin characterization and ongoing work to update site parameters for seismic design. Significant damage was observed in central Wellington, New Zealand's capital city, following the 2016 Mw7.8 Kaikōura earthquake. Damage was concentrated in mid-rise structures (5 - 15 storeys) and was clearly exacerbated by the particular characteristics of ground motion and the presence of basin effects. Due to the distance of the source (50 - 60km) from the central city, peak ground accelerations were moderate (up to 0.28g) and well within ultimate limit state (ULS) design levels. However, spectral accelerations within the 1 -2 s period range, exceeded 1 in 500 year design level spectra (ULS) in deeper parts of the basin. Amplification with respect to rock at these locations reached factors of up to 7, and was also observed with factors up to at least three across all central city soil recording sites. The ground motions in Wellington were the strongest recorded in the modern era of instrumentation. While similar amplification was observed during the 2013 Mw 6.6 Cook Strait and Grassmere earthquakes, which struck close to the termination of the Kaikōura earthquake rupture, these sources were not sufficiently large to excite significant long-period motions. However, other M7.2+ sources in the region that dominate the seismic hazard, e.g. Wellington Fault, Hikurangi subduction interface and other large proximal crustal faults, are also potentially capable of exciting significant long-period basin response in Wellington. These observations and the expectation of ongoing heightened seismicity have prompted re-evaluation of the current seismic demand levels. Additional field campaigns have also been undertaken to update geotechnical properties and the 3D basin model, in order to inform ongoing research and seismic design practice.

  7. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  8. OMG Earthquake! Can Twitter improve earthquake response?

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Guy, M.; Ostrum, C.; Horvath, S.; Buckmaster, R. A.

    2009-12-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public, text messages, can augment its earthquake response products and the delivery of hazard information. The goal is to gather near real-time, earthquake-related messages (tweets) and provide geo-located earthquake detections and rough maps of the corresponding felt areas. Twitter and other social Internet technologies are providing the general public with anecdotal earthquake hazard information before scientific information has been published from authoritative sources. People local to an event often publish information within seconds via these technologies. In contrast, depending on the location of the earthquake, scientific alerts take between 2 to 20 minutes. Examining the tweets following the March 30, 2009, M4.3 Morgan Hill earthquake shows it is possible (in some cases) to rapidly detect and map the felt area of an earthquake using Twitter responses. Within a minute of the earthquake, the frequency of “earthquake” tweets rose above the background level of less than 1 per hour to about 150 per minute. Using the tweets submitted in the first minute, a rough map of the felt area can be obtained by plotting the tweet locations. Mapping the tweets from the first six minutes shows observations extending from Monterey to Sacramento, similar to the perceived shaking region mapped by the USGS “Did You Feel It” system. The tweets submitted after the earthquake also provided (very) short first-impression narratives from people who experienced the shaking. Accurately assessing the potential and robustness of a Twitter-based system is difficult because only tweets spanning the previous seven days can be searched, making a historical study impossible. We have, however, been archiving tweets for several months, and it is clear that significant limitations do exist. The main drawback is the lack of quantitative information

  9. Modeling of earthquake ground motion in the frequency domain

    NASA Astrophysics Data System (ADS)

    Thrainsson, Hjortur

    In recent years, the utilization of time histories of earthquake ground motion has grown considerably in the design and analysis of civil structures. It is very unlikely, however, that recordings of earthquake ground motion will be available for all sites and conditions of interest. Hence, there is a need for efficient methods for the simulation and spatial interpolation of earthquake ground motion. In addition to providing estimates of the ground motion at a site using data from adjacent recording stations, spatially interpolated ground motions can also be used in design and analysis of long-span structures, such as bridges and pipelines, where differential movement is important. The objective of this research is to develop a methodology for rapid generation of horizontal earthquake ground motion at any site for a given region, based on readily available source, path and site characteristics, or (sparse) recordings. The research includes two main topics: (i) the simulation of earthquake ground motion at a given site, and (ii) the spatial interpolation of earthquake ground motion. In topic (i), models are developed to simulate acceleration time histories using the inverse discrete Fourier transform. The Fourier phase differences, defined as the difference in phase angle between adjacent frequency components, are simulated conditional on the Fourier amplitude. Uniformly processed recordings from recent California earthquakes are used to validate the simulation models, as well as to develop prediction formulas for the model parameters. The models developed in this research provide rapid simulation of earthquake ground motion over a wide range of magnitudes and distances, but they are not intended to replace more robust geophysical models. In topic (ii), a model is developed in which Fourier amplitudes and Fourier phase angles are interpolated separately. A simple dispersion relationship is included in the phase angle interpolation. The accuracy of the interpolation

  10. Low Bone Mineral Density in Male Athletes Is Associated With Bone Stress Injuries at Anatomic Sites With Greater Trabecular Composition.

    PubMed

    Tenforde, Adam S; Parziale, Allyson L; Popp, Kristin L; Ackerman, Kathryn E

    2018-01-01

    While sports participation is often associated with health benefits, a subset of athletes may develop impaired bone health. Bone stress injuries (BSIs) are a common overuse injury in athletes; site of injury has been shown to relate to underlying bone health in female athletes. Hypothesis/Purpose: This case series characterizes the association of type of sports participation and anatomic site of BSIs with low bone mineral density (BMD), defined as BMD Z-score <-1.0. Similar to female athletes, it was hypothesized that male athletes who participate in running and sustain BSIs in sites of higher trabecular bone content would be more likely to have low BMD. Cohort study; Level of evidence, 3. Chart review identified 28 male athletes aged 14 to 36 years with history of ≥1 lower-extremity BSI who were referred for evaluation of overall bone health, including assessment of lumbar spine, hip, and/or total body less head BMD per dual-energy x-ray absorptiometry. BMD Z-scores were determined via age, sex, and ethnicity normative values. Prior BSIs were classified by anatomic site of injury into trabecular-rich locations (pelvis, femoral neck, and calcaneus) and cortical-rich locations (tibia, fibula, femur, metatarsal and tarsal navicular). Sport type and laboratory values were also assessed in relationship to BMD. The association of low BMD to anatomic site of BSI and sport were evaluated with P value <.05 as threshold of significance. Of 28 athletes, 12 (43%) met criteria for low BMD. Athletes with a history of trabecular-rich BSIs had a 4.6-fold increased risk for low BMD as compared with those with only cortical-rich BSIs (9 of 11 vs 3 of 17, P = .002). Within sport type, runners had a 6.1-fold increased risk for low BMD versus nonrunners (11 of 18 vs 1 of 10, P = .016). Laboratory values, including 25-hydroxy vitamin D, were not associated with BMD or BSI location. Low BMD was identified in 43% of male athletes in this series. Athletes participating in sports of

  11. Earthquake triggering by seismic waves following the landers and hector mine earthquakes

    USGS Publications Warehouse

    Gomberg, J.; Reasenberg, P.A.; Bodin, P.; Harris, R.A.

    2001-01-01

    The proximity and similarity of the 1992, magnitude 7.3 Landers and 1999, magnitude 7.1 Hector Mine earthquakes in California permit testing of earthquake triggering hypotheses not previously possible. The Hector Mine earthquake confirmed inferences that transient, oscillatory 'dynamic' deformations radiated as seismic waves can trigger seismicity rate increases, as proposed for the Landers earthquake1-6. Here we quantify the spatial and temporal patterns of the seismicity rate changes7. The seismicity rate increase was to the north for the Landers earthquake and primarily to the south for the Hector Mine earthquake. We suggest that rupture directivity results in elevated dynamic deformations north and south of the Landers and Hector Mine faults, respectively, as evident in the asymmetry of the recorded seismic velocity fields. Both dynamic and static stress changes seem important for triggering in the near field with dynamic stress changes dominating at greater distances. Peak seismic velocities recorded for each earthquake suggest the existence of, and place bounds on, dynamic triggering thresholds. These thresholds vary from a few tenths to a few MPa in most places, depend on local conditions, and exceed inferred static thresholds by more than an order of magnitude. At some sites, the onset of triggering was delayed until after the dynamic deformations subsided. Physical mechanisms consistent with all these observations may be similar to those that give rise to liquefaction or cyclic fatigue.

  12. Estimation of 1-D velocity models beneath strong-motion observation sites in the Kathmandu Valley using strong-motion records from moderate-sized earthquakes

    NASA Astrophysics Data System (ADS)

    Bijukchhen, Subeg M.; Takai, Nobuo; Shigefuji, Michiko; Ichiyanagi, Masayoshi; Sasatani, Tsutomu; Sugimura, Yokito

    2017-07-01

    The Himalayan collision zone experiences many seismic activities with large earthquakes occurring at certain time intervals. The damming of the proto-Bagmati River as a result of rapid mountain-building processes created a lake in the Kathmandu Valley that eventually dried out, leaving thick unconsolidated lacustrine deposits. Previous studies have shown that the sediments are 600 m thick in the center. A location in a seismically active region, and the possible amplification of seismic waves due to thick sediments, have made Kathmandu Valley seismically vulnerable. It has suffered devastation due to earthquakes several times in the past. The development of the Kathmandu Valley into the largest urban agglomerate in Nepal has exposed a large population to seismic hazards. This vulnerability was apparent during the Gorkha Earthquake (Mw7.8) on April 25, 2015, when the main shock and ensuing aftershocks claimed more than 1700 lives and nearly 13% of buildings inside the valley were completely damaged. Preparing safe and up-to-date building codes to reduce seismic risk requires a thorough study of ground motion amplification. Characterizing subsurface velocity structure is a step toward achieving that goal. We used the records from an array of strong-motion accelerometers installed by Hokkaido University and Tribhuvan University to construct 1-D velocity models of station sites by forward modeling of low-frequency S-waves. Filtered records (0.1-0.5 Hz) from one of the accelerometers installed at a rock site during a moderate-sized (mb4.9) earthquake on August 30, 2013, and three moderate-sized (Mw5.1, Mw5.1, and Mw5.5) aftershocks of the 2015 Gorkha Earthquake were used as input motion for modeling of low-frequency S-waves. We consulted available geological maps, cross-sections, and borehole data as the basis for initial models for the sediment sites. This study shows that the basin has an undulating topography and sediment sites have deposits of varying thicknesses

  13. Comparison of injury epidemiology between the Wenchuan and Lushan earthquakes in Sichuan, China.

    PubMed

    Hu, Yang; Zheng, Xi; Yuan, Yong; Pu, Qiang; Liu, Lunxu; Zhao, Yongfan

    2014-12-01

    We aimed to compare injury characteristics and the timing of admissions and surgeries in the Wenchuan earthquake in 2008 and the Lushan earthquake in 2013. We retrospectively compared the admission and operating times and injury profiles of patients admitted to our medical center during both earthquakes. We also explored the relationship between seismic intensity and injury type. The time from earthquake onset to the peak in patient admissions and surgeries differed between the 2 earthquakes. In the Wenchuan earthquake, injuries due to being struck by objects or being buried were more frequent than other types of injuries, and more patients suffered injuries of the extremities than thoracic injuries or brain trauma. In the Lushan earthquake, falls were the most common injury, and more patients suffered thoracic trauma or brain injuries. The types of injury seemed to vary with seismic intensity, whereas the anatomical location of the injury did not. Greater seismic intensity of an earthquake is associated with longer delay between the event and the peak in patient admissions and surgeries, higher frequencies of injuries due to being struck or buried, and lower frequencies of injuries due to falls and injuries to the chest and brain. These insights may prove useful for planning rescue interventions in trauma centers near the epicenter.

  14. Subsurface site conditions and geology in the San Fernando earthquake area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, C.M.; Johnson, J.A.; Kharraz, Y.

    1971-12-01

    The report presents the progress to date in establishing the facts about dynamic subsurface properties and geological features in the area affected by the San Fernando earthquake of February 9, 1971. Special emphasis is given to the locations of accelerographs, seismoscopes and Seismological Field Survey aftershock instruments. Thirty shallow geophysical surveys were made for determination of S and P velocities, with damping measured at some sites. Deep velocity data were obtained from geophysical surveys by others. Soil Mechanics and water well borings by others were utilized. Published and ongoing geological studies were applied. Results are presented in the form ofmore » five geological cross-sections, nine subsurface exploration models extending through basement complex to depths of 14,000 feet, a general geologic map, the shallow geophysical surveys, and selected data on damping.« less

  15. Melanocytic Nevi and Sun Exposure in a Cohort of Colorado Children: Anatomic Distribution and Site-Specific Sunburn

    PubMed Central

    Dodd, Athena T.; Morelli, Joseph; Mokrohisky, Stefan T.; Asdigian, Nancy; Byers, Tim E.; Crane, Lori A.

    2010-01-01

    Sun exposure and high prevalence of melanocytic nevi are major risk factors for melanoma, but the relationship between them is not well understood. This study examines the relationship between sun exposure (detailed by anatomic location and history of site-specific sunburns) and the presence of melanocytic nevi on 743 White children in Denver, Colorado. Parental reports of site-specific sunburns were collected annually for 2 years starting at ages 5 to 6 years. In the third year, nevi were counted and mapped by anatomic location. Nevus density was higher for boys (36.0 nevi/m2) than for girls (31.0 nevi/m2; P = 0.04). Nevus density was highest on the face, neck, and lateral forearms and was significantly higher in chronically versus intermittently sun-exposed areas (P < 0.0001). Compared with girls, boys had higher nevus density on the face, neck, and trunk, and lower nevus density on the upper arms and thighs (P < 0.01). In 2 years of reports, most subjects (69%) received at least one sunburn. The face, shoulders, and back were the most frequently sunburned areas of the body. When adjusted for host factors, total number of sunburns was significantly associated with higher total nevus prevalence (P = 0.01 for one burn). Site-specific sunburns were significantly associated with nevus prevalence on the back (P = 0.03 for three or more sunburns), but not on the face, arms, or legs. In this high-risk population, there is evidence for two pathways to nevus accumulation: by chronic sun exposure and by intermittent exposure related to sunburns. PMID:17932362

  16. 78 FR 8109 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... meeting on the National Earthquake Hazards Reduction Program (NEHRP) web site at http://nehrp.gov...

  17. 77 FR 75610 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Earthquake Hazards Reduction Meeting AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Advisory Committee on Earthquake Hazards Reduction... meeting on the National Earthquake Hazards Reduction Program (NEHRP) Web site at http://nehrp.gov...

  18. GeoMO 2008--geotechnical earthquake engineering : site response.

    DOT National Transportation Integrated Search

    2008-10-01

    The theme of GeoMO2008 has recently become of more interest to the Midwest civil engineering community due to the perceived earthquake risks and new code requirements. The constant seismic reminder for the New Madrid Seismic Zone and new USGS hazard ...

  19. REVIEW ARTICLE: A comparison of site response techniques using earthquake data and ambient seismic noise analysis in the large urban areas of Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Pilz, Marco; Parolai, Stefano; Leyton, Felipe; Campos, Jaime; Zschau, Jochen

    2009-08-01

    Situated in an active tectonic region, Santiago de Chile, the country's capital with more than six million inhabitants, faces tremendous earthquake risk. Macroseismic data for the 1985 Valparaiso event show large variations in the distribution of damage to buildings within short distances, indicating strong effects of local sediments on ground motion. Therefore, a temporary seismic network was installed in the urban area for recording earthquake activity and a study was carried out aiming to estimate site amplification derived from horizontal-to-vertical (H/V) spectral ratios from earthquake data (EHV) and ambient noise (NHV), as well as using the standard spectral ratio (SSR) technique with a nearby reference station located on igneous rock. The results lead to the following conclusions: (1) The analysis of earthquake data shows significant dependence on the local geological structure with respect to amplitude and duration. (2) An amplification of ground motion at frequencies higher than the fundamental one can be found. This amplification would not be found when looking at NHV ratios alone. (3) The analysis of NHV spectral ratios shows that they can only provide a lower bound in amplitude for site amplification. (4) P-wave site responses always show lower amplitudes than those derived by S waves, and sometimes even fail to provide some frequencies of amplification. (5) No variability in terms of time and amplitude is observed in the analysis of the H/V ratio of noise. (6) Due to the geological conditions in some parts of the investigated area, the fundamental resonance frequency of a site is difficult to estimate following standard criteria proposed by the SESAME consortium, suggesting that these are too restrictive under certain circumstances.

  20. Liquefaction and soil failure during 1994 northridge earthquake

    USGS Publications Warehouse

    Holzer, T.L.

    1999-01-01

    The 1994 Northridge, Calif., earthquake caused widespread permanent ground deformation on the gently sloping alluvial fan surface of the San Fernando Valley. The ground cracks and distributed deformation damaged both pipelines and surface structures. To evaluate the mechanism of soil failure, detailed subsurface investigations were conducted at four sites. Three sites are underlain by saturated sandy silts with low standard penetration test and cone penetration test values. These soils are similar to those that liquefied during the 1971 San Fernando earthquake, and are shown by widely used empirical relationships to be susceptible to liquefaction. The remaining site is underlain by saturated clay whose undrained shear strength is approximately half the value of the earthquake-induced shear stress at this location. This study demonstrates that the heterogeneous nature of alluvial fan sediments in combination with variations in the ground-water table can be responsible for complex patterns of permanent ground deformation. It may also help to explain some of the spatial variability of strong ground motion observed during the 1994 earthquake. ?? ASCE,.

  1. Simulating Earthquake Early Warning Systems in the Classroom as a New Approach to Teaching Earthquakes

    NASA Astrophysics Data System (ADS)

    D'Alessio, M. A.

    2010-12-01

    . The culminating activity is for students to "design" an early warning system that will protect their school from nearby earthquakes. The better they design the system, the safer they will be. Each team of students receives a map of faults in the area and possible sites for real-time seismometer installation. Given a fixed budget, they must select the best sites for detecting a likely earthquake. After selecting their locations, teams face-off two-by-two in a tournament of simulated earthquakes. We created animations of a few simulated earthquakes for our institution and have plans to build a web-based version that will allow others to customize the location to their own location and facilitate the competition between teams. Earthquake early warning is both cutting-edge and has huge societal benefits. Instead of teaching our students how to locate epicenters after an earthquake has occurred, we can teach the same content standards while showing them that earthquake science can really save lives.

  2. Earthquake ground motion: Chapter 3

    USGS Publications Warehouse

    Luco, Nicolas; Kircher, Charles A.; Crouse, C. B.; Charney, Finley; Haselton, Curt B.; Baker, Jack W.; Zimmerman, Reid; Hooper, John D.; McVitty, William; Taylor, Andy

    2016-01-01

    Most of the effort in seismic design of buildings and other structures is focused on structural design. This chapter addresses another key aspect of the design process—characterization of earthquake ground motion into parameters for use in design. Section 3.1 describes the basis of the earthquake ground motion maps in the Provisions and in ASCE 7 (the Standard). Section 3.2 has examples for the determination of ground motion parameters and spectra for use in design. Section 3.3 describes site-specific ground motion requirements and provides example site-specific design and MCER response spectra and example values of site-specific ground motion parameters. Section 3.4 discusses and provides an example for the selection and scaling of ground motion records for use in various types of response history analysis permitted in the Standard.

  3. Anatomic and isometric points on femoral attachment site of popliteus muscle-tendon complex for the posterolateral corner reconstruction.

    PubMed

    Yang, Jae-Hyuk; Lim, Hong Chul; Bae, Ji Hoon; Fernandez, Harry; Bae, Tae Soo; Wang, Joon Ho

    2011-10-01

    Descriptive laboratory study. The femoral anatomic insertion site and the optimal isometric point of popliteus tendon for posterolateral reconstruction are not well known. Purpose of this study was to determine the relative relationship between the femoral anatomic insertion and isometric point of popliteus muscle-tendon complex with the lateral epicondyle of femur. Thirty unpaired cadaveric knees were dissected to determine the anatomic femoral insertion of the popliteus tendon. The distance and the angle from the lateral epicondyle of femur to the center of the anatomic insertion of the popliteus tendon were measured using digital caliper and goniometer. Eight unpaired fresh cadaveric knees were examined to determine the optimal isometric point of femoral insertion of popliteus tendon using computer-controlled motion capture analysis system (Motion Analysis, CA, USA). Distances from targeted tibial tunnel for popliteus tendon reconstruction to the 35 points gained on the lateral surface of femur were recorded at 0, 30, 60, 90, and 120° knee flexion. A point with the least excursion (<2.0 mm) was determined as the isometric point. The center of anatomic insertion points and the optimal isometric point for the main fibers of popliteus tendon were found to be posterior and distal to the lateral epicondyle of femur. The distance from the lateral epicondyle of femur to the center of anatomic femoral insertion of popliteus tendon was 11.3 ± 1.2 mm (mean ± SD). The angle between long axis of femur and the line from lateral epicondyle of femur to anatomic femoral insertion of popliteus tendon was 31.4 ± 5.3°. The isometric points for the femoral insertion of popliteus muscle-tendon complex were situated posterior and distal to the lateral epicondyle in all 8 knees. The distance between the least excursion point and the lateral epicondyle was calculated as 10.4 ± 1.7 mm. The angle between the long axis of femur and the line from lateral epicondyle of

  4. Analysis of Earthquake Recordings Obtained from the Seafloor Earthquake Measurement System (SEMS) Instruments Deployed off the Coast of Southern California

    USGS Publications Warehouse

    Boore, D.M.; Smith, C.E.

    1999-01-01

    For more than 20 years, a program has been underway to obtain records of earthquake shaking on the seafloor at sites offshore of southern California, near oil platforms. The primary goal of the program is to obtain data that can help determine if ground motions at offshore sites are significantly different than those at onshore sites; if so, caution may be necessary in using onshore motions as the basis for the seismic design of oil platforms. We analyze data from eight earthquakes recorded at six offshore sites; these are the most important data recorded on these stations to date. Seven of the earthquakes were recorded at only one offshore station; the eighth event was recorded at two sites. The earthquakes range in magnitude from 4.7 to 6.1. Because of the scarcity of multiple recordings from any one event, most of the analysis is based on the ratio of spectra from vertical and horizontal components of motion. The results clearly show that the offshore motions have very low vertical motions compared to those from an average onshore site, particularly at short periods. Theoretical calculations find that the water layer has little effect on the horizontal components of motion but that it produces a strong spectral null on the vertical component at the resonant frequency of P waves in the water layer. The vertical-to-horizontal ratios for a few selected onshore sites underlain by relatively low shear-wave velocities are similar to the ratios from offshore sites for frequencies less than about one-half the water layer P-wave resonant frequency, suggesting that the shear-wave velocities beneath a site are more important than the water layer in determining the character of the ground motions at lower frequencies.

  5. The efficacy of novel anatomical sites for the assessment of muscle oxygenation during central hypovolemia.

    PubMed

    Sprick, Justin D; Soller, Babs R; Rickards, Caroline A

    2016-11-01

    Muscle tissue oxygenation (SmO 2 ) can track central blood volume loss associated with hemorrhage. Traditional peripheral measurement sites (e.g., forearm) may not be practical due to excessive movement or injury (e.g., amputation). The aim of this study was to evaluate the efficacy of three novel anatomical sites for the assessment of SmO 2 under progressive central hypovolemia. 10 male volunteers were exposed to stepwise prone lower body negative pressure to decrease central blood volume, while SmO 2 was assessed at four sites-the traditional site of the flexor carpi ulnaris (ARM), and three novel sites not previously investigated during lower body negative pressure, the deltoid, latissimus dorsi, and trapezius. SmO 2 at the novel sites was compared to the ARM sensor and to stroke volume responses. A reduction in SmO 2 was detected by the ARM sensor at the first level of lower body negative pressure (-15 mmHg; P = 0.007), and at -30 (the deltoid), -45 (latissimus dorsi), and -60 mmHg lower body negative pressure (trapezius) at the novel sites (P ≤ 0.04). SmO 2 responses at all novel sites were correlated with responses at the ARM (R ≥ 0.89), and tracked the reduction in stroke volume (R ≥ 0.87); the latissimus dorsi site exhibited the strongest linear correlations (R ≥ 0.96). Of the novel sensor sites, the latissimus dorsi exhibited the strongest linear associations with SmO 2 at the ARM, and with reductions in central blood volume. These findings have important implications for detection of hemorrhage in austere environments (e.g., combat) when use of a peripheral sensor may not be ideal, and may facilitate incorporation of these sensors into uniforms. © 2016 by the Society for Experimental Biology and Medicine.

  6. On the behavior of site effects in central Mexico (the Mexican volcanic belt - MVB), based on records of shallow earthquakes that occurred in the zone between 1998 and 2011

    NASA Astrophysics Data System (ADS)

    Clemente-Chavez, A.; Zúñiga, F. R.; Lermo, J.; Figueroa-Soto, A.; Valdés, C.; Montiel, M.; Chavez, O.; Arroyo, M.

    2014-06-01

    The Mexican volcanic belt (MVB) is a seismogenic zone that transects the central part of Mexico with an east-west orientation. The seismic risk and hazard of this seismogenic zone has not been studied in detail due to the scarcity of instrumental data as well as because seismicity in the continental regime of central Mexico is not too frequent. However, it is known that there are precedents of large earthquakes (Mw > 6.0) that have taken place in this zone. The valley of Mexico City (VM) is the sole zone, within the MVB, that has been studied in detail. Studies have mainly focused on the ground amplification during large events such as the 1985 subduction earthquake that occurred off coast of Michoacán. The purpose of this article is to analyze the behavior of site effects in the MVB zone based on records of shallow earthquakes (data not reported before) that occurred in the zone between 1998 and 2011. We present a general overview of site effects in the MVB, a classification of the stations in order to reduce the uncertainty in the data when obtaining attenuation parameters in future works, as well as some comparisons between the information presented here and that presented in previous studies. A regional evaluation of site effects and Fourier acceleration spectrum (FAS) shape was estimated based on 80 records of 22 shallow earthquakes within the MVB zone. Data of 25 stations were analyzed. Site effects were estimated by using the horizontal-to-vertical spectral ratio (HVSR) methodology. The results show that seismic waves are less amplified in the northeast sites of the MVB with respect to the rest of the zone and that it is possible to classify two groups of stations: (1) stations with negligible site amplification (NSA) and (2) stations with significant site amplification (SSA). Most of the sites in the first group showed small (<3) amplifications while the second group showed amplifications ranging from 4 to 6.5 at frequencies of about 0.35, 0.75, 15 and 23

  7. Strong ground motion from the michoacan, Mexico, earthquake.

    PubMed

    Anderson, J G; Bodin, P; Brune, J N; Prince, J; Singh, S K; Quaas, R; Onate, M

    1986-09-05

    The network of strong motion accelerographs in Mexico includes instruments that were installed, under an international cooperative research program, in sites selected for the high potenial of a large earthquake. The 19 September 1985 earthquake (magnitude 8.1) occurred in a seismic gap where an earthquake was expected. As a result, there is an excellent descripton of the ground motions that caused the disaster.

  8. Observation of aftershocks of the 2003 Tokachi-Oki earthquake for estimation of local site effects

    NASA Astrophysics Data System (ADS)

    Yamanaka, Hiroaki; Motoki, Kentaro; Etoh, Kiminobu; Murayama, Masanari; Komaba, Nobuhiko

    2004-03-01

    Observation of aftershocks of the 2003 Tokachi-Oki earthquake was conducted in the southern part of the Tokachi basin in Hokkaido, Japan for estimation of local site effects. We installed accelerographs at 12 sites in Chokubetsu, Toyokoro, and Taiki areas, where large strong motion records were obtained during the main shock at stations of the K-NET and KiK-net. The stations of the aftershock observation are situated with different geological conditions and some of the sites were installed on Pleistocene layers as reference sites. The site amplifications are investigated using spectral ratio of S-waves from the aftershocks. The S-wave amplification factor is dominant at a period of about 1 second at the site near the KiK-net site in Toyokoro. This amplification fits well with calculated 1D amplification of S-wave in alluvial layers with a thickness of 50 meters. In addition to the site effects, we detected nonlinear amplification of the soft soils only during the main shock. The site effects at the strong motion site of the K-NET at Chokubetsu have a dominate peak at a period of 0.4 seconds. This amplification is due to soft soils having a thickness of about 13 meters. Contrary to the results at the two areas, site effects are not significantly different at the stations in the Taiki area, because of similarity on surface geological conditions.

  9. Earthquake Archaeology: a logical approach?

    NASA Astrophysics Data System (ADS)

    Stewart, I. S.; Buck, V. A.

    2001-12-01

    Ancient earthquakes can leave their mark in the mythical and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. Within this broad cross-disciplinary tramping ground, earthquake geologists have tended to focus on those aspects of the cultural record that are most familiar to them; the physical effects of seismic deformation on ancient constructions. One of the core difficulties with this 'earthquake archaeology' approach is that recent attempts to isolate structural criteria that are diagnostic or strongly suggestive of a seismic origin are undermined by the recognition that signs of ancient seismicity are generally indistinguishable from non-seismic mechanisms (poor construction, adverse geotechnical conditions). We illustrate the difficulties and inconsistencies in current proposed 'earthquake diagnostic' schemes by reference to two case studies of archaeoseismic damage in central Greece. The first concerns fallen columns at various Classical temple localities in mainland Greece (Nemea, Sounio, Olympia, Bassai) which, on the basis of observed structural criteria, are earthquake-induced but which are alternatively explained by archaeologists as the action of human disturbance. The second re-examines the almost type example of the Kyparissi site in the Atalanti region as a Classical stoa offset across a seismic surface fault, arguing instead for its deformation by ground instability. Finally, in highlighting the inherent ambiguity of archaeoseismic data, we consider the value of a logic-tree approach for quantifying and quantifying our uncertainities for seismic-hazard analysis.

  10. Injuries sustained by earthquake relief workers: a retrospective analysis of 207 relief workers during Nepal earthquake.

    PubMed

    Du, Feizhou; Wu, Jialing; Fan, Jin; Jiang, Rui; Gu, Ming; He, Xiaowu; Wang, Zhiming; He, Ci

    2016-07-26

    This study aimed to analyse the injuries sustained by rescue workers in earthquake relief efforts in high altitude areas for improving the ways of how to effectively prevent the injuries. The clinical data of 207 relief workers from four military hospitals in Tibet, who were injured in the Tibetan disaster areas of China during '4.25' Nepal earthquake rescue period, was retrospectively analyzed. The demographic features, sites of injury and causes of injury were investigated. The most frequently injured sites were the ankle-foot and hand-wrist (n = 61, 26.5 %), followed by injuries in leg-knee-calf (n = 22, 9.6 %), head-neck (4.87 %), thoracic and abdominal region (2.6 %) and lower back (3.9 %). The specific high-altitude environment increased the challenges associated with earthquake relief. The specific plateau environment and climate increased the burden and challenge in earthquake relief. The injury distribution data shown in this study demonstrated that effective organization and personnel protection can reduce the injury occurrences. Relief workers were prone to suffering various injuries and diseases under specific high-altitude environment.

  11. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  12. Empirical models for the prediction of ground motion duration for intraplate earthquakes

    NASA Astrophysics Data System (ADS)

    Anbazhagan, P.; Neaz Sheikh, M.; Bajaj, Ketan; Mariya Dayana, P. J.; Madhura, H.; Reddy, G. R.

    2017-07-01

    Many empirical relationships for the earthquake ground motion duration were developed for interplate region, whereas only a very limited number of empirical relationships exist for intraplate region. Also, the existing relationships were developed based mostly on the scaled recorded interplate earthquakes to represent intraplate earthquakes. To the author's knowledge, none of the existing relationships for the intraplate regions were developed using only the data from intraplate regions. Therefore, an attempt is made in this study to develop empirical predictive relationships of earthquake ground motion duration (i.e., significant and bracketed) with earthquake magnitude, hypocentral distance, and site conditions (i.e., rock and soil sites) using the data compiled from intraplate regions of Canada, Australia, Peninsular India, and the central and southern parts of the USA. The compiled earthquake ground motion data consists of 600 records with moment magnitudes ranging from 3.0 to 6.5 and hypocentral distances ranging from 4 to 1000 km. The non-linear mixed-effect (NLMEs) and logistic regression techniques (to account for zero duration) were used to fit predictive models to the duration data. The bracketed duration was found to be decreased with an increase in the hypocentral distance and increased with an increase in the magnitude of the earthquake. The significant duration was found to be increased with the increase in the magnitude and hypocentral distance of the earthquake. Both significant and bracketed durations were predicted higher in rock sites than in soil sites. The predictive relationships developed herein are compared with the existing relationships for interplate and intraplate regions. The developed relationship for bracketed duration predicts lower durations for rock and soil sites. However, the developed relationship for a significant duration predicts lower durations up to a certain distance and thereafter predicts higher durations compared to the

  13. Comparative Evaluation of Drug Deposition in Hair Samples Collected from Different Anatomical Body Sites.

    PubMed

    Tzatzarakis, Manolis N; Alegakis, Athanasios K; Kavvalakis, Matthaios P; Vakonaki, Elena; Stivaktakis, Polychronis D; Kanaki, Katerina; Vardavas, Alexander I; Barbounis, Emmanouil G; Tsatsakis, Aristidis M

    2017-04-01

    In this study, we focused on the validation of a method for the simultaneous detection and quantification of cannabinoids, cocaine and opiates in hair as well as on the distribution of the drugs deposition in hair collected from different anatomical body sites. The proposed analytical procedure was validated for various parameters such as selectivity, linearity, limit of quantification, precision, accuracy, matrix effect and recovery. Four hundred and eighty-one samples were collected during 2010-2015 from 231 drug abusers. A 6-h ultrasonic-assisted methanolic extraction was applied for the isolation of the drugs. The analysis was performed in an liquid chromatography-mass spectrometry system for the opiates and cocaine and in a gas chromatography-mass spectrometry system for the cannabinoids. Cocaine was the most frequent detected drug (68.8-80.5%) followed by cannabinoids (47.6-63.3%) and opiates (34.7-46.7%) depending on the body site that the samples were collected. The mean concentrations of Δ9-tetrahydrocannabinol (THC) were 0.63 ± 2.11 for head, 0.54 ± 1.03 for pubic, 0.34 ± 0.51 for axillary and 0.18 ± 0.18 ng/mg for chest hair samples. The values of cocaine were 6.52 ± 15.98, 4.64 ± 10.77, 6.96 ± 38.21 and 3.94 ± 6.35 ng/mg, while the values of 6-monoacetylmorphine (MAM) were 3.33 ± 5.89, 3.06 ± 9.33, 1.37 ± 1.37 and 16.4 ± 1.77 ng/mg for head, pubic, axillary and chest samples, respectively. Differences between the detected concentrations of cocaine and opiates between the hair samples of different anatomical sites, as well as the ratio of drug metabolites to the parent compounds were observed in some cases. Statistically significant differences in the mean detected levels were noticed for morphine and heroin between head and pubic hair and also for cocaine and benzoylecgonine, between head and axillary hair samples. Moreover, the ratio of MAM to morphine and THC to cannabinol seems to correlate statistically with the total opiate or

  14. Microearthquake networks and earthquake prediction

    USGS Publications Warehouse

    Lee, W.H.K.; Steward, S. W.

    1979-01-01

    A microearthquake network is a group of highly sensitive seismographic stations designed primarily to record local earthquakes of magnitudes less than 3. Depending on the application, a microearthquake network will consist of several stations or as many as a few hundred . They are usually classified as either permanent or temporary. In a permanent network, the seismic signal from each is telemetered to a central recording site to cut down on the operating costs and to allow more efficient and up-to-date processing of the data. However, telemetering can restrict the location sites because of the line-of-site requirement for radio transmission or the need for telephone lines. Temporary networks are designed to be extremely portable and completely self-contained so that they can be very quickly deployed. They are most valuable for recording aftershocks of a major earthquake or for studies in remote areas.  

  15. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2013-05-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground-level changes triggered by earthquakes of Mercalli intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (URL: http://www.ceri.uniroma1.it/cn/index.do?id=230&page=55) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the "Sapienza" University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground-level changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  16. Earthquake-induced ground failures in Italy from a reviewed database

    NASA Astrophysics Data System (ADS)

    Martino, S.; Prestininzi, A.; Romeo, R. W.

    2014-04-01

    A database (Italian acronym CEDIT) of earthquake-induced ground failures in Italy is presented, and the related content is analysed. The catalogue collects data regarding landslides, liquefaction, ground cracks, surface faulting and ground changes triggered by earthquakes of Mercalli epicentral intensity 8 or greater that occurred in the last millennium in Italy. As of January 2013, the CEDIT database has been available online for public use (http://www.ceri.uniroma1.it/cn/gis.jsp ) and is presently hosted by the website of the Research Centre for Geological Risks (CERI) of the Sapienza University of Rome. Summary statistics of the database content indicate that 14% of the Italian municipalities have experienced at least one earthquake-induced ground failure and that landslides are the most common ground effects (approximately 45%), followed by ground cracks (32%) and liquefaction (18%). The relationships between ground effects and earthquake parameters such as seismic source energy (earthquake magnitude and epicentral intensity), local conditions (site intensity) and source-to-site distances are also analysed. The analysis indicates that liquefaction, surface faulting and ground changes are much more dependent on the earthquake source energy (i.e. magnitude) than landslides and ground cracks. In contrast, the latter effects are triggered at lower site intensities and greater epicentral distances than the other environmental effects.

  17. Response of a 14-story Anchorage, Alaska, building in 2002 to two close earthquakes and two distant Denali fault earthquakes

    USGS Publications Warehouse

    Celebi, M.

    2004-01-01

    The recorded responses of an Anchorage, Alaska, building during four significant earthquakes that occurred in 2002 are studied. Two earthquakes, including the 3 November 2002 M7.9 Denali fault earthquake, with epicenters approximately 275 km from the building, generated long trains of long-period (>1 s) surface waves. The other two smaller earthquakes occurred at subcrustal depths practically beneath Anchorage and produced higher frequency motions. These two pairs of earthquakes have different impacts on the response of the building. Higher modes are more pronounced in the building response during the smaller nearby events. The building responses indicate that the close-coupling of translational and torsional modes causes a significant beating effect. It is also possible that there is some resonance occurring due to the site frequency being close to the structural frequency. Identification of dynamic characteristics and behavior of buildings can provide important lessons for future earthquake-resistant designs and retrofit of existing buildings. ?? 2004, Earthquake Engineering Research Institute.

  18. Site Effects, Attenuation and Signal Duration in the 1356 Basel Earthquake Area (Southern Upper Rhine Graben))

    NASA Astrophysics Data System (ADS)

    GRANET, M.; BOITEL, G.

    2001-12-01

    A field experiment has been carried out in the epicentral area of the Basel (northern Switzerland) earthquake of 18 October 1356, the largest historical earthquake in central Europe, with the aim to better characterize the spatial variability of the amplitudes of the seismic waves due to the local geology. Such site effects evaluation are needed in seismic engineering in order to establish effective building codes. In order to determine the site effects, we used a spectral ratio method, utilizing the data collected from a mobile network of 45 stations, installed from March to August 2000. As the main result, we found resonant peak amplitudes at 3, 4 and 6 Hz, which are more pronounced when the seismic stations are located on the sediments. From the same data set, attenuation laws have been calculated. They show the importance of the geometrical attenuation in this region and the influence of the local geology on the amplitude of ground velocities. Finally, we notice that the velocities are more amplified for the lower part of the observed seismic signal frequency band. The computation of relations linking the duration of the signal to the magnitude, the distance and the local geology shows a good correlation of stations characterized by long duration signals with those affected by site effects. As for ground velocities, the duration becomes also more significant at the low frequencies. Finally, we computed the quality factor QP using the spectral ratio method. Unfortunately does the limited number of available data prevent us to obtain a very detailed model. Nevertheless does QP show a very significant attenuation across the whole area, without large contrasts, and a decrease of the attenuation with increasing frequencies. To conclude, this newly collected data set from a dense array of 45 stations in this tectonically active and hazardous area shows large site effects associated with an increasing of both amplitudes and duration of the signal, especially at low

  19. Earthquake behavior along the Levant fault from paleoseismology (Invited)

    NASA Astrophysics Data System (ADS)

    Klinger, Y.; Le Beon, M.; Wechsler, N.; Rockwell, T. K.

    2013-12-01

    The Levant fault is a major continental structure 1200 km-long that bounds the Arabian plate to the west. The finite offset of this left-lateral strike-slip fault is estimated to be 105 km for the section located south of the restraining bend corresponding roughly to Lebanon. Along this southern section the slip-rate has been estimated over a large range of time scales, from few years to few hundreds thousands of years. Over these different time scales, studies agree for the slip-rate to be 5mm/yr × 2 mm/yr. The southern section of the Levant fault is particularly attractive to study earthquake behavior through time for several reasons: 1/ The fault geometry is simple and well constrained. 2/ The fault system is isolated and does not interact with obvious neighbor fault systems. 3/ The Middle-East, where the Levant fault is located, is the region in the world where one finds the longest and most complete historical record of past earthquakes. About 30 km north of the city of Aqaba, we opened a trench in the southern part of the Yotvata playa, along the Wadi Araba fault segment. The stratigraphy presents silty sand playa units alternating with coarser sand sediments from alluvial fans flowing westwards from the Jordan plateau. Two fault zones can be recognized in the trench and a minimum of 8 earthquakes can be identified, based on upward terminations of ground ruptures. Dense 14C dating through the entire exposure allows matching the 4 most recent events with historical events in AD1458, AD1212, AD1068 and AD748. Size of the ground rupture suggests a bi-modal distribution of earthquakes with earthquakes rupturing the entire Wadi Araba segment and earthquakes ending in the extensional jog forming the playa. Timing of earthquakes shows that no earthquakes occurred at this site since about 600 years, suggesting earthquake clustering along this section of the fault and potential for a large earthquake in the near future. 3D paleoseismological trenches at the Beteiha

  20. An atlas of ShakeMaps for selected global earthquakes

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.; Hotovec, Alicia J.; Lin, Kuo-Wan; Earle, Paul S.; Marano, Kristin D.

    2008-01-01

    An atlas of maps of peak ground motions and intensity 'ShakeMaps' has been developed for almost 5,000 recent and historical global earthquakes. These maps are produced using established ShakeMap methodology (Wald and others, 1999c; Wald and others, 2005) and constraints from macroseismic intensity data, instrumental ground motions, regional topographically-based site amplifications, and published earthquake-rupture models. Applying the ShakeMap methodology allows a consistent approach to combine point observations with ground-motion predictions to produce descriptions of peak ground motions and intensity for each event. We also calculate an estimated ground-motion uncertainty grid for each earthquake. The Atlas of ShakeMaps provides a consistent and quantitative description of the distribution and intensity of shaking for recent global earthquakes (1973-2007) as well as selected historic events. As such, the Atlas was developed specifically for calibrating global earthquake loss estimation methodologies to be used in the U.S. Geological Survey Prompt Assessment of Global Earthquakes for Response (PAGER) Project. PAGER will employ these loss models to rapidly estimate the impact of global earthquakes as part of the USGS National Earthquake Information Center's earthquake-response protocol. The development of the Atlas of ShakeMaps has also led to several key improvements to the Global ShakeMap system. The key upgrades include: addition of uncertainties in the ground motion mapping, introduction of modern ground-motion prediction equations, improved estimates of global seismic-site conditions (VS30), and improved definition of stable continental region polygons. Finally, we have merged all of the ShakeMaps in the Atlas to provide a global perspective of earthquake ground shaking for the past 35 years, allowing comparison with probabilistic hazard maps. The online Atlas and supporting databases can be found at http://earthquake.usgs.gov/eqcenter/shakemap/atlas.php/.

  1. Source and site response study of the 2008 Mount Carmel, Illinois, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    2011-01-01

    Two separate inversions are performed using the ground-motion data from the 2008 Mount Carmel, Illinois, earthquake. One uses aftershocks as empirical Green’s functions to determine a finite-fault slip distribution. The second uses mainshock ground-motion spectra to calculate source, path, and site response parameters. The slip inversion reveals a prominent asperity at the hypocenter with an area of approximately 6 km2, moment of 7.0 x 1023 dyn cm (Mw 5.20), and stress drop of about 100 bars. Considering all major and minor slip, the total moment is 1.7 x 1024 dyn cm (Mw=5.45). The rupture velocity is not resolvable due to the small source area. After fixing the geometric spreading, the source, path, and site parameter inversion yields a similar moment of 8.8 x 1023 dyn cm (Mw 5.26) and a corner frequency of 0.89 Hz, which also give a stress drop of approximately 100 bars. Our combined geometric and anelastic attenuation function, Q(f)r-b=1137f0.12r-0.94, fits the regional spectral amplitudes, where the data is more plentiful, as well as previously derived attenuation relationships. Site response spectra show prominent resonant frequencies that correlate with the thickness of Mississippi River sediments and Mississippi embayment deposits. In addition, higher frequency resonance peaks are observed that most likely represent higher mode resonances and resonances from shallower structure.

  2. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  3. Nonlinear and linear site response and basin effects in Seattle for the M 6.8 Nisqually, Washington, earthquake

    USGS Publications Warehouse

    Frankel, A.D.; Carver, D.L.; Williams, R.A.

    2002-01-01

    We used recordings of the M 6.8 Nisqually earthquake and its ML 3.4 aftershock to study site response and basin effects for 35 locations in Seattle, Washington. We determined site amplification from Fourier spectral ratios of the recorded horizontal ground motions, referenced to a soft-rock site. Soft-soil sites (generally National Earthquake Hazard Reduction Program [NEHRP] class E) on artificial fill and young alluvium have the largest 1-Hz amplifications (factors of 3-7) for both the mainshock and aftershock. These amplifications are correlated with areas of higher damage from the mainshock to major buildings and liquefaction. There are several indications of nonlinear response at the soft-soil sites for the mainshock ground motions, despite relatively modest peak accelerations in the S waves of 15%-22%g. First, the mainshock spectral ratios do not show amplification at 2-8 Hz as do the aftershock spectral ratios. Spectral peaks at frequencies below 2 Hz generally occur at lower frequencies for the mainshock spectral ratios than for the aftershock ratios. At one soft-soil site, there is a clear shift of the resonant frequency to a lower frequency for the mainshock compared with the aftershock. The frequency of this resonance increases in the coda of the mainshock record, indicating that the site response during the weaker motions of the coda is more linear than that of the initial S wave. Three of the soft-soil sites display cusped, one-sided mainshock accelerograms after the S wave. These soft-soil sites also show amplification at 10-20 Hz in the S wave, relative to the rock site, that is not observed for the aftershock. The cusped waveforms and 10-20-Hz amplification are symptomatic of nonlinear response at the soft-soil sites. These sites had nearby liquefaction. The largest amplifications for 0.5 Hz occur at soft-soil sites on the southern portion of the Seattle Basin. Stiff-soil sites (NEHRP classes D and C) on Pleistocene-age glacial deposits display

  4. Prompt Assessment of Global Earthquakes for Response (PAGER): A System for Rapidly Determining the Impact of Earthquakes Worldwide

    USGS Publications Warehouse

    Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy

    2009-01-01

    Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.

  5. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  6. Evidence for large prehistoric earthquakes in the northern New Madrid Seismic Zone, central United States

    USGS Publications Warehouse

    Li, Y.; Schweig, E.S.; Tuttle, M.P.; Ellis, M.A.

    1998-01-01

    We surveyed the area north of New Madris, Missouri, for prehistoric liquefaction deposits and uncovered two new sites with evidence of pre-1811 earthquakes. At one site, located about 20 km northeast of New Madrid, Missouri, radiocarbon dating indicates that an upper sand blow was probably deposited after A.D. 1510 and a lower sand blow was deposited prior to A.D. 1040. A sand blow at another site about 45 km northeast of New Madrid, Missouri, is dated as likely being deposited between A.D.55 and A.D. 1620 and represents the northernmost recognized expression of prehistoric liquefaction likely related to the New Madrid seismic zone. This study, taken together with other data, supports the occurrence of at least two earthquakes strong enough to indcue liquefaction or faulting before A.D. 1811, and after A.D. 400. One earthquake probably occurred around AD 900 and a second earthquake occurred around A.D. 1350. The data are not yet sufficient to estimate the magnitudes of the causative earthquakes for these liquefaction deposits although we conclude that all of the earthquakes are at least moment magnitude M ~6.8, the size of the 1895 Charleston, Missouri, earthquake. A more rigorous estimate of the number and sizes of prehistoric earthquakes in the New Madrid sesmic zone awaits evaluation of additional sites.

  7. On the behavior of site effects in Central Mexico (the Mexican Volcanic Belt - MVB), based on records of shallow earthquakes that occurred in the zone between 1998 and 2011

    NASA Astrophysics Data System (ADS)

    Clemente-Chavez, A.; Zúñiga, F. R.; Lermo, J.; Figueroa-Soto, A.; Valdés, C.; Montiel, M.; Chavez, O.; Arroyo, M.

    2013-11-01

    The Mexican Volcanic Belt (MVB) is a seismogenic zone that transects the central part of Mexico with an east-west orientation. The risk and hazard seismic of this seismogenic zone has not been studied at detail due to the scarcity of instrumental data as well as because seismicity in the continental regimen of Central Mexico is not too frequent, however, it is known that there are precedents of large earthquakes (Mw > 6.0) that have taken place in this zone. The Valley of Mexico City (VM) is the sole zone, within the MVB, which has been studied in detail; mainly focusing on the ground amplification during large events such as the 1985 subduction earthquake that occurred in Michoacan. The purpose of this article is to analyze the behavior of site effects in the MVB zone based on records of shallow earthquakes (data not reported before) that occurred in the zone between 1998 and 2011. We present a general overview of site effects on the MVB, a classification of the stations in order to reduce the uncertainty in the data to obtain attenuation parameters in future works, and some comparisons between the information presented here and that presented in previous studies. A regional evaluation of site effects and Fourier Acceleration Spectrum (FAS) shape was estimated based on 80 records of 22 shallow earthquakes within the MVB zone. Data of 25 stations were analyzed. Site effects were estimated by using the Horizontal-to-Vertical Spectral Ratio (HVSR) methodology. The results show that seismic waves are less amplified in the northeast sites of the MVB with respect to the rest of the zone and that it is possible to classify two groups of stations: (1) stations with Negligible Site Amplification (NSA) and (2) stations with Significant Site Amplification (SSA). Most of the sites in the first group showed small (< 3) amplifications while the second group showed amplifications ranging from 4 to 6.5 at frequencies of about 0.35, 0.75, 15 and 23 Hz. With these groups of

  8. Satellite Geodetic Constraints On Earthquake Processes: Implications of the 1999 Turkish Earthquakes for Fault Mechanics and Seismic Hazards on the San Andreas Fault

    NASA Technical Reports Server (NTRS)

    Reilinger, Robert

    2005-01-01

    Our principal activities during the initial phase of this project include: 1) Continued monitoring of postseismic deformation for the 1999 Izmit and Duzce, Turkey earthquakes from repeated GPS survey measurements and expansion of the Marmara Continuous GPS Network (MAGNET), 2) Establishing three North Anatolian fault crossing profiles (10 sitedprofile) at locations that experienced major surface-fault earthquakes at different times in the past to examine strain accumulation as a function of time in the earthquake cycle (2004), 3) Repeat observations of selected sites in the fault-crossing profiles (2005), 4) Repeat surveys of the Marmara GPS network to continue to monitor postseismic deformation, 5) Refining block models for the Marmara Sea seismic gap area to better understand earthquake hazards in the Greater Istanbul area, 6) Continuing development of models for afterslip and distributed viscoelastic deformation for the earthquake cycle. We are keeping close contact with MIT colleagues (Brad Hager, and Eric Hetland) who are developing models for S. California and for the earthquake cycle in general (Hetland, 2006). In addition, our Turkish partners at the Marmara Research Center have undertaken repeat, micro-gravity measurements at the MAGNET sites and have provided us estimates of gravity change during the period 2003 - 2005.

  9. Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake

    USGS Publications Warehouse

    Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.

    2004-01-01

    The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of

  10. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  11. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  12. 10 CFR 100.23 - Geologic and seismic siting criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Earthquake Ground Motion, and to permit adequate engineering solutions to actual or potential geologic and..., earthquake recurrence rates, fault geometry and slip rates, site foundation material, and seismically induced... Earthquake Ground Motion for the site, the potential for surface tectonic and nontectonic deformations, the...

  13. Stress triggering of the 1994 M = 6.7 Northridge, California, Earthquake by its predecessors

    USGS Publications Warehouse

    Stein, R.S.; King, G.C.P.; Lin, J.

    1994-01-01

    A model of stress transfer implies that earthquakes in 1933 and 1952 increased the Coulomb stress toward failure at the site of the 1971 San Fernando earthquake. The 1971 earthquake in turn raised stress and produced aftershocks at the site of the 1987 Whittier Narrows and 1994 Northridge ruptures. The Northridge main shock raised stress in areas where its aftershocks and surface faulting occurred. Together, the earthquakes with moment magnitude M ??? 6 near Los Angeles since 1933 have stressed parts of the Oak Ridge, Sierra Madre, Santa Monica Mountains, Elysian Park, and Newport-Inglewood faults by more than 1 bar. Although too small to cause earthquakes, these stress changes can trigger events if the crust is already near failure or advance future earthquake occurrence if it is not.

  14. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    basis to disclose an acting earthquake shear stress S at top of the tectonic plate is established at the depth of 600-800m (Window). This concept is supported by outcome of the Japanese government stress measurement made at the epicenter of the Kobe earthquake of 1995, where S is found to be less than 5 MPa. At the same time S at the earthquake active Ashio mining district was found to be 36 MPa (90 percent of maximum S) at Window. These findings led to formulation of a quantitative method proposed to monitor earthquake triggering potential in and around any growing earthquake stress nucleus along shallow active faults. For future earthquake time prediction, the Stressmeter can be applied first to survey general distribution of earthquake shear stress S along major active faults. A site with its shear stress greater than 30 MPa may be identified as a site of growing stress nucleus. A Stressmeter must be permanently buried at the site to monitor future stress growth toward a possible triggering by mathematical analysis of the stress excursion dynamics. This is made possible by the automatic stress measurement capability of the Stressmeter at a frequency up to 100 times per day. The significance of this approach is a possibility to save lives by time-prediction of a forthcoming major earthquake with accuracy in hours and minutes.

  15. Configurational entropy of critical earthquake populations

    NASA Astrophysics Data System (ADS)

    Goltz, C.; Böse, M.

    2002-10-01

    We present an approach to describe the evolution of distributed seismicity by configurational entropy. We demonstrate the detection of phase transitions in the sense of a critical point phenomenon in a 2D site-percolation model and in temporal and spatial vicinity to the 1992, M7.3 Landers earthquake in Southern California. Our findings support the assumption of intermittent criticality in the Earth's crust. We also address the potential usefulness of the method for earthquake catalogue declustering.

  16. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  17. EXPERIMENTAL AND NUMERICAL APPROACHES OF TOPOGRAPHIC SITE EFFECTS CLAIMED TO BE RESPONSIBLE FOR 1909 PROVENCE EARTHQUAKE DAMAGE DISTRIBUTION

    NASA Astrophysics Data System (ADS)

    Duval, A.; Bertrand, E.; Régnier, J.; Grasso, E.; Gance, J.; Glinsky, N.; Semblat, J.

    2009-12-01

    One of the strongest historical earthquakes in France metropolitan territory occurred in 1909, in Provence, south of France. In the eighties, a scenario study predicted that a similar earthquake may lead to more than the 46 deaths of 1909 and a tremendous economical cost caused by increasing urbanisation in this area. The 1909 maximal intensity was estimated at IX. But a lot of municipalities exhibited strong variations in damage distribution. For some of them, like Rognes and Vernègues, the historical perched village suffered more damage than constructions built on the flat part of the territories. While seismologists realised site effect importance in earthquakes, this 1909 damage distribution became the most famous french illustration of topographic site effect. But if ray theory explains that relief can indubitably focus waves and amplify seismic signal for specific wavelength according to the location on the slope, some doubts remain about the real impact of topographic effects in 1909 damage distribution. It may also be related to the fact that the different types of building were not uniformly spread on the territories and/or that the old structures were more vulnerable than new ones. Finally, was the seismic signal really different along the relief during 1909 earthquake ? Trying to solve this question, several field campaigns were conducted on the village of Rognes. The first one consisted in measuring microtremors on several points and computing H/V ratios (Nogoshi, 1970, Nakamura, 1989). The H/V curves on flat part of the territory do not exhibit any clear peak except for one site on the north where a high frequency peak should be relative to a superficial and thin soft layer. On the contrary, the H/V curves obtained on the top of the relief show a high peak around 1 Hertz. We then decided to install 9 seismic stations to record continuously seismicity at key-points of the relief. The seismicity rate is very low in this region, but the 2 years of

  18. The HayWired Earthquake Scenario—Earthquake Hazards

    USGS Publications Warehouse

    Detweiler, Shane T.; Wein, Anne M.

    2017-04-24

    The HayWired scenario is a hypothetical earthquake sequence that is being used to better understand hazards for the San Francisco Bay region during and after an earthquake of magnitude 7 on the Hayward Fault. The 2014 Working Group on California Earthquake Probabilities calculated that there is a 33-percent likelihood of a large (magnitude 6.7 or greater) earthquake occurring on the Hayward Fault within three decades. A large Hayward Fault earthquake will produce strong ground shaking, permanent displacement of the Earth’s surface, landslides, liquefaction (soils becoming liquid-like during shaking), and subsequent fault slip, known as afterslip, and earthquakes, known as aftershocks. The most recent large earthquake on the Hayward Fault occurred on October 21, 1868, and it ruptured the southern part of the fault. The 1868 magnitude-6.8 earthquake occurred when the San Francisco Bay region had far fewer people, buildings, and infrastructure (roads, communication lines, and utilities) than it does today, yet the strong ground shaking from the earthquake still caused significant building damage and loss of life. The next large Hayward Fault earthquake is anticipated to affect thousands of structures and disrupt the lives of millions of people. Earthquake risk in the San Francisco Bay region has been greatly reduced as a result of previous concerted efforts; for example, tens of billions of dollars of investment in strengthening infrastructure was motivated in large part by the 1989 magnitude 6.9 Loma Prieta earthquake. To build on efforts to reduce earthquake risk in the San Francisco Bay region, the HayWired earthquake scenario comprehensively examines the earthquake hazards to help provide the crucial scientific information that the San Francisco Bay region can use to prepare for the next large earthquake, The HayWired Earthquake Scenario—Earthquake Hazards volume describes the strong ground shaking modeled in the scenario and the hazardous movements of

  19. Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

    USGS Publications Warehouse

    Kayen, Robert E.; Carkin, Brad A.; Corbett, Skye C.; Zangwill, Aliza; Estevez, Ivan; Lai, Lena

    2015-01-01

    Vertical one-dimensional shear wave velocity (Vs) profiles are presented for 25 strong-motion instrument sites along the Mid-Atlantic eastern seaboard, Piedmont region, and Appalachian region, which surround the epicenter of the M5.8 Mineral, Virginia, Earthquake of August 23, 2011. Testing was performed at sites in Pennsylvania, Maryland, West Virginia, Virginia, the District of Columbia, North Carolina, and Tennessee. The purpose of the study is to determine the detailed site velocity profile, the average velocity in the upper 30 meters of the profile (VS,30), the average velocity for the entire profile (VS,Z), and the National Earthquake Hazards Reduction Program (NEHRP) site classification. The Vs profiles are estimated using a non-invasive continuous-sine-wave method for gathering the dispersion characteristics of surface waves. A large trailer-mounted active source was used to shake the ground during the testing and produce the surface waves. Shear wave velocity profiles were inverted from the averaged dispersion curves using three independent methods for comparison, and the root-mean square combined coefficient of variation (COV) of the dispersion and inversion calculations are estimated for each site.

  20. Strong nonlinear dependence of the spectral amplification factors of deep Vrancea earthquakes magnitude

    NASA Astrophysics Data System (ADS)

    Marmureanu, Gheorghe; Ortanza Cioflan, Carmen; Marmureanu, Alexandru

    2010-05-01

    Nonlinear effects in ground motion during large earthquakes have long been a controversial issue between seismologists and geotechnical engineers. Aki wrote in 1993:"Nonlinear amplification at sediments sites appears to be more pervasive than seismologists used to think…Any attempt at seismic zonation must take into account the local site condition and this nonlinear amplification( Local site effects on weak and strong ground motion, Tectonophysics,218,93-111). In other words, the seismological detection of the nonlinear site effects requires a simultaneous understanding of the effects of earthquake source, propagation path and local geological site conditions. The difficulty for seismologists in demonstrating the nonlinear site effects has been due to the effect being overshadowed by the overall patterns of shock generation and path propagation. The researchers from National Institute for Earth Physics ,in order to make quantitative evidence of large nonlinear effects, introduced the spectral amplification factor (SAF) as ratio between maximum spectral absolute acceleration (Sa), relative velocity (Sv) , relative displacement (Sd) from response spectra for a fraction of critical damping at fundamental period and peak values of acceleration(a-max),velocity (v-max) and displacement (d-max),respectively, from processed strong motion record and pointed out that there is a strong nonlinear dependence on earthquake magnitude and site conditions.The spectral amplification factors(SAF) are finally computed for absolute accelerations at 5% fraction of critical damping (β=5%) in five seismic stations: Bucharest-INCERC(soft soils, quaternary layers with a total thickness of 800 m);Bucharest-Magurele (dense sand and loess on 350m); Cernavoda Nuclear Power Plant site (marl, loess, limestone on 270 m) Bacau(gravel and loess on 20m) and Iassy (loess, sand, clay, gravel on 60 m) for last strong and deep Vrancea earthquakes: March 4,1977 (MGR =7.2 and h=95 km);August 30

  1. The 2008 Wenchuan Earthquake and the Rise and Fall of Earthquake Prediction in China

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Wang, K.

    2009-12-01

    damage than those that did not. However, the progress in practice was very far behind the progress in knowledge and regulations; more strict enforcement of seismic design provisions and wiser selection of construction sites would have saved many more lives in the Wenchuan area. The Wenchuan earthquake has started a new era. Confidence in prediction has dropped to a historical low despite a strong sentimental attachment to it, and practical mitigation management has firmly gained its priority position.

  2. Atypical soil behavior during the 2011 Tohoku earthquake ( Mw = 9)

    NASA Astrophysics Data System (ADS)

    Pavlenko, Olga V.

    2016-07-01

    To understand physical mechanisms of generation of abnormally high peak ground acceleration (PGA; >1 g) during the Tohoku earthquake, models of nonlinear soil behavior in the strong motion were constructed for 27 KiK-net stations located in the near-fault zones to the south of FKSH17. The method of data processing used was developed by Pavlenko and Irikura, Pure Appl Geophys 160:2365-2379, 2003 and previously applied for studying soil behavior at vertical array sites during the 1995 Kobe (Mw = 6.8) and 2000 Tottori (Mw = 6.7) earthquakes. During the Tohoku earthquake, we did not observe a widespread nonlinearity of soft soils and reduction at the beginning of strong motion and recovery at the end of strong motion of shear moduli in soil layers, as usually observed during strong earthquakes. Manifestations of soil nonlinearity and reduction of shear moduli during strong motion were observed at sites located close to the source, in coastal areas. At remote sites, where abnormally high PGAs were recorded, shear moduli in soil layers increased and reached their maxima at the moments of the highest intensity of the strong motion, indicating soil hardening. Then, shear moduli reduced with decreasing the intensity of the strong motion. At soft-soil sites, the reduction of shear moduli was accompanied by a step-like decrease of the predominant frequencies of motion. Evidently, the observed soil hardening at the moments of the highest intensity of the strong motion contributed to the occurrence of abnormally high PGA, recorded during the Tohoku earthquake.

  3. On near-source earthquake triggering

    USGS Publications Warehouse

    Parsons, T.; Velasco, A.A.

    2009-01-01

    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  4. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    USGS Publications Warehouse

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  5. Anatomic Site Variability in Rat Skeletal Uptake and Desorption Of Fluorescently Labeled Bisphosphonate

    PubMed Central

    Wen, D.; Qing, L.; Harrison, G.; Golub, E.; Akintoye, S.O.

    2010-01-01

    Objectives Bisphosphonates commonly used to treat osteoporosis, Paget’s disease, multiple myeloma, hypercalcemia of malignancy and osteolytic lesions of cancer metastasis have been associated with bisphosphonate-associated jaw osteonecrosis (BJON). The underlying pathogenesis of BJON is unclear, but disproportionate bisphosphonate concentration in the jaw has been proposed as one potential etiological factor. This study tested the hypothesis that skeletal biodistribution of intravenous bisphosphonate is anatomic site-dependent in a rat model system. Materials and Methods Fluorescently labeled pamidronate was injected intravenously in athymic rats of equal weights followed by in vivo whole body fluorimetry, ex vivo optical imaging of oral, axial and appendicular bones and ethylenediaminetetraacetic acid bone decalcification to assess hydroxyapatite-bound bisphosphonate. Results Bisphosphonate uptake and bisphosphonate released per unit calcium were similar in oral and appendicular bones but lower than those in axial bones. Hydroxyapatite-bound bisphosphonate liberated by sequential acid decalcification was highest in oral relative to axial and appendicular bones (p < 0.05). Conclusions This study demonstrates regional differences in uptake and release of bisphosphonate from oral, axial and appendicular bones of immune deficient rats. PMID:21122034

  6. Predicted Surface Displacements for Scenario Earthquakes in the San Francisco Bay Region

    USGS Publications Warehouse

    Murray-Moraleda, Jessica R.

    2008-01-01

    In the immediate aftermath of a major earthquake, the U.S. Geological Survey (USGS) will be called upon to provide information on the characteristics of the event to emergency responders and the media. One such piece of information is the expected surface displacement due to the earthquake. In conducting probabilistic hazard analyses for the San Francisco Bay Region, the Working Group on California Earthquake Probabilities (WGCEP) identified a series of scenario earthquakes involving the major faults of the region, and these were used in their 2003 report (hereafter referred to as WG03) and the recently released 2008 Uniform California Earthquake Rupture Forecast (UCERF). Here I present a collection of maps depicting the expected surface displacement resulting from those scenario earthquakes. The USGS has conducted frequent Global Positioning System (GPS) surveys throughout northern California for nearly two decades, generating a solid baseline of interseismic measurements. Following an earthquake, temporary GPS deployments at these sites will be important to augment the spatial coverage provided by continuous GPS sites for recording postseismic deformation, as will the acquisition of Interferometric Synthetic Aperture Radar (InSAR) scenes. The information provided in this report allows one to anticipate, for a given event, where the largest displacements are likely to occur. This information is valuable both for assessing the need for further spatial densification of GPS coverage before an event and prioritizing sites to resurvey and InSAR data to acquire in the immediate aftermath of the earthquake. In addition, these maps are envisioned to be a resource for scientists in communicating with emergency responders and members of the press, particularly during the time immediately after a major earthquake before displacements recorded by continuous GPS stations are available.

  7. Earthquakes

    MedlinePlus

    ... Search Term(s): Main Content Home Be Informed Earthquakes Earthquakes An earthquake is the sudden, rapid shaking of the earth, ... by the breaking and shifting of underground rock. Earthquakes can cause buildings to collapse and cause heavy ...

  8. Regional spectral analysis of three moderate earthquakes in Northeastern North America

    USGS Publications Warehouse

    Boatwright, John; Seekins, Linda C.

    2011-01-01

    We analyze Fourier spectra obtained from the horizontal components of broadband and accelerogram data from the 1997 Cap-Rouge, the 2002 Ausable Forks, and the 2005 Rivière-du-Loup earthquakes, recorded by Canadian and American stations sited on rock at hypocentral distances from 23 to 602 km. We check the recorded spectra closely for anomalies that might result from site resonance or source effects. We use Beresnev and Atkinson’s (1997) near-surface velocity structures and Boore and Joyner’s (1997) quarter-wave method to estimate site response at hard- and soft-rock sites. We revise the Street et al. (1975) model for geometrical spreading, adopting a crossover distance of ro=50 km instead of 100 km. We obtain an average attenuation of Q=410±25f0.50±0.03 for S+Lg+surface waves with ray paths in the Appalachian and southeastern Grenville Provinces. We correct the recorded spectra for attenuation and site response to estimate source spectral shape and radiated energy for these three earthquakes and the 1988 M 5.8 Saguenay earthquake. The Brune stress drops range from 130 to 419 bars, and the apparent stresses range from 39 to 63 bars. The corrected source spectral shapes of these earthquakes are somewhat variable for frequencies from 0.2 to 2 Hz, falling slightly below the fitted Brune spectra.

  9. New insight into the 1556 M8 Huaxian earthquake in China

    NASA Astrophysics Data System (ADS)

    Ma, J.

    2017-12-01

    The disastrous 1556 M8 Huaxian earthquake in China took away 0.8Ma lives then as well as attracted scientists' attention. Although the Huashan front fault and Weinan plateform-front fault at the south margin of Weihe basin was responsible for this earthquake, we know less about the fault behaviors. There's evidence that the modern riverbank offset and older geomorphic scarps in Chishui river site on Weinan plateau-front fault from the Pleiades DEM. Here, we did a 3D trench excavation model using SfM work, drilling profiles and geomorphological measurement there to revive the site for multiearthquakes. It turns out two events occurred on the normal fault with pretty high offsets 9.4m and 7.8-8.0m respectively, the later one resulted from Huaxian earthquake. And we estimate that the fault slip rate approximately 1.48-1.75 mm/a. Thus, we find that the older earthquake also produced a similar fault offsets to the 1556 earthquake showing as characteristics earthquake. The paleoseismic study demonstrates that the Weinan pateform-front fault plays a role in boundary faults of Weihe basin, which can contribute to the basin evolution of regions of active faulting.

  10. Seroprevalence of Human Papillomavirus (HPV) Type 6, 11, 16, 18, by Anatomic Site of HPV Infection, in Women Aged 16-64 Years living in the Metropolitan Area of San Juan, Puerto Rico.

    PubMed

    Pérez-Caraballo, Aixa M; Suarez, Erick; Unger, Elizabeth R; Palefsky, Joel M; Panicker, Gitika; Ortiz, Ana Patricia

    2018-03-01

    It is unknown if human papillomavirus (HPV) serum antibody responses vary by anatomic site of infection. We aimed to assess the seroprevalence for HPV 6, 11, 16 and 18 in association with HPV DNA detection in different anatomic sites among women. This cross sectional population-based study analyzed data from 524 women aged 16-64 years living in the San Juan metropolitan area of Puerto Rico (PR). Questionnaires were used to assess demographic and lifestyle variables, while anogenital and blood samples were collected for HPV analysis. Logistic regression models were used to estimate the adjusted prevalence odds ratio (POR) in order to determine the association between HPV DNA infection status in the cervix and anus and serum antibody status, controlling for different potential confounders. Overall, 46.9% of women had detectable antibodies to one or more types whereas 8.7% had HPV DNA for one or more of these types detected in cervix (4.0%) or anus (6.5%). Women with cervical HPV detection tended to be more HPV seropositive than women without cervical detection (adjusted POR (95%CI): 2.41 (0.90, 6.47), p=0.078); however the type-specific association between cervical DNA and serum antibodies was only significant for HPV 18 (adjusted POR (95% CI): 5.9 (1.03, 33.98)). No significant association was detected between anal HPV and seropositivity (p>0.10). Differences in the anatomic site of infection could influence seroconversion, however, longitudinal studies will be required for further evaluation. This information will be instrumental in advancing knowledge of immune mechanisms involved in anatomic site response.

  11. 77 FR 64314 - Advisory Committee on Earthquake Hazards Reduction Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... is to discuss engineering needs for existing buildings, to review the National Earthquake Hazards... Committee business. The final agenda will be posted on the NEHRP Web site at http://nehrp.gov/ . DATES: The... assesses: Trends and developments in the science and engineering of earthquake hazards reduction; The...

  12. 10 CFR 60.122 - Siting criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...

  13. 10 CFR 60.122 - Siting criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...

  14. 10 CFR 60.122 - Siting criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...

  15. 10 CFR 60.122 - Siting criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...

  16. Progress report on the Worldwide Earthquake Risk Management (WWERM) Program

    USGS Publications Warehouse

    Algermissen, S.T.; Hays, Walter W.; Krumpe, Paul R.

    1992-01-01

    Considerable progress has been made in the Worldwide Earthquake Risk Management (WWERM) Program since its initiation in late 1989 as a cooperative program of the Agency for International Development (AID), Office of U.S. Foreign Disaster Assistance (OFDA), and the U.S. Geological Survey. Probabilistic peak acceleration and peak Modified Mercalli intensity (MMI) maps have been prepared for Chile and for Sulawesi province in Indonesia. Earthquake risk (loss) studies for dwellings in Gorontalo, North Sulawesi, have been completed and risk studies for dwellings in selected areas of central Chile are underway. A special study of the effect of site response on earthquake ground motion estimation in central Chile has also been completed and indicates that site response may modify the ground shaking by as much as plus or minus two units of MMI. A program for the development of national probabilistic ground motion maps for the Philippines is now underway and pilot studies of earthquake ground motion and risk are being planned for Morocco.

  17. Rapid earthquake hazard and loss assessment for Euro-Mediterranean region

    NASA Astrophysics Data System (ADS)

    Erdik, Mustafa; Sesetyan, Karin; Demircioglu, Mine; Hancilar, Ufuk; Zulfikar, Can; Cakti, Eser; Kamer, Yaver; Yenidogan, Cem; Tuzun, Cuneyt; Cagnan, Zehra; Harmandar, Ebru

    2010-10-01

    The almost-real time estimation of ground shaking and losses after a major earthquake in the Euro-Mediterranean region was performed in the framework of the Joint Research Activity 3 (JRA-3) component of the EU FP6 Project entitled "Network of Research Infra-structures for European Seismology, NERIES". This project consists of finding the most likely location of the earthquake source by estimating the fault rupture parameters on the basis of rapid inversion of data from on-line regional broadband stations. It also includes an estimation of the spatial distribution of selected site-specific ground motion parameters at engineering bedrock through region-specific ground motion prediction equations (GMPEs) or physical simulation of ground motion. By using the Earthquake Loss Estimation Routine (ELER) software, the multi-level methodology developed for real time estimation of losses is capable of incorporating regional variability and sources of uncertainty stemming from GMPEs, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships.

  18. Ground-rupturing earthquakes on the northern Big Bend of the San Andreas Fault, California, 800 A.D. to Present

    USGS Publications Warehouse

    Scharer, Katherine M.; Weldon, Ray; Biasi, Glenn; Streig, Ashley; Fumal, Thomas E.

    2017-01-01

    Paleoseismic data on the timing of ground-rupturing earthquakes constrain the recurrence behavior of active faults and can provide insight on the rupture history of a fault if earthquakes dated at neighboring sites overlap in age and are considered correlative. This study presents the evidence and ages for 11 earthquakes that occurred along the Big Bend section of the southern San Andreas Fault at the Frazier Mountain paleoseismic site. The most recent earthquake to rupture the site was the Mw7.7–7.9 Fort Tejon earthquake of 1857. We use over 30 trench excavations to document the structural and sedimentological evolution of a small pull-apart basin that has been repeatedly faulted and folded by ground-rupturing earthquakes. A sedimentation rate of 0.4 cm/yr and abundant organic material for radiocarbon dating contribute to a record that is considered complete since 800 A.D. and includes 10 paleoearthquakes. Earthquakes have ruptured this location on average every ~100 years over the last 1200 years, but individual intervals range from ~22 to 186 years. The coefficient of variation of the length of time between earthquakes (0.7) indicates quasiperiodic behavior, similar to other sites along the southern San Andreas Fault. Comparison with the earthquake chronology at neighboring sites along the fault indicates that only one other 1857-size earthquake could have occurred since 1350 A.D., and since 800 A.D., the Big Bend and Mojave sections have ruptured together at most 50% of the time in Mw ≥ 7.3 earthquakes.

  19. Earthquakes.

    ERIC Educational Resources Information Center

    Walter, Edward J.

    1977-01-01

    Presents an analysis of the causes of earthquakes. Topics discussed include (1) geological and seismological factors that determine the effect of a particular earthquake on a given structure; (2) description of some large earthquakes such as the San Francisco quake; and (3) prediction of earthquakes. (HM)

  20. Monitoring of soil radon by SSNTD in Eastern India in search of possible earthquake precursor.

    PubMed

    Deb, Argha; Gazi, Mahasin; Ghosh, Jayita; Chowdhury, Saheli; Barman, Chiranjib

    2018-04-01

    The present paper deals with monitoring soil radon-222 concentration at two different locations, designated Site A and Site B, 200 m apart at Jadavpur University campus, Kolkata, India, with a view to find possible precursors for the earthquakes that occurred within a few hundred kilometers from the monitoring site. The solid state nuclear track detector CR-39 has been used for detection of radon gas coming out from soil. Radon-222 time series at both locations during the period August 2012-December 2013 have been analysed. Distinct anomalies in the soil radon time series have been observed for seven earthquakes of magnitude greater than 4.0 M that occurred during this time. Of these, radon anomalies for two earthquakes have been observed at both locations A and B. Absence of anomalies for some other earthquakes has been discussed, and the observations have been compared with some earthquake precursor models. Copyright © 2018. Published by Elsevier Ltd.

  1. Late Holocene megathrust earthquakes in south central Chile

    NASA Astrophysics Data System (ADS)

    Garrett, Ed; Shennan, Ian; Gulliver, Pauline; Woodroffe, Sarah

    2013-04-01

    A lack of comprehensive understanding of the seismic hazards associated with a subduction zone can lead to inadequate anticipation of earthquake and tsunami magnitudes. Four hundred and fifty years of Chilean historical documents record the effects of numerous great earthquakes; however, with recurrence intervals between the largest megathrust earthquakes approaching 300 years, seismic hazard assessment requires longer chronologies. This research seeks to verify and extend historical records in south central Chile using a relative-sea level approach to palaeoseismology. Our quantitative, diatom-based approaches to relative sea-level reconstruction are successful in reconstructing the magnitude of coseismic deformation during recent, well documented Chilean earthquakes. The few disparities between my estimates and independent data highlight the possibility of shaking-induced sediment consolidation in tidal marshes. Following this encouraging confirmation of the approach, we quantify land-level changes in longer sedimentary records from the centre of the rupture zone of the 1960 Valdivia earthquake. Here, laterally extensive marsh soils abruptly overlain by low intertidal sediments attest to the occurrence of four megathrust earthquakes. Sites preserve evidence of the 1960 and 1575 earthquakes and we constrain the timing of two predecessors to 1270 to 1410 and 1050 to 1200. The sediments and biostratigraphy lack evidence for the historically documented 1737 and 1837 earthquakes.

  2. Preliminary Analysis of Multibeam, Subbottom, and Water Column Data Collected from the Juan de Fuca Plate and Gorda Ridge Earthquake Swarm Sites, March-April 2008.

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Dziak, R. P.; Embley, R. W.; Lupton, J. E.; Greene, R. R.; Chadwick, W. W.; Lilley, M.; Bohnenstiehl, D. R.; Braunmiller, J.; Fowler, M.; Resing, J.

    2008-12-01

    Two oceanographic expeditions were undertaken in the northeast Pacific during April and September of 2008 to collect a variety of scientific data at the sites of intense earthquake swarms that occurred from 30 March to 9 April 2008. The earthquake swarms were detected by the NOAA/PMEL and US Navy SOSUS hydrophone system in the northeast Pacific. The first swarm occurred within the central Juan de Fuca Plate, ~280 km west of the Oregon coast and ~70 km north of the Blanco Transform Fault Zone (BTFZ). Time history of the events indicate this swarm was not a typical mainshock-aftershock sequence, and was the largest SOSUS detected swarm within the intraplate. This intraplate swarm activity was followed by three distinct clusters of earthquakes located along the BTFZ. Two of the clusters, which began on 10 and 12 April, were initiated by MW 5+ earthquakes suggesting these were mainshock-aftershock sequences, and the number of earthquakes on the BTFZ were small relative to the intraplate swarm. On 22 April, another intense earthquake swarm began on the northern Gorda Ridge segment adjacent to the BTFZ. The Gorda swarm produced >1000 SOSUS detected earthquakes over a five-day duration, with activity distributed between the mid-segment high and the ridge-transform intersection. This swarm was of special interest because of previous magmatic activity near its location in 1996. Overall, the March-April earthquake activity showed an interesting spatio-temporal progression, beginning at the intraplate, to the transform, then to a spreading event at the ridge. This pattern once again demonstrates the Juan de Fuca plate is continually moving and converging with North America at the Cascadia Subduction Zone. As the initial swarm was not focused on the ridge crest, it was not interpreted as a significant eruptive event, and we did not advocate a large-scale Ridge2000 response effort. The earthquake activity, however, did have an unusual character and therefore a short (four

  3. Medical Efforts and Injury Patterns of Military Hospital Patients Following the 2013 Lushan Earthquake in China: A Retrospective Study

    PubMed Central

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Liu, Zhipeng; Lv, Yipeng; Zhang, Lulu

    2015-01-01

    The aim of this paper is to investigate medical efforts and injury profiles of victims of the Lushan earthquake admitted to three military hospitals. This study retrospectively investigated the clinical records of 266 admitted patients evacuated from the Lushan earthquake area. The 2005 version of the Abbreviated Injury Scale (AIS-2005) was used to identify the severity of each injury. Patient demographic data, complaints, diagnoses, injury types, prognosis, means of transportation, and cause of injury were all reviewed individually. The statistical analysis of the study was conducted primarily using descriptive statistics. Of the 266 patients, 213 (80.1%) were admitted in the first two days. A total of 521 injury diagnoses were recorded in 266 patients. Earthquake-related injuries were primarily caused by buildings collapsing (38.4%) and victims being struck by objects (33.8%); the most frequently injured anatomic sites were the lower extremities and pelvis (34.2%) and surface area of the body (17.9%). Fracture (41.5%) was the most frequent injury, followed by soft tissue injury (27.5%), but crush syndrome was relatively low (1.2%) due to the special housing structures in the Lushan area. The most commonly used procedure was suture and dressings (33.7%), followed by open reduction and internal fixation (21.9%).The results of this study help formulate recommendations to improve future disaster relief and emergency planning in remote, isolated, and rural regions of developing countries. PMID:26334286

  4. Medical Efforts and Injury Patterns of Military Hospital Patients Following the 2013 Lushan Earthquake in China: A Retrospective Study.

    PubMed

    Kang, Peng; Tang, Bihan; Liu, Yuan; Liu, Xu; Liu, Zhipeng; Lv, Yipeng; Zhang, Lulu

    2015-08-31

    The aim of this paper is to investigate medical efforts and injury profiles of victims of the Lushan earthquake admitted to three military hospitals. This study retrospectively investigated the clinical records of 266 admitted patients evacuated from the Lushan earthquake area. The 2005 version of the Abbreviated Injury Scale (AIS-2005) was used to identify the severity of each injury. Patient demographic data, complaints, diagnoses, injury types, prognosis, means of transportation, and cause of injury were all reviewed individually. The statistical analysis of the study was conducted primarily using descriptive statistics. Of the 266 patients, 213 (80.1%) were admitted in the first two days. A total of 521 injury diagnoses were recorded in 266 patients. Earthquake-related injuries were primarily caused by buildings collapsing (38.4%) and victims being struck by objects (33.8%); the most frequently injured anatomic sites were the lower extremities and pelvis (34.2%) and surface area of the body (17.9%). Fracture (41.5%) was the most frequent injury, followed by soft tissue injury (27.5%), but crush syndrome was relatively low (1.2%) due to the special housing structures in the Lushan area. The most commonly used procedure was suture and dressings (33.7%), followed by open reduction and internal fixation (21.9%).The results of this study help formulate recommendations to improve future disaster relief and emergency planning in remote, isolated, and rural regions of developing countries.

  5. Extrinsic skin ageing in German, Chinese and Japanese women manifests differently in all three groups depending on ethnic background, age and anatomical site.

    PubMed

    Vierkötter, Andrea; Hüls, Anke; Yamamoto, Ai; Stolz, Sabine; Krämer, Ursula; Matsui, Mary S; Morita, Akimichi; Wang, Sijia; Li, Zhiwen; Jin, Li; Krutmann, Jean; Schikowski, Tamara

    2016-09-01

    It has been suggested that extrinsic skin ageing manifests differently in Caucasians versus East Asians. In particular, from previous studies it was concluded that Caucasians are more prone to develop wrinkles, whereas pigment spot formation is the hallmark of extrinsic skin ageing in East Asians. However, these assumptions are based on a very limited number of studies which did not include different East Asian populations. We here compare the manifestation of extrinsic skin ageing signs in German, Japanese and Chinese women by specifically elucidating the age and anatomical site dependence of any potential ethnic difference. In the present study, we assessed skin ageing in N=902 German, N=165 Japanese and N=1260 Chinese women ranging from 30 to 90 years by means of SCINEXA™. Linear regression analysis was used to test for ethnic differences and their age and site dependence adjusted for educational level, sun exposure, smoking and sun protection behaviours. Pigment spots and wrinkles on the face were present among all three ethnic groups and differences were influenced by age and anatomical sites independently of further influencing factors. Pigment spots on the forehead were most pronounced over the whole age range in Chinese and German women and least developed in Japanese. Pigment spots on cheeks were a typical extrinsic skin an ageing sign in the two East Asian populations in all age groups. However, in older German women they reach the same level as observed in the two East Asian populations. In contrast, pigment spots on arms and hands were significantly more pronounced in German women ≥45years of age. Wrinkles were not exclusively a skin an ageing sign of German women, but were also very pronounced in Chinese women on forehead, between the eyebrows and in the crow's feet area. These results corroborate the previous notion that the occurrence of pigments spots and wrinkles is different between Caucasians and East Asians. In addition, this study shows

  6. Earthquakes.

    ERIC Educational Resources Information Center

    Pakiser, Louis C.

    One of a series of general interest publications on science topics, the booklet provides those interested in earthquakes with an introduction to the subject. Following a section presenting an historical look at the world's major earthquakes, the booklet discusses earthquake-prone geographic areas, the nature and workings of earthquakes, earthquake…

  7. Age and significance of earthquake-induced liquefaction near Vancouver, British Columbia, Canada

    USGS Publications Warehouse

    Clague, J.J.; Naesgaard, E.; Nelson, A.R.

    1997-01-01

    In late 1994, sand dykes, large sand blows, and deformed strata were exposed in the walls of an excavation at Annacis Island on the Fraser River delta near Vancouver, British Columbia. The features record liquefaction during a large earthquake about 1700 years ago; this was perhaps the largest earthquake to affect the Vancouver area in the last 3500 years. Similar, less well-dated features have been reported from several other sites on the Fraser delta and may be products of the same earthquake. Three radiocarbon ages that closely delimit the time of liquefaction on Annacis Island are similar to the most precise radiocarbon ages on coseismically subsided marsh soils at estuaries in southern Washington and Oregon. Both the liquefaction and the subsidence may have been produced by a single great plate-boundary earthquake at the Cascadia subduction zone. Alternatively, liquefaction at Annacis Island may have been caused by a large crustal or subcrustal earthquake of about the same age as a plate-boundary earthquake farther west. The data from Annacis Island and other sites on the Fraser delta suggest that earthquakes capable of producing extensive liquefaction in this area are rare events. Further, liquefaction analysis using historical seismicity suggests that current assessment procedures may overestimate liquefaction risk.

  8. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  9. Earthquake-induced subsidence and burial of late holocene archaeological sites, northern Oregon coast

    USGS Publications Warehouse

    Minor, R.; Grant, W.C.

    1996-01-01

    Fire hearths associated with prehistoric Native American occupation lie within the youngest buried lowland soil of the estuaries along the Salmon and Nehalem rivers on the northern Oregon coast. This buried soil is the result of sudden subsidence induced by a great earthquake about 300 years ago along the Cascadia subduction zone, which extends offshore along the North Pacific Coast from Vancouver Island to northern California. The earthquake 300 years ago was the latest in a series of subsidence events along the Cascadia subduction zone over the last several thousand years. Over the long term, subsidence and burial of prehistoric settlements as a result of Cascadia subduction zone earthquakes have almost certainly been an important factor contributing to the limited time depth of the archaeological record along this section of the North Pacific Coast. Copyright ?? by the Society for American Archaeology.

  10. A New Correlation of Large Earthquakes Along the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Scharer, K. M.; Weldon, R. J.; Biasi, G. P.

    2010-12-01

    There are now three sites on the southern San Andreas fault (SSAF) with records of 10 or more dated ground rupturing earthquakes (Frazier Mountain, Wrightwood and Pallett Creek) and at least seven other sites with 3-5 dated events. Numerous sites have related information including geomorphic offsets caused by 1 to a few earthquakes, a known amount of slip spanning a specific interval of time or number of earthquakes, or the number (but not necessarily the exact ages) of earthquakes in an interval of time. We use this information to construct a record of recent large earthquakes on the SSAF. Strongly overlapping C-14 age ranges, especially between closely spaced sites like Pallett Creek and Wrightwood on the Mojave segment and Thousand Palms, Indio, Coachella and Salt Creek on the southernmost 100 kms of the fault, and overlap between the more distant Frazier Mountain and Bidart Fan sites on the northernmost part of the fault suggest that the paleoseismic data are robust and can be explained by a relatively small number of events that span substantial portions of the fault. This is consistent with the extent of rupture of the two historic events (1857 was ~300 km long and 1812 was 100-200 km long); slip per event data that averages 3-5 m per event at most sites; and the long historical hiatus since 1857. While some sites have smaller offsets for individual events, correlation between sites suggests that many small offsets are near the end of long ruptures. While the long event series on the Mojave are quasi-periodic, individual intervals range about an order of magnitude, from a few decades up to ~200 years. This wide range of intervals and the apparent anti-slip predictable behavior of ruptures (small intervals are not followed by small events) suggest weak clustering or periods of time spanning multiple intervals when strain release is higher low lower than average. These properties defy the application of simple hazard analysis but need to be understood to

  11. VS30 – A site-characterization parameter for use in building Codes, simplified earthquake resistant design, GMPEs, and ShakeMaps

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2012-01-01

    VS30, defined as the average seismic shear-wave velocity from the surface to a depth of 30 meters, has found wide-spread use as a parameter to characterize site response for simplified earthquake resistant design as implemented in building codes worldwide. VS30 , as initially introduced by the author for the US 1994 NEHRP Building Code, provides unambiguous definitions of site classes and site coefficients for site-dependent response spectra based on correlations derived from extensive borehole logging and comparative ground-motion measurement programs in California. Subsequent use of VS30 for development of strong ground motion prediction equations (GMPEs) and measurement of extensive sets of VS borehole data have confirmed the previous empirical correlations and established correlations of SVS30 with VSZ at other depths. These correlations provide closed form expressions to predict S30 V at a large number of additional sites and further justify S30 V as a parameter to characterize site response for simplified building codes, GMPEs, ShakeMap, and seismic hazard mapping.

  12. The value of testing multiple anatomic sites for gonorrhoea and chlamydia in sexually transmitted infection centres in the Netherlands, 2006-2010.

    PubMed

    Koedijk, F D H; van Bergen, J E A M; Dukers-Muijrers, N H T M; van Leeuwen, A P; Hoebe, C J P A; van der Sande, M A B

    2012-09-01

    National surveillance data from 2006 to 2010 of the Dutch sexually transmitted infection (STI) centres were used to analyse current practices on testing extragenital sites for chlamydia and gonorrhoea in men who have sex with men (MSM) and women. In MSM, 76.0% and 88.9% were tested at least at one extragenital site (pharyngeal and/or anorectal) for chlamydia and gonorrhoea, respectively; for women this was 20.5% and 30.2%. Testing more than one anatomic site differed by STI centre, ranging from 2% to 100%. In MSM tested at multiple sites, 63.0% and 66.5% of chlamydia and gonorrhoea diagnoses, respectively, would have been missed if screened at the urogenital site only, mainly anorectal infections. For women tested at multiple sites, the proportions of missed chlamydia and gonorrhoea diagnoses would have been 12.9% and 30.0%, respectively. Testing extragenital sites appears warranted, due to the numerous infections that would have been missed. Adding anorectal screening to urogenital screening for all MSM visiting an STI centre should be recommended. Since actual testing practices differ by centre, there is a need for clearer guidelines. Routine gonorrhoea and chlamydia screening at multiple sites in STI centres should be investigated further as this might be a more effective approach to reduce transmission than current practice.

  13. Miami's Tequesta Site: Could It Be a Native American Study Site For Natural Periodicities Associated With Tornados, Hurricanes, or Earthquakes?

    NASA Astrophysics Data System (ADS)

    Mac Dougall, Jean S.; Mc Leod, David M.; Mc Leod, Roger D.

    2002-10-01

    Florida invested in preserving the Tequesta Indians' "Stonehenge-like" site along the Miami River. Direct observation, and telecast reports, show that a strong association exists between this area and Native American place names, hurricanes, tornados, a waterspout, and other nearby phenomena. Electromagnetic stimulation of human nervous systems in areas like these, discernable by appropriately sensitive individuals when these types of events occur, could plausibly account for some correct "predictions" of events like earthquakes. Various sensory modalities may be activated there. It may be important to understand other historic aspects associated with cultural artifacts like Miami's Tequesta remains. If it also generates instrumentally detectable signals that correlate with visual, "auditory," or nerve ending "tinglings" like those cited by the psychiatrist Arthur Guirdham in books like his Obsessions, applied physicists could partly vindicate the investment and also provide a net return. Society and comparative religious study may benefit.

  14. Ground-motion site effects from multimethod shear-wave velocity characterization at 16 seismograph stations deployed for aftershocks of the August 2011 Mineral, Virginia earthquake

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jackson K.; McNamara, Daniel E.; Williams, Robert A.; Angster, Stephen J

    2014-01-01

    We characterize shear-wave velocity versus depth (Vs profile) at 16 portable seismograph sites through the epicentral region of the 2011 Mw 5.8 Mineral (Virginia, USA) earthquake to investigate ground-motion site effects in the area. We used a multimethod acquisition and analysis approach, where active-source horizontal shear (SH) wave reflection and refraction as well as active-source multichannel analysis of surface waves (MASW) and passive-source refraction microtremor (ReMi) Rayleigh wave dispersion were interpreted separately. The time-averaged shear-wave velocity to a depth of 30 m (Vs30), interpreted bedrock depth, and site resonant frequency were estimated from the best-fit Vs profile of each method at each location for analysis. Using the median Vs30 value (270–715 m/s) as representative of a given site, we estimate that all 16 sites are National Earthquake Hazards Reduction Program (NEHRP) site class C or D. Based on a comparison of simplified mapped surface geology to median Vs30 at our sites, we do not see clear evidence for using surface geologic units as a proxy for Vs30 in the epicentral region, although this may primarily be because the units are similar in age (Paleozoic) and may have similar bulk seismic properties. We compare resonant frequencies calculated from ambient noise horizontal:vertical spectral ratios (HVSR) at available sites to predicted site frequencies (generally between 1.9 and 7.6 Hz) derived from the median bedrock depth and average Vs to bedrock. Robust linear regression of HVSR to both site frequency and Vs30 demonstrate moderate correlation to each, and thus both appear to be generally representative of site response in this region. Based on Kendall tau rank correlation testing, we find that Vs30 and the site frequency calculated from average Vs to median interpreted bedrock depth can both be considered reliable predictors of weak-motion site effects in the epicentral region.

  15. GPS coseismic and postseismic surface displacements of the El Mayor-Cucapah earthquake

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Gonzalez-Garcia, J. J.; Sandwell, D. T.; Fialko, Y.; Agnew, D. C.; Lipovsky, B.; Fletcher, J. M.; Nava Pichardo, F. A.

    2010-12-01

    GPS surveys were performed after the El Mayor Cucapah earthquake Mw 7.2 in northern Baja California by scientists from CICESE, UCSD, and UCR. Six of the sites were occupied for several weeks to capture the postseismic deformation within a day of the earthquake. We calculated the coseismic displacement for 22 sites with previous secular velocity in ITRF2005 reference frame and found 1.160±0.016 m of maximum horizontal displacement near the epicentral area at La Puerta location, and 0.636±0.036 m of vertical offset near Ejido Durango. Most of the GPS sites are located East of the main rupture in Mexicali Valley, 5 are located West at Sierra Juarez and South near San Felipe. We present a velocity field before, along with coseismic displacements and early postseismic features related to the El Mayor-Cucapah earthquake.

  16. Rapid changes in the electrical state of the 1999 Izmit earthquake rupture zone

    PubMed Central

    Honkura, Yoshimori; Oshiman, Naoto; Matsushima, Masaki; Barış, Şerif; Kemal Tunçer, Mustafa; Bülent Tank, Sabri; Çelik, Cengiz; Çiftçi, Elif Tolak

    2013-01-01

    Crustal fluids exist near fault zones, but their relation to the processes that generate earthquakes, including slow-slip events, is unclear. Fault-zone fluids are characterized by low electrical resistivity. Here we investigate the time-dependent crustal resistivity in the rupture area of the 1999 Mw 7.6 Izmit earthquake using electromagnetic data acquired at four sites before and after the earthquake. Most estimates of apparent resistivity in the frequency range of 0.05 to 2.0 Hz show abrupt co-seismic decreases on the order of tens of per cent. Data acquired at two sites 1 month after the Izmit earthquake indicate that the resistivity had already returned to pre-seismic levels. We interpret such changes as the pressure-induced transition between isolated and interconnected fluids. Some data show pre-seismic changes and this suggests that the transition is associated with foreshocks and slow-slip events before large earthquakes. PMID:23820970

  17. [Medical rescue of China National Earthquake Disaster Emergency Search and Rescue Team in Lushan earthquake].

    PubMed

    Liu, Ya-hua; Yang, Hui-ning; Liu, Hui-liang; Wang, Fan; Hu, Li-bin; Zheng, Jing-chen

    2013-05-01

    To summarize and analyze the medical mission of China National Earthquake Disaster Emergency Search and Rescue Team (CNESAR) in Lushan earthquake, to promote the medical rescue effectiveness incorporated with search and rescue. Retrospective analysis of medical work data by CNESAR from April 21th, 2013 to April 27th during Lushan earthquake rescue, including the medical staff dispatch and the wounded case been treated. The reasonable medical corps was composed by 22 members, including 2 administrators, 11 doctors [covering emergency medicine, orthopedics (joints and limbs, spinal), obstetrics and gynecology, gastroenterology, cardiology, ophthalmology, anesthesiology, medical rescue, health epidemic prevention, clinical laboratory of 11 specialties], 1 ultrasound technician, 5 nurses, 1 pharmacist, 1 medical instrument engineer and 1 office worker for propaganda. There were two members having psychological consultants qualifications. The medical work were carried out in seven aspects, including medical care assurance for the CNESAR members, first aid cooperation with search and rescue on site, clinical work in refugees' camp, medical round service for scattered village people, evacuation for the wounded, mental intervention, and the sanitary and anti-epidemic work. The medical work covered 24 small towns, and medical staff established 3 medical clinics at Taiping Town, Shuangshi Town of Lushan County and Baoxing County. Medical rescue, mental intervention for the old and kids, and sanitary and anti-epidemic were performed at the above sites. The medical corps had successful evacuated 2 severe wounded patients and treated the wounded over thousands. Most of the wounded were soft tissue injuries, external injury, respiratory tract infections, diarrhea, and heat stroke. Compared with the rescue action in 2008 Wenchuan earthquake, the aggregation and departure of rescue team in Lushan earthquake, the traffic control order in disaster area, the self-aid and buddy aid

  18. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  19. Determination of anatomic landmarks for optimal placement in captive-bolt euthanasia of goats.

    PubMed

    Plummer, Paul J; Shearer, Jan K; Kleinhenz, Katie E; Shearer, Leslie C

    2018-03-01

    OBJECTIVE To determine the optimal anatomic site and directional aim of a penetrating captive bolt (PCB) for euthanasia of goats. SAMPLE 8 skulls from horned and polled goat cadavers and 10 anesthetized horned and polled goats scheduled to be euthanized at the end of a teaching laboratory. PROCEDURES Sagittal sections of cadaver skulls from 8 horned and polled goats were used to determine the ideal anatomic site and aiming of a PCB to maximize damage to the midbrain region of the brainstem for euthanasia. Anatomic sites for ideal placement and directional aiming were confirmed by use of 10 anesthetized horned and polled goats. RESULTS Clinical observation and postmortem examination of the sagittal sections of skulls from the 10 anesthetized goats that were euthanized confirmed that perpendicular placement and firing of a PCB at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear, resulted in consistent disruption of the midbrain and thalamus in all goats. Immediate cessation of breathing, followed by a loss of heartbeat in all 10 of the anesthetized goats, confirmed that use of this site consistently resulted in effective euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE Damage to the brainstem and key adjacent structures may be accomplished by firing a PCB perpendicular to the skull over the anatomic site identified at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear.

  20. Research on response spectrum of dam based on scenario earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoliang; Zhang, Yushan

    2017-10-01

    Taking a large hydropower station as an example, the response spectrum based on scenario earthquake is determined. Firstly, the potential source of greatest contribution to the site is determined on the basis of the results of probabilistic seismic hazard analysis (PSHA). Secondly, the magnitude and epicentral distance of the scenario earthquake are calculated according to the main faults and historical earthquake of the potential seismic source zone. Finally, the response spectrum of scenario earthquake is calculated using the Next Generation Attenuation (NGA) relations. The response spectrum based on scenario earthquake method is less than the probability-consistent response spectrum obtained by PSHA method. The empirical analysis shows that the response spectrum of scenario earthquake considers the probability level and the structural factors, and combines the advantages of the deterministic and probabilistic seismic hazard analysis methods. It is easy for people to accept and provide basis for seismic engineering of hydraulic engineering.

  1. Chapter F. The Loma Prieta, California, Earthquake of October 17, 1989 - Marina District

    USGS Publications Warehouse

    O'Rourke, Thomas D.

    1992-01-01

    During the earthquake, a total land area of about 4,300 km2 was shaken with seismic intensities that can cause significant damage to structures. The area of the Marina District of San Francisco is only 4.0 km2--less than 0.1 percent of the area most strongly affected by the earthquake--but its significance with respect to engineering, seismology, and planning far outstrips its proportion of shaken terrain and makes it a centerpiece for lessons learned from the earthquake. The Marina District provides perhaps the most comprehensive case history of seismic effects at a specific site developed for any earthquake. The reports assembled in this chapter, which provide an account of these seismic effects, constitute a unique collection of studies on site, as well as infrastructure and societal, response that cover virtually all aspects of the earthquake, ranging from incoming ground waves to the outgoing airwaves used for emergency communication. The Marina District encompasses the area bounded by San Francisco Bay on the north, the Presidio on the west, and Lombard Street and Van Ness Avenue on the south and east, respectively. Nearly all of the earthquake damage in the Marina District, however, occurred within a considerably smaller area of about 0.75 km2, bounded by San Francisco Bay and Baker, Chestnut, and Buchanan Streets. At least five major aspects of earthquake response in the Marina District are covered by the reports in this chapter: (1) dynamic site response, (2) soil liquefaction, (3) lifeline performance, (4) building performance, and (5) emergency services.

  2. A Virtual Tour of the 1868 Hayward Earthquake in Google EarthTM

    NASA Astrophysics Data System (ADS)

    Lackey, H. G.; Blair, J. L.; Boatwright, J.; Brocher, T.

    2007-12-01

    The 1868 Hayward earthquake has been overshadowed by the subsequent 1906 San Francisco earthquake that destroyed much of San Francisco. Nonetheless, a modern recurrence of the 1868 earthquake would cause widespread damage to the densely populated Bay Area, particularly in the east Bay communities that have grown up virtually on top of the Hayward fault. Our concern is heightened by paleoseismic studies suggesting that the recurrence interval for the past five earthquakes on the southern Hayward fault is 140 to 170 years. Our objective is to build an educational web site that illustrates the cause and effect of the 1868 earthquake drawing on scientific and historic information. We will use Google EarthTM software to visually illustrate complex scientific concepts in a way that is understandable to a non-scientific audience. This web site will lead the viewer from a regional summary of the plate tectonics and faulting system of western North America, to more specific information about the 1868 Hayward earthquake itself. Text and Google EarthTM layers will include modeled shaking of the earthquake, relocations of historic photographs, reconstruction of damaged buildings as 3-D models, and additional scientific data that may come from the many scientific studies conducted for the 140th anniversary of the event. Earthquake engineering concerns will be stressed, including population density, vulnerable infrastructure, and lifelines. We will also present detailed maps of the Hayward fault, measurements of fault creep, and geologic evidence of its recurrence. Understanding the science behind earthquake hazards is an important step in preparing for the next significant earthquake. We hope to communicate to the public and students of all ages, through visualizations, not only the cause and effect of the 1868 earthquake, but also modern seismic hazards of the San Francisco Bay region.

  3. Building Loss Estimation for Earthquake Insurance Pricing

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Erdik, M.; Sesetyan, K.; Demircioglu, M. B.; Fahjan, Y.; Siyahi, B.

    2005-12-01

    After the 1999 earthquakes in Turkey several changes in the insurance sector took place. A compulsory earthquake insurance scheme was introduced by the government. The reinsurance companies increased their rates. Some even supended operations in the market. And, most important, the insurance companies realized the importance of portfolio analysis in shaping their future market strategies. The paper describes an earthquake loss assessment methodology that can be used for insurance pricing and portfolio loss estimation that is based on our work esperience in the insurance market. The basic ingredients are probabilistic and deterministic regional site dependent earthquake hazard, regional building inventory (and/or portfolio), building vulnerabilities associated with typical construction systems in Turkey and estimations of building replacement costs for different damage levels. Probable maximum and average annualized losses are estimated as the result of analysis. There is a two-level earthquake insurance system in Turkey, the effect of which is incorporated in the algorithm: the national compulsory earthquake insurance scheme and the private earthquake insurance system. To buy private insurance one has to be covered by the national system, that has limited coverage. As a demonstration of the methodology we look at the case of Istanbul and use its building inventory data instead of a portfolio. A state-of-the-art time depent earthquake hazard model that portrays the increased earthquake expectancies in Istanbul is used. Intensity and spectral displacement based vulnerability relationships are incorporated in the analysis. In particular we look at the uncertainty in the loss estimations that arise from the vulnerability relationships, and at the effect of the implemented repair cost ratios.

  4. Stress/strain changes and triggered seismicity following the MW7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Gomberg, J.

    1996-01-01

    Calculations of dynamic stresses and strains, constrained by broadband seismograms, are used to investigate their role in generating the remotely triggered seismicity that followed the June 28, 1992, MW7.3 Landers, California earthquake. I compare straingrams and dynamic Coulomb failure functions calculated for the Landers earthquake at sites that did experience triggered seismicity with those at sites that did not. Bounds on triggering thresholds are obtained from analysis of dynamic strain spectra calculated for the Landers and MW,6.1 Joshua Tree, California, earthquakes at various sites, combined with results of static strain investigations by others. I interpret three principal results of this study with those of a companion study by Gomberg and Davis [this issue]. First, the dynamic elastic stress changes themselves cannot explain the spatial distribution of triggered seismicity, particularly the lack of triggered activity along the San Andreas fault system. In addition to the requirement to exceed a Coulomb failure stress level, this result implies the need to invoke and satisfy the requirements of appropriate slip instability theory. Second, results of this study are consistent with the existence of frequency- or rate-dependent stress/strain triggering thresholds, inferred from the companion study and interpreted in terms of earthquake initiation involving a competition of processes, one promoting failure and the other inhibiting it. Such competition is also part of relevant instability theories. Third, the triggering threshold must vary from site to site, suggesting that the potential for triggering strongly depends on site characteristics and response. The lack of triggering along the San Andreas fault system may be correlated with the advanced maturity of its fault gouge zone; the strains from the Landers earthquake were either insufficient to exceed its larger critical slip distance or some other critical failure parameter; or the faults failed stably as

  5. Along-Arc and Back-Arc Attenuation, Site Response, and Source Spectrum for the Intermediate-Depth 8 January 2006 M 6.7 Kythera, Greece, Earthquake

    USGS Publications Warehouse

    Boore, David M.; Skarlatoudis, A.A.; Margaris, B.N.; Costas, B.P.; Ventouzi, C.

    2009-01-01

    An M 6.7 intermediate-depth (66 km), in-slab earthquake occurring near the island of Kythera in Greece on 8 January 2006 was well recorded on networks of stations equipped with acceleration sensors and with broadband velocity sensors. All data were recorded digitally using recording instruments with resolutions ranging from almost 11 to 24 bits. We use data from these networks to study the distance dependence of the horizontal-component Fourier acceleration spectra (FAS) and horizontal-component pseudoabsolute response spectral acceleration (PSA). For purposes of simulating motions in the future, we parameterize the distance decay using several forms of the geometrical-spreading function, for each of which we derive Q as a function of frequency. By extrapolating the distance decay back to 1 km, we obtain a reference spectrum that can be used in future simulations. This spectrum requires a more complicated spectral shape than the classic single-corner-frequency model; in particular, there appears to be an enhancement of motion around 0.2-0.3 Hz that may be due to the radiation of a 3-5 sec pulse from the source. We infer a ??0 value of about 0.055 sec for rock stations and a stress parameter in the range of 400-600 bars. We also find distinctive differences in the site response of stations on soft soil and soil; both the FAS and the 5% damped PSA amplifications have similar peak amplitudes (about 2 and 4 for soil and soft-soil sites, respectively, relative to the rock sites) at similar frequencies (between about 0.4 and 2.0 Hz, with the soft-soil amplifications peaking at somewhat lower frequencies than the soil amplifications). One of the most distinctive features of the data is the clear difference in the motions for along-arc and back-arc stations, with the former being significantly higher than the latter over a broad range of frequencies at distances beyond about 250 km. The motions from the Kythera earthquake are roughly comparable to those from intermediate

  6. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Hee; Ree, Jin-Han; Kim, YoungHee; Kim, Sungshil; Kang, Su Young; Seo, Wooseok

    2018-06-01

    The moment magnitude (Mw) 5.4 Pohang earthquake, the most damaging event in South Korea since instrumental seismic observation began in 1905, occurred beneath the Pohang geothermal power plant in 2017. Geological and geophysical data suggest that the Pohang earthquake was induced by fluid from an enhanced geothermal system (EGS) site, which was injected directly into a near-critically stressed subsurface fault zone. The magnitude of the mainshock makes it the largest known induced earthquake at an EGS site.

  7. Cascadia Onshore-Offshore Site Response, Submarine Sediment Mobilization, and Earthquake Recurrence

    NASA Astrophysics Data System (ADS)

    Gomberg, J.

    2018-02-01

    Local geologic structure and topography may modify arriving seismic waves. This inherent variation in shaking, or "site response," may affect the distribution of slope failures and redistribution of submarine sediments. I used seafloor seismic data from the 2011 to 2015 Cascadia Initiative and permanent onshore seismic networks to derive estimates of site response, denoted Sn, in low- and high-frequency (0.02-1 and 1-10 Hz) passbands. For three shaking metrics (peak velocity and acceleration and energy density) Sn varies similarly throughout Cascadia and changes primarily in the direction of convergence, roughly east-west. In the two passbands, Sn patterns offshore are nearly opposite and range over an order of magnitude or more across Cascadia. Sn patterns broadly may be attributed to sediment resonance and attenuation. This and an abrupt step in the east-west trend of Sn suggest that changes in topography and structure at the edge of the continental margin significantly impact shaking. These patterns also correlate with gravity lows diagnostic of marginal basins and methane plumes channeled within shelf-bounding faults. Offshore Sn exceeds that onshore in both passbands, and the steepest slopes and shelf coincide with the relatively greatest and smallest Sn estimates at low and high frequencies, respectively; these results should be considered in submarine shaking-triggered slope stability failure studies. Significant north-south Sn variations are not apparent, but sparse sampling does not permit rejection of the hypothesis that the southerly decrease in intervals between shaking-triggered turbidites and great earthquakes inferred by Goldfinger et al. (2012, 2013, 2016) and Priest et al. (2017) is due to inherently stronger shaking southward.

  8. Practical Applications for Earthquake Scenarios Using ShakeMap

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Worden, B.; Quitoriano, V.; Goltz, J.

    2001-12-01

    In planning and coordinating emergency response, utilities, local government, and other organizations are best served by conducting training exercises based on realistic earthquake situations-ones that they are most likely to face. Scenario earthquakes can fill this role; they can be generated for any geologically plausible earthquake or for actual historic earthquakes. ShakeMap Web pages now display selected earthquake scenarios (www.trinet.org/shake/archive/scenario/html) and more events will be added as they are requested and produced. We will discuss the methodology and provide practical examples where these scenarios are used directly for risk reduction. Given a selected event, we have developed tools to make it relatively easy to generate a ShakeMap earthquake scenario using the following steps: 1) Assume a particular fault or fault segment will (or did) rupture over a certain length, 2) Determine the magnitude of the earthquake based on assumed rupture dimensions, 3) Estimate the ground shaking at all locations in the chosen area around the fault, and 4) Represent these motions visually by producing ShakeMaps and generating ground motion input for loss estimation modeling (e.g., FEMA's HAZUS). At present, ground motions are estimated using empirical attenuation relationships to estimate peak ground motions on rock conditions. We then correct the amplitude at that location based on the local site soil (NEHRP) conditions as we do in the general ShakeMap interpolation scheme. Finiteness is included explicitly, but directivity enters only through the empirical relations. Although current ShakeMap earthquake scenarios are empirically based, substantial improvements in numerical ground motion modeling have been made in recent years. However, loss estimation tools, HAZUS for example, typically require relatively high frequency (3 Hz) input for predicting losses, above the range of frequencies successfully modeled to date. Achieving full-synthetic ground motion

  9. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  10. Diversity of beta-papillomavirus at anogenital and oral anatomic sites of men: The HIM Study.

    PubMed

    Nunes, Emily Montosa; Sudenga, Staci L; Gheit, Tarik; Tommasino, Massimo; Baggio, Maria Luiza; Ferreira, Silvaneide; Galan, Lenice; Silva, Roberto C; Pierce Campbell, Christine M; Lazcano-Ponce, Eduardo; Giuliano, Anna R; Villa, Luisa L; Sichero, Laura

    2016-08-01

    Our goal was to describe prevalence of β-HPVs at three anatomic sites among 717 men from Brazil, Mexico and US enrolled in the HPV Infection in Men (HIM) Study. β-HPVs were genotyped using Luminex technology. Overall, 77.7%, 54.3% and 29.3% men were positive for any β-HPV at the genitals, anal canal, and oral cavity, respectively. Men from US and Brazil were significantly less likely to have β-HPV at the anal canal than men from Mexico. Older men were more likely to have β-HPV at the anal canal compared to younger men. Prevalence of β-HPV at the oral cavity was significantly associated with country of origin and age. Current smokers were significantly less likely to have β-HPV in the oral cavity than men who never smoked. Lack of associations between β-HPV and sexual behaviors may suggest other routes of contact such as autoinoculation which need to be explored further. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Site specific seismic hazard analysis and determination of response spectra of Kolkata for maximum considered earthquake

    NASA Astrophysics Data System (ADS)

    Shiuly, Amit; Sahu, R. B.; Mandal, Saroj

    2017-06-01

    This paper presents site specific seismic hazard analysis of Kolkata city, former capital of India and present capital of state West Bengal, situated on the world’s largest delta island, Bengal basin. For this purpose, peak ground acceleration (PGA) for a maximum considered earthquake (MCE) at bedrock level has been estimated using an artificial neural network (ANN) based attenuation relationship developed on the basis of synthetic ground motion data for the region. Using the PGA corresponding to the MCE, a spectrum compatible acceleration time history at bedrock level has been generated by using a wavelet based computer program, WAVEGEN. This spectrum compatible time history at bedrock level has been converted to the same at surface level using SHAKE2000 for 144 borehole locations in the study region. Using the predicted values of PGA and PGV at the surface, corresponding contours for the region have been drawn. For the MCE, the PGA at bedrock level of Kolkata city has been obtained as 0.184 g, while that at the surface level varies from 0.22 g to 0.37 g. Finally, Kolkata has been subdivided into eight seismic subzones, and for each subzone a response spectrum equation has been derived using polynomial regression analysis. This will be very helpful for structural and geotechnical engineers to design safe and economical earthquake resistant structures.

  12. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  13. Alaskan seismic gap only partially filled by 28 February 1979 earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahr, J.C.; Stephens, C.D.; Hasegawa, H.S.

    1980-03-21

    The Saint Elias, Alaska, earthquake (magnitude 7.7) of 28 February 1979 is the first major earthquake since 1900 to occur along the complex Pacific-North American plate boundary between Yakutat Bay and Prince William Sound. This event involved complex rupture on a shallow, low-angle, north-dipping fault beneath the Chugach and Saint Elias Mountains. The plate boundary between Yakutat Bay and Prince William Sound had been identified as a seismic gap, an area devoid of major earthquakes during the last few decades, and was thought to be a likely site for a future major earthquake. Since the Saint Elias earthquake fills onlymore » the eastern quarter of the gap, the remainder of the gap to the west is a prime area for the study of precursory and coseismic phenomena associated with large earthquakes. 1 figure, 1 table.« less

  14. MMI attenuation and historical earthquakes in the basin and range province of western North America

    USGS Publications Warehouse

    Bakun, W.H.

    2006-01-01

    Earthquakes in central Nevada (1932-1959) were used to develop a modified Mercalli intensity (MMI) attenuation model for estimating moment magnitude M for earthquakes in the Basin and Range province of interior western North America. M is 7.4-7.5 for the 26 March 1872 Owens Valley, California, earthquake, in agreement with Beanland and Clark's (1994) M 7.6 that was estimated from geologic field observations. M is 7.5 for the 3 May 1887 Sonora, Mexico, earthquake, in agreement with Natali and Sbar's (1982) M 7.4 and Suter's (2006) M 7.5, both estimated from geologic field observations. MMI at sites in California for earthquakes in the Nevada Basin and Range apparently are not much affected by the Sierra Nevada except at sites near the Sierra Nevada where MMI is reduced. This reduction in MMI is consistent with a shadow zone produced by the root of the Sierra Nevada. In contrast, MMI assignments for earthquakes located in the eastern Sierra Nevada near the west margin of the Basin and Range are greater than predicted at sites in California. These higher MMI values may result from critical reflections due to layering near the base of the Sierra Nevada.

  15. Simulation of rockfalls triggered by earthquakes

    USGS Publications Warehouse

    Kobayashi, Y.; Harp, E.L.; Kagawa, T.

    1990-01-01

    A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the random numbers employed, and the results could not be seen as deterministic but stochastic. The closest agreement between calculated and actual movements was obtained at the site with the most detailed and accurate topographic measurements. ?? 1990 Springer-Verlag.

  16. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  17. Research on Collection of Earthquake Disaster Information from the Crowd

    NASA Astrophysics Data System (ADS)

    Nian, Z.

    2017-12-01

    In China, the assessment of the earthquake disasters information is mainly based on the inversion of the seismic source mechanism and the pre-calculated population data model, the real information of the earthquake disaster is usually collected through the government departments, the accuracy and the speed need to be improved. And in a massive earthquake like the one in Mexico, the telecommunications infrastructure on ground were damaged , the quake zone was difficult to observe by satellites and aircraft in the bad weather. Only a bit of information was sent out through maritime satellite of other country. Thus, the timely and effective development of disaster relief was seriously affected. Now Chinese communication satellites have been orbiting, people don't only rely on the ground telecom base station to keep communication with the outside world, to open the web page,to land social networking sites, to release information, to transmit images and videoes. This paper will establish an earthquake information collection system which public can participate. Through popular social platform and other information sources, the public can participate in the collection of earthquake information, and supply quake zone information, including photos, video, etc.,especially those information made by unmanned aerial vehicle (uav) after earthqake, the public can use the computer, potable terminals, or mobile text message to participate in the earthquake information collection. In the system, the information will be divided into earthquake zone basic information, earthquake disaster reduction information, earthquake site information, post-disaster reconstruction information etc. and they will been processed and put into database. The quality of data is analyzed by multi-source information, and is controlled by local public opinion on them to supplement the data collected by government departments timely and implement the calibration of simulation results ,which will better guide

  18. POST Earthquake Debris Management — AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  19. Ground motion estimation in Delhi from postulated regional and local earthquakes

    NASA Astrophysics Data System (ADS)

    Mittal, Himanshu; Kumar, Ashok; Kamal

    2013-04-01

    Ground motions are estimated at 55 sites in Delhi, the capital of India from four postulated earthquakes (three regional M w = 7.5, 8.0, and 8.5 and one local). The procedure consists of (1) synthesis of ground motion at a hard reference site (NDI) and (2) estimation of ground motion at other sites in the city via known transfer functions and application of the random vibration theory. This work provides a more extensive coverage than earlier studies (e.g., Singh et al., Bull Seism Soc Am 92:555-569, 2002; Bansal et al., J Seismol 13:89-105, 2009). The Indian code response spectra corresponding to Delhi (zone IV) are found to be conservative at hard soil sites for all postulated earthquakes but found to be deficient for M w = 8.0 and 8.5 earthquakes at soft soil sites. Spectral acceleration maps at four different natural periods are strongly influenced by the shallow geological and soil conditions. Three pockets of high acceleration values are seen. These pockets seem to coincide with the contacts of (a) Aravalli quartzite and recent Yamuna alluvium (towards the East), (b) Aravalli quartzite and older quaternary alluvium (towards the South), and (c) older quaternary alluvium and recent Yamuna alluvium (towards the North).

  20. No fault of their own: Increasing public awareness of earthquakes in aseismic regions

    NASA Astrophysics Data System (ADS)

    Galvin, J. L.; Pickering, R. A.; Wetzel, L. R.

    2011-12-01

    EarthScope's Transportable Array (TA) project is installing seismographs across the US, progressing from North America's seismically active West Coast to the passive Atlantic margin. The array consists of 400 seismic stations spaced ~70 km apart for a continental-scale experiment lasting 15 years. A student/faculty team from Eckerd College participated by using computer-based tools to identify potential seismograph sites; conducting field investigations to confirm site suitability; initiating contact with landowners; and preparing reconnaissance reports for future earthquake recording stations in Florida. An ideal seismograph site is in a quiet, dry, unshaded, open area that is remote yet accessible, with cellular network coverage and a willing private landowner. Scouting for site locations presented many challenges, including land use and ownership patterns; low-lying, flooded topography; noisy Atlantic and Gulf coastal regions; extensive river and lake systems; environmentally protected areas; road patterns with high traffic; urban population centers; and a populace unfamiliar with earthquakes. While many of these factors were unavoidable, developing the public's interest in seismology was a crucial step in gaining landowner participation. The majority of those approached were unfamiliar with the importance of earthquake research in an aseismic location. Being presented with this challenge encouraged the team to formulate different approaches to promote public interest and understanding of earthquake research in locations indirectly affected by seismic activity. Throughout the project, landowners expressed greater interest or were more likely to participate for a variety of reasons. For instance, landowners that had personal experience with earthquakes, were involved with the scientific community, or had previously collaborated with other research projects were most receptive to participating in the TA program. From this observation, it became clear that relating

  1. Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake

    USGS Publications Warehouse

    Pollitz, F.F.; Sacks, I.S.

    2002-01-01

    The M 7.3 June 28, 1992 Landers and M 7.1 October 16, 1999 Hector Mine earthquakes, California, both right lateral strike-slip events on NNW-trending subvertical faults, occurred in close proximity in space and time in a region where recurrence times for surface-rupturing earthquakes are thousands of years. This suggests a causal role for the Landers earthquake in triggering the Hector Mine earthquake. Previous modeling of the static stress change associated with the Landers earthquake shows that the area of peak Hector Mine slip lies where the Coulomb failure stress promoting right-lateral strike-slip failure was high, but the nucleation point of the Hector Mine rupture was neutrally to weakly promoted, depending on the assumed coefficient of friction. Possible explanations that could account for the 7-year delay between the two ruptures include background tectonic stressing, dissipation of fluid pressure gradients, rate- and state-dependent friction effects, and post-Landers viscoelastic relaxation of the lower crust and upper mantle. By employing a viscoelastic model calibrated by geodetic data collected during the time period between the Landers and Hector Mine events, we calculate that postseismic relaxation produced a transient increase in Coulomb failure stress of about 0.7 bars on the impending Hector Mine rupture surface. The increase is greatest over the broad surface that includes the 1999 nucleation point and the site of peak slip further north. Since stress changes of magnitude greater than or equal to 0.1 bar are associated with documented causal fault interactions elsewhere, viscoelastic relaxation likely contributed to the triggering of the Hector Mine earthquake. This interpretation relies on the assumption that the faults occupying the central Mojave Desert (i.e., both the Landers and Hector Mine rupturing faults) were critically stressed just prior to the Landers earthquake.

  2. Earthquake Signal Visible in GRACE Data

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure1

    This figure shows the effect of the December 2004 great Sumatra earthquake on the Earth's gravity field as observed by GRACE. The signal is expressed in terms of the relative acceleration of the two GRACE satellites, in this case a few nanometers per second squared, or about 1 billionth of the acceleration we experience everyday at the Earth's surface.GRACE observations show comparable signals in the region of the earthquake.

    Other natural variations are also apparent in the expected places, whereas no other significant change would be expected in the region of the earthquake

    GRACE, twin satellites launched in March 2002, are making detailed measurements of Earth's gravity field which will lead to discoveries about gravity and Earth's natural systems. These discoveries could have far-reaching benefits to society and the world's population.

  3. Roman, Visigothic and Islamic evidence of earthquakes recorded in the archaeological site of “El Tolmo de Minateda” (Prebetic Zone, southeast of Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Abad Casal, L.; Pérez-López, R.; Gamo Parra, B.; Silva, P.G.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Perucha, M.A.; Israde-Alcántara, I.; Bischoff, J.; Calvo, J.P.

    2013-01-01

    The archaeological site of “El Tolmo de Minateda” is located within the Albacete province (SE of Spain) and shows a continuous time record of ancient civilizations from 3500 yr BP onwards. However, three temporal gaps were identified in this archaeological record, all of them in relationship with a sudden and unclear abandonment of the city (Centuries 1st, 7th and 9-10th). The Archaeological Earthquake Effects (EAEs) supports the possibility that moderate to strong earthquakes were the cause of such abandonments: oriented columns fallen, collapsed walls and arches, abandonment of irrigation systems and fresh-water supplies, crashed pottery, etc. Despite of the scarce of instrumental seismicity and a few historical chronicles, paleoseismic studies performed in the neighbouring zone (Tobarra) suggest the presence of closer seismic sources as faults (Pozohondo Fault) affecting Quaternary alluvial, lacustrine deposits and colluviums. In this work, we propose the possibility that three moderate earthquakes devastated the ancient Roman city of Ilunum (Century 1st AD), the Visigothic city of Elo (Century 7th AD) and the Islamic city of Madinat Iyih (Century 9th-10thAD), all of them the same place: “El Tolmo de Minateda”.

  4. Earthquake geology of the Bulnay Fault (Mongolia)

    USGS Publications Warehouse

    Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.

    2015-01-01

    The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.

  5. Optimal-adaptive filters for modelling spectral shape, site amplification, and source scaling

    USGS Publications Warehouse

    Safak, Erdal

    1989-01-01

    This paper introduces some applications of optimal filtering techniques to earthquake engineering by using the so-called ARMAX models. Three applications are presented: (a) spectral modelling of ground accelerations, (b) site amplification (i.e., the relationship between two records obtained at different sites during an earthquake), and (c) source scaling (i.e., the relationship between two records obtained at a site during two different earthquakes). A numerical example for each application is presented by using recorded ground motions. The results show that the optimal filtering techniques provide elegant solutions to above problems, and can be a useful tool in earthquake engineering.

  6. The 1868 Hayward Earthquake Alliance: A Case Study - Using an Earthquake Anniversary to Promote Earthquake Preparedness

    NASA Astrophysics Data System (ADS)

    Brocher, T. M.; Garcia, S.; Aagaard, B. T.; Boatwright, J. J.; Dawson, T.; Hellweg, M.; Knudsen, K. L.; Perkins, J.; Schwartz, D. P.; Stoffer, P. W.; Zoback, M.

    2008-12-01

    Last October 21st marked the 140th anniversary of the M6.8 1868 Hayward Earthquake, the last damaging earthquake on the southern Hayward Fault. This anniversary was used to help publicize the seismic hazards associated with the fault because: (1) the past five such earthquakes on the Hayward Fault occurred about 140 years apart on average, and (2) the Hayward-Rodgers Creek Fault system is the most likely (with a 31 percent probability) fault in the Bay Area to produce a M6.7 or greater earthquake in the next 30 years. To promote earthquake awareness and preparedness, over 140 public and private agencies and companies and many individual joined the public-private nonprofit 1868 Hayward Earthquake Alliance (1868alliance.org). The Alliance sponsored many activities including a public commemoration at Mission San Jose in Fremont, which survived the 1868 earthquake. This event was followed by an earthquake drill at Bay Area schools involving more than 70,000 students. The anniversary prompted the Silver Sentinel, an earthquake response exercise based on the scenario of an earthquake on the Hayward Fault conducted by Bay Area County Offices of Emergency Services. 60 other public and private agencies also participated in this exercise. The California Seismic Safety Commission and KPIX (CBS affiliate) produced professional videos designed forschool classrooms promoting Drop, Cover, and Hold On. Starting in October 2007, the Alliance and the U.S. Geological Survey held a sequence of press conferences to announce the release of new research on the Hayward Fault as well as new loss estimates for a Hayward Fault earthquake. These included: (1) a ShakeMap for the 1868 Hayward earthquake, (2) a report by the U. S. Bureau of Labor Statistics forecasting the number of employees, employers, and wages predicted to be within areas most strongly shaken by a Hayward Fault earthquake, (3) new estimates of the losses associated with a Hayward Fault earthquake, (4) new ground motion

  7. Comparison of the sand liquefaction estimated based on codes and practical earthquake damage phenomena

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Huang, Yahong

    2017-12-01

    Conducting sand liquefaction estimated based on codes is the important content of the geotechnical design. However, the result, sometimes, fails to conform to the practical earthquake damages. Based on the damage of Tangshan earthquake and engineering geological conditions, three typical sites are chosen. Moreover, the sand liquefaction probability was evaluated on the three sites by using the method in the Code for Seismic Design of Buildings and the results were compared with the sand liquefaction phenomenon in the earthquake. The result shows that the difference between sand liquefaction estimated based on codes and the practical earthquake damage is mainly attributed to the following two aspects: The primary reasons include disparity between seismic fortification intensity and practical seismic oscillation, changes of groundwater level, thickness of overlying non-liquefied soil layer, local site effect and personal error. Meanwhile, although the judgment methods in the codes exhibit certain universality, they are another reason causing the above difference due to the limitation of basic data and the qualitative anomaly of the judgment formulas.

  8. Insights into earthquake hazard map performance from shaking history simulations

    NASA Astrophysics Data System (ADS)

    Stein, S.; Vanneste, K.; Camelbeeck, T.; Vleminckx, B.

    2017-12-01

    Why recent large earthquakes caused shaking stronger than predicted by earthquake hazard maps is under debate. This issue has two parts. Verification involves how well maps implement probabilistic seismic hazard analysis (PSHA) ("have we built the map right?"). Validation asks how well maps forecast shaking ("have we built the right map?"). We explore how well a map can ideally perform by simulating an area's shaking history and comparing "observed" shaking to that predicted by a map generated for the same parameters. The simulations yield shaking distributions whose mean is consistent with the map, but individual shaking histories show large scatter. Infrequent large earthquakes cause shaking much stronger than mapped, as observed. Hence, PSHA seems internally consistent and can be regarded as verified. Validation is harder because an earthquake history can yield shaking higher or lower than that predicted while being consistent with the hazard map. The scatter decreases for longer observation times because the largest earthquakes and resulting shaking are increasingly likely to have occurred. For the same reason, scatter is much less for the more active plate boundary than for a continental interior. For a continental interior, where the mapped hazard is low, even an M4 event produces exceedances at some sites. Larger earthquakes produce exceedances at more sites. Thus many exceedances result from small earthquakes, but infrequent large ones may cause very large exceedances. However, for a plate boundary, an M6 event produces exceedance at only a few sites, and an M7 produces them in a larger, but still relatively small, portion of the study area. As reality gives only one history, and a real map involves assumptions about more complicated source geometries and occurrence rates, which are unlikely to be exactly correct and thus will contribute additional scatter, it is hard to assess whether misfit between actual shaking and a map — notably higher

  9. The anatomical basis for wrinkles.

    PubMed

    Pessa, Joel E; Nguyen, Hang; John, George B; Scherer, Philipp E

    2014-02-01

    Light and electron microscopy have not identified a distinct anatomical structure associated with either skin wrinkles or creases, and a histological difference between wrinkled and adjacent skin has not been identified. The authors investigate whether facial wrinkles are related to underlying lymphatic vessels and perilymphatic fat. Lymphatic vessels with a specialized tube of perilymphatic fat were identified beneath palmar creases. Sections of skin, adipose tissue, and muscle were harvested from each of 13 cadavers. Three sites were investigated: the transverse forehead crease, lateral orbicularis oculi wrinkle (crow's feet), and the nasojugal crease. The tissue was paraffin embedded and processed. Two-step indirect immunohistochemistry was performed, and images were examined using laser confocal microscopy. Measurements were taken with software. Every wrinkle examined was found above and within ±1 mm of a major lymphatic vessel and its surrounding tube of adipose tissue. The results satisfied our null hypothesis and were statistically significant. Lymphatic vessels were identified by positive immunofluorescence as well as histological criteria. These findings have been further validated by fluorochrome tracer studies. An anatomical basis for wrinkles was identified among the specimens studied. Lymphatic vessels, along with the surrounding distinct perilymphatic fat, traveled directly beneath wrinkles and creases. Lymphatic dysregulation leads to inflammation, scarring, and fibrosis, but inadvertent injection of these vessels can be avoided with anatomical knowledge.

  10. A Tale of Two Cataclysmic Earthquakes: 39 and 52 kyr BP, Dead Sea Transform, Israel; a Multi-archive Study

    NASA Astrophysics Data System (ADS)

    Kagan, E. J.; Stein, M.; Bar-Matthews, M.; Agnon, A.

    2007-12-01

    We have documented earthquake histories in four lacustrine sites and a cave in the Dead Sea Transform region in central Israel. The lacustrine Lake Lisan (last Glacial paleo-Dead Sea) sites include: Massada Plain (M1b), Perazim (PZ1), Tovlan (NT), and Tamar (TM). They are up to 110 kms apart, along the Dead Sea Basin. These lacustrine sites have a variety of deformed marls (e.g. brecciated, homogenated, folded, and/or faulted). Except for the more fluvial NT site, where there is only one breccia layer, the sites show numerous (up to 29) earthquake events. Brecciated marls have been shown to be valuable earthquake markers by correlation with historical earthquakes and by their relationship to intraformational fault scarps (Agnon et al., 2006). The Soreq Cave, a carbonate cave richly decorated with speleothems, is 40 km west of the Dead Sea Basin, near the town Bet Shemesh. Earthquake damage in the cave includes collapsed stalactites and ceilings and severed stalagmites. During the last Glacial time period the cave, more distant from the Transform than the lake sites, experienced ~7 damaging events, documented by tens of dated collapses. The Soreq cave collapses have been shown to be viable earthquake markers by correlation to lacustrine documented seismic events and by absence of potential non-seismic sources of damage in the cave (Kagan et al., 2005). All the earthquake evidence, speleological and lacustrine, was rigorously dated by high resolution mass spectrometry by MC-ICP-MS at the Geological Survey of Israel. Both the Soreq cave and the Lisan sediments have been studied intensely for paleo- climate purposes in other studies. From these different and distant paleoseismic sites two events stand out. At ~39±1 ka and ~52±2 ka there is paleoseismic evidence at 5 and 3 sites, respectively. The later event, ~39±1 ka, has left evidence of brecciated marls at all four Lisan sites (with extremely thick seismites at the PZ1 site and the only breccia at the NT site) as

  11. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  12. Attained height, sex, and risk of cancer at different anatomic sites in the NIH-AARP diet and health study.

    PubMed

    Kabat, Geoffrey C; Kim, Mimi Y; Hollenbeck, Albert R; Rohan, Thomas E

    2014-12-01

    To examine the association of adult height with risk of cancer at different anatomic sites in a cohort of men and women. The association of self-reported height with subsequent cancer risk was assessed in 288,683 men and 192,514 women enrolled in the National Institutes of Health-AARP Diet and Health Study. After a median follow-up of 10.5 years, incident cancer was diagnosed in 51,139 men and 23,407 women. Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95 % confidence intervals (95 % CIs) for the association of height with cancer risk. After adjustment for covariates, height was positively associated with increased risk of all cancers combined in both men [HR10 cm increase = 1.05 (95 % CI 1.04-1.06)] and women [HR10 cm increase = 1.08 (95 % CI 1.06-1.10)]. Several sites common to men and women showed significant positive associations with height: colon, rectum, kidney, melanoma, and non-Hodgkin's lymphoma. For other shared sites, the association differed by sex. For still other sites, there was no clear association with height. Positive associations were also observed with cancers of the breast, endometrium, and prostate. Different patterns were observed in the height-cancer association by sex. Studies investigating the biological mechanisms underlying the association of height with cancer risk should focus on those sites that show a reproducible association with attained height.

  13. Physics-Based Hazard Assessment for Critical Structures Near Large Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Hutchings, L.; Mert, A.; Fahjan, Y.; Novikova, T.; Golara, A.; Miah, M.; Fergany, E.; Foxall, W.

    2017-09-01

    We argue that for critical structures near large earthquake sources: (1) the ergodic assumption, recent history, and simplified descriptions of the hazard are not appropriate to rely on for earthquake ground motion prediction and can lead to a mis-estimation of the hazard and risk to structures; (2) a physics-based approach can address these issues; (3) a physics-based source model must be provided to generate realistic phasing effects from finite rupture and model near-source ground motion correctly; (4) wave propagations and site response should be site specific; (5) a much wider search of possible sources of ground motion can be achieved computationally with a physics-based approach; (6) unless one utilizes a physics-based approach, the hazard and risk to structures has unknown uncertainties; (7) uncertainties can be reduced with a physics-based approach, but not with an ergodic approach; (8) computational power and computer codes have advanced to the point that risk to structures can be calculated directly from source and site-specific ground motions. Spanning the variability of potential ground motion in a predictive situation is especially difficult for near-source areas, but that is the distance at which the hazard is the greatest. The basis of a "physical-based" approach is ground-motion syntheses derived from physics and an understanding of the earthquake process. This is an overview paper and results from previous studies are used to make the case for these conclusions. Our premise is that 50 years of strong motion records is insufficient to capture all possible ranges of site and propagation path conditions, rupture processes, and spatial geometric relationships between source and site. Predicting future earthquake scenarios is necessary; models that have little or no physical basis but have been tested and adjusted to fit available observations can only "predict" what happened in the past, which should be considered description as opposed to prediction

  14. Remote Dynamic Earthquake Triggering in Shale Gas Basins in Canada and Implications for Triggering Mechanisms

    NASA Astrophysics Data System (ADS)

    Harrington, Rebecca M.; Liu, Yajing; Wang, Bei; Kao, Honn; Yu, Hongyu

    2017-04-01

    Here we investigate the occurrence of remote dynamic triggering in three sedimentary basins in Canada where recent fluid injection activity is correlated with increasing numbers of earthquakes. In efforts to count as many small, local earthquakes as possible for the statistical test of triggering, we apply a multi-station matched-filter detection method to continuous waveforms to detect uncataloged local earthquakes in 10-day time windows surrounding triggering mainshocks occurring between 2013-2015 with an estimated local peak ground velocity exceeding 0.01 cm/s. We count the number of earthquakes in 24-hour bins and use a statistical p-value test to determine if the changes in seismicity levels after the mainshock waves have passed are statistically significant. The p-value tests show occurrences of triggering following transient stress perturbations of < 10 kPa at all three sites that suggest local faults may remain critically stressed over periods similar to the time frame of our study ( 2 years) or longer, potentially due to maintained high pore pressures in tight shale formations following injection. The time window over which seismicity rates change varies at each site, with more delayed triggering occurring at sites where production history is longer. The observations combined with new modeling results suggest that the poroelastic response of the medium may be the dominant factor influencing instantaneous triggering, particularly in low-permeability tight shales. At sites where production history is longer and permeabilities have been increased, both pore pressure diffusion and the poroelastic response of the medium may work together to promote both instantaneous and delayed triggering. Not only does the interplay of the poroelastic response of the medium and pore pressure diffusion have implications for triggering induced earthquakes near injection sites, but it may be a plausible explanation for observations of instantaneous and delayed earthquake

  15. Welcome to Pacific Earthquake Engineering Research Center - PEER

    Science.gov Websites

    Triggering and Effects at Silty Soil Sites" - PEER Research Project Highlight: "Dissipative Base ; Upcoming Events More June 10-13, 2018 Geotechnical Earthquake Engineering and Soil Dynamics V 2018 - Call

  16. Larger earthquakes recur more periodically: New insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile

    NASA Astrophysics Data System (ADS)

    Moernaut, J.; Van Daele, M.; Fontijn, K.; Heirman, K.; Kempf, P.; Pino, M.; Valdebenito, G.; Urrutia, R.; Strasser, M.; De Batist, M.

    2018-01-01

    Historical and paleoseismic records in south-central Chile indicate that giant earthquakes on the subduction megathrust - such as in AD1960 (Mw 9.5) - reoccur on average every ∼300 yr. Based on geodetic calculations of the interseismic moment accumulation since AD1960, it was postulated that the area already has the potential for a Mw 8 earthquake. However, to estimate the probability of such a great earthquake to take place in the short term, one needs to frame this hypothesis within the long-term recurrence pattern of megathrust earthquakes in south-central Chile. Here we present two long lacustrine records, comprising up to 35 earthquake-triggered turbidites over the last 4800 yr. Calibration of turbidite extent with historical earthquake intensity reveals a different macroseismic intensity threshold (≥VII1/2 vs. ≥VI1/2) for the generation of turbidites at the coring sites. The strongest earthquakes (≥VII1/2) have longer recurrence intervals (292 ±93 yrs) than earthquakes with intensity of ≥VI1/2 (139 ± 69yr). Moreover, distribution fitting and the coefficient of variation (CoV) of inter-event times indicate that the stronger earthquakes recur in a more periodic way (CoV: 0.32 vs. 0.5). Regional correlation of our multi-threshold shaking records with coastal paleoseismic data of complementary nature (tsunami, coseismic subsidence) suggests that the intensity ≥VII1/2 events repeatedly ruptured the same part of the megathrust over a distance of at least ∼300 km and can be assigned to Mw ≥ 8.6. We hypothesize that a zone of high plate locking - identified by geodetic studies and large slip in AD 1960 - acts as a dominant regional asperity, on which elastic strain builds up over several centuries and mostly gets released in quasi-periodic great and giant earthquakes. Our paleo-records indicate that Poissonian recurrence models are inadequate to describe large megathrust earthquake recurrence in south-central Chile. Moreover, they show an enhanced

  17. Biomarker responses of mussels exposed to earthquake disturbances

    NASA Astrophysics Data System (ADS)

    Chandurvelan, Rathishri; Marsden, Islay D.; Glover, Chris N.; Gaw, Sally

    2016-12-01

    The green-lipped mussel, Perna canaliculus is recognised as a bioindicator of coastal contamination in New Zealand (NZ). Mussels (shell length 60-80 mm) were collected from three intertidal areas of Canterbury in the South Island of NZ prior to extreme earthquake disturbances on 22nd February 2011, and 9 months later in October 2011. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle. Metal levels in tissues were site specific, and mostly unaffected by earthquake disturbances. Physiological biomarkers were negatively affected by earthquake disturbances and mussels from the Port of Lyttelton had higher negative scope for growth post-earthquake. Metallothionein-like protein in the digestive gland correlated with metal content of tissues, as did catalase activity in the gill and lipid peroxidation values for the digestive gland. This research demonstrates that physiological and other biomarkers are effective at detecting the effects of multiple stressors following seismic disturbances.

  18. The Lushan earthquake and the giant panda: impacts and conservation.

    PubMed

    Zhang, Zejun; Yuan, Shibin; Qi, Dunwu; Zhang, Mingchun

    2014-06-01

    Earthquakes not only result in a great loss of human life and property, but also have profound effects on the Earth's biodiversity. The Lushan earthquake occurred on 20 Apr 2013, with a magnitude of 7.0 and an intensity of 9.0 degrees. A distance of 17.0 km from its epicenter to the nearest distribution site of giant pandas recorded in the Third National Survey was determined. Making use of research on the Wenchuan earthquake (with a magnitude of 8.0), which occurred approximately 5 years ago, we briefly analyze the impacts of the Lushan earthquake on giant pandas and their habitat. An earthquake may interrupt ongoing behaviors of giant pandas and may also cause injury or death. In addition, an earthquake can damage conservation facilities for pandas, and result in further habitat fragmentation and degradation. However, from a historical point of view, the impacts of human activities on giant pandas and their habitat may, in fact, far outweigh those of natural disasters such as earthquakes. Measures taken to promote habitat restoration and conservation network reconstruction in earthquake-affected areas should be based on requirements of giant pandas, not those of humans. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  19. Seismicity remotely triggered by the magnitude 7.3 landers, california, earthquake

    USGS Publications Warehouse

    Hill, D.P.; Reasenberg, P.A.; Michael, A.; Arabaz, W.J.; Beroza, G.; Brumbaugh, D.; Brune, J.N.; Castro, R.; Davis, S.; Depolo, D.; Ellsworth, W.L.; Gomberg, J.; Harmsen, S.; House, L.; Jackson, S.M.; Johnston, M.J.S.; Jones, L.; Keller, Rebecca Hylton; Malone, S.; Munguia, L.; Nava, S.; Pechmann, J.C.; Sanford, A.; Simpson, R.W.; Smith, R.B.; Stark, M.; Stickney, M.; Vidal, A.; Walter, S.; Wong, V.; Zollweg, J.

    1993-01-01

    The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).

  20. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  1. Stochastic ground-motion simulation of two Himalayan earthquakes: seismic hazard assessment perspective

    NASA Astrophysics Data System (ADS)

    Harbindu, Ashish; Sharma, Mukat Lal; Kamal

    2012-04-01

    The earthquakes in Uttarkashi (October 20, 1991, M w 6.8) and Chamoli (March 8, 1999, M w 6.4) are among the recent well-documented earthquakes that occurred in the Garhwal region of India and that caused extensive damage as well as loss of life. Using strong-motion data of these two earthquakes, we estimate their source, path, and site parameters. The quality factor ( Q β ) as a function of frequency is derived as Q β ( f) = 140 f 1.018. The site amplification functions are evaluated using the horizontal-to-vertical spectral ratio technique. The ground motions of the Uttarkashi and Chamoli earthquakes are simulated using the stochastic method of Boore (Bull Seismol Soc Am 73:1865-1894, 1983). The estimated source, path, and site parameters are used as input for the simulation. The simulated time histories are generated for a few stations and compared with the observed data. The simulated response spectra at 5% damping are in fair agreement with the observed response spectra for most of the stations over a wide range of frequencies. Residual trends closely match the observed and simulated response spectra. The synthetic data are in rough agreement with the ground-motion attenuation equation available for the Himalayas (Sharma, Bull Seismol Soc Am 98:1063-1069, 1998).

  2. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    recurrence, duration, and frequency response. At the Southern California field sites, one loop antenna was positioned for omni-directional reception and also detected a strong First Schumann Resonance; however, additional Schumann Resonances were absent. At the Timpson, TX field sites, loop antennae were positioned for directional reception, due to earthquake-induced, hydraulic fracturing activity currently conducted by the oil and gas industry. Two strong signals, one moderately strong signal, and approximately 6-8 weaker signals were detected in the immediate vicinity. The three stronger signals were mapped by a biangulation technique, followed by a triangulation technique for confirmation. This was the first antenna mapping technique ever performed for determining possible earthquake epicenters. Six and a half months later, Timpson experienced two M4 (M4.1 and M4.3) earthquakes on September 2, 2013 followed by a M2.4 earthquake three days later, all occurring at a depth of five kilometers. The Timpson earthquake activity now has a cyclical rate and a forecast was given to the proper authorities. As a result, the Southern California and Timpson, TX field results led to an improved design and construction of a third prototype antenna. With a loop antenna array, a viable communication system, and continuous monitoring, a full fracture cycle can be established and observed in real-time. In addition, field data could be reviewed quickly for assessment and lead to a much more improved earthquake forecasting capability. The EM precursors determined by this method appear to surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  3. Earthquake watch to be discussed

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The most intensive earthquake monitoring program ever mounted in this country is going on near Parkfield, Calif., about midway between Los Angeles and San Francisco on the San Andreas fault. Although no particularly large or destructive quake is feared in Parkfield, the regularity with which earthquakes have occurred there in the past makes the site unique. Since the next quake has been forecast for 1988 (±5 years), seismologists have decided to blanket the area with data-gathering equipment in hopes of having front-row seats for the expected seismic show. The studies in Parkfield will be the topic of an all-day session sponsored by the Seismology Section on Friday, December 13, at the AGU Fall Meeting in San Francisco, Calif.

  4. On the reported ionospheric precursor of the Hector Mine, California earthquake

    USGS Publications Warehouse

    Thomas, J.N.; Love, J.J.; Komjathy, A.; Verkhoglyadova, O.P.; Butala, M.; Rivera, N.

    2012-01-01

    Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identified as being anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake.

  5. 1964 Great Alaska Earthquake: a photographic tour of Anchorage, Alaska

    USGS Publications Warehouse

    Thoms, Evan E.; Haeussler, Peter J.; Anderson, Rebecca D.; McGimsey, Robert G.

    2014-01-01

    On March 27, 1964, at 5:36 p.m., a magnitude 9.2 earthquake, the largest recorded earthquake in U.S. history, struck southcentral Alaska (fig. 1). The Great Alaska Earthquake (also known as the Good Friday Earthquake) occurred at a pivotal time in the history of earth science, and helped lead to the acceptance of plate tectonic theory (Cox, 1973; Brocher and others, 2014). All large subduction zone earthquakes are understood through insights learned from the 1964 event, and observations and interpretations of the earthquake have influenced the design of infrastructure and seismic monitoring systems now in place. The earthquake caused extensive damage across the State, and triggered local tsunamis that devastated the Alaskan towns of Whittier, Valdez, and Seward. In Anchorage, the main cause of damage was ground shaking, which lasted approximately 4.5 minutes. Many buildings could not withstand this motion and were damaged or collapsed even though their foundations remained intact. More significantly, ground shaking triggered a number of landslides along coastal and drainage valley bluffs underlain by the Bootlegger Cove Formation, a composite of facies containing variably mixed gravel, sand, silt, and clay which were deposited over much of upper Cook Inlet during the Late Pleistocene (Ulery and others, 1983). Cyclic (or strain) softening of the more sensitive clay facies caused overlying blocks of soil to slide sideways along surfaces dipping by only a few degrees. This guide is the document version of an interactive web map that was created as part of the commemoration events for the 50th anniversary of the 1964 Great Alaska Earthquake. It is accessible at the U.S. Geological Survey (USGS) Alaska Science Center website: http://alaska.usgs.gov/announcements/news/1964Earthquake/. The website features a map display with suggested tour stops in Anchorage, historical photographs taken shortly after the earthquake, repeat photography of selected sites, scanned documents

  6. Geodetic measurement of deformation in the Loma Prieta, California earthquake with Very Long Baseline Interferometry (VLBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, T.A.; Ma, C.; Sauber, J.M.

    Following the Loma Prieta earthquake, two mobile Very Long Baseline Interferometry (VLBI) systems operated by the NASA Crustal Dynamics Project and the NOAA National Geodetic Survey were deployed at three previously established VLBI sites in the earthquake area: Fort Ord (near Monterey), the Presidio (in San Francisco) and Point Reyes. From repeated VLBI occupations of these sites since 1983, the pre-earthquake rates of deformation have been determined with respect to a North American reference frame with 1{sigma} formal standard errors of {approximately}1 mm/yr. The VLBI measurements immediately following the earthquake showed that the Fort Ord site was displaced 49 {plusmore » minus} 4 mm at an azimuth of 11 {plus minus} 4{degree} and that the Presidio site was displaced 12 {plus minus} 5 mm at an azimuth of 148 {plus minus} 13{degree}. No anomalous change was detected at Point Reyes with 1{sigma} uncertainty of 4 mm. The estimated displacements at Fort Ord and the Presidio are consistent with the static displacements predicted on the basis of a coseismic slip model in which slip on the southern segment is shallower than slip on the more northern segment is shallower than slip on the more northern segment of the fault rupture. The authors also give the Cartesian positions at epoch 1990.0 of a set of VLBI fiducial stations and the three mobile sites in the vicinity of the earthquake.« less

  7. The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence

    USGS Publications Warehouse

    Coordinated by Bakun, William H.; Prescott, William H.

    1993-01-01

    Professional Paper 1550 seeks to understand the M6.9 Loma Prieta earthquake itself. It examines how the fault that generated the earthquake ruptured, searches for and evaluates precursors that may have indicated an earthquake was coming, reviews forecasts of the earthquake, and describes the geology of the earthquake area and the crustal forces that affect this geology. Some significant findings were: * Slip during the earthquake occurred on 35 km of fault at depths ranging from 7 to 20 km. Maximum slip was approximately 2.3 m. The earthquake may not have released all of the strain stored in rocks next to the fault and indicates a potential for another damaging earthquake in the Santa Cruz Mountains in the near future may still exist. * The earthquake involved a large amount of uplift on a dipping fault plane. Pre-earthquake conventional wisdom was that large earthquakes in the Bay area occurred as horizontal displacements on predominantly vertical faults. * The fault segment that ruptured approximately coincided with a fault segment identified in 1988 as having a 30% probability of generating a M7 earthquake in the next 30 years. This was one of more than 20 relevant earthquake forecasts made in the 83 years before the earthquake. * Calculations show that the Loma Prieta earthquake changed stresses on nearby faults in the Bay area. In particular, the earthquake reduced stresses on the Hayward Fault which decreased the frequency of small earthquakes on it. * Geological and geophysical mapping indicate that, although the San Andreas Fault can be mapped as a through going fault in the epicentral region, the southwest dipping Loma Prieta rupture surface is a separate fault strand and one of several along this part of the San Andreas that may be capable of generating earthquakes.

  8. a Collaborative Cyberinfrastructure for Earthquake Seismology

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Roussel, F.; Mazet-Roux, G.; Lefebvre, S.; Steed, R.

    2013-12-01

    One of the challenges in real time seismology is the prediction of earthquake's impact. It is particularly true for moderate earthquake (around magnitude 6) located close to urbanised areas, where the slightest uncertainty in event location, depth, magnitude estimates, and/or misevaluation of propagation characteristics, site effects and buildings vulnerability can dramatically change impact scenario. The Euro-Med Seismological Centre (EMSC) has developed a cyberinfrastructure to collect observations from eyewitnesses in order to provide in-situ constraints on actual damages. This cyberinfrastructure takes benefit of the natural convergence of earthquake's eyewitnesses on EMSC website (www.emsc-csem.org), the second global earthquake information website within tens of seconds of the occurrence of a felt event. It includes classical crowdsourcing tools such as online questionnaires available in 39 languages, and tools to collect geolocated pics. It also comprises information derived from the real time analysis of the traffic on EMSC website, a method named flashsourcing; In case of a felt earthquake, eyewitnesses reach EMSC website within tens of seconds to find out the cause of the shaking they have just been through. By analysing their geographical origin through their IP address, we automatically detect felt earthquakes and in some cases map the damaged areas through the loss of Internet visitors. We recently implemented a Quake Catcher Network (QCN) server in collaboration with Stanford University and the USGS, to collect ground motion records performed by volunteers and are also involved in a project to detect earthquakes from ground motions sensors from smartphones. Strategies have been developed for several social media (Facebook, Twitter...) not only to distribute earthquake information, but also to engage with the Citizens and optimise data collection. A smartphone application is currently under development. We will present an overview of this

  9. Implications of the Mw9.0 Tohoku-Oki earthquake for ground motion scaling with source, path, and site parameters

    USGS Publications Warehouse

    Stewart, Jonathan P.; Midorikawa, Saburoh; Graves, Robert W.; Khodaverdi, Khatareh; Kishida, Tadahiro; Miura, Hiroyuki; Bozorgnia, Yousef; Campbell, Kenneth W.

    2013-01-01

    The Mw9.0 Tohoku-oki Japan earthquake produced approximately 2,000 ground motion recordings. We consider 1,238 three-component accelerograms corrected with component-specific low-cut filters. The recordings have rupture distances between 44 km and 1,000 km, time-averaged shear wave velocities of VS30 = 90 m/s to 1,900 m/s, and usable response spectral periods of 0.01 sec to >10 sec. The data support the notion that the increase of ground motions with magnitude saturates at large magnitudes. High-frequency ground motions demonstrate faster attenuation with distance in backarc than in forearc regions, which is only captured by one of the four considered ground motion prediction equations for subduction earthquakes. Recordings within 100 km of the fault are used to estimate event terms, which are generally positive (indicating model underprediction) at short periods and zero or negative (overprediction) at long periods. We find site amplification to scale minimally with VS30 at high frequencies, in contrast with other active tectonic regions, but to scale strongly with VS30 at low frequencies.

  10. The deadly Morelos-Puebla, Mexico Intraslab Earthquake of 19 September 2017 (Mw7.1): Was the Earthquake Unexpected and Were the Ground Motions and Damage Pattern in Mexico City Abnormal?

    NASA Astrophysics Data System (ADS)

    Perez-Campos, X.; Singh, S. K.; Arroyo, D.; Cruz-Atienza, V. M.; Ordaz, M.; Hjorleifsdottir, V.; Iglesias, A.

    2017-12-01

    stress drop. It follows that, for this earthquake, the sites in the city with 1-2s natural period (the transition zone) would be especially vulnerable. Observed damage in the city closely follows this pattern: peak in the response spectra occurs between 1 and 2 s and coincides with sites which have 1 to 2 s natural period and zone of collapsed buildings.

  11. PAGER--Rapid assessment of an earthquake?s impact

    USGS Publications Warehouse

    Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.

    2010-01-01

    PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.

  12. Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Garrett, Ed; Barlow, Natasha

    2016-10-01

    Recent paleoseismological studies question whether segment boundaries identified for 20th and 21st century great, >M8, earthquakes persist through multiple earthquake cycles or whether smaller segments with different boundaries rupture and cause significant hazards. The smaller segments may include some currently slipping rather than locked. In this review, we outline general principles regarding indicators of relative sea-level change in tidal wetlands and the conditions in which paleoseismic indicators must be distinct from those resulting from non-seismic processes. We present new evidence from sites across southcentral Alaska to illustrate different detection limits of paleoseismic indicators and consider alternative interpretations for marsh submergence and emergence. We compare predictions of coseismic uplift and subsidence derived from geophysical models of earthquakes with different rupture modes. The spatial patterns of agreement and misfits between model predictions and quantitative reconstructions of coseismic submergence and emergence suggest that no earthquake within the last 4000 years had a pattern of rupture the same as the Mw 9.2 Alaska earthquake in 1964. From the Alaska examples and research from other subduction zones we suggest that If we want to understand whether a megathrust ruptures in segments of variable length in different earthquakes, we need to be site-specific as to what sort of geological-based criteria eliminate the possibility of a particular rupture mode in different earthquakes. We conclude that coastal paleoseismological studies benefit from a methodological framework that employs rigorous evaluation of five essential criteria and a sixth which may be very robust but only occur at some sites: 1 - lateral extent of peat-mud or mud-peat couplets with sharp contacts; 2 - suddenness of submergence or emergence, and replicated within each site; 3 - amount of vertical motion, quantified with 95% error terms and replicated within each

  13. The Near-Source Intensity Distribution for the August 24, 2014, South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Boatwright, J.; Pickering, A.; Blair, J. L.

    2016-12-01

    The 2014 Mw=6.0 South Napa earthquake was the largest and most damaging earthquake to occur in the Bay Area since the 1989 Mw=6.9 Loma Prieta earthquake. The City of Napa estimated that the earthquake caused 300 million damage to homes and commercial properties and 58 million to public infrastructure. Over 41,000 reports were entered on the USGS "Did You Feel It?" (DYFI) website: 730 of these reports were located within 15 km of the rupture. Unfortunately, very few geocoded intensities were obtained immediately west and north of the rupture area. In the weeks following the earthquake, we conducted an intensity survey focused on areas poorly sampled by the DYFI reports. 75 sites were surveyed within 15 km of the earthquake rupture. In addition, we checked and manually geocoded many of the DYFI reports, locating 245 reports within 15 km of the rupture that the automated DYFI processing failed to geocode. We combine the survey sites and the newly geocoded DYFI reports with the original geocoded DYFI reports to map and contour the near-source shaking intensity. In addition to imaging the strong shaking (MMI 7.0-8.0) in the City of Napa, we find an area of very strong shaking (MMI 7.5-8.0) to the northwest of the earthquake rupture. This area, marked by ground cracks, damage to modern wood-frame buildings, and reports of people knocked down, coincides with the directivity expected for rupture to the northwest and up dip. The intensities from the survey sites are consistent with the intensities from the DYFI reports, but are much less variable. For DYFI intensities MMI 4-6, this variability could be derived from the 3:20 AM occurrence of the earthquake: some of the effects that the DYFI questionnaire uses to assign these intensities (objects swaying, bushes and trees shaken) cannot be observed in the dark.

  14. The growth of geological structures by repeated earthquakes: 2, Field examples of continental dip-slip faults

    USGS Publications Warehouse

    Stein, R.S.; King, G.C.P.; Rundle, J.B.

    1988-01-01

    A strong test of our understanding of the earthquake cycle is the ability to reproduce extant faultbounded geological structures, such as basins and ranges, which are built by repeated cycles of deformation. Three examples are considered for which the structure and fault geometry are well known: the White Wolf reverse fault in California, site of the 1952 Kern County M=7.3 earthquake, the Lost River normal fault in Idaho, site of the 1983 Borah Peak M=7.0 earthquake, and the Cricket Mountain normal fault in Utah, site of Quaternary slip events. Basin stratigraphy and seismic reflection records are used to profile the structure, and coseismic deformation measured by leveling surveys is used to estimate the fault geometry. To reproduce these structures, we add the deformation associated with the earthquake cycle (the coseismic slip and postseismic relaxation) to the flexure caused by the observed sediment load, treating the crust as a thin elastic plate overlying a fluid substrate. -from Authors

  15. HPV Prevalence in Multiple Anatomical Sites among Men Who Have Sex with Men in Peru

    PubMed Central

    Blas, Magaly M.; Brown, Brandon; Menacho, Luis; Alva, Isaac E.; Silva-Santisteban, Alfonso; Carcamo, Cesar

    2015-01-01

    Background Human Papilloma Virus (HPV) infection is the most common sexually transmitted viral infection worldwide. HPV is highly prevalent in sexually active men who have sex with men (MSM) and has been associated with anal cancer, penile cancer, and oropharyngeal cancer. Methods From March to September 2011, we conducted a cross-sectional study of HPV prevalence among MSM above age 18 years. Participants were recruited using respondent driven sampling at Clinica Cayetano Heredia. All participants provided anal, genital, and oral samples for HPV DNA testing, and blood for HIV and HPV antibody testing. Results A total of 200 MSM were recruited in the study. The mean age was 34 years (range 18–59 years, SD = 9.4) and101 participants were HIV negative (99 HIV positive). HPV 6/11/16/18 or quadrivalent HPV vaccine (HPV4) genotype seroprevalence among HIV negative and positive MSM was 64.3% (55%-75.9%) and 93.8% (87.6%-99.2%) respectively (p<0.001). HIV positivity was associated with a higher prevalence of HPV4 and HPV 16/18 DNA at external genital sites and the anal canal. HPV4 DNA prevalence at external genital sites among HIV negative and positive MSM was 14.9% and 28.7% (p = 0.02) respectively, at anal canal was 50.9% and 79.0% (p = 0.001), and at the oral cavity was 9.9% and 8.5% (p = 0.6). Conclusions HPV4 seroprevalence was high in our study among both HIV positives and negatives, with HPV DNA prevalence much lower, and the anal canal being the anatomical site with the highest HPV DNA prevalence. HPV prevention interventions are needed among MSM at high-risk for HIV infection. PMID:26437318

  16. HPV Prevalence in Multiple Anatomical Sites among Men Who Have Sex with Men in Peru.

    PubMed

    Blas, Magaly M; Brown, Brandon; Menacho, Luis; Alva, Isaac E; Silva-Santisteban, Alfonso; Carcamo, Cesar

    2015-01-01

    Human Papilloma Virus (HPV) infection is the most common sexually transmitted viral infection worldwide. HPV is highly prevalent in sexually active men who have sex with men (MSM) and has been associated with anal cancer, penile cancer, and oropharyngeal cancer. From March to September 2011, we conducted a cross-sectional study of HPV prevalence among MSM above age 18 years. Participants were recruited using respondent driven sampling at Clinica Cayetano Heredia. All participants provided anal, genital, and oral samples for HPV DNA testing, and blood for HIV and HPV antibody testing. A total of 200 MSM were recruited in the study. The mean age was 34 years (range 18-59 years, SD = 9.4) and101 participants were HIV negative (99 HIV positive). HPV 6/11/16/18 or quadrivalent HPV vaccine (HPV4) genotype seroprevalence among HIV negative and positive MSM was 64.3% (55%-75.9%) and 93.8% (87.6%-99.2%) respectively (p<0.001). HIV positivity was associated with a higher prevalence of HPV4 and HPV 16/18 DNA at external genital sites and the anal canal. HPV4 DNA prevalence at external genital sites among HIV negative and positive MSM was 14.9% and 28.7% (p = 0.02) respectively, at anal canal was 50.9% and 79.0% (p = 0.001), and at the oral cavity was 9.9% and 8.5% (p = 0.6). HPV4 seroprevalence was high in our study among both HIV positives and negatives, with HPV DNA prevalence much lower, and the anal canal being the anatomical site with the highest HPV DNA prevalence. HPV prevention interventions are needed among MSM at high-risk for HIV infection.

  17. Geological Evidence of Predecessors to the 2010 Earthquake and Tsunami in South-Central Chile

    NASA Astrophysics Data System (ADS)

    Ely, L. L.; Cisternas, M.; Wesson, R. L.; Lagos, M.

    2010-12-01

    On February 27, 2010 a great M 8.8 earthquake and accompanying tsunami struck the region between Constitución and Concepción in south-central Chile. In the year immediately preceding this event, we described and surveyed deposits from previous tsunamis at several sites in the Concepción region (36.5°-38.5° S. Lat). This research positioned us to document the geomorphic and tectonic effects of the 2010 earthquake and tsunami. Following the 2010 earthquake we quantified the inundation, inland extent, erosion and deposition of the 2010 tsunami at our study sites and compared with those of previous tsunamis. The 2010 tsunami deposits were also utilized to guide the search for repositories where stratigraphic records of multiple paleotsunami deposits are likely to be preserved. The characteristic of the 2010 tsunami were similar to those reported after the penultimate earthquake in the Concepción region, which occurred in 1835. A sand sheet from the 2010 tsunami blanketed sites at Tirua (38.5° S. Lat) and the Andalien River, (36.7° S. Lat), where we had identified preexisting anomalous, laterally-continuous sand sheets that thin landward and are interbedded with coastal marsh deposits. The great similarity between these and the 2010 tsunami sands substantiated our interpretation that they were also left by previous tsunamis. At the Tirua River estuary, the 2010 tsunami sand sheet is underlain by at least three earlier tsunami deposits. This site lies at the boundary between the northern end of the rupture zone from the M 9.5 earthquake in 1960 and the southernmost reports of the 1835 and 2010 tsunamis. Prominent, laterally-continuous bands of these tsunami sands are interbedded with silty peats along the bank of the Tirua River, 0.8 to 1.8 km inland from the coast. Based on buried historic artifacts and testimonies of local survivors, the youngest pre-2010 sand sheet was deposited by the 1960 tsunami. Preliminary radiocarbon and OSL ages on the lower two sand

  18. Journal of the Chinese Institute of Engineers. Special Issue: Commemoration of Chi-Chi Earthquake (II)

    NASA Astrophysics Data System (ADS)

    2002-09-01

    Contents include the following: Deep Electromagnetic Images of Seismogenic Zone of the Chi-Chi (Taiwan) Earthquake; New Techniques for Stress-Forecasting Earthquakes; Aspects of Characteristics of Near-Fault Ground Motions of the 1999 Chi-Chi (Taiwan) Earthquake; Liquefaction Damage and Related Remediation in Wufeng after the Chi-Chi Earthquake; Fines Content Effects on Liquefaction Potential Evaluation for Sites Liquefied during Chi-Chi Earthquake 1999; Damage Investigation and Liquefaction Potential Analysis of Gravelly Soil; Dynamic Characteristics of Soils in Yuan-Lin Liquefaction Area; A Preliminary Study of Earthquake Building Damage and Life Loss Due to the Chi-Chi Earthquake; Statistical Analyses of Relation between Mortality and Building Type in the 1999 Chi-Chi Earthquake; Development of an After Earthquake Disaster Shelter Evaluation Model; Posttraumatic Stress Reactions in Children and Adolescents One Year after the 1999 Taiwan Chi-Chi Earthquake; Changes or Not is the Question: the Meaning of Posttraumatic Stress Reactions One Year after the Taiwan Chi-Chi Earthquake.

  19. Principles for selecting earthquake motions in engineering design of large dams

    USGS Publications Warehouse

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at

  20. The 2016 Central Italy Earthquake: an Overview

    NASA Astrophysics Data System (ADS)

    Amato, A.

    2016-12-01

    The M6 central Italy earthquake occurred on the seismic backbone of the Italy, just in the middle of the highest hazard belt. The shock hit suddenly during the night of August 24, when people were asleep; no foreshocks occurred before the main event. The earthquake ruptured from 10 km to the surface, and produced a more than 17,000 aftershocks (Oct. 19) spread on a 40x20 km2 area elongated NW-SE. It is geologically very similar to previous recent events of the Apennines. Both the 2009 L'Aquila earthquake to the south and the 1997 Colfiorito to the north, were characterized by the activation of adjacent fault segments. Despite its magnitude and the well known seismic hazard of the region, the earthquake produced extensive damage and 297 fatalities. The town of Amatrice, that paid the highest toll, was classified in zone 1 (the highest) since 1915, but the buildings in this and other villages revealed highly vulnerable. In contrast, in the town of Norcia, that also experienced strong ground shaking, no collapses occurred, most likely due to the retrofitting carried out after an earthquake in 1979. Soon after the quake, the INGV Crisis Unit convened at night in the Rome headquarters, in order to coordinate the activities. The first field teams reached the epicentral area at 7 am with the portable seismic stations installed to monitor the aftershocks; other teams followed to map surface faults, damage, to measure GPS sites, to install instruments for site response studies, and so on. The INGV Crisis Unit includes the Press office and the INGVterremoti team, in order to manage and coordinate the communication towards the Civil Protection Dept. (DPC), the media and the web. Several tens of reports and updates have been delivered in the first month of the sequence to DPC. Also due to the controversial situation arisen from the L'Aquila earthquake and trials, particular attention was given to the communication: continuous and timely information has been released to

  1. JPL's GNSS Real-Time Earthquake and Tsunami (GREAT) Alert System

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Yoaz; Miller, Mark; Vallisneri, Michele; Khachikyan, Robert; Meyer, Robert

    2017-04-01

    We describe recent developments to the GREAT Alert natural hazard monitoring service from JPL's Global Differential GPS (GDGPS) System. GREAT Alert provides real-time, 1 Hz positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. We take advantage of the centralized data processing, which is collocated with the GNSS orbit determination operations of the GDGPS System, to combine orbit determination with large-scale point-positioning in a grand estimation scheme, and as a result realize significant improvement to the positioning accuracy compared to conventional stand-alone point positioning techniques. For example, the measured median site (over all sites) real-time horizontal positioning accuracy is 2 cm 1DRMS, and the median real-time vertical accuracy is 4 cm RMS. The GREAT Alert positioning service is integrated with automated global earthquake notices from the United States Geodetic Survey (USGS) to support near-real-time calculations of co-seismic displacements with attendant formal errors based both short-term and long-term error analysis for each individual site. We will show the millimeter-level resolution of co-seismic displacement can be achieved by this system. The co-seismic displacements, in turn, are fed into a JPL geodynamics and ocean models, that estimate the Earthquake magnitude and predict the potential tsunami scale.

  2. Geologic Evidence of Earthquakes and Tsunamis in the Mexican Subduction zone - Guerrero

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Lagos, M.; Hutchinson, I.; Ruiz-Fernández, A.; Machain, M.; Caballero, M.; Rangel, V.; Nava, H.; Corona, N.; Bautista, F.; Kostoglodov, V.; Goguitchaichrili, A.; Morales, J.; Quintana, P.

    2010-12-01

    A study of large historic and prehistoric earthquakes and their tsunamis using a multiproxy approach (geomorphic features, sediment deposits, microfossils, sediment geochemistry and more recently the use of magnetic properties) has provided valuable information in the assessment of earthquake and tsunami record. The Pacific coast of Mexico is located over the active subduction zone (~1000 km) that has experienced numerous large magnitude earthquakes in historical time (Mw>7.5), and more than 50 documented tsunamis since 1732. Geomorphic and stratigraphic studies through test pits at 13 sites on the Guerrero coast reveal distinct stratigraphic changes with depth, indicating clear rapid change in depositional environments over time. Microfossil ecology (diatoms and foraminifera), sediment geochemistry (concentration increment in elements such as Sr, Ba, Ca, P, Si, K), stratigraphy, sediment magnetic properties (magnetic susceptibility anisotropy for the first time applied in tsunami deposits identification) and other proxies are indicative of sudden changes in land level and tsunami deposits. Buried evidence of liquefaction confirms the occurrence of a large earthquake at Barra de Potosi and Ixtapa, Guerrero. Preliminary 210Pb analysis suggests a sedimentation rate of ca. 0.1±0.01 cm/year and an estimated minimum age of ~ 100 years (maximum age at ca. 450 years?) for the most recent earthquake. At least three large events can be recognized by sharp contacts and sand layers in the sedimentary record. Ongoing C14, OSL and 210Pb dating will constrain the timing of these events. Deposits from three marine inwash events (tsunamis) dating from the past 4600 years have been identified on the Guerrero coast. A near-surface sand bed with a sharp basal contact overlying soil at sites near Ixtapa and Barra de Potosi most probably marks the tsunami following the 1985 Mw 8.2 earthquake. Interviews with Barra de Potosi fishermen and locals corroborate that these sites were

  3. Static stress changes and the triggering of earthquakes

    USGS Publications Warehouse

    King, Geoffrey C.P.; Stein, Ross S.; Lin, Jian

    1994-01-01

    To understand whether the 1992 M = 7.4 Landers earthquake changed the proximity to failure on the San Andreas fault system, we examine the general problem of how one earthquake might trigger another. The tendency of rocks to fail in a brittle manner is thought to be a function of both shear and confining stresses, commonly formulated as the Coulomb failure criterion. Here we explore how changes in Coulomb conditions associated with one or more earthquakes may trigger subsequent events. We first consider a Coulomb criterion appropriate for the production of aftershocks, where faults most likely to slip are those optimally orientated for failure as a result of the prevailing regional stress field and the stress change caused by the mainshock. We find that the distribution of aftershocks for the Landers earthquake, as well as for several other moderate events in its vicinity, can be explained by the Coulomb criterion as follows: aftershocks are abundant where the Coulomb stress on optimally orientated faults rose by more than one-half bar, and aftershocks are sparse where the Coulomb stress dropped by a similar amount. Further, we find that several moderate shocks raised the stress at the future Landers epicenter and along much of the Landers rupture zone by about a bar, advancing the Landers shock by 1 to 3 centuries. The Landers rupture, in turn, raised the stress at site of the future M = 6.5 Big Bear aftershock site by 3 bars. The Coulomb stress change on a specified fault is independent of regional stress but depends on the fault geometry, sense of slip, and the coefficient of friction. We use this method to resolve stress changes on the San Andreas and San Jacinto faults imposed by the Landers sequence. Together the Landers and Big Bear earthquakes raised the stress along the San Bernardino segment of the southern San Andreas fault by 2 to 6 bars, hastening the next great earthquake there by about a decade.

  4. Co- and postseismic slip distribution for the 2011 March 9 earthquake based on the geodetic data: Role on the initiation of the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Ohta, Y.; Hino, R.; Inazu, D.; Ohzono, M.; Mishina, M.; Nakajima, J.; Ito, Y.; Sato, T.; Tamura, Y.; Fujimoto, H.; Tachibana, K.; Demachi, T.; Osada, Y.; Shinohara, M.; Miura, S.

    2012-04-01

    A large foreshock with M7.3 occurred on March 9, 2011 at the subducting Pacific plate interface followed by the M9.0 Tohoku earthquake 51 hours later. We propose a slip distribution of the foreshock deduced from dense inland GPS sites and Ocean Bottom Pressure gauge (OBP) sites. The multiple OBP gauges were installed before the M7.3 foreshock in and around the focal area. We succeed to collect the OBP gauge data in 9 sites, which included two cabled OBPs in off Kamaishi (TM1, TM2). The inland GPS horizontal coseismic displacements are estimated based on baseline analyses to show the broad area of displacement field up to ~30mm directing to the focal area. In contrast, there is no coherent signal in the vertical components. The several OBP sites, for example, P2 and P6 sites located the westward from the epicenter of the foreshock clearly detected the coseismic displacement. The estimated coseismic displacement reached more than 100mm in P6 sites. Intriguingly, GJT3 sites, which the most nearly OBP sites from the epicenter, did not show the significant displacement. Based on the inland GPS sites and OBPs data, we estimated a coseismic slip distribution in the subducting plate interface. The estimated slip distribution can explain observations including the vertical displacement obtained at the OBP sites. The amount of moment release is equivalent to Mw 7.2. The spatio-temporal aftershock distribution of the foreshock shows a southward migration from our estimated fault model. We suggest that aseismic slip occurred after the M7.3 earthquake. The onshore GPS data also supports the occurrence of the afterslip in the southwestward area of the coseismic fault. We estimated the sub-daily coordinates every three hours at the several coastal GPS sites to reveal the time evolutional sequences suggesting the postseismic deformation, especially in the horizontal components. We also examine volumetric strain data at Kinka-san Island, which is situated at the closest distance

  5. Skin temperature during cutaneous wound healing in an equine model of cutaneous fibroproliferative disorder: kinetics and anatomic-site differences.

    PubMed

    Celeste, Christophe J; Deschesne, Karine; Riley, Christopher B; Theoret, Christine L

    2013-02-01

    To map skin temperature kinetics, and by extension skin blood flow throughout normal or abnormal repair of full-thickness cutaneous wounds created on the horse body and limb, using infrared thermography. Experimental. Standardbreds (n = 6), aged 3-4 years. Three cutaneous wounds were created on the dorsolateral surface of each metacarpus and on the lateral thoracic wall. Thoracic skin wounds and those on 1 randomly chosen forelimb healed by second intention without a bandage, whereas contralateral limb wounds were bandaged to induce formation of exuberant granulation tissue (EGT). Thermal data were collected from all planned wound sites before the surgical procedure (baseline), and at 24, 48, 96 hours, 1, 2, and 4 weeks after wounding. Data were analyzed using repeated measures ANOVA and a priori contrasts submitted to Bonferroni sequential correction. Level of significance was P < .05. Cutaneous wound temperature (CWT) increased temporally from preoperative period to week 1 postwounding, independently of anatomic location (P < .0001). CWT of limb wounds was significantly less than that of body wounds throughout healing (P < .01). CWT of limb wounds managed with bandages and developing EGT was significantly less than that of unbandaged limb wounds, which did not develop EGT (P ≤ .01). CWT varied with anatomic location and throughout healing. CWT of wounds developing EGT was significantly less than that of wounds without EGT. © Copyright 2012 by The American College of Veterinary Surgeons.

  6. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  7. Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Panza, G. F.; Romanelli, F.

    2001-12-01

    In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html

  8. Variation of nitric oxide concentration before the Kobe earthquake, Japan

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Ikeya, Motoji

    The variation and spatial distribution of the atmospheric concentration of nitric oxide (NO) near the epicenter of the Kobe earthquake at local time 5:46, 17 January 1995 have been studied using data at monitoring stations of the local environmental protection agencies. The concentration of NO 8 days before the earthquake was 199 ppb, about ten times larger than the average peak level of 19 ppb, accompanying the retrospectively reported precursory earthquake lightning, increase of radon concentration in well water and of the counts of electromagnetic (EM) signals. The reported thunderstorm over the Japan Sea about 150 km away was too far for the thunder-generated NO to reach the epicenter area. The concentration of NO was also found to have increased before other major earthquakes (Magnitude>5.0) in Japan. Atmospheric discharges by electric charges or EM waves before earthquakes may have generated NO. However, the generation of NO by human activities of fuel combustion soon after holidays is enormously high every year, which makes it difficult to clearly link the increase with the earthquakes. The increase soon after the earthquake due to traffic jams is clear. The concentration of NO should be monitored at a several sites away from human activities as background data of natural variation and to study its generation at a seismic area before a large earthquake.

  9. Real time drilling mud gas response to small-moderate earthquakes in Wenchuan earthquake Scientific Drilling Hole-1 in SW China

    NASA Astrophysics Data System (ADS)

    Gong, Zheng; Li, Haibing; Tang, Lijun; Lao, Changling; Zhang, Lei; Li, Li

    2017-05-01

    We investigated the real time drilling mud gas of the Wenchuan earthquake Fault Scientific Drilling Hole-1 and their responses to 3918 small-moderate aftershocks happened in the Longmenshan fault zone. Gas profiles for Ar, CH4, He, 222Rn, CO2, H2, N2, O2 are obtained. Seismic wave amplitude, energy density and static strain are calculated to evaluate their power of influence to the drilling site. Mud gases two hours before and after each earthquake are carefully analyzed. In total, 25 aftershocks have major mud gas response, the mud gas concentrations vary dramatically immediately or minutes after the earthquakes. Different gas species respond to earthquakes in different manners according to local lithology encountered during the drill. The gas variations are likely controlled by dynamic stress changes, rather than static stress changes. They have the seismic energy density between 10-5 and 1.0 J/m3 whereas the static strain are mostly less than 10-8. We suggest that the limitation of the gas sources and the high hydraulic diffusivity of the newly ruptured fault zone could have inhibited the drilling mud gas behaviors, they are only able to respond to a small portion of the aftershocks. This work is important for the understanding of earthquake related hydrological changes.

  10. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the

  11. Urban Earthquake Shaking and Loss Assessment

    NASA Astrophysics Data System (ADS)

    Hancilar, U.; Tuzun, C.; Yenidogan, C.; Zulfikar, C.; Durukal, E.; Erdik, M.

    2009-04-01

    This study, conducted under the JRA-3 component of the EU NERIES Project, develops a methodology and software (ELER) for the rapid estimation of earthquake shaking and losses the Euro-Mediterranean region. This multi-level methodology developed together with researchers from Imperial College, NORSAR and ETH-Zurich is capable of incorporating regional variability and sources of uncertainty stemming from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. GRM Risk Management, Inc. of Istanbul serves as sub-contractor tor the coding of the ELER software. The methodology encompasses the following general steps: 1. Finding of the most likely location of the source of the earthquake using regional seismotectonic data base and basic source parameters, and if and when possible, by the estimation of fault rupture parameters from rapid inversion of data from on-line stations. 2. Estimation of the spatial distribution of selected ground motion parameters through region specific ground motion attenuation relationships and using shear wave velocity distributions.(Shake Mapping) 4. Incorporation of strong ground motion and other empirical macroseismic data for the improvement of Shake Map 5. Estimation of the losses (damage, casualty and economic) at different levels of sophistication (0, 1 and 2) that commensurate with the availability of inventory of human built environment (Loss Mapping) Level 2 analysis of the ELER Software (similar to HAZUS and SELENA) is essentially intended for earthquake risk assessment (building damage, consequential human casualties and macro economic loss quantifiers) in urban areas. The basic Shake Mapping is similar to the Level 0 and Level 1 analysis however, options are available for more sophisticated treatment of site response through externally entered data and improvement of the shake map through incorporation

  12. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    NASA Astrophysics Data System (ADS)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  13. Empirical Site Amplification Factors Incorporating Soil Nonlinearity in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Chung, C. H.; Che-Min, L.; Huang, J. Y.; Wen, K. L.

    2017-12-01

    Characteristics of site amplifications caused by both crustal and subduction earthquakes are important in Taiwan. For example, seismic waves were amplified and led to significant building damages in the Taipei Basin by the 1986 Hualien offshore (subduction interface) and the 1999 Chi-Chi earthquakes (crustal), for which the epicentral distances were about 100 km. To understand local site amplifications in Taiwan, empirical site amplification factors for horizontal ground motions are studied using recently constructed strong motion and site databases for the free-field TSMIP stations in Taiwan. Records of large magnitude earthquakes of ML larger than six from 1994 to 2014 were selected for this study. Site amplification factors at site conditions with Vs30 of 120 m/s to 1500 m/s and base accelerations up to 0.7g were inferred from intensity ratios of station pairs within specific distances. The reference site condition is assumed as Vs30 of 760 m/s (B/C boundary). Preliminary results indicate: 1. Soil nonlinearity is more obviously at short periods (PGA, Sa0.3) than long periods (PGV, Sa1.0). 2. Soil nonlinearity is significant for stations belong to site classes of B, C, D, and E in Taiwan. 3. Effect of station-pair distance is seen at short periods (PGA and Sa0.3). 4. No significant different is found in site amplifications of crustal and subduction earthquakes. The result could be a reference for the Fa and Fv in Taiwan's building code.

  14. Earthquakes for Kids

    MedlinePlus

    ... across a fault to learn about past earthquakes. Science Fair Projects A GPS instrument measures slow movements of the ground. Become an Earthquake Scientist Cool Earthquake Facts Today in Earthquake History A scientist stands in ...

  15. Seismomagnetic effects from the long-awaited 28 September 2004 M 6.0 parkfield earthquake

    USGS Publications Warehouse

    Johnston, M.J.S.; Sasai, Y.; Egbert, G.D.; Mueller, R.J.

    2006-01-01

    Precise measurements of local magnetic fields have been obtained with a differentially connected array of seven synchronized proton magnetometers located along 60 km of the locked-to-creeping transition region of the San Andreas fault at Parkfield, California, since 1976. The M 6.0 Parkfield earthquake on 28 September 2004, occurred within this array and generated coseismic magnetic field changes of between 0.2 and 0.5 nT at five sites in the network. No preseismic magnetic field changes exceeding background noise levels are apparent in the magnetic data during the month, week, and days before the earthquake (or expected in light of the absence of measurable precursive deformation, seismicity, or pore pressure changes). Observations of electric and magnetic fields from 0.01 to 20 Hz are also made at one site near the end of the earthquake rupture and corrected for common-mode signals from the ionosphere/magnetosphere using a second site some 115 km to the northwest along the fault. These magnetic data show no indications of unusual noise before the earthquake in the ULF band (0.01-20 Hz) as suggested may have preceded the 1989 ML 7.1 Loma Prieta earthquake. Nor do we see electric field changes similar to those suggested to occur before earthquakes of this magnitude from data in Greece. Uniform and variable slip piezomagnetic models of the earthquake, derived from strain, displacement, and seismic data, generate magnetic field perturbations that are consistent with those observed by the magnetometer array. A higher rate of longer-term magnetic field change, consistent with increased loading in the region, is apparent since 1993. This accompanied an increased rate of secular shear strain observed on a two-color EDM network and a small network of borehole tensor strainmeters and increased seismicity dominated by three M 4.5-5 earthquakes roughly a year apart in 1992, 1993, and 1994. Models incorporating all of these data indicate increased slip at depth in the region

  16. Earthquake Archaeology: a case study from Ancient Cnidus

    NASA Astrophysics Data System (ADS)

    Stewart, I. S.; Altunel, E.; Piccardi, L.

    2003-04-01

    Ancient earthquakes can leave their mark in the mythical practices and literary accounts of ancient peoples, the stratigraphy of their site histories, and the structural integrity of their constructions. The ancient Greek/Roman city of Cnidus in southwestern Turkey records all three. A spectacular exposed fault plane cliff bordering the northern edge of the city appears to have been an important revered site, bearing votive niches carved into the near-vertical slip plane and associated with a Sanctuary of Demeter that implies a connection to the underworld. Stratigraphic evidence for earthquake faulting can be found in the form of a destruction horizon of contorted soil, relics and human remains exposed in the original excavations of the Sanctuary of Demeter by Sir Charles Newton (1857-58) and in a destruction horizon of burnt soil and bone uncovered by the ongoing excavation of a colonnaded street. Structural damage to constructions is widespread across the site, with warped and offset walls in the Sanctuary of Demeter, collapsed buildings in several places, and a parallel arrangement of fallen columns in the colonnaded street. The most remarkable structural evidence for fault activity, however, is the rupture of the ancient city's famous Round Temple of Aphrodite, whose podium reveals a history of damage and which is unambiguously displaced across a bedrock fault. While these phenomena are equivocal when viewed in isolation, collectively they imply at least two damaging earthquakes at the site, one (possibly both) of which ruptured along the fault on which the city is found. The Cnidus case study highlights how reliable identification of archaeoseismic damage relies on compiling an assemblage of indicators rather than the discovery of a diagnostic "smoking gun".

  17. Health education and promotion at the site of an emergency: experience from the Chinese Wenchuan earthquake response.

    PubMed

    Tian, Xiangyang; Zhao, Genming; Cao, Dequan; Wang, Duoquan; Wang, Liang

    2016-03-01

    Theories and strategies of social mobilization, capacity building, mass and interpersonal communication, as well as risk communication and behavioral change were used to develop health education and promotion campaigns to decrease and prevent injuries and infectious diseases among the survivors of the Wenchuan earthquake in May 2008. We evaluated the effectiveness of the campaigns and short-term interventions using mixed-methods. The earthquake survivors' health knowledge, skills, and practice improved significantly with respect to injury protection, food and water safety, environmental and personal hygiene, and disease prevention. No infectious disease outbreaks were reported after the earthquake, and the epidemic level was lower than before the earthquake. After a short-term intervention among the students of Leigu Township Primary and Junior School, the proportion of those with personal hygiene increased from 59.7% to 98.3% (p< 0.01). Of the sampled survivors from Wenchuan County, 92.3% reported to have improved their health knowledge and 54.9% improved their health practice (p< 0.01). Thus, health education and promotion during public health emergencies such as earthquakes play an important role in preventing injuries and infectious diseases among survivors. © The Author(s) 2014.

  18. On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake

    USGS Publications Warehouse

    Thomas, Jeremy N.; Love, Jeffrey J.; Komjathy, Attila; Verkhoglyadova, Olga P.; Butala, Mark; Rivera, Nicholas

    2012-01-01

    Using Global Positioning System (GPS) data from sites near the 16 Oct. 1999 Hector Mine, California earthquake, Pulinets et al. (2007) identified anomalous changes in the ionospheric total electron content (TEC) starting one week prior to the earthquake. Pulinets (2007) suggested that precursory phenomena of this type could be useful for predicting earthquakes. On the other hand, and in a separate analysis, Afraimovich et al. (2004) concluded that TEC variations near the epicenter were controlled by solar and geomagnetic activity that were unrelated to the earthquake. In an investigation of these very different results, we examine TEC time series of long duration from GPS stations near and far from the epicenter of the Hector Mine earthquake, and long before and long after the earthquake. While we can reproduce the essential time series results of Pulinets et al., we find that the signal they identify as anomalous is not actually anomalous. Instead, it is just part of normal global-scale TEC variation. We conclude that the TEC anomaly reported by Pulinets et al. is unrelated to the Hector Mine earthquake.

  19. UCERF3: A new earthquake forecast for California's complex fault system

    USGS Publications Warehouse

    Field, Edward H.; ,

    2015-01-01

    With innovations, fresh data, and lessons learned from recent earthquakes, scientists have developed a new earthquake forecast model for California, a region under constant threat from potentially damaging events. The new model, referred to as the third Uniform California Earthquake Rupture Forecast, or "UCERF" (http://www.WGCEP.org/UCERF3), provides authoritative estimates of the magnitude, location, and likelihood of earthquake fault rupture throughout the state. Overall the results confirm previous findings, but with some significant changes because of model improvements. For example, compared to the previous forecast (Uniform California Earthquake Rupture Forecast 2), the likelihood of moderate-sized earthquakes (magnitude 6.5 to 7.5) is lower, whereas that of larger events is higher. This is because of the inclusion of multifault ruptures, where earthquakes are no longer confined to separate, individual faults, but can occasionally rupture multiple faults simultaneously. The public-safety implications of this and other model improvements depend on several factors, including site location and type of structure (for example, family dwelling compared to a long-span bridge). Building codes, earthquake insurance products, emergency plans, and other risk-mitigation efforts will be updated accordingly. This model also serves as a reminder that damaging earthquakes are inevitable for California. Fortunately, there are many simple steps residents can take to protect lives and property.

  20. Earthquake-Related Injuries in the Pediatric Population: A Systematic Review

    PubMed Central

    Jacquet, Gabrielle A.; Hansoti, Bhakti; Vu, Alexander; Bayram, Jamil D.

    2013-01-01

    Background: Children are a special population, particularly susceptible to injury. Registries for various injury types in the pediatric population are important, not only for epidemiological purposes but also for their implications on intervention programs. Although injury registries already exist, there is no uniform injury classification system for traumatic mass casualty events such as earthquakes. Objective: To systematically review peer-reviewed literature on the patterns of earthquake-related injuries in the pediatric population. Methods: On May 14, 2012, the authors performed a systematic review of literature from 1950 to 2012 indexed in Pubmed, EMBASE, Scopus, Web of Science, and Cochrane Library. Articles written in English, providing a quantitative description of pediatric injuries were included. Articles focusing on other types of disasters, geological, surgical, conceptual, psychological, indirect injuries, injury complications such as wound infections and acute kidney injury, case reports, reviews, and non-English articles were excluded. Results: A total of 2037 articles were retrieved, of which only 10 contained quantitative earthquake-related pediatric injury data. All studies were retrospective, had different age categorization, and reported injuries heterogeneously. Only 2 studies reported patterns of injury for all pediatric patients, including patients admitted and discharged. Seven articles described injuries by anatomic location, 5 articles described injuries by type, and 2 articles described injuries using both systems. Conclusions: Differences in age categorization of pediatric patients, and in the injury classification system make quantifying the burden of earthquake-related injuries in the pediatric population difficult. A uniform age categorization and injury classification system are paramount for drawing broader conclusions, enhancing disaster preparation for future disasters, and decreasing morbidity and mortality. PMID:24761308

  1. Landslide Hazards After the 2005 Kashmir Earthquake

    NASA Astrophysics Data System (ADS)

    Bulmer, Mark; Farquhar, Tony; Roshan, Masud; Akhtar, Sadar Saeed; Wahla, Sajjad Karamat

    2007-01-01

    The 8 October 2005 Kashmir earthquake killed 87,300 people and disrupted the lives of several million more. By current estimates, 30,000 still live in camps sited more in accordance with short term expedience than with freedom from risk of natural hazards. In December 2006, the international aid community expressed fears that 50,000 people in Northwest Frontier Province may leave their mountain homes this winter as landslides and avalanches block access roads. As the focus of humanitarian assistance shifts toward restoration of Kashmir's infrastructure, it is important that the persistent hazard of landslides within the earthquake affected region be understood and recognized.

  2. Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California

    USGS Publications Warehouse

    McGarr, Arthur F.; Boettcher, M.; Fletcher, Jon Peter B.; Sell, Russell; Johnston, Malcolm J.; Durrheim, R.; Spottiswoode, S.; Milev, A.

    2009-01-01

    For one week during September 2007, we deployed a temporary network of field recorders and accelerometers at four sites within two deep, seismically active mines. The ground-motion data, recorded at 200 samples/sec, are well suited to determining source and ground-motion parameters for the mining-induced earthquakes within and adjacent to our network. Four earthquakes with magnitudes close to 2 were recorded with high signal/noise at all four sites. Analysis of seismic moments and peak velocities, in conjunction with the results of laboratory stick-slip friction experiments, were used to estimate source processes that are key to understanding source physics and to assessing underground seismic hazard. The maximum displacements on the rupture surfaces can be estimated from the parameter , where  is the peak ground velocity at a given recording site, and R is the hypocentral distance. For each earthquake, the maximum slip and seismic moment can be combined with results from laboratory friction experiments to estimate the maximum slip rate within the rupture zone. Analysis of the four M 2 earthquakes recorded during our deployment and one of special interest recorded by the in-mine seismic network in 2004 revealed maximum slips ranging from 4 to 27 mm and maximum slip rates from 1.1 to 6.3 m/sec. Applying the same analyses to an M 2.1 earthquake within a cluster of repeating earthquakes near the San Andreas Fault Observatory at Depth site, California, yielded similar results for maximum slip and slip rate, 14 mm and 4.0 m/sec.

  3. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    the second, and beta, the probability that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we will estimate by simulations. Each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results would be archived and posted on the RELM web site. The same methods can be applied to any region with adequate monitoring and sufficient earthquakes. If fewer than ten events are forecasted, the likelihood tests may not give definitive results. The tests do force certain requirements on the forecast models. Because the tests are based on absolute rates, stress models must be explicit about how stress increments affect past seismicity rates. Aftershocks of triggered events must be accounted for. Furthermore, the tests are sensitive to magnitude, so forecast models must specify the magnitude distribution of triggered events. Models should account for probable errors in magnitude and location by appropriate smoothing of the probabilities, as the tests will be "cold hearted:" near misses won't count.

  4. On the Seismic Safety of Nuclear Power Plant Sites in South Korea

    NASA Astrophysics Data System (ADS)

    Choi, H.; Park, S.; Yang, J.; Shim, T.; Im, C. B.

    2016-12-01

    The Korean Peninsula is located at the far eastern part of Eurasian Plate, and within the intra-plate region several hundred km away from the nearest plate boundary. The earthquakes around the Korean Peninsula show the typical characteristics of intra-plate earthquakes. So to speak, those are low seismicity, relatively smaller magnitude than that of inter-plate earthquakes, and spatially irregular epicenters. There are 24 nuclear power plants (NPPs) in operation, 4 NPPs in completion of construction, and 4 NPPs in preparation of construction in South Korea. Even though the seismicity of the Korean Peninsula is known as relatively low, but because there are more than 30 NPPs within not so large territory, thorough the preparedness of NPPs' safety against earthquakes is required. The earthquake preparedness of NPPs in South Korea is composed of 4 stages: site election, design, construction and operation. Since regulatory codes and standards are strictly applied in each stage, the NPPs in South Korea are believed to be safe enough against the maximum potential earthquake ground motion. Through data analysis on geological and seismological characteristics of the region within a radius of 320 km from the site and the detailed geological survey of the area within a radius of 8 km from the site, the design earthquake ground motion of NPPs in South Korea is determined to be 0.2g (in case of newly constructed NPPs is 0.3g) considering the maximum potential earthquake ground motion and some safety margin. The ground motions and surface deformation caused by capable faults are also considered in the seismic design of NPPs. In addition, the Korea Institute of Nuclear Safety as a regulatory technical expert organization, has been operating independent real time earthquake monitoring network as a part of securing the seismic safety of NPP sites in South Korea since late 1990's. If earthquakes with more than magnitude 3.0 are occurred in the Korean Peninsula or the peak ground

  5. Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Pasyanos, M. E.; Matzel, E.; Gok, R.; Sweeney, J.; Ford, S. R.; Rodgers, A. J.

    2008-12-01

    Empirically explosions have been discriminated from natural earthquakes using regional amplitude ratio techniques such as P/S in a variety of frequency bands. We demonstrate that such ratios discriminate nuclear tests from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling. For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East.

  6. Foreshock and aftershocks in simple earthquake models.

    PubMed

    Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R

    2015-02-27

    Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.

  7. Revisiting Notable Earthquakes and Seismic Patterns of the Past Decade in Alaska

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Macpherson, K. A.; Holtkamp, S. G.

    2015-12-01

    Alaska, the most seismically active region of the United States, has produced five earthquakes with magnitudes greater than seven since 2005. The 2007 M7.2 and 2013 M7.0 Andreanof Islands earthquakes were representative of the most common source of significant seismic activity in the region, the Alaska-Aleutian megathrust. The 2013 M7.5 Craig earthquake, a strike-slip event on the Queen-Charlotte fault, occurred along the transform plate boundary in southeast Alaska. The largest earthquake of the past decade, the 2014 M7.9 Little Sitkin event in the western Aleutians, occurred at an intermediate depth and ruptured along a gently dipping fault through nearly the entire thickness of the subducted Pacific plate. Along with these major earthquakes, the Alaska Earthquake Center reported over 250,000 seismic events in the state over the last decade, and its earthquake catalog surpassed 500,000 events in mid-2015. Improvements in monitoring networks and processing techniques allowed an unprecedented glimpse into earthquake patterns in Alaska. Some notable recent earthquake sequences include the 2008 Kasatochi eruption, the 2006-2008 M6+ crustal earthquakes in the central and western Aleutians, the 2010 and 2015 Bering Sea earthquakes, the 2014 Noatak swarm, and the 2014 Minto earthquake sequence. In 2013, the Earthscope USArray project made its way into Alaska. There are now almost 40 new Transportable Array stations in Alaska along with over 20 upgraded sites. This project is changing the earthquake-monitoring scene in Alaska, lowering magnitude of completeness across large, newly instrumented parts of the state.

  8. Quantifying Earthquake Collapse Risk of Tall Steel Braced Frame Buildings Using Rupture-to-Rafters Simulations

    NASA Astrophysics Data System (ADS)

    Mourhatch, Ramses

    This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis. As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California. Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2s-2.0s) empirical Green's function synthetics on top of long-period (> 2.0s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms. Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with

  9. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C

    USGS Publications Warehouse

    Tuttle, M.P.; Schweig, E. S.; Campbell, J.; Thomas, P.M.; Sims, J.D.; Lafferty, R. H.

    2005-01-01

    Six episodes of earthquake-induced liquefaction are associated with soil horizons containing artifacts of the Late Archaic (3000-500 B.C.) and Early to Middle Woodland (500 B.C.-A.D. 400) cultural periods at the Burkett archaeological site in the northern part of the New Madrid seismic zone, where little information about prehistoric earthquakes has been available. Radiocarbon dating of organic material and analysis of artifacts are used to estimate the ages of the liquefaction features and times of the causative earthquakes. The most recent episode of liquefaction occurred after A.D. 1670, produced small sand dikes, and is probably related to the 1895 Charleston, Missouri earthquake. The preceding episode struck the area in A.D. 300 ?? 200 years and generated a sand blow that contains Late Woodland artifacts and buries an Early to Middle Woodland cultural horizon. Four older episodes of liquefaction occurred in 2350 B.C. ?? 200 years and may have been produced by a sequence of closely timed earthquakes. The four earlier episodes produced graben structures, sand dikes, and associated sand blows on which a cultural mound was constructed. The Burkett liquefaction features that formed about 2350 B.C. and A.D. 300 are relatively large and similar in age to other liquefaction features in northeastern Arkansas and southeastern Missouri, respectively. If the prehistoric features at the Burkett site and those of similar age elsewhere in the region are the result of the same earthquakes, then this suggests that they were similar in size to the three largest (M 7-8) 1811-1812 New Madrid earthquakes. A New Madrid-type earthquake in A.D. 300 ?? 200 years would support an average recurrence time of 500 years. Although this study extends the earthquake chronology back to 2500 B.C., it is uncertain that the record of New Madrid events is complete for the period between 2350 B.C. and A.D. 300. As demonstrated by this study, information about other prehistoric earthquakes may be

  10. Study of earthquakes using a borehole seismic network at Koyna, India

    NASA Astrophysics Data System (ADS)

    Gupta, Harsh; Satyanarayana, Hari VS; Shashidhar, Dodla; Mallika, Kothamasu; Ranjan Mahato, Chitta; Shankar Maity, Bhavani

    2017-04-01

    Koyna, located near the west coast of India, is a classical site of artificial water reservoir triggered earthquakes. Triggered earthquakes started soon after the impoundment of the Koyna Dam in 1962. The activity has continued till now including the largest triggered earthquake of M 6.3 in 1967; 22 earthquakes of M ≥ 5 and several thousands smaller earthquakes. The latest significant earthquake of ML 3.7 occurred on 24th November 2016. In spite of having a network of 23 broad band 3-component seismic stations in the near vicinity of the Koyna earthquake zone, locations of earthquakes had errors of 1 km. The main reason was the presence of 1 km thick very heterogeneous Deccan Traps cover that introduced noise and locations could not be improved. To improve the accuracy of location of earthquakes, a unique network of eight borehole seismic stations surrounding the seismicity was designed. Six of these have been installed at depths varying from 981 m to 1522 m during 2015 and 2016, well below the Deccan Traps cover. During 2016 a total of 2100 earthquakes were located. There has been a significant improvement in the location of earthquakes and the absolute errors of location have come down to ± 300 m. All earthquakes of ML ≥ 0.5 are now located, compared to ML ≥1.0 earlier. Based on seismicity and logistics, a block of 2 km x 2 km area has been chosen for the 3 km deep pilot borehole. The installation of the borehole seismic network has further elucidated the correspondence between rate of water loading/unloading the reservoir and triggered seismicity.

  11. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  12. Identification of site frequencies from building records

    USGS Publications Warehouse

    Celebi, M.

    2003-01-01

    A simple procedure to identify site frequencies using earthquake response records from roofs and basements of buildings is presented. For this purpose, data from five different buildings are analyzed using only spectral analyses techniques. Additional data such as free-field records in close proximity to the buildings and site characterization data are also used to estimate site frequencies and thereby to provide convincing evidence and confirmation of the site frequencies inferred from the building records. Furthermore, simple code-formula is used to calculate site frequencies and compare them with the identified site frequencies from records. Results show that the simple procedure is effective in identification of site frequencies and provides relatively reliable estimates of site frequencies when compared with other methods. Therefore the simple procedure for estimating site frequencies using earthquake records can be useful in adding to the database of site frequencies. Such databases can be used to better estimate site frequencies of those sites with similar geological structures.

  13. Empirical Green's functions from small earthquakes: A waveform study of locally recorded aftershocks of the 1971 San Fernando earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchings, L.; Wu, F.

    1990-02-10

    Seismograms from 52 aftershocks of the 1971 San Fernando earthquake recorded at 25 stations distributed across the San Fernando Valley are examined to identify empirical Green's functions, and characterize the dependence of their waveforms on moment, focal mechanism, source and recording site spatial variations, recording site geology, and recorded frequency band. Recording distances ranged from 3.0 to 33.0 km, hypocentral separations ranged from 0.22 to 28.4 km, and recording site separations ranged from 0.185 to 24.2 km. The recording site geologies are diorite gneiss, marine and nonmarine sediments, and alluvium of varying thicknesses. Waveforms of events with moment below aboutmore » 1.5 {times} 10{sup 21} dyn cm are independent of the source-time function and are termed empirical Green's functions. Waveforms recorded at a particular station from events located within 1.0 to 3.0 km of each other, depending upon site geology, with very similar focal mechanism solutions are nearly identical for frequencies up to 10 Hz. There is no correlation to waveforms between recording sites at least 1.2 km apart, and waveforms are clearly distinctive for two sites 0.185 km apart. The geologic conditions of the recording site dominate the character of empirical Green's functions. Even for source separations of up to 20.0 km, the empirical Green's functions at a particular site are consistent in frequency content, amplification, and energy distribution. Therefore, it is shown that empirical Green's functions can be used to obtain site response functions. The observations of empirical Green's functions are used as a basis for developing the theory for using empirical Green's functions in deconvolution for source pulses and synthesis of seismograms of larger earthquakes.« less

  14. Comparison of survival outcomes after anatomical resection and non-anatomical resection in patients with hepatocellular carcinoma

    PubMed Central

    Kim, Seheon; Kim, Seokwhan; Song, Insang

    2015-01-01

    Backgrounds/Aims Liver resection is a curative procedure performed worldwide for hepatocellular carcinoma (HCC). Deciding on the appropriate resection range for postoperative hepatic function preservation is an important surgical consideration. This study compares survival outcomes of HCC patients who underwent anatomical or non-anatomical resection, to determine which offers the best clinical survival benefit. Methods One hundred and thirty-one patients underwent liver resection with HCC, between January 2007 and February 2015, and were divided into two groups: those who underwent anatomical liver resection (n=88) and those who underwent non-anatomical liver resection (n=43). Kaplan-Meier survival analysis and Cox regressions were used to compare the disease-free survival (DFS) and overall survival (OS) rates between the groups. Results The mean follow-up periods were 27 and 40 months in the anatomical and non-anatomical groups, respectively (p=0.229). The 3- and 5-year DFS rates were 70% and 60% in the anatomical group and 62% and 48% in the non-anatomical group, respectively. The 3 and 5-year OS rates were 94% and 78% in the anatomical group, and 86% and 80% in the non-anatomical group, respectively. The anatomical group tended to show better outcomes, but the findings were not significant. However, a relative risk of OS between the anatomical and non-anatomical group was 0.234 (95% CI, 0.061-0.896; p=0.034), which is statistically significant. Conclusions Although statistical significance was not detected in survival curves, anatomical resection showed better results. In this respect, anatomical resection is more likely to perform in HCC patients with preserve liver function than non-anatomical resection. PMID:26693235

  15. High-Resolution Source Parameter and Site Characteristics Using Near-Field Recordings - Decoding the Trade-off Problems Between Site and Source

    NASA Astrophysics Data System (ADS)

    Chen, X.; Abercrombie, R. E.; Pennington, C.

    2017-12-01

    Recorded seismic waveforms include contributions from earthquake source properties and propagation effects, leading to long-standing trade-off problems between site/path effects and source effects. With near-field recordings, the path effect is relatively small, so the trade-off problem can be simplified to between source and site effects (commonly referred as "kappa value"). This problem is especially significant for small earthquakes where the corner frequencies are within similar ranges of kappa values, so direct spectrum fitting often leads to systematic biases due to corner frequency and magnitude. In response to the significantly increased seismicity rate in Oklahoma, several local networks have been deployed following major earthquakes: the Prague, Pawnee and Fairview earthquakes. Each network provides dense observations within 20 km surrounding the fault zone, recording tens of thousands of aftershocks between M1 to M3. Using near-field recordings in the Prague area, we apply a stacking approach to separate path/site and source effects. The resulting source parameters are consistent with parameters derived from ground motion and spectral ratio methods from other studies; they exhibit spatial coherence within the fault zone for different fault patches. We apply these source parameter constraints in an analysis of kappa values for stations within 20 km of the fault zone. The resulting kappa values show significantly reduced variability compared to those from direct spectral fitting without constraints on the source spectrum; they are not biased by earthquake magnitudes. With these improvements, we plan to apply the stacking analysis to other local arrays to analyze source properties and site characteristics. For selected individual earthquakes, we will also use individual-pair empirical Green's function (EGF) analysis to validate the source parameter estimations.

  16. Turkish Compulsory Earthquake Insurance and "Istanbul Earthquake

    NASA Astrophysics Data System (ADS)

    Durukal, E.; Sesetyan, K.; Erdik, M.

    2009-04-01

    The city of Istanbul will likely experience substantial direct and indirect losses as a result of a future large (M=7+) earthquake with an annual probability of occurrence of about 2%. This paper dwells on the expected building losses in terms of probable maximum and average annualized losses and discusses the results from the perspective of the compulsory earthquake insurance scheme operational in the country. The TCIP system is essentially designed to operate in Turkey with sufficient penetration to enable the accumulation of funds in the pool. Today, with only 20% national penetration, and about approximately one-half of all policies in highly earthquake prone areas (one-third in Istanbul) the system exhibits signs of adverse selection, inadequate premium structure and insufficient funding. Our findings indicate that the national compulsory earthquake insurance pool in Turkey will face difficulties in covering incurring building losses in Istanbul in the occurrence of a large earthquake. The annualized earthquake losses in Istanbul are between 140-300 million. Even if we assume that the deductible is raised to 15%, the earthquake losses that need to be paid after a large earthquake in Istanbul will be at about 2.5 Billion, somewhat above the current capacity of the TCIP. Thus, a modification to the system for the insured in Istanbul (or Marmara region) is necessary. This may mean an increase in the premia and deductible rates, purchase of larger re-insurance covers and development of a claim processing system. Also, to avoid adverse selection, the penetration rates elsewhere in Turkey need to be increased substantially. A better model would be introduction of parametric insurance for Istanbul. By such a model the losses will not be indemnified, however will be directly calculated on the basis of indexed ground motion levels and damages. The immediate improvement of a parametric insurance model over the existing one will be the elimination of the claim processing

  17. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  18. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    NASA Astrophysics Data System (ADS)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  19. From a physical approach to earthquake prediction, towards long and short term warnings ahead of large earthquakes

    NASA Astrophysics Data System (ADS)

    Stefansson, R.; Bonafede, M.

    2012-04-01

    For 20 years the South Iceland Seismic Zone (SISZ) was a test site for multinational earthquake prediction research, partly bridging the gap between laboratory tests samples, and the huge transform zones of the Earth. The approach was to explore the physics of processes leading up to large earthquakes. The book Advances in Earthquake Prediction, Research and Risk Mitigation, by R. Stefansson (2011), published by Springer/PRAXIS, and an article in the August issue of the BSSA by Stefansson, M. Bonafede and G. Gudmundsson (2011) contain a good overview of the findings, and more references, as well as examples of partially successful long and short term warnings based on such an approach. Significant findings are: Earthquakes that occurred hundreds of years ago left scars in the crust, expressed in volumes of heterogeneity that demonstrate the size of their faults. Rheology and stress heterogeneity within these volumes are significantly variable in time and space. Crustal processes in and near such faults may be observed by microearthquake information decades before the sudden onset of a new large earthquake. High pressure fluids of mantle origin may in response to strain, especially near plate boundaries, migrate upward into the brittle/elastic crust to play a significant role in modifying crustal conditions on a long and short term. Preparatory processes of various earthquakes can not be expected to be the same. We learn about an impending earthquake by observing long term preparatory processes at the fault, finding a constitutive relationship that governs the processes, and then extrapolating that relationship into near space and future. This is a deterministic approach in earthquake prediction research. Such extrapolations contain many uncertainties. However the long time pattern of observations of the pre-earthquake fault process will help us to put probability constraints on our extrapolations and our warnings. The approach described is different from the usual

  20. Understanding earthquake from the granular physics point of view — Causes of earthquake, earthquake precursors and predictions

    NASA Astrophysics Data System (ADS)

    Lu, Kunquan; Hou, Meiying; Jiang, Zehui; Wang, Qiang; Sun, Gang; Liu, Jixing

    2018-03-01

    We treat the earth crust and mantle as large scale discrete matters based on the principles of granular physics and existing experimental observations. Main outcomes are: A granular model of the structure and movement of the earth crust and mantle is established. The formation mechanism of the tectonic forces, which causes the earthquake, and a model of propagation for precursory information are proposed. Properties of the seismic precursory information and its relevance with the earthquake occurrence are illustrated, and principle of ways to detect the effective seismic precursor is elaborated. The mechanism of deep-focus earthquake is also explained by the jamming-unjamming transition of the granular flow. Some earthquake phenomena which were previously difficult to understand are explained, and the predictability of the earthquake is discussed. Due to the discrete nature of the earth crust and mantle, the continuum theory no longer applies during the quasi-static seismological process. In this paper, based on the principles of granular physics, we study the causes of earthquakes, earthquake precursors and predictions, and a new understanding, different from the traditional seismological viewpoint, is obtained.

  1. Redefining Earthquakes and the Earthquake Machine

    ERIC Educational Resources Information Center

    Hubenthal, Michael; Braile, Larry; Taber, John

    2008-01-01

    The Earthquake Machine (EML), a mechanical model of stick-slip fault systems, can increase student engagement and facilitate opportunities to participate in the scientific process. This article introduces the EML model and an activity that challenges ninth-grade students' misconceptions about earthquakes. The activity emphasizes the role of models…

  2. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  3. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-07-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  4. Earthquake design criteria for small hydro projects in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.P.; McCandless, D.H.; Asce, M.

    1995-12-31

    The definition of the seismic environment and seismic design criteria of more than twenty small hydro projects in the northern part of the island of Luzon in the Philippines took a special urgency on the wake of the Magnitude 7.7 earthquake that shook the island on July 17, 1990. The paper describes the approach followed to determine design shaking level criteria at each hydro site consistent with the seismic environment estimated at that same site. The approach consisted of three steps: (1) Seismicity: understanding the mechanisms and tectonic features susceptible to generate seismicity and estimating the associated seismicity levels, (2)more » Seismic Hazard: in the absence of an accurate historical record, using statistics to determine the expected level of ground shaking at a site during the operational 100-year design life of each Project, and (3) Criteria Selection: finally and most importantly, exercising judgment in estimating the final proposed level of shaking at each site. The resulting characteristics of estimated seismicity and seismic hazard and the proposed final earthquake design criteria are provided.« less

  5. A survey of the practice of nurses' skills in Wenchuan earthquake disaster sites: implications for disaster training.

    PubMed

    Yin, Huahua; He, Haiyan; Arbon, Paul; Zhu, Jingci

    2011-10-01

    To determine nursing skills most relevant for nurses participating in disaster response medical teams; make recommendations to enhance training of nurses who will be first responders to a disaster site; to improve the capacity of nurses to prepare and respond to severe natural disasters. Worldwide, nurses play a key role in disaster response teams at disaster sites. They are often not prepared for the challenges of dealing with mass casualties; little research exists into what basic nursing skills are required by nurses who are first responders to a disaster situation. This study assessed the most relevant disaster nursing skills of first responder nurses at the 2008 Wenchuan earthquake disaster site. Data were collected in China in 2008 using a self-designed questionnaire, with 24 participants who had been part of the medical teams that were dispatched to the disaster sites. The top three skills essential for nurses were: intravenous insertion; observation and monitoring; mass casualty triage. The three most frequently used skills were: debridement and dressing; observation and monitoring; intravenous insertion. The three skills performed most proficiently were: intravenous insertion; observation and monitoring; urethral catheterization. The top three ranking skills most important for training were: mass casualty transportation; emergency management; haemostasis, bandaging, fixation, manual handling. The core nursing skills for disaster response training are: mass casualty transportation; emergency management; haemostasis, bandaging, fixation, manual handling; observation and monitoring; mass casualty triage; controlling specific infection; psychological crisis intervention; cardiopulmonary resuscitation; debridement and dressing; central venous catheter insertion; patient care recording. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.

  6. iOS and OS X Apps for Exploring Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2015-12-01

    The U.S. Geological Survey and many other agencies rapidly provide information following earthquakes. This timely information garners great public interest and provides a rich opportunity to engage students in discussion and analysis of earthquakes and tectonics. In this presentation I will describe a suite of iOS and Mac OS X apps that I use for teaching and that Penn State employs in outreach efforts in a small museum run by the College of Earth and Mineral Sciences. The iOS apps include a simple, global overview of earthquake activity, epicentral, designed for a quick review or event lookup. A more full-featured iPad app, epicentral-plus, includes a simple global overview along with views that allow a more detailed exploration of geographic regions of interest. In addition, epicentral-plus allows the user to monitor ground motions using seismic channel lists compatible with the IRIS web services. Some limited seismogram processing features are included to allow focus on appropriate signal bandwidths. A companion web site, which includes background material on earthquakes, and a blog that includes sample images and channel lists appropriate for monitoring earthquakes in regions of recent earthquake activity can be accessed through the a third panel in the app. I use epicentral-plus at the beginning of each earthquake seismology class to review recent earthquake activity and to stimulate students to formulate and to ask questions that lead to discussions of earthquake and tectonic processes. Less interactive OS X versions of the apps are used to display a global map of earthquake activity and seismograms in near real time in a small museum on the ground floor of the building hosting Penn State's Geoscience Department.

  7. The earthquake potential of the New Madrid seismic zone

    USGS Publications Warehouse

    Tuttle, Martitia P.; Schweig, Eugene S.; Sims, John D.; Lafferty, Robert H.; Wolf, Lorraine W.; Haynes, Marion L.

    2002-01-01

    The fault system responsible for New Madrid seismicity has generated temporally clustered very large earthquakes in A.D. 900 ± 100 years and A.D. 1450 ± 150 years as well as in 1811–1812. Given the uncertainties in dating liquefaction features, the time between the past three New Madrid events may be as short as 200 years and as long as 800 years, with an average of 500 years. This advance in understanding the Late Holocene history of the New Madrid seismic zone and thus, the contemporary tectonic behavior of the associated fault system was made through studies of hundreds of earthquake-induced liquefaction features at more than 250 sites across the New Madrid region. We have found evidence that prehistoric sand blows, like those that formed during the 1811–1812 earthquakes, are probably compound structures resulting from multiple earthquakes closely clustered in time or earthquake sequences. From the spatial distribution and size of sand blows and their sedimentary units, we infer the source zones and estimate the magnitudes of earthquakes within each sequence and thereby characterize the detailed behavior of the fault system. It appears that fault rupture was complex and that the central branch of the seismic zone produced very large earthquakes during the A.D. 900 and A.D. 1450 events as well as in 1811–1812. On the basis of a minimum recurrence rate of 200 years, we are now entering the period during which the next 1811–1812-type event could occur.

  8. Tsunami hazard assessments with consideration of uncertain earthquakes characteristics

    NASA Astrophysics Data System (ADS)

    Sepulveda, I.; Liu, P. L. F.; Grigoriu, M. D.; Pritchard, M. E.

    2017-12-01

    The uncertainty quantification of tsunami assessments due to uncertain earthquake characteristics faces important challenges. First, the generated earthquake samples must be consistent with the properties observed in past events. Second, it must adopt an uncertainty propagation method to determine tsunami uncertainties with a feasible computational cost. In this study we propose a new methodology, which improves the existing tsunami uncertainty assessment methods. The methodology considers two uncertain earthquake characteristics, the slip distribution and location. First, the methodology considers the generation of consistent earthquake slip samples by means of a Karhunen Loeve (K-L) expansion and a translation process (Grigoriu, 2012), applicable to any non-rectangular rupture area and marginal probability distribution. The K-L expansion was recently applied by Le Veque et al. (2016). We have extended the methodology by analyzing accuracy criteria in terms of the tsunami initial conditions. Furthermore, and unlike this reference, we preserve the original probability properties of the slip distribution, by avoiding post sampling treatments such as earthquake slip scaling. Our approach is analyzed and justified in the framework of the present study. Second, the methodology uses a Stochastic Reduced Order model (SROM) (Grigoriu, 2009) instead of a classic Monte Carlo simulation, which reduces the computational cost of the uncertainty propagation. The methodology is applied on a real case. We study tsunamis generated at the site of the 2014 Chilean earthquake. We generate earthquake samples with expected magnitude Mw 8. We first demonstrate that the stochastic approach of our study generates consistent earthquake samples with respect to the target probability laws. We also show that the results obtained from SROM are more accurate than classic Monte Carlo simulations. We finally validate the methodology by comparing the simulated tsunamis and the tsunami records for

  9. Anatomical variations and sinusitis.

    PubMed

    Jorissen, M; Hermans, R; Bertrand, B; Eloy, P

    1997-01-01

    Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.

  10. A comparison of artifical and natural slope failures: the Santa Barbara earthquake of August 13, 1978.

    USGS Publications Warehouse

    Harp, E.L.; Keefer, D.K.; Wilson, R.C.

    1980-01-01

    The earthquake triggered rockfalls and rockslides from steep road cuts and coastal cliffs. The landslide reconnaissance survey which was carried out is described, with separate comments on each landslide site recorded. The general regional slope response to the earthquake is briefly considered. -R. House

  11. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  12. A Simple Model for the Earthquake Cycle Combining Self-Organized Criticality with Critical Point Behavior

    NASA Astrophysics Data System (ADS)

    Newman, W. I.; Turcotte, D. L.

    2002-12-01

    We have studied a hybrid model combining the forest-fire model with the site-percolation model in order to better understand the earthquake cycle. We consider a square array of sites. At each time step, a "tree" is dropped on a randomly chosen site and is planted if the site is unoccupied. When a cluster of "trees" spans the site (a percolating cluster), all the trees in the cluster are removed ("burned") in a "fire." The removal of the cluster is analogous to a characteristic earthquake and planting "trees" is analogous to increasing the regional stress. The clusters are analogous to the metastable regions of a fault over which an earthquake rupture can propagate once triggered. We find that the frequency-area statistics of the metastable regions are power-law with a negative exponent of two (as in the forest-fire model). This is analogous to the Gutenberg-Richter distribution of seismicity. This "self-organized critical behavior" can be explained in terms of an inverse cascade of clusters. Individual trees move from small to larger clusters until they are destroyed. This inverse cascade of clusters is self-similar and the power-law distribution of cluster sizes has been shown to have an exponent of two. We have quantified the forecasting of the spanning fires using error diagrams. The assumption that "fires" (earthquakes) are quasi-periodic has moderate predictability. The density of trees gives an improved degree of predictability, while the size of the largest cluster of trees provides a substantial improvement in forecasting a "fire."

  13. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  14. Development of the cloud sharing system for residential earthquake responses using smartphones

    NASA Astrophysics Data System (ADS)

    Shohei, N.; Fujiwara, H.; Azuma, H.; Hao, K. X.

    2015-12-01

    Earthquake responses at residential depends on its building structure, site amplification, epicenter distance, and etc. Until recently, it was impossible to obtain the individual residential response by conventional seismometer in terms of costs. However, current technology makes it possible with the Micro Electro Mechanical Systems (MEMS) sensors inside mobile terminals like smartphones. We developed the cloud sharing system for residential earthquake response in local community utilizing mobile terminals, such as an iPhone, iPad, iPod touch as a collaboration between NIED and Hakusan Corp. The triggered earthquake acceleration waveforms are recorded at sampling frequencies of 100Hz and stored on their memories once an threshold value was exceeded or ordered information received from the Earthquake Early Warning system. The recorded data is automatically transmitted and archived on the cloud server once the wireless communication is available. Users can easily get the uploaded data by use of a web browser through Internet. The cloud sharing system is designed for residential and only shared in local community internal. Residents can freely add sensors and register information about installation points in each region. And if an earthquake occurs, they can easily view the local distribution of seismic intensities and even analyze waves.To verify this cloud-based seismic wave sharing system, we have performed on site experiments under the cooperation of several local communities, The system and experimental results will be introduced and demonstrated in the presentation.

  15. Assessing the location and magnitude of the 20 October 1870 Charlevoix, Quebec, earthquake

    USGS Publications Warehouse

    Ebel, John E.; Dupuy, Megan; Bakun, William H.

    2013-01-01

    The Charlevoix, Quebec, earthquake of 20 October 1870 caused damage to several towns in Quebec and was felt throughout much of southeastern Canada and along the U.S. Atlantic seaboard from Maine to Maryland. Site‐specific damage and felt reports from Canadian and U.S. cities and towns were used in analyses of the location and magnitude of the earthquake. The macroseismic center of the earthquake was very close to Baie‐St‐Paul, where the greatest damage was reported, and the intensity magnitude MI was found to be 5.8, with a 95% probability range of 5.5–6.0. After corrections for epicentral‐distance differences are applied, the modified Mercalli intensity (MMI) data for the 1870 earthquake and for the moment magnitude M 6.2 Charlevoix earthquake of 1925 at common sites show that on average, the MMI readings are about 0.8 intensity units smaller for the 1870 earthquake than for the 1925 earthquake, suggesting that the 1870 earthquake was MI 5.7. A similar comparison of the MMI data for the 1870 earthquake with the corresponding data for the M 5.9 1988 Saguenay event suggests that the 1870 earthquake was MI 6.0. These analyses all suggest that the magnitude of the 1870 Charlevoix earthquake is between MI 5.5 and MI 6.0, with a best estimate of MI 5.8.

  16. Static-stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California

    USGS Publications Warehouse

    Parsons, Tom; Dreger, Douglas S.

    2000-01-01

    The proximity in time (∼7 years) and space (∼20 km) between the 1992 M=7.3 Landers earthquake and the 1999 M=7.1 Hector Mine event suggests a possible link between the quakes. We thus calculated the static stress changes following the 1992 Joshua Tree/Landers/Big Bear earthquake sequence on the 1999 M=7.1 Hector Mine rupture plane in southern California. Resolving the stress tensor into rake-parallel and fault-normal components and comparing with changes in the post-Landers seismicity rate allows us to estimate a coefficient of friction on the Hector Mine plane. Seismicity following the 1992 sequence increased at Hector Mine where the fault was unclamped. This increase occurred despite a calculated reduction in right-lateral shear stress. The dependence of seismicity change primarily on normal stress change implies a high coefficient of static friction (µ≥0.8). We calculated the Coulomb stress change using µ=0.8 and found that the Hector Mine hypocenter was mildly encouraged (0.5 bars) by the 1992 earthquake sequence. In addition, the region of peak slip during the Hector Mine quake occurred where Coulomb stress is calculated to have increased by 0.5–1.5 bars. In general, slip was more limited where Coulomb stress was reduced, though there was some slip where the strongest stress decrease was calculated. Interestingly, many smaller earthquakes nucleated at or near the 1999 Hector Mine hypocenter after 1992, but only in 1999 did an event spread to become a M=7.1 earthquake.

  17. Investigation on earthquake ground motions observed along a north-south survey line in the Kumamoto Plain, during the aftershocks of 2016 Kumamoto earthquake

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Korenaga, M.; Okamoto, K.; Chimoto, K.; Yamanaka, H.; Yamada, N.; Matsushima, T.

    2017-12-01

    To evaluate local site effects in the Kumamoto Plain, we installed 15 temporary seismic stations along the north-south survey line, after the 2016 Kumamoto earthquake foreshock (Mj 6.4). In this report, to investigate earthquake ground motions observed along the north-south survey line, we estimated site amplification factors from weak ground motion data and estimated S-wave velocity structures by array microtremor observations at temporary seismic stations. We installed 15 temporary seismic stations at an interval of 300m to 2.5km along the north-south survey line. We estimated site amplification factors, with a station at Mt. Kinbo as a reference. Site amplification factors at the middle part and the southern part along the survey line, located in the alluvial lowland, were dominated in the frequency of 1-2Hz. On the other hand, site amplification factors at the northern part along the survey line were dominated in the frequency of 2-5Hz. It suggests that the ground profiles near the surface are complicate along this north-south survey line in the Kumamoto Plain. Therefore, we performed array microtremor observations at the temporary seismic stations, to estimate S-wave velocity structures along the north-south survey line. We obtained phase velocities of Rayleigh waves by the SPAC method and estimated S-wave velocity structures by applying the Genetic Algorism to those phase velocity. The low velocity layer with a thickness of around 15m was deposited on the surface at sites located in the alluvial lowland. Finally, we compared the distribution of PGAs observed along the north-south survey line to AVs30 estimated by S-wave velocity structures. As a result, PGAs along the survey line were strongly concerned by AVs30. We concluded that earthquake ground motions in the frequency of more than 1Hz observed in this north-south survey line were excited by the low velocity layer near the surface.

  18. Earthquake scenario ground motions for the urban area of Evansville, Indiana

    USGS Publications Warehouse

    Haase, Jennifer S.; Nowack, Robert L.; Cramer, Chris H.; Boyd, Oliver S.; Bauer, Robert A.

    2011-01-01

    The Wabash Valley seismic zone and the New Madrid seismic zone are the closest large earthquake source zones to Evansville, Indiana. The New Madrid earthquakes of 1811-1812, over 180 kilometers (km) from Evansville, produced ground motions with a Modified Mercalli Intensity of VII near Evansville, the highest intensity observed in Indiana. Liquefaction evidence has been documented less than 40 km away from Evansville resulting from two large earthquakes in the past 12,000 years in the Wabash Valley. Two earthquake scenarios are described in this paper that demonstrate the expected ground motions for a 33×42-km region around Evansville based on a repeat earthquake from each of these source regions. We perform a one-dimensional analysis for a grid of sites that takes into account the amplification or deamplification of ground motion in the unconsolidated soil layer using a new three-dimensional model of seismic velocity and bedrock depth. There are significant differences in the calculated amplification from that expected for National Earthquake Hazard Reduction Program site class D conditions, with deamplification at many locations within the ancient bedrock valley underlying Evansville. Ground motions relative to the acceleration of gravity (g) in the Evansville area from a simulation of a magnitude (M) 7.7 New Madrid earthquake range from 0.15 to 0.25 g for peak ground acceleration, 0.14 to 0.7 g for 0.2-second (s) spectral acceleration, and 0.05 to 0.25 g for 1.0-s spectral acceleration. Ground motions from a M6.8 Wabash Valley earthquake centered 40 km northwest of the city produce ground motions that decrease with distance from 1.5 to 0.3 g for 0.2-s spectral acceleration when they reach the main part of Evansville, but then increase in amplitude from 0.3 to 0.6 g south of the city and the Ohio River. The densest urbanization in Evansville and Henderson, Ky., is within the area of preferential amplification at 1.0-s period for both scenarios, but the area

  19. Research in seismology and earthquake engineering in Venezuela

    USGS Publications Warehouse

    Urbina, L.; Grases, J.

    1983-01-01

    After the July 29, 1967, damaging earthquake (with a moderate magnitude of 6.3) caused widespread damage to the northern coastal area of Venezuela and to the Caracas Valley, the Venezuelan Government decided to establish a Presidential Earthquake Commission. This commission undertook the task of coordinating the efforts to study the after-effects of the earthquake. The July 1967 earthquake claimed numerous lives and caused extensive damage to the capital of Venezuela. In 1968, the U.S Geological Survey conducted a seismological field study in the northern coastal area and in the Caracas Valley of Venezuela. the objective was to study the area that sustained severe, moderate, and no damage to structures. A reported entitled Ground Amplification Studies in Earthquake Damage Areas: The Caracas Earthquake of 1967 documented, for the first time, short-period seismic wave ground-motion amplifications in the Caracas Valley. Figure 1 shows the area of severe damage in the Los Palos Grantes suburb and the correlation with depth of alluvium and the arabic numbers denote the ground amplification factor at each site in the area. the Venezuelan Government initiated many programs to study in detail the damage sustained and to investigate the ongoing construction practices. These actions motivated professionals in the academic, private, and Government sectors to develops further capabilities and self-sufficiency in the fields of engineering and seismology. Allocation of funds was made to assist in training professionals and technicians and in developing new seismological stations and new programs at the national level in earthquake engineering and seismology. A brief description of the ongoing programs in Venezuela is listed below. these programs are being performed by FUNVISIS and by other national organizations listed at the end of this article.   

  20. Double incision iso-anatomical ACL reconstruction: the freedom to place the femoral tunnel within the anatomical attachment site without exception.

    PubMed

    Arnold, Markus P; Duthon, Victoria; Neyret, Philippe; Hirschmann, Michael T

    2013-02-01

    The present paper describes the rationale behind the surgical technique and the clinical results of the iso-anatomical, single bundle bone patellar-tendon bone anterior cruciate ligament (ACL) reconstruction. Using a second incision on the distal lateral femur an outside-in femoral tunnel is drilled. Guided by a special aiming device it is possible to place the femoral tunnel in the centre of the ACL footprint in every single case. Since every crucial step of the procedure is under visual control, the technique is safe and reliable, which is mirrored by good clinical results.

  1. Impact of earthquakes on sex ratio at birth: Eastern Marmara earthquakes

    PubMed Central

    Doğer, Emek; Çakıroğlu, Yiğit; Köpük, Şule Yıldırım; Ceylan, Yasin; Şimşek, Hayal Uzelli; Çalışkan, Eray

    2013-01-01

    Objective: Previous reports suggest that maternal exposure to acute stress related to earthquakes affects the sex ratio at birth. Our aim was to examine the change in sex ratio at birth after Eastern Marmara earthquake disasters. Material and Methods: This study was performed using the official birth statistics from January 1997 to December 2002 – before and after 17 August 1999, the date of the Golcuk Earthquake – supplied from the Turkey Statistics Institute. The secondary sex ratio was expressed as the male proportion at birth, and the ratio of both affected and unaffected areas were calculated and compared on a monthly basis using data from gender with using the Chi-square test. Results: We observed significant decreases in the secondary sex ratio in the 4th and 8th months following an earthquake in the affected region compared to the unaffected region (p= 0.001 and p= 0.024). In the earthquake region, the decrease observed in the secondary sex ratio during the 8th month after an earthquake was specific to the period after the earthquake. Conclusion: Our study indicated a significant reduction in the secondary sex ratio after an earthquake. With these findings, events that cause sudden intense stress such as earthquakes can have an effect on the sex ratio at birth. PMID:24592082

  2. Detection of large prehistoric earthquakes in the pacific northwest by microfossil analysis.

    PubMed

    Mathewes, R W; Clague, J J

    1994-04-29

    Geologic and palynological evidence for rapid sea level change approximately 3400 and approximately 2000 carbon-14 years ago (3600 and 1900 calendar years ago) has been found at sites up to 110 kilometers apart in southwestern British Columbia. Submergence on southern Vancouver Island and slight emergence on the mainland during the older event are consistent with a great (magnitude M >/= 8) earthquake on the Cascadia subduction zone. The younger event is characterized by submergence throughout the region and may also record a plate-boundary earthquake or a very large crustal or intraplate earthquake. Microfossil analysis can detect small amounts of coseismic uplift and subsidence that leave little or no lithostratigraphic signature.

  3. Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikitake, T.

    1979-08-07

    The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less

  4. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.

    PubMed

    Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai

    2013-05-01

    Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.

  5. NGA West 2 | Pacific Earthquake Engineering Research Center

    Science.gov Websites

    , multi-year research program to improve Next Generation Attenuation models for active tectonic regions earthquake engineering, including modeling of directivity and directionality; verification of NGA-West models epistemic uncertainty; and evaluation of soil amplification factors in NGA models versus NEHRP site factors

  6. A forecast experiment of earthquake activity in Japan under Collaboratory for the Study of Earthquake Predictability (CSEP)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Yokoi, S.; Nanjo, K. Z.; Tsuruoka, H.

    2012-04-01

    One major focus of the current Japanese earthquake prediction research program (2009-2013), which is now integrated with the research program for prediction of volcanic eruptions, is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. We started the 1st earthquake forecast testing experiment in Japan within the CSEP framework. We use the earthquake catalogue maintained and provided by the Japan Meteorological Agency (JMA). The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called "All Japan," "Mainland," and "Kanto." A total of 105 models were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. The experiments were completed for 92 rounds for 1-day, 6 rounds for 3-month, and 3 rounds for 1-year classes. For 1-day testing class all models passed all the CSEP's evaluation tests at more than 90% rounds. The results of the 3-month testing class also gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space distribution with most models when many earthquakes occurred at a spot. Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. The testing center is improving an evaluation system for 1-day class experiment to finish forecasting and testing results within one day. The special issue of 1st part titled Earthquake Forecast

  7. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  8. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    USGS Publications Warehouse

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  9. MyShake: A smartphone seismic network for earthquake early warning and beyond.

    PubMed

    Kong, Qingkai; Allen, Richard M; Schreier, Louis; Kwon, Young-Woo

    2016-02-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

  10. Comparison of strong-motion spectra with teleseismic spectra for three magnitude 8 subduction-zone earthquakes

    NASA Astrophysics Data System (ADS)

    Houston, Heidi; Kanamori, Hiroo

    1990-08-01

    A comparison of strong-motion spectra and teleseismic spectra was made for three Mw 7.8 to 8.0 earthquakes: the 1985 Michoacan (Mexico) earthquake, the 1985 Valparaiso (Chile) earthquake, and the 1983 Akita-Oki (Japan) earthquake. The decay of spectral amplitude with the distance from the station was determined, considering different measures of distance from a finite fault, and it was found to be different for these three events. The results can be used to establish empirical relations between the observed spectra and the half-space responses depending on the distance and the site condition, making it possible to estimate strong motions from source spectra determined from teleseismic records.

  11. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part B, historical earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax: the moment magnitude of the largest earthquake that is thought to be possible within a specified geographic region. The region specified in this report is the Central and Eastern United States and adjacent Canada. Parts A and B of this report describe the construction of a global catalog of moderate to large earthquakes that occurred worldwide in tectonic analogs of the Central and Eastern United States. Examination of histograms of the magnitudes of these earthquakes allows estimation of Central and Eastern United States Mmax. The catalog and Mmax estimates derived from it are used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. Part A deals with prehistoric earthquakes, and this part deals with historical events.

  12. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Earthquake and tsunami forecasts: Relation of slow slip events to subsequent earthquake rupture

    PubMed Central

    Dixon, Timothy H.; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-01-01

    The 5 September 2012 Mw 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr–Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential. PMID:25404327

  14. Earthquake and tsunami forecasts: relation of slow slip events to subsequent earthquake rupture.

    PubMed

    Dixon, Timothy H; Jiang, Yan; Malservisi, Rocco; McCaffrey, Robert; Voss, Nicholas; Protti, Marino; Gonzalez, Victor

    2014-12-02

    The 5 September 2012 M(w) 7.6 earthquake on the Costa Rica subduction plate boundary followed a 62-y interseismic period. High-precision GPS recorded numerous slow slip events (SSEs) in the decade leading up to the earthquake, both up-dip and down-dip of seismic rupture. Deeper SSEs were larger than shallower ones and, if characteristic of the interseismic period, release most locking down-dip of the earthquake, limiting down-dip rupture and earthquake magnitude. Shallower SSEs were smaller, accounting for some but not all interseismic locking. One SSE occurred several months before the earthquake, but changes in Mohr-Coulomb failure stress were probably too small to trigger the earthquake. Because many SSEs have occurred without subsequent rupture, their individual predictive value is limited, but taken together they released a significant amount of accumulated interseismic strain before the earthquake, effectively defining the area of subsequent seismic rupture (rupture did not occur where slow slip was common). Because earthquake magnitude depends on rupture area, this has important implications for earthquake hazard assessment. Specifically, if this behavior is representative of future earthquake cycles and other subduction zones, it implies that monitoring SSEs, including shallow up-dip events that lie offshore, could lead to accurate forecasts of earthquake magnitude and tsunami potential.

  15. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  16. Seismic hazard along a crude oil pipeline in the event of an 1811-1812 type New Madrid earthquake. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.H.M.; Chen, C.H.S.

    1990-04-16

    An assessment of the seismic hazard that exists along the major crude oil pipeline running through the New Madrid seismic zone from southeastern Louisiana to Patoka, Illinois is examined in the report. An 1811-1812 type New Madrid earthquake with moment magnitude 8.2 is assumed to occur at three locations where large historical earthquakes have occurred. Six pipeline crossings of the major rivers in West Tennessee are chosen as the sites for hazard evaluation because of the liquefaction potential at these sites. A seismologically-based model is used to predict the bedrock accelerations. Uncertainties in three model parameters, i.e., stress parameter, cutoffmore » frequency, and strong-motion duration are included in the analysis. Each parameter is represented by three typical values. From the combination of these typical values, a total of 27 earthquake time histories can be generated for each selected site due to an 1811-1812 type New Madrid earthquake occurring at a postulated seismic source.« less

  17. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Herman, Matthew W.; Barnhart, William D.; Furlong, Kevin P.; Riquelme, Sebástian; Benz, Harley M.; Bergman, Eric; Barrientos, Sergio; Earle, Paul S.; Samsonov, Sergey

    2014-01-01

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile which had not ruptured in a megathrust earthquake since a M ~8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March–April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  18. Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake.

    PubMed

    Hayes, Gavin P; Herman, Matthew W; Barnhart, William D; Furlong, Kevin P; Riquelme, Sebástian; Benz, Harley M; Bergman, Eric; Barrientos, Sergio; Earle, Paul S; Samsonov, Sergey

    2014-08-21

    The seismic gap theory identifies regions of elevated hazard based on a lack of recent seismicity in comparison with other portions of a fault. It has successfully explained past earthquakes (see, for example, ref. 2) and is useful for qualitatively describing where large earthquakes might occur. A large earthquake had been expected in the subduction zone adjacent to northern Chile, which had not ruptured in a megathrust earthquake since a M ∼8.8 event in 1877. On 1 April 2014 a M 8.2 earthquake occurred within this seismic gap. Here we present an assessment of the seismotectonics of the March-April 2014 Iquique sequence, including analyses of earthquake relocations, moment tensors, finite fault models, moment deficit calculations and cumulative Coulomb stress transfer. This ensemble of information allows us to place the sequence within the context of regional seismicity and to identify areas of remaining and/or elevated hazard. Our results constrain the size and spatial extent of rupture, and indicate that this was not the earthquake that had been anticipated. Significant sections of the northern Chile subduction zone have not ruptured in almost 150 years, so it is likely that future megathrust earthquakes will occur to the south and potentially to the north of the 2014 Iquique sequence.

  19. The 2010-2011 Canterbury Earthquake Sequence: Environmental effects, seismic triggering thresholds and geologic legacy

    NASA Astrophysics Data System (ADS)

    Quigley, Mark C.; Hughes, Matthew W.; Bradley, Brendon A.; van Ballegooy, Sjoerd; Reid, Catherine; Morgenroth, Justin; Horton, Travis; Duffy, Brendan; Pettinga, Jarg R.

    2016-03-01

    Seismic shaking and tectonic deformation during strong earthquakes can trigger widespread environmental effects. The severity and extent of a given effect relates to the characteristics of the causative earthquake and the intrinsic properties of the affected media. Documentation of earthquake environmental effects in well-instrumented, historical earthquakes can enable seismologic triggering thresholds to be estimated across a spectrum of geologic, topographic and hydrologic site conditions, and implemented into seismic hazard assessments, geotechnical engineering designs, palaeoseismic interpretations, and forecasts of the impacts of future earthquakes. The 2010-2011 Canterbury Earthquake Sequence (CES), including the moment magnitude (Mw) 7.1 Darfield earthquake and Mw 6.2, 6.0, 5.9, and 5.8 aftershocks, occurred on a suite of previously unidentified, primarily blind, active faults in the eastern South Island of New Zealand. The CES is one of Earth's best recorded historical earthquake sequences. The location of the CES proximal to and beneath a major urban centre enabled rapid and detailed collection of vast amounts of field, geospatial, geotechnical, hydrologic, biologic, and seismologic data, and allowed incremental and cumulative environmental responses to seismic forcing to be documented throughout a protracted earthquake sequence. The CES caused multiple instances of tectonic surface deformation (≥ 3 events), surface manifestations of liquefaction (≥ 11 events), lateral spreading (≥ 6 events), rockfall (≥ 6 events), cliff collapse (≥ 3 events), subsidence (≥ 4 events), and hydrological (10s of events) and biological shifts (≥ 3 events). The terrestrial area affected by strong shaking (e.g. peak ground acceleration (PGA) ≥ 0.1-0.3 g), and the maximum distances between earthquake rupture and environmental response (Rrup), both generally increased with increased earthquake Mw, but were also influenced by earthquake location and source

  20. Earthquake early warning for Romania - most recent improvements

    NASA Astrophysics Data System (ADS)

    Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin

    2014-05-01

    EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real

  1. Earthquakes: Predicting the unpredictable?

    USGS Publications Warehouse

    Hough, Susan E.

    2005-01-01

    The earthquake prediction pendulum has swung from optimism in the 1970s to rather extreme pessimism in the 1990s. Earlier work revealed evidence of possible earthquake precursors: physical changes in the planet that signal that a large earthquake is on the way. Some respected earthquake scientists argued that earthquakes are likewise fundamentally unpredictable. The fate of the Parkfield prediction experiment appeared to support their arguments: A moderate earthquake had been predicted along a specified segment of the central San Andreas fault within five years of 1988, but had failed to materialize on schedule. At some point, however, the pendulum began to swing back. Reputable scientists began using the "P-word" in not only polite company, but also at meetings and even in print. If the optimism regarding earthquake prediction can be attributed to any single cause, it might be scientists' burgeoning understanding of the earthquake cycle.

  2. Role of stress triggering in earthquake migration on the North Anatolian fault

    USGS Publications Warehouse

    Stein, R.S.; Dieterich, J.H.; Barka, A.A.

    1996-01-01

    Ten M???6.7 earthquakes ruptured 1,000 km of the North Anatolian fault (Turkey) during 1939-92, providing an unsurpassed opportunity to study how one large shock sets up the next. Calculations of the change in Coulomb failure stress reveal that 9 out of 10 ruptures were brought closer to failure by the preceding shocks, typically by 5 bars, equivalent to 20 years of secular stressing. We translate the calculated stress changes into earthquake probabilities using an earthquake-nucleation constitutive relation, which includes both permanent and transient stress effects. For the typical 10-year period between triggering and subsequent rupturing shocks in the Anatolia sequence, the stress changes yield an average three-fold gain in the ensuing earthquake probability. Stress is now calculated to be high at several isolated sites along the fault. During the next 30 years, we estimate a 15% probability of a M???6.7 earthquake east of the major eastern center of Erzincan, and a 12% probability for a large event south of the major western port city of Izmit. Such stress-based probability calculations may thus be useful to assess and update earthquake hazards elsewhere. ?? 1997 Elsevier Science Ltd.

  3. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  4. Comparison of two large earthquakes: the 2008 Sichuan Earthquake and the 2011 East Japan Earthquake.

    PubMed

    Otani, Yuki; Ando, Takayuki; Atobe, Kaori; Haiden, Akina; Kao, Sheng-Yuan; Saito, Kohei; Shimanuki, Marie; Yoshimoto, Norifumi; Fukunaga, Koichi

    2012-01-01

    Between August 15th and 19th, 2011, eight 5th-year medical students from the Keio University School of Medicine had the opportunity to visit the Peking University School of Medicine and hold a discussion session titled "What is the most effective way to educate people for survival in an acute disaster situation (before the mental health care stage)?" During the session, we discussed the following six points: basic information regarding the Sichuan Earthquake and the East Japan Earthquake, differences in preparedness for earthquakes, government actions, acceptance of medical rescue teams, earthquake-induced secondary effects, and media restrictions. Although comparison of the two earthquakes was not simple, we concluded that three major points should be emphasized to facilitate the most effective course of disaster planning and action. First, all relevant agencies should formulate emergency plans and should supply information regarding the emergency to the general public and health professionals on a normal basis. Second, each citizen should be educated and trained in how to minimize the risks from earthquake-induced secondary effects. Finally, the central government should establish a single headquarters responsible for command, control, and coordination during a natural disaster emergency and should centralize all powers in this single authority. We hope this discussion may be of some use in future natural disasters in China, Japan, and worldwide.

  5. Numerical Modeling and Forecasting of Strong Sumatra Earthquakes

    NASA Astrophysics Data System (ADS)

    Xing, H. L.; Yin, C.

    2007-12-01

    ESyS-Crustal, a finite element based computational model and software has been developed and applied to simulate the complex nonlinear interacting fault systems with the goal to accurately predict earthquakes and tsunami generation. With the available tectonic setting and GPS data around the Sumatra region, the simulation results using the developed software have clearly indicated that the shallow part of the subduction zone in the Sumatra region between latitude 6S and 2N has been locked for a long time, and remained locked even after the Northern part of the zone underwent a major slip event resulting into the infamous Boxing Day tsunami. Two strong earthquakes that occurred in the distant past in this region (between 6S and 1S) in 1797 (M8.2) and 1833 (M9.0) respectively are indicative of the high potential for very large destructive earthquakes to occur in this region with relatively long periods of quiescence in between. The results have been presented in the 5th ACES International Workshop in 2006 before the recent 2007 Sumatra earthquakes occurred which exactly fell into the predicted zone (see the following web site for ACES2006 and detailed presentation file through workshop agenda). The preliminary simulation results obtained so far have shown that there seem to be a few obvious events around the previously locked zone before it is totally ruptured, but apparently no indication of a giant earthquake similar to the 2004 M9 event in the near future which is believed to happen by several earthquake scientists. Further detailed simulations will be carried out and presented in the meeting.

  6. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake.

    PubMed

    Sepúlveda, Roger D; Valdivia, Nelson

    2016-01-01

    Determining the effects of unpredictable disturbances on dynamic ecological systems is challenged by the paucity of appropriate temporal and spatial coverage of data. On 27 February 2010, an 8.8 Mw mega-earthquake and tsunami struck central Chile and caused coastal land-level changes, massive damage to coastal infrastructure, and widespread mortality of coastal organisms. Wave-exposed sandy beaches showed significant changes of species abundances from before to after the earthquake, but the highly dynamic biotic and abiotic conditions of these habitats make difficult to draw clear-cut conclusions from these patterns. Here, we analysed a beyond-BACI (Before-After Control-Impact) sampling design to test whether the effects of the Maule earthquake on sandy-shore species diversity, abundance, and structure were heterogeneous along the shore. Invertebrate species abundances were quantified before (i.e. February 2010) and after (i.e. March 2010, September 2010, and March 2011) the earthquake at three sandy shores randomly located within the earthquake rupture area and three sites within a "control" area located >400 km southward from epicentre. Immediately after the earthquake took place, the three sites located in the rupture area showed anomalous beach-profile uplifts that did not comply with the erosion (i.e. "negative" uplifts) that regularly occurs during late summer in the region. Species richness, abundance, and community structure significantly varied from before to after the strike, but these patterns of change varied among sites within both areas. Only the site with the strongest and persistent beach-profile uplift within the rupture area showed significant concomitant changes in species richness and community structure; after 13 months, this community showed a similar multivariate structure to the before-disturbance state. This site, in particular, was located in the section of the rupture area that received most of the impact of the after-earthquake tsunami

  7. Localised Effects of a Mega-Disturbance: Spatiotemporal Responses of Intertidal Sandy Shore Communities to the 2010 Chilean Earthquake

    PubMed Central

    Sepúlveda, Roger D.; Valdivia, Nelson

    2016-01-01

    Determining the effects of unpredictable disturbances on dynamic ecological systems is challenged by the paucity of appropriate temporal and spatial coverage of data. On 27 February 2010, an 8.8 Mw mega-earthquake and tsunami struck central Chile and caused coastal land-level changes, massive damage to coastal infrastructure, and widespread mortality of coastal organisms. Wave-exposed sandy beaches showed significant changes of species abundances from before to after the earthquake, but the highly dynamic biotic and abiotic conditions of these habitats make difficult to draw clear-cut conclusions from these patterns. Here, we analysed a beyond-BACI (Before-After Control-Impact) sampling design to test whether the effects of the Maule earthquake on sandy-shore species diversity, abundance, and structure were heterogeneous along the shore. Invertebrate species abundances were quantified before (i.e. February 2010) and after (i.e. March 2010, September 2010, and March 2011) the earthquake at three sandy shores randomly located within the earthquake rupture area and three sites within a “control” area located >400 km southward from epicentre. Immediately after the earthquake took place, the three sites located in the rupture area showed anomalous beach-profile uplifts that did not comply with the erosion (i.e. “negative” uplifts) that regularly occurs during late summer in the region. Species richness, abundance, and community structure significantly varied from before to after the strike, but these patterns of change varied among sites within both areas. Only the site with the strongest and persistent beach-profile uplift within the rupture area showed significant concomitant changes in species richness and community structure; after 13 months, this community showed a similar multivariate structure to the before-disturbance state. This site, in particular, was located in the section of the rupture area that received most of the impact of the after-earthquake

  8. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    PubMed

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  9. Influence of anatomical location on CT numbers in cone beam computed tomography.

    PubMed

    Oliveira, Matheus L; Tosoni, Guilherme M; Lindsey, David H; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M

    2013-04-01

    To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K₂HPO₄) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K₂HPO₄ phantoms were measured, and the relationship between CT numbers and K₂HPO₄ concentration was examined. The measured CT numbers of the K₂HPO₄ phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K₂HPO₄ concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Superficial basal cell carcinoma: A comparison of superficial only subtype with superficial combined with other subtypes by age, sex and anatomic site in 3150 cases.

    PubMed

    Pyne, John H; Myint, Esther; Barr, Elizabeth M; Clark, Simon P; David, Michael; Na, Renua; Hou, Ruihang

    2017-08-01

    Basal cell carcinoma (BCC) may present as superficial subtype alone (sBCC) or superficial combined with other subtypes. The objective of this study was to compare sBCC without or with other BCC subtypes by age, sex and anatomic site. We retrospectively collected superficial BCC with the above characteristics from an Australian center during 2009 to 2014. We recorded 1528 sBCC and 1622 superficial BCC combined with other BCC subtype cases. Males numbered 2007 and females 1140. On males, head sites (forehead, cheek, nose and ear combined) compared to limb plus trunk sites displayed a higher incidence of superficial BCC combined with either nodular and or aggressive BCC subtypes (OR 13.15 CI 95% 8.9-19.5 P < .0001). On females a similar comparison also found a higher incidence of superficial BCC combined with solid subtype BCC on head sites compared to trunk and limb sites (OR 9.66 CI 95% 5.8-16.1 P < .0001). Superficial BCC alone is more likely on younger females on trunk and limb sites. Small partial biopsies reported as sBCC may miss other BCC subtypes present with higher risk on facial sites for males and females. Males had smaller proportions of superficial only subtype BCC on facial and ear sites compared to females. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. On the paleoseismic evidence of the 1803 earthquake rupture (or lack of it) along the frontal thrust of the Kumaun Himalaya

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Anandasabari, K.; Sanwal, Jaishri; Rajendran, Kusala; Kumar, Pankaj; Chopra, Sundeep

    2018-01-01

    The foothills of the Himalaya bordered by the Main Frontal Thrust (MFT) continue to be a locus of paleoseismological studies. One of such recent studies of trench stratigraphy near the central (Indian) Himalayan foothills (Malik et al., (2016) has reported multiple ruptures dated at 467-570, 1294-1587 and 1750-1932 CE. The last offset has been attributed to the Uttarkashi earthquake of 1803 and the penultimate faulting, with lesser confidence to an earthquake in 1505 CE. We tested these claims by logging an adjacent section on a shared scarp, and the new trench site, however, revealed a stratigraphic configuration partially in variance with from what has been reported in the earlier study. Our findings do not support the previous interpretation of the trench stratigraphy that suggested multiple displacements cutting across a varied set of deformed stratigraphic units leading up to the 1803 rupture. The current interpretation posits a single episode of a low-angle displacement at this site occurred between 1266 CE and 1636. Our results suggest a single medieval earthquake, conforming to what was reported from the previously studied neighboring sites to the east and west. The present study while reiterating a great medieval earthquake questions the assumption that the 1803 earthquake ruptured the MFT. Although a décollement earthquake, the 1803 rupture may have been arrested midway on the basal flat, and fell short of reaching the MFT, somewhat comparable to a suite of blind thrust earthquakes like the1905 Kangra and the 1833 Nepal earthquakes.

  12. Selected Images of the Effects of the October 15, 2006, Kiholo Bay-Mahukona, Hawai'i, Earthquakes and Recovery Efforts

    USGS Publications Warehouse

    Takahashi, Taeko Jane; Ikeda, Nancy A.; Okubo, Paul G.; Sako, Maurice K.; Dow, David C.; Priester, Anna M.; Steiner, Nolan A.

    2011-01-01

    Although the vast majority of earthquakes in the State of Hawaii are closely related to the active volcanism associated with the southeastern part of the Island of Hawai‘i, the October 2006 Kīholo Bay and Māhukona earthquakes clearly suggest the devastating potential of deeper lithospheric earthquakes. Large earthquakes thought to be nearly M7 have struck near the islands of Lāna‘i (1871) and Maui (1938). It is thought that these, like the 2006 earthquakes, were deep lithospheric flexure earthquakes (Wyss and Koyanagi, 1992; Klein and others, 2001). Thus, it is important to recognize the potential seismic hazard posed by such earthquakes beneath the older Hawaiian Islands. The data and observations afforded by the 2006 earthquakes promise to improve probabilistic seismic hazards modeling in Hawai‘i. The effects of the October 15, 2006, Kīholo Bay-Māhukona earthquakes are shown in images taken from the coastal route along the northern half of the Island of Hawai‘i, where damage was the most concentrated. The direction of presentation is counter-clockwise, from Pa‘auilo on the eastern or windward (Hāmākua) side to Kealakekua Bay on the western or leeward (Kona) side. A list of sites, their locations, coordinates, and distance from the epicenter at Kīholo Bay are given in table 1. A Google Earth map (fig. 7) and a topographic map (fig. 8) pinpoint the 36 sites where damage was documented and digital images were compiled for this collection.

  13. Recorded earthquake responses from the integrated seismic monitoring network of the Atwood Building, Anchorage, Alaska

    USGS Publications Warehouse

    Celebi, M.

    2006-01-01

    An integrated seismic monitoring system with a total of 53 channels of accelerometers is now operating in and at the nearby free-field site of the 20-story steel-framed Atwood Building in highly seismic Anchorage, Alaska. The building has a single-story basement and a reinforced concrete foundation without piles. The monitoring system comprises a 32-channel structural array and a 21-channel site array. Accelerometers are deployed on 10 levels of the building to assess translational, torsional, and rocking motions, interstory drift (displacement) between selected pairs of adjacent floors, and average drift between floors. The site array, located approximately a city block from the building, comprises seven triaxial accelerometers, one at the surface and six in boreholes ranging in depths from 15 to 200 feet (???5-60 meters). The arrays have already recorded low-amplitude shaking responses of the building and the site caused by numerous earthquakes at distances ranging from tens to a couple of hundred kilometers. Data from an earthquake that occurred 186 km away traces the propagation of waves from the deepest borehole to the roof of the building in approximately 0.5 seconds. Fundamental structural frequencies [0.58 Hz (NS) and 0.47 Hz (EW)], low damping percentages (2-4%), mode coupling, and beating effects are identified. The fundamental site frequency at approximately 1.5 Hz is close to the second modal frequencies (1.83 Hz NS and 1.43 EW) of the building, which may cause resonance of the building. Additional earthquakes prove repeatability of these characteristics; however, stronger shaking may alter these conclusions. ?? 2006, Earthquake Engineering Research Institute.

  14. The Great East-Japan Earthquake and devastating tsunami: an update and lessons from the past Great Earthquakes in Japan since 1923.

    PubMed

    Ishigaki, Akemi; Higashi, Hikari; Sakamoto, Takako; Shibahara, Shigeki

    2013-04-01

    Japan has a long history of fighting against great earthquakes that cause structural damage/collapses, fires and/or tsunami. On March 11, 2011 at 14:46 (Friday), the Great East-Japan Earthquake (magnitude 9.0) attacked the Tohoku region (northeastern Japan), which includes Sendai City. The earthquake generated a devastating tsunami, leading to unprecedented disasters (~18,500 victims) in coastal areas of Iwate, Miyagi and Fukushima prefectures, despite the fact that people living in the Tohoku region are well trained for tsunami-evacuation procedures, with the mindset of "Tsunami, ten-den-ko." This code means that each person should evacuate individually upon an earthquake. Sharing this rule, children and parents can escape separately from schools, houses or workplaces, without worrying about each other. The concept of ten-den-ko (individual evacuation) is helpful for people living in coastal areas of earthquake-prone zones around the world. It is also important to construct safe evacuation centers, because the March 11(th) tsunami killed people who had evacuated to evacuation sites. We summarize the current conditions of people living in the disaster-stricken areas, including the consequences of the Fukushima nuclear accident. We also describe the disaster responses as the publisher of the Tohoku Journal of Experimental Medicine (TJEM), located in Sendai, with online support from Tokyo. In 1923, the Great Kanto Earthquake (magnitude 7.9) evoked a massive fire that destroyed large areas of Tokyo (~105,000 victims), including the print company for TJEM, but the Wistar Institute printed three TJEM issues in 1923 in Philadelphia. Mutual aid relationships should be established between distant cities to survive future disasters.

  15. Shaking table test and dynamic response prediction on an earthquake-damaged RC building

    NASA Astrophysics Data System (ADS)

    Xianguo, Ye; Jiaru, Qian; Kangning, Li

    2004-12-01

    This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model. The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake. The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes. The tests showed that the damage pattern of the test model agreed well with that of the prototype building. Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model. The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation. The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well. However, there is difference between the predication and the actual response to the major earthquake.

  16. The U.S. Geological Survey's Earthquake Summary Posters: A GIS-based Education and Communication Product for Presenting Consolidated Post-Earthquake Information

    NASA Astrophysics Data System (ADS)

    Tarr, A.; Benz, H.; Earle, P.; Wald, D. J.

    2003-12-01

    Earthquake Summary Posters (ESP's), a new product of the U.S. Geological Survey's Earthquake Program, are produced at the National Earthquake Information Center (NEIC) in Golden. The posters consist of rapidly-generated, GIS-based maps made following significant earthquakes worldwide (typically M>7.0, or events of significant media/public interest). ESP's consolidate, in an attractive map format, a large-scale epicentral map, several auxiliary regional overviews (showing tectonic and geographical setting, seismic history, seismic hazard, and earthquake effects), depth sections (as appropriate), a table of regional earthquakes, and a summary of the reional seismic history and tectonics. The immediate availability of the latter text summaries has been facilitated by the availability of Rapid, Accurate Tectonic Summaries (RATS) produced at NEIC and posted on the web following significant events. The rapid production of ESP's has been facilitated by generating, during the past two years, regional templates for tectonic areas around the world by organizing the necessary spatially-referenced data for the map base and the thematic layers that overlay the base. These GIS databases enable scripted Arc Macro Language (AML) production of routine elements of the maps (for example background seismicity, tectonic features, and probabilistic hazard maps). However, other elements of the maps are earthquake-specific and are produced manually to reflect new data, earthquake effects, and special characteristics. By the end of this year, approximately 85% of the Earth's seismic zones will be covered for generating future ESP's. During the past year, 13 posters were completed, comparable to the yearly average expected for significant earthquakes. Each year, all ESPs will be published on a CD in PDF format as an Open-File Report. In addition, each is linked to the special event earthquake pages on the USGS Earthquake Program web site (http://earthquake.usgs.gov). Although three formats

  17. Injection-induced earthquakes

    USGS Publications Warehouse

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  18. Earthquakes; January-February 1982

    USGS Publications Warehouse

    Person, W.J.

    1982-01-01

    In the United States, a number of earthquakes occurred, but only minor damage was reported. Arkansas experienced a swarm of earthquakes beginning on January 12. Canada experienced one of its strongest earthquakes in a number of years on January 9; this earthquake caused slight damage in Maine. 

  19. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California.

    PubMed

    Lee, Ya-Ting; Turcotte, Donald L; Holliday, James R; Sachs, Michael K; Rundle, John B; Chen, Chien-Chih; Tiampo, Kristy F

    2011-10-04

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M ≥ 4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M ≥ 4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor-Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most "successful" in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts.

  20. Results of the Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California

    PubMed Central

    Lee, Ya-Ting; Turcotte, Donald L.; Holliday, James R.; Sachs, Michael K.; Rundle, John B.; Chen, Chien-Chih; Tiampo, Kristy F.

    2011-01-01

    The Regional Earthquake Likelihood Models (RELM) test of earthquake forecasts in California was the first competitive evaluation of forecasts of future earthquake occurrence. Participants submitted expected probabilities of occurrence of M≥4.95 earthquakes in 0.1° × 0.1° cells for the period 1 January 1, 2006, to December 31, 2010. Probabilities were submitted for 7,682 cells in California and adjacent regions. During this period, 31 M≥4.95 earthquakes occurred in the test region. These earthquakes occurred in 22 test cells. This seismic activity was dominated by earthquakes associated with the M = 7.2, April 4, 2010, El Mayor–Cucapah earthquake in northern Mexico. This earthquake occurred in the test region, and 16 of the other 30 earthquakes in the test region could be associated with it. Nine complete forecasts were submitted by six participants. In this paper, we present the forecasts in a way that allows the reader to evaluate which forecast is the most “successful” in terms of the locations of future earthquakes. We conclude that the RELM test was a success and suggest ways in which the results can be used to improve future forecasts. PMID:21949355

  1. Temporal Changes in Stress Drop, Frictional Strength, and Earthquake Size Distribution in the 2011 Yamagata-Fukushima, NE Japan, Earthquake Swarm, Caused by Fluid Migration

    NASA Astrophysics Data System (ADS)

    Yoshida, Keisuke; Saito, Tatsuhiko; Urata, Yumi; Asano, Youichi; Hasegawa, Akira

    2017-12-01

    In this study, we investigated temporal variations in stress drop and b-value in the earthquake swarm that occurred at the Yamagata-Fukushima border, NE Japan, after the 2011 Tohoku-Oki earthquake. In this swarm, frictional strengths were estimated to have changed with time due to fluid diffusion. We first estimated the source spectra for 1,800 earthquakes with 2.0 ≤ MJMA < 3.0, by correcting the site-amplification and attenuation effects determined using both S waves and coda waves. We then determined corner frequency assuming the omega-square model and estimated stress drop for 1,693 earthquakes. We found that the estimated stress drops tended to have values of 1-4 MPa and that stress drops significantly changed with time. In particular, the estimated stress drops were very small at the beginning, and increased with time for 50 days. Similar temporal changes were obtained for b-value; the b-value was very high (b 2) at the beginning, and decreased with time, becoming approximately constant (b 1) after 50 days. Patterns of temporal changes in stress drop and b-value were similar to the patterns for frictional strength and earthquake occurrence rate, suggesting that the change in frictional strength due to migrating fluid not only triggered the swarm activity but also affected earthquake and seismicity characteristics. The estimated high Q-1 value, as well as the hypocenter migration, supports the presence of fluid, and its role in the generation and physical characteristics of the swarm.

  2. Induced and triggered earthquakes at The Geysers geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Johnson, Lane R.; Majer, Ernest L.

    2017-05-01

    The Geysers geothermal reservoir in northern California is the site of numerous studies of both seismicity induced by injection of fluids and seismicity triggered by other earthquakes. Data from a controlled experiment in the northwest part of The Geysers in the time period 2011 to 2015 are used to study these induced and triggered earthquakes and possible differences between them. Causal solutions to the elastic equations for a porous medium show how fluid injection generates fast elastic and diffusion waves followed by a much slower diffusive wake. Calculations of fluid increment, fluid pressure and elastic stress are used to investigate both when and why seismic failure takes place. Taking into account stress concentrations caused by material heterogeneity leads to the conclusion that fluid injection by itself can cause seismic activity with no need for tectonic forces. Induced events that occur at early times are best explained by changes in stress rate, while those that occur at later times are best explained by changes in stress. While some of the seismic activity is clearly induced by injection of fluids, also present is triggered seismicity that includes aftershock sequences, swarms of seismicity triggered by other earthquakes at The Geysers and clusters of multiple earthquakes. No basic differences are found between the source mechanisms of these different types of earthquakes.

  3. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  4. Italian Case Studies Modelling Complex Earthquake Sources In PSHA

    NASA Astrophysics Data System (ADS)

    Gee, Robin; Peruzza, Laura; Pagani, Marco

    2017-04-01

    This study presents two examples of modelling complex seismic sources in Italy, done in the framework of regional probabilistic seismic hazard assessment (PSHA). The first case study is for an area centred around Collalto Stoccaggio, a natural gas storage facility in Northern Italy, located within a system of potentially seismogenic thrust faults in the Venetian Plain. The storage exploits a depleted natural gas reservoir located within an actively growing anticline, which is likely driven by the Montello Fault, the underlying blind thrust. This fault has been well identified by microseismic activity (M<2) detected by a local seismometric network installed in 2012 (http://rete-collalto.crs.inogs.it/). At this time, no correlation can be identified between the gas storage activity and local seismicity, so we proceed with a PSHA that considers only natural seismicity, where the rates of earthquakes are assumed to be time-independent. The source model consists of faults and distributed seismicity to consider earthquakes that cannot be associated to specific structures. All potentially active faults within 50 km of the site are considered, and are modelled as 3D listric surfaces, consistent with the proposed geometry of the Montello Fault. Slip rates are constrained using available geological, geophysical and seismological information. We explore the sensitivity of the hazard results to various parameters affected by epistemic uncertainty, such as ground motions prediction equations with different rupture-to-site distance metrics, fault geometry, and maximum magnitude. The second case is an innovative study, where we perform aftershock probabilistic seismic hazard assessment (APSHA) in Central Italy, following the Amatrice M6.1 earthquake of August 24th, 2016 (298 casualties) and the subsequent earthquakes of Oct 26th and 30th (M6.1 and M6.6 respectively, no deaths). The aftershock hazard is modelled using a fault source with complex geometry, based on literature data

  5. Seismic environment of the Burro Flats site, Ventura County, California: a brief, limited literature review

    USGS Publications Warehouse

    Wentworth, Carl M.; Bonilla, Manuel G.; Buchanan, Jane M.

    1969-01-01

    A limited review of available literature suggests that the maximum horizontal ground acceleration at the Burro Flats site from earthquakes in the region could range from less than 0.1 to 0.49 g. A magnitude 8 earthquake on the nearby San Andreas fault could produce ground acceleration in the range 0.18 to 0.31 g, and an expectable larger earthquake on that fault could produce larger accelerations. Ground motion from possible smaller but closer earthquakes ranges up to 0.49 g for an earthquake of magnitude 6.5 on the adjacent "Burro Flats fault". Estimation of these accelerations is dependent on determining the geologic environment of the site, the appropriate earthquake magnitudes to be assigned significant faults in that environment, and the attenuation of shaking between the earthquake epicenters and the site. The site lies within a tectonically active region--the historically active San Andreas fault is only 34 miles to the northeast, and lesser faults showing evidence of late Quaternary displacement are located closer to the site. Evidence for youthfulness of these lesser faults varies, and except for the active Newport-Inglewood zone and the Santa Ynez fault, they qualify as possible but as yet-unproven active faults. All known faults with appropriate length to site-distance ratios that are reasonably classed as late Quaternary faults are discussed, and are included as potential earthquake generators. Earthquakes of appropriate magnitude to be assigned to each fault are determined by assuming rupture in one event of half the map length of the fault, and applying relations (determined by several authors) between earthquake magnitude and rupture length in historic events to determine magnitudes. These magnitudes are, for the purposes of this brief review, probably reasonable estimates of the capabilities of each fault, although earthquakes of larger magnitude are possible. Accelerations are then determined by assuming earthquakes of the above determined

  6. Earthquakes, September-October 1986

    USGS Publications Warehouse

    Person, W.J.

    1987-01-01

    There was one great earthquake (8.0 and above) during this reporting period in the South Pacific in the Kermadec Islands. There were no major earthquakes (7.0-7.9) but earthquake-related deaths were reported in Greece and in El Salvador. There were no destrcutive earthquakes in the United States.

  7. Early Site Permit Demonstration Program: Guidelines for determining design basis ground motions. Volume 2, Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report develops and applies a methodology for estimating strong earthquake ground motion. The motivation was to develop a much needed tool for use in developing the seismic requirements for structural designs. An earthquake`s ground motion is a function of the earthquake`s magnitude, and the physical properties of the earth through which the seismic waves travel from the earthquake fault to the site of interest. The emphasis of this study is on ground motion estimation in Eastern North America (east of the Rocky Mountains), with particular emphasis on the Eastern United States and southeastern Canada. Eastern North America is amore » stable continental region, having sparse earthquake activity with rare occurrences of large earthquakes. While large earthquakes are of interest for assessing seismic hazard, little data exists from the region to empirically quantify their effects. The focus of the report is on the attributes of ground motion in Eastern North America that are of interest for the design of facilities such as nuclear power plants. This document, Volume II, contains Appendices 2, 3, 5, 6, and 7 covering the following topics: Eastern North American Empirical Ground Motion Data; Examination of Variance of Seismographic Network Data; Soil Amplification and Vertical-to-Horizontal Ratios from Analysis of Strong Motion Data From Active Tectonic Regions; Revision and Calibration of Ou and Herrmann Method; Generalized Ray Procedure for Modeling Ground Motion Attenuation; Crustal Models for Velocity Regionalization; Depth Distribution Models; Development of Generic Site Effects Model; Validation and Comparison of One-Dimensional Site Response Methodologies; Plots of Amplification Factors; Assessment of Coupling Between Vertical & Horizontal Motions in Nonlinear Site Response Analysis; and Modeling of Dynamic Soil Properties.« less

  8. First paleoseismic evidence for great surface-rupturing earthquakes in the Bhutan Himalayas

    NASA Astrophysics Data System (ADS)

    Le Roux-Mallouf, Romain; Ferry, Matthieu; Ritz, Jean-François; Berthet, Théo.; Cattin, Rodolphe; Drukpa, Dowchu

    2016-10-01

    The seismic behavior of the Himalayan arc between central Nepal and Arunachal Pradesh remains poorly understood due to the lack of observations concerning the timing and size of past major and great earthquakes in Bhutan. We present here the first paleoseismic study along the Himalayan topographic front conducted at two sites in southern central Bhutan. Paleoseismological excavations and related OxCal modeling reveal that Bhutan experienced at least two great earthquakes in the last millennium: one between the seventeenth and eighteenth century and one during medieval times, producing a total cumulative vertical offset greater than 10 m. Along with previous studies that reported similar medieval events in Central Nepal, Sikkim, and Assam, our investigations support the occurrence of either (i) a series of great earthquakes between A.D. 1025 and A.D. 1520 or (ii) a single giant earthquake between A.D. 1090 and A.D. 1145. In the latter case, the surface rupture may have reached a total length of 800 km and could be associated with an earthquake of magnitude Mw = 8.7-9.1.

  9. MyShake: A smartphone seismic network for earthquake early warning and beyond

    PubMed Central

    Kong, Qingkai; Allen, Richard M.; Schreier, Louis; Kwon, Young-Woo

    2016-01-01

    Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accelerometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system, MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking. MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics. PMID:26933682

  10. Do submarine landslides and turbidites provide a faithful record of large magnitude earthquakes in the Western Mediterranean?

    NASA Astrophysics Data System (ADS)

    Clare, Michael

    2016-04-01

    Large earthquakes and associated tsunamis pose a potential risk to coastal communities. Earthquakes may trigger submarine landslides that mix with surrounding water to produce turbidity currents. Recent studies offshore Algeria have shown that earthquake-triggered turbidity currents can break important communication cables. If large earthquakes reliably trigger landslides and turbidity currents, then their deposits can be used as a long-term record to understand temporal trends in earthquake activity. It is important to understand in which settings this approach can be applied. We provide some suggestions for future Mediterranean palaeoseismic studies, based on learnings from three sites. Two long piston cores from the Balearic Abyssal Plain provide long-term (<150 ka) records of large volume turbidites. The frequency distribution form of turbidite recurrence indicates a constant hazard rate through time and is similar to the Poisson distribution attributed to large earthquake recurrence on a regional basis. Turbidite thickness varies in response to sea level, which is attributed to proximity and availability of sediment. While mean turbidite recurrence is similar to the seismogenic El Asnam fault in Algeria, geochemical analysis reveals not all turbidites were sourced from the Algerian margin. The basin plain record is instead an amalgamation of flows from Algeria, Sardinia, and river fed systems further to the north, many of which were not earthquake-triggered. Thus, such distal basin plain settings are not ideal sites for turbidite palaoeseimology. Boxcores from the eastern Algerian slope reveal a thin silty turbidite dated to ~700 ya. Given its similar appearance across a widespread area and correlative age, the turbidite is inferred to have been earthquake-triggered. More recent earthquakes that have affected the Algerian slope are not recorded, however. Unlike the central and western Algerian slopes, the eastern part lacks canyons and had limited sediment

  11. Post earthquake recovery in natural gas systems--1971 San Fernando Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.T. Jr.

    1983-01-01

    In this paper a concise summary of the post earthquake investigations for the 1971 San Fernando Earthquake is presented. The effects of the earthquake upon building and other above ground structures are briefly discussed. Then the damages and subsequent repairs in the natural gas systems are reported.

  12. Earthquakes; July-August, 1978

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    Earthquake activity during this period was about normal. Deaths from earthquakes were reported from Greece and Guatemala. Three major earthquakes (magnitude 7.0-7.9) occurred in Taiwan, Chile, and Costa Rica. In the United States, the most significant earthquake was a magnitude 5.6 on August 13 in southern California. 

  13. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, A.; Luzio, D.; D'Anna, G.

    2014-09-01

    In this paper, we introduce a project for the realization of the first European real-time urban seismic network based on Micro Electro-Mechanical Systems (MEMS) technology. MEMS accelerometers are a highly enabling technology, and nowadays, the sensitivity and the dynamic range of these sensors are such as to allow the recording of earthquakes of moderate magnitude even at a distance of several tens of kilometers. Moreover, thanks to their low cost and smaller size, MEMS accelerometers can be easily installed in urban areas in order to achieve an urban seismic network constituted by high density of observation points. The network is being implemented in the Acireale Municipality (Sicily, Italy), an area among those with the highest hazard, vulnerability and exposure to the earthquake of the Italian territory. The main objective of the implemented urban network will be to achieve an effective system for post-earthquake rapid disaster assessment. The earthquake recorded, also that with moderate magnitude will be used for the effective seismic microzonation of the area covered by the network. The implemented system will be also used to realize a site-specific earthquakes early warning system.

  14. Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Strong Ground Motion

    USGS Publications Warehouse

    Borcherdt, Roger D.

    1994-01-01

    Strong ground motion generated by the Loma Prieta, Calif., earthquake (MS~7.1) of October 17, 1989, resulted in at least 63 deaths, more than 3,757 injuries, and damage estimated to exceed $5.9 billion. Strong ground motion severely damaged critical lifelines (freeway overpasses, bridges, and pipelines), caused severe damage to poorly constructed buildings, and induced a significant number of ground failures associated with liquefaction and landsliding. It also caused a significant proportion of the damage and loss of life at distances as far as 100 km from the epicenter. Consequently, understanding the characteristics of the strong ground motion associated with the earthquake is fundamental to understanding the earthquake's devastating impact on society. The papers assembled in this chapter address this problem. Damage to vulnerable structures from the earthquake varied substantially with the distance from the causative fault and the type of underlying geologic deposits. Most of the damage and loss of life occurred in areas underlain by 'soft soil'. Quantifying these effects is important for understanding the tragic concentrations of damage in such areas as Santa Cruz and the Marina and Embarcadero Districts of San Francisco, and the failures of the San Francisco-Oakland Bay Bridge and the Interstate Highway 880 overpass. Most importantly, understanding these effects is a necessary prerequisite for improving mitigation measures for larger earthquakes likely to occur much closer to densely urbanized areas in the San Francisco Bay region. The earthquake generated an especially important data set for understanding variations in the severity of strong ground motion. Instrumental strong-motion recordings were obtained at 131 sites located from about 6 to 175 km from the rupture zone. This set of recordings, the largest yet collected for an event of this size, was obtained from sites on various geologic deposits, including a unique set on 'soft soil' deposits

  15. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of

  16. Megathrust earthquakes in Central Chile: What is next after the Maule 2010 earthquake?

    NASA Astrophysics Data System (ADS)

    Madariaga, R.

    2013-05-01

    The 27 February 2010 Maule earthquake occurred in a well identified gap in the Chilean subduction zone. The event has now been studied in detail using both far-field, near field seismic and geodetic data, we will review this information gathered so far. The event broke a region that was much longer along strike than the gap left over from the 1835 Concepcion earthquake, sometimes called the Darwin earthquake because he was in the area when the earthquake occurred and made many observations. Recent studies of contemporary documents by Udias et al indicate that the area broken by the Maule earthquake in 2010 had previously broken by a similar earthquake in 1751, but several events in the magnitude 8 range occurred in the area principally in 1835 already mentioned and, more recently on 1 December 1928 to the North and on 21 May 1960 (1 1/2 days before the big Chilean earthquake of 1960). Currently the area of the 2010 earthquake and the region immediately to the North is undergoing a very large increase in seismicity with numerous clusters of seismicity that move along the plate interface. Examination of the seismicity of Chile of the 18th and 19th century show that the region immediately to the North of the 2010 earthquake broke in a very large megathrust event in July 1730. this is the largest known earthquake in central Chile. The region where this event occurred has broken in many occasions with M 8 range earthquakes in 1822, 1880, 1906, 1971 and 1985. Is it preparing for a new very large megathrust event? The 1906 earthquake of Mw 8.3 filled the central part of the gap but it has broken again on several occasions in 1971, 1973 and 1985. The main question is whether the 1906 earthquake relieved enough stresses from the 1730 rupture zone. Geodetic data shows that most of the region that broke in 1730 is currently almost fully locked from the northern end of the Maule earthquake at 34.5°S to 30°S, near the southern end of the of the Mw 8.5 Atacama earthquake of 11

  17. Damaged Speleothems of the Ms 8.0 Wenchuan Earthquake, China, and the Implications for Seismology

    NASA Astrophysics Data System (ADS)

    Xueqin, Zhao; Fudong, Wang

    2017-04-01

    Broken or deformed speleothems can be used for paleoseismic research since they can be dated with radiometric techniques. But it rarely happens that speleologists are in caves just at the time of strong earthquake shocks, and there are only a few published cases of observations from caves visited immediately after an earthquake. So that it is really plausible that earthquakes break speleothem. Therefore, it needs more evidence of recent strong seismic to prove the way of speleoseismology. In order to provide more on-site data for speleoseismology, four underground cavities in the Longmenshan Fault Zone where a devastating Ms 8.0 earthquake has occurred at 2:28 pm, May 12, 2008, have been selected for speleoseismic analysis. We document damaged carbonate cave deposits by Wenchuan earthquake, including collapsed and broken stalactites, in-situ severed stalagmites and stalactites, collapsed bedrock ceilings, and strictures; and discuss the implications of damaged speleothems as possible earthquake recorder. The results show that massive damaged speleothem, as an effective method for paleoseismic, can compatible with strong earthquake.

  18. Intertidal biological indicators of coseismic subsidence during the Mw 7.8 Haida Gwaii, Canada, earthquake

    USGS Publications Warehouse

    Haeussler, Peter J.; Witter, Robert C.; Wang, Kelin

    2015-01-01

    The 28 October 2012 Mw 7.8 Haida Gwaii earthquake was a megathrust earthquake along the very obliquely convergent Queen Charlotte margin of British Columbia, Canada. Coseismic deformation is not well constrained by geodesy, with only six Global Positioning System (GPS) sites and two tide gauge stations within 250 km of the rupture area. To better constrain vertical coseismic deformation, we measured the upper growth limits of two sessile intertidal organisms, which are controlled by physical conditions, relative to sea level at 25 sites 5 months after the earthquake. We measured the positions of rockweed (Fucus distichus, 617 observations) and the common acorn barnacle (Balanus balanoides, 686 observations). The study focused on the western side of the islands where rupture models indicated that the greatest amount of vertical displacement, but we also investigated sites well away from the inferred rupture area to provide a control on the upper limit of the organisms unaffected by vertical displacement. We also made 322 measurements of sea level to relate the growth limits to a tidal datum using the TPXO7.2 tidal model, rather than ellipsoid heights determined by GPS. Three methods of examining the data all indicate 0.4–0.6 m subsidence along the western coast of Moresby Island as a result of the 28 October 2012 Haida Gwaii earthquake. Our data are, within the errors, consistent with data from two campaign GPS sites along the west coast of Haida Gwaii and with rupture models that indicate megathrust rupture offshore, but not beneath, the islands.

  19. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  20. Multi-source and multi-angle remote sensing image data collection, application and sharing of Beichuan National Earthquake Ruins Museum

    NASA Astrophysics Data System (ADS)

    Lin, Yueguan; Wang, Wei; Wen, Qi; Huang, He; Lin, Jingli; Zhang, Wei

    2015-12-01

    Ms8.0 Wenchuan earthquake that occurred on May 12, 2008 brought huge casualties and property losses to the Chinese people, and Beichuan County was destroyed in the earthquake. In order to leave a site for commemorate of the people, and for science propaganda and research of earthquake science, Beichuan National Earthquake Ruins Museum has been built on the ruins of Beichuan county. Based on the demand for digital preservation of the earthquake ruins park and collection of earthquake damage assessment of research and data needs, we set up a data set of Beichuan National Earthquake Ruins Museum, including satellite remote sensing image, airborne remote sensing image, ground photogrammetry data and ground acquisition data. At the same time, in order to make a better service for earthquake science research, we design the sharing ideas and schemes for this scientific data set.

  1. Sensitivity of Earthquake Loss Estimates to Source Modeling Assumptions and Uncertainty

    USGS Publications Warehouse

    Reasenberg, Paul A.; Shostak, Nan; Terwilliger, Sharon

    2006-01-01

    Introduction: This report explores how uncertainty in an earthquake source model may affect estimates of earthquake economic loss. Specifically, it focuses on the earthquake source model for the San Francisco Bay region (SFBR) created by the Working Group on California Earthquake Probabilities. The loss calculations are made using HAZUS-MH, a publicly available computer program developed by the Federal Emergency Management Agency (FEMA) for calculating future losses from earthquakes, floods and hurricanes within the United States. The database built into HAZUS-MH includes a detailed building inventory, population data, data on transportation corridors, bridges, utility lifelines, etc. Earthquake hazard in the loss calculations is based upon expected (median value) ground motion maps called ShakeMaps calculated for the scenario earthquake sources defined in WGCEP. The study considers the effect of relaxing certain assumptions in the WG02 model, and explores the effect of hypothetical reductions in epistemic uncertainty in parts of the model. For example, it addresses questions such as what would happen to the calculated loss distribution if the uncertainty in slip rate in the WG02 model were reduced (say, by obtaining additional geologic data)? What would happen if the geometry or amount of aseismic slip (creep) on the region's faults were better known? And what would be the effect on the calculated loss distribution if the time-dependent earthquake probability were better constrained, either by eliminating certain probability models or by better constraining the inherent randomness in earthquake recurrence? The study does not consider the effect of reducing uncertainty in the hazard introduced through models of attenuation and local site characteristics, although these may have a comparable or greater effect than does source-related uncertainty. Nor does it consider sources of uncertainty in the building inventory, building fragility curves, and other assumptions

  2. Earthquakes; March-April 1975

    USGS Publications Warehouse

    Person, W.J.

    1975-01-01

    There were no major earthquakes (magnitude 7.0-7.9) in March or April; however, there were earthquake fatalities in Chile, Iran, and Venezuela and approximately 35 earthquake-related injuries were reported around the world. In the United States a magnitude 6.0 earthquake struck the Idaho-Utah border region. Damage was estimated at about a million dollars. The shock was felt over a wide area and was the largest to hit the continental Untied States since the San Fernando earthquake of February 1971. 

  3. Chemical diagenesis, porosity reduction, and rock strength, IODP Site U1480: Influences on great earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Song, Insun; Milliken, Kitty; Dugan, Brandon; Bourlange, Sylvain; Colson, Tobias; Frederik, Marina; Jeppson, Tamara; Kuranaga, Mebae; Nair, Nisha; Henstock, Timothy

    2017-04-01

    International Ocean Discovery Program (IODP) Expedition 362 drilled two sites, U1480 and U1481, on the Indian oceanic plate ˜250 km west of the Sunda subduction zone to a maximum depth of 1500 meters below seafloor (mbsf). One of the primary objectives was to understand the mechanism of great earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) which showed unexpectedly shallow megathrust slip by establishing the initial and evolving properties of the North Sumatran incoming sedimentary section. Core sampling and logging from the complete sedimentary section at U1480 indicates a distinct change in sedimentation rate from a slowly deposited pelagic system to a rapidly deposited submarine fan system at late Miocene. Following burial, sediments of the Nicobar Fan underwent compaction leading to porosity reduction from 66±9% near seafloor to ˜30% at the base of the sampled Nicobar Fan section (˜1250 mbsf), representing a normal consolidation behavior. Rock strength gradually increases with depth as the sediments are mechanically compacted. Below the fan (1250-1415 mbsf), the pelagic sediments are composed of tuffaceous, calcareous, and siliceous sediments/rocks and their porosity is dependent upon lithology more than upon depth. Tuffaceous materials exhibit high porosity ranging from ˜30-60%, even higher than that of overlying layers. However, porosity of most calcareous samples is lower than 20% at the same depth. The large variation in porosity depends on the degree of cementation, which in turn is controlled by grain assemblage composition and environmental conditions such as slow sedimentation rates and locally high temperatures related to igneous activity as documented by local igneous intrusives and extrusives. The minor cementation in tuffaceous sandy sediments has retained high porosity, but strengthened their skeleton so as to bear the overburden. The low porosity in calcareous rocks is considered to come from extensive cementation rather than

  4. [Clinical characteristics of pediatric victims in the Lushan and Wenchuan earthquakes and experience of medical rescue].

    PubMed

    Jiang, Xin; Xiang, Bo; Liu, Li-Jun; Liu, Min; Tang, Xue-Yang; Huang, Lu-Gang; Li, Yuan; Peng, Ming-Xing; Xin, Wen-Qiong

    2013-06-01

    To get a more comprehensive understanding of the clinical characteristics of pediatric victims in earthquake and to summarize the experience of medical rescue. The clinical information was collected from the pediatric victims who were admitted to West China Hospital, Sichuan University following the Lushan earthquake in 2013 and Wenchuan earthquake in 2008. The clinical data were compared between the pediatric victims in the two earthquakes. Thirty-four children under 14 years of age, who were injured in the Lushan earthquake, were admitted to the West China Hospital before April 30, 2013. Compared with the data in the Wenchuan earthquake, the mean age of the pediatric victims in the Lushan earthquake was significantly lower (P<0.01), and the mean time from earthquake to hospitalization was significantly shorter (P<0.01). In the Lushan earthquake, 67.6% of the injured children had variable limb fractures; traumatic brain injury was found in 29.4% of hospitalized children, versus 9.5% in the Wenchuan earthquake (P<0.05). Among the 34 children, no amputation and death occurred, and all the 13 severe cases started to recover. There were higher proportions of severely injured children and children with traumatic brain injury in the Lushan earthquake than in the Wenchuan earthquake. But these cases recovered well, which was possibly due to timely on-site rescue and transfer and multi-sector, multi-institution, and multidisciplinary cooperation.

  5. Co-located ionospheric and geomagnetic disturbances caused by great earthquakes

    NASA Astrophysics Data System (ADS)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-07-01

    Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, to generate so-called coseismic ionospheric disturbances (CIDs). In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by a combination of techniques, total electron content, HF Doppler, and ground magnetometer. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res., doi:10.1002/2015JA021035. Hao, Y. Q., et al. (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res., doi:10.1002/jgra.50326. Hao, Y. Q., et al. (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., doi:10.1029/2011JA017036.

  6. Plate-boundary deformation associated with the great Sumatra-Andaman earthquake.

    PubMed

    Subarya, Cecep; Chlieh, Mohamed; Prawirodirdjo, Linette; Avouac, Jean-Philippe; Bock, Yehuda; Sieh, Kerry; Meltzner, Aron J; Natawidjaja, Danny H; McCaffrey, Robert

    2006-03-02

    The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that approximately 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M(w) = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M(w) = 8.7 Nias-Simeulue earthquake.

  7. Protecting your family from earthquakes: The seven steps to earthquake safety

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  8. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  9. Earthquake catalog for estimation of maximum earthquake magnitude, Central and Eastern United States: Part A, Prehistoric earthquakes

    USGS Publications Warehouse

    Wheeler, Russell L.

    2014-01-01

    Computation of probabilistic earthquake hazard requires an estimate of Mmax, the maximum earthquake magnitude thought to be possible within a specified geographic region. This report is Part A of an Open-File Report that describes the construction of a global catalog of moderate to large earthquakes, from which one can estimate Mmax for most of the Central and Eastern United States and adjacent Canada. The catalog and Mmax estimates derived from it were used in the 2014 edition of the U.S. Geological Survey national seismic-hazard maps. This Part A discusses prehistoric earthquakes that occurred in eastern North America, northwestern Europe, and Australia, whereas a separate Part B deals with historical events.

  10. The initial subevent of the 1994 Northridge, California, earthquake: Is earthquake size predictable?

    USGS Publications Warehouse

    Kilb, Debi; Gomberg, J.

    1999-01-01

    We examine the initial subevent (ISE) of the M?? 6.7, 1994 Northridge, California, earthquake in order to discriminate between two end-member rupture initiation models: the 'preslip' and 'cascade' models. Final earthquake size may be predictable from an ISE's seismic signature in the preslip model but not in the cascade model. In the cascade model ISEs are simply small earthquakes that can be described as purely dynamic ruptures. In this model a large earthquake is triggered by smaller earthquakes; there is no size scaling between triggering and triggered events and a variety of stress transfer mechanisms are possible. Alternatively, in the preslip model, a large earthquake nucleates as an aseismically slipping patch in which the patch dimension grows and scales with the earthquake's ultimate size; the byproduct of this loading process is the ISE. In this model, the duration of the ISE signal scales with the ultimate size of the earthquake, suggesting that nucleation and earthquake size are determined by a more predictable, measurable, and organized process. To distinguish between these two end-member models we use short period seismograms recorded by the Southern California Seismic Network. We address questions regarding the similarity in hypocenter locations and focal mechanisms of the ISE and the mainshock. We also compare the ISE's waveform characteristics to those of small earthquakes and to the beginnings of earthquakes with a range of magnitudes. We find that the focal mechanisms of the ISE and mainshock are indistinguishable, and both events may have nucleated on and ruptured the same fault plane. These results satisfy the requirements for both models and thus do not discriminate between them. However, further tests show the ISE's waveform characteristics are similar to those of typical small earthquakes in the vicinity and more importantly, do not scale with the mainshock magnitude. These results are more consistent with the cascade model.

  11. Near-fault peak ground velocity from earthquake and laboratory data

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2007-01-01

    We test the hypothesis that peak ground velocity (PGV) has an upper bound independent of earthquake magnitude and that this bound is controlled primarily by the strength of the seismogenic crust. The highest PGVs, ranging up to several meters per second, have been measured at sites within a few kilometers of the causative faults. Because the database for near-fault PGV is small, we use earthquake slip models, laboratory experiments, and evidence from a mining-induced earthquake to investigate the factors influencing near-fault PGV and the nature of its scaling. For each earthquake slip model we have calculated the peak slip rates for all subfaults and then chosen the maximum of these rates as an estimate of twice the largest near-fault PGV. Nine slip models for eight earthquakes, with magnitudes ranging from 6.5 to 7.6, yielded maximum peak slip rates ranging from 2.3 to 12 m/sec with a median of 5.9 m/sec. By making several adjustments, PGVs for small earthquakes can be simulated from peak slip rates measured during laboratory stick-slip experiments. First, we adjust the PGV for differences in the state of stress (i.e., the difference between the laboratory loading stresses and those appropriate for faults at seismogenic depths). To do this, we multiply both the slip and the peak slip rate by the ratio of the effective normal stresses acting on fault planes measured at 6.8 km depth at the KTB site, Germany (deepest available in situ stress measurements), to those acting on the laboratory faults. We also adjust the seismic moment by replacing the laboratory fault with a buried circular shear crack whose radius is chosen to match the experimental unloading stiffness. An additional, less important adjustment is needed for experiments run in triaxial loading conditions. With these adjustments, peak slip rates for 10 stick-slip events, with scaled moment magnitudes from -2.9 to 1.0, range from 3.3 to 10.3 m/sec, with a median of 5.4 m/sec. Both the earthquake and

  12. Combining Multiple Rupture Models in Real-Time for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Wu, S.; Beck, J. L.; Heaton, T. H.

    2015-12-01

    The ShakeAlert earthquake early warning system for the west coast of the United States is designed to combine information from multiple independent earthquake analysis algorithms in order to provide the public with robust predictions of shaking intensity at each user's location before they are affected by strong shaking. The current contributing analyses come from algorithms that determine the origin time, epicenter, and magnitude of an earthquake (On-site, ElarmS, and Virtual Seismologist). A second generation of algorithms will provide seismic line source information (FinDer), as well as geodetically-constrained slip models (BEFORES, GPSlip, G-larmS, G-FAST). These new algorithms will provide more information about the spatial extent of the earthquake rupture and thus improve the quality of the resulting shaking forecasts.Each of the contributing algorithms exploits different features of the observed seismic and geodetic data, and thus each algorithm may perform differently for different data availability and earthquake source characteristics. Thus the ShakeAlert system requires a central mediator, called the Central Decision Module (CDM). The CDM acts to combine disparate earthquake source information into one unified shaking forecast. Here we will present a new design for the CDM that uses a Bayesian framework to combine earthquake reports from multiple analysis algorithms and compares them to observed shaking information in order to both assess the relative plausibility of each earthquake report and to create an improved unified shaking forecast complete with appropriate uncertainties. We will describe how these probabilistic shaking forecasts can be used to provide each user with a personalized decision-making tool that can help decide whether or not to take a protective action (such as opening fire house doors or stopping trains) based on that user's distance to the earthquake, vulnerability to shaking, false alarm tolerance, and time required to act.

  13. Study of Site Response in the Seattle and Tacoma Basins, Washington, Using Spectral Ratio Methods

    NASA Astrophysics Data System (ADS)

    Keshvardoost, R.; Wolf, L. W.

    2014-12-01

    Sedimentary basins are known to have a pronounced influence on earthquake-generated ground motions, affecting both predominant frequencies and wave amplification. These site characteristics are important elements in estimating ground shaking and seismic hazard. In this study, we use three-component broadband and strong motion seismic data from three recent earthquakes to determine site response characteristics in the Seattle and Tacoma basins, Washington. Resonant frequencies and relative amplification of ground motions were determined using Fourier spectral ratios of velocity and acceleration records from the 2012 Mw 6.1 Vancouver Island earthquake, the 2012 Mw 7.8 Queen Charlotte Island earthquake, and the 2014 Mw 6.6 Vancouver Island earthquake. Recordings from sites within and adjacent to the Seattle and Tacoma basins were selected for the study based on their signal to noise ratios. Both the Standard Spectral Ratio (SSR) and the Horizontal-to-Vertical Spectral Ratio (HVSR) methods were used in the analysis, and results from each were compared to examine their agreement and their relation to local geology. Although 57% of the sites (27 out of 48) exhibited consistent results between the two methods, other sites varied considerably. In addition, we use data from the Seattle Liquefaction Array (SLA) to evaluate the site response at 4 different depths. Results indicate that resonant frequencies remain the same at different depths but amplification decreases significantly over the top 50 m.

  14. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  15. Rupture directivity of moderate earthquakes in northern California

    USGS Publications Warehouse

    Seekins, Linda C.; Boatwright, John

    2010-01-01

    We invert peak ground velocity and acceleration (PGV and PGA) to estimate rupture direction and rupture velocity for 47 moderate earthquakes (3.5≥M≥5.4) in northern California. We correct sets of PGAs and PGVs recorded at stations less than 55–125 km, depending on source depth, for site amplification and source–receiver distance, then fit the residual peak motions to the unilateral directivity function of Ben-Menahem (1961). We independently invert PGA and PGV. The rupture direction can be determined using as few as seven peak motions if the station distribution is sufficient. The rupture velocity is unstable, however, if there are no takeoff angles within 30° of the rupture direction. Rupture velocities are generally subsonic (0.5β–0.9β); for stability, we limit the rupture velocity at v=0.92β, the Rayleigh wave speed. For 73 of 94 inversions, the rupture direction clearly identifies one of the nodal planes as the fault plane. The 35 strike-slip earthquakes have rupture directions that range from nearly horizontal (6 events) to directly updip (5 events); the other 24 rupture partly along strike and partly updip. Two strike-slip earthquakes rupture updip in one inversion and downdip in the other. All but 1 of the 11 thrust earthquakes rupture predominantly updip. We compare the rupture directions for 10 M≥4.0 earthquakes to the relative location of the mainshock and the first two weeks of aftershocks. Spatial distributions of 8 of 10 aftershock sequences agree well with the rupture directivity calculated for the mainshock.

  16. Preliminary report on crustal deformation surveys and tsunami measurements due to the July 17, 2006 Java Earthquake and Tsunami, Indonesia

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ito, T.; Abidin, H. Z.; Agustan, A.

    2006-12-01

    A large earthquake along a plate boundary occurred in the south of Java Island on July 17, 2006, whose magnitude was 7.7 (USGS) and caused significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting (e.g. Yagi, 2006). Yet, there would be a possibility of high angle faulting within the subducting lithosphere (e.g., Yamanaka, 2006). Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java Island encompassing the area from 107.8E to 109.50E. These sites were occupied once before the earthquake so that co-seismic displacements might be seen. If we assume that the slip on the fault surface is as that estimated assuming magnitude to be 7.7, co- seismic displacements would be as small as a few centimeters or less. However, the tsunami heights measurements at 11 sites that were conducted along with the GPS observation were 6-7m along the southern coast of Java Islands and indicates that the observed heights are systematically higher than that estimated from numerical simulations (e.g., Koshimura, 2006). This might suggest that fault offsets have been larger nearly double - than that estimated using seismic analysis. If this is the case, the co-seismic crustal movements might be larger than above estimation. This might lead us to an idea that the rupture was very slow and did not radiate enough seismic energy to underestimate the earthquake magnitude. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.

  17. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  18. Site correction of stochastic simulation in southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lun Huang, Cong; Wen, Kuo Liang; Huang, Jyun Yan

    2014-05-01

    Peak ground acceleration (PGA) of a disastrous earthquake, is concerned both in civil engineering and seismology study. Presently, the ground motion prediction equation is widely used for PGA estimation study by engineers. However, the local site effect is another important factor participates in strong motion prediction. For example, in 1985 the Mexico City, 400km far from the epicenter, suffered massive damage due to the seismic wave amplification from the local alluvial layers. (Anderson et al., 1986) In past studies, the use of stochastic method had been done and showed well performance on the simulation of ground-motion at rock site (Beresnev and Atkinson, 1998a ; Roumelioti and Beresnev, 2003). In this study, the site correction was conducted by the empirical transfer function compared with the rock site response from stochastic point-source (Boore, 2005) and finite-fault (Boore, 2009) methods. The error between the simulated and observed Fourier spectrum and PGA are calculated. Further we compared the estimated PGA to the result calculated from ground motion prediction equation. The earthquake data used in this study is recorded by Taiwan Strong Motion Instrumentation Program (TSMIP) from 1991 to 2012; the study area is located at south-western Taiwan. The empirical transfer function was generated by calculating the spectrum ratio between alluvial site and rock site (Borcheret, 1970). Due to the lack of reference rock site station in this area, the rock site ground motion was generated through stochastic point-source model instead. Several target events were then chosen for stochastic point-source simulating to the halfspace. Then, the empirical transfer function for each station was multiplied to the simulated halfspace response. Finally, we focused on two target events: the 1999 Chi-Chi earthquake (Mw=7.6) and the 2010 Jiashian earthquake (Mw=6.4). Considering the large event may contain with complex rupture mechanism, the asperity and delay time for each

  19. Development of optimization-based probabilistic earthquake scenarios for the city of Tehran

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Peyghaleh, E.

    2016-01-01

    This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less

  20. The relationship between earthquake exposure and posttraumatic stress disorder in 2013 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Lu, Yi

    2018-01-01

    The objective of this study is to explore the relationship between earthquake exposure and the incidence of PTSD. A stratification random sample survey was conducted to collect data in the Longmenshan thrust fault after Lushan earthquake three years. We used the Children's Revised Impact of Event Scale (CRIES-13) and the Earthquake Experience Scale. Subjects in this study included 3944 school student survivors in local eleven schools. The prevalence of probable PTSD is relatively higher, when the people was trapped in the earthquake, was injured in the earthquake or have relatives who died in the earthquake. It concluded that researchers need to pay more attention to the children and adolescents. The government should pay more attention to these people and provide more economic support.

  1. Earthquake Early Warning: Real-time Testing of an On-site Method Using Waveform Data from the Southern California Seismic Network

    NASA Astrophysics Data System (ADS)

    Solanki, K.; Hauksson, E.; Kanamori, H.; Wu, Y.; Heaton, T.; Boese, M.

    2007-12-01

    We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the

  2. Three-dimensional ground-motion simulations of earthquakes for the Hanford area, Washington

    USGS Publications Warehouse

    Frankel, Arthur; Thorne, Paul; Rohay, Alan

    2014-01-01

    This report describes the results of ground-motion simulations of earthquakes using three-dimensional (3D) and one-dimensional (1D) crustal models conducted for the probabilistic seismic hazard assessment (PSHA) of the Hanford facility, Washington, under the Senior Seismic Hazard Analysis Committee (SSHAC) guidelines. The first portion of this report demonstrates that the 3D seismic velocity model for the area produces synthetic seismograms with characteristics (spectral response values, duration) that better match those of the observed recordings of local earthquakes, compared to a 1D model with horizontal layers. The second part of the report compares the response spectra of synthetics from 3D and 1D models for moment magnitude (M) 6.6–6.8 earthquakes on three nearby faults and for a dipping plane wave source meant to approximate regional S-waves from a Cascadia great earthquake. The 1D models are specific to each site used for the PSHA. The use of the 3D model produces spectral response accelerations at periods of 0.5–2.0 seconds as much as a factor of 4.5 greater than those from the 1D models for the crustal fault sources. The spectral accelerations of the 3D synthetics for the Cascadia plane-wave source are as much as a factor of 9 greater than those from the 1D models. The differences between the spectral accelerations for the 3D and 1D models are most pronounced for sites with thicker supra-basalt sediments and for stations with earthquakes on the Rattlesnake Hills fault and for the Cascadia plane-wave source.

  3. Crowdsourced earthquake early warning.

    PubMed

    Minson, Sarah E; Brooks, Benjamin A; Glennie, Craig L; Murray, Jessica R; Langbein, John O; Owen, Susan E; Heaton, Thomas H; Iannucci, Robert A; Hauser, Darren L

    2015-04-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an M w (moment magnitude) 7 earthquake on California's Hayward fault, and real data from the M w 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  4. Crowdsourced earthquake early warning

    PubMed Central

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing. PMID:26601167

  5. Earthquakes, November-December 1992

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    There were two major earthquakes (7.0≤M<8.0) during the last two months of the year, a magntidue 7.5 earthquake on December 12 in the Flores region, Indonesia, and a magnitude 7.0 earthquake on December 20 in the Banda Sea. Earthquakes caused fatalities in China and Indonesia. The greatest number of deaths (2,500) for the year occurred in Indonesia. In Switzerland, six people were killed by an accidental explosion recoreded by seismographs. In teh United States, a magnitude 5.3 earthquake caused slight damage at Big Bear in southern California. 

  6. Crowdsourced earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Brooks, Benjamin A.; Glennie, Craig L.; Murray, Jessica R.; Langbein, John O.; Owen, Susan E.; Heaton, Thomas H.; Iannucci, Robert A.; Hauser, Darren L.

    2015-01-01

    Earthquake early warning (EEW) can reduce harm to people and infrastructure from earthquakes and tsunamis, but it has not been implemented in most high earthquake-risk regions because of prohibitive cost. Common consumer devices such as smartphones contain low-cost versions of the sensors used in EEW. Although less accurate than scientific-grade instruments, these sensors are globally ubiquitous. Through controlled tests of consumer devices, simulation of an Mw (moment magnitude) 7 earthquake on California’s Hayward fault, and real data from the Mw 9 Tohoku-oki earthquake, we demonstrate that EEW could be achieved via crowdsourcing.

  7. Aftershocks of the India Republic Day Earthquake: the MAEC/ISTAR Temporary Seismograph Network

    NASA Astrophysics Data System (ADS)

    Bodin, P.; Horton, S.; Johnston, A.; Patterson, G.; Bollwerk, J.; Rydelek, P.; Steiner, G.; McGoldrick, C.; Budhbhatti, K. P.; Shah, R.; Macwan, N.

    2001-05-01

    The MW=7.7 Republic Day (26 January, 2001) earthquake on the Kachchh in western India initiated a strong sequence of small aftershocks. Seventeen days following the mainshock, we deployed a network of portable digital event recorders as a cooperative project of the Mid America Earthquake Center in the US and the Institute for Scientific and Technological Advanced Research. Our network consisted of 8 event-triggered Kinemetrics K2 seismographs with 6 data channels (3 accelerometer, 3 Mark L-28/3d seismometer) sampled at 200 Hz, and one continuously-recording Guralp CMG40TD broad-band seismometer sampled at 220 Hz. This network was in place for 18 days. Underlying our network deployment was the notion that because of its tectonic and geologic setting the Republic Day earthquake and its aftershocks might have source and/or propagation characteristics common to earthquakes in stable continental plate-interiors rather than those on plate boundaries or within continental mobile belts. Thus, our goals were to provide data that could be used to compare the Republic Day earthquake with other earthquakes. In particular, the objectives of our network deployment were: (1) to characterize the spatial distribution and occurrence rates of aftershocks, (2) to examine source characteristics of the aftershocks (stress-drops, focal mechanisms), (3) to study the effect of deep unconsolidated sediment on wave propagation, and (4) to determine if other faults (notably the Allah Bundh) were simultaneously active. Most of our sites were on Jurassic bedrock, and all were either free-field, or on the floor of light structures built on rock or with a thin soil cover. However, one of our stations was on a section of unconsolidated sediments hundreds of meters thick adjacent to a site that was subjected to shaking-induced sediment liquefaction during the mainshock. The largest aftershock reported by global networks was an MW=5.9 event on January 28, prior to our deployment. The largest

  8. Earthquake Clusters and Spatio-temporal Migration of earthquakes in Northeastern Tibetan Plateau: a Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Luo, G.

    2017-12-01

    Seismicity in a region is usually characterized by earthquake clusters and earthquake migration along its major fault zones. However, we do not fully understand why and how earthquake clusters and spatio-temporal migration of earthquakes occur. The northeastern Tibetan Plateau is a good example for us to investigate these problems. In this study, we construct and use a three-dimensional viscoelastoplastic finite-element model to simulate earthquake cycles and spatio-temporal migration of earthquakes along major fault zones in northeastern Tibetan Plateau. We calculate stress evolution and fault interactions, and explore effects of topographic loading and viscosity of middle-lower crust and upper mantle on model results. Model results show that earthquakes and fault interactions increase Coulomb stress on the neighboring faults or segments, accelerating the future earthquakes in this region. Thus, earthquakes occur sequentially in a short time, leading to regional earthquake clusters. Through long-term evolution, stresses on some seismogenic faults, which are far apart, may almost simultaneously reach the critical state of fault failure, probably also leading to regional earthquake clusters and earthquake migration. Based on our model synthetic seismic catalog and paleoseismic data, we analyze probability of earthquake migration between major faults in northeastern Tibetan Plateau. We find that following the 1920 M 8.5 Haiyuan earthquake and the 1927 M 8.0 Gulang earthquake, the next big event (M≥7) in northeastern Tibetan Plateau would be most likely to occur on the Haiyuan fault.

  9. Prototype operational earthquake prediction system

    USGS Publications Warehouse

    Spall, Henry

    1986-01-01

    An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.

  10. Geotechnical aspects of the January 2003 Tecoma'n, Mexico, earthquake

    USGS Publications Warehouse

    Wartman, Joseph; Rodriguez-Marek, Adrian; Macari, Emir J.; Deaton, Scott; Ramirez-Reynaga, Marti'n; Ochoa, Carlos N.; Callan, Sean; Keefer, David; Repetto, Pedro; Ovando-Shelley, Efrai'n

    2005-01-01

    Ground failure was the most prominent geotechnical engineering feature of the 21 January 2003 Mw 7.6 Tecoma´n earthquake. Ground failure impacted structures, industrial facilities, roads, water supply canals, and other critical infrastructure in the state of Colima and in parts of the neighboring states of Jalisco and Michoaca´n. Landslides and soil liquefaction were the most common type of ground failure, followed by seismic compression of unsaturated materials. Reinforced earth structures generally performed well during the earthquake, though some structures experienced permanent lateral deformations up to 10 cm. Different ground improvement techniques had been used to enhance the liquefaction resistance of several sites in the region, all of which performed well and exhibited no signs of damage or significant ground deformation. Earth dams in the region experienced some degree of permanent deformation but remained fully functional after the earthquake.

  11. Collapse and Earthquake Swarm after North Korea's 3 September 2017 Nuclear Test

    NASA Astrophysics Data System (ADS)

    Tian, D.; Yao, J.; Wen, L.

    2017-12-01

    North Korea's 3 September 2017 nuclear test was followed by a series of small seismic events, with the first one occurring about eight-and-a-half minutes after the nuclear test, two on 23 September 2017, and one on 12 October 2017. While the characteristics of these seismic events would carry crucial information about current geological state and environmental condition of the nuclear test site and help evaluate the geological and environmental safety of the test site should any future tests be performed there, the precise locations and nature of these seismic events are unknown. In this study, we collect all available seismic waveforms of these five seismic events from China Earthquake Networks Center, F-net, Hi-net, Global Seismographic Network, Japan Meteorological Agency Seismic Network, and Korea National Seismograph Network. We are able to find high-quality seismic data that constitute good azimuth coverage for high-precision determination of their relative locations and detailed analysis of their source characteristics. Our study reveals that the seismic event eight-and-a-half minutes after the nuclear test is an onsite collapse toward the nuclear test center, while the later events are an earthquake swarm occurring in similar locations. The onsite collapse calls for continued close monitoring of any leaks of radioactive materials from the nuclear test site. The occurrence of the collapse should deem the underground infrastructure beneath mountain Mantap not be used for any future nuclear tests. Given the history of the nuclear tests North Korea performed beneath this mountain, a nuclear test of a similar yield would produce collapses in an even larger scale creating an environmental catastrophe. The triggered earthquake swarm indicates that North Korea's past tests have altered the tectonic stress in the region to the extent that previously inactive tectonic faults in the region have reached their state of critical failure. Any further disturbance from a

  12. Hereditary Angioedema Attacks: Local Swelling at Multiple Sites.

    PubMed

    Hofman, Zonne L M; Relan, Anurag; Hack, C Erik

    2016-02-01

    Hereditary angioedema (HAE) patients experience recurrent local swelling in various parts of the body including painful swelling of the intestine and life-threatening laryngeal oedema. Most HAE literature is about attacks located in one anatomical site, though it is mentioned that HAE attacks may also involve multiple anatomical sites simultaneously. A detailed description of such multi-location attacks is currently lacking. This study investigated the occurrence, severity and clinical course of HAE attacks with multiple anatomical locations. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. Visual analog scale scores filled out by the patients for various symptoms at various locations and investigator symptoms scores during the attack were analysed. Data of 219 eligible attacks in 119 patients was analysed. Thirty-three patients (28%) had symptoms at multiple locations in anatomically unrelated regions at the same time during their first attack. Up to five simultaneously affected locations were reported. The observation that severe HAE attacks often affect multiple sites in the body suggests that HAE symptoms result from a systemic rather than from a local process as is currently believed.

  13. Perception of earthquake risk in Taiwan: effects of gender and past earthquake experience.

    PubMed

    Kung, Yi-Wen; Chen, Sue-Huei

    2012-09-01

    This study explored how individuals in Taiwan perceive the risk of earthquake and the relationship of past earthquake experience and gender to risk perception. Participants (n= 1,405), including earthquake survivors and those in the general population without prior direct earthquake exposure, were selected and interviewed through a computer-assisted telephone interviewing procedure using a random sampling and stratification method covering all 24 regions of Taiwan. A factor analysis of the interview data yielded a two-factor structure of risk perception in regard to earthquake. The first factor, "personal impact," encompassed perception of threat and fear related to earthquakes. The second factor, "controllability," encompassed a sense of efficacy of self-protection in regard to earthquakes. The findings indicated prior earthquake survivors and females reported higher scores on the personal impact factor than males and those with no prior direct earthquake experience, although there were no group differences on the controllability factor. The findings support that risk perception has multiple components, and suggest that past experience (survivor status) and gender (female) affect the perception of risk. Exploration of potential contributions of other demographic factors such as age, education, and marital status to personal impact, especially for females and survivors, is discussed. Future research on and intervention program with regard to risk perception are suggested accordingly. © 2012 Society for Risk Analysis.

  14. The Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) Internship Program

    NASA Astrophysics Data System (ADS)

    Perry, S.; Jordan, T.

    2006-12-01

    Our undergraduate research program, SCEC/UseIT, an NSF Research Experience for Undergraduates site, provides software for earthquake researchers and educators, movies for outreach, and ways to strengthen the technical career pipeline. SCEC/UseIT motivates diverse undergraduates towards science and engineering careers through team-based research in the exciting field of earthquake information technology. UseIT provides the cross-training in computer science/information technology (CS/IT) and geoscience needed to make fundamental progress in earthquake system science. Our high and increasing participation of women and minority students is crucial given the nation"s precipitous enrollment declines in CS/IT undergraduate degree programs, especially among women. UseIT also casts a "wider, farther" recruitment net that targets scholars interested in creative work but not traditionally attracted to summer science internships. Since 2002, SCEC/UseIT has challenged 79 students in three dozen majors from as many schools with difficult, real-world problems that require collaborative, interdisciplinary solutions. Interns design and engineer open-source software, creating increasingly sophisticated visualization tools (see "SCEC-VDO," session IN11), which are employed by SCEC researchers, in new curricula at the University of Southern California, and by outreach specialists who make animated movies for the public and the media. SCEC-VDO would be a valuable tool for research-oriented professional development programs.

  15. International Collaboration for Strengthening Capacity to Assess Earthquake Hazard in Indonesia

    NASA Astrophysics Data System (ADS)

    Cummins, P. R.; Hidayati, S.; Suhardjono, S.; Meilano, I.; Natawidjaja, D.

    2012-12-01

    Indonesia has experienced a dramatic increase in earthquake risk due to rapid population growth in the 20th century, much of it occurring in areas near the subduction zone plate boundaries that are prone to earthquake occurrence. While recent seismic hazard assessments have resulted in better building codes that can inform safer building practices, many of the fundamental parameters controlling earthquake occurrence and ground shaking - e.g., fault slip rates, earthquake scaling relations, ground motion prediction equations, and site response - could still be better constrained. In recognition of the need to improve the level of information on which seismic hazard assessments are based, the Australian Agency for International Development (AusAID) and Indonesia's National Agency for Disaster Management (BNPB), through the Australia-Indonesia Facility for Disaster Reduction, have initiated a 4-year project designed to strengthen the Government of Indonesia's capacity to reliably assess earthquake hazard. This project is a collaboration of Australian institutions including Geoscience Australia and the Australian National University, with Indonesian government agencies and universities including the Agency for Meteorology, Climatology and Geophysics, the Geological Agency, the Indonesian Institute of Sciences, and Bandung Institute of Technology. Effective earthquake hazard assessment requires input from many different types of research, ranging from geological studies of active faults, seismological studies of crustal structure, earthquake sources and ground motion, PSHA methodology, and geodetic studies of crustal strain rates. The project is a large and diverse one that spans all these components, and these will be briefly reviewed in this presentation

  16. Earthquakes in Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Plafker, George

    1995-01-01

    Earthquake risk is high in much of the southern half of Alaska, but it is not the same everywhere. This map shows the overall geologic setting in Alaska that produces earthquakes. The Pacific plate (darker blue) is sliding northwestward past southeastern Alaska and then dives beneath the North American plate (light blue, green, and brown) in southern Alaska, the Alaska Peninsula, and the Aleutian Islands. Most earthquakes are produced where these two plates come into contact and slide past each other. Major earthquakes also occur throughout much of interior Alaska as a result of collision of a piece of crust with the southern margin.

  17. Investigation of anatomical anomalies in Hanford Site mule deer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiller, B.L.; Cadwell, L.L.; Poston, T.M.

    Rocky Mountain mule deer (Odocoileus hemionus hemionus), common residents of the Hanford Site, are an important part of the shrub-steppe ecosystem as well as being valued for aesthetics and hunting. Because mule deer have been protected from hunting on the Site for 50 years, the herd has developed unique population characteristics, including a large number of old animals and males with either large or atypically developed antlers, in contrast to other herds in the semi-arid regions of the Northwest. Hanford Site mule deer have been studied since 1991 because of the herd`s unique nature and high degree of public interest.more » A special study of the mule deer herd was initiated in 1993 after observations were made of a relatively large number of male deer with atypical, velvet-covered antlers. This report specifically describes our analyses of adult male deer found on the Site with atypical antlers. The report includes estimates of population densities and composition; home ranges, habitat uses, and dietary habits; natural and human-induced causes of mortality; and the herd`s overall health and reproductive status.« less

  18. Strain buildup and release, earthquake prediction and selection of VBL sites for margins of the north Pacific

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Bilham, R.; Johnson, T. L.

    1981-01-01

    During the past year, the grant supported research on several aspects of crustal deformation. The relation between earthquake displacements and fault dimensions was studied in an effort to find scaling laws that relate static parameters such as slip and stress drop to the dimensions of the rupture. Several implications of the static relations for the dynamic properties of earthquakes such as rupture velocity and dynamic stress drop were proposed. A theoretical basis for earthquake related phenomena associated with slow rupture growth or propagation, such as delayed multiple events, was developed using the stress intensity factor defined in fracture mechanics and experimental evidence from studies of crack growth by stress corrosion. Finally, extensive studies by Japanese geologists have established the offset across numerous faults in Japan over the last one hundred thousand years. These observations of intraplate faulting are being used to establish the spatial variations of the average strain rate of subregions in southern Japan.

  19. The Development of Several Electromagnetic Monitoring Strategies and Algorithms for Validating Pre-Earthquake Electromagnetic Signals

    NASA Astrophysics Data System (ADS)

    Bleier, T. E.; Dunson, J. C.; Roth, S.; Mueller, S.; Lindholm, C.; Heraud, J. A.

    2012-12-01

    QuakeFinder, a private research group in California, reports on the development of a 100+ station network consisting of 3-axis induction magnetometers, and air conductivity sensors to collect and characterize pre-seismic electromagnetic (EM) signals. These signals are combined with daily Infra Red signals collected from the GOES weather satellite infrared (IR) instrument to compare and correlate with the ground EM signals, both from actual earthquakes and boulder stressing experiments. This presentation describes the efforts QuakeFinder has undertaken to automatically detect these pulse patterns using their historical data as a reference, and to develop other discriminative algorithms that can be used with air conductivity sensors, and IR instruments from the GOES satellites. The overall big picture results of the QuakeFinder experiment are presented. In 2007, QuakeFinder discovered the occurrence of strong uni-polar pulses in their magnetometer coil data that increased in tempo dramatically prior to the M5.1 earthquake at Alum Rock, California. Suggestions that these pulses might have been lightning or power-line arcing did not fit with the data actually recorded as was reported in Bleier [2009]. Then a second earthquake occurred near the same site on January 7, 2010 as was reported in Dunson [2011], and the pattern of pulse count increases before the earthquake occurred similarly to the 2007 event. There were fewer pulses, and the magnitude of them was decreased, both consistent with the fact that the earthquake was smaller (M4.0 vs M5.4) and farther away (7Km vs 2km). At the same time similar effects were observed at the QuakeFinder Tacna, Peru site before the May 5th, 2010 M6.2 earthquake and a cluster of several M4-5 earthquakes.

  20. Earthquakes, November-December 1973

    USGS Publications Warehouse

    Person, W.J.

    1974-01-01

    Other parts of the world suffered fatalities and significant damage from earthquakes. In Iran, an earthquake killed one person, injured many, and destroyed a number of homes. Earthquake fatalities also occurred in the Azores and in Algeria. 

  1. Earthquake Loading Assessment to Evaluate Liquefaction Potential in Emilia-Romagna Region

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Marcellini, A.; Tento, A.

    2016-12-01

    The May-June 2012 seismic sequence that struck Lombardia and Emilia-Romagna consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8). The widespread soil liquefaction, unexpected because of the moderate magnitude of the events, pushed the local authorities to issue research projects aimed to define the earthquake loading to evaluate the liquefaction safety factor. The reasons explained below led us to adopt a deterministic hazard approach to evaluate the seismic parameters relevant to liquefaction assessment, despite the fact that the Italian Seismic Building Code (NTC08) is based on probabilistic hazard analysis. For urban planning and building design geologists generally adopt the CRR/CSR technique to assess liquefaction potential; therefore we considered PGA and a design magnitude to be representative of the seismic loading. The procedure adopted consists: a) identification of seismic source zones and characterization of each zone by the maximum magnitude; b) evaluation of the source to site distance and c) adoption of a suitable attenuation law to compute the expected PGA at the site, given the site condition and the design magnitude. The design magnitude can be: the maximum magnitude; the magnitude that causes the largest PGA, or both. The PGA values obtained are larger with respect to the 474 years return period PGA prescribed by NTC08 for the seismic design for ordinary buildings. We conducted a CPTU resistance test intended to define the CRR at the village of Cavezzo, situated in the epicentral area of the 2012 earthquake. The CRR/CSR ratio led to an elevated liquefaction risk at the analysed site. On the contrary the adoption of the 474 years return period PGA of the NTCO8 prescribed for Cavezzo site led to a negligible liquefaction risk. Note that very close to the investigated site several liquefaction phenomena were observed.

  2. Earthquake Loading Assessment to Evaluate Liquefaction Potential in Emilia-Romagna Region

    NASA Astrophysics Data System (ADS)

    Daminelli, Rosastella; Marcellini, Alberto; Tento, Alberto

    2017-04-01

    The May-June 2012 seismic sequence that struck Lombardia and Emilia-Romagna consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8). The widespread soil liquefaction, unexpected because of the moderate magnitude of the events, pushed the local authorities to issue research projects aimed to define the earthquake loading to evaluate the liquefaction safety factor. The reasons explained below led us to adopt a deterministic hazard approach to evaluate the seismic parameters relevant to liquefaction assessment, despite the fact that the Italian Seismic Building Code (NTC08) is based on probabilistic hazard analysis. For urban planning and building design geologists generally adopt the CRR/CSR technique to assess liquefaction potential; therefore we considered PGA and a design magnitude to be representative of the seismic loading. The procedure adopted consists: a) identification of seismic source zones and characterization of each zone by the maximum magnitude; b) evaluation of the source to site distance and c) adoption of a suitable attenuation law to compute the expected PGA at the site, given the site condition and the design magnitude. The design magnitude can be: the maximum magnitude; the magnitude that causes the largest PGA, or both. The PGA values obtained are larger with respect to the 474 years return period PGA prescribed by NTC08 for the seismic design for ordinary buildings. We conducted a CPTU resistance test intended to define the CRR at the village of Cavezzo, situated in the epicentral area of the 2012 earthquake. The CRR/CSR ratio led to an elevated liquefaction risk at the analysed site. On the contrary the adoption of the 474 years return period PGA of the NTCO8 prescribed for Cavezzo site led to a negligible liquefaction risk. Note that very close to the investigated site several liquefaction phenomena were observed.

  3. Earthquake-by-earthquake fold growth above the Puente Hills blind thrust fault, Los Angeles, California: Implications for fold kinematics and seismic hazard

    USGS Publications Warehouse

    Leon, L.A.; Christofferson, S.A.; Dolan, J.F.; Shaw, J.H.; Pratt, T.L.

    2007-01-01

    Boreholes and high-resolution seismic reflection data collected across the forelimb growth triangle above the central segment of the Puente Hills thrust fault (PHT) beneath Los Angeles, California, provide a detailed record of incremental fold growth during large earthquakes on this major blind thrust fault. These data document fold growth within a discrete kink band that narrows upward from ???460 m at the base of the Quaternary section (200-250 m depth) to 82% at 250 m depth) folding and uplift occur within discrete kink bands, thereby enabling us to develop a paleoseismic history of the underlying blind thrust fault. The borehole data reveal that the youngest part of the growth triangle in the uppermost 20 m comprises three stratigraphically discrete growth intervals marked by southward thickening sedimentary strata that are separated by intervals in which sediments do not change thickness across the site. We interpret the intervals of growth as occurring after the formation of now-buried paleofold scarps during three large PHT earthquakes in the past 8 kyr. The intervening intervals of no growth record periods of structural quiescence and deposition at the regional, near-horizontal stream gradient at the study site. Minimum uplift in each of the scarp-forming events, which occurred at 0.2-2.2 ka (event Y), 3.0-6.3 ka (event X), and 6.6-8.1 ka (event W), ranged from ???1.1 to ???1.6 m, indicating minimum thrust displacements of ???2.5 to 4.5 m. Such large displacements are consistent with the occurrence of large-magnitude earthquakes (Mw > 7). Cumulative, minimum uplift in the past three events was 3.3 to 4.7 m, suggesting cumulative thrust displacement of ???7 to 10.5 m. These values yield a minimum Holocene slip rate for the PHT of ???0.9 to 1.6 mm/yr. The borehole and seismic reflection data demonstrate that dip within the kink band is acquired incrementally, such that older strata that have been deformed by more earthquakes dip more steeply than younger

  4. Surface seismic measurements of near-surface P-and S-wave seismic velocities at earthquake recording stations, Seattle, Washington

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Odum, J.K.

    1999-01-01

    We measured P-and S-wave seismic velocities to about 40-m depth using seismic-refraction/reflection data on the ground surface at 13 sites in the Seattle, Washington, urban area, where portable digital seismographs recently recorded earthquakes. Sites with the lowest measured Vs correlate with highest ground motion amplification. These sites, such as at Harbor Island and in the Duwamish River industrial area (DRIA) south of the Kingdome, have an average Vs in the upper 30 m (V??s30) of 150 to 170 m/s. These values of V??s30 place these sites in soil profile type E (V??s30 < 180 m/s). A "rock" site, located at Seward Park on Tertiary sedimentary deposits, has a V??S30 of 433 m/s, which is soil type C (V??s30: 360 to 760 m/s). The Seward Park site V??s30 is about equal to, or up to 200 m/s slower than sites that were located on till or glacial outwash. High-amplitude P-and S-wave seismic reflections at several locations appear to correspond to strong resonances observed in earthquake spectra. An S-wave reflector at the Kingdome at about 17 to 22 m depth probably causes strong 2-Hz resonance that is observed in the earthquake data near the Kingdome.

  5. Estimating earthquake location and magnitude from seismic intensity data

    USGS Publications Warehouse

    Bakun, W.H.; Wentworth, C.M.

    1997-01-01

    Analysis of Modified Mercalli intensity (MMI) observations for a training set of 22 California earthquakes suggests a strategy for bounding the epicentral region and moment magnitude M from MMI observations only. We define an intensity magnitude MI that is calibrated to be equal in the mean to M. MI = mean (Mi), where Mi = (MMIi + 3.29 + 0.0206 * ??i)/1.68 and ??i is the epicentral distance (km) of observation MMIi. The epicentral region is bounded by contours of rms [MI] = rms (MI - Mi) - rms0 (MI - Mi-), where rms is the root mean square, rms0 (MI - Mi) is the minimum rms over a grid of assumed epicenters, and empirical site corrections and a distance weighting function are used. Empirical contour values for bounding the epicenter location and empirical bounds for M estimated from MI appropriate for different levels of confidence and different quantities of intensity observations are tabulated. The epicentral region bounds and MI obtained for an independent test set of western California earthquakes are consistent with the instrumental epicenters and moment magnitudes of these earthquakes. The analysis strategy is particularly appropriate for the evaluation of pre-1900 earthquakes for which the only available data are a sparse set of intensity observations.

  6. Assessment of liquefaction potential during earthquakes by arias intensity

    USGS Publications Warehouse

    Kayen, R.E.; Mitchell, J.K.

    1997-01-01

    An Arias intensity approach to assess the liquefaction potential of soil deposits during earthquakes is proposed, using an energy-based measure of the severity of earthquake-shaking recorded on seismograms of the two horizontal components of ground motion. Values representing the severity of strong motion at depth in the soil column are associated with the liquefaction resistance of that layer, as measured by in situ penetration testing (SPT, CPT). This association results in a magnitude-independent boundary that envelopes initial liquefaction of soil in Arias intensity-normalized penetration resistance space. The Arias intensity approach is simple to apply and has proven to be highly reliable in assessing liquefaction potential. The advantages of using Arias intensity as a measure of earthquake-shaking severity in liquefaction assessment are: Arias intensity is derived from integration of the entire seismogram wave form, incorporating both the amplitude and duration elements of ground motion; all frequencies of recorded motion are considered; and Arias intensity is an appropriate measure to use when evaluating field penetration test methodologies that are inherently energy-based. Predictor equations describing the attenuation of Arias intensity as a function of earthquake magnitude and source distance are presented for rock, deep-stiff alluvium, and soft soil sites.

  7. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  8. Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes

    USGS Publications Warehouse

    Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas

    2015-01-01

    Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.

  9. VS30, site amplifications and some comparisons: The Adapazari (Turkey) case

    NASA Astrophysics Data System (ADS)

    Ozcep, Tazegul; Ozcep, Ferhat; Ozel, Oguz

    The aim of this study was to investigate the role of VS30 in site amplifications in the Adapazari region, Turkey. To fulfil this aim, amplifications from VS30 measurements were compared with earthquake data for different soil types in the seismic design codes. The Adapazari area was selected as the study area, and shear-wave velocity distribution was obtained by the multichannel analysis of surface waves (MASWs) method at 100 sites for the top 50 m of soil. Aftershock data following the Mw 7.4 Izmit earthquake of 17 August 1999 gave magnitudes between 4.0 and 5.6 at six stations installed in and around the Adapazari Basin, at Babalı, Şeker, Genç, Hastane, Toyota and Imar. This data was used to estimate site amplifications by the reference-station method. In addition, the fundamental periods of the station sites were estimated by the single station method. Site classifications based on VS30 in the seismic design codes were compared with the fundamental periods and amplification values. It was found that site amplifications (from earthquake data) and relevant spectra (from VS30) are not in good agreement for soils in Adapazari (Turkey).

  10. Pharmacokinetics of antiretroviral drugs in anatomical sanctuary sites: the male and female genital tract.

    PubMed

    Else, Laura J; Taylor, Stephen; Back, David J; Khoo, Saye H

    2011-01-01

    HIV resides within anatomical 'sanctuary sites', where local drug exposure and viral dynamics may differ significantly from the systemic compartment. Suboptimal antiretroviral concentrations in the genital tract may result in compartmentalized viral replication, selection of resistant mutations and possible re-entry of wild-type/resistant virus into the systemic circulation. Therefore, achieving adequate antiretroviral exposure in the genital tract has implications for the prevention of sexual and vertical transmission of HIV. Penetration of antiretrovirals in the genital tract is expressed by accumulation ratios derived from the measurement of drug concentrations in time-matched seminal plasma/cervicovaginal fluid and plasma samples. Penetration varies by gender and may be drug (as opposed to class) specific with high interindividual variability. Concentrations in seminal plasma are highest for nucleoside analogues and lowest for protease inhibitors and efavirenz. Seminal accumulation of newer agents, raltegravir and maraviroc, is moderate (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitors [lamivudine/zidovudine/tenofovir/didanosine > stavudine/abacavir] > raltegravir > indinavir/maraviroc/nevirapine > efavirenz/protease inhibitors [amprenavir/atazanavir/darunavir > lopinavir/ritonavir > saquinavir] > enfuvirtide). In the female genital tract, the nucleoside analogues exhibit high accumulation ratios, whereas protease inhibitors have limited penetration; however, substantial variability exists between individuals and study centres. Second generation non-nucleoside reverse transcriptase inhibitor etravirine, and maraviroc and raltegravir, demonstrate effective accumulation in cervicovaginal secretions (rank order of accumulation is nucleoside/nucleotide reverse transcriptase inhibitor [zidovudine/lamivudine/didanosine > emtricitabine/tenofovir] > indinavir > maraviroc/raltegravir/darunavir/etravirine > nevirapine

  11. Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama Earthquake (Mj 5.5).

    PubMed

    Goto, Mikako; Yasuoka, Yumi; Nagahama, Hiroyuki; Muto, Jun; Omori, Yasutaka; Ihara, Hayato; Mukai, Takahiro

    2017-04-28

    A significant increase in atmospheric radon concentration was observed in the area around the epicentre before and after the occurrence of the shallow inland earthquake in the northern Wakayama Prefecture on 5 July 2011 (Mj 5.5, depth 7 km) in Japan. The seismic activity in the sampling site was evaluated to identify that this earthquake was the largest near the sampling site during the observation period. To determine whether this was an anomalous change, the atmospheric daily minimum radon concentration measured for a 13-year period was analysed. When the residual radon concentration values without the seasonal radon variation and the linear trend was > 3 standard deviations of the residual radon variation corresponding to the normal period, the values were deemed as anomalous. As a result, an anomalous increase in radon concentration was determined before and after the earthquake. In conclusion, anomalous change related to earthquakes with at least Mj 5.5 can be detected by monitoring atmospheric radon near the epicentre. © The Author 2016. Published by Oxford University Press.

  12. Limitation and applicability of microtremor records for site-response estimation

    NASA Astrophysics Data System (ADS)

    Song, G.; Kang, T.; Park, S.

    2010-12-01

    Site effects are the modifications of seismic motions which are traveling through near-surface materials. The impedance contrast between the topmost layer and bedrock may significantly amplify ground motions and augment their durations. Inelastic behavior of the geological media such as highly fractured/weathered rocks and unconsolidated sediments may absorb seismic energy, and thus damp the resulting ground motions. It is inherently most desirable to evaluate the site effects using seismic records from large earthquakes. If there are only small events that will be recorded by several seismograph stations, it becomes difficult to evaluate site effects using earthquake data. Recently a number of studies pay attention to microtremor records to assess site effects. The main reason of such efforts is that measurements are relatively easy regardless of site condition and cost-effective without necessity of waiting for earthquakes or of using active sources. Especially microtremor measurements are exclusively a useful option to assess site effects, and thus seismic microzonation, in the urban area and/or region of low to moderate seismicity. Spectral ratios of horizontal components to vertical component (HVSR) of microtremor records have been popular for estimation of site resonant frequency. Although some studies have shown that the amplitude of spectral ratios is an indicator of site amplification relative to bedrock motion, there are still debates on it. This discrepancy may originate from the deficiency of our understanding on the nature of microtremor. Therefore, it is important to understand the limitation and applicability of microtremor records for site-effect assessments. The focus on this problem is how microtremor responses on the subsurface structures and their physical properties, and how parameters deduced from microtremor analyses are related to site responses during earthquake ground motions. In order to investigate how these issues have a practical

  13. Comparative study of earthquake-related and non-earthquake-related head traumas using multidetector computed tomography

    PubMed Central

    Chu, Zhi-gang; Yang, Zhi-gang; Dong, Zhi-hui; Chen, Tian-wu; Zhu, Zhi-yu; Shao, Heng

    2011-01-01

    OBJECTIVE: The features of earthquake-related head injuries may be different from those of injuries obtained in daily life because of differences in circumstances. We aim to compare the features of head traumas caused by the Sichuan earthquake with those of other common head traumas using multidetector computed tomography. METHODS: In total, 221 patients with earthquake-related head traumas (the earthquake group) and 221 patients with other common head traumas (the non-earthquake group) were enrolled in our study, and their computed tomographic findings were compared. We focused the differences between fractures and intracranial injuries and the relationships between extracranial and intracranial injuries. RESULTS: More earthquake-related cases had only extracranial soft tissue injuries (50.7% vs. 26.2%, RR = 1.9), and fewer cases had intracranial injuries (17.2% vs. 50.7%, RR = 0.3) compared with the non-earthquake group. For patients with fractures and intracranial injuries, there were fewer cases with craniocerebral injuries in the earthquake group (60.6% vs. 77.9%, RR = 0.8), and the earthquake-injured patients had fewer fractures and intracranial injuries overall (1.5±0.9 vs. 2.5±1.8; 1.3±0.5 vs. 2.1±1.1). Compared with the non-earthquake group, the incidences of soft tissue injuries and cranial fractures combined with intracranial injuries in the earthquake group were significantly lower (9.8% vs. 43.7%, RR = 0.2; 35.1% vs. 82.2%, RR = 0.4). CONCLUSION: As depicted with computed tomography, the severity of earthquake-related head traumas in survivors was milder, and isolated extracranial injuries were more common in earthquake-related head traumas than in non-earthquake-related injuries, which may have been the result of different injury causes, mechanisms and settings. PMID:22012045

  14. Earthquakes, May-June 1991

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    In the United States, a magnitude 5.8 earthquake in southern California on June 28 killed two people and caused considerable damage. Strong earthquakes hit Alaska on May 1 and May 30; the May 1 earthquake caused some minor damage. 

  15. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

  16. Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models

    USGS Publications Warehouse

    Lin, Ting; Harmsen, Stephen C.; Baker, Jack W.; Luco, Nicolas

    2013-01-01

    The conditional spectrum (CS) is a target spectrum (with conditional mean and conditional standard deviation) that links seismic hazard information with ground-motion selection for nonlinear dynamic analysis. Probabilistic seismic hazard analysis (PSHA) estimates the ground-motion hazard by incorporating the aleatory uncertainties in all earthquake scenarios and resulting ground motions, as well as the epistemic uncertainties in ground-motion prediction models (GMPMs) and seismic source models. Typical CS calculations to date are produced for a single earthquake scenario using a single GMPM, but more precise use requires consideration of at least multiple causal earthquakes and multiple GMPMs that are often considered in a PSHA computation. This paper presents the mathematics underlying these more precise CS calculations. Despite requiring more effort to compute than approximate calculations using a single causal earthquake and GMPM, the proposed approach produces an exact output that has a theoretical basis. To demonstrate the results of this approach and compare the exact and approximate calculations, several example calculations are performed for real sites in the western United States. The results also provide some insights regarding the circumstances under which approximate results are likely to closely match more exact results. To facilitate these more precise calculations for real applications, the exact CS calculations can now be performed for real sites in the United States using new deaggregation features in the U.S. Geological Survey hazard mapping tools. Details regarding this implementation are discussed in this paper.

  17. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  18. The 1906 earthquake and a century of progress in understanding earthquakes and their hazards

    USGS Publications Warehouse

    Zoback, M.L.

    2006-01-01

    The 18 April 1906 San Francisco earthquake killed nearly 3000 people and left 225,000 residents homeless. Three days after the earthquake, an eight-person Earthquake Investigation Commission composed of 25 geologists, seismologists, geodesists, biologists and engineers, as well as some 300 others started work under the supervision of Andrew Lawson to collect and document physical phenomena related to the quake . On 31 May 1906, the commission published a preliminary 17-page report titled "The Report of the State Earthquake Investigation Commission". The report included the bulk of the geological and morphological descriptions of the faulting, detailed reports on shaking intensity, as well as an impressive atlas of 40 oversized maps and folios. Nearly 100 years after its publication, the Commission Report remains a model for post-earthquake investigations. Because the diverse data sets were so complete and carefully documented, researchers continue to apply modern analysis techniques to learn from the 1906 earthquake. While the earthquake marked a seminal event in the history of California, it served as impetus for the birth of modern earthquake science in the United States.

  19. Reconfiguring practice: the interdependence of experimental procedure and computing infrastructure in distributed earthquake engineering.

    PubMed

    De La Flor, Grace; Ojaghi, Mobin; Martínez, Ignacio Lamata; Jirotka, Marina; Williams, Martin S; Blakeborough, Anthony

    2010-09-13

    When transitioning local laboratory practices into distributed environments, the interdependent relationship between experimental procedure and the technologies used to execute experiments becomes highly visible and a focal point for system requirements. We present an analysis of ways in which this reciprocal relationship is reconfiguring laboratory practices in earthquake engineering as a new computing infrastructure is embedded within three laboratories in order to facilitate the execution of shared experiments across geographically distributed sites. The system has been developed as part of the UK Network for Earthquake Engineering Simulation e-Research project, which links together three earthquake engineering laboratories at the universities of Bristol, Cambridge and Oxford. We consider the ways in which researchers have successfully adapted their local laboratory practices through the modification of experimental procedure so that they may meet the challenges of coordinating distributed earthquake experiments.

  20. Earthquakes; January-February, 1979

    USGS Publications Warehouse

    Person, W.J.

    1979-01-01

    The first major earthquake (magnitude 7.0 to 7.9) of the year struck in southeastern Alaska in a sparsely populated area on February 28. On January 16, Iran experienced the first destructive earthquake of the year causing a number of casualties and considerable damage. Peru was hit by a destructive earthquake on February 16 that left casualties and damage. A number of earthquakes were experienced in parts of the Untied States, but only minor damage was reported. 

  1. Preliminary results on earthquake triggered landslides for the Haiti earthquake (January 2010)

    NASA Astrophysics Data System (ADS)

    van Westen, Cees; Gorum, Tolga

    2010-05-01

    This study presents the first results on an analysis of the landslides triggered by the Ms 7.0 Haiti earthquake that occurred on January 12, 2010 in the boundary region of the Pacific Plate and the North American plate. The fault is a left lateral strike slip fault with a clear surface expression. According to the USGS earthquake information the Enriquillo-Plantain Garden fault system has not produced any major earthquake in the last 100 years, and historical earthquakes are known from 1860, 1770, 1761, 1751, 1684, 1673, and 1618, though none of these has been confirmed in the field as associated with this fault. We used high resolution satellite imagery available for the pre and post earthquake situations, which were made freely available for the response and rescue operations. We made an interpretation of all co-seismic landslides in the epicentral area. We conclude that the earthquake mainly triggered landslide in the northern slope of the fault-related valley and in a number of isolated area. The earthquake apparently didn't trigger many visible landslides within the slum areas on the slopes in the southern part of Port-au-Prince and Carrefour. We also used ASTER DEM information to relate the landslide occurrences with DEM derivatives.

  2. Anatomical variations of the carpal tunnel structures

    PubMed Central

    Mitchell, Ryan; Chesney, Amy; Seal, Shane; McKnight, Leslie; Thoma, Achilleas

    2009-01-01

    There are many anatomical variations in and around the carpal tunnel that affect the nerves, tendons and arteries in this area. Awareness of these variations is important both during the clinical examination and during carpal tunnel release. The purpose of the present review is to highlight recognized anatomical variations within the carpal tunnel including variation in nerve anatomy, tendon anatomical variants, vascular anatomical variations and muscle anatomical variations. PMID:20808747

  3. Turkish Compulsory Earthquake Insurance (TCIP)

    NASA Astrophysics Data System (ADS)

    Erdik, M.; Durukal, E.; Sesetyan, K.

    2009-04-01

    Through a World Bank project a government-sponsored Turkish Catastrophic Insurance Pool (TCIP) is created in 2000 with the essential aim of transferring the government's financial burden of replacing earthquake-damaged housing to international reinsurance and capital markets. Providing coverage to about 2.9 Million homeowners TCIP is the largest insurance program in the country with about 0.5 Billion USD in its own reserves and about 2.3 Billion USD in total claims paying capacity. The total payment for earthquake damage since 2000 (mostly small, 226 earthquakes) amounts to about 13 Million USD. The country-wide penetration rate is about 22%, highest in the Marmara region (30%) and lowest in the south-east Turkey (9%). TCIP is the sole-source provider of earthquake loss coverage up to 90,000 USD per house. The annual premium, categorized on the basis of earthquake zones type of structure, is about US90 for a 100 square meter reinforced concrete building in the most hazardous zone with 2% deductible. The earthquake engineering related shortcomings of the TCIP is exemplified by fact that the average rate of 0.13% (for reinforced concrete buildings) with only 2% deductible is rather low compared to countries with similar earthquake exposure. From an earthquake engineering point of view the risk underwriting (Typification of housing units to be insured, earthquake intensity zonation and the sum insured) of the TCIP needs to be overhauled. Especially for large cities, models can be developed where its expected earthquake performance (and consequently the insurance premium) can be can be assessed on the basis of the location of the unit (microzoned earthquake hazard) and basic structural attributes (earthquake vulnerability relationships). With such an approach, in the future the TCIP can contribute to the control of construction through differentiation of premia on the basis of earthquake vulnerability.

  4. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  5. Response of Olive View Hospital to Northridge and Whittier earthquakes

    USGS Publications Warehouse

    Celebi, M.

    1997-01-01

    The purpose of this paper is to study the response of the conventionally designed new Olive View Medical Center (OVMC) building at 16 km from the epicenter of the January 17, 1994 Northridge, California earthquake (Ms = 6.8). OVMC is on an alluvial deposit. The building was subjected to design level peak accelerations during the earthquake and suffered only limited structural and nonstructural damage. The recorded motions at different levels of the OVMC building as well as its associated free-field sites are analyzed using spectral analyses and system identification techniques. The new OVMC building was conservatively designed in 1976 with very high lateral load resisting capability - particularly as a reaction to the detrimental fate of the original Olive View Hospital that was heavily damaged during the 1971 San Fernando earthquake. The original hospital building was later razed. The replacement structure, the new cross-shaped OVMC building, experienced peak acceleration of 2.31g at the roof while its peak ground floor acceleration was 0.82g. The free-field peak acceleration was 0.91g. The lateral load resisting system of the OVMC building consists of concrete shear walls in the lower two stories and steel shear walls at the perimeter of the upper four stories. Spectral analysis shows that this stiff structure was not affected by the long duration pulses of the motions recorded at this site.

  6. Education for Earthquake Disaster Prevention in the Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Oki, S.; Tsuji, H.; Koketsu, K.; Yazaki, Y.

    2008-12-01

    project to develop a high-density network with 400 sites at local elementary schools. We start our education project by using the real seismograms observed at their own schoolyards, putting emphasis on the reality and causality of earthquake disasters. In this presentation, we report some of the educational demonstrations and science experiments for the school kids and their parents.

  7. Mega-thrust and Intra-slab Earthquakes Beneath Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sato, H.; Koketsu, K.; Hagiwara, H.; Wu, F.; Okaya, D.; Iwasaki, T.; Kasahara, K.

    2006-12-01

    In central Japan the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. The vertical proximity of this down going lithospheric plate is of concern because the greater Tokyo urban region has a population of 42 million and is the center of approximately 40% of the nation's economic activities. A M7+ earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The M7+ earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In 2002, a consortium of universities and government agencies in Japan started the Special Project for Earthquake Disaster Mitigation in Urban Areas, a project to improve information needed for seismic hazards analyses of the largest urban centers. Assessment in Kanto of the seismic hazard produced by the Philippine Sea Plate (PSP) mega-thrust earthquakes requires identification of all significant faults and possible earthquake scenarios and rupture behavior, regional characterizations of PSP geometry and the overlying Honshu arc physical properties (e.g., seismic wave velocities, densities, attenuation), and local near-surface seism ic site effects. Our study addresses (1) improved regional characterization of the PSP geometry based on new deep seismic reflection profiles (Sato etal.,2005), reprocessed off-shore profiles (Kimura et al.,2005), and a dense seismic array in the Boso peninsular (Hagiwara et al., 2006) and (2) identification of asperities of the mega-thrust at the top of the PSP. We qualitatively examine the relationship between seismic reflections and asperities inferred by reflection physical properties. We also discuss the relation between deformation of PSP and intra-slab M7+ earthquakes: the

  8. Earthquakes and building design: a primer for the laboratory animal professional.

    PubMed

    Vogelweid, Catherine M; Hill, James B; Shea, Robert A; Johnson, Daniel B

    2005-01-01

    Earthquakes can occur in most regions of the United States, so it might be necessary to reinforce vulnerable animal facilities to better protect research animals during these unpredictable events. A risk analysis should include an evaluation of the seismic hazard risk at the proposed building site balanced against the estimated consequences of losses. Risk analysis can help in better justifying and recommending to building owners the costs of incorporating additional seismic reinforcements. The planning team needs to specify the level of post-earthquake building function that is desired in the facility, and then design the facility to it.

  9. Sun, Moon and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  10. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  11. Gender differences of airway dimensions in anatomically matched sites on CT in smokers.

    PubMed

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators

    2011-08-01

    There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.

  12. The impact evaluation of soil liquefaction on low-rise building in the Meinong earthquake

    NASA Astrophysics Data System (ADS)

    Lu, Chih-Chieh; Hwang, Jin-Hung; Hsu, Shang-Yi

    2017-08-01

    This paper presents major preliminary observations on the liquefaction-induced damages in the Meinong earthquake ( M L = 6.4). The severe damages to buildings centered on Huian and Sanmin Streets in Tainan City where the places were reclaimed fish or farm ponds with poor construction quality from many decades ago. To better understand the effect due to the soil liquefaction at these sites, the information provided by the in situ 13 Standard Penetration Test boreholes and 5 Cone Penetration Test soundings accompanying with the PGAs derived from the near seismographs was used to conduct the soil liquefaction evaluation by the Seed method (Seed et al. in J Geotech Eng ASCE 111(12):1425-1445, 1985) when subject to the Meinong earthquake. The liquefaction potential index (LPI) was then evaluated accordingly. From the results, it was found that the estimated damage severity was not consistent to the field conditions if the local site effect was not taken into account. To better reflect the site response in such sites, the sites' PGAs in the PGA contour map were multiplied by 1.5 times to quantify the amplification effects due to the soft geological condition. In addition, the PGAs based on other simple approaches were evaluated as well for comparison. Besides, the effects of fines content and magnitude scaling factor were also discussed in this paper. After that, several common simplified methods were also used to calculate the LPI when subject to the Meinong earthquake in order to evaluate the applicability of these simplified methods.

  13. Putting down roots in earthquake country-Your handbook for earthquakes in the Central United States

    USGS Publications Warehouse

    Contributors: Dart, Richard; McCarthy, Jill; McCallister, Natasha; Williams, Robert A.

    2011-01-01

    This handbook provides information to residents of the Central United States about the threat of earthquakes in that area, particularly along the New Madrid seismic zone, and explains how to prepare for, survive, and recover from such events. It explains the need for concern about earthquakes for those residents and describes what one can expect during and after an earthquake. Much is known about the threat of earthquakes in the Central United States, including where they are likely to occur and what can be done to reduce losses from future earthquakes, but not enough has been done to prepare for future earthquakes. The handbook describes such preparations that can be taken by individual residents before an earthquake to be safe and protect property.

  14. Repeating Earthquakes Following an Mw 4.4 Earthquake Near Luther, Oklahoma

    NASA Astrophysics Data System (ADS)

    Clements, T.; Keranen, K. M.; Savage, H. M.

    2015-12-01

    An Mw 4.4 earthquake on April 16, 2013 near Luther, OK was one of the earliest M4+ earthquakes in central Oklahoma, following the Prague sequence in 2011. A network of four local broadband seismometers deployed within a day of the Mw 4.4 event, along with six Oklahoma netquake stations, recorded more than 500 aftershocks in the two weeks following the Luther earthquake. Here we use HypoDD (Waldhauser & Ellsworth, 2000) and waveform cross-correlation to obtain precise aftershock locations. The location uncertainty, calculated using the SVD method in HypoDD, is ~15 m horizontally and ~ 35 m vertically. The earthquakes define a near vertical, NE-SW striking fault plane. Events occur at depths from 2 km to 3.5 km within the granitic basement, with a small fraction of events shallower, near the sediment-basement interface. Earthquakes occur within a zone of ~200 meters thickness on either side of the best-fitting fault surface. We use an equivalency class algorithm to identity clusters of repeating events, defined as event pairs with median three-component correlation > 0.97 across common stations (Aster & Scott, 1993). Repeating events occur as doublets of only two events in over 50% of cases; overall, 41% of earthquakes recorded occur as repeating events. The recurrence intervals for the repeating events range from minutes to days, with common recurrence intervals of less than two minutes. While clusters occur in tight dimensions, commonly of 80 m x 200 m, aftershocks occur in 3 distinct ~2km x 2km-sized patches along the fault. Our analysis suggests that with rapidly deployed local arrays, the plethora of ~Mw 4 earthquakes occurring in Oklahoma and Southern Kansas can be used to investigate the earthquake rupture process and the role of damage zones.

  15. Earthquake Hazards.

    ERIC Educational Resources Information Center

    Donovan, Neville

    1979-01-01

    Provides a survey and a review of earthquake activity and global tectonics from the advancement of the theory of continental drift to the present. Topics include: an identification of the major seismic regions of the earth, seismic measurement techniques, seismic design criteria for buildings, and the prediction of earthquakes. (BT)

  16. Are seismic hazard assessment errors and earthquake surprises unavoidable?

    NASA Astrophysics Data System (ADS)

    Kossobokov, Vladimir

    2013-04-01

    Why earthquake occurrences bring us so many surprises? The answer seems evident if we review the relationships that are commonly used to assess seismic hazard. The time-span of physically reliable Seismic History is yet a small portion of a rupture recurrence cycle at an earthquake-prone site, which makes premature any kind of reliable probabilistic statements about narrowly localized seismic hazard. Moreover, seismic evidences accumulated to-date demonstrate clearly that most of the empirical relations commonly accepted in the early history of instrumental seismology can be proved erroneous when testing statistical significance is applied. Seismic events, including mega-earthquakes, cluster displaying behaviors that are far from independent or periodic. Their distribution in space is possibly fractal, definitely, far from uniform even in a single segment of a fault zone. Such a situation contradicts generally accepted assumptions used for analytically tractable or computer simulations and complicates design of reliable methodologies for realistic earthquake hazard assessment, as well as search and definition of precursory behaviors to be used for forecast/prediction purposes. As a result, the conclusions drawn from such simulations and analyses can MISLEAD TO SCIENTIFICALLY GROUNDLESS APPLICATION, which is unwise and extremely dangerous in assessing expected societal risks and losses. For example, a systematic comparison of the GSHAP peak ground acceleration estimates with those related to actual strong earthquakes, unfortunately, discloses gross inadequacy of this "probabilistic" product, which appears UNACCEPTABLE FOR ANY KIND OF RESPONSIBLE SEISMIC RISK EVALUATION AND KNOWLEDGEABLE DISASTER PREVENTION. The self-evident shortcomings and failures of GSHAP appeals to all earthquake scientists and engineers for an urgent revision of the global seismic hazard maps from the first principles including background methodologies involved, such that there becomes: (a) a

  17. QuakeUp: An advanced tool for a network-based Earthquake Early Warning system

    NASA Astrophysics Data System (ADS)

    Zollo, Aldo; Colombelli, Simona; Caruso, Alessandro; Elia, Luca; Brondi, Piero; Emolo, Antonio; Festa, Gaetano; Martino, Claudio; Picozzi, Matteo

    2017-04-01

    predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Within times of the order of ten seconds from the earthquake origin, the information about the area where moderate to strong ground shaking is expected to occur, can be sent to inner and outer sites, allowing the activation of emergency measurements to protect people , secure industrial facilities and optimize the site resilience after the disaster. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. In QuakeUp, the P-wave parameters are continuously measured, using progressively expanded P-wave time windows, and providing evolutionary and reliable estimates of the ground shaking distribution, especially in the case of very large events. Furthermore, to minimize the S-wave contamination on the P-wave signal portion, an efficient algorithm, based on the real-time polarization analysis of the three-component seismogram, for the automatic detection of the S-wave arrival time has been included. The final output of QuakeUp will be an automatic alert message that is transmitted to sites to be secured during the earthquake emergency. The message contains all relevant information about the expected potential damage at the site and the time available for security actions (lead-time) after the warning. A global view of the system performance during and after the event (in play-back mode) is obtained through an end-user visual display, where the most relevant pieces of information will be displayed and updated as soon as new data are available. The software platform Quake-Up is essentially aimed at improving the reliability and the accuracy in terms of parameter estimation, minimizing the uncertainties in the

  18. Earthquakes, May-June 1981

    USGS Publications Warehouse

    Person, W.J.

    1981-01-01

    The months of May and June were somewhat quiet, seismically speaking. There was one major earthquake (7.0-7.9) off the west coast of South Island, New Zealand. The most destructive earthquake during this reporting period was in southern Iran on June 11 which caused fatalities and extensive damage. Peru also experienced a destructive earthquake on June 22 which caused fatalities and damage. In the United States, a number of earthquakes were experienced, but none caused significant damage. 

  19. ViscoSim Earthquake Simulator

    USGS Publications Warehouse

    Pollitz, Fred

    2012-01-01

    Synthetic seismicity simulations have been explored by the Southern California Earthquake Center (SCEC) Earthquake Simulators Group in order to guide long‐term forecasting efforts related to the Unified California Earthquake Rupture Forecast (Tullis et al., 2012a). In this study I describe the viscoelastic earthquake simulator (ViscoSim) of Pollitz, 2009. Recapitulating to a large extent material previously presented by Pollitz (2009, 2011) I describe its implementation of synthetic ruptures and how it differs from other simulators being used by the group.

  20. Prospective Tests of Southern California Earthquake Forecasts

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.; Kagan, Y. Y.; Helmstetter, A.; Wiemer, S.; Field, N.

    2004-12-01

    that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we estimate by simulations. In this scheme, each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results will be archived and posted on the RELM web site. Major problems under discussion include how to treat aftershocks, which clearly violate the variable-rate Poissonian hypotheses that we employ, and how to deal with the temporal variations in catalog completeness that follow large earthquakes.

  1. Relationship between peripheral insertion site and catheter-related phlebitis in adult hospitalized patients: a systematic review.

    PubMed

    Comparcini, Dania; Simonetti, Valentina; Blot, Stijn; Tomietto, Marco; Cicolini, Giancarlo

    2017-01-01

    To explore the relationship between the anatomical site of peripheral venous catheterization and risk of catheter-related phlebitis. Peripheral venous catheterization is frequently associated with phlebitis. Recent guidelines, recommend the use of an upper-extremity site for catheter insertion but no univocal consensus exists on the anatomical site with lower risk of phlebitis. Systematic review. We searched Medline (PubMed) and CINAHL (EBSCOhost) databases until the end of January 2017. We also reviewed the reference lists of retrieved articles and gray literature was excluded. Searches were limited to articles published in English with no restriction imposed to date of publication. The primary outcome was the incidence of phlebitis associated with anatomical site of peripheral catheterization. We included randomized controlled trials and observational studies on adult patients who required a peripheral catheter for the administration of medi- cation, intermittent or continuous fluid infusion. Antecubital fossa veins are associated with lower phlebitis rates, while hands veins are the most risky sites to develop phlebitis. There is no consensus regarding vein in forearm. Choosing the right anatomical site to insert a peripheral venous catheter is important to decrease phlebitis rate. Further studies should compare indwelling time in different anatomical sites with phlebitis rate. A more standardized approach in defining and assessing phlebitis among studies is recommended.

  2. Earthquakes, March-April, 1993

    USGS Publications Warehouse

    Person, Waverly J.

    1993-01-01

    Worldwide, only one major earthquake (7.0earthquake, a magnitude 7.2 shock, struck the Santa Cruz Islands region in the South Pacific on March 6. Earthquake-related deaths occurred in the Fiji Islands, China, and Peru.

  3. 2016 National Earthquake Conference

    Science.gov Websites

    Thank you to our Presenting Sponsor, California Earthquake Authority. What's New? What's Next ? What's Your Role in Building a National Strategy? The National Earthquake Conference (NEC) is a , state government leaders, social science practitioners, U.S. State and Territorial Earthquake Managers

  4. The music of earthquakes and Earthquake Quartet #1

    USGS Publications Warehouse

    Michael, Andrew J.

    2013-01-01

    Earthquake Quartet #1, my composition for voice, trombone, cello, and seismograms, is the intersection of listening to earthquakes as a seismologist and performing music as a trombonist. Along the way, I realized there is a close relationship between what I do as a scientist and what I do as a musician. A musician controls the source of the sound and the path it travels through their instrument in order to make sound waves that we hear as music. An earthquake is the source of waves that travel along a path through the earth until reaching us as shaking. It is almost as if the earth is a musician and people, including seismologists, are metaphorically listening and trying to understand what the music means.

  5. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  6. Simulation of scenario earthquake influenced field by using GIS

    USGS Publications Warehouse

    Zuo, H.-Q.; Xie, L.-L.; Borcherdt, R.D.

    1999-01-01

    The method for estimating the site effect on ground motion specified by Borcherdt (1994a, 1994b) is briefly introduced in the paper. This method and the detail geological data and site classification data in San Francisco bay area of California, the United States, are applied to simulate the influenced field of scenario earthquake by GIS technology, and the software for simulating has been drawn up. The paper is a partial result of cooperative research project between China Seismological Bureau and US Geological Survey.

  7. Lake deposits record evidence of large post-1505 AD earthquakes in western Nepal

    NASA Astrophysics Data System (ADS)

    Ghazoui, Z.; Bertrand, S.; Vanneste, K.; Yokoyama, Y.; Van Der Beek, P.; Nomade, J.; Gajurel, A.

    2016-12-01

    According to historical records, the last large earthquake that ruptured the Main Frontal Thrust (MFT) in western Nepal occurred in 1505 AD. Since then, no evidence of other large earthquakes has been found in historical records or geological archives. In view of the catastrophic consequences to millions of inhabitants of Nepal and northern India, intense efforts currently focus on improving our understanding of past earthquake activity and complement the historical data on Himalayan earthquakes. Here we report a new record, based on earthquake-triggered turbidites in lakes. We use lake sediment records from Lake Rara, western Nepal, to reconstruct the occurrence of seismic events. The sediment cores were studied using a multi-proxy approach combining radiocarbon and 210Pb chronologies, physical properties (X-ray computerized axial tomography scan, Geotek multi-sensor core logger), high-resolution grain size, inorganic geochemistry (major elements by ITRAX XRF core scanning) and bulk organic geochemistry (C, N concentrations and stable isotopes). We identified several sequences of dense and layered fine sand mainly composed of mica, which we interpret as earthquake-triggered turbidites. Our results suggest the presence of a synchronous event between the two lake sites correlated with the well-known 1505 AD earthquake. In addition, our sediment records reveal five earthquake-triggered turbidites younger than the 1505 AD event. By comparison with historical archives, we relate one of those to the 1833 AD MFT rupture. The others may reflect successive ruptures of the Western Nepal Fault System. Our study sheds light on events that have not been recorded in historical chronicles. Those five MMI>7 earthquakes permit addressing the problem of missing slip on the MFT in western Nepal and reevaluating the risk of a large earthquake affecting western Nepal and North India.

  8. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    NASA Astrophysics Data System (ADS)

    Hough, Susan E.

    2008-07-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts—and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.

  9. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  10. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, Susan E.

    2008-07-08

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can bemore » used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.« less

  11. Scientific Research Database of the 2008 Ms8.0 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Liang, C.; Yang, Y.; Yu, Y.

    2013-12-01

    Nearly 5 years after the 2008 Ms8.0 Wenchuan Earthquake, the Ms7.0 Lushan earthquake stroke 70km away along the same fault system. Given the tremendous life loss and property damages as well as the short time and distance intervals between the two large magnitude events, the scientific probing into their causing factors and future seismic activities in the nearby region will continue to be in the center of earthquake research in China and even the world for years to come. In the past five years, scientists have made significant efforts to study the Wenchuan earthquake from various aspects using different datasets and methods. Their studies cover a variety of topics including seismogenic environment, earthquake precursors, rupture process, co-seismic phenomenon, hazard relief, reservoir induced seismicity and more. These studies have been published in numerous journals in Chinese, English and many other languages. In addition, 54 books regarding to this earthquake have been published. The extremely diversified nature of all publications makes it very difficult and time-consuming, if not impossible, to sort out information needed by individual researcher in an efficient way. An information platform that collects relevant scientific information and makes them accessible in various ways can be very handy. With this mission in mind, the Earthquake Research Group in the Chengdu University of Technology has developed a website www.wceq.org to attack this target: (1) articles published by major journals and books are recorded into a database. Researchers will be able to find articles by topics, journals, publication dates, authors and keywords e.t.c by a few clicks; (2) to fast track the latest developments, researchers can also follow upon updates in the current month, last 90days, 180 days and 365 days by clicking on corresponding links; (3) the modern communication tools such as Facebook, Twitter and their Chinese counterparts are accommodated in this site to share

  12. Earthquake triggering in southeast Africa following the 2012 Indian Ocean earthquake

    NASA Astrophysics Data System (ADS)

    Neves, Miguel; Custódio, Susana; Peng, Zhigang; Ayorinde, Adebayo

    2018-02-01

    In this paper we present evidence of earthquake dynamic triggering in southeast Africa. We analysed seismic waveforms recorded at 53 broad-band and short-period stations in order to identify possible increases in the rate of microearthquakes and tremor due to the passage of teleseismic waves generated by the Mw8.6 2012 Indian Ocean earthquake. We found evidence of triggered local earthquakes and no evidence of triggered tremor in the region. We assessed the statistical significance of the increase in the number of local earthquakes using β-statistics. Statistically significant dynamic triggering of local earthquakes was observed at 7 out of the 53 analysed stations. Two of these stations are located in the northeast coast of Madagascar and the other five stations are located in the Kaapvaal Craton, southern Africa. We found no evidence of dynamically triggered seismic activity in stations located near the structures of the East African Rift System. Hydrothermal activity exists close to the stations that recorded dynamic triggering, however, it also exists near the East African Rift System structures where no triggering was observed. Our results suggest that factors other than solely tectonic regime and geothermalism are needed to explain the mechanisms that underlie earthquake triggering.

  13. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  14. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  15. Long-term Postseismic Deformation Following the 1964 Alaska Earthquake

    NASA Astrophysics Data System (ADS)

    Freymueller, J. T.; Cohen, S. C.; Hreinsdöttir, S.; Suito, H.

    2003-12-01

    Geodetic data provide a rich data set describing the postseismic deformation that followed the 1964 Alaska earthquake (Mw 9.2). This is particularly true for vertical deformation, since tide gauges and leveling surveys provide extensive spatial coverage. Leveling was carried out over all of the major roads of Alaska in 1964-65, and over the last several years we have resurveyed an extensive data set using GPS. Along Turnagain Arm of Cook Inlet, south of Anchorage, a trench-normal profile was surveyed repeatedly over the first decade after the earthquake, and many of these sites have been surveyed with GPS. After using a geoid model to correct for the difference between geometric and orthometric heights, the leveling+GPS surveys reveal up to 1.25 meters of uplift since 1964. The largest uplifts are concentrated in the northern part of the Kenai Peninsula, SW of Turnagain Arm. In some places, steep gradients in the cumulative uplift measurements point to a very shallow source for the deformation. The average 1964-late 1990s uplift rates were substantially higher than the present-day uplift rates, which rarely exceed 10 mm/yr. Both leveling and tide gauge data document a decay in uplift rate over time as the postseismic signal decreases. However, even today the postseismic deformation represents a substantial portion of the total observe deformation signal, illustrating that very long-lived postseismic deformation is an important element of the subduction zone earthquake cycle for the very largest earthquakes. This is in contrast to much smaller events, such as M~8 earthquakes, for which postseismic deformation in many cases decays within a few years. This suggests that the very largest earthquakes may excite different processes than smaller events.

  16. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  17. The Loma Prieta, California, Earthquake of October 17, 1989: Strong Ground Motion and Ground Failure

    USGS Publications Warehouse

    Coordinated by Holzer, Thomas L.

    1992-01-01

    Professional Paper 1551 describes the effects at the land surface caused by the Loma Prieta earthquake. These effects: include the pattern and characteristics of strong ground shaking, liquefaction of both floodplain deposits along the Pajaro and Salinas Rivers in the Monterey Bay region and sandy artificial fills along the margins of San Francisco Bay, landslides in the epicentral region, and increased stream flow. Some significant findings and their impacts were: * Strong shaking that was amplified by a factor of about two by soft soils caused damage at up to 100 kilometers (60 miles) from the epicenter. * Instrumental recordings of the ground shaking have been used to improve how building codes consider site amplification effects from soft soils. * Liquefaction at 134 locations caused $99.2 million of the total earthquake loss of $5.9 billion. Liquefaction of floodplain deposits and sandy artificial fills was similar in nature to that which occurred in the 1906 San Francisco earthquake and indicated that many areas remain susceptible to liquefaction damage in the San Francisco and Monterey Bay regions. * Landslides caused $30 million in earthquake losses, damaging at least 200 residences. Many landslides showed evidence of movement in previous earthquakes. * Recognition of the similarities between liquefaction and landslides in 1906 and 1989 and research in intervening years that established methodologies to map liquefaction and landslide hazards prompted the California legislature to pass in 1990 the Seismic Hazards Mapping Act that required the California Geological Survey to delineate regulatory zones of areas potentially susceptible to these hazards. * The earthquake caused the flow of many streams in the epicentral region to increase. Effects were noted up to 88 km from the epicenter. * Post-earthquake studies of the Marina District of San Francisco provide perhaps the most comprehensive case history of earthquake effects at a specific site developed for

  18. Historical earthquake research in Austria

    NASA Astrophysics Data System (ADS)

    Hammerl, Christa

    2017-12-01

    Austria has a moderate seismicity, and on average the population feels 40 earthquakes per year or approximately three earthquakes per month. A severe earthquake with light building damage is expected roughly every 2 to 3 years in Austria. Severe damage to buildings ( I 0 > 8° EMS) occurs significantly less frequently, the average period of recurrence is about 75 years. For this reason the historical earthquake research has been of special importance in Austria. The interest in historical earthquakes in the past in the Austro-Hungarian Empire is outlined, beginning with an initiative of the Austrian Academy of Sciences and the development of historical earthquake research as an independent research field after the 1978 "Zwentendorf plebiscite" on whether the nuclear power plant will start up. The applied methods are introduced briefly along with the most important studies and last but not least as an example of a recently carried out case study, one of the strongest past earthquakes in Austria, the earthquake of 17 July 1670, is presented. The research into historical earthquakes in Austria concentrates on seismic events of the pre-instrumental period. The investigations are not only of historical interest, but also contribute to the completeness and correctness of the Austrian earthquake catalogue, which is the basis for seismic hazard analysis and as such benefits the public, communities, civil engineers, architects, civil protection, and many others.

  19. Anomalous variations of lithosphere magnetic field before several earthquakes

    NASA Astrophysics Data System (ADS)

    Ni, Z.; Chen, B.

    2015-12-01

    Based on the geomagnetic vector data measured each year since 2011 at more than 500 sites with a mean spatial interval of ~70km.we observed anomalous variations of lithospheric magnetic field before and after over 15 earthquakes having magnitude > 5. We find that the field in near proximity (about 50km) to the epicenter of large earthquakes shows high spatial and temporal gradients before the earthquake. Due to the low frequency of repeat measurements it is unclear when these variations occurred and how do them evolve. We point out anomalous magnetic filed using some circles with radius of 50km usually in June of each year, and then we would check whether quake will locat in our circles during one year after that time (June to next June). Now we caught 10 earthquakes of 15 main shocks having magnitude > 5, most of them located at less than10km away from our circles and some of them were in our circles. Most results show that the variations of lithosphere magnetic filed at the epicenter are different with surrending backgroud usually. When we figure out horizontal variations (vector) of lithosphere magnetic field and epicenter during one year after each June, we found half of them show that the earthquakes will locat at "the inlands in a flowing river", that means earthquakes may occur at "quiet"regions while the backgroud show character as"flow" as liquid. When we compared with GPS results, it appears that these variations of lithospere magnetic field may also correlate with displacement of earth's surface. However we do not compared with GPS results for each earthquake, we are not clear whether these anomalous variations of lithospere magnetic field may also correlate with anomalous displacement of earth's surface. Future work will include developing an automated method for identifying this type of anomalous field behavior and trying to short repeat measurement period to 6 month to try to find when these variations occur.

  20. Unraveling earthquake stresses: Insights from dynamically triggered and induced earthquakes

    NASA Astrophysics Data System (ADS)

    Velasco, A. A.; Alfaro-Diaz, R. A.

    2017-12-01

    Induced seismicity, earthquakes caused by anthropogenic activity, has more than doubled in the last several years resulting from practices related to oil and gas production. Furthermore, large earthquakes have been shown to promote the triggering of other events within two fault lengths (static triggering), due to static stresses caused by physical movement along the fault, and also remotely from the passage of seismic waves (dynamic triggering). Thus, in order to understand the mechanisms for earthquake failure, we investigate regions where natural, induced, and dynamically triggered events occur, and specifically target Oklahoma. We first analyze data from EarthScope's USArray Transportable Array (TA) and local seismic networks implementing an optimized (STA/LTA) detector in order to develop local detection and earthquake catalogs. After we identify triggered events through statistical analysis, and perform a stress analysis to gain insight on the stress-states leading to triggered earthquake failure. We use our observations to determine the role of different transient stresses in contributing to natural and induced seismicity by comparing these stresses to regional stress orientation. We also delineate critically stressed regions of triggered seismicity that may indicate areas susceptible to earthquake hazards associated with sustained fluid injection in provinces of induced seismicity. Anthropogenic injection and extraction activity can alter the stress state and fluid flow within production basins. By analyzing the stress release of these ancient faults caused by dynamic stresses, we may be able to determine if fluids are solely responsible for increased seismic activity in induced regions.

  1. Spatial earthquake hazard assessment of Evansville, Indiana

    USGS Publications Warehouse

    Rockaway, T.D.; Frost, J.D.; Eggert, D.L.; Luna, R.

    1997-01-01

    The earthquake hazard has been evaluated for a 150-square-kilometer area around Evansville, Indiana. GIS-QUAKE, a system that combines liquefaction and ground motion analysis routines with site-specific geological, geotechnical, and seismological information, was used for the analysis. The hazard potential was determined by using 586 SPT borings, 27 CPT sounding, 39 shear-wave velocity profiles and synthesized acceleration records for body-wave magnitude 6.5 and 7.3 mid-continental earthquakes, occurring at distances of 50 km and 250 km, respectively. The results of the GIS-QUAKE hazard analyses for Evansville identify areas with a high hazard potential that had not previously been identified in earthquake zonation studies. The Pigeon Creek area specifically is identified as having significant potential for liquefaction-induced damage. Damage as a result of ground motion amplification is determined to be a moderate concern throughout the area. Differences in the findings of this zonation study and previous work are attributed to the size and range of the database, the hazard evaluation methodologies, and the geostatistical interpolation techniques used to estimate the hazard potential. Further, assumptions regarding the groundwater elevations made in previous studies are also considered to have had a significant effect on the results.

  2. [Establishment of anatomical terminology in Japan].

    PubMed

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  3. REGIONAL SEISMIC AMPLITUDE MODELING AND TOMOGRAPHY FOR EARTHQUAKE-EXPLOSION DISCRIMINATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, W R; Pasyanos, M E; Matzel, E

    2008-07-08

    We continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S in a variety of frequency bands. Empirically we demonstrate that such ratios separate explosions from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are also examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling (e. g. Ford et al 2008). For example, regional waveform modeling showsmore » strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East. Monitoring the world for potential nuclear explosions requires characterizing

  4. Subduction zone earthquake probably triggered submarine hydrocarbon seepage offshore Pakistan

    NASA Astrophysics Data System (ADS)

    Fischer, David; José M., Mogollón; Michael, Strasser; Thomas, Pape; Gerhard, Bohrmann; Noemi, Fekete; Volkhard, Spiess; Sabine, Kasten

    2014-05-01

    Seepage of methane-dominated hydrocarbons is heterogeneous in space and time, and trigger mechanisms of episodic seep events are not well constrained. It is generally found that free hydrocarbon gas entering the local gas hydrate stability field in marine sediments is sequestered in gas hydrates. In this manner, gas hydrates can act as a buffer for carbon transport from the sediment into the ocean. However, the efficiency of gas hydrate-bearing sediments for retaining hydrocarbons may be corrupted: Hypothesized mechanisms include critical gas/fluid pressures beneath gas hydrate-bearing sediments, implying that these are susceptible to mechanical failure and subsequent gas release. Although gas hydrates often occur in seismically active regions, e.g., subduction zones, the role of earthquakes as potential triggers of hydrocarbon transport through gas hydrate-bearing sediments has hardly been explored. Based on a recent publication (Fischer et al., 2013), we present geochemical and transport/reaction-modelling data suggesting a substantial increase in upward gas flux and hydrocarbon emission into the water column following a major earthquake that occurred near the study sites in 1945. Calculating the formation time of authigenic barite enrichments identified in two sediment cores obtained from an anticlinal structure called "Nascent Ridge", we find they formed 38-91 years before sampling, which corresponds well to the time elapsed since the earthquake (62 years). Furthermore, applying a numerical model, we show that the local sulfate/methane transition zone shifted upward by several meters due to the increased methane flux and simulated sulfate profiles very closely match measured ones in a comparable time frame of 50-70 years. We thus propose a causal relation between the earthquake and the amplified gas flux and present reflection seismic data supporting our hypothesis that co-seismic ground shaking induced mechanical fracturing of gas hydrate-bearing sediments

  5. USGS remote sensing coordination for the 2010 Haiti earthquake

    USGS Publications Warehouse

    Duda, Kenneth A.; Jones, Brenda

    2011-01-01

    In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.

  6. Land-level changes from a late Holocene earthquake in the northern Puget lowland, Washington

    USGS Publications Warehouse

    Kelsey, H.M.; Sherrod, B.; Johnson, S.Y.; Dadisman, S.V.

    2004-01-01

    An earthquake, probably generated on the southern Whidbey Island fault zone, caused 1-2 m of ground-surface uplift on central Whidbey Island ???2800-3200 yr ago. The cause of the uplift is a fold that grew coseismically above a blind fault that was the earthquake source. Both the fault and the fold at the fault's tip are imaged on multichannel seismic refection profiles in Puget Sound immediately east of the central Whidbey Island site. Uplift is documented through contrasting histories of relative sea level at two coastal marshes on either side of the fault. Late Holocene shallow-crustal earthquakes of Mw = 6.5-7 pose substantial seismic hazard to the northern Puget Lowland. ?? 2004 Geological Society of America.

  7. Preliminary results from the investigation of the Pymatuning earthquake of September 25, 1998

    USGS Publications Warehouse

    Armbruster, John; Barton, Henry; Bodin, Paul; Buckwalter, Theodore; Cox, Jon; Cranswick, Edward; Dewey, James; Fleeger, Gary; Hopper, Margaret; Horton, Stephen; Hoskins, Donald; Kilb, Deborah; Meremonte, Mark; Metzger, Ann; Risser, Dennis; Seeber, Leonardo; Shedlock, Kaye; Stanley, Katherine; Withers, Mitchell; Zirbes, Madeleine

    1998-01-01

    The Pymatuning earthquake occurred on Friday, September 25, 1998, at 19:52:52 Universal Coordinated Time (UTC), or 3:52:52 p.m. EDT, near Jamestown, Pa., at the southern end of the Pymatuning Reservoir, which straddles the Ohio-Pennsylvania border. The National Earthquake Information Center (NEIC) determined that the event had a magnitude of 5.2 mbLg (a magnitude scale used to measure the size of earthquakes that are regional distances away [100 to 1,000 km, or 60 to 600 mi]), an epicenter of 41.5°N latitude, 80.4°W longitude, and an estimated depth of 5 km (3 mi). One person was reported injured as a result of being thrown to the ground by the earthquake, and it caused minor damage to buildings and seriously disrupted many water wells in the GreenvilleJamestown, Pa., area. The earthquake was generally felt over an area of approximately 200,000 km2 (77,230 mi2) throughout northern Ohio, western Pennsylvania and New York, and much of southern Ontario, Canada (see map on back cover). It was also felt as far west as Illinois and Wisconsin, as far east as New Jersey, Connecticut, and the District of Columbia, and as far south as Kentucky and Virginia. During the aftershock field investigation that commenced within 12 hours of the main shock, a World Wide Web site, http://groundmotion.cr.usgs.gov/pym/pym.htm>, was established from the field headquarters. The web site was used not only to transmit investigation results to the world in near real time but also to receive information from the local community as new earthquake effects were reported. As of March 1999, at least 11 aftershocks have occurred, the largest being a magnitude 2.3. The largest recent previous earthquake in the region was the northeastern Ohio (Leroy) earthquake of magnitude 5.0 that occurred on January 31, 1986, about 65 km (40 mi) west-northwest of the Pymatuning shock. This event was also felt by many of those who felt the Pymatuning earthquake. Similar to most of the seismicity east of the Rocky

  8. Comparative evaluation between anatomic and non-anatomic lateral ligament reconstruction techniques in the ankle joint: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk

    2018-03-12

    Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

  9. Shear Wave Structure of Umbria and Marche, Italy, Strong Motion Seismometer Sites Affected by the 1997-98 Umbria-Marche, Italy, Earthquake Sequence

    USGS Publications Warehouse

    Kayen, Robert; Scasserra, Giuseppe; Stewart, Jonathan P.; Lanzo, Giuseppe

    2008-01-01

    A long sequence of earthquakes, eight with magnitudes between 5 and 6, struck the Umbria and Marche regions of central Italy between September 26, 1997 and July 1998. The earthquake swarm caused severe structural damage, particularly to masonry buildings, and resulted in the loss of twelve lives and about 150 injuries. The source of the events was a single seismogenic structure that consists of several faults with a prevailing northwest-southeast strike and crosses the Umbria-Marche border. The focal mechanism of the largest shocks indicates that the events were the product of shallow extensional normal faulting along a NE-SW extension perpendicular to the trend of the Apennines. The network of analog seismometer stations in the Umbria and Marche regions recorded motions of the main September and October 1997 events and a dense array of mobile digital stations, installed since September 29, recorded most of the swarm. The permanent national network Rete Accelerometrica Nazionale (RAN) is administered and maintained by Dipartimento delle Protezione Civile (DPC: Civil Protection Department); the temporary array was managed by Servizio Sismico Nazionale (SSN) in cooperation with small agencies and Universities. ENEA, the operator of many seismometer stations in Umbria, is the public Italian National Agency for New Technologies, Energy and the Environment. Many of the temporary and permanent stations in the Italian seismic network have little or no characterization of seismic velocities. In this study, we investigated 17 Italian sites using an active-source approach that employs low frequency harmonic waves to measure the dispersive nature of surface waves in the ground. We used the Spectral Analysis of Surface Wave (SASW) approach, coupled with an array of harmonic-wave electro-mechanical sources that are driven in-phase to excite the ground. An inversion algorithm using a non-linear least-squares best-fit method is used to compute shear wave velocities for up to 100

  10. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    NASA Astrophysics Data System (ADS)

    Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.

    2012-03-01

    The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  11. Modeling, Forecasting and Mitigating Extreme Earthquakes

    NASA Astrophysics Data System (ADS)

    Ismail-Zadeh, A.; Le Mouel, J.; Soloviev, A.

    2012-12-01

    Recent earthquake disasters highlighted the importance of multi- and trans-disciplinary studies of earthquake risk. A major component of earthquake disaster risk analysis is hazards research, which should cover not only a traditional assessment of ground shaking, but also studies of geodetic, paleoseismic, geomagnetic, hydrological, deep drilling and other geophysical and geological observations together with comprehensive modeling of earthquakes and forecasting extreme events. Extreme earthquakes (large magnitude and rare events) are manifestations of complex behavior of the lithosphere structured as a hierarchical system of blocks of different sizes. Understanding of physics and dynamics of the extreme events comes from observations, measurements and modeling. A quantitative approach to simulate earthquakes in models of fault dynamics will be presented. The models reproduce basic features of the observed seismicity (e.g., the frequency-magnitude relationship, clustering of earthquakes, occurrence of extreme seismic events). They provide a link between geodynamic processes and seismicity, allow studying extreme events, influence of fault network properties on seismic patterns and seismic cycles, and assist, in a broader sense, in earthquake forecast modeling. Some aspects of predictability of large earthquakes (how well can large earthquakes be predicted today?) will be also discussed along with possibilities in mitigation of earthquake disasters (e.g., on 'inverse' forensic investigations of earthquake disasters).

  12. Extending earthquakes' reach through cascading.

    PubMed

    Marsan, David; Lengliné, Olivier

    2008-02-22

    Earthquakes, whatever their size, can trigger other earthquakes. Mainshocks cause aftershocks to occur, which in turn activate their own local aftershock sequences, resulting in a cascade of triggering that extends the reach of the initial mainshock. A long-lasting difficulty is to determine which earthquakes are connected, either directly or indirectly. Here we show that this causal structure can be found probabilistically, with no a priori model nor parameterization. Large regional earthquakes are found to have a short direct influence in comparison to the overall aftershock sequence duration. Relative to these large mainshocks, small earthquakes collectively have a greater effect on triggering. Hence, cascade triggering is a key component in earthquake interactions.

  13. Directional Site Amplification Effect on Tarzana Hill, California

    NASA Astrophysics Data System (ADS)

    Graizer, V.; Shakal, A.

    2003-12-01

    Significantly amplified ground accelerations at the Tarzana Hill station were recorded during the 1987 Mw 5.9 Whittier Narrows and the 1994 Mw 6.7 Northridge earthquakes. Peak horizontal ground acceleration at the Tarzana station during the 1999 Mw 7.1 Hector Mine earthquake was almost twice as large as the accelerations recorded at nearby stations. The Tarzana site was drilled to a depth of 100 m. A low shear-wave velocity near the surface of 100 m/sec increasing to near 750 m/sec at 100 m depth was measured. The 20 m high hill was found to be well drained with a water table near 17 m. Modelo formation (extremely weathered at the surface to fresh at depth) underlies the hill. The subsurface geology and velocities obtained allow classification of this location as a soft-rock site. After the Northridge earthquake the California Strong Motion Instrumentation Program significantly increased instrumentation at Tarzana to study the unusual site amplification effect. Current instrumentation at Tarzana consists of an accelerograph at the top of Tarzana hill (Tarzana - Cedar Hill B), a downhole instrument at 60 m depth, and an accelerograph at the foot of the hill (Tarzana - Clubhouse), 180 m from the Cedar Hill B station. The original station, Tarzana - Cedar Hill Nursery A, was lost in 1999 due to construction. More than twenty events, including the Hector Mine earthquake, were recorded by all these instruments at Tarzana. Comparison of recordings and response spectra demonstrates strong directional resonance on the top of the hill in a direction perpendicular to the strike of the hill in the period range from 0.04 to 0.8 sec (1.2 to 25 Hz). There is practically no amplification from the bottom to the top of the hill for the component parallel to the strike of the hill. In contrast to accelerations recorded during the Hector Mine earthquake (high frequency part of seismic signal), displacements (relatively low frequency part of seismic signal) demonstrate almost no site

  14. Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat

    2017-04-01

    Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network Istanbul Natural Gas Distribution Corporation (IGDAS) is one of the end users of the Istanbul Earthquake Early Warning (EEW) signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867km of gas lines with 750 district regulators and 474,000 service boxes. The natural gas comes to Istanbul city borders with 70bar in 30inch diameter steel pipeline. The gas pressure is reduced to 20bar in RMS stations and distributed to district regulators inside the city. 110 of 750 district regulators are instrumented with strong motion accelerometers in order to cut gas flow during an earthquake event in the case of ground motion parameters exceeds the certain threshold levels. Also, state of-the-art protection systems automatically cut natural gas flow when breaks in the gas pipelines are detected. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 750 district regulator sites. IGDAS Real-time Earthquake Risk Reduction algorithm follows 4 stages as below: 1) Real-time ground motion data transmitted from 110 IGDAS and 110 KOERI (Kandilli Observatory and Earthquake Research Institute) acceleration stations to the IGDAS Scada Center and KOERI data center. 2) During an earthquake event EEW information is sent from IGDAS Scada Center to the IGDAS stations. 3) Automatic Shut-Off is applied at IGDAS district regulators, and calculated parameters are sent from stations to the IGDAS Scada Center and KOERI. 4) Integrated building and gas pipeline damage maps are prepared immediately after the earthquake event. The today's technology allows to rapidly estimate the

  15. Magnetic field observations in the near-field the 28 June 1992 Mw 7.3 Landers, California, earthquake

    USGS Publications Warehouse

    Johnston, M.J.; Mueller, R.J.; Sasai, Yoichi

    1994-01-01

    Recent reports suggest that large magnetic field changes occur prior to, and during, large earthquakes. Two continuously operating proton magnetometers, LSBM and OCHM, at distances of 17.3 and 24.2 km, respectively, from the epicenter of the 28 June 1992 Mw 7.3 Landers earthquake, recorded data through the earthquake and its aftershocks. These two stations are part of a differentially connected array of proton magnetometers that has been operated along the San Andreas fault since 1976. The instruments have a sensitivity of 0.25 nT or better and transmit data every 10 min through the GOES satellite to the USGS headquarters in Menlo Park, California. Seismomagnetic offsets of −1.2 ± 0.6 and −0.7 ± 0.7 nT were observed at these sites. In comparison, offsets of −0.3 ± 0.2 and −1.3 ± 0.2 nT were observed during the 8 July 1986 ML 5.9 North Palm Springs earthquake, which occurred directly beneath the OCHM magnetometer site. The observations are generally consistent with seismomagnetic models of the earthquake, in which fault geometry and slip have the same from as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. In these models, right-lateral rupture occurs on connected fault segments in a homogeneous medium with average magnetization of 2 A/m. The fault-slip distribution has roughly the same form as the observed surface rupture, and the total moment release is 1.1 × 1020 Nm. There is no indication of diffusion-like character to the magnetic field offsets that might indicate these effects result from fluid flow phenomena. It thus seems unlikely that these earthquake-generated offsets and those produced by the North Palm Springs earthquake were generated by electrokinetic effects. Also, there are no indications of enhanced low-frequency magnetic noise before the earthquake at frequencies below 0.001 Hz.

  16. Preliminary report on crustal deformation surveys and tsunami measurements caused by the July 17, 2006 South off Java Island Earthquake and Tsunami, Indonesia

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ito, T.; Abidin, H. Z.; Agustan

    2007-09-01

    A large earthquake (Mw=7.7) along a plate boundary occurred in the south of Java Island on July 17, 2006, and caused a significant tsunami. We made GPS observations and tsunami heights measurements during the period from July 24 to August 1, 2006. The earthquake seems to be due to an interplate low angle reverse faulting, though there might be a possibility of high angle faulting within the subducting lithosphere. Crustal deformation distribution due to the earthquake, aided by tsunami heights measurements, might clarify which would be the case. We occupied 29 sites by GPS in the area of southern Java encompassing the area from 107.8 E to 109.50 E. These sites were occupied once before the earthquake. However, we were not able to detect significant co-seismic displacements. The obtained displacements, most of which span several years, show ESE direction in ITRF2000 frame. This represents the direction of Sunda block motion. The tsunami heights measured at 11 sites were 6-7 m along the southern coast of Java and indicate that the observed heights are systematically higher than those estimated from numerical simulations that are based on seismic data analysis. This might suggest that fault offsets might have been larger - nearly double - than those estimated using seismic analysis. These results lead us to an idea that the rupture was very slow. If this is the case, the earthquake might have been a "tsunami earthquake" that is similar to the one that occurred on June 2, 1994 in the east of the present earthquake.

  17. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  18. The Loma Prieta, California, Earthquake of October 17, 1989: Performance of the Built Environment

    USGS Publications Warehouse

    Coordinated by Holzer, Thomas L.

    1998-01-01

    Professional Paper 1552 focuses on the response of buildings, lifelines, highway systems, and earth structures to the earthquake. Losses to these systems totaled approximated $5.9 billion. The earthquake displaced many residents from their homes and severely disrupted transportation systems. Some significant findings were: * Approximately 16,000 housing units were uninhabitable after the earthquake including 13,000 in the San Francisco Bay region. Another 30,000-35,000 units were moderately damaged in the earthquake. Renters and low-income residents were particularly hard hit. * Failure of highway systems was the single largest cause of loss of life during the earthquake. Forty-two of the 63 earthquake fatalities died when the Cypress Viaduct in Oakland collapsed. The cost to repair and replace highways damaged by the earthquake was $2 billion, about half of which was to replace the Cypress Viaduct. * Major bridge failures were the result of antiquated designs and inadequate anticipation of seismic loading. * Twenty one kilometers (13 mi) of gas-distribution lines had to be replaced in several communities and more than 1,200 leaks and breaks in water mains and service connections had to be excavated and repaired. At least 5 electrical substations were badly damaged, overwhelming the designed redundancy of the electrical system. * Instruments in 28 buildings recorded their response to earthquake shaking that provided opportunities to understand how different types of buildings responded, the importance of site amplification, and how buildings interact with their foundation when shaken (soil structure interaction).

  19. St. Louis Area Earthquake Hazards Mapping Project - A Progress Report-November 2008

    USGS Publications Warehouse

    Karadeniz, D.; Rogers, J.D.; Williams, R.A.; Cramer, C.H.; Bauer, R.A.; Hoffman, D.; Chung, J.; Hempen, G.L.; Steckel, P.H.; Boyd, O.L.; Watkins, C.M.; McCallister, N.S.; Schweig, E.

    2009-01-01

    St. Louis has experienced minor earthquake damage at least 12 times in the past 200 years. Because of this history and its proximity to known active earthquake zones, the St. Louis Area Earthquake Hazards Mapping Project (SLAEHMP) is producing digital maps that show variability of earthquake hazards, including liquefaction and ground shaking, in the St. Louis area. The maps will be available free via the internet. Although not site specific enough to indicate the hazard at a house-by-house resolution, they can be customized by the user to show specific areas of interest, such as neighborhoods or transportation routes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as the result of an earthquake. Earthquake hazard maps provide one way of conveying such estimates. The U.S. Geological Survey (USGS), which produces earthquake hazard maps for the Nation, is working with local partners to develop detailed maps for urban areas vulnerable to strong ground shaking. These partners, which along with the USGS comprise the SLAEHMP, include the Missouri University of Science and Technology-Rolla (Missouri S&T), Missouri Department of Natural Resources (MDNR), Illinois State Geological Survey (ISGS), Saint Louis University, Missouri State Emergency Management Agency, and URS Corporation. Preliminary hazard maps covering a test portion of the 29-quadrangle St. Louis study area have been produced and are currently being evaluated by the SLAEHMP. A USGS Fact Sheet summarizing this project was produced and almost 1000 copies have been distributed at several public outreach meetings and field trips that have featured the SLAEHMP (Williams and others, 2007). In addition, a USGS website focusing on the SLAEHMP, which provides links to project results and relevant earthquake hazard information, can be found at: http://earthquake.usgs.gov/regional/ceus/urban_map/st_louis/index.php. This progress report summarizes the

  20. Earthquake Catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  1. Earthquakes, July-August 1992

    USGS Publications Warehouse

    Person, W.J.

    1992-01-01

    There were two major earthquakes (7.0≤M<8.0) during this reporting period. A magnitude 7.5 earthquake occurred in Kyrgyzstan on August 19 and a magnitude 7.0 quake struck the Ascension Island region on August 28. In southern California, aftershocks of the magnitude 7.6 earthquake on June 28, 1992, continued. One of these aftershocks caused damage and injuries, and at least one other aftershock caused additional damage. Earthquake-related fatalities were reportred in Kyrgzstan and Pakistan. 

  2. New methods to characterize site amplification

    USGS Publications Warehouse

    Safak, Erdal

    1993-01-01

    Methods alternative to spectral ratios are introduced to characterize site amplification. The methods are developed by using a range of models, from the simple constant amplification model to the time-varying filter model. Examples are given for each model by using a pair of rock- and soil-site recordings from the Loma Prieta earthquake.

  3. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  4. Late Holocene earthquakes on the Toe Jam Hill fault, Seattle fault zone, Bainbridge Island, Washington

    USGS Publications Warehouse

    Nelson, A.R.; Johnson, S.Y.; Kelsey, H.M.; Wells, R.E.; Sherrod, B.L.; Pezzopane, S.K.; Bradley, L.A.; Koehler, R. D.; Bucknam, R.C.

    2003-01-01

    Five trenches across a Holocene fault scarp yield the first radiocarbon-measured earthquake recurrence intervals for a crustal fault in western Washington. The scarp, the first to be revealed by laser imagery, marks the Toe Jam Hill fault, a north-dipping backthrust to the Seattle fault. Folded and faulted strata, liquefaction features, and forest soil A horizons buried by hanging-wall-collapse colluvium record three, or possibly four, earthquakes between 2500 and 1000 yr ago. The most recent earthquake is probably the 1050-1020 cal. (calibrated) yr B.P. (A.D. 900-930) earthquake that raised marine terraces and triggered a tsunami in Puget Sound. Vertical deformation estimated from stratigraphic and surface offsets at trench sites suggests late Holocene earthquake magnitudes near M7, corresponding to surface ruptures >36 km long. Deformation features recording poorly understood latest Pleistocene earthquakes suggest that they were smaller than late Holocene earthquakes. Postglacial earthquake recurrence intervals based on 97 radiocarbon ages, most on detrital charcoal, range from ???12,000 yr to as little as a century or less; corresponding fault-slip rates are 0.2 mm/yr for the past 16,000 yr and 2 mm/yr for the past 2500 yr. Because the Toe Jam Hill fault is a backthrust to the Seattle fault, it may not have ruptured during every earthquake on the Seattle fault. But the earthquake history of the Toe Jam Hill fault is at least a partial proxy for the history of the rest of the Seattle fault zone.

  5. The NCU Lu-Lin Observatory Survived the Taiwan 921 Earthquake

    NASA Astrophysics Data System (ADS)

    Tsay, W. S.; Chang, K. H.; Li, H. H.

    1999-12-01

    The NCU (National Central University) Lu-Lin Observatory is located at Mt. Front Lu-Lin, 120o 52' 25" E and 23o 28' 07" N, a 2862-m peak in the Yu-Shan National Park. The construction of Lu-Lin Observatory was finished in January 1999. Fortunately the Lu-Lin Observatory survived the Taiwan 921 Earthquake that was 7.3 on the Ritcher scale. We are proud of the design of Lu-Lin Observatory adopted H-beam and steel wall even the center of earthquake was only 40 km away. The initial study of Lu-Lin site was started since late 1989. Later on, a three-year project was founded by the National Science Council , which supported the development of a modern seeing monitor for this site survey study from 1990 through 1993. The average seeing of Lu-Lin site is about 1.39 arc-second with average 200 clear nights annually. The sky background of this site is 20.72 mag/arcsec2 in V band and 21.22 mag/arcsec2 in B band. The Lu-Lin observatory is developed for both research and education activity. A homemade 76-cm Super Light Telescope (SLT) and three TAOS's 50-cm robotic telescopes will be the two major research facilities. This work is supported by the National Science Council of Taiwan.

  6. Great earthquakes of variable magnitude at the Cascadia subduction zone

    USGS Publications Warehouse

    Nelson, A.R.; Kelsey, H.M.; Witter, R.C.

    2006-01-01

    Comparison of histories of great earthquakes and accompanying tsunamis at eight coastal sites suggests plate-boundary ruptures of varying length, implying great earthquakes of variable magnitude at the Cascadia subduction zone. Inference of rupture length relies on degree of overlap on radiocarbon age ranges for earthquakes and tsunamis, and relative amounts of coseismic subsidence and heights of tsunamis. Written records of a tsunami in Japan provide the most conclusive evidence for rupture of much of the plate boundary during the earthquake of 26 January 1700. Cascadia stratigraphic evidence dating from about 1600??cal yr B.P., similar to that for the 1700 earthquake, implies a similarly long rupture with substantial subsidence and a high tsunami. Correlations are consistent with other long ruptures about 1350??cal yr B.P., 2500??cal yr B.P., 3400??cal yr B.P., 3800??cal yr B.P., 4400??cal yr B.P., and 4900??cal yr B.P. A rupture about 700-1100??cal yr B.P. was limited to the northern and central parts of the subduction zone, and a northern rupture about 2900??cal yr B.P. may have been similarly limited. Times of probable short ruptures in southern Cascadia include about 1100??cal yr B.P., 1700??cal yr B.P., 3200??cal yr B.P., 4200??cal yr B.P., 4600??cal yr B.P., and 4700??cal yr B.P. Rupture patterns suggest that the plate boundary in northern Cascadia usually breaks in long ruptures during the greatest earthquakes. Ruptures in southernmost Cascadia vary in length and recurrence intervals more than ruptures in northern Cascadia.

  7. M ≥ 7.0 earthquake recurrence on the San Andreas fault from a stress renewal model

    USGS Publications Warehouse

    Parsons, Thomas E.

    2006-01-01

     Forecasting M ≥ 7.0 San Andreas fault earthquakes requires an assessment of their expected frequency. I used a three-dimensional finite element model of California to calculate volumetric static stress drops from scenario M ≥ 7.0 earthquakes on three San Andreas fault sections. The ratio of stress drop to tectonic stressing rate derived from geodetic displacements yielded recovery times at points throughout the model volume. Under a renewal model, stress recovery times on ruptured fault planes can be a proxy for earthquake recurrence. I show curves of magnitude versus stress recovery time for three San Andreas fault sections. When stress recovery times were converted to expected M ≥ 7.0 earthquake frequencies, they fit Gutenberg-Richter relationships well matched to observed regional rates of M ≤ 6.0 earthquakes. Thus a stress-balanced model permits large earthquake Gutenberg-Richter behavior on an individual fault segment, though it does not require it. Modeled slip magnitudes and their expected frequencies were consistent with those observed at the Wrightwood paleoseismic site if strict time predictability does not apply to the San Andreas fault.

  8. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  9. Earthquake and Tsunami booklet based on two Indonesia earthquakes

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Aci, M.

    2014-12-01

    Many destructive earthquakes occurred during the last decade in Indonesia. These experiences are very important precepts for the world people who live in earthquake and tsunami countries. We are collecting the testimonies of tsunami survivors to clarify successful evacuation process and to make clear the characteristic physical behaviors of tsunami near coast. We research 2 tsunami events, 2004 Indian Ocean tsunami and 2010 Mentawai slow earthquake tsunami. Many video and photographs were taken by people at some places in 2004 Indian ocean tsunami disaster; nevertheless these were few restricted points. We didn't know the tsunami behavior in another place. In this study, we tried to collect extensive information about tsunami behavior not only in many places but also wide time range after the strong shake. In Mentawai case, the earthquake occurred in night, so there are no impressive photos. To collect detail information about evacuation process from tsunamis, we contrived the interview method. This method contains making pictures of tsunami experience from the scene of victims' stories. In 2004 Aceh case, all survivors didn't know tsunami phenomena. Because there were no big earthquakes with tsunami for one hundred years in Sumatra region, public people had no knowledge about tsunami. This situation was highly improved in 2010 Mentawai case. TV programs and NGO or governmental public education programs about tsunami evacuation are widespread in Indonesia. Many people know about fundamental knowledge of earthquake and tsunami disasters. We made drill book based on victim's stories and painted impressive scene of 2 events. We used the drill book in disaster education event in school committee of west Java. About 80 % students and teachers evaluated that the contents of the drill book are useful for correct understanding.

  10. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  11. Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers

    PubMed Central

    Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.

    2013-01-01

    Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032

  12. Earthquakes, September-October 1993

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    The fatalities in the United States were caused by two earthquakes in southern Oregon on September 21. These earthquakes, both with magnitude 6.0 and separated in time by about 2 hrs, led to the deaths of two people. One of these deaths was apparently due to a heart attack induced by the earthquake

  13. Children's Ideas about Earthquakes

    ERIC Educational Resources Information Center

    Simsek, Canan Lacin

    2007-01-01

    Earthquake, a natural disaster, is among the fundamental problems of many countries. If people know how to protect themselves from earthquake and arrange their life styles in compliance with this, damage they will suffer will reduce to that extent. In particular, a good training regarding earthquake to be received in primary schools is considered…

  14. Excel, Earthquakes, and Moneyball: exploring Cascadia earthquake probabilities using spreadsheets and baseball analogies

    NASA Astrophysics Data System (ADS)

    Campbell, M. R.; Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2017-12-01

    Much recent media attention focuses on Cascadia's earthquake hazard. A widely cited magazine article starts "An earthquake will destroy a sizable portion of the coastal Northwest. The question is when." Stories include statements like "a massive earthquake is overdue", "in the next 50 years, there is a 1-in-10 chance a "really big one" will erupt," or "the odds of the big Cascadia earthquake happening in the next fifty years are roughly one in three." These lead students to ask where the quoted probabilities come from and what they mean. These probability estimates involve two primary choices: what data are used to describe when past earthquakes happened and what models are used to forecast when future earthquakes will happen. The data come from a 10,000-year record of large paleoearthquakes compiled from subsidence data on land and turbidites, offshore deposits recording submarine slope failure. Earthquakes seem to have happened in clusters of four or five events, separated by gaps. Earthquakes within a cluster occur more frequently and regularly than in the full record. Hence the next earthquake is more likely if we assume that we are in the recent cluster that started about 1700 years ago, than if we assume the cluster is over. Students can explore how changing assumptions drastically changes probability estimates using easy-to-write and display spreadsheets, like those shown below. Insight can also come from baseball analogies. The cluster issue is like deciding whether to assume that a hitter's performance in the next game is better described by his lifetime record, or by the past few games, since he may be hitting unusually well or in a slump. The other big choice is whether to assume that the probability of an earthquake is constant with time, or is small immediately after one occurs and then grows with time. This is like whether to assume that a player's performance is the same from year to year, or changes over their career. Thus saying "the chance of

  15. Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work

    USGS Publications Warehouse

    Weldon, R.; Scharer, K.; Fumal, T.; Biasi, G.

    2004-01-01

    The concept of the earthquake cycle is so well established that one often hears statements in the popular media like, "the Big One is overdue" and "the longer it waits, the bigger it will be." Surprisingly, data to critically test the variability in recurrence intervals, rupture displacements, and relationships between the two are almost nonexistent. To generate a long series of earthquake intervals and offsets, we have conducted paleoseismic investigations across the San Andreas fault near the town of Wrightwood, California, excavating 45 trenches over 18 years, and can now provide some answers to basic questions about recurrence behavior of large earthquakes. To date, we have characterized at least 30 prehistoric earthquakes in a 6000-yr-long record, complete for the past 1500 yr and for the interval 3000-1500 B.C. For the past 1500 yr, the mean recurrence interval is 105 yr (31-165 yr for individual intervals) and the mean slip is 3.2 m (0.7-7 m per event). The series is slightly more ordered than random and has a notable cluster of events, during which strain was released at 3 times the long-term average rate. Slip associated with an earthquake is not well predicted by the interval preceding it, and only the largest two earthquakes appear to affect the time interval to the next earthquake. Generally, short intervals tend to coincide with large displacements and long intervals with small displacements. The most significant correlation we find is that earthquakes are more frequent following periods of net strain accumulation spanning multiple seismic cycles. The extent of paleoearthquake ruptures may be inferred by correlating event ages between different sites along the San Andreas fault. Wrightwood and other nearby sites experience rupture that could be attributed to overlap of relatively independent segments that each behave in a more regular manner. However, the data are equally consistent with a model in which the irregular behavior seen at Wrightwood

  16. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  17. The 2014 Greeley, Colorado Earthquakes: Science, Industry, Regulation, and Media

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Sheehan, A. F.; Weingarten, M.; Nakai, J.; Ge, S.

    2014-12-01

    On June 1, 2014 (UTC) a magnitude 3.2 earthquake occurred east of the town of Greeley, Colorado. The earthquake was widely felt, with reports from Boulder and Golden, over 60 miles away from the epicenter. The location of the earthquake in a region long considered aseismic but now the locus of active oil and gas production prompted the question of whether this was a natural or induced earthquake. Several classic induced seismicity cases hail from Colorado, including the Rocky Mountain Arsenal earthquakes in the 1960s and the Paradox Valley earthquakes in western Colorado. In both cases the earthquakes were linked to wastewater injection. The Greeley earthquake epicenter was close to a Class II well that had been injecting waste fluid into the deepest sedimentary formation of the Denver Basin at rates as high as 350,000 barrels/month for less than a year. The closest seismometers to the June 1 event were more than 100 km away, necessitating deployment of a local seismic network for detailed study. IRIS provided six seismometers to the University of Colorado which were deployed starting within 3 days of the mainshock. Telemetry at one site allowed for real time monitoring of the ongoing seismic sequence. Local media interest was extremely high with speculation that the earthquake was linked to the oil and gas industry. The timetable of media demand for information provided some challenges given the time needed for data collection and analysis. We adopted a policy of open data and open communication with all interested parties, and made proactive attempts to provide information to industry and regulators. After 3 weeks of data collection and analysis, the proximity and timing of the mainshock and aftershocks to the C4A injection well, along with a sharp increase in seismicity culminating in an M 2.6 aftershock, led to a decision by the Colorado Oil and Gas Corporation Commission (COGCC) to recommend a temporary halt to injection at the C4A injection well. This was the

  18. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake

    USGS Publications Warehouse

    Stein, R.S.; King, G.C.P.; Lin, J.

    1992-01-01

    The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.

  19. Do Earthquakes Shake Stock Markets?

    PubMed

    Ferreira, Susana; Karali, Berna

    2015-01-01

    This paper examines how major earthquakes affected the returns and volatility of aggregate stock market indices in thirty-five financial markets over the last twenty years. Results show that global financial markets are resilient to shocks caused by earthquakes even if these are domestic. Our analysis reveals that, in a few instances, some macroeconomic variables and earthquake characteristics (gross domestic product per capita, trade openness, bilateral trade flows, earthquake magnitude, a tsunami indicator, distance to the epicenter, and number of fatalities) mediate the impact of earthquakes on stock market returns, resulting in a zero net effect. However, the influence of these variables is market-specific, indicating no systematic pattern across global capital markets. Results also demonstrate that stock market volatility is unaffected by earthquakes, except for Japan.

  20. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.