Sample records for earthquake arrival times

  1. Automatic arrival time detection for earthquakes based on Modified Laplacian of Gaussian filter

    NASA Astrophysics Data System (ADS)

    Saad, Omar M.; Shalaby, Ahmed; Samy, Lotfy; Sayed, Mohammed S.

    2018-04-01

    Precise identification of onset time for an earthquake is imperative in the right figuring of earthquake's location and different parameters that are utilized for building seismic catalogues. P-wave arrival detection of weak events or micro-earthquakes cannot be precisely determined due to background noise. In this paper, we propose a novel approach based on Modified Laplacian of Gaussian (MLoG) filter to detect the onset time even in the presence of very weak signal-to-noise ratios (SNRs). The proposed algorithm utilizes a denoising-filter algorithm to smooth the background noise. In the proposed algorithm, we employ the MLoG mask to filter the seismic data. Afterward, we apply a Dual-threshold comparator to detect the onset time of the event. The results show that the proposed algorithm can detect the onset time for micro-earthquakes accurately, with SNR of -12 dB. The proposed algorithm achieves an onset time picking accuracy of 93% with a standard deviation error of 0.10 s for 407 field seismic waveforms. Also, we compare the results with short and long time average algorithm (STA/LTA) and the Akaike Information Criterion (AIC), and the proposed algorithm outperforms them.

  2. Rapid estimation of earthquake magnitude from the arrival time of the peak high‐frequency amplitude

    USGS Publications Warehouse

    Noda, Shunta; Yamamoto, Shunroku; Ellsworth, William L.

    2016-01-01

    We propose a simple approach to measure earthquake magnitude M using the time difference (Top) between the body‐wave onset and the arrival time of the peak high‐frequency amplitude in an accelerogram. Measured in this manner, we find that Mw is proportional to 2logTop for earthquakes 5≤Mw≤7, which is the theoretical proportionality if Top is proportional to source dimension and stress drop is scale invariant. Using high‐frequency (>2  Hz) data, the root mean square (rms) residual between Mw and MTop(M estimated from Top) is approximately 0.5 magnitude units. The rms residuals of the high‐frequency data in passbands between 2 and 16 Hz are uniformly smaller than those obtained from the lower‐frequency data. Top depends weakly on epicentral distance, and this dependence can be ignored for distances <200  km. Retrospective application of this algorithm to the 2011 Tohoku earthquake produces a final magnitude estimate of M 9.0 at 120 s after the origin time. We conclude that Top of high‐frequency (>2  Hz) accelerograms has value in the context of earthquake early warning for extremely large events.

  3. Evaluation of the real-time earthquake information system in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiromitsu; Horiuchi, Shigeki; Wu, Changjiang; Yamamoto, Shunroku; Rydelek, Paul A.

    2009-01-01

    The real-time earthquake information system (REIS) of the Japanese seismic network is developed for automatically determining earthquake parameters within a few seconds after the P-waves arrive at the closest stations using both the P-wave arrival times and the timing data that P-waves have not yet arrived at other stations. REIS results play a fundamental role in the real-time information for earthquake early warning in Japan. We show the rapidity and accuracy of REIS from the analysis of 4,050 earthquakes in three years since 2005; 44 percent of the first reports are issued within 5 seconds after the first P-wave arrival and 80 percent of the events have a difference in epicenter distance less than 20 km relative to manually determined locations. We compared the formal catalog to the estimated magnitude from the real-time analysis and found that 94 percent of the events had a magnitude difference of +/-1.0 unit.

  4. Real Time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Doi, K.; Kato, T.

    2003-12-01

    An early earthquake notification system in Japan had been developed by the Japan Meteorological Agency (JMA) as a governmental organization responsible for issuing earthquake information and tsunami forecasts. The system was primarily developed for prompt provision of a tsunami forecast to the public with locating an earthquake and estimating its magnitude as quickly as possible. Years after, a system for a prompt provision of seismic intensity information as indices of degrees of disasters caused by strong ground motion was also developed so that concerned governmental organizations can decide whether it was necessary for them to launch emergency response or not. At present, JMA issues the following kinds of information successively when a large earthquake occurs. 1) Prompt report of occurrence of a large earthquake and major seismic intensities caused by the earthquake in about two minutes after the earthquake occurrence. 2) Tsunami forecast in around three minutes. 3) Information on expected arrival times and maximum heights of tsunami waves in around five minutes. 4) Information on a hypocenter and a magnitude of the earthquake, the seismic intensity at each observation station, the times of high tides in addition to the expected tsunami arrival times in 5-7 minutes. To issue information above, JMA has established; - An advanced nationwide seismic network with about 180 stations for seismic wave observation and about 3,400 stations for instrumental seismic intensity observation including about 2,800 seismic intensity stations maintained by local governments, - Data telemetry networks via landlines and partly via a satellite communication link, - Real-time data processing techniques, for example, the automatic calculation of earthquake location and magnitude, the database driven method for quantitative tsunami estimation, and - Dissemination networks, via computer-to-computer communications and facsimile through dedicated telephone lines. JMA operationally

  5. The incorporation of fault zone head wave and direct wave secondary arrival times and arrival polarizations into seismic tomography: Application to the Parkfield, California area

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.

    2012-12-01

    We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and

  6. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, R.R.; Dowla, F.U.

    1996-02-06

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion. 17 figs.

  7. Real-time neural network earthquake profile predictor

    DOEpatents

    Leach, Richard R.; Dowla, Farid U.

    1996-01-01

    A neural network has been developed that uses first-arrival energy to predict the characteristics of impending earthquake seismograph signals. The propagation of ground motion energy through the earth is a highly nonlinear function. This is due to different forms of ground motion as well as to changes in the elastic properties of the media throughout the propagation path. The neural network is trained using seismogram data from earthquakes. Presented with a previously unseen earthquake, the neural network produces a profile of the complete earthquake signal using data from the first seconds of the signal. This offers a significant advance in the real-time monitoring, warning, and subsequent hazard minimization of catastrophic ground motion.

  8. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Thurber, Clifford; Peng, Zhigang; Zhang, Haijiang; Zhao, Peng

    2013-03-01

    We present a three-dimensional (3D) P wave velocity (Vp) model of the Parkfield region that utilizes existing P wave arrival time data, including fault zone head waves (FZHWs), and data from direct wave secondary arrivals (DWSAs). The first-arrival and DWSA travel times are obtained as the global- and local-minimum travel time paths, respectively. The inclusion of FZHWs and DWSAs results in as much as a 5% and a 10% increase in the across-fault velocity contrast, respectively, for the Vp model at Parkfield relative to that of Thurber et al. [2006]. Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield earthquake hypocenter and the other SE of the 2004 Parkfield earthquake hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. Following Ampuero and Ben-Zion (2008), the pattern of velocity contrasts is consistent with the observed bilateral rupture propagation for the 2004 Parkfield earthquake. Although the velocity contrasts also suggest bilateral rupture propagation for the 1966 Parkfield earthquake, the fault is creeping to the NW here, i.e., exhibiting velocity-strengthening behavior. Thus, it is not surprising that rupture propagated only SE during this event.

  9. A Bayesian Approach to Real-Time Earthquake Phase Association

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  10. Coherent Seismic Arrivals in the P Wave Coda of the 2012 Mw 7.2 Sumatra Earthquake: Water Reverberations or an Early Aftershock?

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Shearer, Peter M.

    2018-04-01

    Teleseismic records of the 2012 Mw 7.2 Sumatra earthquake contain prominent phases in the P wave train, arriving about 50 to 100 s after the direct P arrival. Azimuthal variations in these arrivals, together with back-projection analysis, led Fan and Shearer (https://doi.org/10.1002/2016GL067785) to conclude that they originated from early aftershock(s), located ˜150 km northeast of the mainshock and landward of the trench. However, recently, Yue et al. (https://doi.org/10.1002/2017GL073254) argued that the anomalous arrivals are more likely water reverberations from the mainshock, based mostly on empirical Green's function analysis of a M6 earthquake near the mainshock and a water phase synthetic test. Here we present detailed back-projection and waveform analyses of three M6 earthquakes within 100 km of the Mw 7.2 earthquake, including the empirical Green's function event analyzed in Yue et al. (https://doi.org/10.1002/2017GL073254). In addition, we examine the waveforms of three M5.5 reverse-faulting earthquakes close to the inferred early aftershock location in Fan and Shearer (https://doi.org/10.1002/2016GL067785). These results suggest that the reverberatory character of the anomalous arrivals in the mainshock coda is consistent with water reverberations, but the origin of this energy is more likely an early aftershock rather than delayed and displaced water reverberations from the mainshock.

  11. Performance of Real-time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Horiuchi, S.; Wu, C.; Yamamoto, S.

    2008-12-01

    Horiuchi et al. (2005) developed a real-time earthquake information system (REIS) using Hi-net, a densely deployed nationwide seismic network, which consists of about 800 stations operated by NIED, Japan. REIS determines hypocenter locations and earthquake magnitudes automatically within a few seconds after P waves arrive at the closest station and calculates focal mechanisms within about 15 seconds. Obtained hypocenter parameters are transferred immediately by using XML format to a computer in Japan Meteorological Agency (JMA), who started the service of EEW to special users in June 2005. JMA also developed EEW using 200 stations. The results by the two systems are merged. Among all the first issued EEW reports by both systems, REIS information accounts for about 80 percent. This study examines the rapidity and credibility of REIS by analyzing the 4050 earthquakes which occurred around the Japan Islands since 2005 with magnitude larger than 3.0. REIS re-determines hypocenter parameters every one second according to the revision of waveform data. Here, we discuss only about the results by the first reports. On rapidness, our results show that about 44 percent of the first reports are issued within 5 seconds after the P waves arrives at the closest stations. Note that this 5-second time window includes time delay due to data package and transmission delay of about 2 seconds. REIS waits till two stations detect P waves for events in the network but four stations outside the network so as to get reliable solutions. For earthquakes with hypocentral distance less than 100km, 55 percent of earthquakes are warned in 5 seconds and 87 percent are warned in 10 seconds. Most of events having long time delay are small and triggered by S wave arrivals. About 80 percent of events have difference in epicenter distances less than 20km relative to JMA manually determined locations. Because of the existence of large lateral heterogeneity in seismic velocity, the difference depends

  12. Accurate seismic phase identification and arrival time picking of glacial icequakes

    NASA Astrophysics Data System (ADS)

    Jones, G. A.; Doyle, S. H.; Dow, C.; Kulessa, B.; Hubbard, A.

    2010-12-01

    A catastrophic lake drainage event was monitored continuously using an array of 6, 4.5 Hz 3 component geophones in the Russell Glacier catchment, Western Greenland. Many thousands of events and arrival time phases (e.g., P- or S-wave) were recorded, often with events occurring simultaneously but at different locations. In addition, different styles of seismic events were identified from 'classical' tectonic earthquakes to tremors usually observed in volcanic regions. The presence of such a diverse and large dataset provides insight into the complex system of lake drainage. One of the most fundamental steps in seismology is the accurate identification of a seismic event and its associated arrival times. However, the collection of such a large and complex dataset makes the manual identification of a seismic event and picking of the arrival time phases time consuming with variable results. To overcome the issues of consistency and manpower, a number of different methods have been developed including short-term and long-term averages, spectrograms, wavelets, polarisation analyses, higher order statistics and auto-regressive techniques. Here we propose an automated procedure which establishes the phase type and accurately determines the arrival times. The procedure combines a number of different automated methods to achieve this, and is applied to the recently acquired lake drainage data. Accurate identification of events and their arrival time phases are the first steps in gaining a greater understanding of the extent of the deformation and the mechanism of such drainage events. A good knowledge of the propagation pathway of lake drainage meltwater through a glacier will have significant consequences for interpretation of glacial and ice sheet dynamics.

  13. Optimizing correlation techniques for improved earthquake location

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.

    2004-01-01

    Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.

  14. GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network

    NASA Astrophysics Data System (ADS)

    Raeesi, M.; Sadeghi-Niaraki, A.

    2013-09-01

    Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.

  15. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  16. Improved phase arrival estimate and location for local earthquakes in South Korea

    NASA Astrophysics Data System (ADS)

    Morton, E. A.; Rowe, C. A.; Begnaud, M. L.

    2012-12-01

    The Korean Institute of Geoscience and Mineral Resources (KIGAM) and the Korean Meteorological Agency (KMA) regularly report local (distance < ~1200 km) seismicity recorded with their networks; we obtain preliminary event location estimates as well as waveform data, but no phase arrivals are reported, so the data are not immediately useful for earthquake location. Our goal is to identify seismic events that are sufficiently well-located to provide accurate seismic travel-time information for events within the KIGAM and KMA networks, and also recorded by some regional stations. Toward that end, we are using a combination of manual phase identification and arrival-time picking, with waveform cross-correlation, to cluster events that have occurred in close proximity to one another, which allows for improved phase identification by comparing the highly correlating waveforms. We cross-correlate the known events with one another on 5 seismic stations and cluster events that correlate above a correlation coefficient threshold of 0.7, which reveals few clusters containing few events each. The small number of repeating events suggests that the online catalogs have had mining and quarry blasts removed before publication, as these can contribute significantly to repeating seismic sources in relatively aseismic regions such as South Korea. The dispersed source locations in our catalog, however, are ideal for seismic velocity modeling by providing superior sampling through the dense seismic station arrangement, which produces favorable event-to-station ray path coverage. Following careful manual phase picking on 104 events chosen to provide adequate ray coverage, we re-locate the events to obtain improved source coordinates. The re-located events are used with Thurber's Simul2000 pseudo-bending local tomography code to estimate the crustal structure on the Korean Peninsula, which is an important contribution to ongoing calibration for events of interest in the region.

  17. A non-parametric method for automatic determination of P-wave and S-wave arrival times: application to local micro earthquakes

    NASA Astrophysics Data System (ADS)

    Rawles, Christopher; Thurber, Clifford

    2015-08-01

    We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set

  18. Determination of differential arrival times by cross-correlating worldwide seismological data

    NASA Astrophysics Data System (ADS)

    Godano, M.; Nolet, G.; Zaroli, C.

    2012-12-01

    and measured differential arrival time are significantly reduced for the corrected data. We illustrate our method on data from several real earthquakes.

  19. Fault zone structure determined through the analysis of earthquake arrival times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, Alberto

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V P/V S ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional andmore » shear waves. However, V P/V S ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V P/V S models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.« less

  20. The effect of S-wave arrival times on the accuracy of hypocenter estimation

    USGS Publications Warehouse

    Gomberg, J.S.; Shedlock, K.M.; Roecker, S.W.

    1990-01-01

    We have examined the theoretical basis behind some of the widely accepted "rules of thumb' for obtaining accurate hypocenter estimates that pertain to the use of S phases and illustrate, in a variety of ways, why and when these "rules' are applicable. Most methods used to determine earthquake hypocenters are based on iterative, linearized, least-squares algorithms. We examine the influence of S-phase arrival time data on such algorithms by using the program HYPOINVERSE with synthetic datasets. We conclude that a correctly timed S phase recorded within about 1.4 focal depth's distance from the epicenter can be a powerful constraint on focal depth. Furthermore, we demonstrate that even a single incorrectly timed S phase can result in depth estimates and associated measures of uncertainty that are significantly incorrect. -from Authors

  1. An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Barmore, Bryan

    2009-01-01

    The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.

  2. Examining P-Wave Arrivals of Low-Frequency Earthquakes for Evidence of Attenuation and its Effects on Moment-Duration Scaling

    NASA Astrophysics Data System (ADS)

    Gerzina, J.; Rubin, A. M.

    2017-12-01

    Bostock et. al. (2015) found that low-frequency earthquake (LFE) duration is nearly independent of moment, a result that is surprising enough to warrant investigating whether it might be an artifact of attenuation. Bostock et. al. (2017) found that bulk crustal attenuation could not be the culprit, but suggested that near-source attenuation might cause pronounced depletion of high frequency S-waves. Despite their lower signal-to noise ratio, looking at the P-waves might be enlightening because they aren't expected to attenuate as much as S-waves in the high Vp/Vs region near the tremor source. We have examined P-wave arrivals of LFEs that occurred during episodic tremor in the Cascadia subduction zone with the goal of refining the relationship between LFE magnitude and duration.Bostock et. al's duration measurements were made on stacked templates rather than individual arrivals. Because members of Bostock's LFE families vary in location, and therefore in P-S delay time, aligning the stacks primarily on the S arrival may artificially widen the P pulse. To circumvent this, we used cross-station cross correlations on Bostock's detections to identify and stack events with similar locations and therefore similar P-S delay times, until P arrivals became visible. We then stacked these stacks based on cross-correlating the optimal P component in a small window surrounding the P arrival. Although this procedure narrowed both the P and S pulse widths, it did not dramatically narrow P in relation to S, nor did we observe different P pulse widths for small and large events.We also compared the frequency spectra of small windows around the expected P and S arrivals for each amplitude bin. Although there is more high-frequency content in P-waves than S-waves, we have not yet been able to resolve a difference in P-wave corner frequency for different event sizes. Thus our preliminary results support the notion that LFEs are intrinsically low frequency.

  3. Earthquakes: Recurrence and Interoccurrence Times

    NASA Astrophysics Data System (ADS)

    Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.; Yakovlev, G.; Goltz, C.; Newman, W. I.

    2008-04-01

    The purpose of this paper is to discuss the statistical distributions of recurrence times of earthquakes. Recurrence times are the time intervals between successive earthquakes at a specified location on a specified fault. Although a number of statistical distributions have been proposed for recurrence times, we argue in favor of the Weibull distribution. The Weibull distribution is the only distribution that has a scale-invariant hazard function. We consider three sets of characteristic earthquakes on the San Andreas fault: (1) The Parkfield earthquakes, (2) the sequence of earthquakes identified by paleoseismic studies at the Wrightwood site, and (3) an example of a sequence of micro-repeating earthquakes at a site near San Juan Bautista. In each case we make a comparison with the applicable Weibull distribution. The number of earthquakes in each of these sequences is too small to make definitive conclusions. To overcome this difficulty we consider a sequence of earthquakes obtained from a one million year “Virtual California” simulation of San Andreas earthquakes. Very good agreement with a Weibull distribution is found. We also obtain recurrence statistics for two other model studies. The first is a modified forest-fire model and the second is a slider-block model. In both cases good agreements with Weibull distributions are obtained. Our conclusion is that the Weibull distribution is the preferred distribution for estimating the risk of future earthquakes on the San Andreas fault and elsewhere.

  4. Toward real-time regional earthquake simulation II: Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liu, Qinya; Tromp, Jeroen; Komatitsch, Dimitri; Liang, Wen-Tzong; Huang, Bor-Shouh

    2014-06-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 min after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). A new island-wide, high resolution SEM mesh model is developed for the whole Taiwan in this study. We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 min for a 70 s ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  5. Fault zone structure determined through the analysis of earthquake arrival times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelini, A.

    1991-10-01

    This thesis develops and applies a technique for the simultaneous determination of P and S wave velocity models and hypocenters from a set of arrival times. The velocity models are parameterized in terms of cubic B-splines basis functions which permit the retrieval of smooth models that can be used directly for generation of synthetic seismograms using the ray method. In addition, this type of smoothing limits the rise of instabilities related to the poor resolving power of the data. V{sub P}/V{sub S} ratios calculated from P and S models display generally instabilities related to the different ray-coverages of compressional andmore » shear waves. However, V{sub P}/V{sub S} ratios are important for correct identification of rock types and this study introduces a new methodology based on adding some coupling (i.e., proportionality) between P and S models which stabilizes the V{sub P}/V{sub S} models around some average preset value determined from the data. Tests of the technique with synthetic data show that this additional coupling regularizes effectively the resulting models.« less

  6. Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site

    USGS Publications Warehouse

    Roecker, S.; Thurber, C.; McPhee, D.

    2004-01-01

    Taking advantage of large datasets of both gravity and elastic wave arrival time observations available for the Parkfield, California region, we generated an image consistent with both types of data. Among a variety of strategies, the best result was obtained from a simultaneous inversion with a stability requirement that encouraged the perturbed model to remain close to a starting model consisting of a best fit to the arrival time data. The preferred model looks essentially the same as the best-fit arrival time model in areas where ray coverage is dense, with differences being greatest at shallow depths and near the edges of the model where ray paths are few. Earthquake locations change by no more than about 100 m, the general effect being migration of the seismic zone to the northeast, closer to the surface trace of the San Andreas Fault. Copyright 2004 by the American Geophysical Union.

  7. Global Instrumental Seismic Catalog: earthquake relocations for 1900-present

    NASA Astrophysics Data System (ADS)

    Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.

    2010-12-01

    We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.

  8. Brady's Geothermal Field Nodal Seismometer Earthquake Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurt Feigl

    90-second records of data from 238 three-component nodal seismometer deployed at Bradys geothermal field. The time window catches an earthquake arrival. Earthquake data from USGS online catalog: Magnitude: 4.3 ml +/- 0.4 Location: 38.479 deg N 118.366 deg W +/- 0.7 km Depth: 9.9 km +/- 0.7 Date and Time: 2016-03-21 07:37:10.535 UTC

  9. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination

    USGS Publications Warehouse

    Robert, Engdah E.; Van Hilst, R. D.; Buland, Raymond P.

    1998-01-01

    We relocate nearly 100, 000 events that occurred during the period 1964 to 1995 and are well-constrained teleseismically by arrival-time data reported to the International Seismological Centre (ISC) and to the U. S. Geological Survey's National Earthquake Information Center (NEIC). Hypocenter determination is significantly improved by using, in addition to regional and teleseismic P and S phases, the arrival times of PKiKP, PKPdf, and the teleseismic depth phases pP, pwP, and sP in the relocation procedure. A global probability model developed for later-arriving phases is used to independently identify the depth phases. The relocations are compared to hypocenters reported in the ISC and NEIC catalogs and by other sources. Differences in our epicenters with respect to ISC and NEIC estimates are generally small and regionally systematic due to the combined effects of the observing station network and plate geometry regionally, differences in upper mantle travel times between the reference earth models used, and the use of later-arriving phases. Focal depths are improved substantially over most other independent estimates, demonstrating (for example) how regional structures such as downgoing slabs can severely bias depth estimation when only regional and teleseismic P arrivals are used to determine the hypocenter. The new data base, which is complete to about Mw 5. 2 and includes all events for which moment-tensor solutions are available, has immediate application to high-resolution definition of Wadati-Benioff Zones (WBZs) worldwide, regional and global tomographic imaging, and other studies of earth structure.

  10. Incorporating fault zone head wave and direct wave secondary arrival times into seismic tomography: Application at Parkfield, California

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Thurber, C. H.; Zhang, H.; Peng, Z.; Zhao, P.

    2011-12-01

    Large crustal faults such as the San Andreas fault (SAF) often juxtapose rocks of significantly different elastic properties, resulting in well-defined bimaterial interfaces. A sharp material contrast across the fault interface is expected to generate fault zone head waves (FZHW's) that spend a large portion of their propagation paths refracting along the bimaterial interface (Ben-Zion 1989, 1990; Ben-Zion & Aki 1990). Because of this FZHW's provide a high-resolution tool for imaging the velocity contrast across the fault. Recently, Zhao et al. (2010) systematically analyzed large data sets of near-fault waveforms recorded by several permanent and temporary seismic networks along the Parkfield section of the SAF. The local-scale tomography study of Zhang et al. (2009) for a roughly 10 km3 volume centered on SAFOD and the more regional-scale study of Thurber et al. (2006) for a 130 km x 120 km x 20 km volume centered on the 2004 Parkfield earthquake rupture provide what are probably the best 3D images of the seismic velocity structure of the area. The former shows a low velocity zone associated with the SAF extending to significant depth, and both image the well-known velocity contrast across the fault. Seismic tomography generally uses just first P and/or S arrivals because of the relative simplicity of phase picking and ray tracing. Adding secondary arrivals such as FZHW's, however, can enhance the resolution of structure and strengthen constraints on earthquake locations and focal mechanisms. We present a model of 3D velocity structure for the Parkfield region that utilizes a combination of arrival times for FZHW's and the associated direct-wave secondary arrivals as well as existing P-wave arrival time data. The resulting image provides a higher-resolution model of the SAF at depth than previously published models. In addition, we plan to measure polarizations of the direct P and S waves and FZHW's and incorporate the data into our updated velocity tomography

  11. Toward real-time regional earthquake simulation of Taiwan earthquakes

    NASA Astrophysics Data System (ADS)

    Lee, S.; Liu, Q.; Tromp, J.; Komatitsch, D.; Liang, W.; Huang, B.

    2013-12-01

    We developed a Real-time Online earthquake Simulation system (ROS) to simulate regional earthquakes in Taiwan. The ROS uses a centroid moment tensor solution of seismic events from a Real-time Moment Tensor monitoring system (RMT), which provides all the point source parameters including the event origin time, hypocentral location, moment magnitude and focal mechanism within 2 minutes after the occurrence of an earthquake. Then, all of the source parameters are automatically forwarded to the ROS to perform an earthquake simulation, which is based on a spectral-element method (SEM). We have improved SEM mesh quality by introducing a thin high-resolution mesh layer near the surface to accommodate steep and rapidly varying topography. The mesh for the shallow sedimentary basin is adjusted to reflect its complex geometry and sharp lateral velocity contrasts. The grid resolution at the surface is about 545 m, which is sufficient to resolve topography and tomography data for simulations accurate up to 1.0 Hz. The ROS is also an infrastructural service, making online earthquake simulation feasible. Users can conduct their own earthquake simulation by providing a set of source parameters through the ROS webpage. For visualization, a ShakeMovie and ShakeMap are produced during the simulation. The time needed for one event is roughly 3 minutes for a 70 sec ground motion simulation. The ROS is operated online at the Institute of Earth Sciences, Academia Sinica (http://ros.earth.sinica.edu.tw/). Our long-term goal for the ROS system is to contribute to public earth science outreach and to realize seismic ground motion prediction in real-time.

  12. Estimating epidemic arrival times using linear spreading theory

    NASA Astrophysics Data System (ADS)

    Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne

    2018-01-01

    We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.

  13. Real-time earthquake data feasible

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.

  14. Exploring Earthquakes in Real-Time

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Kafka, A. L.; Coleman, B.; Taber, J. J.

    2013-12-01

    Earthquakes capture the attention of students and inspire them to explore the Earth. Adding the ability to view and explore recordings of significant and newsworthy earthquakes in real-time makes the subject even more compelling. To address this opportunity, the Incorporated Research Institutions for Seismology (IRIS), in collaboration with Moravian College, developed ';jAmaSeis', a cross-platform application that enables students to access real-time earthquake waveform data. Students can watch as the seismic waves are recorded on their computer, and can be among the first to analyze the data from an earthquake. jAmaSeis facilitates student centered investigations of seismological concepts using either a low-cost educational seismograph or streamed data from other educational seismographs or from any seismic station that sends data to the IRIS Data Management System. After an earthquake, students can analyze the seismograms to determine characteristics of earthquakes such as time of occurrence, distance from the epicenter to the station, magnitude, and location. The software has been designed to provide graphical clues to guide students in the analysis and assist in their interpretations. Since jAmaSeis can simultaneously record up to three stations from anywhere on the planet, there are numerous opportunities for student driven investigations. For example, students can explore differences in the seismograms from different distances from an earthquake and compare waveforms from different azimuthal directions. Students can simultaneously monitor seismicity at a tectonic plate boundary and in the middle of the plate regardless of their school location. This can help students discover for themselves the ideas underlying seismic wave propagation, regional earthquake hazards, magnitude-frequency relationships, and the details of plate tectonics. The real-time nature of the data keeps the investigations dynamic, and offers students countless opportunities to explore.

  15. Wavelet-based automatic determination of the P- and S-wave arrivals

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.

    2013-12-01

    The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.

  16. Limiting the Effects of Earthquake Shaking on Gravitational-Wave Interferometers

    NASA Astrophysics Data System (ADS)

    Perry, M. R.; Earle, P. S.; Guy, M. R.; Harms, J.; Coughlin, M.; Biscans, S.; Buchanan, C.; Coughlin, E.; Fee, J.; Mukund, N.

    2016-12-01

    Second-generation ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to high-amplitude waves from teleseismic events, which can cause astronomical detectors to fall out of mechanical lock (lockloss). This causes the data to be useless for gravitational wave detection around the time of the seismic arrivals and for several hours thereafter while the detector stabilizes enough to return to the locked state. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining lock even at the expense of increased instrumental noise. Here we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Hypocenter and magnitude information is typically available within 5 to 20 minutes of the origin time of significant earthquakes, generally before the arrival of high-amplitude waves from these teleseisms at LIGO. These alerts are used to estimate arrival times and ground velocities at the gravitational wave detectors. In general, 94% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal with about 90% of the events falling within a factor of 2 of the final predicted value. By using a Machine Learning Algorithm, we develop a lockloss prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could save lockloss from 40-100 earthquake events in a 6-month time-period.

  17. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking

  18. A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank

    2004-01-01

    The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.

  19. Investigation of Backprojection Uncertainties With M6 Earthquakes

    NASA Astrophysics Data System (ADS)

    Fan, Wenyuan; Shearer, Peter M.

    2017-10-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P wave backprojection imaging of large earthquake ruptures. These errors occur because empirically estimated time shifts based on aligning P wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-M7 earthquakes over a 10 year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross correlation of their initial P wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare backprojection images for each earthquake using its own timing corrections with those obtained using the time corrections from other earthquakes. This provides a measure of how well subevents can be resolved with backprojection of a large rupture as a function of distance from the hypocenter. Our results show that backprojection is generally very robust and that the median subevent location error is about 25 km across the entire study region (˜700 km). The backprojection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3-D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine backprojection images using aftershock calibration, at least in this region.

  20. A seismoacoustic study of the 2011 January 3 Circleville earthquake

    NASA Astrophysics Data System (ADS)

    Arrowsmith, Stephen J.; Burlacu, Relu; Pankow, Kristine; Stump, Brian; Stead, Richard; Whitaker, Rod; Hayward, Chris

    2012-05-01

    We report on a unique set of infrasound observations from a single earthquake, the 2011 January 3 Circleville earthquake (Mw 4.7, depth of 8 km), which was recorded by nine infrasound arrays in Utah. Based on an analysis of the signal arrival times and backazimuths at each array, we find that the infrasound arrivals at six arrays can be associated to the same source and that the source location is consistent with the earthquake epicentre. Results of propagation modelling indicate that the lack of associated arrivals at the remaining three arrays is due to path effects. Based on these findings we form the working hypothesis that the infrasound is generated by body waves causing the epicentral region to pump the atmosphere, akin to a baffled piston. To test this hypothesis, we have developed a numerical seismoacoustic model to simulate the generation of epicentral infrasound from earthquakes. We model the generation of seismic waves using a 3-D finite difference algorithm that accounts for the earthquake moment tensor, source time function, depth and local geology. The resultant acceleration-time histories on a 2-D grid at the surface then provide the initial conditions for modelling the near-field infrasonic pressure wave using the Rayleigh integral. Finally, we propagate the near-field source pressure through the Ground-to-Space atmospheric model using a time-domain Parabolic Equation technique. By comparing the resultant predictions with the six epicentral infrasound observations from the 2011 January 3, Circleville earthquake, we show that the observations agree well with our predictions. The predicted and observed amplitudes are within a factor of 2 (on average, the synthetic amplitudes are a factor of 1.6 larger than the observed amplitudes). In addition, arrivals are predicted at all six arrays where signals are observed, and importantly not predicted at the remaining three arrays. Durations are typically predicted to within a factor of 2, and in some cases

  1. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    NASA Astrophysics Data System (ADS)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.

  2. Natural Time and Nowcasting Earthquakes: Are Large Global Earthquakes Temporally Clustered?

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Turcotte, Donald L.

    2018-02-01

    The objective of this paper is to analyze the temporal clustering of large global earthquakes with respect to natural time, or interevent count, as opposed to regular clock time. To do this, we use two techniques: (1) nowcasting, a new method of statistically classifying seismicity and seismic risk, and (2) time series analysis of interevent counts. We chose the sequences of M_{λ } ≥ 7.0 and M_{λ } ≥ 8.0 earthquakes from the global centroid moment tensor (CMT) catalog from 2004 to 2016 for analysis. A significant number of these earthquakes will be aftershocks of the largest events, but no satisfactory method of declustering the aftershocks in clock time is available. A major advantage of using natural time is that it eliminates the need for declustering aftershocks. The event count we utilize is the number of small earthquakes that occur between large earthquakes. The small earthquake magnitude is chosen to be as small as possible, such that the catalog is still complete based on the Gutenberg-Richter statistics. For the CMT catalog, starting in 2004, we found the completeness magnitude to be M_{σ } ≥ 5.1. For the nowcasting method, the cumulative probability distribution of these interevent counts is obtained. We quantify the distribution using the exponent, β, of the best fitting Weibull distribution; β = 1 for a random (exponential) distribution. We considered 197 earthquakes with M_{λ } ≥ 7.0 and found β = 0.83 ± 0.08. We considered 15 earthquakes with M_{λ } ≥ 8.0, but this number was considered too small to generate a meaningful distribution. For comparison, we generated synthetic catalogs of earthquakes that occur randomly with the Gutenberg-Richter frequency-magnitude statistics. We considered a synthetic catalog of 1.97 × 10^5 M_{λ } ≥ 7.0 earthquakes and found β = 0.99 ± 0.01. The random catalog converted to natural time was also random. We then generated 1.5 × 10^4 synthetic catalogs with 197 M_{λ } ≥ 7.0 in each catalog and

  3. Stress Regime in the Nepalese Himalaya from Recent Earthquakes.

    NASA Astrophysics Data System (ADS)

    Pant, M.; Karplus, M. S.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Sapkota, S. N.; Klemperer, S. L.; Patlan, E.

    2017-12-01

    The two recent earthquakes, April 25, 2015 Mw 7.8 (Gorkha earthquake) and May 12, 2015 Mw 7.2, at the Indo-Eurasian plate margin killed thousands of people and caused billion dollars of property loss. In response to these events, we deployed a dense array of seismometers to record the aftershocks along Gorkha earthquake rupture area. Our network NAMASTE (Nepal Array Measuring Aftershock Seismicity Trailing Earthquake) included 45 different seismic stations (16 short period, 25 broadband, and 4 strong motion sensors) covering a large area from north-central Nepal to south of the Main Frontal Thrust at a spacing of 20 km. The instruments recorded aftershocks from June 2015 to May 2016. We used time domain short term average (STA) and long term average (LTA) algorithms (1/10s and 4/40s) respectively to detect the arrivals and then developed an earthquake catalog containing 9300 aftershocks. We are manually picking the P-wave first motion arrival polarity to develop a catalog of focal mechanisms for the larger magnitude (>M3.0) events with adequate (>10) arrivals. We hope to characterize the seismicity and stress mechanisms of the complex fault geometries in the Nepalese Himalaya and to address the geophysical processes controlling seismic cycles in the Indo-Eurasian plate margin.

  4. GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.

    2015-12-01

    The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.

  5. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking

  6. Investigation of Back-Projection Uncertainties with M6 Earthquakes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Shearer, P. M.

    2017-12-01

    We investigate possible biasing effects of inaccurate timing corrections on teleseismic P-wave back-projection imaging of large earthquake ruptures. These errors occur because empirically-estimated time shifts based on aligning P-wave first arrivals are exact only at the hypocenter and provide approximate corrections for other parts of the rupture. Using the Japan subduction zone as a test region, we analyze 46 M6-7 earthquakes over a ten-year period, including many aftershocks of the 2011 M9 Tohoku earthquake, performing waveform cross-correlation of their initial P-wave arrivals to obtain hypocenter timing corrections to global seismic stations. We then compare back-projection images for each earthquake using its own timing corrections with those obtained using the time corrections for other earthquakes. This provides a measure of how well sub-events can be resolved with back-projection of a large rupture as a function of distance from the hypocenter. Our results show that back-projection is generally very robust and that sub-event location errors average about 20 km across the entire study region ( 700 km). The back-projection coherence loss and location errors do not noticeably converge to zero even when the event pairs are very close (<20 km). This indicates that most of the timing differences are due to 3D structure close to each of the hypocenter regions, which limits the effectiveness of attempts to refine back-projection images using aftershock calibration, at least in this region.

  7. Earthquake triggering at alaskan volcanoes following the 3 November 2002 denali fault earthquake

    USGS Publications Warehouse

    Moran, S.C.; Power, J.A.; Stihler, S.D.; Sanchez, J.J.; Caplan-Auerbach, J.

    2004-01-01

    The 3 November 2002 Mw 7.9 Denali fault earthquake provided an excellent opportunity to investigate triggered earthquakes at Alaskan volcanoes. The Alaska Volcano Observatory operates short-period seismic networks on 24 historically active volcanoes in Alaska, 247-2159 km distant from the mainshock epicenter. We searched for evidence of triggered seismicity by examining the unfiltered waveforms for all stations in each volcano network for ???1 hr after the Mw 7.9 arrival time at each network and for significant increases in located earthquakes in the hours after the mainshock. We found compelling evidence for triggering only at the Katmai volcanic cluster (KVC, 720-755 km southwest of the epicenter), where small earthquakes with distinct P and 5 arrivals appeared within the mainshock coda at one station and a small increase in located earthquakes occurred for several hours after the mainshock. Peak dynamic stresses of ???0.1 MPa at Augustine Volcano (560 km southwest of the epicenter) are significantly lower than those recorded in Yellowstone and Utah (>3000 km southeast of the epicenter), suggesting that strong directivity effects were at least partly responsible for the lack of triggering at Alaskan volcanoes. We describe other incidents of earthquake-induced triggering in the KVC, and outline a qualitative magnitude/distance-dependent triggering threshold. We argue that triggering results from the perturbation of magmatic-hydrothermal systems in the KVC and suggest that the comparative lack of triggering at other Alaskan volcanoes could be a result of differences in the nature of magmatic-hydrothermal systems.

  8. Delay time between onset of ischemic stroke and hospital arrival.

    PubMed

    Biller, J; Patrick, J T; Shepard, A; Adams, H P

    1993-01-01

    Some current experimental protocols for acute ischemic stroke require the initiation of treatment within hours of the onset of stroke symptoms. We prospectively evaluated 30 patients with acute ischemic stroke based on clinical and computed tomography findings. The time between the onset of stroke symptoms and arrival in the emergency room and subsequently on the stroke service was determined. Within 3, 6,12, and 24 h of the onset of stroke symptoms, 16 (53%), 19 (63%), 22 (73%), and 25 (83%) patients had arrived at the emergency room and 0 (0%), 4 (13%), 14 (47%), and 22 (73%) of them on the stroke service, respectively. From the onset of stroke symptoms, the mean arrival time to the emergency room was 24 h (range, 30 min to 144 h) and to the stroke service was 61 h (range, 4-150 h). The mean time between arrival in the emergency room and stroke service was 8.6 h (range, 0-47 h). Even though 53% and 63% of our patients arrived at the emergency room within 3 and 6 h of the onset of stroke symptoms, only 0% and 13% of them arrived on the stroke service within the same time period for the initiation of treatment, respectively. Thus, in order for more patients to qualify for current experimental protocols, they must arrive on the stroke service more quickly or treatment must be initiated in the emergency room. Copyright © 1993. Published by Elsevier Inc.

  9. Earthquake early warning for Romania - most recent improvements

    NASA Astrophysics Data System (ADS)

    Marmureanu, Alexandru; Elia, Luca; Martino, Claudio; Colombelli, Simona; Zollo, Aldo; Cioflan, Carmen; Toader, Victorin; Marmureanu, Gheorghe; Marius Craiu, George; Ionescu, Constantin

    2014-05-01

    EWS for Vrancea earthquakes uses the time interval (28-32 sec.) between the moment when the earthquake is detected by the local seismic network installed in the epicenter area (Vrancea) and the arrival time of the seismic waves in the protected area (Bucharest) to send earthquake warning to users. In the last years, National Institute for Earth Physics (NIEP) upgraded its seismic network in order to cover better the seismic zones of Romania. Currently the National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T,STS2, SH-1, S13, Ranger, gs21, Mark l22) and acceleration sensors (Episensor). Recent improvement of the seismic network and real-time communication technologies allows implementation of a nation-wide EEWS for Vrancea and other seismic sources from Romania. We present a regional approach to Earthquake Early Warning for Romania earthquakes. The regional approach is based on PRESTo (Probabilistic and Evolutionary early warning SysTem) software platform: PRESTo processes in real-time three channel acceleration data streams: once the P-waves arrival have been detected, it provides earthquake location and magnitude estimations, and peak ground motion predictions at target sites. PRESTo is currently implemented in real- time at National Institute for Earth Physics, Bucharest for several months in parallel with a secondary EEWS. The alert notification is issued only when both systems validate each other. Here we present the results obtained using offline earthquakes originating from Vrancea area together with several real-time

  10. Earthquake Early Warning in Japan - Result of recent two years -

    NASA Astrophysics Data System (ADS)

    Shimoyama, T.; Doi, K.; Kiyomoto, M.; Hoshiba, M.

    2009-12-01

    Japan Meteorological Agency(JMA) started to provide Earthquake Early Warning(EEW) to the general public in October 2007. It was followed by provision of EEW to a limited number of users who understand the technical limit of EEW and can utilize it for automatic control from August 2006. Earthquake Early Warning in Japan definitely means information of estimated amplitude and arrival time of a strong ground motion after fault rupture occurred. In other words, the EEW provided by JMA is defined as a forecast of a strong ground motion before the strong motion arrival. EEW of JMA is to enable advance countermeasures to disasters caused by strong ground motions with providing a warning message of anticipating strong ground motion before the S wave arrival. However, due to its very short available time period, there should need some measures and ideas to provide rapidly EEW and utilize it properly. - EEW is issued to general public when the maximum seismic intensity 5 lower (JMA scale) or greater is expected. - EEW message contains origin time, epicentral region name, and names of areas (unit is about 1/3 to 1/4 of one prefecture) where seismic intensity 4 or greater is expected. Expected arrival time is not included because it differs substantially even in one unit area. - EEW is to be broadcast through the broadcasting media(TV, radio and City Administrative Disaster Management Radio), and is delivered to cellular phones through cell broadcast system. For those who would like to know the more precise estimation and smaller earthquake information at their point of their properties, JMA allows designated private companies to provide forecast of strong ground motion, in which the estimation of a seismic intensity as well as arrival time of S-wave are contained, at arbitrary places under the JMA’s technical assurance. From October, 2007 to August, 2009, JMA issued 11 warnings to general public expecting seismic intensity “5 lower” or greater, including M=7.2 inland

  11. Near-real time 3D probabilistic earthquakes locations at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Barberi, G.; D'Agostino, M.; Mostaccio, A.; Patane', D.; Tuve', T.

    2012-04-01

    Automatic procedure for locating earthquake in quasi-real time must provide a good estimation of earthquakes location within a few seconds after the event is first detected and is strongly needed for seismic warning system. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. On Mt. Etna, the seismic network is managed by INGV and the quasi-real time earthquakes locations are performed by using an automatic-picking algorithm based on short-term-average to long-term-average ratios (STA/LTA) calculated from an approximate squared envelope function of the seismogram, which furnish a list of P-wave arrival times, and the location algorithm Hypoellipse, with a 1D velocity model. The main purpose of this work is to investigate the performances of a different automatic procedure to improve the quasi-real time earthquakes locations. In fact, as the automatic data processing may be affected by outliers (wrong picks), the use of a traditional earthquake location techniques based on a least-square misfit function (L2-norm) often yield unstable and unreliable solutions. Moreover, on Mt. Etna, the 1D model is often unable to represent the complex structure of the volcano (in particular the strong lateral heterogeneities), whereas the increasing accuracy in the 3D velocity models at Mt. Etna during recent years allows their use today in routine earthquake locations. Therefore, we selected, as reference locations, all the events occurred on Mt. Etna in the last year (2011) which was automatically detected and located by means of the Hypoellipse code. By using this dataset (more than 300 events), we applied a nonlinear probabilistic earthquake location algorithm using the Equal Differential Time (EDT) likelihood function, (Font et al., 2004; Lomax, 2005) which is much more robust in the presence of outliers in the data. Successively, by using a probabilistic

  12. Social factors influencing hospital arrival time in acute ischemic stroke patients.

    PubMed

    Iosif, Christina; Papathanasiou, Mathilda; Staboulis, Eleftherios; Gouliamos, Athanasios

    2012-04-01

    This is a multi-center, hospital-based study aiming to estimate social factors influencing pre-hospital times of arrival in acute ischemic stroke, with a perspective of finding ways to reduce arrival time and to augment the number of patients eligible for intra-arterial thrombolysis. Acute ischemic stroke patients who presented at the emergency units of four major general public hospitals were registered. We assessed information concerning demographics, time of presentation, clinical situation, imaging, treatment, and socioeconomic factors. The sample was divided in two sub-samples, based on the time of arrival since onset of symptoms, and was statistically analyzed. During one calendar year (2005), 907 patients were registered. Among them 34.6% arrived in the first 6 h from symptom onset, 38.7% arrived between 6 and 24 h, 18.1% after 24 h and for 8.6% the time of onset was unknown. Younger age (P = 0.007), transfer with ambulatory service (Ρ = 0.002), living with a mate (Ρ = 0.004), and higher educational level (P < 0.005) were factors which correlated significantly with early arrival at the hospital. Instructing patients at high risk for stroke to live with a housemate appears beneficial for timely arrival at the hospital. The establishment of dedicated acute stroke call and transportation center should improve the percentage of early arrival. A national information campaign is needed to increase the level of awareness of the population concerning beneficial social behaviors and optimal reaction to symptoms of acute ischemic stroke.

  13. CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-04-01

    CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.

  14. Determination Hypocentre and Focal Mechanism Earthquake of Oct 31, 2016 in Bone, South Sulawesi

    NASA Astrophysics Data System (ADS)

    Altin Massinai, Muhammad; Fawzy Ismullah M, Muhammad

    2018-03-01

    Indonesian Meteorology, Climatology and Geophysics Agency (BMKG) recorded an earthquake with M4.6 on at October 31, 2016 at Bone District, around 80 Km northeast form Makassar, South Sulawesi. The earthquake occurred 18:18:14 local time in 4.7°S, 120°E with depth 10 Km. Seismicity around location predicted caused by activity Walennae fault. We reprocessed earthquake data to determine precise hypocentre location and focal mechanism. The P- and S-wave arrival time got from BMKG used as input HYPOELLIPSE code to determine hypocentre. The results showed that the earthquake occurred 10:18:14.46 UTC in 4.638°S, 119.966°E with depth 24.76 Km. The hypocentre resolved 10 Km fix depth and had lower travel time residual than BMKG result. Focal mechanism determination used Azmtak code based on the first arrival polarity at earthquake waveform manually picked. The result showed a reverse mechanism with strike direction 38°, dip 44°, rake angle 134° on fault plane I and strike direction 164°, dip 60°, rake angle 56° on fault plane II. So, the earthquake which may be related to a reverse East Walennae Fault.

  15. Time of arrival in quantum and Bohmian mechanics

    NASA Astrophysics Data System (ADS)

    Leavens, C. R.

    1998-08-01

    In a recent paper Grot, Rovelli, and Tate (GRT) [Phys. Rev. A 54, 4676 (1996)] derived an expression for the probability distribution π(TX) of intrinsic arrival times T(X) at position x=X for a quantum particle with initial wave function ψ(x,t=0) freely evolving in one dimension. This was done by quantizing the classical expression for the time of arrival of a free particle at X, assuming a particular choice of operator ordering, and then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product wave packet at t=0 with average wave number and variance Δk they showed that their analytical expression for π(TX) agreed with the probability current density J(x=X,t=T) only to terms of order Δk/. They dismissed the probability current density as a viable candidate for the exact arrival time distribution on the grounds that it can sometimes be negative. This fact is not a problem within Bohmian mechanics where the arrival time distribution for a particle, either free or in the presence of a potential, is rigorously given by \\|J(X,T)\\| (suitably normalized) [W. R. McKinnon and C. R. Leavens, Phys. Rev. A 51, 2748 (1995); C. R. Leavens, Phys. Lett. A 178, 27 (1993); M. Daumer et al., in On Three Levels: The Mathematical Physics of Micro-, Meso-, and Macro-Approaches to Physics, edited by M. Fannes et al. (Plenum, New York, 1994); M. Daumer, in Bohmian Mechanics and Quantum Theory: An Appraisal, edited by J. T. Cushing et al. (Kluwer Academic, Dordrecht, 1996)]. The two theories are compared in this paper and a case presented for which the results could not differ more: According to GRT's theory, every particle in the ensemble reaches a point x=X, where ψ(x,t) and J(x,t) are both zero for all t, while no particle ever reaches X according to the theory based on Bohmian mechanics. Some possible implications are discussed.

  16. Improvements of the offshore earthquake locations in the Earthquake Early Warning System

    NASA Astrophysics Data System (ADS)

    Chen, Ta-Yi; Hsu, Hsin-Chih

    2017-04-01

    Since 2014 the Earthworm Based Earthquake Alarm Reporting (eBEAR) system has been operated and been used to issue warnings to schools. In 2015 the system started to provide warnings to the public in Taiwan via television and the cell phone. Online performance of the eBEAR system indicated that the average reporting times afforded by the system are approximately 15 and 28 s for inland and offshore earthquakes, respectively. The eBEAR system in average can provide more warning time than the current EEW system (3.2 s and 5.5 s for inland and offshore earthquakes, respectively). However, offshore earthquakes were usually located poorly because only P-wave arrivals were used in the eBEAR system. Additionally, in the early stage of the earthquake early warning system, only fewer stations are available. The poor station coverage may be a reason to answer why offshore earthquakes are difficult to locate accurately. In the Geiger's inversion procedure of earthquake location, we need to put an initial hypocenter and origin time into the location program. For the initial hypocenter, we defined some test locations on the offshore area instead of using the average of locations from triggered stations. We performed 20 programs concurrently running the Geiger's method with different pre-defined initial position to locate earthquakes. We assume that if the program with the pre-defined initial position is close to the true earthquake location, during the iteration procedure of the Geiger's method the processing time of this program should be less than others. The results show that using pre-defined locations for trial-hypocenter in the inversion procedure is able to improve the accurate of offshore earthquakes. Especially for EEW system, in the initial stage of the EEW system, only use 3 or 5 stations to locate earthquakes may lead to bad results because of poor station coverage. In this study, the pre-defined trial-locations provide a feasible way to improve the estimations of

  17. Improvements to Earthquake Location with a Fuzzy Logic Approach

    NASA Astrophysics Data System (ADS)

    Gökalp, Hüseyin

    2018-01-01

    In this study, improvements to the earthquake location method were investigated using a fuzzy logic approach proposed by Lin and Sanford (Bull Seismol Soc Am 91:82-93, 2001). The method has certain advantages compared to the inverse methods in terms of eliminating the uncertainties of arrival times and reading errors. In this study, adopting this approach, epicentral locations were determined based on the results of a fuzzy logic space concerning the uncertainties in the velocity models. To map the uncertainties in arrival times into the fuzzy logic space, a trapezoidal membership function was constructed by directly using the travel time difference between the two stations for the P- and S-arrival times instead of the P- and S-wave models to eliminate the need for obtaining information concerning the velocity structure of the study area. The results showed that this method worked most effectively when earthquakes occurred away from a network or when the arrival time data contained phase reading errors. In this study, to resolve the problems related to determining the epicentral locations of the events, a forward modeling method like the grid search technique was used by applying different logical operations (i.e., intersection, union, and their combination) with a fuzzy logic approach. The locations of the events were depended on results of fuzzy logic outputs in fuzzy logic space by searching in a gridded region. The process of location determination with the defuzzification of only the grid points with the membership value of 1 obtained by normalizing all the maximum fuzzy output values of the highest values resulted in more reliable epicentral locations for the earthquakes than the other approaches. In addition, throughout the process, the center-of-gravity method was used as a defuzzification operation.

  18. Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002

    NASA Astrophysics Data System (ADS)

    Che, Il-Young; Kim, Geunyoung; Le Pichon, Alexis

    2013-02-01

    On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.

  19. Particle detection and non-detection in a quantum time of arrival measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.

    2016-01-15

    The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less

  20. Real-time earthquake source imaging: An offline test for the 2011 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wang, Rongjiang; Zschau, Jochen; Parolai, Stefano; Dahm, Torsten

    2014-05-01

    In recent decades, great efforts have been expended in real-time seismology aiming at earthquake and tsunami early warning. One of the most important issues is the real-time assessment of earthquake rupture processes using near-field seismogeodetic networks. Currently, earthquake early warning systems are mostly based on the rapid estimate of P-wave magnitude, which contains generally large uncertainties and the known saturation problem. In the case of the 2011 Mw9.0 Tohoku earthquake, JMA (Japan Meteorological Agency) released the first warning of the event with M7.2 after 25 s. The following updates of the magnitude even decreased to M6.3-6.6. Finally, the magnitude estimate stabilized at M8.1 after about two minutes. This led consequently to the underestimated tsunami heights. By using the newly developed Iterative Deconvolution and Stacking (IDS) method for automatic source imaging, we demonstrate an offline test for the real-time analysis of the strong-motion and GPS seismograms of the 2011 Tohoku earthquake. The results show that we had been theoretically able to image the complex rupture process of the 2011 Tohoku earthquake automatically soon after or even during the rupture process. In general, what had happened on the fault could be robustly imaged with a time delay of about 30 s by using either the strong-motion (KiK-net) or the GPS (GEONET) real-time data. This implies that the new real-time source imaging technique is helpful to reduce false and missing warnings, and therefore should play an important role in future tsunami early warning and earthquake rapid response systems.

  1. Failure time analysis with unobserved heterogeneity: Earthquake duration time of Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ata, Nihal, E-mail: nihalata@hacettepe.edu.tr; Kadilar, Gamze Özel, E-mail: gamzeozl@hacettepe.edu.tr

    Failure time models assume that all units are subject to same risks embodied in the hazard functions. In this paper, unobserved sources of heterogeneity that are not captured by covariates are included into the failure time models. Destructive earthquakes in Turkey since 1900 are used to illustrate the models and inter-event time between two consecutive earthquakes are defined as the failure time. The paper demonstrates how seismicity and tectonics/physics parameters that can potentially influence the spatio-temporal variability of earthquakes and presents several advantages compared to more traditional approaches.

  2. Carbon isotope turnover as a measure of arrival time in migratory birds

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Arrival time on breeding or non-breeding areas is of interest in many ecological studies exploring fitness consequences of migratory schedules. However, in most field studies, it is difficult to precisely assess arrival time of individuals. Here, we use carbon isotope turnover in avian blood as a technique to estimate arrival time for birds switching from one habitat or environment to another. Stable carbon isotope ratios (δ13C) in blood assimilate to a new equilibrium following a diet switch according to an exponential decay function. This relationship can be used to determine the time a diet switch occurred if δ13C of both the old and new diet are known. We used published data of captive birds to validate that this approach provides reliable estimates of the time since a diet switch within 1–3 weeks after the diet switch. We then explored the utility of this technique for King Eiders (Somateria spectabilis) arriving on terrestrial breeding grounds after wintering and migration at sea. We estimated arrival time on breeding grounds in northern Alaska (95% CI) from red blood cell δ13C turnover to be 4–9 June. This estimate overlapped with arrival time of birds from the same study site tracked with satellite transmitters (5–12 June). Therefore, we conclude that this method provides a simple yet reliable way to assess arrival time of birds moving between isotopically distinct environments.

  3. Real-Time Integration of Positioning and Accelerometer Data for Early Earthquake Warning on Canada's West Coast

    NASA Astrophysics Data System (ADS)

    Biffard, B.; Rosenberger, A.; Pirenne, B.; Valenzuela, M.; MacArthur, M.

    2017-12-01

    Ocean Networks Canada (ONC) operates ocean and coastal observatories on all three of Canada's coasts, and more particularly across the Cascadia subduction zone. The data are acquired, parsed, calibrated and archived by ONC's data management system (Oceans 2.0), with real-time event detection, reaction and access capabilities. As such, ONC is in a unique position to develop early warning systems for earthquakes, near- and far-field tsunamis and other events. ONC is leading the development of a system to alert southwestern British Columbia of an impending Cascadia subduction zone earthquake on behalf of the provincial government and with the support of the Canadian Federal Government. Similarly to other early earthquake warning systems, an array of accelerometers is used to detect the initial earthquake p-waves. This can provide 5-60 seconds of warning to subscribers who can then take action, such as stopping trains and surgeries, closing valves, taking cover, etc. To maximize the detection capability and the time available to react to a notification, instruments are placed both underwater and on land on Vancouver Island. A novel feature of ONC's system is, for land-based sites, the combination of real-time satellite positioning (GNSS) and accelerometer data in the calculations to improve earthquake intensity estimates. This results in higher accuracy, dynamic range and responsiveness than either type of sensor is capable of alone. P-wave detections and displacement data are sent from remote stations to a data centre that must calculate epicentre locations and magnitude. The latter are then delivered to subscribers with client software that, given their position, will calculate arrival time and intensity. All of this must occur with very high standards for latency, reliability and accuracy.

  4. Emergency department arrival times after acute ischemic stroke during the 1990s.

    PubMed

    Kleindorfer, Dawn O; Broderick, Joseph P; Khoury, Jane; Flaherty, Matthew L; Woo, Daniel; Alwell, Kathleen; Moomaw, Charles J; Pancioli, Arthur; Jauch, Edward; Miller, Rosie; Kissela, Brett M

    2007-01-01

    Only 8% of ischemic stroke (IS) patients are eligible for rt-PA, and the largest exclusion criterion is delayed time of presentation to the ED. We sought to investigate whether patients are arriving to the ED more quickly in 1999 than in 1993/94 within our large biracial population of 1.3 million. Using ICD-9 codes 430-436, we ascertained all stroke events that presented to a local ED within our population in 7/93-6/94 and again in 1999. Times were recorded as documented in the medical record. There were 1,792 IS patients that presented to an ED in 1993/94 and 1,973 in 1999. The percentage of patients with documented times arriving in under 3 h improved slightly in 1999 (26% vs. 23% in 93/94, P = 0.03), however, the percentage arriving in under 2 h did not. Blacks significantly improved in arrivals under 3 h: 26% in 1999 compared to 17% in 1993/94 (P = 0.01), while whites did not (26% vs. 25%, P = 0.29). In 1999, only 9% of patients arrived from 3-8 h after symptom onset, the large majority of times were either estimated, unknown, or >8 h. We found only marginal improvement in arrival times during the 1990s. In our population, blacks improved in early arrival after symptom onset, while whites did not. Very few patients arrive 3-8 h after onset; therefore expansion of the acute treatment time window to 8 h is unlikely to dramatically affect acute treatment of ischemic stroke.

  5. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  6. Analysis of the tsunami generated by the MW 7.8 1906 San Francisco earthquake

    USGS Publications Warehouse

    Geist, E.L.; Zoback, M.L.

    1999-01-01

    We examine possible sources of a small tsunami produced by the 1906 San Francisco earthquake, recorded at a single tide gauge station situated at the opening to San Francisco Bay. Coseismic vertical displacement fields were calculated using elastic dislocation theory for geodetically constrained horizontal slip along a variety of offshore fault geometries. Propagation of the ensuing tsunami was calculated using a shallow-water hydrodynamic model that takes into account the effects of bottom friction. The observed amplitude and negative pulse of the first arrival are shown to be inconsistent with small vertical displacements (~4-6 cm) arising from pure horizontal slip along a continuous right bend in the San Andreas fault offshore. The primary source region of the tsunami was most likely a recently recognized 3 km right step in the San Andreas fault that is also the probable epicentral region for the 1906 earthquake. Tsunami models that include the 3 km right step with pure horizontal slip match the arrival time of the tsunami, but underestimate the amplitude of the negative first-arrival pulse. Both the amplitude and time of the first arrival are adequately matched by using a rupture geometry similar to that defined for the 1995 MW (moment magnitude) 6.9 Kobe earthquake: i.e., fault segments dipping toward each other within the stepover region (83??dip, intersecting at 10 km depth) and a small component of slip in the dip direction (rake=-172??). Analysis of the tsunami provides confirming evidence that the 1906 San Francisco earthquake initiated at a right step in a right-lateral fault and propagated bilaterally, suggesting a rupture initiation mechanism similar to that for the 1995 Kobe earthquake.

  7. Acoustic Emission Detected by Matched Filter Technique in Laboratory Earthquake Experiment

    NASA Astrophysics Data System (ADS)

    Wang, B.; Hou, J.; Xie, F.; Ren, Y.

    2017-12-01

    Acoustic Emission in laboratory earthquake experiment is a fundamental measures to study the mechanics of the earthquake for instance to characterize the aseismic, nucleation, as well as post seismic phase or in stick slip experiment. Compared to field earthquake, AEs are generally recorded when they are beyond threshold, so some weak signals may be missing. Here we conducted an experiment on a 1.1m×1.1m granite with a 1.5m fault and 13 receivers with the same sample rate of 3MHz are placed on the surface. We adopt continues record and a matched filter technique to detect low-SNR signals. We found there are too many signals around the stick-slip and the P- arrival picked by manual may be time-consuming. So, we combined the short-term average to long-tem-average ratio (STA/LTA) technique with Autoregressive-Akaike information criterion (AR-AIC) technique to pick the arrival automatically and found mostly of the P- arrival accuracy can satisfy our demand to locate signals. Furthermore, we will locate the signals and apply a matched filter technique to detect low-SNR signals. Then, we can see if there is something interesting in laboratory earthquake experiment. Detailed and updated results will be present in the meeting.

  8. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE PAGES

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...

    2016-04-01

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  9. Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.

    Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less

  10. Hypocenter for the 1979 Imperial Valley Earthquake

    USGS Publications Warehouse

    Archuleta, Ralph J.

    1982-01-01

    Using P-and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32° 39.50′N, Longitude 115° 19.80′W, Depth 8.0 km, Time 23:16:54.40 GMT.

  11. Perturbation analysis of queueing systems with a time-varying arrival rate

    NASA Technical Reports Server (NTRS)

    Cassandras, Christos G.; Pan, Jie

    1991-01-01

    The authors consider an M/G/1 queuing with a time-varying arrival rate. The objective is to obtain infinitesimal perturbation analysis (IPA) gradient estimates for various performance measures of interest with respect to certain system parameters. In particular, the authors consider the mean system time over n arrivals and an arrival rate alternating between two values. By choosing a convenient sample path representation of this system, they derive an unbiased IPA gradient estimator which, however, is not consistent, and investigate the nature of this problem.

  12. Foreshocks and aftershocks of Pisagua 2014 earthquake: time and space evolution of megathrust event.

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Wollam, Jack; Thomas, Reece; de Lima Neto, Oscar; Tavera, Hernando; Garth, Thomas; Ruiz, Sergio

    2016-04-01

    The 2014 Pisagua earthquake of magnitude 8.2 is the first case in Chile where a foreshock sequence was clearly recorded by a local network, as well all the complete sequence including the mainshock and its aftershocks. The seismicity of the last year before the mainshock include numerous clusters close to the epicentral zone (Ruiz et al; 2014) but it was on 16th March that this activity became stronger with the Mw 6.7 precursory event taking place in front of Iquique coast at 12 km depth. The Pisagua earthquake arrived on 1st April 2015 breaking almost 120 km N-S and two days after a 7.6 aftershock occurred in the south of the rupture, enlarging the zone affected by this sequence. In this work, we analyse the foreshocks and aftershock sequence of Pisagua earthquake, from the spatial and time evolution for a total of 15.764 events that were recorded from the 1st March to 31th May 2015. This event catalogue was obtained from the automatic analyse of seismic raw data of more than 50 stations installed in the north of Chile and the south of Peru. We used the STA/LTA algorithm for the detection of P and S arrival times on the vertical components and then a method of back propagation in a 1D velocity model for the event association and preliminary location of its hypocenters following the algorithm outlined by Rietbrock et al. (2012). These results were then improved by locating with NonLinLoc software using a regional velocity model. We selected the larger events to analyse its moment tensor solution by a full waveform inversion using ISOLA software. In order to understand the process of nucleation and propagation of the Pisagua earthquake, we also analysed the evolution in time of the seismicity of the three months of data. The zone where the precursory events took place was strongly activated two weeks before the mainshock and remained very active until the end of the analysed period with an important quantity of the seismicity located in the upper plate and having

  13. The 2008 Wells, Nevada Earthquake Sequence: Application of Subspace Detection and Multiple Event Relocation Techniques

    NASA Astrophysics Data System (ADS)

    Nealy, J. L.; Benz, H.; Hayes, G. P.; Bergman, E.; Barnhart, W. D.

    2016-12-01

    On February 21, 2008 at 14:16:02 (UTC), Wells, Nevada experienced a Mw 6.0 earthquake, the largest earthquake in the state within the past 50 years. Here, we re-analyze in detail the spatiotemporal variations of the foreshock and aftershock sequence and compare the distribution of seismicity to a recent slip model based on inversion of InSAR observations. A catalog of earthquakes for the time period of February 1, 2008 through August 31, 2008 was derived from a combination of arrival time picks using a kurtosis detector (primarily P arrival times), subspace detector (primarily S arrival times), associating the combined pick dataset, and applying multiple event relocation techniques using the 19 closest USArray Transportable Array stations, permanent regional seismic monitoring stations in Nevada and Utah, and temporary stations deployed for an aftershock study. We were able to detect several thousand earthquakes in the months following the mainshock as well as several foreshocks in the days leading up to the event. We reviewed the picks for the largest 986 earthquakes and relocated them using the Hypocentroidal Decomposition (HD) method. The HD technique provides both relative locations for the individual earthquakes and an absolute location for the earthquake cluster, resulting in absolute locations of the events in the cluster having minimal bias from unknown Earth structure. A subset of these "calibrated" earthquake locations that spanned the duration of the sequence and had small uncertainties in location were used as prior constraints within a second relocation effort using the entire dataset and the Bayesloc approach. Accurate locations (to within 2 km) were obtained using Bayesloc for 1,952 of the 2,157 events associated over the seven-month period of the study. The final catalog of earthquake hypocenters indicates that the aftershocks extend for about 20 km along the strike of the ruptured fault. The aftershocks occur primarily updip and along the

  14. Universal Recurrence Time Statistics of Characteristic Earthquakes

    NASA Astrophysics Data System (ADS)

    Goltz, C.; Turcotte, D. L.; Abaimov, S.; Nadeau, R. M.

    2006-12-01

    Characteristic earthquakes are defined to occur quasi-periodically on major faults. Do recurrence time statistics of such earthquakes follow a particular statistical distribution? If so, which one? The answer is fundamental and has important implications for hazard assessment. The problem cannot be solved by comparing the goodness of statistical fits as the available sequences are too short. The Parkfield sequence of M ≍ 6 earthquakes, one of the most extensive reliable data sets available, has grown to merely seven events with the last earthquake in 2004, for example. Recently, however, advances in seismological monitoring and improved processing methods have unveiled so-called micro-repeaters, micro-earthquakes which recur exactly in the same location on a fault. It seems plausible to regard these earthquakes as a miniature version of the classic characteristic earthquakes. Micro-repeaters are much more frequent than major earthquakes, leading to longer sequences for analysis. Due to their recent discovery, however, available sequences contain less than 20 events at present. In this paper we present results for the analysis of recurrence times for several micro-repeater sequences from Parkfield and adjacent regions. To improve the statistical significance of our findings, we combine several sequences into one by rescaling the individual sets by their respective mean recurrence intervals and Weibull exponents. This novel approach of rescaled combination yields the most extensive data set possible. We find that the resulting statistics can be fitted well by an exponential distribution, confirming the universal applicability of the Weibull distribution to characteristic earthquakes. A similar result is obtained from rescaled combination, however, with regard to the lognormal distribution.

  15. Simulating Earthquake Early Warning Systems in the Classroom as a New Approach to Teaching Earthquakes

    NASA Astrophysics Data System (ADS)

    D'Alessio, M. A.

    2010-12-01

    A discussion of P- and S-waves seems an ubiquitous part of studying earthquakes in the classroom. Textbooks from middle school through university level typically define the differences between the waves and illustrate the sense of motion. While many students successfully memorize the differences between wave types (often utilizing the first letter as a memory aide), textbooks rarely give tangible examples of how the two waves would "feel" to a person sitting on the ground. One reason for introducing the wave types is to explain how to calculate earthquake epicenters using seismograms and travel time charts -- very abstract representations of earthquakes. Even when the skill is mastered using paper-and-pencil activities or one of the excellent online interactive versions, locating an epicenter simply does not excite many of our students because it evokes little emotional impact, even in students located in earthquake-prone areas. Despite these limitations, huge numbers of students are mandated to complete the task. At the K-12 level, California requires that all students be able to locate earthquake epicenters in Grade 6; in New York, the skill is a required part of the Regent's Examination. Recent innovations in earthquake early warning systems around the globe give us the opportunity to address the same content standard, but with substantially more emotional impact on students. I outline a lesson about earthquakes focused on earthquake early warning systems. The introductory activities include video clips of actual earthquakes and emphasize the differences between the way P- and S-waves feel when they arrive (P arrives first, but is weaker). I include an introduction to the principle behind earthquake early warning (including a summary of possible uses of a few seconds warning about strong shaking) and show examples from Japan. Students go outdoors to simulate P-waves, S-waves, and occupants of two different cities who are talking to one another on cell phones

  16. Earthquake Early Warning: User Education and Designing Effective Messages

    NASA Astrophysics Data System (ADS)

    Burkett, E. R.; Sellnow, D. D.; Jones, L.; Sellnow, T. L.

    2014-12-01

    The U.S. Geological Survey (USGS) and partners are transitioning from test-user trials of a demonstration earthquake early warning system (ShakeAlert) to deciding and preparing how to implement the release of earthquake early warning information, alert messages, and products to the public and other stakeholders. An earthquake early warning system uses seismic station networks to rapidly gather information about an occurring earthquake and send notifications to user devices ahead of the arrival of potentially damaging ground shaking at their locations. Earthquake early warning alerts can thereby allow time for actions to protect lives and property before arrival of damaging shaking, if users are properly educated on how to use and react to such notifications. A collaboration team of risk communications researchers and earth scientists is researching the effectiveness of a chosen subset of potential earthquake early warning interface designs and messages, which could be displayed on a device such as a smartphone. Preliminary results indicate, for instance, that users prefer alerts that include 1) a map to relate their location to the earthquake and 2) instructions for what to do in response to the expected level of shaking. A number of important factors must be considered to design a message that will promote appropriate self-protective behavior. While users prefer to see a map, how much information can be processed in limited time? Are graphical representations of wavefronts helpful or confusing? The most important factor to promote a helpful response is the predicted earthquake intensity, or how strong the expected shaking will be at the user's location. Unlike Japanese users of early warning, few Californians are familiar with the earthquake intensity scale, so we are exploring how differentiating instructions between intensity levels (e.g., "Be aware" for lower shaking levels and "Drop, cover, hold on" at high levels) can be paired with self-directed supplemental

  17. Arrival Time Tracking of Partially Resolved Acoustic Rays with Application to Ocean Acoustic Tomography

    DTIC Science & Technology

    1991-03-01

    ocean acoustic tomography. A straightforward method of arrival time estimation, based on locating the maximum value of an interpolated arrival, was...used with limited success for analysis of data from the December 1988 Monterey Bay Tomography Experiment. Close examination of the data revealed multiple...estimation of arrival times along an ocean acoustic ray path is an important component of ocean acoustic tomography. A straightforward method of arrival time

  18. Unexpected earthquake of June 25th, 2015 in Madiun, East Java

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Supendi, Pepen; Shiddiqi, Hasbi Ash; Widiyantoro, Sri

    2016-05-01

    An earthquake with magnitude 4.2 struck Madiun and its vicinity on June 25, 2015. According to Indonesian Meteorology, Climatology, and Geophysics Agency (BMKG), the earthquake occurred at 10:35:29 GMT+7 and was located in 7.73° S, 111.69 ° E, with a depth of 10 km. At least 57 houses suffered from light to medium damages. We reprocessed earthquake waveform data to obtain an accurate hypocenter location. We manually picked P- and S-waves arrival times from 12 seismic stations in the eastern part of Java. Earthquake location was determined by using Hypoellipse code that employs a single event determination method. Our inversion is able to resolve the fix-depth and shows that the earthquake occurred at 10:35:27.6 GMT+7 and was located in 7.6305° S, 111.7529 ° E with 14.81 km focus depth. Our location depicts a smaller travel time residual compared to that based on the BMKG result. Focal mechanism of the earthquake was determined by using HASH code. We used first arrival polarity of 9 seismic records with azimuthal gap less than 90°, and estimated take-off angles by using assumption of homogenous medium. Our focal mechanism solution shows a strike-slip mechanism with strike direction of 163o, which may be related to a strike-fault in Klangon, an area to the east of Madiun.

  19. Time-decreasing hazard and increasing time until the next earthquake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corral, Alvaro

    2005-01-01

    The existence of a slowly always decreasing probability density for the recurrence times of earthquakes in the stationary case implies that the occurrence of an event at a given instant becomes more unlikely as time since the previous event increases. Consequently, the expected waiting time to the next earthquake increases with the elapsed time, that is, the event moves away fast to the future. We have found direct empirical evidence of this counterintuitive behavior in two worldwide catalogs as well as in diverse regional catalogs. Universal scaling functions describe the phenomenon well.

  20. Broadband bearing-time records of three-component seismic array data and their application to the study of local earthquake coda

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory S.; Owens, Thomas J.

    1993-09-01

    High-frequency three-component array d, are used to study the P and S coda produced by* cal earthquakes. The data are displayed as broadba bearing-time records which allow us to examine a compl, time history of the propagation directions and arrival tin of direct and scattered phases crossing the array. This ~ sualization technique is used to examine the wavefield ~ two scale lengths using two sub-arrays~of sensors. Resu suggest that P coda is dominated by P energy propag, ing sub-parallel to the direct P arrival. The S coda pro agates in all directions and appears to be composed p~ dominantly of S and/or surface wave energy. Significant more 0e coda appears on the smaller scale length sub-art relative to the larger scale array suggesting that much, the ~, coda remains coherent for only very short distanc

  1. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  2. Real-Time Earthquake Monitoring with Spatio-Temporal Fields

    NASA Astrophysics Data System (ADS)

    Whittier, J. C.; Nittel, S.; Subasinghe, I.

    2017-10-01

    With live streaming sensors and sensor networks, increasingly large numbers of individual sensors are deployed in physical space. Sensor data streams are a fundamentally novel mechanism to deliver observations to information systems. They enable us to represent spatio-temporal continuous phenomena such as radiation accidents, toxic plumes, or earthquakes almost as instantaneously as they happen in the real world. Sensor data streams discretely sample an earthquake, while the earthquake is continuous over space and time. Programmers attempting to integrate many streams to analyze earthquake activity and scope need to write code to integrate potentially very large sets of asynchronously sampled, concurrent streams in tedious application code. In previous work, we proposed the field stream data model (Liang et al., 2016) for data stream engines. Abstracting the stream of an individual sensor as a temporal field, the field represents the Earth's movement at the sensor position as continuous. This simplifies analysis across many sensors significantly. In this paper, we undertake a feasibility study of using the field stream model and the open source Data Stream Engine (DSE) Apache Spark(Apache Spark, 2017) to implement a real-time earthquake event detection with a subset of the 250 GPS sensor data streams of the Southern California Integrated GPS Network (SCIGN). The field-based real-time stream queries compute maximum displacement values over the latest query window of each stream, and related spatially neighboring streams to identify earthquake events and their extent. Further, we correlated the detected events with an USGS earthquake event feed. The query results are visualized in real-time.

  3. First arrival time picking for microseismic data based on DWSW algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yue; Wang, Yue; Lin, Hongbo; Zhong, Tie

    2018-03-01

    The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as - 10 dB.

  4. Implications on 1+1 D runup modeling due to time features of the earthquake source

    NASA Astrophysics Data System (ADS)

    Fuentes, M.; Riquelme, S.; Campos, J. A.

    2017-12-01

    The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1+1D solution for the shoreline motion time series, from the static case to the dynamic case, by including both, rise time and rupture velocity. Results show that the static case correspond to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum run-up may be affected by very slow ruptures and long rise time. The analytical solution has been tested for the Nicaraguan tsunami earthquake, suggesting that the rupture was not slow enough to cause wave amplification to explain the high runup observations.

  5. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  6. Remotely triggered seismicity on the United States west coast following the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K. B.

    2004-01-01

    The Mw 7.9 Denali fault earthquake in central Alaska of 3 November 2002 triggered earthquakes across western North America at epicentral distances of up to at least 3660 km. We describe the spatial and temporal development of triggered activity in California and the Pacific Northwest, focusing on Mount Rainier, the Geysers geothermal field, the Long Valley caldera, and the Coso geothermal field.The onset of triggered seismicity at each of these areas began during the Love and Raleigh waves of the Mw 7.9 wave train, which had dominant periods of 15 to 40 sec, indicating that earthquakes were triggered locally by dynamic stress changes due to low-frequency surface wave arrivals. Swarms during the wave train continued for ∼4 min (Mount Rainier) to ∼40 min (the Geysers) after the surface wave arrivals and were characterized by spasmodic bursts of small (M ≤ 2.5) earthquakes. Dynamic stresses within the surface wave train at the time of the first triggered earthquakes ranged from 0.01 MPa (Coso) to 0.09 MPa (Mount Rainier). In addition to the swarms that began during the surface wave arrivals, Long Valley caldera and Mount Rainier experienced unusually large seismic swarms hours to days after the Denali fault earthquake. These swarms seem to represent a delayed response to the Denali fault earthquake. The occurrence of spatially and temporally distinct swarms of triggered seismicity at the same site suggests that earthquakes may be triggered by more than one physical process.

  7. A new Bayesian Inference-based Phase Associator for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan

    2013-04-01

    State of the art network-based Earthquake Early Warning (EEW) systems can provide warnings for large magnitude 7+ earthquakes. Although regions in the direct vicinity of the epicenter will not receive warnings prior to damaging shaking, real-time event characterization is available before the destructive S-wave arrival across much of the strongly affected region. In contrast, in the case of the more frequent medium size events, such as the devastating 1994 Mw6.7 Northridge, California, earthquake, providing timely warning to the smaller damage zone is more difficult. For such events the "blind zone" of current systems (e.g. the CISN ShakeAlert system in California) is similar in size to the area over which severe damage occurs. We propose a faster and more robust Bayesian inference-based event associator, that in contrast to the current standard associators (e.g. Earthworm Binder), is tailored to EEW and exploits information other than only phase arrival times. In particular, the associator potentially allows for reliable automated event association with as little as two observations, which, compared to the ShakeAlert system, would speed up the real-time characterizations by about ten seconds and thus reduce the blind zone area by up to 80%. We compile an extensive data set of regional and teleseismic earthquake and noise waveforms spanning a wide range of earthquake magnitudes and tectonic regimes. We pass these waveforms through a causal real-time filterbank with passband filters between 0.1 and 50Hz, and, updating every second from the event detection, extract the maximum amplitudes in each frequency band. Using this dataset, we define distributions of amplitude maxima in each passband as a function of epicentral distance and magnitude. For the real-time data, we pass incoming broadband and strong motion waveforms through the same filterbank and extract an evolving set of maximum amplitudes in each passband. We use the maximum amplitude distributions to check

  8. Limiting the effects of earthquakes on gravitational-wave interferometers

    USGS Publications Warehouse

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-01-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  9. Limiting the effects of earthquakes on gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael; Earle, Paul; Harms, Jan; Biscans, Sebastien; Buchanan, Christopher; Coughlin, Eric; Donovan, Fred; Fee, Jeremy; Gabbard, Hunter; Guy, Michelle; Mukund, Nikhil; Perry, Matthew

    2017-02-01

    Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

  10. Triggered Seismicity in Utah from the November 3, 2002, Denali Fault Earthquake

    NASA Astrophysics Data System (ADS)

    Pankow, K. L.; Nava, S. J.; Pechmann, J. C.; Arabasz, W. J.

    2002-12-01

    Coincident with the arrival of the surface waves from the November 3, 2002, Mw 7.9 Denali Fault, Alaska earthquake (DFE), the University of Utah Seismograph Stations (UUSS) regional seismic network detected a marked increase in seismicity along the Intermountain Seismic Belt (ISB) in central and north-central Utah. The number of earthquakes per day in Utah located automatically by the UUSS's Earthworm system in the week following the DFE was approximately double the long-term average during the preceding nine months. From these preliminary data, the increased seismicity appears to be characterized by small magnitude events (M = 3.2) and concentrated in five distinct spatial clusters within the ISB between 38.75°and 42.0° N. The first of these earthquakes was an M 2.2 event located ~20 km east of Salt Lake City, Utah, which occurred during the arrival of the Love waves from the DFE. The increase in Utah earthquake activity at the time of the arrival of the surface waves from the DFE suggests that these surface waves triggered earthquakes in Utah at distances of more than 3,000 km from the source. We estimated the peak dynamic shear stress caused by these surface waves from measurements of their peak vector velocities at 43 recording sites: 37 strong-motion stations of the Advanced National Seismic System and six broadband stations. (The records from six other broadband instruments in the region of interest were clipped.) The estimated peak stresses ranged from 1.2 bars to 3.5 bars with a mean of 2.3 bars, and generally occurred during the arrival of Love waves of ~15 sec period. These peak dynamic shear stress estimates are comparable to those obtained from recordings of the 1992 Mw 7.3 Landers, California, earthquake in regions where the Landers earthquake triggered increased seismicity. We plan to present more complete analyses of UUSS seismic network data, further testing our hypothesis that the DFE remotely triggered seismicity in Utah. This hypothesis is

  11. Auto Correlation Analysis of Coda Waves from Local Earthquakes for Detecting Temporal Changes in Shallow Subsurface Structures: the 2011 Tohoku-Oki, Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi

    2015-02-01

    For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can

  12. One hundred years of earthquake recording at the University of California

    USGS Publications Warehouse

    Bolt, B. A.

    1987-01-01

    The best seismographs then available arrived from England in 1887 and were installed at Lick Observatory on Mt.Hamilton and at the Students Astronomical Observatory on the Berkeley campus. The first California earthquake recorded by the Lick instrument was on April 24, 1887. These seismographic stations have functioned continuously from their founding to the present day, with improvements in instruments from time to time as technology advanced. Now they are part of a sesimogrpahic network of 16 stations recording with great completeness both local and distant earthquakes

  13. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and

  14. Real-time earthquake monitoring using a search engine method.

    PubMed

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-12-04

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake's parameters in <1 s after receiving the long-period surface wave data.

  15. CISN ShakeAlert: Improving the Virtual Seismologist (VS) earthquake early warning framework to provide faster, more robust warning information

    NASA Astrophysics Data System (ADS)

    Meier, M.; Cua, G. B.; Wiemer, S.; Fischer, M.

    2011-12-01

    The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) that uses observed phase arrivals, ground motion amplitudes and selected prior information to estimate earthquake magnitude, location and origin time, and predict the distribution of peak ground motion throughout a region using envelope attenuation relationships. Implementation of the VS algorithm in California is an on-going effort of the Swiss Seismological Service (SED) at ETH Zürich. VS is one of three EEW algorithms - the other two being ElarmS (Allen and Kanamori, 2003) and On-Site (Wu and Kanamori, 2005; Boese et al., 2008) - that form the basis of the California Integrated Seismic Network ShakeAlert system, a prototype end-to-end EEW system that could potentially be implemented in California. The current prototype version of VS in California requires picks at 4 stations to initiate an event declaration. On average, taking into account data latency, variable station distribution, and processing time, this initial estimate is available about 20 seconds after the earthquake origin time, corresponding to a blind zone of about 70 km around the epicenter which would receive no warning, but where it would be the most useful. To increase the available warning time, we want to produce EEW estimates faster (with less than 4 stations). However, working with less than 4 stations with our current approach would increase the number of false alerts, for which there is very little tolerance in a useful EEW system. We explore the use of back-azimuth estimations and the Voronoi-based concept of not-yet-arrived data for reducing false alerts of the earliest VS estimates. The concept of not-yet-arrived data was originally used to provide evolutionary location estimates in EEW (Horiuchi, 2005; Cua and Heaton, 2007; Satriano et al. 2008). However, it can also be applied in discriminating between earthquake and non-earthquake signals. For real earthquakes, the

  16. Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Xiao, Z.; Zhang, D. H.

    2012-02-01

    In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.

  17. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    USGS Publications Warehouse

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  18. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl

    2008-01-01

    Between January 1 and December 31, 2006, AVO located 8,666 earthquakes of which 7,783 occurred on or near the 33 volcanoes monitored within Alaska. Monitoring highlights in 2006 include: an eruption of Augustine Volcano, a volcanic-tectonic earthquake swarm at Mount Martin, elevated seismicity and volcanic unrest at Fourpeaked Mountain, and elevated seismicity and low-level tremor at Mount Veniaminof and Korovin Volcano. A new seismic subnetwork was installed on Fourpeaked Mountain. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field during 2006, (2) a description of earthquake detection, recording, analysis, and data archival systems, (3) a description of seismic velocity models used for earthquake locations, (4) a summary of earthquakes located in 2006, and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2006.

  19. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  20. AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.; Lloyd, S.

    2013-12-01

    Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.

  1. Monitoring molecular interactions using photon arrival-time interval distribution analysis

    DOEpatents

    Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA

    2009-10-06

    A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.

  2. Combining multiple earthquake models in real time for earthquake early warning

    USGS Publications Warehouse

    Minson, Sarah E.; Wu, Stephen; Beck, James L; Heaton, Thomas H.

    2017-01-01

    The ultimate goal of earthquake early warning (EEW) is to provide local shaking information to users before the strong shaking from an earthquake reaches their location. This is accomplished by operating one or more real‐time analyses that attempt to predict shaking intensity, often by estimating the earthquake’s location and magnitude and then predicting the ground motion from that point source. Other EEW algorithms use finite rupture models or may directly estimate ground motion without first solving for an earthquake source. EEW performance could be improved if the information from these diverse and independent prediction models could be combined into one unified, ground‐motion prediction. In this article, we set the forecast shaking at each location as the common ground to combine all these predictions and introduce a Bayesian approach to creating better ground‐motion predictions. We also describe how this methodology could be used to build a new generation of EEW systems that provide optimal decisions customized for each user based on the user’s individual false‐alarm tolerance and the time necessary for that user to react.

  3. Stress drop variation of M > 4 earthquakes on the Blanco oceanic transform fault using a phase coherence method

    NASA Astrophysics Data System (ADS)

    Williams, J. R.; Hawthorne, J.; Rost, S.; Wright, T. J.

    2017-12-01

    Earthquakes on oceanic transform faults often show unusual behaviour. They tend to occur in swarms, have large numbers of foreshocks, and have high stress drops. We estimate stress drops for approximately 60 M > 4 earthquakes along the Blanco oceanic transform fault, a right-lateral fault separating the Juan de Fuca and Pacific plates offshore of Oregon. We find stress drops with a median of 4.4±19.3MPa and examine how they vary with earthquake moment. We calculate stress drops using a recently developed method based on inter-station phase coherence. We compare seismic records of co-located earthquakes at a range of stations. At each station, we apply an empirical Green's function (eGf) approach to remove phase path effects and isolate the relative apparent source time functions. The apparent source time functions at each earthquake should vary among stations at periods shorter than a P wave's travel time across the earthquake rupture area. Therefore we compute the rupture length of the larger earthquake by identifying the frequency at which the relative apparent source time functions start to vary among stations, leading to low inter-station phase coherence. We determine a stress drop from the rupture length and moment of the larger earthquake. Our initial stress drop estimates increase with increasing moment, suggesting that earthquakes on the Blanco fault are not self-similar. However, these stress drops may be biased by several factors, including depth phases, trace alignment, and source co-location. We find that the inclusion of depth phases (such as pP) in the analysis time window has a negligible effect on the phase coherence of our relative apparent source time functions. We find that trace alignment must be accurate to within 0.05 s to allow us to identify variations in the apparent source time functions at periods relevant for M > 4 earthquakes. We check that the alignments are accurate enough by comparing P wave arrival times across groups of

  4. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models: 2. Laboratory earthquakes

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Ellsworth, William L.; Beeler, Nicholas M.; Kilgore, Brian D.; Lockner, David A.; Savage, Heather M.

    2012-02-01

    The behavior of individual stick-slip events observed in three different laboratory experimental configurations is better explained by a "memoryless" earthquake model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. We make similar findings in the companion manuscript for the behavior of natural repeating earthquakes. Taken together, these results allow us to conclude that the predictions of a characteristic earthquake model that assumes either fixed slip or fixed recurrence interval should be preferred to the predictions of the time- and slip-predictable models for all earthquakes. Given that the fixed slip and recurrence models are the preferred models for all of the experiments we examine, we infer that in an event-to-event sense the elastic rebound model underlying the time- and slip-predictable models does not explain earthquake behavior. This does not indicate that the elastic rebound model should be rejected in a long-term-sense, but it should be rejected for short-term predictions. The time- and slip-predictable models likely offer worse predictions of earthquake behavior because they rely on assumptions that are too simple to explain the behavior of earthquakes. Specifically, the time-predictable model assumes a constant failure threshold and the slip-predictable model assumes that there is a constant minimum stress. There is experimental and field evidence that these assumptions are not valid for all earthquakes.

  5. Local observations of the onset of a large earthquake: 28 June 1992 Landers, California

    USGS Publications Warehouse

    Abercrombie, Richael; Mori, Jim

    1994-01-01

    The Landers earthquake (MW 7.3) of 28 June 1992 had a very emergent onset. The first large amplitude arrivals are delayed by about 3 sec with respect to the origin time, and are preceded by smaller-scale slip. Other large earthquakes have been observed to have similar emergent onsets, but the Landers event is one of the first to be well recorded on nearby stations. We used these recordings to investigate the spatial relationship between the hypocenter and the onset of the large energy release, and to determine the slip function of the 3-sec nucleation process. Relative location of the onset of the large energy release with respect to the initial hypocenter indicates its source was between 1 and 4 km north of the hypocenter and delayed by approximately 2.5 sec. Three-station array analysis of the P wave shows that the large amplitude onset arrives with a faster apparent velocity compared to the first arrivals, indicating that the large amplitude source was several kilometers deeper than the initial onset. An ML 2.8 foreshock, located close to the hypocenter, was used as an empirical Green's function to correct for path and site effects from the first 3 sec of the mainshock seismogram. The resultant deconvolution produced a slip function that showed two subevents preceding the main energy release, an MW4.4 followed by an MW 5.6. These subevents do not appear anomalous in comparison to simple moderate-sized earthquakes, suggesting that they were normal events which just triggered or grew into a much larger earthquake. If small and moderate-sized earthquakes commonly “detonate” much larger events, this implies that the dynamic stresses during earthquake rupture are at least as important as long-term static stresses in causing earthquakes, and the prospects of reliable earthquake prediction from premonitory phenomena are not improved.

  6. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  7. Earthquake forecasting studies using radon time series data in Taiwan

    NASA Astrophysics Data System (ADS)

    Walia, Vivek; Kumar, Arvind; Fu, Ching-Chou; Lin, Shih-Jung; Chou, Kuang-Wu; Wen, Kuo-Liang; Chen, Cheng-Hong

    2017-04-01

    For few decades, growing number of studies have shown usefulness of data in the field of seismogeochemistry interpreted as geochemical precursory signals for impending earthquakes and radon is idendified to be as one of the most reliable geochemical precursor. Radon is recognized as short-term precursor and is being monitored in many countries. This study is aimed at developing an effective earthquake forecasting system by inspecting long term radon time series data. The data is obtained from a network of radon monitoring stations eastblished along different faults of Taiwan. The continuous time series radon data for earthquake studies have been recorded and some significant variations associated with strong earthquakes have been observed. The data is also examined to evaluate earthquake precursory signals against environmental factors. An automated real-time database operating system has been developed recently to improve the data processing for earthquake precursory studies. In addition, the study is aimed at the appraisal and filtrations of these environmental parameters, in order to create a real-time database that helps our earthquake precursory study. In recent years, automatic operating real-time database has been developed using R, an open source programming language, to carry out statistical computation on the data. To integrate our data with our working procedure, we use the popular and famous open source web application solution, AMP (Apache, MySQL, and PHP), creating a website that could effectively show and help us manage the real-time database.

  8. Analysis of post-earthquake reconstruction for Wenchuan earthquake based on night-time light data from DMSP/OLS

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhang, Jing; Yang, Mingxiang; Lei, Xiaohui

    2017-07-01

    At present, most of Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) night-time light data are applied to large-scale regional development assessment, while there are little for the study of earthquake and other disasters. This study has extracted night-time light information before and after earthquake within Wenchuan county with adoption of DMSP/OLS night-time light data. The analysis results show that the night-time light index and average intensity of Wenchuan county were decreased by about 76% and 50% respectively from the year of 2007 to 2008. From the year of 2008 to 2011, the two indicators were increased by about 200% and 556% respectively. These research results show that the night-time light data can be used to extract the information of earthquake and evaluate the occurrence of earthquakes and other disasters.

  9. One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.

    2011-09-01

    We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.

  10. Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka

    2011-01-01

    The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.

  11. Populating the Advanced National Seismic System Comprehensive Earthquake Catalog

    NASA Astrophysics Data System (ADS)

    Earle, P. S.; Perry, M. R.; Andrews, J. R.; Withers, M. M.; Hellweg, M.; Kim, W. Y.; Shiro, B.; West, M. E.; Storchak, D. A.; Pankow, K. L.; Huerfano Moreno, V. A.; Gee, L. S.; Wolfe, C. J.

    2016-12-01

    The U.S. Geological Survey maintains a repository of earthquake information produced by networks in the Advanced National Seismic System with additional data from the ISC-GEM catalog and many non-U.S. networks through their contributions to the National Earthquake Information Center PDE bulletin. This Comprehensive Catalog (ComCat) provides a unified earthquake product while preserving attribution and contributor information. ComCat contains hypocenter and magnitude information with supporting phase arrival-time and amplitude measurements (when available). Higher-level products such as focal mechanisms, earthquake slip models, "Did You Feel It?" reports, ShakeMaps, PAGER impact estimates, earthquake summary posters, and tectonic summaries are also included. ComCat is updated as new events are processed and the catalog can be accesed at http://earthquake.usgs.gov/earthquakes/search/. Throughout the past few years, a concentrated effort has been underway to expand ComCat by integrating global and regional historic catalogs. The number of earthquakes in ComCat has more than doubled in the past year and it presently contains over 1.6 million earthquake hypocenters. We will provide an overview of catalog contents and a detailed description of numerous tools and semi-automated quality-control procedures developed to uncover errors including systematic magnitude biases, missing time periods, duplicate postings for the same events, and incorrectly associated events.

  12. On near-source earthquake triggering

    USGS Publications Warehouse

    Parsons, T.; Velasco, A.A.

    2009-01-01

    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  13. Induced earthquake during the 2016 Kumamoto earthquake (Mw7.0): Importance of real-time shake monitoring for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Hoshiba, M.; Ogiso, M.

    2016-12-01

    Sequence of the 2016 Kumamoto earthquakes (Mw6.2 on April 14, Mw7.0 on April 16, and many aftershocks) caused a devastating damage at Kumamoto and Oita prefectures, Japan. During the Mw7.0 event, just after the direct S waves passing the central Oita, another M6 class event occurred there more than 80 km apart from the Mw7.0 event. The M6 event is interpreted as an induced earthquake; but it brought stronger shaking at the central Oita than that from the Mw7.0 event. We will discuss the induced earthquake from viewpoint of Earthquake Early Warning. In terms of ground shaking such as PGA and PGV, the Mw7.0 event is much smaller than those of the M6 induced earthquake at the central Oita (for example, 1/8 smaller at OIT009 station for PGA), and then it is easy to discriminate two events. However, PGD of the Mw7.0 is larger than that of the induced earthquake, and its appearance is just before the occurrence of the induced earthquake. It is quite difficult to recognize the induced earthquake from displacement waveforms only, because the displacement is strongly contaminated by that of the preceding Mw7.0 event. In many methods of EEW (including current JMA EEW system), magnitude is used for prediction of ground shaking through Ground Motion Prediction Equation (GMPE) and the magnitude is often estimated from displacement. However, displacement magnitude does not necessarily mean the best one for prediction of ground shaking, such as PGA and PGV. In case of the induced earthquake during the Kumamoto earthquake, displacement magnitude could not be estimated because of the strong contamination. Actually JMA EEW system could not recognize the induced earthquake. One of the important lessons we learned from eight years' operation of EEW is an issue of the multiple simultaneous earthquakes, such as aftershocks of the 2011 Mw9.0 Tohoku earthquake. Based on this lesson, we have proposed enhancement of real-time monitor of ground shaking itself instead of rapid estimation of

  14. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2007-01-01

    The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.

  15. Infrasonic and seismic signals from the Myanmar earthquake of November 11,2012

    NASA Astrophysics Data System (ADS)

    Su, Wei; Zhang, Dongning; Li, Ke

    2013-04-01

    On November 11, 2012, at 01:12:38 UTC (09:12:38 Beijing Time), a strong earthquake (Mw=6.8) occurred in Myanmar. The epicenter (23.0˚N,95.9˚E,focal depth ~10 km) was near the town of Male, 52 km NNE of the city of Shwebo. The earthquake with a rupture length of 60-70 km resulted from right lateral movement on the Sagaing Fault related to collision between the Indo-Australian Plate and the Eurasian Plate. At a distance of 366 km from the epicenter, infrasonic and seismic signals were recorded by Tengchong seismo-acoustic array located in southwest of China for monitoring volcanic and earthquake activity, which consists of four MB2005 microbarometers with bandwidth 0.01-27Hz and four BBVS-60 seismometers with bandwidth 0.01667-50Hz arranged in a centered triangle with an aperture of about 1.8 km. PMCC provided by CEA/DASE applied to analyze infrasound data. Comparison of the infrasonic and seismic signals produced by this earthquake showed infrasonic signals with different arrival times and azimuths may be classified as local, epicentral and diffracted or secondary sourced infrasound, but seismic signals only include P, S and surface waves can produce local infrasound through ground-coupled air waves at the station. The PMCC results indicated that the infrasonic waves showed a consistent acoustic trace velocity of approximately 0.348 km/s from 09:30 to 09:36 (Beijing Time) and the azimuth of arrival changed with time from 227 to 217 degrees. There are mountain chains with altitude more than 1000 m in the east of the epicenter. Mountains shaking induced by earthquake acted as a speaker and radiated the infrasound that traveled to Tengchong seismo-acoustic array. It was worth noting that PMCC detected a group infrasound with trace velocity of approximately 0.339 km/s and arrival azimuth of 237 degree from 09:23:31 to 09:24 (Beijing Time). It may be inferred that the seismic surface wave induced by earthquake reach the mountains on the border between China Yunnan and

  16. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC/SWRC from 2010-2016

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P. J.; Jian, L. K.

    2017-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements near Earth, STEREO-A and STEREO-B for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B and we observed an arrival (hit), the mean absolute arrival-time prediction error was 10.4 ± 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  17. Rapid Large Earthquake and Run-up Characterization in Quasi Real Time

    NASA Astrophysics Data System (ADS)

    Bravo, F. J.; Riquelme, S.; Koch, P.; Cararo, S.

    2017-12-01

    Several test in quasi real time have been conducted by the rapid response group at CSN (National Seismological Center) to characterize earthquakes in Real Time. These methods are known for its robustness and realibility to create Finite Fault Models. The W-phase FFM Inversion, The Wavelet Domain FFM and The Body Wave and FFM have been implemented in real time at CSN, all these algorithms are running automatically and triggered by the W-phase Point Source Inversion. Dimensions (Large and Width ) are predefined by adopting scaling laws for earthquakes in subduction zones. We tested the last four major earthquakes occurred in Chile using this scheme: The 2010 Mw 8.8 Maule Earthquake, The 2014 Mw 8.2 Iquique Earthquake, The 2015 Mw 8.3 Illapel Earthquake and The 7.6 Melinka Earthquake. We obtain many solutions as time elapses, for each one of those we calculate the run-up using an analytical formula. Our results are in agreements with some FFM already accepted by the sicentific comunnity aswell as run-up observations in the field.

  18. A review on remotely sensed land surface temperature anomaly as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anshuman; Singh, Shaktiman; Sam, Lydia; Joshi, P. K.; Bhardwaj, Akanksha; Martín-Torres, F. Javier; Kumar, Rajesh

    2017-12-01

    The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.

  19. Earthquake Catalogue of the Caucasus

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Gok, R.; Tvaradze, N.; Tumanova, N.; Gunia, I.; Onur, T.

    2016-12-01

    The Caucasus has a documented historical catalog stretching back to the beginning of the Christian era. Most of the largest historical earthquakes prior to the 19th century are assumed to have occurred on active faults of the Greater Caucasus. Important earthquakes include the Samtskhe earthquake of 1283 (Ms˜7.0, Io=9); Lechkhumi-Svaneti earthquake of 1350 (Ms˜7.0, Io=9); and the Alaverdi earthquake of 1742 (Ms˜6.8, Io=9). Two significant historical earthquakes that may have occurred within the Javakheti plateau in the Lesser Caucasus are the Tmogvi earthquake of 1088 (Ms˜6.5, Io=9) and the Akhalkalaki earthquake of 1899 (Ms˜6.3, Io =8-9). Large earthquakes that occurred in the Caucasus within the period of instrumental observation are: Gori 1920; Tabatskuri 1940; Chkhalta 1963; Racha earthquake of 1991 (Ms=7.0), is the largest event ever recorded in the region; Barisakho earthquake of 1992 (M=6.5); Spitak earthquake of 1988 (Ms=6.9, 100 km south of Tbilisi), which killed over 50,000 people in Armenia. Recently, permanent broadband stations have been deployed across the region as part of the various national networks (Georgia (˜25 stations), Azerbaijan (˜35 stations), Armenia (˜14 stations)). The data from the last 10 years of observation provides an opportunity to perform modern, fundamental scientific investigations. In order to improve seismic data quality a catalog of all instrumentally recorded earthquakes has been compiled by the IES (Institute of Earth Sciences/NSMC, Ilia State University) in the framework of regional joint project (Armenia, Azerbaijan, Georgia, Turkey, USA) "Probabilistic Seismic Hazard Assessment (PSHA) in the Caucasus. The catalogue consists of more then 80,000 events. First arrivals of each earthquake of Mw>=4.0 have been carefully examined. To reduce calculation errors, we corrected arrivals from the seismic records. We improved locations of the events and recalculate Moment magnitudes in order to obtain unified magnitude

  20. Real-time earthquake monitoring using a search engine method

    PubMed Central

    Zhang, Jie; Zhang, Haijiang; Chen, Enhong; Zheng, Yi; Kuang, Wenhuan; Zhang, Xiong

    2014-01-01

    When an earthquake occurs, seismologists want to use recorded seismograms to infer its location, magnitude and source-focal mechanism as quickly as possible. If such information could be determined immediately, timely evacuations and emergency actions could be undertaken to mitigate earthquake damage. Current advanced methods can report the initial location and magnitude of an earthquake within a few seconds, but estimating the source-focal mechanism may require minutes to hours. Here we present an earthquake search engine, similar to a web search engine, that we developed by applying a computer fast search method to a large seismogram database to find waveforms that best fit the input data. Our method is several thousand times faster than an exact search. For an Mw 5.9 earthquake on 8 March 2012 in Xinjiang, China, the search engine can infer the earthquake’s parameters in <1 s after receiving the long-period surface wave data. PMID:25472861

  1. Spatial Distribution of earthquakes off the coast of Fukushima Two Years after the M9 Earthquake: the Southern Area of the 2011 Tohoku Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Nakahigashi, K.; Shinohara, M.; Mochizuki, K.; Shiobara, H.

    2014-12-01

    Huge earthquakes cause vastly stress field change around the rupture zones, and many aftershocks and other related geophysical phenomenon such as geodetic movements have been observed. It is important to figure out the time-spacious distribution during the relaxation process for understanding the giant earthquake cycle. In this study, we pick up the southern rupture area of the 2011 Tohoku earthquake (M9.0). The seismicity rate keeps still high compared with that before the 2011 earthquake. Many studies using ocean bottom seismometers (OBSs) have been doing since soon after the 2011 Tohoku earthquake in order to obtain aftershock activity precisely. Here we show one of the studies at off the coast of Fukushima which is located on the southern part of the rupture area caused by the 2011 Tohoku earthquake. We deployed 4 broadband type OBSs (BBOBSs) and 12 short-period type OBSs (SOBS) in August 2012. Other 4 BBOBSs attached with absolute pressure gauges and 20 SOBSs were added in November 2012. We recovered 36 OBSs including 8 BBOBSs in November 2013. We selected 1,000 events in the vicinity of the OBS network based on a hypocenter catalog published by the Japan Meteorological Agency, and extracted the data after time corrections caused by each internal clock. Each P and S wave arrival times, P wave polarity and maximum amplitude were picked manually on a computer display. We assumed one dimensional velocity structure based on the result from an active source experiment across our network, and applied time corrections every station for removing ambiguity of the assumed structure. Then we adopted a maximum-likelihood estimation technique and calculated the hypocenters. The results show that intensive activity near the Japan Trench can be seen, while there was a quiet seismic zone between the trench zone and landward high activity zone.

  2. Localizing Submarine Earthquakes by Listening to the Water Reverberations

    NASA Astrophysics Data System (ADS)

    Castillo, J.; Zhan, Z.; Wu, W.

    2017-12-01

    Mid-Ocean Ridge (MOR) earthquakes generally occur far from any land based station and are of moderate magnitude, making it complicated to detect and in most cases, locate accurately. This limits our understanding of how MOR normal and transform faults move and the manner in which they slip. Different from continental events, seismic records from earthquakes occurring beneath the ocean floor show complex reverberations caused by P-wave energy trapped in the water column that are highly dependent of the source location and the efficiency to which energy propagated to the near-source surface. These later arrivals are commonly considered to be only a nuisance as they might sometimes interfere with the primary arrivals. However, in this study, we take advantage of the wavefield's high sensitivity to small changes in the seafloor topography and the present-day availability of worldwide multi-beam bathymetry to relocate submarine earthquakes by modeling these water column reverberations in teleseismic signals. Using a three-dimensional hybrid method for modeling body wave arrivals, we demonstrate that an accurate hypocentral location of a submarine earthquake (<5 km) can be achieved if the structural complexities near the source region are appropriately accounted for. This presents a novel way of studying earthquake source properties and will serve as a means to explore the influence of physical fault structure on the seismic behavior of transform faults.

  3. Verification of real-time WSA-ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016

    NASA Astrophysics Data System (ADS)

    Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter

    2018-03-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.

  4. A new prototype system for earthquake early warning in Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, N.; Wu, Y.; Chen, D.; Kuo, K.; Shin, T.

    2009-12-01

    Earthquake early warning (EEW) system has already been developed and tested in Taiwan for more than ten years. With the implementation of a real-time strong-motion network by the Central Weather Bureau (CWB), a virtual sub-network (VSN) system based on regional early warning approach was utilized at the first attempt. In order to shorten the processing time, seismic waveforms in a 10-sec time window starting from the first P-wave arrival time at the nearest station are used to determine the hypocenter and earthquake magnitude which is dubbed ML10. Since 2001, this EEW system has responded to a total of 255 events with magnitude greater than 4.5 occurred inland or off the coast of Taiwan. The system is capable of issuing an earthquake report within 20 sec of its occurrence with good magnitude estimations for events up to magnitude 6.5. This will provide early warning for metropolitan areas located 70 km away from the epicentre. In the latest development, a new prototype EEW system based on P-wave method was developed. Instead of ML10, we adopt the “Pd magnitude”, MPd, as our magnitude indicator in the new system. Pd is defined as the peak amplitude of the initial P-wave displacement. In the previous studies, by analyzing the Pd attenuation relationship with earthquake magnitudes, Pd was proved to be a good magnitude estimator for EEW purpose. Therefore, we adopt the Pd magnitude in developing our next generation EEW system. The new system is designed and constructed based on the Central Weather Bureau Seismographic Network (CWBSN). The CWBSN is a real-time seismographic network with more than one hundred digital telemetered seismic stations distributed over the entire Taiwan. Currently, there are three types of seismic instruments installed at the stations, either co-site or separately installed, including short-period seismographs, accelerometers, and broadband instruments. For the need of integral data processing, we use the Earthworm system as a common

  5. Real-Time Earthquake Analysis for Disaster Mitigation (READI) Network

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2014-12-01

    Real-time GNSS networks are making a significant impact on our ability to forecast, assess, and mitigate the effects of geological hazards. I describe the activities of the Real-time Earthquake Analysis for Disaster Mitigation (READI) working group. The group leverages 600+ real-time GPS stations in western North America operated by UNAVCO (PBO network), Central Washington University (PANGA), US Geological Survey & Scripps Institution of Oceanography (SCIGN project), UC Berkeley & US Geological Survey (BARD network), and the Pacific Geosciences Centre (WCDA project). Our goal is to demonstrate an earthquake and tsunami early warning system for western North America. Rapid response is particularly important for those coastal communities that are in the near-source region of large earthquakes and may have only minutes of warning time, and who today are not adequately covered by existing seismic and basin-wide ocean-buoy monitoring systems. The READI working group is performing comparisons of independent real time analyses of 1 Hz GPS data for station displacements and is participating in government-sponsored earthquake and tsunami exercises in the Western U.S. I describe a prototype seismogeodetic system using a cluster of southern California stations that includes GNSS tracking and collocation with MEMS accelerometers for real-time estimation of seismic velocity and displacement waveforms, which has advantages for improved earthquake early warning and tsunami forecasts compared to seismic-only or GPS-only methods. The READI working group's ultimate goal is to participate in an Indo-Pacific Tsunami early warning system that utilizes GNSS real-time displacements and ionospheric measurements along with seismic, near-shore buoys and ocean-bottom pressure sensors, where available, to rapidly estimate magnitude and finite fault slip models for large earthquakes, and then forecast tsunami source, energy scale, geographic extent, inundation and runup. This will require

  6. ARRIVAL TIME DIFFERENCES BETWEEN GRAVITATIONAL WAVES AND ELECTROMAGNETIC SIGNALS DUE TO GRAVITATIONAL LENSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi

    In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}(more » f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.« less

  7. Rescaled earthquake recurrence time statistics: application to microrepeaters

    NASA Astrophysics Data System (ADS)

    Goltz, Christian; Turcotte, Donald L.; Abaimov, Sergey G.; Nadeau, Robert M.; Uchida, Naoki; Matsuzawa, Toru

    2009-01-01

    Slip on major faults primarily occurs during `characteristic' earthquakes. The recurrence statistics of characteristic earthquakes play an important role in seismic hazard assessment. A major problem in determining applicable statistics is the short sequences of characteristic earthquakes that are available worldwide. In this paper, we introduce a rescaling technique in which sequences can be superimposed to establish larger numbers of data points. We consider the Weibull and log-normal distributions, in both cases we rescale the data using means and standard deviations. We test our approach utilizing sequences of microrepeaters, micro-earthquakes which recur in the same location on a fault. It seems plausible to regard these earthquakes as a miniature version of the classic characteristic earthquakes. Microrepeaters are much more frequent than major earthquakes, leading to longer sequences for analysis. In this paper, we present results for the analysis of recurrence times for several microrepeater sequences from Parkfield, CA as well as NE Japan. We find that, once the respective sequence can be considered to be of sufficient stationarity, the statistics can be well fitted by either a Weibull or a log-normal distribution. We clearly demonstrate this fact by our technique of rescaled combination. We conclude that the recurrence statistics of the microrepeater sequences we consider are similar to the recurrence statistics of characteristic earthquakes on major faults.

  8. Towards the Future "Earthquake" School in the Cloud: Near-real Time Earthquake Games Competition in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, K. H.; Liang, W. T.; Wu, Y. F.; Yen, E.

    2014-12-01

    To prevent the future threats of natural disaster, it is important to understand how the disaster happened, why lives were lost, and what lessons have been learned. By that, the attitude of society toward natural disaster can be transformed from training to learning. The citizen-seismologists-in-Taiwan project is designed to elevate the quality of earthquake science education by means of incorporating earthquake/tsunami stories and near-real time earthquake games competition into the traditional curricula in schools. Through pilot of courses and professional development workshops, we have worked closely with teachers from elementary, junior high, and senior high schools, to design workable teaching plans through a practical operation of seismic monitoring at home or school. We will introduce how the 9-years-old do P- and S-wave picking and measure seismic intensity through interactive learning platform, how do scientists and school teachers work together, and how do we create an environment to facilitate continuous learning (i.e., near-real time earthquake games competition), to make earthquake science fun.

  9. Modelling tourists arrival using time varying parameter

    NASA Astrophysics Data System (ADS)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  10. The limits of earthquake early warning: Timeliness of ground motion estimates

    USGS Publications Warehouse

    Minson, Sarah E.; Meier, Men-Andrin; Baltay, Annemarie S.; Hanks, Thomas C.; Cochran, Elizabeth S.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.

  11. The limits of earthquake early warning: Timeliness of ground motion estimates

    PubMed Central

    Hanks, Thomas C.

    2018-01-01

    The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information. PMID:29750190

  12. Limitation of the Predominant-Period Estimator for Earthquake Early Warning and the Initial Rupture of Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Ide, S.

    2007-12-01

    Earthquake early warning is an important and challenging issue for the reduction of the seismic damage, especially for the mitigation of human suffering. One of the most important problems in earthquake early warning systems is how immediately we can estimate the final size of an earthquake after we observe the ground motion. It is relevant to the problem whether the initial rupture of an earthquake has some information associated with its final size. Nakamura (1988) developed the Urgent Earthquake Detection and Alarm System (UrEDAS). It calculates the predominant period of the P wave (τp) and estimates the magnitude of an earthquake immediately after the P wave arrival from the value of τpmax, or the maximum value of τp. The similar approach has been adapted by other earthquake alarm systems (e.g., Allen and Kanamori (2003)). To investigate the characteristic of the parameter τp and the effect of the length of the time window (TW) in the τpmax calculation, we analyze the high-frequency recordings of earthquakes at very close distances in the Mponeng mine in South Africa. We find that values of τpmax have upper and lower limits. For larger earthquakes whose source durations are longer than TW, the values of τpmax have an upper limit which depends on TW. On the other hand, the values for smaller earthquakes have a lower limit which is proportional to the sampling interval. For intermediate earthquakes, the values of τpmax are close to their typical source durations. These two limits and the slope for intermediate earthquakes yield an artificial final size dependence of τpmax in a wide size range. The parameter τpmax is useful for detecting large earthquakes and broadcasting earthquake early warnings. However, its dependence on the final size of earthquakes does not suggest that the earthquake rupture is deterministic. This is because τpmax does not always have a direct relation to the physical quantities of an earthquake.

  13. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2008-09-30

    developing array -based methods that can more accurately characterize far-regional (14*-29*) seismic wavefield structure. Far- regional (14*-29*) seismograms...arrivals with the primary arrivals. These complexities can be region and earthquake specific. The regional seismic arrays that have been built in the last...fifteen years should be a rich data source for the study of far-regional phase behavior. The arrays are composed of high-quality borehole seismometers

  14. An experimental study on real time bus arrival time prediction with GPS data

    DOT National Transportation Integrated Search

    2001-01-01

    Bus headway in a rural area is usually much larger than that in an urban area. Providing real-time bus : arrival information could make the public transit system more user-friendly and thus enhance its : competitiveness among various transportation m...

  15. An experimental study on real time bus arrival time prediction with GPS data

    DOT National Transportation Integrated Search

    1999-01-01

    Bus headway in a rural area usually is much larger than that in an urban area. Providing real-time bus arrival information could make the public transit system more user-friendly and thus enhance its competitiveness among various transportation modes...

  16. Stochastic Resonance and First Arrival Time for Excitable Systems

    NASA Astrophysics Data System (ADS)

    Duki, Solomon Fekade; Taye, Mesfin Asfaw

    2018-04-01

    We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T} ) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).

  17. Stochastic Resonance and First Arrival Time for Excitable Systems

    NASA Astrophysics Data System (ADS)

    Duki, Solomon Fekade; Taye, Mesfin Asfaw

    2018-06-01

    We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).

  18. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    NASA Astrophysics Data System (ADS)

    Nugraha, Andri Dian; Kusnandar, Ridwan; Puspito, Nanang T.; Sakti, Artadi Pria; Yudistira, Tedi

    2015-04-01

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method. For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.

  19. Preliminary results of local earthquake tomography around Bali, Lombok, and Sumbawa regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Puspito, Nanang T; Yudistira, Tedi

    Bali, Sumbawa, and Lombok regions are located in active tectonic influence by Indo-Australia plate subducts beneath Sunda plate in southern part and local back-arc thrust in northern part the region. Some active volcanoes also lie from eastern part of Java, Bali, Lombok and Sumbawa regions. Previous studies have conducted subsurface seismic velocity imaging using regional and global earthquake data around the region. In this study, we used P-arrival time from local earthquake networks compiled by MCGA, Indonesia within time periods of 2009 up to 2013 to determine seismic velocity structure and simultaneously hypocenter adjustment by applying seismic tomography inversion method.more » For the tomographic inversion procedure, we started from 1-D initial velocity structure. We evaluated the resolution of tomography inversion results through checkerboard test and calculating derivative weigh sum. The preliminary results of tomography inversion show fairly clearly high seismic velocity subducting Indo-Australian and low velocity anomaly around volcano regions. The relocated hypocenters seem to cluster around the local fault system such as back-arc thrust fault in northern part of the region and around local fault in Sumbawa regions. Our local earthquake tomography results demonstrated consistent with previous studies and improved the resolution. For future works, we will determine S-wave velocity structure using S-wave arrival time to enhance our understanding of geological processes and for much better interpretation.« less

  20. Earthquake prediction in Japan and natural time analysis of seismicity

    NASA Astrophysics Data System (ADS)

    Uyeda, S.; Varotsos, P.

    2011-12-01

    M9 super-giant earthquake with huge tsunami devastated East Japan on 11 March, causing more than 20,000 casualties and serious damage of Fukushima nuclear plant. This earthquake was predicted neither short-term nor long-term. Seismologists were shocked because it was not even considered possible to happen at the East Japan subduction zone. However, it was not the only un-predicted earthquake. In fact, throughout several decades of the National Earthquake Prediction Project, not even a single earthquake was predicted. In reality, practically no effective research has been conducted for the most important short-term prediction. This happened because the Japanese National Project was devoted for construction of elaborate seismic networks, which was not the best way for short-term prediction. After the Kobe disaster, in order to parry the mounting criticism on their no success history, they defiantly changed their policy to "stop aiming at short-term prediction because it is impossible and concentrate resources on fundamental research", that meant to obtain "more funding for no prediction research". The public were and are not informed about this change. Obviously earthquake prediction would be possible only when reliable precursory phenomena are caught and we have insisted this would be done most likely through non-seismic means such as geochemical/hydrological and electromagnetic monitoring. Admittedly, the lack of convincing precursors for the M9 super-giant earthquake has adverse effect for us, although its epicenter was far out off shore of the range of operating monitoring systems. In this presentation, we show a new possibility of finding remarkable precursory signals, ironically, from ordinary seismological catalogs. In the frame of the new time domain termed natural time, an order parameter of seismicity, κ1, has been introduced. This is the variance of natural time kai weighted by normalised energy release at χ. In the case that Seismic Electric Signals

  1. Chacterization of Teleseismic Earthquakes Observed on an Ice Shelf

    NASA Astrophysics Data System (ADS)

    Baker, M. G.; Aster, R. C.; Anthony, R. E.; Wiens, D.; Nyblade, A.; Bromirski, P. D.; Stephen, R. A.; Gerstoft, P.

    2016-12-01

    Broadband seismographs deployed atop large tabular icebergs and ice shelves record a rich superposition of atmospheric, oceanic, and solid earth signals. We characterize these signals, including body and surface wave arrivals from approximately 200 global earthquakes, using a 34-station broadband array spanning the Ross Ice Shelf, Antarctica. Teleseismic earthquake arrivals are essential for constructing models of crustal and upper mantle structure, and observations on the ice shelf are key to resolving the structure of the underlying West Antarctic Rift System. To test the plausibility of passive imaging in this unique environment, we examine seasonal and spatial dependence of signal-to-noise ratios of body wave arrivals and the impact of ice shelf dynamics on surface wave dispersion. We also note unusual phase mechanics arising from the floating platform geometry.

  2. CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC

    NASA Astrophysics Data System (ADS)

    Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.

    2016-12-01

    The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.

  3. Time-dependent earthquake forecasting: Method and application to the Italian region

    NASA Astrophysics Data System (ADS)

    Chan, C.; Sorensen, M. B.; Grünthal, G.; Hakimhashemi, A.; Heidbach, O.; Stromeyer, D.; Bosse, C.

    2009-12-01

    We develop a new approach for time-dependent earthquake forecasting and apply it to the Italian region. In our approach, the seismicity density is represented by a bandwidth function as a smoothing Kernel in the neighboring region of earthquakes. To consider the fault-interaction-based forecasting, we calculate the Coulomb stress change imparted by each earthquake in the study area. From this, the change of seismicity rate as a function of time can be estimated by the concept of rate-and-state stress transfer. We apply our approach to the region of Italy and earthquakes that occurred before 2003 to generate the seismicity density. To validate our approach, we compare our estimated seismicity density with the distribution of earthquakes with M≥3.8 after 2004. A positive correlation is found and all of the examined earthquakes locate in the area of the highest 66 percentile of seismicity density in the study region. Furthermore, the seismicity density corresponding to the epicenter of the 2009 April 6, Mw = 6.3, L’Aquila earthquake is in the area of the highest 5 percentile. For the time-dependent seismicity rate change, we estimate the rate-and-state stress transfer imparted by the M≥5.0 earthquakes occurred in the past 50 years. It suggests that the seismicity rate has increased at the locations of 65% of the examined earthquakes. Applying this approach to the L’Aquila sequence by considering seven M≥5.0 aftershocks as well as the main shock, not only spatial but also temporal forecasting of the aftershock distribution is significant.

  4. USGS Tweet Earthquake Dispatch (@USGSted): Using Twitter for Earthquake Detection and Characterization

    NASA Astrophysics Data System (ADS)

    Liu, S. B.; Bouchard, B.; Bowden, D. C.; Guy, M.; Earle, P.

    2012-12-01

    desktop computer at the time of the detections. The continuously updating map displays geolocated tweets arriving after the detection and plots epicenters of recent earthquakes. When available, seismograms from nearby stations are displayed as an additional form of verification. A time series of tweets-per-minute is also shown to illustrate the volume of tweets being generated for the detected event. Future additions are being investigated to provide a more in-depth characterization of the seismic events based on an analysis of tweet text and content from other social media sources.

  5. Sounds of earthquakes in West Bohemia: analysis of sonic and infrasonic records

    NASA Astrophysics Data System (ADS)

    Fischer, Tomáš; Vilhelm, Jan; Kuna, Václav; Chum, Jaroslav; Horálek, Josef

    2013-04-01

    Earthquake sounds are usually observed during the occurrence of small earthquakes. The observations of audible manifestations of earthquakes date back to the ancient age and have been recently analyzed in more detail based both on macroseismic observations and audio recordings. In most cases the earthquake sounds resemble low-frequency underground thundering that is generated by seismic-acoustic conversion of P and SV waves at the earth surface. This is also supported by the fact that earthquake sounds usually precede shaking caused by S-waves. The less frequent are explosion-type sounds whose origin remains unclear. We analyze the observations of sounds associating the occurrence of earthquake swarms in the area of West Bohemia/Vogtland, Central Europe. Macroseismic data include 250 reports of sounds with 90% thundering and 10% of explosions. Additional data consist of sonic and infrasonic records acquired by microphones and microbarographs at seismic stations in the area. All the sonic and infrasonic records correspond to sounds of the thunder type; no explosions were recorded. Comparison of these records enabled to determine the seismic wave - air pressure transfer function. The measurements using a 3D microphone array confirm that in the epicentral area the sonic wave is propagating subvertically. We also compared the coda of seismograms and sonic records. It turned out that additional to seismo-acoustic coupling, a later acoustic wave of thunder type arrives at the observation site whose arrival time corresponds to sonic propagation from the epicenter. We analyse the possible generation mechanisms of this type of sonic wave.

  6. Analysis of P and Pdiff Coda Arrivals for Water Reverberations to Evaluate Shallow Slip Extent in Large Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Rhode, A.; Lay, T.

    2017-12-01

    Determining the up-dip rupture extent of large megathrust ruptures is important for understanding their tsunami excitation, frictional properties of the shallow megathrust, and potential for separate tsunami earthquake occurrence. On land geodetic data have almost no resolution of the up-dip extent of faulting and teleseismic observations have limited resolution that is strongly influenced by typically poorly known shallow seismic velocity structure near the toe of the accretionary prism. The increase in ocean depth as slip on the megathrust approaches the trench has significant influence on the strength and azimuthal distribution of water reverberations in the far-field P wave coda. For broadband P waves from large earthquakes with dominant signal periods of about 10 s, water reverberations generated by shallow fault slip under deep water may persist for over a minute after the direct P phases have passed, giving a clear signal of slip near the trench. As the coda waves can be quickly evaluated following the P signal, recognition of slip extending to the trench and associated enhanced tsunamigenic potential could be achieved within a few minutes after the P arrival, potentially contributing to rapid tsunami hazard assessment. We examine the broadband P wave coda at distances from 80 to 120° for a large number of recent major and great earthquakes with independently determined slip distributions and known tsunami excitation to evaluate the prospect for rapidly constraining up-dip rupture extent of large megathrust earthquakes. Events known to have significant shallow slip, at least locally extending to the trench (e.g., 2016 Illapel, Chile; 2010 Maule, 2010 Mentawai) do have relatively enhanced coda levels at all azimuths, whereas events that do not rupture the shallow megathrust (e.g., 2007 Sumatra, 2014 Iquique, 2003 Hokkaido) do not. Some events with slip models lacking shallow slip show strong coda generation, raising questions about the up-dip resolution of

  7. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is

  8. Non-linear resonant coupling of tsunami edge waves using stochastic earthquake source models

    USGS Publications Warehouse

    Geist, Eric L.

    2016-01-01

    Non-linear resonant coupling of edge waves can occur with tsunamis generated by large-magnitude subduction zone earthquakes. Earthquake rupture zones that straddle beneath the coastline of continental margins are particularly efficient at generating tsunami edge waves. Using a stochastic model for earthquake slip, it is shown that a wide range of edge-wave modes and wavenumbers can be excited, depending on the variability of slip. If two modes are present that satisfy resonance conditions, then a third mode can gradually increase in amplitude over time, even if the earthquake did not originally excite that edge-wave mode. These three edge waves form a resonant triad that can cause unexpected variations in tsunami amplitude long after the first arrival. An M ∼ 9, 1100 km-long continental subduction zone earthquake is considered as a test case. For the least-variable slip examined involving a Gaussian random variable, the dominant resonant triad includes a high-amplitude fundamental mode wave with wavenumber associated with the along-strike dimension of rupture. The two other waves that make up this triad include subharmonic waves, one of fundamental mode and the other of mode 2 or 3. For the most variable slip examined involving a Cauchy-distributed random variable, the dominant triads involve higher wavenumbers and modes because subevents, rather than the overall rupture dimension, control the excitation of edge waves. Calculation of the resonant period for energy transfer determines which cases resonant coupling may be instrumentally observed. For low-mode triads, the maximum transfer of energy occurs approximately 20–30 wave periods after the first arrival and thus may be observed prior to the tsunami coda being completely attenuated. Therefore, under certain circumstances the necessary ingredients for resonant coupling of tsunami edge waves exist, indicating that resonant triads may be observable and implicated in late, large-amplitude tsunami arrivals.

  9. ISC-GEM: Global Instrumental Earthquake Catalogue (1900-2009), I. Data collection from early instrumental seismological bulletins

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Harris, James; Villaseñor, Antonio; Storchak, Dmitry A.; Engdahl, E. Robert; Lee, William H. K.

    2015-02-01

    In order to produce a new global reference earthquake catalogue based on instrumental data covering the last 100+ years of global earthquakes, we collected, digitized and processed an unprecedented amount of printed early instrumental seismological bulletins with fundamental parametric data for relocating and reassessing the magnitude of earthquakes that occurred in the period between 1904 and 1970. This effort was necessary in order to produce an earthquake catalogue with locations and magnitudes as homogeneous as possible. The parametric data obtained and processed during this work fills a large gap in electronic bulletin data availability. This new dataset complements the data publicly available in the International Seismological Centre (ISC) Bulletin starting in 1964. With respect to the amplitude-period data necessary to re-compute magnitude, we searched through the global collection of printed bulletins stored at the ISC and entered relevant station parametric data into the database. As a result, over 110,000 surface and body-wave amplitude-period pairs for re-computing standard magnitudes MS and mb were added to the ISC database. To facilitate earthquake relocation, different sources have been used to retrieve body-wave arrival times. These were entered into the database using optical character recognition methods (International Seismological Summary, 1918-1959) or manually (e.g., British Association for the Advancement of Science, 1913-1917). In total, ∼1,000,000 phase arrival times were added to the ISC database for large earthquakes that occurred in the time interval 1904-1970. The selection of earthquakes for which data was added depends on time period and magnitude: for the early years of last century (until 1917) only very large earthquakes were selected for processing (M ⩾ 7.5), whereas in the periods 1918-1959 and 1960-2009 the magnitude thresholds are 6.25 and 5.5, respectively. Such a selection was mainly dictated by limitations in time and

  10. Applying time-reverse-imaging techniques to locate individual low-frequency earthquakes on the San Andreas fault near Cholame, California

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E.; Shelly, D. R.

    2013-12-01

    Observations of non-volcanic tremor have become ubiquitous in recent years. In spite of the abundance of observations, locating tremor remains a difficult task because of the lack of distinctive phase arrivals. Here we use time-reverse-imaging techniques that do not require identifying phase arrivals to locate individual low-frequency-earthquakes (LFEs) within tremor episodes on the San Andreas fault near Cholame, California. Time windows of 1.5-second duration containing LFEs are selected from continuously recorded waveforms of the local seismic network filtered between 1-5 Hz. We propagate the time-reversed seismic signal back through the subsurface using a staggered-grid finite-difference code. Assuming all rebroadcasted waveforms result from similar wave fields at the source origin, we search for wave field coherence in time and space to obtain the source location and origin time where the constructive interference is a maximum. We use an interpolated velocity model with a grid spacing of 100 m and a 5 ms time step to calculate the relative curl field energy amplitudes for each rebroadcasted seismogram every 50 ms for each grid point in the model. Finally, we perform a grid search for coherency in the curl field using a sliding time window, and taking the absolute value of the correlation coefficient to account for differences in radiation pattern. The highest median cross-correlation coefficient value over at a given grid point indicates the source location for the rebroadcasted event. Horizontal location errors based on the spatial extent of the highest 10% cross-correlation coefficient are on the order of 4 km, and vertical errors on the order of 3 km. Furthermore, a test of the method using earthquake data shows that the method produces an identical hypocentral location (within errors) as that obtained by standard ray-tracing methods. We also compare the event locations to a LFE catalog that locates the LFEs from stacked waveforms of repeated LFEs

  11. Spatial distribution of earthquake hypocenters in the Crimea—Black Sea region

    NASA Astrophysics Data System (ADS)

    Burmin, V. Yu; Shumlianska, L. O.

    2018-03-01

    Some aspects of the seismicity the Crime—Black Sea region are considered on the basis of the catalogued data on earthquakes that have occurred between 1970 and 2012. The complete list of the Crimean earthquakes for this period contains about 2140 events with magnitude ranging from -1.5 to 5.5. Bulletins contain information about compressional and shear waves arrival times regarding nearly 2000 earthquakes. A new approach to the definition of the coordinates of all of the events was applied to re-establish the hypocenters of the catalogued earthquakes. The obtained results indicate that the bulk of the earthquakes' foci in the region are located in the crust. However, some 2.5% of the foci are located at the depths ranging from 50 to 250 km. The new distribution of foci of earthquakes shows the concentration of foci in the form of two inclined branches, the center of which is located under the Yalto-Alushta seismic focal zone. The whole distribution of foci in depth corresponds to the relief of the lithosphere.

  12. Different motion cues are used to estimate time-to-arrival for frontoparallel and looming trajectories

    PubMed Central

    Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.

    2012-01-01

    Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519

  13. Timing the Random and Anomalous Arrival of Particles in a Geiger Counter with GPS Devices

    ERIC Educational Resources Information Center

    Blanco, F.; La Rocca, P.; Riggi, F.; Riggi, S.

    2008-01-01

    The properties of the arrival time distribution of particles in a detector have been studied by the use of a small Geiger counter, with a GPS device to tag the event time. The experiment is intended to check the basic properties of the random arrival time distribution between successive events and to simulate the investigations carried out by…

  14. Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors

    NASA Technical Reports Server (NTRS)

    Erkmen, Baris I.; Moision, Bruce E.

    2010-01-01

    Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.

  15. FORESHOCKS AND TIME-DEPENDENT EARTHQUAKE HAZARD ASSESSMENT IN SOUTHERN CALIFORNIA.

    USGS Publications Warehouse

    Jones, Lucile M.

    1985-01-01

    The probability that an earthquake in southern California (M greater than equivalent to 3. 0) will be followed by an earthquake of larger magnitude within 5 days and 10 km (i. e. , will be a foreshock) is 6 plus or minus 0. 5 per cent (1 S. D. ), and is not significantly dependent on the magnitude of the possible foreshock between M equals 3 and M equals 5. The probability that an earthquake will be followed by an M greater than equivalent to 5. 0 main shock, however, increases with magnitude of the foreshock from less than 1 per cent at M greater than equivalent to 3 to 6. 5 plus or minus 2. 5 per cent (1 S. D. ) at M greater than equivalent to 5. The main shock will most likely occur in the first hour after the foreshock, and the probability that a main shock will occur in the first hour decreases with elapsed time from the occurrence of the possible foreshock by approximately the inverse of time. Thus, the occurrence of an earthquake of M greater than equivalent to 3. 0 in southern California increases the earthquake hazard within a small space-time window several orders of magnitude above the normal background level.

  16. High resolution time of arrival estimation for a cooperative sensor system

    NASA Astrophysics Data System (ADS)

    Morhart, C.; Biebl, E. M.

    2010-09-01

    Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.

  17. Computing arrival times of firefighting resources for initial attack

    Treesearch

    Romain M. Mees

    1978-01-01

    Dispatching of firefighting resources requires instantaneous or precalculated decisions. A FORTRAN computer program has been developed that can provide a list of resources in order of computed arrival time for initial attack on a fire. The program requires an accurate description of the existing road system and a list of all resources available on a planning unit....

  18. Characterization of the Virginia earthquake effects and source parameters from website traffic analysis

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Roussel, F.

    2012-12-01

    This paper presents an after the fact study of the Virginia earthquake of 2011 August 23 using only the traffic observed on the EMSC website within minutes of its occurrence. Although the EMSC real time information services remain poorly identified in the US, a traffic surge was observed immediately after the earthquake's occurrence. Such surges, known as flashcrowd and commonly observed on our website after felt events within the Euro-Med region are caused by eyewitnesses looking for information about the shaking they have just felt. EMSC developed an approach named flashsourcing to map the felt area, and in some circumstances, the regions affected by severe damage or network disruption. The felt area is mapped simply by locating the Internet Protocol (IP) addresses of the visitors to the website during these surges while the existence of network disruption is detected by the instantaneous loss at the time of earthquake's occurrence of existing Internet sessions originating from the impacted area. For the Virginia earthquake, which was felt at large distances, the effects of the waves propagation are clearly observed. We show that the visits to our website are triggered by the P waves arrival: the first visitors from a given locality reach our website 90s after their location was shaken by the P waves. From a processing point of view, eyewitnesses can then be considered as ground motion detectors. By doing so, the epicentral location is determined through a simple dedicated location algorithm within 2 min of the earthquake's occurrence and 30 km accuracy. The magnitude can be estimated in similar time frame by using existing empirical relationships between the surface of the felt area and the magnitude. Concerning the effects of the earthquake, we check whether one can discriminate localities affected by strong shaking from web traffic analysis. This is actually the case. Localities affected by strong level of shaking exhibit higher ratio of visitors to the number

  19. Combining Real-Time Seismic and GPS Data for Earthquake Early Warning (Invited)

    NASA Astrophysics Data System (ADS)

    Boese, M.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    Scientists at Caltech, UC Berkeley, the Univ. of SoCal, the Univ. of Washington, the US Geological Survey, and ETH Zurich have developed an earthquake early warning (EEW) demonstration system for California and the Pacific Northwest. To quickly determine the earthquake magnitude and location, 'ShakeAlert' currently processes and interprets real-time data-streams from ~400 seismic broadband and strong-motion stations within the California Integrated Seismic Network (CISN). Based on these parameters, the 'UserDisplay' software predicts and displays the arrival and intensity of shaking at a given user site. Real-time ShakeAlert feeds are currently shared with around 160 individuals, companies, and emergency response organizations to educate potential users about EEW and to identify needs and applications of EEW in a future operational warning system. Recently, scientists at the contributing institutions have started to develop algorithms for ShakeAlert that make use of high-rate real-time GPS data to improve the magnitude estimates for large earthquakes (M>6.5) and to determine slip distributions. Knowing the fault slip in (near) real-time is crucial for users relying on or operating distributed systems, such as for power, water or transportation, especially if these networks run close to or across large faults. As shown in an earlier study, slip information is also useful to predict (in a probabilistic sense) how far a fault rupture will propagate, thus enabling more robust probabilistic ground-motion predictions at distant locations. Finally, fault slip information is needed for tsunami warning, such as in the Cascadia subduction-zone. To handle extended fault-ruptures of large earthquakes in real-time, Caltech and USGS Pasadena are currently developing and testing a two-step procedure that combines seismic and geodetic data; in the first step, high-frequency strong-motion amplitudes are used to rapidly classify near-and far-source stations. Then, the location and

  20. Seismogeodesy for rapid earthquake and tsunami characterization

    NASA Astrophysics Data System (ADS)

    Bock, Y.

    2016-12-01

    Rapid estimation of earthquake magnitude and fault mechanism is critical for earthquake and tsunami warning systems. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. These methods are well developed for ocean basin-wide warnings but are not timely enough to protect vulnerable populations and infrastructure from the effects of local tsunamis, where waves may arrive within 15-30 minutes of earthquake onset time. Direct measurements of displacements by GPS networks at subduction zones allow for rapid magnitude and slip estimation in the near-source region, that are not affected by instrumental limitations and magnitude saturation experienced by local seismic networks. However, GPS displacements by themselves are too noisy for strict earthquake early warning (P-wave detection). Optimally combining high-rate GPS and seismic data (in particular, accelerometers that do not clip), referred to as seismogeodesy, provides a broadband instrument that does not clip in the near field, is impervious to magnitude saturation, and provides accurate real-time static and dynamic displacements and velocities in real time. Here we describe a NASA-funded effort to integrate GPS and seismogeodetic observations as part of NOAA's Tsunami Warning Centers in Alaska and Hawaii. It consists of a series of plug-in modules that allow for a hierarchy of rapid seismogeodetic products, including automatic P-wave picking, hypocenter estimation, S-wave prediction, magnitude scaling relationships based on P-wave amplitude (Pd) and peak ground displacement (PGD), finite-source CMT solutions and fault slip models as input for tsunami warnings and models. For the NOAA/NASA project, the modules are being integrated into an existing USGS Earthworm environment, currently limited to traditional seismic data. We are focused on a network of

  1. Seismic hazard assessment over time: Modelling earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Chung-Han; Wang, Yu; Wang, Yu-Ju; Lee, Ya-Ting

    2017-04-01

    To assess the seismic hazard with temporal change in Taiwan, we develop a new approach, combining both the Brownian Passage Time (BPT) model and the Coulomb stress change, and implement the seismogenic source parameters by the Taiwan Earthquake Model (TEM). The BPT model was adopted to describe the rupture recurrence intervals of the specific fault sources, together with the time elapsed since the last fault-rupture to derive their long-term rupture probability. We also evaluate the short-term seismicity rate change based on the static Coulomb stress interaction between seismogenic sources. By considering above time-dependent factors, our new combined model suggests an increased long-term seismic hazard in the vicinity of active faults along the western Coastal Plain and the Longitudinal Valley, where active faults have short recurrence intervals and long elapsed time since their last ruptures, and/or short-term elevated hazard levels right after the occurrence of large earthquakes due to the stress triggering effect. The stress enhanced by the February 6th, 2016, Meinong ML 6.6 earthquake also significantly increased rupture probabilities of several neighbouring seismogenic sources in Southwestern Taiwan and raised hazard level in the near future. Our approach draws on the advantage of incorporating long- and short-term models, to provide time-dependent earthquake probability constraints. Our time-dependent model considers more detailed information than any other published models. It thus offers decision-makers and public officials an adequate basis for rapid evaluations of and response to future emergency scenarios such as victim relocation and sheltering.

  2. Protecting your family from earthquakes: The seven steps to earthquake safety

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here because of the importance of preparing for earthquakes before they happen. Experts say it is very likely there will be a damaging San Francisco Bay Area earthquake in the next 30 years and that it will strike without warning. It may be hard to find the supplies and services we need after this earthquake. For example, hospitals may have more patients than they can treat, and grocery stores may be closed for weeks. You will need to provide for your family until help arrives. To keep our loved ones and our community safe, we must prepare now. Some of us come from places where earthquakes are also common. However, the dangers of earthquakes in our homelands may be very different than in the Bay Area. For example, many people in Asian countries die in major earthquakes when buildings collapse or from big sea waves called tsunami. In the Bay Area, the main danger is from objects inside buildings falling on people. Take action now to make sure your family will be safe in an earthquake. The first step is to read this book carefully and follow its advice. By making your home safer, you help make our community safer. Preparing for earthquakes is important, and together we can make sure our families and community are ready. English version p. 3-13 Chinese version p. 14-24 Vietnamese version p. 25-36 Korean version p. 37-48

  3. Arrival-time picking method based on approximate negentropy for microseismic data

    NASA Astrophysics Data System (ADS)

    Li, Yue; Ni, Zhuo; Tian, Yanan

    2018-05-01

    Accurate and dependable picking of the first arrival time for microseismic data is an important part in microseismic monitoring, which directly affects analysis results of post-processing. This paper presents a new method based on approximate negentropy (AN) theory for microseismic arrival time picking in condition of much lower signal-to-noise ratio (SNR). According to the differences in information characteristics between microseismic data and random noise, an appropriate approximation of negentropy function is selected to minimize the effect of SNR. At the same time, a weighted function of the differences between maximum and minimum value of AN spectrum curve is designed to obtain a proper threshold function. In this way, the region of signal and noise is distinguished to pick the first arrival time accurately. To demonstrate the effectiveness of AN method, we make many experiments on a series of synthetic data with different SNR from -1 dB to -12 dB and compare it with previously published Akaike information criterion (AIC) and short/long time average ratio (STA/LTA) methods. Experimental results indicate that these three methods can achieve well picking effect when SNR is from -1 dB to -8 dB. However, when SNR is as low as -8 dB to -12 dB, the proposed AN method yields more accurate and stable picking result than AIC and STA/LTA methods. Furthermore, the application results of real three-component microseismic data also show that the new method is superior to the other two methods in accuracy and stability.

  4. A moment in time: emergency nurses and the Canterbury earthquakes.

    PubMed

    Richardson, S; Ardagh, M; Grainger, P; Robinson, V

    2013-06-01

    To outline the impact of the Canterbury, New Zealand (NZ) earthquakes on Christchurch Hospital, and the experiences of emergency nurses during this time. NZ has experienced earthquakes and aftershocks centred in the Canterbury region of the South Island. The location of these, around and within the major city of Christchurch, was unexpected and associated with previously unknown fault lines. While the highest magnitude quake occurred in September 2010, registering 7.1 on the Richter scale, it was the magnitude 6.3 event on 22 February 2011 which was associated with the greatest injury burden and loss of life. Staff working in the only emergency department in the city were faced with an external emergency while also being directly affected as part of the disaster. SOURCES OF EVIDENCE: This paper developed following interviews with nurses who worked during this period, and draws on literature related to healthcare responses to earthquakes and natural disasters. The establishment of an injury database allowed for an accurate picture to emerge of the injury burden, and each of the authors was present and worked in a clinical capacity during the earthquake. Nurses played a significant role in the response to the earthquakes and its aftermath. However, little is known regarding the impact of this, either in personal or professional terms. This paper presents an overview of the earthquakes and experiences of nurses working during this time, identifying a range of issues that will benefit from further exploration and research. It seeks to provide a sense of the experiences and the potential meanings that were derived from being part of this 'moment in time'. Examples of innovations in practice emerged during the earthquake response and a number of recommendations for nursing practice are identified. © 2013 The Authors. International Nursing Review © 2013 International Council of Nurses.

  5. The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.

    2011-12-01

    Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain

  6. Long-term changes in regular and low-frequency earthquake inter-event times near Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Wu, C.; Shelly, D. R.; Johnson, P. A.; Gomberg, J. S.; Peng, Z.

    2012-12-01

    The temporal evolution of earthquake inter-event time may provide important clues for the timing of future events and underlying physical mechanisms of earthquake nucleation. In this study, we examine inter-event times from 12-yr catalogs of ~50,000 earthquakes and ~730,000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault. We focus on the long-term evolution of inter-event times after the 2003 Mw6.5 San Simeon and 2004 Mw6.0 Parkfield earthquakes. We find that inter-event times decrease by ~4 orders of magnitudes after the Parkfield and San Simeon earthquakes and are followed by a long-term recovery with time scales of ~3 years and more than 8 years for earthquakes along and to the southwest of the San Andreas fault, respectively. The differing long-term recovery of the earthquake inter-event times is likely a manifestation of different aftershock recovery time scales that reflect the different tectonic loading rates in the two regions. We also observe a possible decrease of LFE inter-event times in some LFE families, followed by a recovery with time scales of ~4 months to several years. The drop in the recurrence time of LFE after the Parkfield earthquake is likely caused by a combination of the dynamic and positive static stress induced by the Parkfield earthquake, and the long-term recovery in LFE recurrence time could be due to post-seismic relaxation or gradual recovery of the fault zone material properties. Our on-going work includes better constraining and understanding the physical mechanisms responsible for the observed long-term recovery in earthquake and LFE inter-event times.

  7. End-User Applications of Real-Time Earthquake Information in Europe

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team

    2011-12-01

    The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational

  8. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  9. Pore-fluid migration and the timing of the 2005 M8.7 Nias earthquake

    USGS Publications Warehouse

    Hughes, K.L.H.; Masterlark, Timothy; Mooney, W.D.

    2011-01-01

    Two great earthquakes have occurred recently along the Sunda Trench, the 2004 M9.2 Sumatra-Andaman earthquake and the 2005 M8.7 Nias earthquake. These earthquakes ruptured over 1600 km of adjacent crust within 3 mo of each other. We quantitatively present poroelastic deformation analyses suggesting that postseismic fluid flow and recovery induced by the Sumatra-Andaman earthquake advanced the timing of the Nias earthquake. Simple back-slip simulations indicate that the megapascal (MPa)-scale pore-pressure recovery is equivalent to 7 yr of interseismic Coulomb stress accumulation near the Nias earthquake hypocenter, implying that pore-pressure recovery of the Sumatra-Andaman earthquake advanced the timing of the Nias earthquake by ~7 yr. That is, in the absence of postseismic pore-pressure recovery, we predict that the Nias earthquake would have occurred in 2011 instead of 2005. ?? 2011 Geological Society of America.

  10. Surviving collapsed structure entrapment after earthquakes: a "time-to-rescue" analysis.

    PubMed

    Macintyre, Anthony G; Barbera, Joseph A; Smith, Edward R

    2006-01-01

    Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. Commonly, this spurs resource intensive, dangerous, and frustrating attempts to find and extricate live victims. The search and rescue phase usually is maintained for many days beyond the last "save," potentially diverting critical attention and resources away from the pressing needs of non-trapped survivors and the devastated community. This recurring phenomenon is driven by the often-unanswered question "Can anyone still be alive under there?" The maximum survival time in entrapment is an important issue for responders, yet little formal research has been conducted on this issue. Knowing the maximum survival time in entrapment helps responders: (1) decide whether or not they should continue to assign limited resources to search and rescue activities; (2) assess the safety risks versus the benefits; (3) determine when search and rescue activities no longer are indicated; and (4) time and pace the important transition to community recovery efforts. The time period of 1985-2004 was selected for investigation. Medline and Lexis-Nexis databases were searched for earthquake events that occurred within this timeframe. Medical literature articles providing time-torescue data for victims of earthquakes were identified. Lexis-Nexis reports were scanned to select those with time-to-rescue data for victims of earthquakes. Reports from both databases were examined for information that might contribute to prolonged survival of entrapped individuals. A total of 34 different earthquake events met study criteria. Forty-eight medical articles containing time-to-rescue data were identified. Of these, the longest time to rescue was "13-19 days" post-event (secondhand data and the author is not specific). The second longest time to rescue in the medical articles was 8.7 days (209 hours). Twenty-five medical articles report multiple rescues that occurred after two days

  11. Analyzing the Possibility of Dynamic Earthquake Triggering in Socorro, New Mexico

    NASA Astrophysics Data System (ADS)

    Morton, E.; Bilek, S. L.

    2011-12-01

    The release of energy during an earthquake changes the stress state and seismicity both locally and remotely. Far-field stress changes can lead to triggered earthquakes coinciding with the arrival of the surface waves. This dynamic triggering is found to occur in a variety of tectonic settings, but in particular magmatic regions. Here we test whether the Socorro Magma Body region in central New Mexico hosts triggered seismicity. Preliminary inspection of continuous network data in central New Mexico suggested a local triggered event with the passage of surface waves from an MW 6.9 event in 2009. For a more comprehensive view, we examine data from 379 earthquakes MW ≥ 6.0 between January 15, 2008 to March 13, 2010 recorded on the EarthScope USArray Transportable Network stations located within New Mexico and providing more dense coverage for better detectability. Waveforms from twenty EarthScope stations were windowed around the time of the large event, high-pass filtered at 5 Hz to remove low frequency signals and analyzed to detect high frequency triggered local earthquakes. For each possible trigger detected, waveforms from nine short-period stations in the Socorro Seismic Network were added to aid in locating the events. In the time period analyzed, twelve triggered events were detected. Only one of these events, on August 30, 2009, corresponded to the arrival of surface waves, occurring about a minute after their arrival. The majority of the triggered events occur well after the arrival of the surface waves, indicating that they are either independent of the main shock or the result of delayed dynamic triggering. Delayed dynamic triggering can occur hours or days after the passage of surface waves, and are marked by an increase in seismicity relative to background. Only one of the events, on September 18, 2009, occurred within the Socorro Magma Body area. The rest of these events occur spread throughout New Mexico. The widely spread distribution of possibly

  12. Application of τc*Pd for identifying damaging earthquakes for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Huang, P. L.; Lin, T. L.; Wu, Y. M.

    2014-12-01

    Earthquake Early Warning System (EEWS) is an effective approach to mitigate earthquake damage. In this study, we used the seismic record by the Kiban Kyoshin network (KiK-net), because it has dense station coverage and co-located borehole strong-motion seismometers along with the free-surface strong-motion seismometers. We used inland earthquakes with moment magnitude (Mw) from 5.0 to 7.3 between 1998 and 2012. We choose 135 events and 10950 strong ground accelerograms recorded by the 696 strong ground accelerographs. Both the free-surface and the borehole data are used to calculate τc and Pd, respectively. The results show that τc*Pd has a good correlation with PGV and is a robust parameter for assessing the potential of damaging earthquake. We propose the value of τc*Pd determined from seconds after the arrival of P wave could be a threshold for the on-site type of EEW.

  13. The earthquake disaster risk characteristic and the problem in the earthquake emergency rescue of mountainous southwestern Sichuan

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Xin, C.; Ying, Z.

    2016-12-01

    In recent years, earthquake disaster occurred frequently in Chinese mainland, the secondary disaster which have been caused by it is more serious in mountainous region. Because of the influence of terrain and geological conditions, the difficulty of earthquake emergency rescue work greatly increased, rescue force is also urged. Yet, it has been studied less on earthquake emergency rescue in mountainous region, the research in existing equipment whether can meet the actual needs of local earthquake emergency rescue is poorly. This paper intends to discuss and solve these problems. Through the mountainous regions Ganzi and Liangshan states in Sichuan field research, we investigated the process of earthquake emergency response and the projects for rescue force after an earthquake, and we also collected and collated local rescue force based data. By consulting experts and statistical analyzing the basic data, there are mainly two problems: The first is about local rescue force, they are poorly equipped and lack in the knowledge of medical help or identify architectural structure. There are no countries to establish a sound financial investment protection mechanism. Also, rescue equipment's updates and maintenance; The second problem is in earthquake emergency rescue progress. In the complicated geologic structure of mountainous regions, traffic and communication may be interrupted by landslides and mud-rock flows after earthquake. The outside rescue force may not arrive in time, rescue equipment was transported by manpower. Because of unknown earthquake disaster information, the local rescue force was deployed unreasonable. From the above, the local government worker should analyze the characteristics of the earthquake disaster in mountainous regions, and research how to improve their earthquake emergency rescue ability. We think they can do that by strengthening and regulating the rescue force structure, enhancing the skills and knowledge, training rescue workers

  14. Separation of the electromagnetic and the muon component in EAS by their arrival times

    NASA Astrophysics Data System (ADS)

    Brüggemann, M.; Apel, W.D.; Arteaga, J.C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P.L.; Gils, H.J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J.R.; Huege, T.; Isar, P.G.; Kampert, K.-H.; Kickelbick, D.; Klages, H.O.; Kolotaev, Y.; Luczak, P.; Mathes, H.J.; Mayer, H.J.; Meurer, C.; Milke, J.; Mitrica, B.; Morales, A.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.

    The KASCADE-Grande experiment at Forschungszentrum Karlsruhe, Germany, measures extensive air showers initiated by primary particles with energies between 100 TeV and 1 EeV. Detector pulses digitized by a Flash-ADC based data acquisition system were unfolded to study the arrival times of secondary particles separately for the electromagnetic and the muonic shower component. Muons arrive on average earlier at ground level than electrons. A cut on the particle arrival time has been determined as a function of the distance to the shower core for the separation of electrons and muons. This cut is intended to be used for the determination of the muon content of air showers in experiments without dedicated muon detectors but with time resolving detector electronics. The muon content is essential for the reconstruction of the cosmic ray energy spectrum separated into individual elemental groups.

  15. A repeating source of infrasound from the Wells, Nevada earthquake sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrowsmith, Stephen J.; Whitaker, Rod; Randall, George

    2009-01-01

    The Wells, Nevada earthquake of February 21, 2008, generated a complex seismoacoustic wakefield. In addition to epicentral infrasound, the earthquake triggered a secondary source of infrasound, which was also initiated by subsequent aftershocks. By applying simple constraints on the propagation of seismic and infrasound waves, we show that the secondary source is an isolated peak that appears to efficiently generate infrasound through the interaction with seismic surface waves. By measuring peak-to-peak amplitudes of epicentral and secondary arrivals and correcting them for the effects of distance and winds, we find that epicentral arrivals lit with empirical relationships of Mutschlecner and Whitakermore » (2005) and Le Pichon et al. (2006), which form the basis for a proposed infrasound discriminant (Anderson et al., Pers. Comm.). In contrast, the secondary arrivals are much higher in amplitude, highlighting the importance of being able to separate epicentral and secondary arrivals for infrasonic event discrimination.« less

  16. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a

  17. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  18. Using a modified time-reverse imaging technique to locate low-frequency earthquakes on the San Andreas Fault near Cholame, California

    USGS Publications Warehouse

    Horstmann, Tobias; Harrington, Rebecca M.; Cochran, Elizabeth S.

    2015-01-01

    We present a new method to locate low-frequency earthquakes (LFEs) within tectonic tremor episodes based on time-reverse imaging techniques. The modified time-reverse imaging technique presented here is the first method that locates individual LFEs within tremor episodes within 5 km uncertainty without relying on high-amplitude P-wave arrivals and that produces similar hypocentral locations to methods that locate events by stacking hundreds of LFEs without having to assume event co-location. In contrast to classic time-reverse imaging algorithms, we implement a modification to the method that searches for phase coherence over a short time period rather than identifying the maximum amplitude of a superpositioned wavefield. The method is independent of amplitude and can help constrain event origin time. The method uses individual LFE origin times, but does not rely on a priori information on LFE templates and families.We apply the method to locate 34 individual LFEs within tremor episodes that occur between 2010 and 2011 on the San Andreas Fault, near Cholame, California. Individual LFE location accuracies range from 2.6 to 5 km horizontally and 4.8 km vertically. Other methods that have been able to locate individual LFEs with accuracy of less than 5 km have mainly used large-amplitude events where a P-phase arrival can be identified. The method described here has the potential to locate a larger number of individual low-amplitude events with only the S-phase arrival. Location accuracy is controlled by the velocity model resolution and the wavelength of the dominant energy of the signal. Location results are also dependent on the number of stations used and are negligibly correlated with other factors such as the maximum gap in azimuthal coverage, source–station distance and signal-to-noise ratio.

  19. An integrated earthquake early warning system and its performance at schools in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Bing-Ru; Hsiao, Nai-Chi; Lin, Pei-Yang; Hsu, Ting-Yu; Chen, Chiou-Yun; Huang, Shieh-Kung; Chiang, Hung-Wei

    2017-01-01

    An earthquake early warning (EEW) system with integration of regional and onsite approaches was installed at nine demonstration stations in several districts of Taiwan for taking advantages of both approaches. The system performance was evaluated by a 3-year experiment at schools, which experienced five major earthquakes during this period. The blind zone of warning was effectively reduced by the integrated EEW system. The predicted intensities from EEW demonstration stations showed acceptable accuracy compared to field observations. The operation experience from an earthquake event proved that students could calmly carry out correct action before the seismic wave arrived using some warning time provided by the EEW system. Through successful operation in practice, the integrated EEW system was verified as an effective tool for disaster prevention at schools.

  20. Earthquake Education in Prime Time

    NASA Astrophysics Data System (ADS)

    de Groot, R.; Abbott, P.; Benthien, M.

    2004-12-01

    Since 2001, the Southern California Earthquake Center (SCEC) has collaborated on several video production projects that feature important topics related to earthquake science, engineering, and preparedness. These projects have also fostered many fruitful and sustained partnerships with a variety of organizations that have a stake in hazard education and preparedness. The Seismic Sleuths educational video first appeared in the spring season 2001 on Discovery Channel's Assignment Discovery. Seismic Sleuths is based on a highly successful curriculum package developed jointly by the American Geophysical Union and The Department of Homeland Security Federal Emergency Management Agency. The California Earthquake Authority (CEA) and the Institute for Business and Home Safety supported the video project. Summer Productions, a company with a reputation for quality science programming, produced the Seismic Sleuths program in close partnership with scientists, engineers, and preparedness experts. The program has aired on the National Geographic Channel as recently as Fall 2004. Currently, SCEC is collaborating with Pat Abbott, a geology professor at San Diego State University (SDSU) on the video project Written In Stone: Earthquake Country - Los Angeles. Partners on this project include the California Seismic Safety Commission, SDSU, SCEC, CEA, and the Insurance Information Network of California. This video incorporates live-action demonstrations, vivid animations, and a compelling host (Abbott) to tell the story about earthquakes in the Los Angeles region. The Written in Stone team has also developed a comprehensive educator package that includes the video, maps, lesson plans, and other supporting materials. We will present the process that facilitates the creation of visually effective, factually accurate, and entertaining video programs. We acknowledge the need to have a broad understanding of the literature related to communication, media studies, science education, and

  1. Time-dependent earthquake probabilities

    USGS Publications Warehouse

    Gomberg, J.; Belardinelli, M.E.; Cocco, M.; Reasenberg, P.

    2005-01-01

    We have attempted to provide a careful examination of a class of approaches for estimating the conditional probability of failure of a single large earthquake, particularly approaches that account for static stress perturbations to tectonic loading as in the approaches of Stein et al. (1997) and Hardebeck (2004). We have loading as in the framework based on a simple, generalized rate change formulation and applied it to these two approaches to show how they relate to one another. We also have attempted to show the connection between models of seismicity rate changes applied to (1) populations of independent faults as in background and aftershock seismicity and (2) changes in estimates of the conditional probability of failures of different members of a the notion of failure rate corresponds to successive failures of different members of a population of faults. The latter application requires specification of some probability distribution (density function of PDF) that describes some population of potential recurrence times. This PDF may reflect our imperfect knowledge of when past earthquakes have occurred on a fault (epistemic uncertainty), the true natural variability in failure times, or some combination of both. We suggest two end-member conceptual single-fault models that may explain natural variability in recurrence times and suggest how they might be distinguished observationally. When viewed deterministically, these single-fault patch models differ significantly in their physical attributes, and when faults are immature, they differ in their responses to stress perturbations. Estimates of conditional failure probabilities effectively integrate over a range of possible deterministic fault models, usually with ranges that correspond to mature faults. Thus conditional failure probability estimates usually should not differ significantly for these models. Copyright 2005 by the American Geophysical Union.

  2. Time-dependent earthquake probability calculations for southern Kanto after the 2011 M9.0 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.; Sakai, S.; Kato, A.; Tsuruoka, H.; Hirata, N.

    2013-05-01

    Seismicity in southern Kanto activated with the 2011 March 11 Tohoku earthquake of magnitude M9.0, but does this cause a significant difference in the probability of more earthquakes at the present or in the To? future answer this question, we examine the effect of a change in the seismicity rate on the probability of earthquakes. Our data set is from the Japan Meteorological Agency earthquake catalogue, downloaded on 2012 May 30. Our approach is based on time-dependent earthquake probabilistic calculations, often used for aftershock hazard assessment, and are based on two statistical laws: the Gutenberg-Richter (GR) frequency-magnitude law and the Omori-Utsu (OU) aftershock-decay law. We first confirm that the seismicity following a quake of M4 or larger is well modelled by the GR law with b ˜ 1. Then, there is good agreement with the OU law with p ˜ 0.5, which indicates that the slow decay was notably significant. Based on these results, we then calculate the most probable estimates of future M6-7-class events for various periods, all with a starting date of 2012 May 30. The estimates are higher than pre-quake levels if we consider a period of 3-yr duration or shorter. However, for statistics-based forecasting such as this, errors that arise from parameter estimation must be considered. Taking into account the contribution of these errors to the probability calculations, we conclude that any increase in the probability of earthquakes is insignificant. Although we try to avoid overstating the change in probability, our observations combined with results from previous studies support the likelihood that afterslip (fault creep) in southern Kanto will slowly relax a stress step caused by the Tohoku earthquake. This afterslip in turn reminds us of the potential for stress redistribution to the surrounding regions. We note the importance of varying hazards not only in time but also in space to improve the probabilistic seismic hazard assessment for southern Kanto.

  3. Is Your Class a Natural Disaster? It can be... The Real Time Earthquake Education (RTEE) System

    NASA Astrophysics Data System (ADS)

    Whitlock, J. S.; Furlong, K.

    2003-12-01

    In cooperation with the U.S. Geological Survey (USGS) and its National Earthquake Information Center (NEIC) in Golden, Colorado, we have implemented an autonomous version of the NEIC's real-time earthquake database management and earthquake alert system (Earthworm). This is the same system used professionally by the USGS in its earthquake response operations. Utilizing this system, Penn State University students participating in natural hazard classes receive real-time alerts of worldwide earthquake events on cell phones distributed to the class. The students are then responsible for reacting to actual earthquake events, in real-time, with the same data (or lack thereof) as earthquake professionals. The project was first implemented in Spring 2002, and although it had an initial high intrigue and "coolness" factor, the interest of the students waned with time. Through student feedback, we observed that scientific data presented on its own without an educational context does not foster student learning. In order to maximize the impact of real-time data and the accompanying e-media, the students need to become personally involved. Therefore, in collaboration with the Incorporated Research Institutes of Seismology (IRIS), we have begun to develop an online infrastructure that will help teachers and faculty effectively use real-time earthquake information. The Real-Time Earthquake Education (RTEE) website promotes student learning by integrating inquiry-based education modules with real-time earthquake data. The first module guides the students through an exploration of real-time and historic earthquake datasets to model the most important criteria for determining the potential impact of an earthquake. Having provided the students with content knowledge in the first module, the second module presents a more authentic, open-ended educational experience by setting up an earthquake role-play situation. Through the Earthworm system, we have the ability to "set off

  4. Automatic Earthquake Shear Stress Measurement Method Developed for Accurate Time- Prediction Analysis of Forthcoming Major Earthquakes Along Shallow Active Faults

    NASA Astrophysics Data System (ADS)

    Serata, S.

    2006-12-01

    The Serata Stressmeter has been developed to measure and monitor earthquake shear stress build-up along shallow active faults. The development work made in the past 25 years has established the Stressmeter as an automatic stress measurement system to study timing of forthcoming major earthquakes in support of the current earthquake prediction studies based on statistical analysis of seismological observations. In early 1982, a series of major Man-made earthquakes (magnitude 4.5-5.0) suddenly occurred in an area over deep underground potash mine in Saskatchewan, Canada. By measuring underground stress condition of the mine, the direct cause of the earthquake was disclosed. The cause was successfully eliminated by controlling the stress condition of the mine. The Japanese government was interested in this development and the Stressmeter was introduced to the Japanese government research program for earthquake stress studies. In Japan the Stressmeter was first utilized for direct measurement of the intrinsic lateral tectonic stress gradient G. The measurement, conducted at the Mt. Fuji Underground Research Center of the Japanese government, disclosed the constant natural gradients of maximum and minimum lateral stresses in an excellent agreement with the theoretical value, i.e., G = 0.25. All the conventional methods of overcoring, hydrofracturing and deformation, which were introduced to compete with the Serata method, failed demonstrating the fundamental difficulties of the conventional methods. The intrinsic lateral stress gradient determined by the Stressmeter for the Japanese government was found to be the same with all the other measurements made by the Stressmeter in Japan. The stress measurement results obtained by the major international stress measurement work in the Hot Dry Rock Projects conducted in USA, England and Germany are found to be in good agreement with the Stressmeter results obtained in Japan. Based on this broad agreement, a solid geomechanical

  5. Source and Aftershock Analysis of a Large Deep Earthquake in the Tonga Flat Slab

    NASA Astrophysics Data System (ADS)

    Cai, C.; Wiens, D. A.; Warren, L. M.

    2013-12-01

    The 9 November 2009 (Mw 7.3) deep focus earthquake (depth = 591 km) occurred in the Tonga flat slab region, which is characterized by limited seismicity but has been imaged as a flat slab in tomographic imaging studies. In addition, this earthquake occurred immediately beneath the largest of the Fiji Islands and was well recorded by a temporary array of 16 broadband seismographs installed in Fiji and Tonga, providing an excellent opportunity to study the source mechanism of a deep earthquake in a partially aseismic flat slab region. We determine the positions of main shock hypocenter, its aftershocks and moment release subevents relative to the background seismicity using a hypocentroidal decomposition relative relocation method. We also investigate the rupture directivity by measuring the variation of rupture durations at different azimuth [e.g., Warren and Silver, 2006]. Arrival times picked from the local seismic stations together with teleseismic arrival times from the International Seismological Centre (ISC) are used for the relocation. Teleseismic waveforms are used for directivity study. Preliminary results show this entire region is relatively aseismic, with diffuse background seismicity distributed between 550-670 km. The main shock happened in a previously aseismic region, with only 1 small earthquake within 50 km during 1980-2012. 11 aftershocks large enough for good locations all occurred within the first 24 hours following the earthquake. The aftershock zone extends about 80 km from NW to SE, covering a much larger area than the mainshock rupture. The aftershock distribution does not correspond to the main shock fault plane, unlike the 1994 March 9 (Mw 7.6) Fiji-Tonga earthquake in the steeply dipping, highly seismic part of the Tonga slab. Mainshock subevent locations suggest a sub-horizontal SE-NW rupture direction. However, the directivity study shows a complicated rupture process which could not be solved with simple rupture assumption. We will

  6. An intraslab earthquake (M7.1) along a buried hydrated fault in the Pacific plate, triggered by the 2011 M9 Tohoku earthquake

    NASA Astrophysics Data System (ADS)

    Nakajima, J.; Hasegawa, A.; Kita, S.

    2011-12-01

    A M9.0 megathrust earthquake, the 2011 off the Pacific Coast of Tohoku Earthquake, occurred on 11 March 2011 on the plate boundary east off northeastern (NE) Japan. After this great earthquake, seismicity has been activated in the Pacific plate as well as along its upper surface, and a large earthquake (M7.1) occurred on April 7 in the Pacific slab at a depth of 66 km, located near the down-dip limit of the large interplate slip of the M9 event. Here we perform travel-time tomography to reveal heterogeneous seismic velocity structures around the focal area of the 2011 M7.1 intraslab event, and discuss the occurrence of the 2011 M7.1 event in terms of dehydration embrittlement hypothesis. We applied the double-difference tomography method (Zhang and Thurber, 2003) to large number of arrival-time data obtained at a nation-wide seismograph network in Japan. Arrival-time data were produced from 8911 earthquakes and 188 stations, and comprised 247,504 P waves and 196,057 S waves, with differential data of 1,608,230 for P waves and 1,114,068 for S waves. Grid intervals were set at 10-20 km in the along-arc direction, 5-10 km perpendicular to the arc, and 5-10 km in the vertical direction The final results were obtained after eight iterations, which reduced the travel-time residual from 0.17 s to 0.11 s for P waves, and from 0.33 s to 0.19 s for S waves. The results show a low-velocity zone around the focal area of the M7.1 event, and that the aftershock activity is limited to the upper 15 km of the oceanic mantle. The lateral extent of the low-velocity zone is comparable to the distribution of aftershocks, suggesting a concentration of fluids in the aftershock area. The angle between the aftershock alignment and the dip of the slab surface is estimated to be ~60°, which is consistent with the dip of an oceanward-dipping normal fault observed at the outer-trench slope. These observations suggest that the M7.1 intraslab event occurred as a result of reactivation of a

  7. A study on the impact of prioritising emergency department arrivals on the patient waiting time.

    PubMed

    Van Bockstal, Ellen; Maenhout, Broos

    2018-05-03

    In the past decade, the crowding of the emergency department has gained considerable attention of researchers as the number of medical service providers is typically insufficient to fulfil the demand for emergency care. In this paper, we solve the stochastic emergency department workforce planning problem and consider the planning of nurses and physicians simultaneously for a real-life case study in Belgium. We study the patient arrival pattern of the emergency department in depth and consider different patient acuity classes by disaggregating the arrival pattern. We determine the personnel staffing requirements and the design of the shifts based on the patient arrival rates per acuity class such that the resource staffing cost and the weighted patient waiting time are minimised. In order to solve this multi-objective optimisation problem, we construct a Pareto set of optimal solutions via the -constraints method. For a particular staffing composition, the proposed model minimises the patient waiting time subject to upper bounds on the staffing size using the Sample Average Approximation Method. In our computational experiments, we discern the impact of prioritising the emergency department arrivals. Triaging results in lower patient waiting times for higher priority acuity classes and to a higher waiting time for the lowest priority class, which does not require immediate care. Moreover, we perform a sensitivity analysis to verify the impact of the arrival and service pattern characteristics, the prioritisation weights between different acuity classes and the incorporated shift flexibility in the model.

  8. Development of a Low Cost Earthquake Early Warning System in Taiwan

    NASA Astrophysics Data System (ADS)

    Wu, Y. M.

    2017-12-01

    The National Taiwan University (NTU) developed an earthquake early warning (EEW) system for research purposes using low-cost accelerometers (P-Alert) since 2010. As of 2017, a total of 650 stations have been deployed and configured. The NTU system can provide earthquake information within 15 s of an earthquake occurrence. Thus, this system may provide early warnings for cities located more than 50 km from the epicenter. Additionally, the NTU system also has an onsite alert function that triggers a warning for incoming P-waves greater than a certain magnitude threshold, thus providing a 2-3 s lead time before peak ground acceleration (PGA) for regions close to an epicenter. Detailed shaking maps are produced by the NTU system within one or two minutes after an earthquake. Recently, a new module named ShakeAlarm has been developed. Equipped with real-time acceleration signals and the time-dependent anisotropic attenuation relationship of the PGA, ShakingAlarm can provide an accurate PGA estimation immediately before the arrival of the observed PGA. This unique advantage produces sufficient lead time for hazard assessment and emergency response, which is unavailable for traditional shakemap, which are based on only the PGA observed in real time. The performance of ShakingAlarm was tested with six M > 5.5 inland earthquakes from 2013 to 2016. Taking the 2016 M6.4 Meinong earthquake simulation as an example, the predicted PGA converges to a stable value and produces a predicted shake map and an isocontour map of the predicted PGA within 16 seconds of earthquake occurrence. Compared with traditional regional EEW system, ShakingAlarm can effectively identify possible damage regions and provide valuable early warning information (magnitude and PGA) for risk mitigation.

  9. Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.

    2016-12-01

    We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should

  10. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  11. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  12. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  13. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  14. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...

  15. Source of 1629 Banda Mega-Thrust Earthquake and Tsunami: Implications for Tsunami Hazard Evaluation in Eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Major, J. R.; Liu, Z.; Harris, R. A.; Fisher, T. L.

    2011-12-01

    in 1629 to the Seram and Timor Troughs. For the Seram Trough source a Mw 8.8 produces run-up heights in the Banda Islands of 15.5 m with an arrival time of 17 minuets. For a Timor Trough earthquake near the Tanimbar Islands a Mw 9.2 is needed to produce a 15 m run-up height with an arrival time of 25 minuets. The main problem with the Timor Trough source is that it predicts run-up heights in Ambon of 10 m, which would likely have been recorded. Therefore, we conclude that the most likely source of the 1629 mega-thrust earthquake is the Seram Trough. No large earthquakes are reported along the Seram Trough for over 200 years although high rates of strain are measured across it. This study suggests that the earthquake triggers from this fault zone could be extremely devastating to Eastern Indonesia. We strive to raise the awareness to the local government to not underestimate the natural hazard of this region based on lessons learned from the 2004 Sumatra and 2011 Tohoku tsunamigenic mega-thrust earthquakes.

  16. Combining Multiple Rupture Models in Real-Time for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Wu, S.; Beck, J. L.; Heaton, T. H.

    2015-12-01

    The ShakeAlert earthquake early warning system for the west coast of the United States is designed to combine information from multiple independent earthquake analysis algorithms in order to provide the public with robust predictions of shaking intensity at each user's location before they are affected by strong shaking. The current contributing analyses come from algorithms that determine the origin time, epicenter, and magnitude of an earthquake (On-site, ElarmS, and Virtual Seismologist). A second generation of algorithms will provide seismic line source information (FinDer), as well as geodetically-constrained slip models (BEFORES, GPSlip, G-larmS, G-FAST). These new algorithms will provide more information about the spatial extent of the earthquake rupture and thus improve the quality of the resulting shaking forecasts.Each of the contributing algorithms exploits different features of the observed seismic and geodetic data, and thus each algorithm may perform differently for different data availability and earthquake source characteristics. Thus the ShakeAlert system requires a central mediator, called the Central Decision Module (CDM). The CDM acts to combine disparate earthquake source information into one unified shaking forecast. Here we will present a new design for the CDM that uses a Bayesian framework to combine earthquake reports from multiple analysis algorithms and compares them to observed shaking information in order to both assess the relative plausibility of each earthquake report and to create an improved unified shaking forecast complete with appropriate uncertainties. We will describe how these probabilistic shaking forecasts can be used to provide each user with a personalized decision-making tool that can help decide whether or not to take a protective action (such as opening fire house doors or stopping trains) based on that user's distance to the earthquake, vulnerability to shaking, false alarm tolerance, and time required to act.

  17. Real-time Upstream Monitoring System: Using ACE Data to Predict the Arrival of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Donegan, M. M.; Wagstaff, K. L.; Ho, G. C.; Vandegriff, J.

    2003-12-01

    We have developed an algorithm to predict Earth arrival times for interplanetary (IP) shock events originating at the Sun. Our predictions are generated from real-time data collected by the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. The high intensities of energetic ions that occur prior to and during an IP shock pose a radiation hazard to astronauts as well as to electronics in Earth orbit. The potential to predict such events is based on characteristic signatures in the Energetic Storm Particle (ESP) event ion intensities which are often associated with IP shocks. We have previously reported on the development and implementation of an algorithm to forecast the arrival of ESP events. Historical ion data from ACE/EPAM was used to train an artificial neural network which uses the signature of an approaching event to predict the time remaining until the shock arrives. Tests on the trained network have been encouraging, with an average error of 9.4 hours for predictions made 24 hours in advance, and an reduced average error of 4.9 hours when the shock is 12 hours away. The prediction engine has been integrated into a web-based system that uses real-time ACE/EPAM data provided by the NOAA Space Environment Center (http://sd-www.jhuapl.edu/UPOS/RISP/ index.html.) This system continually processes the latest ACE data, reports whether or not there is an impending shock, and predicts the time remaining until the shock arrival. Our predictions are updated every five minutes and provide significant lead-time, thereby supplying critical information that can be used by mission planners, satellite operations controllers, and scientists. We have continued to refine the prediction capabilities of this system; in addition to forecasting arrival times for shocks, we now provide confidence estimates for those predictions.

  18. Seismicity, arrival time delays of the seismic phases and slowness characteristics study in Abu Dabbab area, Egypt

    NASA Astrophysics Data System (ADS)

    Sami, Mahmoud; Hassoup, Awad; Hosny, Ahmed; Mohamed, Gadelkarem A.

    2013-12-01

    The temporal variations of seismicity from the Abu Dabbab area, 25 km west of the Red Sea coast, are collected from the Egyptian national seismic network (ENSN), which has magnified the detection capability in that area to ML < 1 earthquakes. These data show a sequence of the micro earthquake swarm during 2003-2011. This area has experienced larger shocks up to M = 6 during the 20th century and its seismicity is concentrated in a narrow spatial volume. We analyze the digital waveform data of about 1000 seismograms, recorded by portable network of 10 vertical component seismographs that are employed in a temporary survey experiment in the Abu Dabbab area in 2004, and the results indicate: firstly, there are similar waveform seismograms, which are classified into three groups. In each group a master event is identified. Then, the arrival time delays of the P and S phases (Δtp and Δts, respectively) are measured between the master event and its slave events. Δtp and Δts range between -0.01 and 0.02 s, respectively. These values are used to relocate the studied events. Secondly, the slowness vector (Δs) in 3-dimensional pattern, which is estimated using the genetic algorithms, is found Δsx = 0.0153, Δsy = 0.00093 and Δsz = 0.2086 s/km in the three spatial coordinates (X, Y and Z), respectively. These analyses demonstrate the inhomogeneities within the upper crust of the study area. Also, Δs shows little dependence of lateral distances and reasonably high slowness along the depth extent, which is consistent with the seismic velocity structure variations.

  19. Long-Term Fault Memory: A New Time-Dependent Recurrence Model for Large Earthquake Clusters on Plate Boundaries

    NASA Astrophysics Data System (ADS)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.; Campbell, M. R.

    2017-12-01

    A challenge for earthquake hazard assessment is that geologic records often show large earthquakes occurring in temporal clusters separated by periods of quiescence. For example, in Cascadia, a paleoseismic record going back 10,000 years shows four to five clusters separated by approximately 1,000 year gaps. If we are still in the cluster that began 1700 years ago, a large earthquake is likely to happen soon. If the cluster has ended, a great earthquake is less likely. For a Gaussian distribution of recurrence times, the probability of an earthquake in the next 50 years is six times larger if we are still in the most recent cluster. Earthquake hazard assessments typically employ one of two recurrence models, neither of which directly incorporate clustering. In one, earthquake probability is time-independent and modeled as Poissonian, so an earthquake is equally likely at any time. The fault has no "memory" because when a prior earthquake occurred has no bearing on when the next will occur. The other common model is a time-dependent earthquake cycle in which the probability of an earthquake increases with time until one happens, after which the probability resets to zero. Because the probability is reset after each earthquake, the fault "remembers" only the last earthquake. This approach can be used with any assumed probability density function for recurrence times. We propose an alternative, Long-Term Fault Memory (LTFM), a modified earthquake cycle model where the probability of an earthquake increases with time until one happens, after which it decreases, but not necessarily to zero. Hence the probability of the next earthquake depends on the fault's history over multiple cycles, giving "long-term memory". Physically, this reflects an earthquake releasing only part of the elastic strain stored on the fault. We use the LTFM to simulate earthquake clustering along the San Andreas Fault and Cascadia. In some portions of the simulated earthquake history, events would

  20. Towards real-time regional earthquake simulation I: real-time moment tensor monitoring (RMT) for regional events in Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Liang, Wen-Tzong; Cheng, Hui-Wen; Tu, Feng-Shan; Ma, Kuo-Fong; Tsuruoka, Hiroshi; Kawakatsu, Hitoshi; Huang, Bor-Shouh; Liu, Chun-Chi

    2014-01-01

    We have developed a real-time moment tensor monitoring system (RMT) which takes advantage of a grid-based moment tensor inversion technique and real-time broad-band seismic recordings to automatically monitor earthquake activities in the vicinity of Taiwan. The centroid moment tensor (CMT) inversion technique and a grid search scheme are applied to obtain the information of earthquake source parameters, including the event origin time, hypocentral location, moment magnitude and focal mechanism. All of these source parameters can be determined simultaneously within 117 s after the occurrence of an earthquake. The monitoring area involves the entire Taiwan Island and the offshore region, which covers the area of 119.3°E to 123.0°E and 21.0°N to 26.0°N, with a depth from 6 to 136 km. A 3-D grid system is implemented in the monitoring area with a uniform horizontal interval of 0.1° and a vertical interval of 10 km. The inversion procedure is based on a 1-D Green's function database calculated by the frequency-wavenumber (fk) method. We compare our results with the Central Weather Bureau (CWB) catalogue data for earthquakes occurred between 2010 and 2012. The average differences between event origin time and hypocentral location are less than 2 s and 10 km, respectively. The focal mechanisms determined by RMT are also comparable with the Broadband Array in Taiwan for Seismology (BATS) CMT solutions. These results indicate that the RMT system is realizable and efficient to monitor local seismic activities. In addition, the time needed to obtain all the point source parameters is reduced substantially compared to routine earthquake reports. By connecting RMT with a real-time online earthquake simulation (ROS) system, all the source parameters will be forwarded to the ROS to make the real-time earthquake simulation feasible. The RMT has operated offline (2010-2011) and online (since January 2012 to present) at the Institute of Earth Sciences (IES), Academia Sinica

  1. Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.

    2014-12-01

    A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.

  2. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  3. Seismoacoustic Coupled Signals From Earthquakes in Central Italy: Epicentral and Secondary Sources of Infrasound

    NASA Astrophysics Data System (ADS)

    Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.

    2018-01-01

    In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.

  4. Three-dimensional seismic velocity structure and earthquake relocations at Katmai, Alaska

    USGS Publications Warehouse

    Murphy, Rachel; Thurber, Clifford; Prejean, Stephanie G.; Bennington, Ninfa

    2014-01-01

    We invert arrival time data from local earthquakes occurring between September 2004 and May 2009 to determine the three-dimensional (3D) upper crustal seismic structure in the Katmai volcanic region. Waveforms for the study come from the Alaska Volcano Observatory's permanent network of 20 seismic stations in the area (predominantly single-component, short period instruments) plus a densely spaced temporary array of 11 broadband, 3-component stations. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for 3D P- and S-wave velocity models for an area encompassing the main volcanic centers. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident-Novarupta, and Mount Katmai. The seismic activity extends from about sea level to 2 km depth (all depths referenced to mean sea level) beneath Martin, is concentrated near 2 km depth beneath Mageik, and lies mainly between 2 and 4 km depth below Katmai and Trident-Novarupta. Many new features are apparent within these earthquake clusters. In particular, linear features are visible within all clusters, some associated with swarm activity, including an observation of earthquake migration near Trident in 2008. The final velocity model reveals a possible zone of magma storage beneath Mageik, but there is no clear evidence for magma beneath the Katmai-Novarupta area where the 1912 eruptive activity occurred, suggesting that the storage zone for that eruption may have largely been evacuated, or remnant magma has solidified.

  5. Observation of arrival times of EAS with energies or = 6 x 10 (14) eV

    NASA Technical Reports Server (NTRS)

    Sun, L.

    1985-01-01

    The Earth's atmosphere is continually being bombarded by primary cosmic ray particles which are generally believed to be high-energy nuclei. The fact that the majority of cosmic ray primaries are charged particles and that space is permeated with random magnetic fields, means that the particles do not travel in straight lines. The arrival time distribution of EAS may also transfer some information about the primary particles. Actually, if the particles come to our Earth in a completely random process, the arrival time distribution of pairs of successive particles should fit an exponential law. The work reported here was arried out at Sydney University from May 1982 to January 1983. All the data are used to plot the arrival-time distribution of the events, that is, the distribution of time-separation between consecutive events on a 1 minute bin size. During this period more than 2300 showers were recorded. The results are discussed and compared with that of some other experiments.

  6. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  7. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to

  8. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT

    PubMed Central

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-01-01

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909

  9. An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.

    PubMed

    Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan

    2016-11-04

    In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.

  10. After an Earthquake: Accessing Near Real-Time Data in the Classroom

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Coleman, B.; Hubenthal, M.; Owens, T. J.; Taber, J.; Welti, R.; Weertman, B. R.

    2010-12-01

    One of the best ways to engage students in scientific content is to give them opportunities to work with real scientific instruments and data and enable them to experience the discovery of scientific information. In addition, newsworthy earthquakes can capture the attention and imagination of students. IRIS and collaborating partners provide a range of options to leverage that attention through access to near-real-time earthquake location and waveform data stored in the IRIS Data Management System and elsewhere via a number of web-based tools and a new Java-based application. The broadest audience is reached by the Seismic Monitor, a simple Web-based tool for observing near-real-time seismicity. The IRIS Earthquake Browser (IEB) allows users to explore recent and cataloged earthquakes and aftershock patterns online with more flexibility, and K-12 classroom activities for understanding plate tectonics and estimating seismic hazards have been designed around its use. Waveforms are easily viewed and explored on the web using the Rapid Earthquake Viewer (REV), developed by the University of South Carolina in collaboration with IRIS E&O. Data from recent well-known earthquakes available via REV are used in exercises to determine Earth’s internal structure and to locate earthquakes. Three component data is presented to the students, allowing a much more realistic analysis of the data than is presented in most textbooks. The Seismographs in Schools program uses real-time data in the classroom to interest and engage students about recent earthquakes. Through the IRIS website, schools can share event data and 24-hr images. Additionally, data is available in real-time via the API. This API allows anyone to extract data, re-purpose it, and display it however they need to, as is being done by the British Geological Survey Seismographs in Schools program. Over 350 schools throughout the US and internationally are currently registered with the IRIS Seismographs in Schools

  11. The results of the Seismic Alert System of Mexico SASMEX, during the earthquakes of 7 and 19 of September 2017

    NASA Astrophysics Data System (ADS)

    Espinosa Aranda, J. M., Sr.; Cuellar Martinez, A.

    2017-12-01

    The Seismic Alert System of Mexico, SASMEX began in 1991, is integrated by the seismic alert system of Mexico City and the seismic alert system of Oaxaca. SASMEX has 97 seismic sensors which are distributed in the seismic regions of the Pacific coast and the South of the Trans-Mexican Volcanic Belt of states of Jalisco, Colima, Michoacán, Guerrero, Oaxaca and Puebla. The alert dissemination covers the cities of: Acapulco, Chilpancingo, Morelia, Puebla, Oaxaca, Toluca and Mexico City, reaching the earthquake warnings to more than 25 millions of people. SASMEX has detected correctly more than 5600 earthquakes and warned 156. Mexico City has different alert dissemination systems like several Radio and Tv commercial broadcasters, dedicated radio receivers, EAS-SAME-SARMEX radio receivers and more tha 6700 public loud speakers. The other cities have only some of those systems. The Mw 8.2 Chiapas earthquake on September 7, despite the epicentral distance far of the first seismic detections (more than 180 km) and the low amplitudes of the P waves, the earthquake warning time gave more than 90 seconds to Mexico City before the arrivals of S waves with minor damages to the city in contrast with high damages in towns in the coast. This earthquake offered an opportunity to show the developments and lacks to reduce the risk, such as the need to increase the seismic detection coverage and the earthquake warning dissemination in towns with high seismic vulnerability. The Mw 7.1 Morelos earthquake on September 19 caused thousands of damages and hundreds of deaths and injuries in Mexico City, this earthquake is the second with the most damages after the Mw 8.1 Michoacán earthquake of September 19 on 1985. The earthquake early warning gave 11 seconds after the arrivals of S waves, however the activation occurred few seconds after the P waves arrives to Mexico City, and due to the seismic focus was near to the city, the P waves were felt for the people. The Accelerographic Network

  12. Identification of earthquakes that generate tsunamis in Java and Nusa Tenggara using rupture duration analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribadi, S., E-mail: sugengpribadimsc@gmail.com; Puspito, N. T.; Yudistira, T.

    Java and Nusa Tenggara are the tectonically active of Sunda arc. This study discuss the rupture duration as a manifestation of the power of earthquake-generated tsunami. We use the teleseismic (30° - 90°) body waves with high-frequency energy Seismometer is from IRIS network as amount 206 broadband units. We applied the Butterworth high bandpass (1 - 2 Hz) filtered. The arrival and travel times started from wave phase of P - PP which based on Jeffrey Bullens table with TauP program. The results are that the June 2, 1994 Banyuwangi and the July 17, 2006 Pangandaran earthquakes identified as tsunamimore » earthquakes with long rupture duration (To > 100 second), medium magnitude (7.6 < Mw < 7.9) and located near the trench. The others are 4 tsunamigenic earthquakes and 3 inland earthquakes with short rupture duration start from To > 50 second which depend on its magnitude. Those events are located far from the trench.« less

  13. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  14. Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Guo, Bofeng

    2013-01-01

    We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan) and the 2010 El Mayor-Cucapah (Mexico) earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation. PMID:24284765

  15. Real-time Upstream Monitoring System (RUMS): Forecasting arrival times of interplanetary shocks using energetic particle data from ACE

    NASA Astrophysics Data System (ADS)

    Ho, G.; Donegan, M.; Vandegriff, J.; Wagstaff, K.

    We have created a system for predicting the arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. This system is currently available on the web (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) and runs in real-time. Input data to our prediction algorithm is energetic particle data from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Real-time EPAM data is obtained from the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC). Our algorithm operates in two stages. First it watches for a velocity dispersion signature (energetic ions show flux enhancement followed by subsequent enhancements in lower energies), which is commonly seen upstream of a large IP shock. Once a precursor signature has been detected, a pattern recognition algorithm is used to analyze the time series profile of the particle data and generate an estimate for the shock arrival time. Tests on the algorithm show an average error of roughly 9 hours for predictions made 24 hours before the shock arrival and roughly 5 hours when the shock is 12 hours away. This can provide significant lead-time and deliver critical information to mission planners, satellite operations controllers, and scientists. As of February 4, 2004, the ACE real-time stream has been switched to include data from another detector on EPAM. We are now processing the new real-time data stream and have made improvements to our algorithm based on this data. In this paper, we report prediction results from the updated algorithm.

  16. Repeating coupled earthquakes at Shishaldin Volcano, Alaska

    USGS Publications Warehouse

    Caplan-Auerbach, J.; Petersen, T.

    2005-01-01

    Since it last erupted in 1999, Shishaldin Volcano, Aleutian Islands, Alaska, has produced hundreds to thousands of long-period (1-2 Hz; LP) earthquakes every day with no other sign of volcanic unrest. In 2002, the earthquakes also exhibited a short-period (4-7 Hz; SP) signal occurring between 3 and 15 s before the LP phase. Although the SP phase contains higher frequencies than the LP phase, its spectral content is still well below that expected of brittle failure events. The SP phase was never observed without the LP phase, although LP events continued to occur in the absence of the precursory signal. The two-phased events are termed "coupled events", reflecting a triggered relationship between two discrete event types. Both phases are highly repetitive in time series, suggestive of stable, non-destructive sources. Waveform cross-correlation and spectral coherence are used to extract waveforms from the continuous record and determine precise P-wave arrivals for the SP phase. Although depths are poorly constrained, the SP phase is believed to lie at shallow (<4 km) depths just west of Shishaldin's summit. The variable timing between the SP and LP arrivals indicates that the trigger mechanism between the phases itself moves at variable speeds. A model is proposed in which the SP phase results from fluid moving within the conduit, possibly around an obstruction and the LP phase results from the coalescence of a shallow gas bubble. The variable timing is attributed to changes in gas content within the conduit. The destruction of the conduit obstacle on November 21, 2002 resulted in the abrupt disappearance of the SP phase.

  17. A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions

    NASA Technical Reports Server (NTRS)

    Heere, Karen R.; Zelenka, Richard E.

    2000-01-01

    Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.

  18. Size speed bias or size arrival effect-How judgments of vehicles' approach speed and time to arrival are influenced by the vehicles' size.

    PubMed

    Petzoldt, Tibor

    2016-10-01

    Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Role of Arrival Time Difference Between Lesions and Lung Tissue on Contrast-Enhanced Sonography in the Differential Diagnosis of Subpleural Pulmonary Lesions.

    PubMed

    Bai, Jing; Yang, Wei; Wang, Song; Guan, Rui-Hong; Zhang, Hui; Fu, Jing-Jing; Wu, Wei; Yan, Kun

    2016-07-01

    The purpose of this study was to explore the diagnostic value of the arrival time difference between lesions and surrounding lung tissue on contrast-enhanced sonography of subpleural pulmonary lesions. A total of 110 patients with subpleural pulmonary lesions who underwent both conventional and contrast-enhanced sonography and had a definite diagnosis were enrolled. After contrast agent injection, the arrival times in the lesion, lung, and chest wall were recorded. The arrival time differences between various tissues were also calculated. Statistical analysis showed a significant difference in the lesion arrival time, the arrival time difference between the lesion and lung, and the arrival time difference between the chest wall and lesion (all P < .001) for benign and malignant lesions. Receiver operating characteristic curve analysis revealed that the optimal diagnostic criterion was the arrival time difference between the lesion and lung, and that the best cutoff point was 2.5 seconds (later arrival signified malignancy). This new diagnostic criterion showed superior diagnostic accuracy (97.1%) compared to conventional diagnostic criteria. The individualized diagnostic method based on an arrival time comparison using contrast-enhanced sonography had high diagnostic accuracy (97.1%) with good feasibility and could provide useful diagnostic information for subpleural pulmonary lesions.

  20. Estimation of the Arrival Time and Duration of a Radio Signal with Unknown Amplitude and Initial Phase

    NASA Astrophysics Data System (ADS)

    Trifonov, A. P.; Korchagin, Yu. E.; Korol'kov, S. V.

    2018-05-01

    We synthesize the quasi-likelihood, maximum-likelihood, and quasioptimal algorithms for estimating the arrival time and duration of a radio signal with unknown amplitude and initial phase. The discrepancies between the hardware and software realizations of the estimation algorithm are shown. The characteristics of the synthesized-algorithm operation efficiency are obtained. Asymptotic expressions for the biases, variances, and the correlation coefficient of the arrival-time and duration estimates, which hold true for large signal-to-noise ratios, are derived. The accuracy losses of the estimates of the radio-signal arrival time and duration because of the a priori ignorance of the amplitude and initial phase are determined.

  1. Development of regional earthquake early warning and structural health monitoring system and real-time ground motion forecasting using front-site waveform data (Invited)

    NASA Astrophysics Data System (ADS)

    Motosaka, M.

    2009-12-01

    This paper presents firstly, the development of an integrated regional earthquake early warning (EEW) system having on-line structural health monitoring (SHM) function, in Miyagi prefecture, Japan. The system makes it possible to provide more accurate, reliable and immediate earthquake information for society by combining the national (JMA/NIED) EEW system, based on advanced real-time communication technology. The author has planned to install the EEW/SHM system to the public buildings around Sendai, a million city of north-eastern Japan. The system has been so far implemented in two buildings; one is in Sendai, and the other in Oshika, a front site on the Pacific Ocean coast for the approaching Miyagi-ken Oki earthquake. The data from the front-site and the on-site are processed by the analysis system which was installed at the analysis center of Disaster Control Research Center, Tohoku University. The real-time earthquake information from JMA is also received at the analysis center. The utilization of the integrated EEW/SHM system is addressed together with future perspectives. Examples of the obtained data are also described including the amplitude depending dynamic characteristics of the building in Sendai before, during, and after the 2008/6/14 Iwate-Miyagi Nairiku Earthquake, together with the historical change of dynamic characteristics for 40 years. Secondary, this paper presents an advanced methodology based on Artificial Neural Networks (ANN) for forward forecasting of ground motion parameters, not only PGA, PGV, but also Spectral information before S-wave arrival using initial part of P-waveform at a front site. The estimated ground motion information can be used as warning alarm for earthquake damage reduction. The Fourier Amplitude Spectra (FAS) estimated before strong shaking with high accuracy can be used for advanced engineering applications, e.g. feed-forward structural control of a building of interest. The validity and applicability of the method

  2. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  3. A teleseismic study of the 2002 Denali fault, Alaska, earthquake and implications for rapid strong-motion estimation

    USGS Publications Warehouse

    Ji, C.; Helmberger, D.V.; Wald, D.J.

    2004-01-01

    Slip histories for the 2002 M7.9 Denali fault, Alaska, earthquake are derived rapidly from global teleseismic waveform data. In phases, three models improve matching waveform data and recovery of rupture details. In the first model (Phase I), analogous to an automated solution, a simple fault plane is fixed based on the preliminary Harvard Centroid Moment Tensor mechanism and the epicenter provided by the Preliminary Determination of Epicenters. This model is then updated (Phase II) by implementing a more realistic fault geometry inferred from Digital Elevation Model topography and further (Phase III) by using the calibrated P-wave and SH-wave arrival times derived from modeling of the nearby 2002 M6.7 Nenana Mountain earthquake. These models are used to predict the peak ground velocity and the shaking intensity field in the fault vicinity. The procedure to estimate local strong motion could be automated and used for global real-time earthquake shaking and damage assessment. ?? 2004, Earthquake Engineering Research Institute.

  4. Interevent times in a new alarm-based earthquake forecasting model

    NASA Astrophysics Data System (ADS)

    Talbi, Abdelhak; Nanjo, Kazuyoshi; Zhuang, Jiancang; Satake, Kenji; Hamdache, Mohamed

    2013-09-01

    This study introduces a new earthquake forecasting model that uses the moment ratio (MR) of the first to second order moments of earthquake interevent times as a precursory alarm index to forecast large earthquake events. This MR model is based on the idea that the MR is associated with anomalous long-term changes in background seismicity prior to large earthquake events. In a given region, the MR statistic is defined as the inverse of the index of dispersion or Fano factor, with MR values (or scores) providing a biased estimate of the relative regional frequency of background events, here termed the background fraction. To test the forecasting performance of this proposed MR model, a composite Japan-wide earthquake catalogue for the years between 679 and 2012 was compiled using the Japan Meteorological Agency catalogue for the period between 1923 and 2012, and the Utsu historical seismicity records between 679 and 1922. MR values were estimated by sampling interevent times from events with magnitude M ≥ 6 using an earthquake random sampling (ERS) algorithm developed during previous research. Three retrospective tests of M ≥ 7 target earthquakes were undertaken to evaluate the long-, intermediate- and short-term performance of MR forecasting, using mainly Molchan diagrams and optimal spatial maps obtained by minimizing forecasting error defined by miss and alarm rate addition. This testing indicates that the MR forecasting technique performs well at long-, intermediate- and short-term. The MR maps produced during long-term testing indicate significant alarm levels before 15 of the 18 shallow earthquakes within the testing region during the past two decades, with an alarm region covering about 20 per cent (alarm rate) of the testing region. The number of shallow events missed by forecasting was reduced by about 60 per cent after using the MR method instead of the relative intensity (RI) forecasting method. At short term, our model succeeded in forecasting the

  5. Tsunami waves generated by dynamically triggered aftershocks of the 2010 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.; Wei, Y.; Fan, W.; Miller, N. C.; Granja, J. L.

    2017-12-01

    Dynamically-triggered aftershocks, thought to be set off by the passage of surface waves, are currently not considered in tsunami warnings, yet may produce enough seafloor deformation to generate tsunamis on their own, as judged from new findings about the January 12, 2010 Haiti earthquake tsunami in the Caribbean Sea. This tsunami followed the Mw7.0 Haiti mainshock, which resulted from a complex rupture along the north shore of Tiburon Peninsula, not beneath the Caribbean Sea. The mainshock, moreover, had a mixed strike-slip and thrust focal mechanism. There were no recorded aftershocks in the Caribbean Sea, only small coastal landslides and rock falls on the south shore of Tiburon Peninsula. Nevertheless, a tsunami was recorded on deep-sea DART buoy 42407 south of the Dominican Republic and on the Santo Domingo tide gauge, and run-ups of ≤3 m were observed along a 90-km-long stretch of the SE Haiti coast. Three dynamically-triggered aftershocks south of Haiti have been recently identified within the coda of the mainshock (<200 s) by analyzing P wave arrivals recorded by dense seismic arrays, parsing the arrivals into 20-s-long stacks, and back-projecting the arrivals to the vicinity of the main shock (50-300 km). Two of the aftershocks, coming 20-40 s and 40-60 s after the mainshock, plot along NW-SE-trending submarine ridges in the Caribbean Sea south of Haiti. The third event, 120-140 s was located along the steep eastern slope of Bahoruco Peninsula, which is delineated by a normal fault. Forward tsunami models show that the arrival times of the DART buoy and tide gauge times are best fit by the earliest of the three aftershocks, with a Caribbean source 60 km SW of the mainshock rupture zone. Preliminary inversion of the DART buoy time series for fault locations and orientations confirms the location of the first source, but requires an additional unidentified source closer to shore 40 km SW of the mainshock rupture zone. This overall agreement between

  6. Earthquake Loss Estimates in Near Real-Time

    NASA Astrophysics Data System (ADS)

    Wyss, Max; Wang, Rongjiang; Zschau, Jochen; Xia, Ye

    2006-10-01

    The usefulness to rescue teams of nearreal-time loss estimates after major earthquakes is advancing rapidly. The difference in the quality of data available in highly developed compared with developing countries dictates that different approaches be used to maximize mitigation efforts. In developed countries, extensive information from tax and insurance records, together with accurate census figures, furnish detailed data on the fragility of buildings and on the number of people at risk. For example, these data are exploited by the method to estimate losses used in the Hazards U.S. Multi-Hazard (HAZUSMH)software program (http://www.fema.gov/plan/prevent/hazus/). However, in developing countries, the population at risk is estimated from inferior data sources and the fragility of the building stock often is derived empirically, using past disastrous earthquakes for calibration [Wyss, 2004].

  7. On the Distribution of Earthquake Interevent Times and the Impact of Spatial Scale

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios

    2013-04-01

    The distribution of earthquake interevent times is a subject that has attracted much attention in the statistical physics literature [1-3]. A recent paper proposes that the distribution of earthquake interevent times follows from the the interplay of the crustal strength distribution and the loading function (stress versus time) of the Earth's crust locally [4]. It was also shown that the Weibull distribution describes earthquake interevent times provided that the crustal strength also follows the Weibull distribution and that the loading function follows a power-law during the loading cycle. I will discuss the implications of this work and will present supporting evidence based on the analysis of data from seismic catalogs. I will also discuss the theoretical evidence in support of the Weibull distribution based on models of statistical physics [5]. Since other-than-Weibull interevent times distributions are not excluded in [4], I will illustrate the use of the Kolmogorov-Smirnov test in order to determine which probability distributions are not rejected by the data. Finally, we propose a modification of the Weibull distribution if the size of the system under investigation (i.e., the area over which the earthquake activity occurs) is finite with respect to a critical link size. keywords: hypothesis testing, modified Weibull, hazard rate, finite size References [1] Corral, A., 2004. Long-term clustering, scaling, and universality in the temporal occurrence of earthquakes, Phys. Rev. Lett., 9210) art. no. 108501. [2] Saichev, A., Sornette, D. 2007. Theory of earthquake recurrence times, J. Geophys. Res., Ser. B 112, B04313/1-26. [3] Touati, S., Naylor, M., Main, I.G., 2009. Origin and nonuniversality of the earthquake interevent time distribution Phys. Rev. Lett., 102 (16), art. no. 168501. [4] Hristopulos, D.T., 2003. Spartan Gibbs random field models for geostatistical applications, SIAM Jour. Sci. Comput., 24, 2125-2162. [5] I. Eliazar and J. Klafter, 2006

  8. Teaching with Real-time Earthquake Data in jAmaSeis

    NASA Astrophysics Data System (ADS)

    Bravo, T. K.; Coleman, B.; Taber, J.

    2011-12-01

    Earthquakes can capture the attention of students and inspire them to explore the Earth. The Incorporated Research Institutions in Seismology (IRIS) and Moravian College are collaborating to develop cross-platform software (jAmaSeis) that enables students to access real-time earthquake waveform data. Users can record their own data from several different types of educational seismometers, and they can obtain data in real-time from other jAmaseis users nationwide. Additionally, the ability to stream data from the IRIS Data Management Center (DMC) is under development. Once real-time data is obtained, users of jAmaseis can study seismological concepts in the classroom. The user interface of the software is carefully designed to lead students through the steps to interrogate seismic data following a large earthquake. Users can process data to determine characteristics of seismograms such as time of occurrence, distance from the epicenter to the station, magnitude, and location (via triangulation). Along the way, the software provides graphical clues to assist student interpretations. In addition to the inherent pedagogical features of the software, IRIS provides pre-packaged data and instructional activities to help students learn the analysis steps. After using these activities, students can apply their skills to interpret seismic waves from their own real-time data.

  9. Time-Varying Upper-Plate Deformation during the Megathrust Subduction Earthquake Cycle

    NASA Astrophysics Data System (ADS)

    Furlong, Kevin P.; Govers, Rob; Herman, Matthew

    2015-04-01

    Over the past several decades of the WEGENER era, our abilities to observe and image the deformational behavior of the upper plate in megathrust subduction zones has dramatically improved. Several intriguing inferences can be made from these observations including apparent lateral variations in locking along subduction zones, which differs from interseismic to coseismic periods; the significant magnitude of post-earthquake deformation (e.g. following the 20U14 Mw Iquique, Chile earthquake, observed on-land GPS post-EQ displacements are comparable to the co-seismic displacements); and incompatibilities between rates of slip deficit accumulation and resulting earthquake co-seismic slip (e.g. pre-Tohoku, inferred rates of slip deficit accumulation on the megathrust significantly exceed slip amounts for the ~ 1000 year recurrence.) Modeling capabilities have grown from fitting simple elastic accumulation/rebound curves to sparse data to having spatially dense continuous time series that allow us to infer details of plate boundary coupling, rheology-driven transient deformation, and partitioning among inter-earthquake and co-seismic displacements. In this research we utilize a 2D numerical modeling to explore the time-varying deformational behavior of subduction zones during the earthquake cycle with an emphasis on upper-plate and plate interface behavior. We have used a simplified model configuration to isolate fundamental processes associated with the earthquake cycle, rather than attempting to fit details of specific megathrust zones. Using a simple subduction geometry, but realistic rheologic layering we are evaluating the time-varying displacement and stress response through a multi-earthquake cycle history. We use a simple model configuration - an elastic subducting slab, an elastic upper plate (shallower than 40 km), and a visco-elastic upper plate (deeper than 40 km). This configuration leads to an upper plate that acts as a deforming elastic beam at inter-earthquake

  10. Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide

    NASA Astrophysics Data System (ADS)

    Lomax, A.; Michelini, A.

    2012-12-01

    We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http

  11. Compound earthquakes on a bimaterial interface and implications for rupture mechanics

    NASA Astrophysics Data System (ADS)

    Wang, E.; Rubin, A. M.

    2011-12-01

    Rubin and Ampuero [2007] simulated slip-weakening ruptures on a 2-D (line fault) bimaterial interface and observed differences in the timescales for the two edges to experience their peak stress after being slowed by barriers. The barrier on the "negative" side reached its peak stress when the P-wave stopping phase arrives from the opposite end, which takes ~20 ms for a 100 m event. This may be long enough for a potential secondary rupture to be observed as a distinct subevent. In contrast, the same timescale for a barrier at the "positive" front is nearly instantaneous (really the distance from the stopped rupture edge to the barrier divided by the shear wave speed), possibly making a secondary event there indistinguishable from the main rupture. Rubin and Gillard [2000] observed that of a family of 72 similar earthquakes along the San Andreas fault in Northern California, 5 were identified as compound and in all cases the second event was located on the negative (NW) side of the main event. Based on their simulations, Rubin and Ampuero interpreted this as being due to the above-mentioned asymmetry in the dynamic stressing-rate history on the two sides of a rupture on a bimaterial interface. To test this hypothesis for the asymmetric distribution of subevents within compound earthquakes, we search more systematically for secondary arrivals within 0.15 s of the first P arrival for microearthquakes on the San Andreas. We take advantage of similarity between waveforms of adjacent events and deconvolve the first 0.64 s following the P arrival of a target event using a nearby Empirical Green's Function (EGF). We use the iterative deconvolution method described in Kikuchi & Kanamori [1982]. When the EGF is a simple earthquake and the target is compound, the deconvolution is expected to show two spikes, corresponding to the main and secondary events. Due to the existence of noise, a second spike is considered robust only when the difference between the waveforms of the

  12. Earthquake Risk Reduction to Istanbul Natural Gas Distribution Network

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Kariptas, Cagatay; Biyikoglu, Hikmet; Ozarpa, Cevat

    2017-04-01

    expected level of shaking when an earthquake starts to occur. However, in Istanbul case for a potential Marmara Sea Earthquake, the time is very limited even to estimate the level of shaking. The robust threshold based EEW system is only algorithm for such a near source event to activate automatic shut-off mechanism in the critical infrastructures before the damaging waves arrive. This safety measure even with a few seconds of early warning time will help to mitigate potential damages and secondary hazards.

  13. Integrating Real-time Earthquakes into Natural Hazard Courses

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H. M.; Whitlock, J. S.; Bittenbinder, A. N.; Bogaert, B. B.

    2001-12-01

    Natural hazard courses are playing an increasingly important role in college and university earth science curricula. Students' intrinsic curiosity about the subject and the potential to make the course relevant to the interests of both science and non-science students make natural hazards courses popular additions to a department's offerings. However, one vital aspect of "real-life" natural hazard management that has not translated well into the classroom is the real-time nature of both events and response. The lack of a way to entrain students into the event/response mode has made implementing such real-time activities into classroom activities problematic. Although a variety of web sites provide near real-time postings of natural hazards, students essentially learn of the event after the fact. This is particularly true for earthquakes and other events with few precursors. As a result, the "time factor" and personal responsibility associated with natural hazard response is lost to the students. We have integrated the real-time aspects of earthquake response into two natural hazard courses at Penn State (a 'general education' course for non-science majors, and an upper-level course for science majors) by implementing a modification of the USGS Earthworm system. The Earthworm Database Management System (E-DBMS) catalogs current global seismic activity. It provides earthquake professionals with real-time email/cell phone alerts of global seismic activity and access to the data for review/revision purposes. We have modified this system so that real-time response can be used to address specific scientific, policy, and social questions in our classes. As a prototype of using the E-DBMS in courses, we have established an Earthworm server at Penn State. This server receives national and global seismic network data and, in turn, transmits the tailored alerts to "on-duty" students (e-mail, pager/cell phone notification). These students are responsible to react to the alarm

  14. Near-real-time and scenario earthquake loss estimates for Mexico

    NASA Astrophysics Data System (ADS)

    Wyss, M.; Zuñiga, R.

    2017-12-01

    The large earthquakes of 8 September 2017, M8.1, and 19 September 2017, M7.1 have focused attention on the dangers of Mexican seismicity. The near-real-time alerts by QLARM estimated 10 to 300 fatalities and 0 to 200 fatalities, respectively. At the time of this submission the reported death tolls are 96 and 226, respectively. These alerts were issued within 96 and 57 minutes of the occurrence times. For the M8.1 earthquake the losses due to a line model could be calculated. The line with length L=110 km extended from the initial epicenter to the NE, where the USGS had reported aftershocks. On September 19, no aftershocks were available in near-real-time, so a point source had to be used for the quick calculation of likely casualties. In both cases, the casualties were at least an order of magnitude smaller than what they could have been because on 8 September the source was relatively far offshore and on 19 September the hypocenter was relatively deep. The largest historic earthquake in Mexico occurred on 28 March 1787 and likely had a rupture length of 450 km and M8.6. Based on this event, and after verifying our tool for Mexico, we estimated the order of magnitude of a disaster, given the current population, in a maximum credible earthquake along the Pacific coast. In the countryside along the coast we expect approximately 27,000 fatalities and 480,000 injured. In the special case of Mexico City the casualties in a worst possible earthquake along the Pacific plate boundary would likely be counted as five digit numbers. The large agglomerate of the capital with its lake bed soil attracts most attention. Nevertheless, one should pay attention to the fact that the poor, rural segment of society, living in buildings of weak resistance to shaking, are likely to sustain a mortality rate about 20% larger than the population in cities on average soil.

  15. Estimated time of arrival and debiasing the time saving bias.

    PubMed

    Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars

    2015-01-01

    The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.

  16. Widespread Triggering of Earthquakes in the Central US by the 2011 M9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Rubinstein, J. L.; Savage, H. M.

    2011-12-01

    The strong shaking of the 2011 M9.0 off-Tohoku earthquake triggered tectonic tremor and earthquakes in many locations around the world. We analyze broadband records from the USARRAY to identify triggered seismicity in more than 10 different locations in the Central United States. We identify triggered events in many states including: Kansas, Nebraska, Arkansas, Minnesota, and Iowa. The locally triggered earthquakes are obscured in broadband records by the Tohoku-Oki mainshock but can be revealed with high-pass filtering. With the exception of one location (central Arkansas), the triggered seismicity occurred in regions that are seismically quiet. The coincidence of this seismicity with the Tohoku-Oki event suggests that these earthquakes were triggered. The triggered seismicity in Arkansas occurred in a region where there has been an active swarm of seismicity since August 2010. There are two lines of evidence to indicate that the seismicity in Arkansas is triggered instead of part of the swarm: (1) we observe two earthquakes that initiate coincident with the arrival of shear wave and Love wave; (2) the seismicity rate increased dramatically following the Tohoku-Oki mainshock. Our observations of widespread earthquake triggering in regions thought to be seismically quiet remind us that earthquakes can occur in most any location. Studying additional teleseismic events has the potential to reveal regions with a propensity for earthquake triggering.

  17. Local earthquake tomography of Scotland

    NASA Astrophysics Data System (ADS)

    Luckett, Richard; Baptie, Brian

    2015-03-01

    Scotland is a relatively aseismic region for the use of local earthquake tomography, but 40 yr of earthquakes recorded by a good and growing network make it possible. A careful selection is made from the earthquakes located by the British Geological Survey (BGS) over the last four decades to provide a data set maximising arrival time accuracy and ray path coverage of Scotland. A large number of 1-D velocity models with different layer geometries are considered and differentiated by employing quarry blasts as ground-truth events. Then, SIMULPS14 is used to produce a robust 3-D tomographic P-wave velocity model for Scotland. In areas of high resolution the model shows good agreement with previously published interpretations of seismic refraction and reflection experiments. However, the model shows relatively little lateral variation in seismic velocity except at shallow depths, where sedimentary basins such as the Midland Valley are apparent. At greater depths, higher velocities in the northwest parts of the model suggest that the thickness of crust increases towards the south and east. This observation is also in agreement with previous studies. Quarry blasts used as ground truth events and relocated with the preferred 3-D model are shown to be markedly more accurate than when located with the existing BGS 1-D velocity model.

  18. Rapid Modeling of and Response to Large Earthquakes Using Real-Time GPS Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.; Squibb, M. B.

    2010-12-01

    Real-time GPS networks have the advantage of capturing motions throughout the entire earthquake cycle (interseismic, seismic, coseismic, postseismic), and because of this, are ideal for real-time monitoring of fault slip in the region. Real-time GPS networks provide the perfect supplement to seismic networks, which operate with lower noise and higher sampling rates than GPS networks, but only measure accelerations or velocities, putting them at a supreme disadvantage for ascertaining the full extent of slip during a large earthquake in real-time. Here we report on two examples of rapid modeling of recent large earthquakes near large regional real-time GPS networks. The first utilizes Japan’s GEONET consisting of about 1200 stations during the 2003 Mw 8.3 Tokachi-Oki earthquake about 100 km offshore Hokkaido Island and the second investigates the 2010 Mw 7.2 El Mayor-Cucapah earthquake recorded by more than 100 stations in the California Real Time Network. The principal components of strain were computed throughout the networks and utilized as a trigger to initiate earthquake modeling. Total displacement waveforms were then computed in a simulated real-time fashion using a real-time network adjustment algorithm that fixes a station far away from the rupture to obtain a stable reference frame. Initial peak ground displacement measurements can then be used to obtain an initial size through scaling relationships. Finally, a full coseismic model of the event can be run minutes after the event, given predefined fault geometries, allowing emergency first responders and researchers to pinpoint the regions of highest damage. Furthermore, we are also investigating using total displacement waveforms for real-time moment tensor inversions to look at spatiotemporal variations in slip.

  19. Victims' time discounting 2.5 years after the Wenchuan earthquake: an ERP study.

    PubMed

    Li, Jin-Zhen; Gui, Dan-Yang; Feng, Chun-Liang; Wang, Wen-Zhong; Du, Bo-Qi; Gan, Tian; Luo, Yue-Jia

    2012-01-01

    Time discounting refers to the fact that the subjective value of a reward decreases as the delay until its occurrence increases. The present study investigated how time discounting has been affected in survivors of the magnitude-8.0 Wenchuan earthquake that occurred in China in 2008. Nineteen earthquake survivors and 22 controls, all school teachers, participated in the study. Event-related brain potentials (ERPs) for time discounting tasks involving gains and losses were acquired in both the victims and controls. The behavioral data replicated our previous findings that delayed gains were discounted more steeply after a disaster. ERP results revealed that the P200 and P300 amplitudes were increased in earthquake survivors. There was a significant group (earthquake vs. non-earthquake) × task (gain vs. loss) interaction for the N300 amplitude, with a marginally significantly reduced N300 for gain tasks in the experimental group, which may suggest a deficiency in inhibitory control for gains among victims. The results suggest that post-disaster decisions might involve more emotional (System 1) and less rational thinking (System 2) in terms of a dual-process model of decision making. The implications for post-disaster intervention and management are also discussed.

  20. Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Karthik; Barmore, Bryan; Bussink, Frank; Weitz, Lesley; Dahlene, Laura

    2005-01-01

    NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions.

  1. Harnessing the Collective Power of Eyewitnesses for Improved Earthquake Information

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Lefebvre, S.; Mazet-Roux, G.; Steed, R.

    2013-12-01

    The Euro-Med Seismological Centre (EMSC) operates the second global earthquake information website (www.emsc-csem.org) which attracts 2 million visits a month from about 200 different countries. We collect information about earthquakes' effects from eyewitnesses such as online questionnaires, geolocated pics to rapidly constrain impact scenario. At the beginning, the collection was purely intended to address a scientific issue: the rapid evaluation of earthquake's impact. However, it rapidly appears that the understanding of eyewitnesses' expectations and motivations in the immediate aftermath of an earthquake was essential to optimise this data collection. Crowdsourcing information on earthquake's effects does not apply to a pre-existing community. By definition, eyewitnesses only exist once the earthquake has struck. We developed a strategy on social networks (Facebook, Google+, Twitter...) to interface with spontaneously emerging online communities of eyewitnesses. The basic idea is to create a positive feedback loop: attract eyewitnesses and engage with them by providing expected earthquake information and services, collect their observations, collate them for improved earthquake information services to attract more witnesses. We will present recent examples to illustrate how important the use of social networks is to engage with eyewitnesses especially in regions of low seismic activity where people are unaware of existing Internet resources dealing with earthquakes. A second type of information collated in our information services is derived from the real time analysis of the traffic on our website in the first minutes following an earthquake occurrence, an approach named flashsourcing. We show, using the example of the Mineral, Virginia earthquake that the arrival times of eyewitnesses of our website follows the propagation of the generated seismic waves and then, that eyewitnesses can be considered as ground motion sensors. Flashsourcing discriminates felt

  2. Earthquake sources near Uturuncu Volcano

    NASA Astrophysics Data System (ADS)

    Keyson, L.; West, M. E.

    2013-12-01

    Uturuncu, located in southern Bolivia near the Chile and Argentina border, is a dacitic volcano that was last active 270 ka. It is a part of the Altiplano-Puna Volcanic Complex, which spans 50,000 km2 and is comprised of a series of ignimbrite flare-ups since ~23 ma. Two sets of evidence suggest that the region is underlain by a significant magma body. First, seismic velocities show a low velocity layer consistent with a magmatic sill below depths of 15-20 km. This inference is corroborated by high electrical conductivity between 10km and 30km. This magma body, the so called Altiplano-Puna Magma Body (APMB) is the likely source of volcanic activity in the region. InSAR studies show that during the 1990s, the volcano experienced an average uplift of about 1 to 2 cm per year. The deformation is consistent with an expanding source at depth. Though the Uturuncu region exhibits high rates of crustal seismicity, any connection between the inflation and the seismicity is unclear. We investigate the root causes of these earthquakes using a temporary network of 33 seismic stations - part of the PLUTONS project. Our primary approach is based on hypocenter locations and magnitudes paired with correlation-based relative relocation techniques. We find a strong tendency toward earthquake swarms that cluster in space and time. These swarms often last a few days and consist of numerous earthquakes with similar source mechanisms. Most seismicity occurs in the top 10 kilometers of the crust and is characterized by well-defined phase arrivals and significant high frequency content. The frequency-magnitude relationship of this seismicity demonstrates b-values consistent with tectonic sources. There is a strong clustering of earthquakes around the Uturuncu edifice. Earthquakes elsewhere in the region align in bands striking northwest-southeast consistent with regional stresses.

  3. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    displacement time series compared to GNSS alone. This not only means that ground motion can be detected at farther stations, but also that smaller seismic arrivals (i.e. P-waves) become visible in the displacement time series. P-wave amplitude (Pd) has been examined as an early indicator of earthquake magnitude. Relations between Pd and magnitude using seismic-only instrumentation appear to suffer from saturation, while the combination of GNSS and seismic data has been demonstrated to eliminate saturation [Meier et al., 2016, Crowell et al., 2013]. We create seismogeodetic displacements by combining the GNSS dataset with Japanese KiK-net and K-net accelerometer data to explore the potential of seismogeodesy for magnitude scaling with several seconds of data using P-wave amplitude.

  4. Revision of earthquake hypocenter locations in GEOFON bulletin data using global source-specific station terms technique

    NASA Astrophysics Data System (ADS)

    Nooshiri, N.; Saul, J.; Heimann, S.; Tilmann, F. J.; Dahm, T.

    2015-12-01

    The use of a 1D velocity model for seismic event location is often associated with significant travel-time residuals. Particularly for regional stations in subduction zones, where the velocity structure strongly deviates from the assumed 1D model, residuals of up to ±10 seconds are observed even for clear arrivals, which leads to strongly biased locations. In fact, due to mostly regional travel-time anomalies, arrival times at regional stations do not match the location obtained with teleseismic picks, and vice versa. If the earthquake is weak and only recorded regionally, or if fast locations based on regional stations are needed, the location may be far off the corresponding teleseismic location. In this case, implementation of travel-time corrections may leads to a reduction of the travel-time residuals at regional stations and, in consequence, significantly improve the relative location accuracy. Here, we have extended the source-specific station terms (SSST) technique to regional and teleseismic distances and adopted the algorithm for probabilistic, non-linear, global-search earthquake location. The method has been applied to specific test regions using P and pP phases from the GEOFON bulletin data for all available station networks. By using this method, a set of timing corrections has been calculated for each station varying as a function of source position. In this way, an attempt is made to correct for the systematic errors, introduced by limitations and inaccuracies in the assumed velocity structure, without solving for a new earth model itself. In this presentation, we draw on examples of the application of this global SSST technique to relocate earthquakes from the Tonga-Fiji subduction zone and from the Chilean margin. Our results have been showing a considerable decrease of the root-mean-square (RMS) residual in earthquake location final catalogs, a major reduction of the median absolute deviation (MAD) of the travel-time

  5. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird

    PubMed Central

    Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut

    2008-01-01

    In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134

  6. The 2014 Mw 6.0 Napa Earthquake, California: Observations from Real-time GPS-enhanced Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Johanson, I. A.; Grapenthin, R.; Allen, R. M.

    2014-12-01

    Recently, progress has been made to demonstrate feasibility and benefits of including real-time GPS (rtGPS) in earthquake early warning and rapid response systems. While most concepts have yet to be integrated into operational environments, the Berkeley Seismological Laboratory is currently running an rtGPS based finite fault inversion scheme in true real-time, which is triggered by the seismic-based ShakeAlert system and then sends updated earthquake alerts to a test receiver. The Geodetic Alarm System (G-larmS) was online and responded to the 2014 Mw6.0 South Napa earthquake in California. We review G-larmS' performance during this event and for 13 aftershocks, and we present rtGPS observations and real-time modeling results for the main shock. The first distributed slip model and a magnitude estimate of Mw5.5 were available 24 s after the event origin time, which could be reduced to 14 s after a bug fix (~8 s S-wave travel time, ~6 s data latency). The system continued to re-estimate the magnitude once every second: it increased to Mw5.9 3 s after the first alert and stabilized at Mw5.8 after 15 s. G-larmS' solutions for the subsequent small magnitude aftershocks demonstrate that Mw~6.0 is the current limit for alert updates to contribute back to the seismic-based early warning system.

  7. Geometry and velocity structure of the northern Costa Rica seismogenic zone from 3D local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Deshon, H. R.; Schwartz, S. Y.; Newman, A. V.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2003-12-01

    We present results of a 3D local earthquake tomography study of the Middle America Trench seismogenic zone in northern Costa Rica. Local earthquake tomography can provide constraints on the updip, downdip, and lateral variability of seismicity and P- and S-wave velocities; these constraints may in turn provide information on compositional and/or mechanical variability along the seismogenic zone. We use arrival time data recorded by the Nicoya Peninsula seismic array, part of the Costa Rica seismogenic zone experiment (CRSEIZE), a collaborative effort undertaken to better understand seismogenic behavior at the Costa Rica subduction zone using data from land and ocean bottom seismic arrays, oceanic fluid flux meters, and GPS receivers. We invert ˜10,000 P-wave and S-wave arrival times from 475 well-recorded local earthquakes (GAP < 180° , >8 P-wave arrivals) to solve for the best-fitting 1D P- and S-wave velocity models, station corrections, and hypocenters using the algorithm VELEST. These 1D velocity models are used as a starting models for 3D simultaneous inversion using the algorithm SIMULPS14. Preliminary P-wave inversions contain a positive velocity anomaly dipping beneath the Nicoya Peninsula, interpreted as the subducting Cocos Plate. Earthquakes occur in a narrow band along the slab-continent interface and are consistent with the results of Newman et al. (2002). The updip limit of seismicity occurs ˜5 km deeper and 5-10 km landward in the northern vs. the southern Nicoya Peninsula, and this shift spatially correlates to the change from Cocos-Nazca to East Pacific Rise derived oceanic plate. P-wave velocities in the upper 5-10 km of the model are consistent with the geology of the Nicoya Peninsula. We will correlate relocated microseismicity to previously noted variability in oceanic plate morphology, heat flow, fluid flow, and thermal structure and compare the resulting P- and S-wave velocity models to wide-angle refraction models and hypothesized mantle

  8. Rapid Characterization of Large Earthquakes in Chile

    NASA Astrophysics Data System (ADS)

    Barrientos, S. E.; Team, C.

    2015-12-01

    Chile, along 3000 km of it 4200 km long coast, is regularly affected by very large earthquakes (up to magnitude 9.5) resulting from the convergence and subduction of the Nazca plate beneath the South American plate. These megathrust earthquakes exhibit long rupture regions reaching several hundreds of km with fault displacements of several tens of meters. Minimum delay characterization of these giant events to establish their rupture extent and slip distribution is of the utmost importance for rapid estimations of the shaking area and their corresponding tsunami-genic potential evaluation, particularly when there are only few minutes to warn the coastal population for immediate actions. The task of a rapid evaluation of large earthquakes is accomplished in Chile through a network of sensors being implemented by the National Seismological Center of the University of Chile. The network is mainly composed approximately by one hundred broad-band and strong motion instruments and 130 GNSS devices; all will be connected in real time. Forty units present an optional RTX capability, where satellite orbits and clock corrections are sent to the field device producing a 1-Hz stream at 4-cm level. Tests are being conducted to stream the real-time raw data to be later processed at the central facility. Hypocentral locations and magnitudes are estimated after few minutes by automatic processing software based on wave arrival; for magnitudes less than 7.0 the rapid estimation works within acceptable bounds. For larger events, we are currently developing automatic detectors and amplitude estimators of displacement coming out from the real time GNSS streams. This software has been tested for several cases showing that, for plate interface events, the minimum magnitude threshold detectability reaches values within 6.2 and 6.5 (1-2 cm coastal displacement), providing an excellent tool for earthquake early characterization from a tsunamigenic perspective.

  9. Cerebral arterial bolus arrival time is prolonged in multiple sclerosis and associated with disability

    PubMed Central

    Paling, David; Thade Petersen, Esben; Tozer, Daniel J; Altmann, Daniel R; Wheeler-Kingshott, Claudia AM; Kapoor, Raju; Miller, David H; Golay, Xavier

    2014-01-01

    Alterations in the overall cerebral hemodynamics have been reported in multiple sclerosis (MS); however, their cause and significance is unknown. While potential venous causes have been examined, arterial causes have not. In this study, a multiple delay time arterial spin labeling magnetic resonance imaging sequence at 3T was used to quantify the arterial hemodynamic parameter bolus arrival time (BAT) and cerebral blood flow (CBF) in normal-appearing white matter (NAWM) and deep gray matter in 33 controls and 35 patients with relapsing–remitting MS. Bolus arrival time was prolonged in MS in NAWM (1.0±0.2 versus 0.9±0.2 seconds, P=0.031) and deep gray matter (0.90±0.18 versus 0.80±0.14 seconds, P=0.001) and CBF was increased in NAWM (14±4 versus 10±2 mL/100 g/min, P=0.001). Prolonged BAT in NAWM (P=0.042) and deep gray matter (P=0.01) were associated with higher expanded disability status score. This study demonstrates alteration in cerebral arterial hemodynamics in MS. One possible cause may be widespread inflammation. Bolus arrival time was longer in patients with greater disability independent of atrophy and T2 lesion load, suggesting alterations in cerebral arterial hemodynamics may be a marker of clinically relevant pathology. PMID:24045400

  10. High-resolution earthquake relocation in the Fort Worth and Permian Basins using regional seismic stations

    NASA Astrophysics Data System (ADS)

    Ogwari, P.; DeShon, H. R.; Hornbach, M.

    2017-12-01

    Post-2008 earthquake rate increases in the Central United States have been associated with large-scale subsurface disposal of waste-fluids from oil and gas operations. The beginning of various earthquake sequences in Fort Worth and Permian basins have occurred in the absence of seismic stations at local distances to record and accurately locate hypocenters. Most typically, the initial earthquakes have been located using regional seismic network stations (>100km epicentral distance) and using global 1D velocity models, which usually results in large location uncertainty, especially in depth, does not resolve magnitude <2.5 events, and does not constrain the geometry of the activated fault(s). Here, we present a method to better resolve earthquake occurrence and location using matched filters and regional relative location when local data becomes available. We use the local distance data for high-resolution earthquake location, identifying earthquake templates and accurate source-station raypath velocities for the Pg and Lg phases at regional stations. A matched-filter analysis is then applied to seismograms recorded at US network stations and at adopted TA stations that record the earthquakes before and during the local network deployment period. Positive detections are declared based on manual review of associated with P and S arrivals on local stations. We apply hierarchical clustering to distinguish earthquakes that are both spatially clustered and spatially separated. Finally, we conduct relative earthquake and earthquake cluster location using regional station differential times. Initial analysis applied to the 2008-2009 DFW airport sequence in north Texas results in time continuous imaging of epicenters extending into 2014. Seventeen earthquakes in the USGS earthquake catalog scattered across a 10km2 area near DFW airport are relocated onto a single fault using these approaches. These techniques will also be applied toward imaging recent earthquakes in the

  11. Export Time of Earthquake-Derived Landslides in Active Mountain Ranges

    NASA Astrophysics Data System (ADS)

    Croissant, T.; Lague, D.; Steer, P.; Davy, P.

    2016-12-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment deposits which are eroded and transported along the river network, causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and for landscape dynamics at the timescale of the seismic cycle. Although the export time of suspended sediments from landslides triggered by large-magnitude earthquakes has been extensively studied, the processes and time scales associated to bedload transport remains poorly studied. Here, we study the sediment export of large landslides with the 2D morphodynamic model, Eros. This model combines: (i) an hydrodynamic model, (ii) a sediment transport and deposition model and (iii) a lateral erosion model. Eros is particularly well suited for this issue as it accounts for the complex retro-actions between sediment transport and fluvial geometry for rivers submitted to external forcings such as abrupt sediment supply increase. Using a simplified synthetic topography we systematically study the influence of pulse volume (Vs) and channel transport capacity (QT) on the export time of landslides. The range of simulated river behavior includes landslide vertical incision, its subsequent removal by lateral erosion and the river morphology modifications induced by downstream sediment propagation. The morphodynamic adaptation of the river increases its transport capacity along the channel and tends to accelerate the landslide evacuation. Our results highlight two regimes: (i) the export time is linearly related to Vs/QT when the sediment pulse introduced in the river does not affect significantly the river hydrodynamic (low Vs/QT) and (ii) the export time is a non-linear function of Vs/QT when the pulse undergoes significant morphodynamic modifications during its

  12. Earthquake Early Warning: A Prospective User's Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Nishenko, S. P.; Savage, W. U.; Johnson, T.

    2009-12-01

    system, limiting the time available for an EEW-based response (i.e., slowing or stopping trains). While EEW systems are currently being tested in California, the societal benefits may be even more pronounced in other earthquake-prone parts of the United States. In the central and eastern United States, strong ground motions are felt over significantly larger areas than in California, enabling both a larger area and longer lead times for warnings ahead of the arrival of strong shaking. Because these regions are less resistant to earthquake shaking, such warnings may be even more important for safety and emergency response. However, in many areas a significant increase in the instrumentation density would be required for EEW to become a reality. Although the details of EEW systems are specific to earthquakes, the operation of sensor networks, real-time data analysis, and rapid notification to lifelines is an emerging technology that can be used for real-time detection and early warning of other types of natural and human-caused disasters and emergencies.

  13. Possible relationship between Seismic Electric Signals (SES) lead time and earthquake stress drop

    PubMed Central

    DOLOGLOU, Elizabeth

    2008-01-01

    Stress drop values for fourteen large earthquakes with MW ≥ 5.4 which occurred in Greece during the period 1983–2007 are available. All these earthquakes were preceded by Seismic Electric Signals (SES). An attempt has been made to investigate possible correlation between their stress drop values and the corresponding SES lead times. For the stress drop, we considered the Brune stress drop, ΔσB, estimated from far field body wave displacement source spectra and ΔσSB derived from the strong motion acceleration response spectra. The results show a relation may exist between Brune stress drop, ΔσB, and lead time which implies that earthquakes with higher stress drop values are preceded by SES with shorter lead time. PMID:18941291

  14. Tightly-coupled real-time analysis of GPS and accelerometer data for translational and rotational ground motions and application to earthquake and tsunami early warning

    NASA Astrophysics Data System (ADS)

    Geng, J.; Bock, Y.; Melgar, D.; Hasse, J.; Crowell, B. W.

    2013-12-01

    High-rate GPS can play an important role in earthquake early warning (EEW) systems for large (>M6) events by providing permanent displacements immediately as they are achieved, to be used in source inversions that can be repeatedly updated as more information becomes available. This is most valuable to implement at a site very near the potential source rupture, where broadband seismometers are likely to clip, and accelerometer data cannot be objectively integrated to produce reliable displacements in real time. At present, more than 525 real-time GPS stations have been established in western North America, which are being integrated into EEW systems. Our analysis technique relies on a tightly-coupled combination of GPS and accelerometer data, an extension of precise point positioning with ambiguity resolution (PPP-AR). We operate a PPP service based on North American stations available through the IGS and UNAVCO/PBO. The service provides real-time satellite clock and fractional-cycle bias products that allow us to position individual client stations in the zone of deformation. The service reference stations are chosen to be further than 200 km from the primary zones of tectonic deformation in the western U.S. to avoid contamination of the satellite products during a large seismic event. At client stations, accelerometer data are applied as tight constraints on the positions between epochs in PPP-AR, which improves cycle-slip repair and rapid ambiguity resolution after GPS outages. Furthermore, we estimate site displacements, seismic velocities, and coseismic ground tilts to facilitate the analysis of ground motion characteristics and the inversion for source mechanisms. The seismogeodetic displacement and velocity waveforms preserves the detection of P wave arrivals, and provides P-wave arrival displacement that is key new information for EEW. Our innovative solution method for coseismic tilts mitigates an error source that has continually plagued strong motion

  15. Application of a time-magnitude prediction model for earthquakes

    NASA Astrophysics Data System (ADS)

    An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He

    2007-06-01

    In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.

  16. Earthquakes

    MedlinePlus

    An earthquake happens when two blocks of the earth suddenly slip past one another. Earthquakes strike suddenly, violently, and without warning at any time of the day or night. If an earthquake occurs in a populated area, it may cause ...

  17. F-wave decomposition for time of arrival profile estimation.

    PubMed

    Han, Zhixiu; Kong, Xuan

    2007-01-01

    F-waves are distally recorded muscle responses that result from "backfiring" of motor neurons following stimulation of peripheral nerves. Each F-wave response is a superposition of several motor unit responses (F-wavelets). Initial deflection of the earliest F-wavelet defines the traditional F-wave latency (FWL) and earlier F-wavelet may mask F-wavelets traveling along slower (and possibly diseased) fibers. Unmasking the time of arrival (TOA) of late F-wavelets could improve the diagnostic value of the F-waves. An algorithm for F-wavelet decomposition is presented, followed by results of experimental data analysis.

  18. JPL's GNSS Real-Time Earthquake and Tsunami (GREAT) Alert System

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Yoaz; Miller, Mark; Vallisneri, Michele; Khachikyan, Robert; Meyer, Robert

    2017-04-01

    We describe recent developments to the GREAT Alert natural hazard monitoring service from JPL's Global Differential GPS (GDGPS) System. GREAT Alert provides real-time, 1 Hz positioning solutions for hundreds of GNSS tracking sites, from both global and regional networks, aiming to monitor ground motion in the immediate aftermath of earthquakes. We take advantage of the centralized data processing, which is collocated with the GNSS orbit determination operations of the GDGPS System, to combine orbit determination with large-scale point-positioning in a grand estimation scheme, and as a result realize significant improvement to the positioning accuracy compared to conventional stand-alone point positioning techniques. For example, the measured median site (over all sites) real-time horizontal positioning accuracy is 2 cm 1DRMS, and the median real-time vertical accuracy is 4 cm RMS. The GREAT Alert positioning service is integrated with automated global earthquake notices from the United States Geodetic Survey (USGS) to support near-real-time calculations of co-seismic displacements with attendant formal errors based both short-term and long-term error analysis for each individual site. We will show the millimeter-level resolution of co-seismic displacement can be achieved by this system. The co-seismic displacements, in turn, are fed into a JPL geodynamics and ocean models, that estimate the Earthquake magnitude and predict the potential tsunami scale.

  19. Time-resolved speckle effects on the estimation of laser-pulse arrival times

    NASA Technical Reports Server (NTRS)

    Tsai, B.-M.; Gardner, C. S.

    1985-01-01

    A maximum-likelihood (ML) estimator of the pulse arrival in laser ranging and altimetry is derived for the case of a pulse distorted by shot noise and time-resolved speckle. The performance of the estimator is evaluated for pulse reflections from flat diffuse targets and compared with the performance of a suboptimal centroid estimator and a suboptimal Bar-David ML estimator derived under the assumption of no speckle. In the large-signal limit the accuracy of the estimator was found to improve as the width of the receiver observational interval increases. The timing performance of the estimator is expected to be highly sensitive to background noise when the received pulse energy is high and the receiver observational interval is large. Finally, in the speckle-limited regime the ML estimator performs considerably better than the suboptimal estimators.

  20. Sex-Specific Arrival Times on the Breeding Grounds: Hybridizing Migratory Skuas Provide Empirical Support for the Role of Sex Ratios.

    PubMed

    Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S

    2016-04-01

    In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.

  1. VLF long-range lightning location using the arrival time difference technique (ATD)

    NASA Technical Reports Server (NTRS)

    Ierkic, H. Mario

    1996-01-01

    A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.

  2. Fiber-Optic Network Observations of Earthquake Wavefields

    NASA Astrophysics Data System (ADS)

    Lindsey, Nathaniel J.; Martin, Eileen R.; Dreger, Douglas S.; Freifeld, Barry; Cole, Stephen; James, Stephanie R.; Biondi, Biondo L.; Ajo-Franklin, Jonathan B.

    2017-12-01

    Our understanding of subsurface processes suffers from a profound observation bias: seismometers are sparse and clustered on continents. A new seismic recording approach, distributed acoustic sensing (DAS), transforms telecommunication fiber-optic cables into sensor arrays enabling meter-scale recording over tens of kilometers of linear fiber length. We analyze cataloged earthquake observations from three DAS arrays with different horizontal geometries to demonstrate some possibilities using this technology. In Fairbanks, Alaska, we find that stacking ground motion records along 20 m of fiber yield a waveform that shows a high degree of correlation in amplitude and phase with a colocated inertial seismometer record at 0.8-1.6 Hz. Using an L-shaped DAS array in Northern California, we record the nearly vertically incident arrival of an earthquake from The Geysers Geothermal Field and estimate its backazimuth and slowness via beamforming for different phases of the seismic wavefield. Lastly, we install a fiber in existing telecommunications conduits below Stanford University and show that little cable-to-soil coupling is required for teleseismic P and S phase arrival detection.

  3. Real-time forecasts of tomorrow's earthquakes in California: a new mapping tool

    USGS Publications Warehouse

    Gerstenberger, Matt; Wiemer, Stefan; Jones, Lucy

    2004-01-01

    We have derived a multi-model approach to calculate time-dependent earthquake hazard resulting from earthquake clustering. This file report explains the theoretical background behind the approach, the specific details that are used in applying the method to California, as well as the statistical testing to validate the technique. We have implemented our algorithm as a real-time tool that has been automatically generating short-term hazard maps for California since May of 2002, at http://step.wr.usgs.gov

  4. Space-Time Earthquake Rate Models for One-Year Hazard Forecasts in Oklahoma

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2017-12-01

    The recent one-year seismic hazard assessments for natural and induced seismicity in the central and eastern US (CEUS) (Petersen et al., 2016, 2017) rely on earthquake rate models based on declustered catalogs (i.e., catalogs with foreshocks and aftershocks removed), as is common practice in probabilistic seismic hazard analysis. However, standard declustering can remove over 90% of some induced sequences in the CEUS. Some of these earthquakes may still be capable of causing damage or concern (Petersen et al., 2015, 2016). The choices of whether and how to decluster can lead to seismicity rate estimates that vary by up to factors of 10-20 (Llenos and Michael, AGU, 2016). Therefore, in order to improve the accuracy of hazard assessments, we are exploring ways to make forecasts based on full, rather than declustered, catalogs. We focus on Oklahoma, where earthquake rates began increasing in late 2009 mainly in central Oklahoma and ramped up substantially in 2013 with the expansion of seismicity into northern Oklahoma and southern Kansas. We develop earthquake rate models using the space-time Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988; Ogata, AISM, 1998; Zhuang et al., JASA, 2002), which characterizes both the background seismicity rate as well as aftershock triggering. We examine changes in the model parameters over time, focusing particularly on background rate, which reflects earthquakes that are triggered by external driving forces such as fluid injection rather than other earthquakes. After the model parameters are fit to the seismicity data from a given year, forecasts of the full catalog for the following year can then be made using a suite of 100,000 ETAS model simulations based on those parameters. To evaluate this approach, we develop pseudo-prospective yearly forecasts for Oklahoma from 2013-2016 and compare them with the observations using standard Collaboratory for the Study of Earthquake Predictability tests for consistency.

  5. A Real-Time Earthquake Precursor Detection Technique Using TEC from a GPS Network

    NASA Astrophysics Data System (ADS)

    Alp Akyol, Ali; Arikan, Feza; Arikan, Orhan

    2016-07-01

    Anomalies have been observed in the ionospheric electron density distribution prior to strong earthquakes. However, most of the reported results are obtained by earthquake analysis. Therefore, their implementation in practice is highly problematic. Recently, a novel earthquake precursor detection technique based on spatio-temporal analysis of Total Electron Content (TEC) data obtained from Turkish National Permanent GPS Network (TNPGN) is developed by IONOLAB group (www.ionolab.org). In the present study, the developed detection technique is implemented in a causal setup over the available data set in test phase that enables the real time implementation. The performance of the developed earthquake prediction technique is evaluated by using 10 fold cross validation over the data obtained in 2011. Among the 23 earthquakes that have magnitudes higher than 5, the developed technique can detect precursors of 14 earthquakes while producing 8 false alarms. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  6. Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area

    NASA Astrophysics Data System (ADS)

    Zülfikar, A. Can; Fercan, N. Özge Zülfikar; Tunç, Süleyman; Erdik, Mustafa

    2017-01-01

    The past devastating earthquakes in densely populated urban centers, such as the 1994 Northridge; 1995 Kobe; 1999 series of Kocaeli, Düzce, and Athens; and 2011 Van-Erciş events, showed that substantial social and economic losses can be expected. Previous studies indicate that inadequate emergency response can increase the number of casualties by a maximum factor of 10, which suggests the need for research on rapid earthquake shaking damage and loss estimation. The reduction in casualties in urban areas immediately following an earthquake can be improved if the location and severity of damages can be rapidly assessed by information from rapid response systems. In this context, a research project (TUBITAK-109M734) titled "Real-time Information of Earthquake Shaking, Damage, and Losses for Target Cities of Thessaloniki and Istanbul" was conducted during 2011-2014 to establish the rapid estimation of ground motion shaking and related earthquake damages and casualties for the target cities. In the present study, application to Istanbul metropolitan area is presented. In order to fulfill this objective, earthquake hazard and risk assessment methodology known as Earthquake Loss Estimation Routine, which was developed for the Euro-Mediterranean region within the Network of Research Infrastructures for European Seismology EC-FP6 project, was used. The current application to the Istanbul metropolitan area provides real-time ground motion information obtained by strong motion stations distributed throughout the densely populated areas of the city. According to this ground motion information, building damage estimation is computed by using grid-based building inventory, and the related loss is then estimated. Through this application, the rapidly estimated information enables public and private emergency management authorities to take action and allocate and prioritize resources to minimize the casualties in urban areas during immediate post-earthquake periods. Moreover, it

  7. Earthquake Declustering via a Nearest-Neighbor Approach in Space-Time-Magnitude Domain

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2016-12-01

    We propose a new method for earthquake declustering based on nearest-neighbor analysis of earthquakes in space-time-magnitude domain. The nearest-neighbor approach was recently applied to a variety of seismological problems that validate the general utility of the technique and reveal the existence of several different robust types of earthquake clusters. Notably, it was demonstrated that clustering associated with the largest earthquakes is statistically different from that of small-to-medium events. In particular, the characteristic bimodality of the nearest-neighbor distances that helps separating clustered and background events is often violated after the largest earthquakes in their vicinity, which is dominated by triggered events. This prevents using a simple threshold between the two modes of the nearest-neighbor distance distribution for declustering. The current study resolves this problem hence extending the nearest-neighbor approach to the problem of earthquake declustering. The proposed technique is applied to seismicity of different areas in California (San Jacinto, Coso, Salton Sea, Parkfield, Ventura, Mojave, etc.), as well as to the global seismicity, to demonstrate its stability and efficiency in treating various clustering types. The results are compared with those of alternative declustering methods.

  8. Promise and problems in using stress triggering models for time-dependent earthquake hazard assessment

    NASA Astrophysics Data System (ADS)

    Cocco, M.

    2001-12-01

    Earthquake stress changes can promote failures on favorably oriented faults and modify the seismicity pattern over broad regions around the causative faults. Because the induced stress perturbations modify the rate of production of earthquakes, they alter the probability of seismic events in a specified time window. Comparing the Coulomb stress changes with the seismicity rate changes and aftershock patterns can statistically test the role of stress transfer in earthquake occurrence. The interaction probability may represent a further tool to test the stress trigger or shadow model. The probability model, which incorporate stress transfer, has the main advantage to include the contributions of the induced stress perturbation (a static step in its present formulation), the loading rate and the fault constitutive properties. Because the mechanical conditions of the secondary faults at the time of application of the induced load are largely unkown, stress triggering can only be tested on fault populations and not on single earthquake pairs with a specified time delay. The interaction probability can represent the most suitable tool to test the interaction between large magnitude earthquakes. Despite these important implications and the stimulating perspectives, there exist problems in understanding earthquake interaction that should motivate future research but at the same time limit its immediate social applications. One major limitation is that we are unable to predict how and if the induced stress perturbations modify the ratio between small versus large magnitude earthquakes. In other words, we cannot distinguish between a change in this ratio in favor of small events or of large magnitude earthquakes, because the interaction probability is independent of magnitude. Another problem concerns the reconstruction of the stressing history. The interaction probability model is based on the response to a static step; however, we know that other processes contribute to

  9. Protecting Your Family From Earthquakes-The Seven Steps to Earthquake Safety (in Spanish and English)

    USGS Publications Warehouse

    Developed by American Red Cross, Asian Pacific Fund

    2007-01-01

    This book is provided here to share an important message on emergency preparedness. Historically, we have suffered earthquakes here in the San Francisco Bay Area that have caused severe hardship for residents and incredible damage to our cities. It is likely we will experience a severe earthquake within the next 30 years. Many of us come from other countries where we have experienced earth- quakes, so we believe that we understand them. However, the way we prepare for earthquakes in our home country may be different from the way it is necessary to prepare for earthquakes here. Very f w people die from collapsing buildings in the Bay Area because most structures are built to stand up to the shaking. But it is quite possible that your family will be without medical care or grocery stores and separated from one another for several days to weeks. It will ultimately be up to you to keep your family safe until help arrives, so we are asking you to join us in learning to take care of your family before, during, and after an earthquake. The first step is to read this book. Everyone in your family, children and adults, can learn how to prepare for an earthquake. Then take advantage of the American Red Cross Earthquake Preparedness training courses offered in your community. These preparedness courses are free, and also offered in Spanish and available to everyone in the community regardless of family history, leg al status, gender, or age. We encourage you to take one of these free training workshops. Look on the back cover for more information. Remember that an earthquake can occur without warning, and the only way that we can reduce the harm caused by earthquakes is to be prepared. Get Prepared!

  10. Comprehensive treatment for gas gangrene of the limbs in earthquakes.

    PubMed

    Wang, Yue; Lu, Bo; Hao, Peng; Yan, Meng-ning; Dai, Ke-rong

    2013-10-01

    Mortality rates for patients with gas gangrene from trauma or surgery are as high as 25%, but they increase to 50%-80% for patients injured in natural hazards. Early diagnosis and treatment are essential for these patients. We retrospectively analyzed the clinical characteristics and therapeutic results of 19 patients with gas gangrene of the limbs, who were injured in the May 2008 earthquake in the Wenchuan district of China's Sichuan province and treated in our hospital, to seek how to best diagnose and treat earthquake-induced gas gangrene. Of 226 patients with limbs open injuries sustained during the earthquake, 53 patients underwent smear analysis of wound exudates and gas gangrene was diagnosed in 19 patients. The average elapsed time from injury to arrival at the hospital was 72 hours, from injury to definitive diagnosis was 4.3 days, and from diagnosis to conversion of negative findings on wound smear analysis to positive findings was 12.7 days. Anaerobic cultures were also obtained before wound closure. The average elapsed time from completion of surgery to recovery of normal vital signs was 6.3 days. Of the 19 patients, 16 were treated with open amputation, two with closed amputation, and 1 with successful limb salvage; 18 patients were successfully treated and one died. In earthquakes, rapid, accurate screening and isolation are essential to successful treatment of gas gangrene and helpful in preventing nosocomial diffusion. Early and thorough debridement, open amputation, and active supportive treatment can produce satisfactory therapeutic results.

  11. Application of a deconvolution method for identifying burst amplitudes and arrival times in Alcator C-Mod far SOL plasma fluctuations

    NASA Astrophysics Data System (ADS)

    Theodorsen, Audun; Garcia, Odd Erik; Kube, Ralph; Labombard, Brian; Terry, Jim

    2017-10-01

    In the far scrape-off layer (SOL), radial motion of filamentary structures leads to excess transport of particles and heat. Amplitudes and arrival times of these filaments have previously been studied by conditional averaging in single-point measurements from Langmuir Probes and Gas Puff Imaging (GPI). Conditional averaging can be problematic: the cutoff for large amplitudes is mostly chosen by convention; the conditional windows used may influence the arrival time distribution; and the amplitudes cannot be separated from a background. Previous work has shown that SOL fluctuations are well described by a stochastic model consisting of a super-position of pulses with fixed shape and randomly distributed amplitudes and arrival times. The model can be formulated as a pulse shape convolved with a train of delta pulses. By choosing a pulse shape consistent with the power spectrum of the fluctuation time series, Richardson-Lucy deconvolution can be used to recover the underlying amplitudes and arrival times of the delta pulses. We apply this technique to both L and H-mode GPI data from the Alcator C-Mod tokamak. The pulse arrival times are shown to be uncorrelated and uniformly distributed, consistent with a Poisson process, and the amplitude distribution has an exponential tail.

  12. Near-real-time Earthquake Notification and Response in the Classroom: Exploiting the Teachable Moment

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Whitlock, J. S.; Benz, H. M.

    2002-12-01

    Earthquakes occur globally, on a regular but (as yet) non-predictable basis, and their effects are both dramatic and often devastating. Additionally they serve as a primary tool to image the earth and define the active processes that drive tectonics. As a result, earthquakes can be an extremely effective tool for helping students to learn about active earth processes, natural hazards, and the myriad of issues that arise with non-predictable but potentially devastating natural events. We have developed and implemented a real-time earthquake alert system (EAS) built on the USGS Earthworm system to bring earthquakes into the classroom. Through our EAS, students in our General Education class on Natural Hazards (Earth101 - Natural Disasters: Hollywood vs. Reality) participate in earthquake response activities in ways similar to earthquake hazard professionals - they become part of the response to the event. Our implementation of the Earthworm system allows our students to be paged via cell-phone text messaging (Yes, we provide cell phones to the 'duty seismologists'), and they respond to those pages as appropriate for their role. A parallel web server is maintained that provides the earthquake details (location maps, waveforms etc.) and students produce time-critical output such as news releases, analyses of earthquake trends in the region, and reports detailing implications of the events. Since this is a course targeted at non-science majors, we encourage that they bring their own expertise into the analyses. For example, business of economic majors may investigate the economic impacts of an earthquake, secondary education majors may work on teaching modules based on the information they gather etc. Since the students know that they are responding to real events they develop ownership of the information they gather and they recognize the value of real-time response. Our educational goals in developing this system include: (1) helping students develop a sense of the

  13. Bibliographical search for reliable seismic moments of large earthquakes during 1900-1979 to compute MW in the ISC-GEM Global Instrumental Reference Earthquake Catalogue

    NASA Astrophysics Data System (ADS)

    Lee, William H. K.; Engdahl, E. Robert

    2015-02-01

    Moment magnitude (MW) determinations from the online GCMT Catalogue of seismic moment tensor solutions (GCMT Catalog, 2011) have provided the bulk of MW values in the ISC-GEM Global Instrumental Reference Earthquake Catalogue (1900-2009) for almost all moderate-to-large earthquakes occurring after 1975. This paper describes an effort to determine MW of large earthquakes that occurred prior to the start of the digital seismograph era, based on credible assessments of thousands of seismic moment (M0) values published in the scientific literature by hundreds of individual authors. MW computed from the published M0 values (for a time period more than twice that of the digital era) are preferable to proxy MW values, especially for earthquakes with MW greater than about 8.5, for which MS is known to be underestimated or "saturated". After examining 1,123 papers, we compile a database of seismic moments and related information for 1,003 earthquakes with published M0 values, of which 967 were included in the ISC-GEM Catalogue. The remaining 36 earthquakes were not included in the Catalogue due to difficulties in their relocation because of inadequate arrival time information. However, 5 of these earthquakes with bibliographic M0 (and thus MW) are included in the Catalogue's Appendix. A search for reliable seismic moments was not successful for earthquakes prior to 1904. For each of the 967 earthquakes a "preferred" seismic moment value (if there is more than one) was selected and its uncertainty was estimated according to the data and method used. We used the IASPEI formula (IASPEI, 2005) to compute direct moment magnitudes (MW[M0]) based on the seismic moments (M0), and assigned their errors based on the uncertainties of M0. From 1900 to 1979, there are 129 great or near great earthquakes (MW ⩾ 7.75) - the bibliographic search provided direct MW values for 86 of these events (or 67%), the GCMT Catalog provided direct MW values for 8 events (or 6%), and the remaining 35

  14. Predictability of Landslide Timing From Quasi-Periodic Precursory Earthquakes

    NASA Astrophysics Data System (ADS)

    Bell, Andrew F.

    2018-02-01

    Accelerating rates of geophysical signals are observed before a range of material failure phenomena. They provide insights into the physical processes controlling failure and the basis for failure forecasts. However, examples of accelerating seismicity before landslides are rare, and their behavior and forecasting potential are largely unknown. Here I use a Bayesian methodology to apply a novel gamma point process model to investigate a sequence of quasiperiodic repeating earthquakes preceding a large landslide at Nuugaatsiaq in Greenland in June 2017. The evolution in earthquake rate is best explained by an inverse power law increase with time toward failure, as predicted by material failure theory. However, the commonly accepted power law exponent value of 1.0 is inconsistent with the data. Instead, the mean posterior value of 0.71 indicates a particularly rapid acceleration toward failure and suggests that only relatively short warning times may be possible for similar landslides in future.

  15. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  16. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

    PubMed Central

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-01-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves. PMID:27874858

  17. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake.

    PubMed

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-11-22

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

  18. Prompt gravity anomaly induced to the 2011Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Juhel, Kevin; Barsuglia, Matteo; Ampuero, Jean-Paul; Harms, Jan; Chassande-Mottin, Eric; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2017-04-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order-of-magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems (EEWS) imposed by the propagation speed of seismic waves.

  19. Analysis of community tsunami evacuation time: An overview

    NASA Astrophysics Data System (ADS)

    Yunarto, Y.; Sari, A. M.

    2018-02-01

    Tsunami in Indonesia is defined as local tsunami due to its occurrences which are within a distance of 200 km from the epicenter of the earthquake. A local tsunami can be caused by an earthquake, landslide, or volcanic eruption. Tsunami arrival time in Indonesia is generally between 10-60 minutes. As the estimated time of the tsunami waves to reach the coast is 30 minutes after the earthquake, the community should go to the vertical or horizontal evacuation in less than 30 minutes. In an evacuation, the city frequently does the evacuation after obtaining official directions from the authorities. Otherwise, they perform an independent evacuation without correct instructions from the authorities. Both of these ways have several strengths and limitations. This study analyzes these methods regarding time as well as the number of people expected to be saved.

  20. THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. T.; Jones, M. L.; McLaughlin, M. A.

    Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum formore » 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.« less

  1. An Advanced Real-Time Earthquake Information System in Japan

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Nakamura, H.; Suzuki, W.; Kunugi, T.; Aoi, S.; Fujiwara, H.

    2015-12-01

    J-RISQ (Japan Real-time Information System for earthquake) has been developing in NIED for appropriate first-actions to big earthquakes. When an earthquake occurs, seismic intensities (SI) are calculated first at each observation station and sent to the Data Management Center in different timing. The system begins the first estimation when the number of the stations observing the SI of 2.5 or larger exceeds the threshold amount. It estimates SI distribution, exposed population and earthquake damage on buildings by using basic data for estimation, such as subsurface amplification factors, population, and building information. It has been accumulated in J-SHIS (Japan Seismic Information Station) developed by NIED, a public portal for seismic hazard information across Japan. The series of the estimation is performed for each 250m square mesh and finally the estimated data is converted into information for each municipality. Since October 2013, we have opened estimated SI, exposed population etc. to the public through the website by making full use of maps and tables.In the previous system, we sometimes could not inspect the information of the surrounding areas out of the range suffered from strong motions, or the details of the focusing areas, and could not confirm whether the present information was the latest or not without accessing the website. J-RISQ has been advanced by introducing the following functions to settle those problems and promote utilization in local areas or in personal levels. In addition, the website in English has been released.・It has become possible to focus on the specific areas and inspect enlarged information.・The estimated information can be downloaded in the form of KML.・The estimated information can be updated automatically and be provided as the latest one.・The newest information can be inspected by using RSS readers or browsers corresponding to RSS.・Exclusive pages for smartphones have been prepared.The information estimated

  2. Observation of the seismic nucleation phase in the Ridgecrest, California, earthquake sequence

    USGS Publications Warehouse

    Ellsworth, W.L.; Beroza, G.C.

    1998-01-01

    Near-source observations of five M 3.8-5.2 earthquakes near Ridgecrest, California are consistent with the presence of a seismic nucleation phase. These earthquakes start abruptly, but then slow or stop before rapidly growing again toward their maximum rate of moment release. Deconvolution of instrument and path effects by empirical Green's functions demonstrates that the initial complexity at the start of the earthquake is a source effect. The rapid growth of the P-wave arrival at the start of the seismic nucleation phase supports the conclusion of Mori and Kanamori [1996] that these earthquakes begin without a magnitude-scaled slow initial phase of the type observed by Iio [1992, 1995].

  3. Precise Relative Earthquake Depth Determination Using Array Processing Techniques

    NASA Astrophysics Data System (ADS)

    Florez, M. A.; Prieto, G. A.

    2014-12-01

    The mechanism for intermediate depth and deep earthquakes is still under debate. The temperatures and pressures are above the point where ordinary fractures ought to occur. Key to constraining this mechanism is the precise determination of hypocentral depth. It is well known that using depth phases allows for significant improvement in event depth determination, however routinely and systematically picking such phases for teleseismic or regional arrivals is problematic due to poor signal-to-noise ratios around the pP and sP phases. To overcome this limitation we have taken advantage of the additional information carried by seismic arrays. We have used beamforming and velocity spectral analysis techniques to precise measure pP-P and sP-P differential travel times. These techniques are further extended to achieve subsample accuracy and to allow for events where the signal-to-noise ratio is close to or even less than 1.0. The individual estimates obtained at different subarrays for a pair of earthquakes can be combined using a double-difference technique in order to precisely map seismicity in regions where it is tightly clustered. We illustrate these methods using data from the recent M 7.9 Alaska earthquake and its aftershocks, as well as data from the Bucaramanga nest in northern South America, arguably the densest and most active intermediate-depth earthquake nest in the world.

  4. Rapid magnitude estimation from time-dependent displacement amplitude measured with seismogeodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to

  5. The Earthquake Early Warning System In Southern Italy: Performance Tests And Next Developments

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Elia, L.; Martino, C.; Colombelli, S.; Emolo, A.; Festa, G.; Iannaccone, G.

    2011-12-01

    PRESTo (PRobabilistic and Evolutionary early warning SysTem) is the software platform for Earthquake Early Warning (EEW) in Southern Italy, that integrates recent algorithms for real-time earthquake location, magnitude estimation and damage assessment, into a highly configurable and easily portable package. The system is under active experimentation based on the Irpinia Seismic Network (ISNet). PRESTo processes the live streams of 3C acceleration data for P-wave arrival detection and, while an event is occurring, promptly performs event detection and provides location, magnitude estimations and peak ground shaking predictions at target sites. The earthquake location is obtained by an evolutionary, real-time probabilistic approach based on an equal differential time formulation. At each time step, it uses information from both triggered and not-yet-triggered stations. Magnitude estimation exploits an empirical relationship that correlates it to the filtered Peak Displacement (Pd), measured over the first 2-4 s of P-signal. Peak ground-motion parameters at any distance can be finally estimated by ground motion prediction equations. Alarm messages containing the updated estimates of these parameters can thus reach target sites before the destructive waves, enabling automatic safety procedures. Using the real-time data streaming from the ISNet network, PRESTo has produced a bulletin for about a hundred low-magnitude events occurred during last two years. Meanwhile, the performances of the EEW system were assessed off-line playing-back the records for moderate and large events from Italy, Spain and Japan and synthetic waveforms for large historical events in Italy. These tests have shown that, when a dense seismic network is deployed in the fault area, PRESTo produces reliable estimates of earthquake location and size within 5-6 s from the event origin time (To). Estimates are provided as probability density functions whose uncertainty typically decreases with time

  6. National Earthquake Hazards Reduction Program; time to expand

    USGS Publications Warehouse

    Steinbrugge, K.V.

    1990-01-01

    All of us in earthquake engineering, seismology, and many related disciplines have been directly or indirectly affected by the National Earthquake Hazards Reduction Program (NEHRP). This program was the result of the Earthquake Hazards Reduction Act of 1977 (Public Law 95-124). With well over a decade of experience, should this expression of public policy now take a different or expanded role? 

  7. Arrival metering fuel consumption analysis

    DOT National Transportation Integrated Search

    2011-01-01

    Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...

  8. An Analysis of the Relationship Between the Heat Index and Arrivals in the Emergency Department

    PubMed Central

    Levy, Matthew; Broccoli, Morgan; Cole, Gai; Jenkins, J Lee; Klein, Eili Y.

    2015-01-01

    Background: Heatwaves are one of the most deadly weather-related events in the United States and account for more deaths annually than hurricanes, tornadoes, floods, and earthquakes combined. However, there are few statistically rigorous studies of the effect of heatwaves on emergency department (ED) arrivals. A better understanding of this relationship can help hospitals plan better and provide better care for patients during these types of events. Methods: A retrospective review of all ED patient arrivals that occurred from April 15 through August 15 for the years 2008 through 2013 was performed. Daily patient arrival data were combined with weather data (temperature and humidity) to examine the potential relationships between the heat index and ED arrivals as well as the length of time patients spend in the ED using generalized additive models. In particular the effect the 2012 heat wave that swept across the United States, and which was hypothesized to increase arrivals was examined. Results: While there was no relationship found between the heat index and arrivals on a single day, a non-linear relationship was found between the mean three-day heat index and the number of daily arrivals. As the mean three-day heat index initially increased, the number of arrivals significantly declined. However, as the heat index continued to increase, the number of arrivals increased. It was estimated that there was approximately a 2% increase in arrivals when the mean heat index for three days approached 100°F. This relationship was strongest for adults aged 18-64, as well as for patients arriving with lower acuity. Additionally, a positive relationship was noted between the mean three-day heat index and the length of stay (LOS) for patients in the ED, but no relationship was found for the time from which a patient was first seen to when a disposition decision was made. No significant relationship was found for the effect of the 2012 heat wave on ED arrivals, though it

  9. Fast rise times and the physical mechanism of deep earthquakes

    NASA Technical Reports Server (NTRS)

    Houston, H.; Williams, Q.

    1991-01-01

    A systematic global survey of the rise times and stress drops of deep and intermediate earthquakes is reported. When the rise times are scaled to the seismic moment release of the events, their average is nearly twice as fast for events deeper than about 450 km as for shallower events.

  10. A consistent and uniform research earthquake catalog for the AlpArray region: preliminary results.

    NASA Astrophysics Data System (ADS)

    Molinari, I.; Bagagli, M.; Kissling, E. H.; Diehl, T.; Clinton, J. F.; Giardini, D.; Wiemer, S.

    2017-12-01

    The AlpArray initiative (www.alparray.ethz.ch) is a large-scale European collaboration ( 50 institutes involved) to study the entire Alpine orogen at high resolution with a variety of geoscientific methods. AlpArray provides unprecedentedly uniform station coverage for the region with more than 650 broadband seismic stations, 300 of which are temporary. The AlpArray Seismic Network (AASN) is a joint effort of 25 institutes from 10 nations, operates since January 2016 and is expected to continue until the end of 2018. In this study, we establish a uniform earthquake catalogue for the Greater Alpine region during the operation period of the AASN with a aimed completeness of M2.5. The catalog has two main goals: 1) calculation of consistent and precise hypocenter locations 2) provide preliminary but uniform magnitude calculations across the region. The procedure is based on automatic high-quality P- and S-wave pickers, providing consistent phase arrival times in combination with a picking quality assessment. First, we detect all events in the region in 2016/2017 using an STA/LTA based detector. Among the detected events, we select 50 geographically homogeneously distributed events with magnitudes ≥2.5 representative for the entire catalog. We manually pick the selected events to establish a consistent P- and S-phase reference data set, including arrival-time time uncertainties. The reference data, are used to adjust the automatic pickers and to assess their performance. In a first iteration, a simple P-picker algorithm is applied to the entire dataset, providing initial picks for the advanced MannekenPix (MPX) algorithm. In a second iteration, the MPX picker provides consistent and reliable automatic first arrival P picks together with a pick-quality estimate. The derived automatic P picks are then used as initial values for a multi-component S-phase picking algorithm. Subsequently, automatic picks of all well-locatable earthquakes will be considered to calculate

  11. Near Real-Time Earthquake Exposure and Damage Assessment: An Example from Turkey

    NASA Astrophysics Data System (ADS)

    Kamer, Yavor; Çomoǧlu, Mustafa; Erdik, Mustafa

    2014-05-01

    Confined by infamous strike-slip North Anatolian Fault from the north and by the Hellenic subduction trench from the south Turkey is one of the most seismically active countries in Europe. Due this increased exposure and the fragility of the building stock Turkey is among the top countries exposed to earthquake hazard in terms of mortality and economic losses. In this study we focus recent and ongoing efforts to mitigate the earthquake risk in near real-time. We present actual results of recent earthquakes, such as the M6 event off-shore Antalya which occurred on 28 December 2013. Starting at the moment of detection, we obtain a preliminary ground motion intensity distribution based on epicenter and magnitude. Our real-time application is further enhanced by the integration of the SeisComp3 ground motion parameter estimation tool with the Earthquake Loss Estimation Routine (ELER). SeisComp3 provides the online station parameters which are then automatically incorporated into the ShakeMaps produced by ELER. The resulting ground motion distributions are used together with the building inventory to calculate expected number of buildings in various damage states. All these analysis are conducted in an automated fashion and are communicated within a few minutes of a triggering event. In our efforts to disseminate earthquake information to the general public we make extensive use of social networks such as Tweeter and collaborate with mobile phone operators.

  12. Prediction of Shock Arrival Times from CME and Flare Data

    NASA Technical Reports Server (NTRS)

    Nunez, Marlon; Nieves-Chinchilla, Teresa; Pulkkinen, Antti

    2016-01-01

    This paper presents the Shock ARrival Model (SARM) for predicting shock arrival times for distances from 0.72 AU to 8.7 AU by using coronal mass ejections (CME) and flare data. SARM is an aerodynamic drag model described by a differential equation that has been calibrated with a dataset of 120 shocks observed from 1997 to 2010 by minimizing the mean absolute error (MAE), normalized to 1 AU. SARM should be used with CME data (radial, earthward or plane-of-sky speeds), and flare data (peak flux, duration, and location). In the case of 1 AU, the MAE and the median of absolute errors were 7.0 h and 5.0 h respectively, using the available CMEflare data. The best results for 1 AU (an MAE of 5.8 h) were obtained using both CME data, either radial or cone-model-estimated speeds, and flare data. For the prediction of shock arrivals at distances from 0.72 AU to 8.7 AU, the normalized MAE and the median were 7.1 h and 5.1 h respectively, using the available CMEflare data. SARM was also calibrated to be used with CME data alone or flare data alone, obtaining normalized MAE errors of 8.9 h and 8.6 h respectively for all shock events. The model verification was carried out with an additional dataset of 20 shocks observed from 2010 to 2012 with radial CME speeds to compare SARM with the empirical ESA model [Gopalswamy et al., 2005a] and the numerical MHD-based ENLIL model [Odstrcil et al., 2004]. The results show that the ENLIL's MAE was lower than the SARM's MAE, which was lower than the ESA's MAE. The SARM's best results were obtained when both flare and true CME speeds were used.

  13. A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert

    2018-03-01

    Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.

  14. Earthquake Warning Performance in Vallejo for the South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Wurman, G.; Price, M.

    2014-12-01

    In 2002 and 2003, Seismic Warning Systems, Inc. installed first-generation QuakeGuardTM earthquake warning devices at all eight fire stations in Vallejo, CA. These devices are designed to detect the P-wave of an earthquake and initiate predetermined protective actions if the impending shaking is estimated at approximately Modifed Mercalli Intensity V or greater. At the Vallejo fire stations the devices were set up to sound an audio alert over the public address system and to command the equipment bay doors to open. In August 2014, after more than 11 years of operating in the fire stations with no false alarms, the five units that were still in use triggered correctly on the MW 6.0 South Napa earthquake, less than 16 km away. The audio alert sounded in all five stations, providing fire fighters with 1.5 to 2.5 seconds of warning before the arrival of the S-wave, and the equipment bay doors opened in three of the stations. In one station the doors were disconnected from the QuakeGuard device, and another station lost power before the doors opened completely. These problems highlight just a small portion of the complexity associated with realizing actionable earthquake warnings. The issues experienced in this earthquake have already been addressed in subsequent QuakeGuard product generations, with downstream connection monitoring and backup power for critical systems. The fact that the fire fighters in Vallejo were afforded even two seconds of warning at these epicentral distances results from the design of the QuakeGuard devices, which focuses on rapid false positive rejection and ground motion estimates. We discuss the performance of the ground motion estimation algorithms, with an emphasis on the accuracy and timeliness of the estimates at close epicentral distances.

  15. Very low frequency earthquakes in Tohoku-Oki recorded by short-period ocean bottom seismographs

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Hino, R.; Ohta, Y.; Uchida, N.; Suzuki, S.; Shinohara, M.; Nakatani, Y.; Matsuzawa, T.

    2017-12-01

    Various kind of slow earthquakes have been found along many plate boundary zones in the world (Obara, and Kato, 2016). In the Tohoku subduction zone where slow event activities have been considered insignificant, slow slip events associated with low frequency tremors were identified prior to the 2011 Tohoku-Oki earthquake based on seafloor geodetic and seismographical observations. Recently very low frequency earthquakes (VLFEs) have been discovered by inspecting onshore broad-band seismograms. Although the activity of the detected VLFEs is low and the VLFEs occurred in the limited area, VLFEs tends to occur successively in a short time period. In this study, we try to characterize the VLFEs along the Japan Trench based on the seismograms obtained by the instruments deployed near the estimated epicenters.Temporary seismic observations using Ocean Bottom Seismometers (OBSs) have been carried out several times after the 2011 Tohoku-Oki earthquake, and several VLFE activities were observed during the deployments of the OBSs. Amplitudes of horizontal component seismograms of the OBSs grow shortly after the estimated origin times of the VLFEs identified by the onshore seismograms, even though the sensors are 4.5 Hz geophones. It is difficult to recognize evident onsets of P or S waves, correspondence between order of arrivals of discernible wave packets and their amplitudes suggests that these wave packets are seismic signals radiated from the VLFE sources. The OBSs detect regular local earthquakes of the similar magnitudes as the VLFEs. Signal powers of the possible VLFE seismograms are comparable to the regular earthquakes in the frequency range < 1 Hz, while significant deficiency of higher frequency components are observed.

  16. Time-varying loss forecast for an earthquake scenario in Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Herrmann, Marcus; Zechar, Jeremy D.; Wiemer, Stefan

    2014-05-01

    When an unexpected earthquake occurs, people suddenly want advice on how to cope with the situation. The 2009 L'Aquila quake highlighted the significance of public communication and pushed the usage of scientific methods to drive alternative risk mitigation strategies. For instance, van Stiphout et al. (2010) suggested a new approach for objective evacuation decisions on short-term: probabilistic risk forecasting combined with cost-benefit analysis. In the present work, we apply this approach to an earthquake sequence that simulated a repeat of the 1356 Basel earthquake, one of the most damaging events in Central Europe. A recent development to benefit society in case of an earthquake are probabilistic forecasts of the aftershock occurrence. But seismic risk delivers a more direct expression of the socio-economic impact. To forecast the seismic risk on short-term, we translate aftershock probabilities to time-varying seismic hazard and combine this with time-invariant loss estimation. Compared with van Stiphout et al. (2010), we use an advanced aftershock forecasting model and detailed settlement data to allow us spatial forecasts and settlement-specific decision-making. We quantify the risk forecast probabilistically in terms of human loss. For instance one minute after the M6.6 mainshock, the probability for an individual to die within the next 24 hours is 41 000 times higher than the long-term average; but the absolute value remains at minor 0.04 %. The final cost-benefit analysis adds value beyond a pure statistical approach: it provides objective statements that may justify evacuations. To deliver supportive information in a simple form, we propose a warning approach in terms of alarm levels. Our results do not justify evacuations prior to the M6.6 mainshock, but in certain districts afterwards. The ability to forecast the short-term seismic risk at any time-and with sufficient data anywhere-is the first step of personal decision-making and raising risk

  17. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  18. Measuring the Seismic and Acoustic Time of Flight - Lessons in Earthquakes and Thunder

    NASA Astrophysics Data System (ADS)

    Leeman, J.; Ammon, C. J.

    2016-12-01

    When teaching the fundamentals of waves and wave propagation, students must appreciate and understand that different waves travel through different materials at different speeds. We describe a simple experiment to explore acoustic wave propagation through the ground and the air and how to use those observations to locate the source of the waves. The experiment that can be performed with a geophone, a microphone, and an oscilloscope. For this activity, students will strike a metal plate, equipped with a vibration trigger, with a hammer. The blow triggers an oscilloscope to begin recording data in a "single-shot" mode. The two channels of the oscilloscope record the output of the microphone (measuring the energy of sound waves in the air) and the geophone (measuring the seismic wave energy in the ground). Seismic waves reach the geophone earlier than the sound waves since they travel at approximately ten times the speed. Students can measure the travel time on the oscilloscope, or using data downloaded to a computer. With measurements of the travel time and distance to the hammer, students can calculate the velocity of each wave. Then, the hammer can be used at other distances from the sensors and by measuring the difference in arrival time of the two waves, students can estimate the distance to the source which they check by direct measurement. This exercise can be directly connected to common observations such as seeing lighting before hearing thunder. The activity also connects directly to concepts related to earthquake location. We describe pedagogical materials, including experiment instructions, videos and data for those who do not have access to the equipment, and simple exercise suggestions for classroom activities.

  19. Operational earthquake forecasting can enhance earthquake preparedness

    USGS Publications Warehouse

    Jordan, T.H.; Marzocchi, W.; Michael, A.J.; Gerstenberger, M.C.

    2014-01-01

    We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Operational earthquake forecasting (OEF) is the dissemination of authoritative information about these time‐dependent probabilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground‐motion exceedance probabilities as well as short‐term rupture probabilities—in concert with the long‐term forecasts of probabilistic seismic‐hazard analysis (PSHA).

  20. Operational warning of interplanetary shock arrivals using energetic particle data from ACE: Real-time Upstream Monitoring System

    NASA Astrophysics Data System (ADS)

    Donegan, M.; Vandegriff, J.; Ho, G. C.; Julia, S. J.

    2004-12-01

    We report on an operational system which provides advance warning and predictions of arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. The data stream used in our prediction algorithm is real-time and comes from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Since locally accelerated energetic storm particle (ESP) events accompany most IP shocks, their arrival can be predicted using ESP event signatures. We have previously reported on the development and implementation of an algorithm which recognizes the upstream particle signature of approaching IP shocks and provides estimated countdown predictions. A web-based system (see (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) combines this prediction capability with real-time ACE/EPAM data provided by the NOAA Space Environment Center. The most recent ACE data is continually processed and predictions of shock arrival time are updated every five minutes when an event is impending. An operational display is provided to indicate advisories and countdowns for the event. Running the algorithm on a test set of historical events, we obtain a median error of about 10 hours for predictions made 24-36 hours before actual shock arrival and about 6 hours when the shock is 6-12 hours away. This system can provide critical information to mission planners, satellite operations controllers, and scientists by providing significant lead-time for approaching events. Recently, we have made improvements to the triggering mechanism as well as re-training the neural network, and here we report prediction results from the latest system.

  1. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Li, Zefeng; Meier, Men-Andrin; Hauksson, Egill; Zhan, Zhongwen; Andrews, Jennifer

    2018-05-01

    Performance of earthquake early warning systems suffers from false alerts caused by local impulsive noise from natural or anthropogenic sources. To mitigate this problem, we train a generative adversarial network (GAN) to learn the characteristics of first-arrival earthquake P waves, using 300,000 waveforms recorded in southern California and Japan. We apply the GAN critic as an automatic feature extractor and train a Random Forest classifier with about 700,000 earthquake and noise waveforms. We show that the discriminator can recognize 99.2% of the earthquake P waves and 98.4% of the noise signals. This state-of-the-art performance is expected to reduce significantly the number of false triggers from local impulsive noise. Our study demonstrates that GANs can discover a compact and effective representation of seismic waves, which has the potential for wide applications in seismology.

  2. Cascadia Slow Earthquakes: Strategies for Time Independent Inversion of Displacement Fields

    NASA Astrophysics Data System (ADS)

    Szeliga, W. M.; Melbourne, T. I.; Miller, M. M.; Santillan, V. M.

    2004-12-01

    Continuous observations using Global Positioning System geodesy (CGPS) have revealed periodic slow or silent earthquakes along the Cascadia subduction zone with a spectrum of timing and periodicity. These creep events perturb time series of GPS observations and yield coherent displacement fields that relate to the extent and magnitude of fault displacement. In this study, time independent inversions of the surface displacement fields that accompany eight slow earthquakes characterize slip distributions along the plate interface for each event. The inversions employed in this study utilize Okada's elastic dislocation model and a non- negative least squares approach. Methodologies for optimizing the slip distribution smoothing parameter for a particular station distribution have also been investigated, significantly reducing the number of possible slip distributions and the range of estimates for total moment release for each event. The discretized slip distribution calculated for multiple creep events identifies areas of the Cascadia plate interface where slip persistently recurs. The current hypothesis, that slow earthquakes are modulated by forced fluid flow, leads to the possibility that some regions of the Cascadia plate interface may display fault patches preferentially exploited by fluid flow. Thus, the identification of regions of the plate interface that repeatedly slip during slow events may yield important information regarding the identification of these fluid pathways.

  3. Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi

    We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.

  4. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    NASA Astrophysics Data System (ADS)

    Escudero Ayala, Christian Rene

    I use the Relative Source Time Function (RSTF) method to determine the source properties of earthquakes within southeastern Alaska-northwestern Canada in a first part of the project, and earthquakes within the Denali fault in a second part. I deconvolve a small event P-arrival signal from a larger event by the following method: select arrivals with a tapered cosine window, fast fourier transform to obtain the spectrum, apply water level deconvolution technique, and bandpass filter before inverse transforming the result to obtain the RSTF. I compare the source processes of earthquakes within the area to determine stress drop differences to determine their relation with the tectonic setting of the earthquakes location. Results show an consistency with previous results, stress drop independent of moment implying self-similarity, correlation of stress drop with tectonic regime, stress drop independent of depth, stress drop depends of focal mechanism where strike-slip present larger stress drops, and decreasing stress drop as function of time. I determine seismic wave attenuation in the central western United States using coda waves. I select approximately 40 moderate earthquakes (magnitude between 5.5 and 6.5) located alocated along the California-Baja California, California-Nevada, Eastern Idaho, Gulf of California, Hebgen Lake, Montana, Nevada, New Mexico, off coast of Northern California, off coast of Oregon, southern California, southern Illinois, Vancouver Island, Washington, and Wyoming regions. These events were recorded by the EarthScope transportable array (TA) network from 2005 to 2009. We obtain the data from the Incorporated Research Institutions for Seismology (IRIS). In this study we implement a method based on the assumption that coda waves are single backscattered waves from randomly distributed heterogeneities to calculate the coda Q. The frequencies studied lie between 1 and 15 Hz. The scattering attenuation is calculated for frequency bands centered

  5. A note on some statistical properties of rise time parameters used in muon arrival time measurements

    NASA Technical Reports Server (NTRS)

    Vanderwalt, D. J.; Devilliers, E. J.

    1985-01-01

    Most investigations of the muon arrival time distribution in EAS during the past decade made use of parameters which can collectively be called rise time parameters. The rise time parameter T sub A/B is defined as the time taken for the integrated pulse from a detector to rise from A% to B% of its full amplitude. The use of these parameters are usually restricted to the determination of the radial dependence thereof. This radial dependence of the rise time parameters are usually taken as a signature of the particle interaction characteristics in the shower. As these parameters have a stochastic nature, it seems reasonable that one should also take notice of this aspect of the rise time parameters. A statistical approach to rise time parameters is presented.

  6. Real time drilling mud gas response to small-moderate earthquakes in Wenchuan earthquake Scientific Drilling Hole-1 in SW China

    NASA Astrophysics Data System (ADS)

    Gong, Zheng; Li, Haibing; Tang, Lijun; Lao, Changling; Zhang, Lei; Li, Li

    2017-05-01

    We investigated the real time drilling mud gas of the Wenchuan earthquake Fault Scientific Drilling Hole-1 and their responses to 3918 small-moderate aftershocks happened in the Longmenshan fault zone. Gas profiles for Ar, CH4, He, 222Rn, CO2, H2, N2, O2 are obtained. Seismic wave amplitude, energy density and static strain are calculated to evaluate their power of influence to the drilling site. Mud gases two hours before and after each earthquake are carefully analyzed. In total, 25 aftershocks have major mud gas response, the mud gas concentrations vary dramatically immediately or minutes after the earthquakes. Different gas species respond to earthquakes in different manners according to local lithology encountered during the drill. The gas variations are likely controlled by dynamic stress changes, rather than static stress changes. They have the seismic energy density between 10-5 and 1.0 J/m3 whereas the static strain are mostly less than 10-8. We suggest that the limitation of the gas sources and the high hydraulic diffusivity of the newly ruptured fault zone could have inhibited the drilling mud gas behaviors, they are only able to respond to a small portion of the aftershocks. This work is important for the understanding of earthquake related hydrological changes.

  7. Constructing new seismograms from old earthquakes: Retrospective seismology at multiple length scales

    NASA Astrophysics Data System (ADS)

    Entwistle, Elizabeth; Curtis, Andrew; Galetti, Erica; Baptie, Brian; Meles, Giovanni

    2015-04-01

    If energy emitted by a seismic source such as an earthquake is recorded on a suitable backbone array of seismometers, source-receiver interferometry (SRI) is a method that allows those recordings to be projected to the location of another target seismometer, providing an estimate of the seismogram that would have been recorded at that location. Since the other seismometer may not have been deployed at the time the source occurred, this renders possible the concept of 'retrospective seismology' whereby the installation of a sensor at one period of time allows the construction of virtual seismograms as though that sensor had been active before or after its period of installation. Using the benefit of hindsight of earthquake location or magnitude estimates, SRI can establish new measurement capabilities closer to earthquake epicenters, thus potentially improving earthquake location estimates. Recently we showed that virtual SRI seismograms can be constructed on target sensors in both industrial seismic and earthquake seismology settings, using both active seismic sources and ambient seismic noise to construct SRI propagators, and on length scales ranging over 5 orders of magnitude from ~40 m to ~2500 km[1]. Here we present the results from earthquake seismology by comparing virtual earthquake seismograms constructed at target sensors by SRI to those actually recorded on the same sensors. We show that spatial integrations required by interferometric theory can be calculated over irregular receiver arrays by embedding these arrays within 2D spatial Voronoi cells, thus improving spatial interpolation and interferometric results. The results of SRI are significantly improved by restricting the backbone receiver array to include approximately those receivers that provide a stationary phase contribution to the interferometric integrals. We apply both correlation-correlation and correlation-convolution SRI, and show that the latter constructs virtual seismograms with fewer

  8. Earthquake location in transversely isotropic media with a tilted symmetry axis

    NASA Astrophysics Data System (ADS)

    Zhao, Aihua; Ding, Zhifeng

    2009-04-01

    The conventional intersection method for earthquake location in isotropic media is developed in the case of transversely isotropic media with a tilted symmetry axis (TTI media). The hypocenter is determined using its loci, which are calculated through a minimum travel time tree algorithm for ray tracing in TTI media. There are no restrictions on the structural complexity of the model or on the anisotropy strength of the medium. The location method is validated by its application to determine the hypocenter and origin time of an event in a complex TTI structure, in accordance with four hypotheses or study cases: (a) accurate model and arrival times, (b) perturbed model with randomly variable elastic parameter, (c) noisy arrival time data, and (d) incomplete set of observations from the seismic stations. Furthermore, several numerical tests demonstrate that the orientation of the symmetry axis has a significant effect on the hypocenter location when the seismic anisotropy is not very weak. Moreover, if the hypocentral determination is based on an isotropic reference model while the real medium is anisotropic, the resultant location errors can be considerable even though the anisotropy strength does not exceed 6.10%.

  9. ShakeAlert—An earthquake early warning system for the United States west coast

    USGS Publications Warehouse

    Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.

    2014-08-29

    Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.

  10. W-phase estimation of first-order rupture distribution for megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Benavente, Roberto; Cummins, Phil; Dettmer, Jan

    2014-05-01

    Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of

  11. Ductile Gap between the Wenchuan and Lushan Earthquakes Revealed from the Two-dimensional Pg Seismic Tomography

    PubMed Central

    Pei, Shunping; Zhang, Haijiang; Su, Jinrong; Cui, Zhongxiong

    2014-01-01

    A high-resolution two-dimensional Pg-wave velocity model is obtained for the upper crust around the epicenters of the April 20, 2013 Ms7.0 Lushan earthquake and the May 12, 2008 Ms8.0 Wenchuan earthquake, China. The tomographic inversion uses 47235 Pg arrival times from 6812 aftershocks recorded by 61 stations around the Lushan and Wenchuan earthquakes. Across the front Longmenshan fault near the Lushan earthquake, there exists a strong velocity contrast with higher velocities to the west and lower velocities to the east. Along the Longmenshan fault system, there exist two high velocity patches showing an “X” shape with an obtuse angle along the near northwest-southeast (NW-SE) direction. They correspond to the Precambrian Pengguan and Baoxing complexes on the surface but with a ~20 km shift, respectively. The aftershock gap of the 2008 Wenchuan and the 2013 Lushan earthquakes is associated with lower velocities. Based on the theory of maximum effective moment criterion, this suggests that the aftershock gap is weak and the ductile deformation is more likely to occur in the upper crust within the gap under the near NW-SE compression. Therefore our results suggest that the large earthquake may be hard to happen within the gap. PMID:25267344

  12. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography.

    PubMed

    Pei, Shunping; Zhang, Haijiang; Su, Jinrong; Cui, Zhongxiong

    2014-09-30

    A high-resolution two-dimensional Pg-wave velocity model is obtained for the upper crust around the epicenters of the April 20, 2013 Ms7.0 Lushan earthquake and the May 12, 2008 Ms8.0 Wenchuan earthquake, China. The tomographic inversion uses 47235 Pg arrival times from 6812 aftershocks recorded by 61 stations around the Lushan and Wenchuan earthquakes. Across the front Longmenshan fault near the Lushan earthquake, there exists a strong velocity contrast with higher velocities to the west and lower velocities to the east. Along the Longmenshan fault system, there exist two high velocity patches showing an "X" shape with an obtuse angle along the near northwest-southeast (NW-SE) direction. They correspond to the Precambrian Pengguan and Baoxing complexes on the surface but with a ~20 km shift, respectively. The aftershock gap of the 2008 Wenchuan and the 2013 Lushan earthquakes is associated with lower velocities. Based on the theory of maximum effective moment criterion, this suggests that the aftershock gap is weak and the ductile deformation is more likely to occur in the upper crust within the gap under the near NW-SE compression. Therefore our results suggest that the large earthquake may be hard to happen within the gap.

  13. Improvement of real-time seismic magnitude estimation by combining seismic and geodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Rapid seismic magnitude assessment is a top priority for earthquake and tsunami early warning systems. For the largest earthquakes, seismic instrumentation tends to underestimate the magnitude, leading to an insufficient early warning, particularly in the case of tsunami evacuation orders. GPS instrumentation provides more accurate magnitude estimations using near-field stations, but isn't sensitive enough to detect the first seismic wave arrivals, thereby limiting solution speed. By optimally combining collocated seismic and GPS instruments, we demonstrate improved solution speed of earthquake magnitude for the largest seismic events. We present a real-time implementation of magnitude-scaling relations that adapts to consider the length of the recording, reflecting the observed evolution of ground motion with time.

  14. Twitter earthquake detection: Earthquake monitoring in a social world

    USGS Publications Warehouse

    Earle, Paul S.; Bowden, Daniel C.; Guy, Michelle R.

    2011-01-01

    The U.S. Geological Survey (USGS) is investigating how the social networking site Twitter, a popular service for sending and receiving short, public text messages, can augment USGS earthquake response products and the delivery of hazard information. Rapid detection and qualitative assessment of shaking events are possible because people begin sending public Twitter messages (tweets) with in tens of seconds after feeling shaking. Here we present and evaluate an earthquake detection procedure that relies solely on Twitter data. A tweet-frequency time series constructed from tweets containing the word "earthquake" clearly shows large peaks correlated with the origin times of widely felt events. To identify possible earthquakes, we use a short-term-average, long-term-average algorithm. When tuned to a moderate sensitivity, the detector finds 48 globally-distributed earthquakes with only two false triggers in five months of data. The number of detections is small compared to the 5,175 earthquakes in the USGS global earthquake catalog for the same five-month time period, and no accurate location or magnitude can be assigned based on tweet data alone. However, Twitter earthquake detections are not without merit. The detections are generally caused by widely felt events that are of more immediate interest than those with no human impact. The detections are also fast; about 75% occur within two minutes of the origin time. This is considerably faster than seismographic detections in poorly instrumented regions of the world. The tweets triggering the detections also provided very short first-impression narratives from people who experienced the shaking.

  15. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude

  16. Positioning performance analysis of the time sum of arrival algorithm with error features

    NASA Astrophysics Data System (ADS)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  17. Investigation of intraplate seismicity near the sites of the 2012 major strike-slip earthquakes in the eastern Indian Ocean through a passive-source OBS experiment

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, J.; Yang, H.

    2017-12-01

    The 11 April 2012 Mw8.6 earthquake off the coast of Sumatra in the eastern Indian Ocean was the largest strike-slip earthquake ever recorded. The 2012 mainshock and its aftershock sequences were associated with complex slip partitioning and earthquake interactions of an oblique convergent system, in a new plate boundary zone between the Indian and Australian plates. The detail processes of the earthquake interactions and correlation with seafloor geological structure, however, are still poorly known. During March-April 2017, an array of broadband OBS (ocean bottom seismometer) were deployed, for the first time, near the epicenter region of the 2012 earthquake sequence. During post-expedition data processing, we identified 70 global earthquakes from the National Earthquake Information Center (NEIC) catalog that occurred during our OBS deployment period. We then picked P and S waves in the seismic records and analyzed their arrival times. We further identified and analyzed multiple local earthquakes and examined their relationship to the observed seafloor structure (fracture zones, seafloor faults, etc.) and the state of stresses in this region of the eastern Indian Ocean. The ongoing analyses of the data obtained from this unique seismic experiment are expected to provide important constraints on the large-scale intraplate deformation in this part of the eastern Indian Ocean.

  18. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  19. P and S automatic picks for 3D earthquake tomography in NE Italy

    NASA Astrophysics Data System (ADS)

    Lovisa, L.; Bragato, P.; Gentili, S.

    2006-12-01

    Earthquake tomography is useful to study structural and geological features of the crust. In particular, it uses P and S arrival times for reconstructing weaves velocity fields and locating earthquakes hypocenters. However, tomography needs a large effort to provide a high number of manual picks. On the other side, many automatic picking methods have been proposed, but they are usually applied to preliminary elaboration of the data (fast alert and automatic bulletin generation); they are generally considered not reliable for tomography. In this work, we present and discuss the results of Vp, Vs and Vp/Vs tomographies obtained using automatic picks generated by the system TAPNEI (Gentili and Bragato 2006), applied in the NE Italy. Preliminarily, in order to estimate the error in comparison with the unknown true arrival times, an analysis on the picking quality is done. The tests have been performed using two dataset: the first is made up by 240 earthquakes automatically picked by TAPNEI; the second counts in the same earthquakes but manually picked (OGS database). The grid and the software used to perform tomography (Sim28, Michelini and Mc Evilly, 1991) are the same in the two cases. Vp, Vs and Vp/Vs fields of the two tomographies and their differences are shown on vertical sections. In addiction, the differences in earthquakes locations are studied; in particular, the quality of the accuracy of the localizations has been analyzed by estimating the distance of the hypocenter distributions with respect to the manual locations. The analysis include also a qualitative comparison with an independent tomography (Gentile et al., 2000) performed using Simulps (Evans et al, 1994) on a set of 224 earthquakes accurately selected and manually relocated. The quality of the pickings and the comparison with the tomography obtained by manual data suggest that earthquake tomography with automatic data can provide reliable results. We suggest the use of such data when a large

  20. Upper Crust Structure and Earthquake Mechanism Near the Xinfengjiang Reservoir, Guangdong, China

    NASA Astrophysics Data System (ADS)

    Sun, X.; He, L.; Yang, H.; Shen, Y.

    2016-12-01

    The Xinfengjiang Water Reservoir (XWR) in Guangdong, China locates in Yanshanian granitic blocks, with three major faults crossing in NNW, NNE, and NEE directions. The XWR was built in 1958 and immediately after its impoundment, a series of earthquakes have occurred in the vicinity of the reservoir, including the 1962 M6.1 earthquake that occurred 1 km next to the dam. Numerous small earthquakes take place in this region presently, making it one of the most active seismic zones in Guangdong. Due to limited station coverage and small magnitude earthquakes, few data were available, thus previous seismic studies have limited resolution to understand earthquake activities in this region. To investigate present seismicity and associated crust/fault structure, we have collected waveform data of the 14 permanent Xinfengjiang seismic network stations from year 2012 to 2015, with a total of 1507 earthquakes of magnitude greater than zero. In addition, we also collected waveform data of 160 earthquakes recorded at 42 temporary seismic stations that were deployed near the Renzishi fault zone during 2015/01-2015/02. Finally we handpicked 20,666 P arrival times and 18,868 S times. We then performed tomographic inversion using these times for P and S velocity, respectively. The P-wave tomographic results show that the XWR area is generally divided into two regions by the NE-SW faults. At shallow depth (< 3km), the overall velocities are slower, which may indicate sediment layer or water-filled porous structure; At depths of 4-10 km, the NW part become faster while the SW part is slower; Furthermore, the fast block dips to NW direction to at least 10 km. By examining the earthquake locations, we find that they mainly locate at the border between fast and slow velocity blocks. Mechanism inversion results of earthquakes greater than magnitude 3 show that these "big" earthquakes are primarily dip-slip type, with strike-slip type dominants. The slip directions are approximately NNE

  1. Hovsgol earthquake 5 December 2014, M W = 4.9: seismic and acoustic effects

    NASA Astrophysics Data System (ADS)

    Dobrynina, Anna A.; Sankov, Vladimir A.; Tcydypova, Larisa R.; German, Victor I.; Chechelnitsky, Vladimir V.; Ulzibat, Munkhuu

    2018-03-01

    A moderate shallow earthquake occurred on 5 December 2014 ( M W = 4.9) in the north of Lake Hovsgol (northern Mongolia). The infrasonic signal with duration 140 s was recorded for this earthquake by the "Tory" infrasound array (Institute of Solar-Terrestrial Physics of the Siberian Branch of the Russian Academy of Science, Russia). Source parameters of the earthquake (seismic moment, geometrical sizes, displacement amplitudes in the focus) were determined using spectral analysis of direct body P and S waves. The spectral analysis of seismograms and amplitude variations of the surface waves allows to determine the effect of the propagation of the rupture in the earthquake focus, the azimuth of the rupture propagation direction and the velocity of displacement in the earthquake focus. The results of modelling of the surface displacements caused by the Hovsgol earthquake and high effective velocity of propagation of infrasound signal ( 625 m/s) indicate that its occurrence is not caused by the downward movement of the Earth's surface in the epicentral region but by the effect of the secondary source. The position of the secondary source of infrasound signal is defined on the northern slopes of the Khamar-Daban ridge according to the data on the azimuth and time of arrival of acoustic wave at the Tory station. The interaction of surface waves with the regional topography is proposed as the most probable mechanism of formation of the infrasound signal.

  2. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  3. Evaluating the Real-time and Offline Performance of the Virtual Seismologist Earthquake Early Warning Algorithm

    NASA Astrophysics Data System (ADS)

    Cua, G.; Fischer, M.; Heaton, T.; Wiemer, S.

    2009-04-01

    The Virtual Seismologist (VS) algorithm is a Bayesian approach to regional, network-based earthquake early warning (EEW). Bayes' theorem as applied in the VS algorithm states that the most probable source estimates at any given time is a combination of contributions from relatively static prior information that does not change over the timescale of earthquake rupture and a likelihood function that evolves with time to take into account incoming pick and amplitude observations from the on-going earthquake. Potentially useful types of prior information include network topology or station health status, regional hazard maps, earthquake forecasts, and the Gutenberg-Richter magnitude-frequency relationship. The VS codes provide magnitude and location estimates once picks are available at 4 stations; these source estimates are subsequently updated each second. The algorithm predicts the geographical distribution of peak ground acceleration and velocity using the estimated magnitude and location and appropriate ground motion prediction equations; the peak ground motion estimates are also updated each second. Implementation of the VS algorithm in California and Switzerland is funded by the Seismic Early Warning for Europe (SAFER) project. The VS method is one of three EEW algorithms whose real-time performance is being evaluated and tested by the California Integrated Seismic Network (CISN) EEW project. A crucial component of operational EEW algorithms is the ability to distinguish between noise and earthquake-related signals in real-time. We discuss various empirical approaches that allow the VS algorithm to operate in the presence of noise. Real-time operation of the VS codes at the Southern California Seismic Network (SCSN) began in July 2008. On average, the VS algorithm provides initial magnitude, location, origin time, and ground motion distribution estimates within 17 seconds of the earthquake origin time. These initial estimate times are dominated by the time for 4

  4. Kalman Filters for Time Delay of Arrival-Based Source Localization

    NASA Astrophysics Data System (ADS)

    Klee, Ulrich; Gehrig, Tobias; McDonough, John

    2006-12-01

    In this work, we propose an algorithm for acoustic source localization based on time delay of arrival (TDOA) estimation. In earlier work by other authors, an initial closed-form approximation was first used to estimate the true position of the speaker followed by a Kalman filtering stage to smooth the time series of estimates. In the proposed algorithm, this closed-form approximation is eliminated by employing a Kalman filter to directly update the speaker's position estimate based on the observed TDOAs. In particular, the TDOAs comprise the observation associated with an extended Kalman filter whose state corresponds to the speaker's position. We tested our algorithm on a data set consisting of seminars held by actual speakers. Our experiments revealed that the proposed algorithm provides source localization accuracy superior to the standard spherical and linear intersection techniques. Moreover, the proposed algorithm, although relying on an iterative optimization scheme, proved efficient enough for real-time operation.

  5. Earthquake location determination using data from DOMERAPI and BMKG seismic networks: A preliminary result of DOMERAPI project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramdhan, Mohamad; Agency for Meteorology, Climatology and Geophysics of Indonesia; Nugraha, Andri Dian

    DOMERAPI project has been conducted to comprehensively study the internal structure of Merapi volcano, especially about deep structural features beneath the volcano. DOMERAPI earthquake monitoring network consists of 46 broad-band seismometers installed around the Merapi volcano. Earthquake hypocenter determination is a very important step for further studies, such as hypocenter relocation and seismic tomographic imaging. Ray paths from earthquake events occurring outside the Merapi region can be utilized to delineate the deep magma structure. Earthquakes occurring outside the DOMERAPI seismic network will produce an azimuthal gap greater than 180{sup 0}. Owing to this situation the stations from BMKG seismic networkmore » can be used jointly to minimize the azimuthal gap. We identified earthquake events manually and carefully, and then picked arrival times of P and S waves. The data from the DOMERAPI seismic network were combined with the BMKG data catalogue to determine earthquake events outside the Merapi region. For future work, we will also use the BPPTKG (Center for Research and Development of Geological Disaster Technology) data catalogue in order to study shallow structures beneath the Merapi volcano. The application of all data catalogues will provide good information as input for further advanced studies and volcano hazards mitigation.« less

  6. The 2004 Parkfield, CA Earthquake: A Teachable Moment for Exploring Earthquake Processes, Probability, and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Kafka, A.; Barnett, M.; Ebel, J.; Bellegarde, H.; Campbell, L.

    2004-12-01

    The occurrence of the 2004 Parkfield earthquake provided a unique "teachable moment" for students in our science course for teacher education majors. The course uses seismology as a medium for teaching a wide variety of science topics appropriate for future teachers. The 2004 Parkfield earthquake occurred just 15 minutes after our students completed a lab on earthquake processes and earthquake prediction. That lab included a discussion of the Parkfield Earthquake Prediction Experiment as a motivation for the exercises they were working on that day. Furthermore, this earthquake was recorded on an AS1 seismograph right in their lab, just minutes after the students left. About an hour after we recorded the earthquake, the students were able to see their own seismogram of the event in the lecture part of the course, which provided an excellent teachable moment for a lecture/discussion on how the occurrence of the 2004 Parkfield earthquake might affect seismologists' ideas about earthquake prediction. The specific lab exercise that the students were working on just before we recorded this earthquake was a "sliding block" experiment that simulates earthquakes in the classroom. The experimental apparatus includes a flat board on top of which are blocks of wood attached to a bungee cord and a string wrapped around a hand crank. Plate motion is modeled by slowly turning the crank, and earthquakes are modeled as events in which the block slips ("blockquakes"). We scaled the earthquake data and the blockquake data (using how much the string moved as a proxy for time) so that we could compare blockquakes and earthquakes. This provided an opportunity to use interevent-time histograms to teach about earthquake processes, probability, and earthquake prediction, and to compare earthquake sequences with blockquake sequences. We were able to show the students, using data obtained directly from their own lab, how global earthquake data fit a Poisson exponential distribution better

  7. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    swarm at Akutan volcano in March and April 1996 (Lu and others, 2000); 2) an eruption at Pavlof Volcano in fall 1996 (Garces and others, 2000; McNutt and others, 2000); 3) an earthquake swarm at Iliamna volcano between September and December 1996; 4) an earthquake swarm at Mount Mageik in October 1996 (Jolly and McNutt, 1999); 5) an earthquake swarm located at shallow depth near Strandline Lake; 6) a strong swarm of earthquakes near Becharof Lake; 7) precursory seismicity and an eruption at Shishaldin Volcano in April 1999 that included a 5.2 ML earthquake and aftershock sequence (Moran and others, in press; Thompson and others, in press). The 1996 calendar year is also notable as the seismicity rate was very high, especially in the fall when 3 separate areas (Strandline Lake, Iliamna Volcano, and several of the Katmai volcanoes) experienced high rates of located earthquakes.This catalog covers the period from January 1, 1994, through December 31,1999, and includes: 1) earthquake origin times, hypocenters, and magnitudes with summary statistics describing the earthquake location quality; 2) a description of instruments deployed in the field and their locations and magnifications; 3) a description of earthquake detection, recording, analysis, and data archival; 4) velocity models used for earthquake locations; 5) phase arrival times recorded at individual stations; and 6) a summary of daily station usage from throughout the report period. We have made calculated hypocenters, station locations, system magnifications, velocity models, and phase arrival information available for download via computer network as a compressed Unix tar file.

  8. History of late Holocene earthquakes at the Willow Creek site on the Nephi segment, Wasatch fault zone, Utah

    USGS Publications Warehouse

    Crone, Anthony J.; Personius, Stephen F.; Duross, Christopher; Machette, Michael N.; Mahan, Shannon

    2014-01-01

    This 43-page report presents new data from the Willow Creek site that provides well-defined and narrow bounds on the times of the three youngest earthquakes on the southern strand of the Nephi segment, Wasatch Fault zone, and refines the time of the youngest earthquake to about 200 years ago. This is the youngest surface rupture on the entire Wasatch fault zone, which occurred about a century or less before European settles arrived in Utah. Two trenches at the Willow Creek site exposed three scarp-derived colluvial wedges that are evidence of three paleoearthquakes. OxCal modeling of ages from Willow Creek indicate that paleoearthquake WC1 occurred at 0.2 ± 0.1 ka, WC2 occurred at 1.2 ± 0.1 ka, and WC3 occurred at 1.9 ± 0.6 ka. Stratigraphic constraints on the time of paleoearthquake WC4 are extremely poor, so OxCal modeling only yields a broadly constrained age of 4.7 ± 1.8 ka. Results from the Willow Creek site significantly refine the times of late Holocene earthquakes on the Southern strand of the Nephi segment, and this result, when combined with a reanalysis of the stratigraphic and chronologic information from previous investigations at North Creek and Red Canyon, yield a stronger basis of correlating individual earthquakes between all three sites.

  9. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  10. Foreshocks and aftershocks locations of the 2014 Pisagua, N. Chile earthquake: history of a megathrust earthquake nucleation

    NASA Astrophysics Data System (ADS)

    Fuenzalida Velasco, Amaya; Rietbrock, Andreas; Tavera, Hernando; Ryder, Isabelle; Ruiz, Sergio; Thomas, Reece; De Angelis, Silvio; Bondoux, Francis

    2015-04-01

    The April 2014 Mw 8.1 Pisagua earthquake occurred in the Northern Chile seismic gap: a region of the South American subduction zone lying between Arica city and the Mejillones Peninsula. It is believed that this part of the subduction zone has not experienced a large earthquake since 1877. Thanks to the identification of this seismic gap, the north of Chile was well instrumented before the Pisagua earthquake, including the Integrated Plate boundary Observatory Chile (IPOC) network and the Chilean local network installed by the Centro Sismologico Nacional (CSN). These instruments were able to record the full foreshock and aftershock sequences, allowing a unique opportunity to study the nucleation process of large megathrust earthquakes. To improve azimuthal coverage of the Pisagua seismic sequence, after the earthquake, in collaboration with the Instituto Geofisico del Peru (IGP) we installed a temporary seismic network in south of Peru. The network comprised 12 short-period stations located in the coastal area between Moquegua and Tacna and they were operative from 1st May 2014. We also installed three stations on the slopes of the Ticsiani volcano to monitor any possible change in volcanic activity following the Pisagua earthquake. In this work we analysed the continuous seismic data recorded by CSN and IPOC networks from 1 March to 30 June to obtain the catalogue of the sequence, including foreshocks and aftershocks. Using an automatic algorithm based in STA/LTA we obtained the picks for P and S waves. Association in time and space defined the events and computed an initial location using Hypo71 and the 1D local velocity model. More than 11,000 events were identified with this method for the whole period, but we selected the best resolved events that include more than 7 observed arrivals with at least 2 S picks of them, to relocate these events using NonLinLoc software. For the main events of the sequence we carefully estimate event locations and we obtained

  11. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arzoumanian, Zaven; Brazier, Adam; Chatterjee, Shami

    2015-11-01

    We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. Inmore » conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.« less

  12. Introducing the Japan Unified HIgh-Resolution Relocated Catalog for Earthquakes (JUICE) Project

    NASA Astrophysics Data System (ADS)

    Yano, T. E.; Takeda, T.; Shiomi, K.

    2013-12-01

    To understand the tectonic processes, seismogenic zones, and active fault evaluations, the precise location of earthquake hypocenters is necessary. Routinely determined hypocenters typically have uncertainties that can make seismically active areas appear more diffuse. These uncertainties influence the interpretation of what are active faults. Objective of this Japan Unified HIgh-resolution Relocated Catalog for Earthquakes (JUICE) project is to create a high-resolution earthquake relocated catalog for all of Japan. To initiate the project, we relocate hypocenters around Kanto-Tokai region. The network geometry, available phases, arrival-time reading accuracy, and knowledge of crustal structure control the accuracy of absolute hypocenter locations (Pavlis, 1986; Gomberg et al., 1990). We take advantage of having an excellent network operated by NIED Hi-net team. We use the high-quality data from this network for events from 2001 to the present. To initiate the JUICE project, we utilize more than 5,500,000 and 5,300,000 P and S phase arrival-time readings (catalog data) and waveforms for about 120,000 events between M0 and M6.5 from 2001 through 2012 in the Kanto and Tokai region. To reduce uncertainties, we apply the double-difference algorithm (hypoDD) by Waldhauser and Ellsworth (2000) to the data. To obtain the travel time differences for the pairs of earthquakes, we cross correlate the seismograms at the stations, which produces another data set -- cross-correlation data. In addition to the catalog phase data, we add 800,000 and 1,000,000 of P and S phase cross-correlations that are used to relocate hypocenters. We use Hi-net routine velocity structure (Ukawa et al., 1984) to estimate theoretical differential travel times. The newly relocated hypocenters show tighter clusters and lineaments compared to the routinely generated hypocenters. Figure 1 (a) shows the hypocenters in the Shizuoka region before relocation and (b) shows the hypocenters after relocation

  13. Incorporation of Multiple Datasets in Earthquake Source Inversions: Case Study for the 2015 Illapel Earthquake

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Cummins, P. R.; Newman, A. V.; Benavente, R. F.

    2016-12-01

    The 2015 Illapel, Chile earthquake was recorded over a wide range of seismic, geodetic and oceanographic instruments. The USGS assigned magnitude 8.3 earthquake produced a tsunami that was recorded trans-oceanically at both tide gauges and deep-water tsunami pressure sensors. The event also generated surface deformation along the Chilean coast that was recovered through ascending and descending paths of the Sentinel-1A satellite. Additionally, seismic waves were recorded across various global seismic networks. While the determination of the rupture source through seismic and geodetic means is now commonplace and has been studied extensively in this fashion for the Illapel event, the use of tsunami datasets in the inversion process, rather than purely as a forward validation of models, is less common. In this study, we evaluate the use of both near and far field tsunami pressure gauges in the source inversion process, examining their contribution to seismic and geodetic joint inversions- as well as examine the contribution of dispersive and elastic loading parameters on the numerical tsunami propagation. We determine that the inclusion of near field tsunami pressure gauges assists in resolving the degree of slip in the near-trench environment, where purely geodetic inversions lose most resolvability. The inclusion of a far-field dataset has the potential to add further confidence to tsunami inversions, however at a high computational cost. When applied to the Illapel earthquake, this added near-trench resolvability leads to a better estimation of tsunami arrival times at near field gauges and contributes understanding to the wide variation in tsunamigenic slip present along the highly active Peru-Chile trench.

  14. New Velocity field for Northern Colombia and Western Venezuela and implications for a great earthquake in the Southwest Caribbean

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Mora-Páez, H.; Bilham, R. G.; Mattioli, G. S.; La Femina, P. C.; Audemard, F. A.; Molnar, P. H.; Perez, O. J.

    2016-12-01

    The motion of the Caribbean plate is approximately due east relative to the South American Plate. In NE Venezula, plate motion is largely taken up by pure strike slip motion along the El Pilar fault, but in northern Colombia motion is partitioned between the strike-slip Bocono fault system and normal convergence along the northern coast of Colombia . Recent densification of GPS networks through the NSF funded COLOVEN and COCONet projects, seismic reflection profiles, and revised earthquake locations suggest the existence of incipient oblique subduction zone at 10 mm/yr beneath the coast of NE Colombia. Although there is no history of major subduction zone earthquakes since the arrival of Europeans in the region, and no volcanism indicative of well-established deep subduction, there is evidence for incremental coastal uplift and local subsidence in the past several thousand years, and both local and distant tsunami, which may owe their origin to pre-European arrival events. At Chengue, NE of Santa Marta, a well dated shell and gravel tsunami horizon within a salt marsh sequence, appears to have been emplaced 1200 years ago, and this may correspond to a tsunami deposit of similar age on the southeast Yucatan peninsula, and near Cartagena. The probable rupture area and slip deficit since that time suggests the potential for a great earthquake in the region, with a possible magnitude of 8.0

  15. Real-time Estimation of Fault Rupture Extent for Recent Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Mori, J. J.

    2009-12-01

    Current earthquake early warning systems assume point source models for the rupture. However, for large earthquakes, the fault rupture length can be of the order of tens to hundreds of kilometers, and the prediction of ground motion at a site requires the approximated knowledge of the rupture geometry. Early warning information based on a point source model may underestimate the ground motion at a site, if a station is close to the fault but distant from the epicenter. We developed an empirical function to classify seismic records into near-source (NS) or far-source (FS) records based on the past strong motion records (Yamada et al., 2007). Here, we defined the near-source region as an area with a fault rupture distance less than 10km. If we have ground motion records at a station, the probability that the station is located in the near-source region is; P = 1/(1+exp(-f)) f = 6.046log10(Za) + 7.885log10(Hv) - 27.091 where Za and Hv denote the peak values of the vertical acceleration and horizontal velocity, respectively. Each observation provides the probability that the station is located in near-source region, so the resolution of the proposed method depends on the station density. The information of the fault rupture location is a group of points where the stations are located. However, for practical purposes, the 2-dimensional configuration of the fault is required to compute the ground motion at a site. In this study, we extend the methodology of NS/FS classification to characterize 2-dimensional fault geometries and apply them to strong motion data observed in recent large earthquakes. We apply a cosine-shaped smoothing function to the probability distribution of near-source stations, and convert the point fault location to 2-dimensional fault information. The estimated rupture geometry for the 2007 Niigata-ken Chuetsu-oki earthquake 10 seconds after the origin time is shown in Figure 1. Furthermore, we illustrate our method with strong motion data of the

  16. Time functions of deep earthquakes from broadband and short-period stacks

    USGS Publications Warehouse

    Houston, H.; Benz, H.M.; Vidale, J.E.

    1998-01-01

    To constrain dynamic source properties of deep earthquakes, we have systematically constructed broadband time functions of deep earthquakes by stacking and scaling teleseismic P waves from U.S. National Seismic Network, TERRAscope, and Berkeley Digital Seismic Network broadband stations. We examined 42 earthquakes with depths from 100 to 660 km that occurred between July 1, 1992 and July 31, 1995. To directly compare time functions, or to group them by size, depth, or region, it is essential to scale them to remove the effect of moment, which varies by more than 3 orders of magnitude for these events. For each event we also computed short-period stacks of P waves recorded by west coast regional arrays. The comparison of broadband with short-period stacks yields a considerable advantage, enabling more reliable measurement of event duration. A more accurate estimate of the duration better constrains the scaling procedure to remove the effect of moment, producing scaled time functions with both correct timing and amplitude. We find only subtle differences in the broadband time-function shape with moment, indicating successful scaling and minimal effects of attenuation at the periods considered here. The average shape of the envelopes of the short-period stacks is very similar to the average broadband time function. The main variations seen with depth are (1) a mild decrease in duration with increasing depth, (2) greater asymmetry in the time functions of intermediate events compared to deep ones, and (3) unexpected complexity and late moment release for events between 350 and 550 km, with seven of the eight events in that depth interval displaying markedly more complicated time functions with more moment release late in the rupture than most events above or below. The first two results are broadly consistent with our previous studies, while the third is reported here for the first time. The greater complexity between 350 and 550 km suggests greater heterogeneity in

  17. Large-Scale Earthquake Countermeasures Act and the Earthquake Prediction Council in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikitake, T.

    1979-08-07

    The Large-Scale Earthquake Countermeasures Act was enacted in Japan in December 1978. This act aims at mitigating earthquake hazards by designating an area to be an area under intensified measures against earthquake disaster, such designation being based on long-term earthquake prediction information, and by issuing an earthquake warnings statement based on imminent prediction information, when possible. In an emergency case as defined by the law, the prime minister will be empowered to take various actions which cannot be taken at ordinary times. For instance, he may ask the Self-Defense Force to come into the earthquake-threatened area before the earthquake occurrence.more » A Prediction Council has been formed in order to evaluate premonitory effects that might be observed over the Tokai area, which was designated an area under intensified measures against earthquake disaster some time in June 1979. An extremely dense observation network has been constructed over the area.« less

  18. Multiscale 2D Inversions of Active-source First-arrival Times in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Y. P.; Zhao, L.; Hung, S. H.

    2015-12-01

    In this study, we make use of the active-source records collected by the TAIGER (TAiwan Integrated GEodynamics Research) project in 2008 at nearly 1400 locations on the island of Taiwan and the surrounding ocean bottom. We manually picked the first-arrival times from the waveform records to obtain a set of highly accurate P-wave traveltimes. Among the 1400 receivers, more than 1000 were deployed along four almost linear cross-island profiles with inter-seismometer spacing down to 200 m. This ground-truth dataset provides strong constrains on the structure between the exactly known active sources and densely distributed receivers, which can be used to calibrate the seismic structure in the upper crust in Taiwan. In this study, we use this dataset to image the two-dimensional P-wave structure along the four linear profiles. A wavelet parameterization of the model is adopted to achieve an objective and data-adaptive multiscale resolution to the 2D structures. Rigorous estimations of resolution lengths were also conducted to quantify the spatial resolutions of the tomography inversions. The resulting 2D models yield first-arrival time predictions that are in excellent agreement with the observations. The seismic structures along the 2D profiles display strong lateral variations (up to 80% relative to regional average) with more realistic amplitudes of velocity perturbations and spatial patterns consistent with geological zonations of Taiwan

  19. Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Fergus, John

    2017-01-01

    To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure

  20. Near real-time finite fault source inversion for moderate-large earthquakes in Taiwan using teleseismic P waveform

    NASA Astrophysics Data System (ADS)

    Wong, T. P.; Lee, S. J.; Gung, Y.

    2017-12-01

    Taiwan is located at one of the most active tectonic regions in the world. Rapid estimation of the spatial slip distribution of moderate-large earthquake (Mw6.0) is important for emergency response. It is necessary to have a real-time system to provide the report immediately after earthquake happen. The earthquake activities in the vicinity of Taiwan can be monitored by Real-Time Moment Tensor Monitoring System (RMT) which provides the rapid focal mechanism and source parameters. In this study, we follow up the RMT system to develop a near real-time finite fault source inversion system for the moderate-large earthquakes occurred in Taiwan. The system will be triggered by the RMT System when an Mw6.0 is detected. According to RMT report, our system automatically determines the fault dimension, record length, and rise time. We adopted one segment fault plane with variable rake angle. The generalized ray theory was applied to calculate the Green's function for each subfault. The primary objective of the system is to provide the first order image of coseismic slip pattern and identify the centroid location on the fault plane. The performance of this system had been demonstrated by 23 big earthquakes occurred in Taiwan successfully. The results show excellent data fits and consistent with the solutions from other studies. The preliminary spatial slip distribution will be provided within 25 minutes after an earthquake occurred.

  1. Relative arrival-time upper-mantle tomography and the elusive background mean

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.

    2012-08-01

    The interpretation of seismic tomographic images of upper-mantle seismic wave speed structure is often a matter of considerable debate because the observations can usually be explained by a range of hypotheses, including variable temperature, composition, anisotropy, and the presence of partial melt. An additional problem, often overlooked in tomographic studies using relative as opposed to absolute arrival-times, is the issue of the resulting velocity model's zero mean. In shield areas, for example, relative arrival-time analysis strips off a background mean velocity structure that is markedly fast compared to the global average. Conversely, in active areas, the background mean is often markedly slow compared to the global average. Appreciation of this issue is vital when interpreting seismic tomographic images: 'high' and 'low' velocity anomalies should not necessarily be interpreted, respectively, as 'fast' and 'slow' compared to 'normal mantle'. This issue has been discussed in the seismological literature in detail over the years, yet subsequent tomography studies have still fallen into the trap of mis-interpreting their velocity models. I highlight here some recent examples of this and provide a simple strategy to address the problem using constraints from a recent global tomographic model, and insights from catalogues of absolute traveltime anomalies. Consultation of such absolute measures of seismic wave speed should be routine during regional tomographic studies, if only for the benefit of the broader Earth Science community, who readily follow the red = hot and slow, blue = cold and fast rule of thumb when interpreting the images for themselves.

  2. ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moestl, C.; Rollett, T.; Temmer, M.

    2011-11-01

    One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less

  3. Relocation of micro-earthquakes in the Yeongdeok offshore area, Korea using local and Ocean bottom seismometers

    NASA Astrophysics Data System (ADS)

    HAN, M.; Kim, K. H.; Park, S. C.; Lin, P. P.; Chen, P.; Chang, H.; Jang, J. P.; Kuo, B. Y.; Liao, Y. C.

    2016-12-01

    Seismicity in the East Sea of Korea has been relatively high during the last four decades of instrumental earthquake observation period. Yeongdeok offshore area is probably the most seismically active area in the East Sea. This study analyzes seismic signals to detect micro-earthquakes and determine their precise earthquake hypocenters in the Yeoungdeok offshore area using data recorded by the Korea National Seismic Network (KNSN) and a temporary ocean bottom seismographic network (OBSN-PNU) operated by Korea Meteorological Administration and Pusan National University, respectively. Continuous waveform data recorded at four seismic stations in the study area of KNSN between January 2007 and July 2016 are inspected to detect any repeating earthquakes by applying a waveform cross-correlation detector. More than 1,600 events are triggered. Events outside the study area or in poor waveform quality are removed from further analysis. Approximately 500 earthquakes are selected, most of which have gone unreported because their magnitudes are lower than the detection threshold of the routine earthquake monitoring. Events in the study area are also under bad azimuthal coverage because all stations are located on land and thus biased to the west. OBSN-PNU comprised three ocean bottom seismometers and operated to observe micro-earthquakes in the study area between February and August 2016. The same technique applied to the KNSN data has been applied to the OBSN-PNU data to detect micro-earthquakes. Precise earthquake hypocenters are determined using phase arrival times and waveform similarities. Resultant hypocenters are clustered to form a few lineaments. They are compared to the local geological and geophysical features to understand micro-earthquake activity in the area.

  4. The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?

    PubMed

    Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G

    1986-07-25

    A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.

  5. Real-time GPS integration for prototype earthquake early warning and near-field imaging of the earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Hudnut, K. W.; Given, D.; King, N. E.; Lisowski, M.; Langbein, J. O.; Murray-Moraleda, J. R.; Gomberg, J. S.

    2011-12-01

    Over the past several years, USGS has developed the infrastructure for integrating real-time GPS with seismic data in order to improve our ability to respond to earthquakes and volcanic activity. As part of this effort, we have tested real-time GPS processing software components , and identified the most robust and scalable options. Simultaneously, additional near-field monitoring stations have been built using a new station design that combines dual-frequency GPS with high quality strong-motion sensors and dataloggers. Several existing stations have been upgraded in this way, using USGS Multi-Hazards Demonstration Project and American Recovery and Reinvestment Act funds in southern California. In particular, existing seismic stations have been augmented by the addition of GPS and vice versa. The focus of new instrumentation as well as datalogger and telemetry upgrades to date has been along the southern San Andreas fault in hopes of 1) capturing a large and potentially damaging rupture in progress and augmenting inputs to earthquake early warning systems, and 2) recovering high quality recordings on scale of large dynamic displacement waveforms, static displacements and immediate and long-term post-seismic transient deformation. Obtaining definitive records of large ground motions close to a large San Andreas or Cascadia rupture (or volcanic activity) would be a fundamentally important contribution to understanding near-source large ground motions and the physics of earthquakes, including the rupture process and friction associated with crack propagation and healing. Soon, telemetry upgrades will be completed in Cascadia and throughout the Plate Boundary Observatory as well. By collaborating with other groups on open-source automation system development, we will be ready to process the newly available real-time GPS data streams and to fold these data in with existing strong-motion and other seismic data. Data from these same stations will also serve the very

  6. Class Room Exercises Using JMA-59-Type Seismograms for Earthquake Study at High-School Level

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.; Furuta, S.; Hirota, N.

    2013-12-01

    read S-P time and maximum amplitude; 4) they also make it is easy to locate an earthquake's hypocenter. For advanced study, particularly of the source mechanisms of earthquakes, P-wave arrival phases are typically determined from wave records. In this exercise, we use displacement-based records for use by students for recognizing these arrival phases directly rather than by using velocity or acceleration records. Following are some advantages of using these JMA-59-type seismograms: 1) displacement records are easy to compare with real ground motion; 2) ink records can help young students visualize the analog images of a legacy seismograph; 3) scale dimensions such as amplitude of 100 times and time scale of 1 mm/s are easy to explain while using these seismograms as an exercise resource. We confirmed the availability of our exercises by cooperation with our high-school students. We will offer some practical examples at the conference. Keywords: JMA-59 type seismograph, seismograms, hypocenter location, magnitude estimation, educational tool, classroom exercise, high-school

  7. Real-Time Earthquake Intensity Estimation Using Streaming Data Analysis of Social and Physical Sensors

    NASA Astrophysics Data System (ADS)

    Kropivnitskaya, Yelena; Tiampo, Kristy F.; Qin, Jinhui; Bauer, Michael A.

    2017-06-01

    Earthquake intensity is one of the key components of the decision-making process for disaster response and emergency services. Accurate and rapid intensity calculations can help to reduce total loss and the number of casualties after an earthquake. Modern intensity assessment procedures handle a variety of information sources, which can be divided into two main categories. The first type of data is that derived from physical sensors, such as seismographs and accelerometers, while the second type consists of data obtained from social sensors, such as witness observations of the consequences of the earthquake itself. Estimation approaches using additional data sources or that combine sources from both data types tend to increase intensity uncertainty due to human factors and inadequate procedures for temporal and spatial estimation, resulting in precision errors in both time and space. Here we present a processing approach for the real-time analysis of streams of data from both source types. The physical sensor data is acquired from the U.S. Geological Survey (USGS) seismic network in California and the social sensor data is based on Twitter user observations. First, empirical relationships between tweet rate and observed Modified Mercalli Intensity (MMI) are developed using data from the M6.0 South Napa, CAF earthquake that occurred on August 24, 2014. Second, the streams of both data types are analyzed together in simulated real-time to produce one intensity map. The second implementation is based on IBM InfoSphere Streams, a cloud platform for real-time analytics of big data. To handle large processing workloads for data from various sources, it is deployed and run on a cloud-based cluster of virtual machines. We compare the quality and evolution of intensity maps from different data sources over 10-min time intervals immediately following the earthquake. Results from the joint analysis shows that it provides more complete coverage, with better accuracy and higher

  8. Role of Equatorial Anomaly in Earthquake time precursive features: A few strong events over West Pacific zone

    NASA Astrophysics Data System (ADS)

    Devi, Minakshi; Patgiri, S.; Barbara, A. K.; Oyama, Koh-Ichiro; Ryu, K.; Depuev, V.; Depueva, A.

    2018-03-01

    The earthquake (EQ) time coupling processes between equator-low-mid latitude ionosphere are complex due to inherent dynamical status of each latitudinal zone and qualified geomagnetic roles working in the system. In an attempt to identify such process, the paper presents temporal and latitudinal variations of ionization density (foF2) covering 45°N to 35°S, during a number of earthquake events (M > 5.5). The approaches adopted for extraction of features by the earthquake induced preparatory processes are discussed in the paper through identification of parameters like the 'EQ time modification in density gradient' defined by δ = (foF2 max - foF2 min)/τmm, where τmm - time span (in days) between EQ modified density maximum and minimum, and the Earthquake time Equatorial Anomaly, i.e. EEA, one of the most significant phenomenon which develops even during night time irrespective of epicenter position. Based on the observations, the paper presents the seismic time coupling dynamics through anomaly like manifestations between equator, low and mid latitude ionosphere bringing in the global Total Electron Content (TEC) features as supporting indices.

  9. Geophysical Anomalies and Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  10. Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980

    NASA Technical Reports Server (NTRS)

    Downs, G. S.; Reichley, P. E.

    1980-01-01

    Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.

  11. Hiding earthquakes from scrupulous monitoring eyes of dense local seismic networks

    NASA Astrophysics Data System (ADS)

    Bogiatzis, P.; Ishii, M.; Kiser, E.

    2012-12-01

    Accurate and complete cataloguing of aftershocks is essential for a variety of purposes, including the estimation of the mainshock rupture area, the identification of seismic gaps, and seismic hazard assessment. However, immediately following large earthquakes, the seismograms recorded by local networks are noisy, with energy arriving from hundreds of aftershocks, in addition to different seismic phases interfering with one another. This causes deterioration in the performance of detection and location of earthquakes using conventional methods such as the S-P approach. This is demonstrated by results of back-projection analysis of teleseismic data showing that a significant number of events are undetected by the Japan Meteorological Agency, within the first twenty-four hours after the Mw9.0 Tohoku-oki, Japan earthquake. The spatial distribution of the hidden events is not arbitrary. Most of these earthquakes are located close to the trench, while some are located at the outer rise. Furthermore, there is a relatively sharp trench-parallel boundary separating the detected and undetected events. We investigate the cause of these hidden earthquakes using forward modeling. The calculation of raypaths for various source locations and takeoff angles with the "shooting" method suggests that this phenomenon is a consequence of the complexities associated with subducting slab. Laterally varying velocity structure defocuses the seismic energy from shallow earthquakes located near the trench and makes the observation of P and S arrivals difficult at stations situated on mainland Japan. Full waveform simulations confirm these results. Our forward calculations also show that the probability of detection is sensitive to the depth of the event. Shallower events near the trench are more difficult to detect than deeper earthquakes that are located inside the subducting plate for which the shadow-zone effect diminishes. The modeling effort is expanded to include three

  12. Theory of earthquakes interevent times applied to financial markets

    NASA Astrophysics Data System (ADS)

    Jagielski, Maciej; Kutner, Ryszard; Sornette, Didier

    2017-10-01

    We analyze the probability density function (PDF) of waiting times between financial loss exceedances. The empirical PDFs are fitted with the self-excited Hawkes conditional Poisson process with a long power law memory kernel. The Hawkes process is the simplest extension of the Poisson process that takes into account how past events influence the occurrence of future events. By analyzing the empirical data for 15 different financial assets, we show that the formalism of the Hawkes process used for earthquakes can successfully model the PDF of interevent times between successive market losses.

  13. Catalog of earthquakes along the San Andreas fault system in Central California, July-September 1972

    USGS Publications Warehouse

    Wesson, R.L.; Meagher, K.L.; Lester, F.W.

    1973-01-01

    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period July - September, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). Catalogs for the first and second quarters of 1972 have been prepared by Wessan and others (1972 a & b). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1254 earthquakes in Central California. Arrival times at 129 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 104 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB), the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the seismicity of a portion of central California in much greater detail.

  14. Scaling relation between earthquake magnitude and the departure time from P wave similar growth

    USGS Publications Warehouse

    Noda, Shunta; Ellsworth, William L.

    2016-01-01

    We introduce a new scaling relation between earthquake magnitude (M) and a characteristic of initial P wave displacement. By examining Japanese K-NET data averaged in bins partitioned by Mw and hypocentral distance, we demonstrate that the P wave displacement briefly displays similar growth at the onset of rupture and that the departure time (Tdp), which is defined as the time of departure from similarity of the absolute displacement after applying a band-pass filter, correlates with the final M in a range of 4.5 ≤ Mw ≤ 7. The scaling relation between Mw and Tdp implies that useful information on the final M can be derived while the event is still in progress because Tdp occurs before the completion of rupture. We conclude that the scaling relation is important not only for earthquake early warning but also for the source physics of earthquakes.

  15. Future of Earthquake Early Warning: Quantifying Uncertainty and Making Fast Automated Decisions for Applications

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications. Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake. To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that

  16. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9).

    PubMed

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-15

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab's fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  17. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    PubMed Central

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-01-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle. PMID:28295018

  18. Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Fujisawa, Moeto; Toyokuni, Genti

    2017-03-01

    On 30 May 2015 an isolated deep earthquake (~670 km, Mw 7.9) occurred to the west of the Bonin Islands. To clarify its causal mechanism and its relationship to the subducting Pacific slab, we determined a detailed P-wave tomography of the deep earthquake source zone using a large number of arrival-time data. Our results show that this large deep event occurred within the subducting Pacific slab which is penetrating into the lower mantle. In the Izu-Bonin region, the Pacific slab is split at ~28° north latitude, i.e., slightly north of the 2015 deep event hypocenter. In the north the slab becomes stagnant in the mantle transition zone, whereas in the south the slab is directly penetrating into the lower mantle. This deep earthquake was caused by joint effects of several factors, including the Pacific slab’s fast deep subduction, slab tearing, slab thermal variation, stress changes and phase transformations in the slab, and complex interactions between the slab and the ambient mantle.

  19. Earthquake Drill using the Earthquake Early Warning System at an Elementary School

    NASA Astrophysics Data System (ADS)

    Oki, Satoko; Yazaki, Yoshiaki; Koketsu, Kazuki

    2010-05-01

    economic repercussion. We provide the school kids with the "World Seismicity Map" to let them realize that earthquake disasters take place unequally. Then we let the kids jump in front of the seismometer with projecting the real-time data to the wall. Grouped kids contest the largest amplitude by carefully considering how to jump high but nail the landing with their teammates. Their jumps are printed out via portable printer and compared with the real earthquake which occurred even 600km away but still huge when printed out in the same scale. Actually, a magnitude 7 earthquake recorded 600km away needs an A0 paper when scaled with a jump of 10 kids printed in an A4 paper. They've got to understand what to do not to be killed with the great big energy. We also offer earthquake drills using the Earthquake Early Warning System (EEW System). An EEW System is officially introduced in 2007 by JMA (Japan Meteorological Agency) to issue prompt alerts to provide several to several ten seconds before S-wave arrives. When hearing the alarm, school kids think fast to find a place to protect themselves. It is not always when they are in their classrooms but in the chemical lab, music room which does not have any desks to protect them, or in the PE class. Then in the science class, we demonstrate how the EEW System works. A 8m long wave propagation device made with spindles connected with springs is used to visualize the P- and S-waves. In the presentation, we would like to show the paper materials and sufficient movies.

  20. Prompt identification of tsunamigenic earthquakes from 3-component seismic data

    NASA Astrophysics Data System (ADS)

    Kundu, Ajit; Bhadauria, Y. S.; Basu, S.; Mukhopadhyay, S.

    2016-10-01

    An Artificial Neural Network (ANN) based algorithm for prompt identification of shallow focus (depth < 70 km) tsunamigenic earthquakes at a regional distance is proposed in the paper. The promptness here refers to decision making as fast as 5 min after the arrival of LR phase in the seismogram. The root mean square amplitudes of seismic phases recorded by a single 3-component station have been considered as inputs besides location and magnitude. The trained ANN has been found to categorize 100% of the new earthquakes successfully as tsunamigenic or non-tsunamigenic. The proposed method has been corroborated by an alternate mapping technique of earthquake category estimation. The second method involves computation of focal parameters, estimation of water volume displaced at the source and eventually deciding category of the earthquake. The method has been found to identify 95% of the new earthquakes successfully. Both the methods have been tested using three component broad band seismic data recorded at PALK (Pallekele, Sri Lanka) station provided by IRIS for earthquakes originating from Sumatra region of magnitude 6 and above. The fair agreement between the methods ensures that a prompt alert system could be developed based on proposed method. The method would prove to be extremely useful for the regions that are not adequately instrumented for azimuthal coverage.

  1. Seismic wave triggering of nonvolcanic tremor, episodic tremor and slip, and earthquakes on Vancouver Island

    NASA Astrophysics Data System (ADS)

    Rubinstein, Justin L.; Gomberg, Joan; Vidale, John E.; Wech, Aaron G.; Kao, Honn; Creager, Kenneth C.; Rogers, Garry

    2009-02-01

    We explore the physical conditions that enable triggering of nonvolcanic tremor and earthquakes by considering local seismic activity on Vancouver Island, British Columbia during and immediately after the arrival of large-amplitude seismic waves from 30 teleseismic and 17 regional or local earthquakes. We identify tremor triggered by four of the teleseismic earthquakes. The close temporal and spatial proximity of triggered tremor to ambient tremor and aseismic slip indicates that when a fault is close to or undergoing failure, it is particularly susceptible to triggering of further events. The amplitude of the triggering waves also influences the likelihood of triggering both tremor and earthquakes such that large amplitude waves triggered tremor in the absence of detectable aseismic slip or ambient tremor. Tremor and energy radiated from regional/local earthquakes share the same frequency passband so that tremor cannot be identified during these smaller, more frequent events. We confidently identify triggered local earthquakes following only one teleseism, that with the largest amplitude, and four regional or local events that generated vigorous aftershock sequences in their immediate vicinity. Earthquakes tend to be triggered in regions different from tremor and with high ambient seismicity rates. We also note an interesting possible correlation between large teleseismic events and episodic tremor and slip (ETS) episodes, whereby ETS events that are "late" and have built up more stress than normal are susceptible to triggering by the slight nudge of the shaking from a large, distant event, while ETS events that are "early" or "on time" are not.

  2. Testing the structure of earthquake networks from multivariate time series of successive main shocks in Greece

    NASA Astrophysics Data System (ADS)

    Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.

    2018-06-01

    The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.

  3. The Effects of the Passage of Time from the 2011 Tohoku Earthquake on the Public's Anxiety about a Variety of Hazards.

    PubMed

    Nakayachi, Kazuya; Nagaya, Kazuhisa

    2016-08-31

    This research investigated whether the Japanese people's anxiety about a variety of hazards, including earthquakes and nuclear accidents, has changed over time since the Tohoku Earthquake in 2011. Data from three nationwide surveys conducted in 2008, 2012, and 2015 were compared to see the change in societal levels of anxiety toward 51 types of hazards. The same two-phase stratified random sampling method was used to create the list of participants in each survey. The results showed that anxiety about earthquakes and nuclear accidents had increased for a time after the Tohoku Earthquake, and then decreased after a four-year time frame with no severe earthquakes and nuclear accidents. It was also revealed that the anxiety level for some hazards other than earthquakes and nuclear accidents had decreased at ten months after the Earthquake, and then remained unchanged after the four years. Therefore, ironically, a major disaster might decrease the public anxiety in general at least for several years.

  4. Uncovering the 2010 Haiti earthquake death toll

    NASA Astrophysics Data System (ADS)

    Daniell, J. E.; Khazai, B.; Wenzel, F.

    2013-05-01

    Casualties are estimated for the 12 January 2010 earthquake in Haiti using various reports calibrated by observed building damage states from satellite imagery and reconnaissance reports on the ground. By investigating various damage reports, casualty estimates and burial figures, for a one year period from 12 January 2010 until 12 January 2011, there is also strong evidence that the official government figures of 316 000 total dead and missing, reported to have been caused by the earthquake, are significantly overestimated. The authors have examined damage and casualties report to arrive at their estimation that the median death toll is less than half of this value (±137 000). The authors show through a study of historical earthquake death tolls, that overestimates of earthquake death tolls occur in many cases, and is not unique to Haiti. As death toll is one of the key elements for determining the amount of aid and reconstruction funds that will be mobilized, scientific means to estimate death tolls should be applied. Studies of international aid in recent natural disasters reveal that large distributions of aid which do not match the respective needs may cause oversupply of help, aggravate corruption and social disruption rather than reduce them, and lead to distrust within the donor community.

  5. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.

  6. The UK medical response to the Sichuan earthquake.

    PubMed

    Redmond, A D; Li, J

    2011-06-01

    At 14:48 on 12 May 2008 an earthquake of magnitude 8.0 struck the Wenchuan area of Sichuan province, China. A decision to offer/receive UK medical assistance was agreed at a Sino/British political level and a medical team was despatched to the earthquake area. This study describes the team's experience during the immediate aftermath of the earthquake and the following 18 months, during which there have been joint developments in emergency medicine, disaster planning/preparedness and the management of spinal cord injury. The long-term disability following sudden onset natural disaster and the wider impact on healthcare delivery may prove to be a greater burden to the country than the immediate medical needs, and, accordingly, emergency international aid may need to widen its focus. Although international teams usually arrive too late to support resuscitative measures, they can respond to specific requests for specialised assistance, for example plastic and reconstructive surgery to assist with the ongoing management of complex injury, relieve those who have worked continuously through the disaster, and when required maintain routine day-to-day services while local staff continue to manage the disaster. The timing of this does not necessarily need to be immediate. To maximise its impact, the team planned from the outset to build a relationship with Chinese colleagues that would lead to a sharing of knowledge and experience that would benefit major incident responses in both countries in the future. This has been established, and the linkage of emergency humanitarian assistance to longer term development should be considered by others the next time international emergency humanitarian assistance is contemplated.

  7. Source properties of earthquakes near the Salton Sea triggered by the 16 October 1999 M 7.1 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Hough, S.E.; Kanamori, H.

    2002-01-01

    We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.

  8. Delineation of Rupture Propagation of Large Earthquakes Using Source-Scanning Algorithm: A Control Study

    NASA Astrophysics Data System (ADS)

    Kao, H.; Shan, S.

    2004-12-01

    Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.

  9. Earthquake cluster activity beneath the Tanzawa Mountains region, Japan: Migration of hypocenters and low stress drop

    NASA Astrophysics Data System (ADS)

    Yamada, T.; Yukutake, Y.

    2013-12-01

    An earthquake cluster activity was observed beneath the Tanzawa Mountains region, Japan with a depth of 20 km in the end of January, 2012. Japan Meteorological Agency (JMA) determined hypocenters of 76 earthquakes with M > 2 in the area within 50 hours. Five of them had magnitudes greater than 4 and the largest one was 5.4. Four out of the five earthquakes had the reverse-type focal mechanisms with the P axis in the NW-SE direction. First we relocated hypocenters of the activity following the method of Yukutake et al. (2012). We estimated relative arrival times of P and S waves by calculating the coefficients of the cross correlation and relocated hypocenters with the double-difference relocation method (Waldhauser and Ellsworth, 2000). We found that the cluster activity showed a migration from the first earthquake of the activity. The parabolic migration speed was consistent with the migration speed of the deep tremor sources (Ide et al., 2010) for which the fluid activity would play an important role. We then analyzed stress drops of 17 earthquakes with M > 3.5 that occurred from January, 2000 to June, 2012 in the area of the cluster activity. We calculated empirical Green's functions from waveforms of earthquakes with magnitudes of 3.0 to 3.2 and estimated stress drops of the earthquakes assuming that the source spectra can be expressed as the omega-squared model. We found that earthquakes of the cluster activity had smaller stress drops by an order of magnitude than the values of earthquakes that occurred in the same area before the cluster activity. These results suggest that the fluid played an important role for the earthquake cluster activity. That is, the fluid increased the pore pressure, decreased the effective normal stress and triggered the cluster activity. The difference of the rupture speed and the change of the rigidity might also be candidates that account for our results. They, however, can hardly explain the results quantitatively. Fig

  10. The Evolution of the Seismic-Aseismic Transition During the Earthquake Cycle: Constraints from the Time-Dependent Depth Distribution of Aftershocks

    NASA Astrophysics Data System (ADS)

    Rolandone, F.; Bürgmann, R.; Nadeau, R.; Freed, A.

    2003-12-01

    We have demonstrated that in the aftermath of large earthquakes, the depth extent of aftershocks shows an immediate deepening from pre-earthquake levels, followed by a time-dependent postseismic shallowing. We use these seismic data to constrain the variation of the depth of the seismic-aseismic transition with time throughout the earthquake cycle. Most studies of the seismic-aseismic transition have focussed on the effect of temperature and/or lithology on the transition either from brittle faulting to viscous flow or from unstable to stable sliding. They have shown that the maximum depth of seismic activity is well correlated with the spatial variations of these two parameters. However, little has been done to examine how the maximum depth of seismogenic faulting varies locally, at the scale of a fault segment, during the course of the earthquake cycle. Geologic and laboratory observations indicate that the depth of the seismic-aseismic transition should vary with strain rate and thus change with time throughout the earthquake cycle. We quantify the time-dependent variations in the depth of seismicity on various strike-slip faults in California before and after large earthquakes. We specifically investigate (1) the deepening of the aftershocks relative to the background seismicity, (2) the time constant of the postseismic shallowing of the deepest earthquakes, and (3) the correlation of the time-dependent pattern with the coseismic slip distribution and the expected stress increase. Together with geodetic measurements, these seismological observations form the basis for developing more sophisticated models for the mechanical evolution of strike-slip shear zones during the earthquake cycle. We develop non-linear viscoelastic models, for which the brittle-ductile transition is not fixed, but varies with assumed temperature and calculated stress gradients. We use them to place constraints on strain rate at depth, on time-dependent rheology, and on the partitioning

  11. Fast first arrival picking algorithm for noisy microseismic data

    NASA Astrophysics Data System (ADS)

    Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun

    2017-01-01

    Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.

  12. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data for Three-Dimensional Seismic Velocity Structure Around SAFOD

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.

    2013-12-01

    The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.

  13. Predicting Ambulance Time of Arrival to the Emergency Department Using Global Positioning System and Google Maps

    PubMed Central

    Fleischman, Ross J.; Lundquist, Mark; Jui, Jonathan; Newgard, Craig D.; Warden, Craig

    2014-01-01

    Objective To derive and validate a model that accurately predicts ambulance arrival time that could be implemented as a Google Maps web application. Methods This was a retrospective study of all scene transports in Multnomah County, Oregon, from January 1 through December 31, 2008. Scene and destination hospital addresses were converted to coordinates. ArcGIS Network Analyst was used to estimate transport times based on street network speed limits. We then created a linear regression model to improve the accuracy of these street network estimates using weather, patient characteristics, use of lights and sirens, daylight, and rush-hour intervals. The model was derived from a 50% sample and validated on the remainder. Significance of the covariates was determined by p < 0.05 for a t-test of the model coefficients. Accuracy was quantified by the proportion of estimates that were within 5 minutes of the actual transport times recorded by computer-aided dispatch. We then built a Google Maps-based web application to demonstrate application in real-world EMS operations. Results There were 48,308 included transports. Street network estimates of transport time were accurate within 5 minutes of actual transport time less than 16% of the time. Actual transport times were longer during daylight and rush-hour intervals and shorter with use of lights and sirens. Age under 18 years, gender, wet weather, and trauma system entry were not significant predictors of transport time. Our model predicted arrival time within 5 minutes 73% of the time. For lights and sirens transports, accuracy was within 5 minutes 77% of the time. Accuracy was identical in the validation dataset. Lights and sirens saved an average of 3.1 minutes for transports under 8.8 minutes, and 5.3 minutes for longer transports. Conclusions An estimate of transport time based only on a street network significantly underestimated transport times. A simple model incorporating few variables can predict ambulance time of

  14. A method for improving arrival-to-electrocardiogram time in emergency department chest pain patients and the effect on door-to-balloon time for ST-segment elevation myocardial infarction.

    PubMed

    Takakuwa, Kevin M; Burek, Gregory A; Estepa, Adrian T; Shofer, Frances S

    2009-10-01

    The objectives were to determine if an emergency department (ED) could improve the adherence to a door-to-electrocardiogram (ECG) time goal of 10 minutes or less for patients who presented to an ED with chest pain and the effect of this adherence on door-to-balloon (DTB) time for ST-segment elevation myocardial infarction (STEMI) cardiac catheterization (cath) alert patients. This was a planned 1-month before-and-after interventional study design for implementing a new process for obtaining ECGs in patients presenting to the study ED with chest pain. Prior to the change, patients were registered and triaged before an ECG was obtained. The new procedure required registration clerks to identify those with chest pain and directly overhead page or call a designated ECG technician. This technician had other ED duties, but prioritized performing ECGs and delivering them to attending physicians. A full registration process occurred after the clinical staff performed their initial assessment. The primary outcome was the total percentage of patients with chest pain who received an ECG within 10 minutes of ED arrival. The secondary outcome was DTB time for patients with STEMI who were emergently cath alerted. Data were analyzed using mean differences, 95% confidence intervals (CIs), and relative risk (RR) regression to adjust for possible confounders. A total of 719 patients were studied: 313 before and 405 after the intervention. The mean (+/-standard deviation [SD]) age was 50 (+/-16) years, 54% were women, 57% were African American, and 36% were white. Patients walked in 89% of the time; 11% arrived by ambulance. Thirty-nine percent were triaged as emergent and 61% as nonemergent. Patients presented during daytime 68% of the time, and 32% presented during the night. Before the intervention, 16% received an ECG at 10 minutes or less. After the intervention, 64% met the time requirement, for a mean difference of 47.3% (95% CI = 40.8% to 53.3%, p < 0.0001). Results were not

  15. Earthquake source parameters from GPS-measured static displacements with potential for real-time application

    NASA Astrophysics Data System (ADS)

    O'Toole, Thomas B.; Valentine, Andrew P.; Woodhouse, John H.

    2013-01-01

    We describe a method for determining an optimal centroid-moment tensor solution of an earthquake from a set of static displacements measured using a network of Global Positioning System receivers. Using static displacements observed after the 4 April 2010, MW 7.2 El Mayor-Cucapah, Mexico, earthquake, we perform an iterative inversion to obtain the source mechanism and location, which minimize the least-squares difference between data and synthetics. The efficiency of our algorithm for forward modeling static displacements in a layered elastic medium allows the inversion to be performed in real-time on a single processor without the need for precomputed libraries of excitation kernels; we present simulated real-time results for the El Mayor-Cucapah earthquake. The only a priori information that our inversion scheme needs is a crustal model and approximate source location, so the method proposed here may represent an improvement on existing early warning approaches that rely on foreknowledge of fault locations and geometries.

  16. Continuous forearc extension following the 2010 Maule megathrust earthquake: InSAR and seismic observations and modelling

    NASA Astrophysics Data System (ADS)

    Bie, L.; Rietbrock, A.; Agurto-Detzel, H.

    2017-12-01

    The forearc region in subduction zones deforms in response to relative movement on the plate interface throughout the earthquake cycle. Megathrust earthquakes may alter the stress field in the forearc areas from compression to extension, resulting in normal faulting earthquakes. Recent cases include the 2011 Iwaki sequence following the Tohoku-Oki earthquake in Japan, and 2010 Pichilemu sequence after the Maule earthquake in central Chile. Given the closeness of these normal fault events to residential areas, and their shallow depth, they may pose equivalent, if not higher, seismic risk in comparison to earthquakes on the megathrust. Here, we focus on the 2010 Pichilemu sequence following the Mw 8.8 Maule earthquake in central Chile, where the Nazca Plate subducts beneath the South American Plate. Previous studies have clearly delineated the Pichilemu normal fault structure. However, it is not clear whether the Pichilemu events fully released the extensional stress exerted by the Maule mainshock, or the forearc area is still controlled by extensional stress. A 3 months displacement time-series, constructed by radar satellite images, clearly shows continuous aseismic deformation along the Pichilemu fault. Kinematic inversion reveals peak afterslip of 25 cm at shallow depth, equivalent to a Mw 5.4 earthquake. We identified a Mw 5.3 earthquake 2 months after the Pichilemu sequence from both geodetic and seismic observations. Nonlinear inversion from geodetic data suggests that this event ruptured a normal fault conjugate to the Pichilemu fault, at a depth of 4.5 km, consistent with the result obtained from independent moment tensor inversion. We relocated aftershocks in the Pichilemu area using relative arrivals time and a 3D velocity model. The spatial correlation between geodetic deformation and aftershocks reveals three additional areas which may have experienced aseismic slip at depth. Both geodetic displacement and aftershock distribution show a conjugated L

  17. W phase source inversion for moderate to large earthquakes (1990-2010)

    USGS Publications Warehouse

    Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo; Hayes, Gavin P.

    2012-01-01

    Rapid characterization of the earthquake source and of its effects is a growing field of interest. Until recently, it still took several hours to determine the first-order attributes of a great earthquake (e.g. Mw≥ 7.5), even in a well-instrumented region. The main limiting factors were data saturation, the interference of different phases and the time duration and spatial extent of the source rupture. To accelerate centroid moment tensor (CMT) determinations, we have developed a source inversion algorithm based on modelling of the W phase, a very long period phase (100–1000 s) arriving at the same time as the P wave. The purpose of this work is to finely tune and validate the algorithm for large-to-moderate-sized earthquakes using three components of W phase ground motion at teleseismic distances. To that end, the point source parameters of all Mw≥ 6.5 earthquakes that occurred between 1990 and 2010 (815 events) are determined using Federation of Digital Seismograph Networks, Global Seismographic Network broad-band stations and STS1 global virtual networks of the Incorporated Research Institutions for Seismology Data Management Center. For each event, a preliminary magnitude obtained from W phase amplitudes is used to estimate the initial moment rate function half duration and to define the corner frequencies of the passband filter that will be applied to the waveforms. Starting from these initial parameters, the seismic moment tensor is calculated using a preliminary location as a first approximation of the centroid. A full CMT inversion is then conducted for centroid timing and location determination. Comparisons with Harvard and Global CMT solutions highlight the robustness of W phase CMT solutions at teleseismic distances. The differences in Mw rarely exceed 0.2 and the source mechanisms are very similar to one another. Difficulties arise when a target earthquake is shortly (e.g. within 10 hr) preceded by another large earthquake, which disturbs the

  18. Nowcasting Earthquakes: A Comparison of Induced Earthquakes in Oklahoma and at the Geysers, California

    NASA Astrophysics Data System (ADS)

    Luginbuhl, Molly; Rundle, John B.; Hawkins, Angela; Turcotte, Donald L.

    2018-01-01

    Nowcasting is a new method of statistically classifying seismicity and seismic risk (Rundle et al. 2016). In this paper, the method is applied to the induced seismicity at the Geysers geothermal region in California and the induced seismicity due to fluid injection in Oklahoma. Nowcasting utilizes the catalogs of seismicity in these regions. Two earthquake magnitudes are selected, one large say M_{λ } ≥ 4, and one small say M_{σ } ≥ 2. The method utilizes the number of small earthquakes that occurs between pairs of large earthquakes. The cumulative probability distribution of these values is obtained. The earthquake potential score (EPS) is defined by the number of small earthquakes that has occurred since the last large earthquake, the point where this number falls on the cumulative probability distribution of interevent counts defines the EPS. A major advantage of nowcasting is that it utilizes "natural time", earthquake counts, between events rather than clock time. Thus, it is not necessary to decluster aftershocks and the results are applicable if the level of induced seismicity varies in time. The application of natural time to the accumulation of the seismic hazard depends on the applicability of Gutenberg-Richter (GR) scaling. The increasing number of small earthquakes that occur after a large earthquake can be scaled to give the risk of a large earthquake occurring. To illustrate our approach, we utilize the number of M_{σ } ≥ 2.75 earthquakes in Oklahoma to nowcast the number of M_{λ } ≥ 4.0 earthquakes in Oklahoma. The applicability of the scaling is illustrated during the rapid build-up of injection-induced seismicity between 2012 and 2016, and the subsequent reduction in seismicity associated with a reduction in fluid injections. The same method is applied to the geothermal-induced seismicity at the Geysers, California, for comparison.

  19. Catalog of earthquakes along the San Andreas fault system in Central California: January-March, 1972

    USGS Publications Warehouse

    Wesson, R.L.; Bennett, R.E.; Meagher, K.L.

    1973-01-01

    Numerous small earthquakes occur each day in the Coast Ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period January - March, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b,c,d). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 1,718 earthquakes in Central California. Of particular interest is a sequence of earthquakes in the Bear Valley area which contained single shocks with local magnitudes of S.O and 4.6. Earthquakes from this sequence make up roughly 66% of the total and are currently the subject of an interpretative study. Arrival times at 118 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 94 are telemetered stations operated by NCER. Readings from the remaining 24 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley,have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement it, by describing the

  20. Catalog of earthquakes along the San Andreas fault system in Central California, April-June 1972

    USGS Publications Warehouse

    Wesson, R.L.; Bennett, R.E.; Lester, F.W.

    1973-01-01

    Numerous small earthquakes occur each day in the coast ranges of Central California. The detailed study of these earthquakes provides a tool for gaining insight into the tectonic and physical processes responsible for the generation of damaging earthquakes. This catalog contains the fundamental parameters for earthquakes located within and adjacent to the seismograph network operated by the National Center for Earthquake Research (NCER), U.S. Geological Survey, during the period April - June, 1972. The motivation for these detailed studies has been described by Pakiser and others (1969) and by Eaton and others (1970). Similar catalogs of earthquakes for the years 1969, 1970 and 1971 have been prepared by Lee and others (1972 b, c, d). A catalog for the first quarter of 1972 has been prepared by Wesson and others (1972). The basic data contained in these catalogs provide a foundation for further studies. This catalog contains data on 910 earthquakes in Central California. A substantial portion of the earthquakes reported in this catalog represents a continuation of the sequence of earthquakes in the Bear Valley area which began in February, 1972 (Wesson and others, 1972). Arrival times at 126 seismograph stations were used to locate the earthquakes listed in this catalog. Of these, 101 are telemetered stations operated by NCER. Readings from the remaining 25 stations were obtained through the courtesy of the Seismographic Stations, University of California, Berkeley (UCB); the Earthquake Mechanism Laboratory, National Oceanic and Atmospheric Administration, San Francisco (EML); and the California Department of Water Resources, Sacramento. The Seismographic Stations of the University of California, Berkeley, have for many years published a bulletin describing earthquakes in Northern California and the surrounding area, and readings at UCB Stations from more distant events. The purpose of the present catalog is not to replace the UCB Bulletin, but rather to supplement

  1. Queues with Dropping Functions and General Arrival Processes

    PubMed Central

    Chydzinski, Andrzej; Mrozowski, Pawel

    2016-01-01

    In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171

  2. Understanding earthquake hazards in urban areas - Evansville Area Earthquake Hazards Mapping Project

    USGS Publications Warehouse

    Boyd, Oliver S.

    2012-01-01

    The region surrounding Evansville, Indiana, has experienced minor damage from earthquakes several times in the past 200 years. Because of this history and the proximity of Evansville to the Wabash Valley and New Madrid seismic zones, there is concern among nearby communities about hazards from earthquakes. Earthquakes currently cannot be predicted, but scientists can estimate how strongly the ground is likely to shake as a result of an earthquake and are able to design structures to withstand this estimated ground shaking. Earthquake-hazard maps provide one way of conveying such information and can help the region of Evansville prepare for future earthquakes and reduce earthquake-caused loss of life and financial and structural loss. The Evansville Area Earthquake Hazards Mapping Project (EAEHMP) has produced three types of hazard maps for the Evansville area: (1) probabilistic seismic-hazard maps show the ground motion that is expected to be exceeded with a given probability within a given period of time; (2) scenario ground-shaking maps show the expected shaking from two specific scenario earthquakes; (3) liquefaction-potential maps show how likely the strong ground shaking from the scenario earthquakes is to produce liquefaction. These maps complement the U.S. Geological Survey's National Seismic Hazard Maps but are more detailed regionally and take into account surficial geology, soil thickness, and soil stiffness; these elements greatly affect ground shaking.

  3. Web Services and Other Enhancements at the Northern California Earthquake Data Center

    NASA Astrophysics Data System (ADS)

    Neuhauser, D. S.; Zuzlewski, S.; Allen, R. M.

    2012-12-01

    The Northern California Earthquake Data Center (NCEDC) provides data archive and distribution services for seismological and geophysical data sets that encompass northern California. The NCEDC is enhancing its ability to deliver rapid information through Web Services. NCEDC Web Services use well-established web server and client protocols and REST software architecture to allow users to easily make queries using web browsers or simple program interfaces and to receive the requested data in real-time rather than through batch or email-based requests. Data are returned to the user in the appropriate format such as XML, RESP, or MiniSEED depending on the service, and are compatible with the equivalent IRIS DMC web services. The NCEDC is currently providing the following Web Services: (1) Station inventory and channel response information delivered in StationXML format, (2) Channel response information delivered in RESP format, (3) Time series availability delivered in text and XML formats, (4) Single channel and bulk data request delivered in MiniSEED format. The NCEDC is also developing a rich Earthquake Catalog Web Service to allow users to query earthquake catalogs based on selection parameters such as time, location or geographic region, magnitude, depth, azimuthal gap, and rms. It will return (in QuakeML format) user-specified results that can include simple earthquake parameters, as well as observations such as phase arrivals, codas, amplitudes, and computed parameters such as first motion mechanisms, moment tensors, and rupture length. The NCEDC will work with both IRIS and the International Federation of Digital Seismograph Networks (FDSN) to define a uniform set of web service specifications that can be implemented by multiple data centers to provide users with a common data interface across data centers. The NCEDC now hosts earthquake catalogs and waveforms from the US Department of Energy (DOE) Enhanced Geothermal Systems (EGS) monitoring networks. These

  4. Possibility of the real-time dynamic strain field monitoring deduced from GNSS data: case study of the 2016 Kumamoto earthquake sequence

    NASA Astrophysics Data System (ADS)

    Ohta, Y.; Ohzono, M.; Takahashi, H.; Kawamoto, S.; Hino, R.

    2017-12-01

    A large and destructive earthquake (Mjma 7.3) occurred on April 15, 2016 in Kumamoto region, southwestern Japan. This earthquake was accompanied approximately 32 s later by an M 6 earthquake in central Oita region, which hypocenter located 80 km northeast from the hypocenter of the mainshock of the Kumamoto earthquake. This triggered earthquake also had the many aftershocks in and around the Oita region. It is important to understand how to occur such chain-reacted earthquake sequences. We used the 1Hz dual-frequency phase and range data from GEONET in Kyushu island. The data were processed using GIPSY-OASIS (version 6.4). We adopoted kinematic PPP strategy for the coordinate estimation. The reference GPS satellite orbit and 5 s clock information were obtained using the CODE product. We also applied simple sidereal filter technique for the estimated time series. Based on the obtained 1Hz GNSS time series, we estimated the areal strain and principle strain field using the method of the Shen et al. (1996). For the assessment of the dynamic strain, firstly we calculated the averaged absolute value of areal strain field between 60-85s after the origin time of the mainshock of the Kumamoto earthquake which was used as the "reference" static strain field. Secondly, we estimated the absolute value of areal strain in each time step. Finally, we calculated the strain ratio in each time step relative to the "reference". Based on this procedure, we can extract the spatial and temporal characteristic of the dynamic strain in each time step. Extracted strain ratio clearly shows the spatial and temporal dynamic strain characteristic. When an attention is paid to a region of triggered Oita earthquake, the timing of maximum dynamic strain ratio in the epicenter just corresponds to the origin time of the triggered event. It strongly suggested that the large dynamic strain may trigger the Oita event. The epicenter of the triggered earthquake located within the geothermal region. In

  5. Comparison of aftershock sequences between 1975 Haicheng earthquake and 1976 Tangshan earthquake

    NASA Astrophysics Data System (ADS)

    Liu, B.

    2017-12-01

    The 1975 ML 7.3 Haicheng earthquake and the 1976 ML 7.8 Tangshan earthquake occurred in the same tectonic unit. There are significant differences in spatial-temporal distribution, number of aftershocks and time duration for the aftershock sequence followed by these two main shocks. As we all know, aftershocks could be triggered by the regional seismicity change derived from the main shock, which was caused by the Coulomb stress perturbation. Based on the rate- and state- dependent friction law, we quantitative estimated the possible aftershock time duration with a combination of seismicity data, and compared the results from different approaches. The results indicate that, aftershock time durations from the Tangshan main shock is several times of that form the Haicheng main shock. This can be explained by the significant relationship between aftershock time duration and earthquake nucleation history, normal stressand shear stress loading rateon the fault. In fact the obvious difference of earthquake nucleation history from these two main shocks is the foreshocks. 1975 Haicheng earthquake has clear and long foreshocks, while 1976 Tangshan earthquake did not have clear foreshocks. In that case, abundant foreshocks may mean a long and active nucleation process that may have changed (weakened) the rocks in the source regions, so they should have a shorter aftershock sequences for the reason that stress in weak rocks decay faster.

  6. Earthquake Forecasting System in Italy

    NASA Astrophysics Data System (ADS)

    Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.

    2017-12-01

    In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).

  7. Reconstruction of stochastic temporal networks through diffusive arrival times

    NASA Astrophysics Data System (ADS)

    Li, Xun; Li, Xiang

    2017-06-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications.

  8. Reconstruction of stochastic temporal networks through diffusive arrival times

    PubMed Central

    Li, Xun; Li, Xiang

    2017-01-01

    Temporal networks have opened a new dimension in defining and quantification of complex interacting systems. Our ability to identify and reproduce time-resolved interaction patterns is, however, limited by the restricted access to empirical individual-level data. Here we propose an inverse modelling method based on first-arrival observations of the diffusion process taking place on temporal networks. We describe an efficient coordinate-ascent implementation for inferring stochastic temporal networks that builds in particular but not exclusively on the null model assumption of mutually independent interaction sequences at the dyadic level. The results of benchmark tests applied on both synthesized and empirical network data sets confirm the validity of our algorithm, showing the feasibility of statistically accurate inference of temporal networks only from moderate-sized samples of diffusion cascades. Our approach provides an effective and flexible scheme for the temporally augmented inverse problems of network reconstruction and has potential in a broad variety of applications. PMID:28604687

  9. Effective Acceleration Model for the Arrival Time of Interplanetary Shocks driven by Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Paouris, Evangelos; Mavromichalaki, Helen

    2017-12-01

    In a previous work (Paouris and Mavromichalaki in Solar Phys. 292, 30, 2017), we presented a total of 266 interplanetary coronal mass ejections (ICMEs) with as much information as possible. We developed a new empirical model for estimating the acceleration of these events in the interplanetary medium from this analysis. In this work, we present a new approach on the effective acceleration model (EAM) for predicting the arrival time of the shock that preceds a CME, using data of a total of 214 ICMEs. For the first time, the projection effects of the linear speed of CMEs are taken into account in this empirical model, which significantly improves the prediction of the arrival time of the shock. In particular, the mean value of the time difference between the observed time of the shock and the predicted time was equal to +3.03 hours with a mean absolute error (MAE) of 18.58 hours and a root mean squared error (RMSE) of 22.47 hours. After the improvement of this model, the mean value of the time difference is decreased to -0.28 hours with an MAE of 17.65 hours and an RMSE of 21.55 hours. This improved version was applied to a set of three recent Earth-directed CMEs reported in May, June, and July of 2017, and we compare our results with the values predicted by other related models.

  10. Airborne Evaluation and Demonstration of a Time-Based Airborne Inter-Arrival Spacing Tool

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Oseguera-Lohr, Rosa M.; Abbott, Terence S.; Capron, William R.; Howell, Charles T.

    2005-01-01

    An airborne tool has been developed that allows an aircraft to obtain a precise inter-arrival time-based spacing interval from the preceding aircraft. The Advanced Terminal Area Approach Spacing (ATAAS) tool uses Automatic Dependent Surveillance-Broadcast (ADS-B) data to compute speed commands for the ATAAS-equipped aircraft to obtain this inter-arrival spacing behind another aircraft. The tool was evaluated in an operational environment at the Chicago O'Hare International Airport and in the surrounding terminal area with three participating aircraft flying fixed route area navigation (RNAV) paths and vector scenarios. Both manual and autothrottle speed management were included in the scenarios to demonstrate the ability to use ATAAS with either method of speed management. The results on the overall delivery precision of the tool, based on a target spacing of 90 seconds, were a mean of 90.8 seconds with a standard deviation of 7.7 seconds. The results for the RNAV and vector cases were, respectively, M=89.3, SD=4.9 and M=91.7, SD=9.0.

  11. The Effects of the Passage of Time from the 2011 Tohoku Earthquake on the Public’s Anxiety about a Variety of Hazards

    PubMed Central

    Nakayachi, Kazuya; Nagaya, Kazuhisa

    2016-01-01

    This research investigated whether the Japanese people’s anxiety about a variety of hazards, including earthquakes and nuclear accidents, has changed over time since the Tohoku Earthquake in 2011. Data from three nationwide surveys conducted in 2008, 2012, and 2015 were compared to see the change in societal levels of anxiety toward 51 types of hazards. The same two-phase stratified random sampling method was used to create the list of participants in each survey. The results showed that anxiety about earthquakes and nuclear accidents had increased for a time after the Tohoku Earthquake, and then decreased after a four-year time frame with no severe earthquakes and nuclear accidents. It was also revealed that the anxiety level for some hazards other than earthquakes and nuclear accidents had decreased at ten months after the Earthquake, and then remained unchanged after the four years. Therefore, ironically, a major disaster might decrease the public anxiety in general at least for several years. PMID:27589780

  12. Sequence of deep-focus earthquakes beneath the Bonin Islands identified by the NIED nationwide dense seismic networks Hi-net and F-net

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Saito, Tatsuhiko; Shiomi, Katsuhiko

    2017-03-01

    An M 6.8 ( Mw 6.5) deep-focus earthquake occurred beneath the Bonin Islands at 21:18 (JST) on June 23, 2015. Observed high-frequency (>1 Hz) seismograms across Japan, which contain several sets of P- and S-wave arrivals for the 10 min after the origin time, indicate that moderate-to-large earthquakes occurred sequentially around Japan. Snapshots of the seismic energy propagation illustrate that after one deep-focus earthquake occurred beneath the Sea of Japan, two deep-focus earthquakes occurred sequentially after the first ( Mw 6.5) event beneath the Bonin Islands in the next 4 min. The United States Geological Survey catalog includes three Bonin deep-focus earthquakes with similar hypocenter locations, but their estimated magnitudes are inconsistent with seismograms from across Japan. The maximum-amplitude patterns of the latter two earthquakes were similar to that of the first Bonin earthquake, which indicates similar locations and mechanisms. Furthermore, based on the ratios of the S-wave amplitudes to that of the first event, the magnitudes of the latter events are estimated as M 6.5 ± 0.02 and M 5.8 ± 0.02, respectively. Three magnitude-6-class earthquakes occurred sequentially within 4 min in the Pacific slab at 480 km depth, where complex heterogeneities exist within the slab.[Figure not available: see fulltext.

  13. The Mara Rosa 2010 GT-5 earthquake and its possible relationship with the continental-scale transbrasiliano lineament

    NASA Astrophysics Data System (ADS)

    Barros, Lucas V.; Assumpção, Marcelo; Chimpliganond, Cristiano; Carvalho, Juraci M.; Von Huelsen, Mônica G.; Caixeta, Daniel; França, George Sand; de Albuquerque, Diogo F.; Ferreira, Vinicius M.; Fontenele, Darlan P.

    2015-07-01

    On October 8th, 2010, a 5.0 mb earthquake with intensity VI (MM) occurred close to Mara Rosa, in the North of Goiás State, central Brazil, in an area where previous low magnitude seismicity had been observed. This earthquake was felt up to 300 km away from the epicenter, and was the biggest event ever detected in Central Brazil Seismic Zone. Despite the difficulty of associating earthquakes in Stable Continental Interior with geological structures, this event is possibly related to the reactivation of a geological fault of the continental-scale Transbrasiliano Lineament (TBL): the aftershock activity observed with an 8-station seismic network, indicates a NW dipping, SW-NE trending reverse fault, parallel to the TBL. The P axis is NW-SE oriented, consistent with expected stress direction in the region. Cross correlation technique was used to synchronize the weak P- and S- wave phases of some of the aftershocks, recorded at regional stations, with the corresponding arrivals of the main shock producing a consistent set of relative arrival times. The use of regional station corrections allowed the mainshock to be located with uncertainties small enough to qualify for a GT5 event, which will help to constrain 3D velocity models in South America. We found that the aftershocks were distributed around a circular area about 1.5-2.0 km across, with no events in the middle. This is interpreted as the mainshock rupture completely releasing all stresses. The rupture area and the mainshock moment correspond to a stress-drop of about 2 MPa.

  14. Relationship between coronal holes and high speed streams at L1: arrival times, durations, and intensities

    NASA Astrophysics Data System (ADS)

    Luo, B.; Bu, X.; Liu, S.; Gong, J.

    2017-12-01

    Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.

  15. Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake

    NASA Astrophysics Data System (ADS)

    Zigone, Dimitri; Rivet, Diane; Radiguet, Mathilde; Campillo, Michel; Voisin, Christophe; Cotte, Nathalie; Walpersdorf, Andrea; Shapiro, Nikolai M.; Cougoulat, Glenn; Roux, Philippe; Kostoglodov, Vladimir; Husker, Allen; Payero, Juan S.

    2012-09-01

    We investigate the triggering of seismic tremor and slow slip event in Guerrero (Mexico) by the February 27, 2010 Maule earthquake (Mw 8.8). Triggered tremors start with the arrival of S wave generated by the Maule earthquake, and keep occurring during the passing of ScS, SS, Love and Rayleigh waves. The Rayleigh wave dispersion curve footprints the high frequency energy envelope of the triggered tremor, indicating a strong modulation of the source of tremors by the passing surface wave. This correlation and modulation by the passing waves is progressively lost with time over a few hours. The tremor activity continues during the weeks/months after the earthquake. GPS time series suggest that the second sub-event of the 2009-2010 SSE in Guerrero is actually triggered by the Maule earthquake. The southward displacement of the GPS stations starts coincidently with the earthquake and tremors. The long duration of tremors indicate a continuing deformation process at depth, which we propose to be the second sub-event of the 2009-2010 SSE. We show a quasi-systematic correlation between surface displacement rate measured by GPS and tremor activity, suggesting that the NVT are controlled by the variations in the slip history of the SSE. This study shows that two types of tremors emerge: (1) Those directly triggered by the passing waves and (2) those triggered by the stress variations associated with slow slip. This indicates the prominent role of aseismic creep in the Mexican subduction zone response to a large teleseismic earthquake, possibly leading to large-scale stress redistribution.

  16. Real-Time Detection of Rupture Development: Earthquake Early Warning Using P Waves From Growing Ruptures

    NASA Astrophysics Data System (ADS)

    Kodera, Yuki

    2018-01-01

    Large earthquakes with long rupture durations emit P wave energy throughout the rupture period. Incorporating late-onset P waves into earthquake early warning (EEW) algorithms could contribute to robust predictions of strong ground motion. Here I describe a technique to detect in real time P waves from growing ruptures to improve the timeliness of an EEW algorithm based on seismic wavefield estimation. The proposed P wave detector, which employs a simple polarization analysis, successfully detected P waves from strong motion generation areas of the 2011 Mw 9.0 Tohoku-oki earthquake rupture. An analysis using 23 large (M ≥ 7) events from Japan confirmed that seismic intensity predictions based on the P wave detector significantly increased lead times without appreciably decreasing the prediction accuracy. P waves from growing ruptures, being one of the fastest carriers of information on ongoing rupture development, have the potential to improve the performance of EEW systems.

  17. Real-time Seismicity Evaluation as a Tool for the Earthquake and Tsunami Short-Term Hazard Assessment (Invited)

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.

    2010-12-01

    Seismic activity is a 3-D process varying in the space-time-magnitude domains. When in a target area the short-term activity deviates significantly from the usual (background) seismicity, then the modes of activity may include swarms, temporary quiescence, foreshock-mainshock-aftershock sequences, doublets and multiplets. This implies that making decision for civil protection purposes requires short-term seismic hazard assessment and evaluation. When a sizable earthquake takes place the critical question is about the nature of the event: mainshock or a foreshock which foreshadows the occurrence of a biger one? Also, the seismicity increase or decrease in a target area may signify either precursory changes or just transient seismicity variations (e.g. swarms) which do not conclude with a strong earthquake. Therefore, the real-time seismicity evaluation is the backbone of the short-term hazard assessment. The algorithm FORMA (Foreshock-Mainshock-Aftershock) is presented which detects and updates automatically and in near real-time significant variations of the seismicity according to the earthquake data flow from the monitoring center. The detection of seismicity variations is based on an expert system which for a given target area indicates the mode of seismicity from the variation of two parameters: the seismicity rate, r, and the b-value of the magnitude-frequency relation. Alert levels are produced according to the significance levels of the changes of r and b. The good performance of FORMA was verified retrospectively in several earthquake cases, e.g. for the L’ Aquila, Italy, 2009 earthquake sequence (Mmax 6.3) (Papadopoulos et al., 2010). Real-time testing was executed during January 2010 with the strong earthquake activity (Mmax 5.6) in the Corinth Rift, Central Greece. Evaluation outputs were publicly documented on a nearly daily basis with successful results. Evaluation of coastal and submarine earthquake activity is also of crucial importance for the

  18. Significance of stress transfer in time-dependent earthquake probability calculations

    USGS Publications Warehouse

    Parsons, T.

    2005-01-01

    A sudden change in stress is seen to modify earthquake rates, but should it also revise earthquake probability? Data used to derive input parameters permits an array of forecasts; so how large a static stress change is require to cause a statistically significant earthquake probability change? To answer that question, effects of parameter and philosophical choices are examined through all phases of sample calculations, Drawing at random from distributions of recurrence-aperiodicity pairs identifies many that recreate long paleoseismic and historic earthquake catalogs. Probability density funtions built from the recurrence-aperiodicity pairs give the range of possible earthquake forecasts under a point process renewal model. Consequences of choices made in stress transfer calculations, such as different slip models, fault rake, dip, and friction are, tracked. For interactions among large faults, calculated peak stress changes may be localized, with most of the receiving fault area changed less than the mean. Thus, to avoid overstating probability change on segments, stress change values should be drawn from a distribution reflecting the spatial pattern rather than using the segment mean. Disparity resulting from interaction probability methodology is also examined. For a fault with a well-understood earthquake history, a minimum stress change to stressing rate ratio of 10:1 to 20:1 is required to significantly skew probabilities with >80-85% confidence. That ratio must be closer to 50:1 to exceed 90-95% confidence levels. Thus revision to earthquake probability is achievable when a perturbing event is very close to the fault in question or the tectonic stressing rate is low.

  19. The 2011 Tohoku-oki Earthquake related to a large velocity gradient within the Pacific plate

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    We conduct seismic tomography using arrival time data picked by the high sensitivity seismograph network (Hi-net) operated by National Research Institute for Earth Science and Disaster Prevention (NIED). We used earthquakes off the coast outside the seismic network around the source region of the 2011 Tohoku-oki Earthquake with the centroid depth estimated from moment tensor inversion by NIED F-net (broadband seismograph network) as well as earthquakes within the seismic network determined by Hi-net. The target region, 20-48N and 120-148E, covers the Japanese Islands from Hokkaido to Okinawa. A total of manually picked 4,622,346 P-wave and 3,062,846 S-wave arrival times for 100,733 earthquakes recorded at 1,212 stations from October 2000 to August 2009 is available for use in the tomographic method. In the final iteration, we estimate the P-wave slowness at 458,234 nodes and the S-wave slowness at 347,037 nodes. The inversion reduces the root mean square of the P-wave traveltime residual from 0.455 s to 0.187 s and that of the S-wave data from 0.692 s to 0.228 s after eight iterations (Matsubara and Obara, 2011). Centroid depths are determined using a Green's function approach (Okada et al., 2004) such as in NIED F-net. For the events distant from the seismic network, the centroid depth is more reliable than that determined by NIED Hi-net, since there are no stations above the hypocenter. We determine the upper boundary of the Pacific plate based on the velocity structure and earthquake hypocentral distribution. The upper boundary of the low-velocity (low-V) oceanic crust corresponds to the plate boundary where thrust earthquakes are expected to occur. Where we do not observe low-V oceanic crust, we determine the upper boundary of the upper layer of the double seismic zone within high-V Pacific plate. We assume the depth at the Japan Trench as 7 km. We can investigate the velocity structure within the Pacific plate such as 10 km beneath the plate boundary since the

  20. Real-time determination of the worst tsunami scenario based on Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya

    2016-04-01

    In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length

  1. Diagnosis according to time of arrival at "The Great New York State Fair".

    PubMed

    Nacca, Katherine; Scott, Jay; Grant, William

    2014-02-01

    To study the diagnoses of patients presenting to a medical facility within a mass-gathering public event, "The Great New York State Fair" (NYSF) based on chief complaints, diagnoses, and time of arrival. The goal of the study was to assess the need for increased staffing, services, or supplies during certain times of day for an event that gathers approximately 1 million patrons over a 12-day span. Patrons occupy the grounds between the hours of 10 am and 11 pm, while workers and staff are on the grounds around the clock. Triage data gathered by trained medical students was collected from all of the patients seen during the 2009 NYSF from 12 am to 11:59 pm. Triage information was categorized based on the nature of complaint, physician impression, and time of arrival to assess for trends in the distribution of common chief complaints and diagnoses at a mass-gathering medical care facility. The early hours of the NYSF were occupied mostly with treatment of minor first aid complaints, while later hours were occupied more commonly by orthopedic complaints. Insect stings were the most frequent complaint throughout the day. Daytime and evening hours at the fair have a significant number of orthopedic diagnoses and may benefit from specific staff and equipment sufficient to handle these complaints. Stings and minor first aid injuries are also significant and may benefit from adequate stocking of the infirmary for such events. Major medical complaints, including cardiac and neurological complaints, did occur but were a minor part of the total patient population.

  2. Time-dependent neo-deterministic seismic hazard scenarios for the 2016 Central Italy earthquakes sequence

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Kossobokov, Vladimir; Romashkova, Leontina; Panza, Giuliano F.

    2017-04-01

    Predicting earthquakes and related ground shaking is widely recognized among the most challenging scientific problems, both for societal relevance and intrinsic complexity of the problem. The development of reliable forecasting tools requires their rigorous formalization and testing, first in retrospect, and then in an experimental real-time mode, which imply a careful application of statistics to data sets of limited size and different accuracy. Accordingly, the operational issues of prospective validation and use of time-dependent neo-deterministic seismic hazard scenarios are discussed, reviewing the results in their application in Italy and surroundings. Long-term practice and results obtained for the Italian territory in about two decades of rigorous prospective testing, support the feasibility of earthquake forecasting based on the analysis of seismicity patterns at the intermediate-term middle-range scale. Italy is the only country worldwide where two independent, globally tested, algorithms are simultaneously applied, namely CN and M8S, which permit to deal with multiple sets of seismic precursors to allow for a diagnosis of the intervals of time when a strong event is likely to occur inside a given region. Based on routinely updated space-time information provided by CN and M8S forecasts, an integrated procedure has been developed that allows for the definition of time-dependent seismic hazard scenarios, through the realistic modeling of ground motion by the neo-deterministic approach (NDSHA). This scenario-based methodology permits to construct, both at regional and local scale, scenarios of ground motion for the time interval when a strong event is likely to occur within the alerted areas. CN and M8S predictions, as well as the related time-dependent ground motion scenarios associated with the alarmed areas, are routinely updated since 2006. The issues and results from real-time testing of the integrated NDSHA scenarios are illustrated, with special

  3. Collaborative Arrival Planning: Data Sharing and User Preference Tools

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra

  4. 100+ years of instrumental seismology: the example of the ISC-GEM Global Earthquake Instrumental Catalogue

    NASA Astrophysics Data System (ADS)

    Storchak, Dmitry; Di Giacomo, Domenico

    2015-04-01

    Systematic seismological observations of earthquakes using seismic instruments on a global scale began more than 100 years ago. Since then seismologists made many discoveries about the Earth interior and the physics of the earthquakes, also thanks to major developments in the seismic instrumentation deployed around the world. Besides, since the establishment of the first global networks (Milne and Jesuit networks), seismologists around the world stored and exchanged the results of routine observations (e.g., picking of arrival times, amplitude-period measurements, etc.) or more sophisticated analyses (e.g., moment tensor inversion) in seismological bulletins/catalogues. With a project funded by the GEM Foundation (www.globalquakemodel.org), the ISC and the Team of International Experts released a new global earthquake catalogue, the ISC-GEM Global Instrumental Earthquake Catalogue (1900 2009) (www.isc.ac.uk/iscgem/index.php), which, differently from previous global seismic catalogues, has the unique feature of covering the entire period of instrumental seismology with locations and magnitude re-assessed using modern approaches for the global earthquakes selected for processing (in the current version approximately 21,000). During the 110 years covered by the ISC-GEM catalogue many seismological developments occurred in terms of instrumentation, seismological practice and knowledge of the physics of the earthquakes. In this contribution we give a brief overview of the major milestones characterizing the last 100+ years of instrumental seismology that were relevant for the production of the ISC-GEM catalogue and the major challenges we faced to obtain a catalogue as homogenous as possible.

  5. Relocalizing a historical earthquake using recent methods: The 10 November 1935 Earthquake near Montserrat, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Niemz, P.; Amorèse, D.

    2016-03-01

    This study investigates the hypothesis of Feuillet et al. (2011) that the hypocenter of the seismic event on November 10, 1935 near Montserrat, Lesser Antilles (MS 6 1/4) (Gutenberg and Richter, 1954) was mislocated by other authors and is actually located in the Montserrat-Havers fault zone. While this proposal was based both on a Ground Motion Prediction Equation and on the assumption that earthquakes in this region are bound to prominent fault systems, our study relies on earthquake localization methods using arrival times of the International Seismological Summary (ISS). Results of our methodology suggest that the hypocenter was really located at 16.90° N, 62.53° W. This solution is about 25 km north-west of the location proposed by Feuillet et al. (2011) within the Redonda fault system, northward of the Montserrat-Havers fault zone. As depth phases that contribute valuable insights to the focal depth are not included in the ISS data set and the reassociation of these phases is difficult, the error in depth is high. Taking into account tectonic constraints and the vertical extend of NonLinLoc's uncertainty area of the preferred solution we assume that the focus is most probably in the lower crust between 20 km and the Moho. Our approach shows that the information of the ISS can lead to a reliable solution even without an exhaustive search for seismograms and station bulletins. This is encouraging for a better assessment of seismic and tsunami hazard in the Caribbean, Mexico, South and Central America, where many moderate to large earthquakes occurred in the first half of the 20th century. The limitations during this early phase of seismology which complicate such relocations are described in detail in this study.

  6. Paleo-earthquake timing on the North Anatolian Fault: Where, when, and how sure are we?

    NASA Astrophysics Data System (ADS)

    Fraser, J.; Vanneste, K.; Hubert-Ferrari, A.

    2009-04-01

    The North Anatolian Fault (NAF) traces from the Karilova Triple Junction in the east 1400km into the Aegean Sea in the west, forming a northwardly convex arch across northern Turkey. In the 20th century the NAF ruptured in an approximate east to west migrating sequence of large, destructive and deadly earthquakes. This migrating sequence suggests a simple relationship between crustal loading and fault rupture. A primary question remains unclear: Does the NAF always rupture in episodic bursts? To address this question we have reanalysed selected pre-existing paleoseismic investigations (PIs), from along the NAF, using Bayesian statistical modelling to determine a standardised record of the temporal probability distribution of earthquakes. A wealth of paleoseismic records have accumulated over recent years concerning the NAF although sadly much research remains un-published. A significant output of this study is tabulated results from all of the existing published paleoseismic studies on the NAF with recalibration of the radiocarbon ages using standardized methodology and standardized error reporting by determining the earthquake probability rather than using errors associated with individual bounding dates. We followed the approach outlined in Biasi & Weldon (1994) and in Biasi et al. (2002) to calculate the actual probability density distributions for the timing of paleoseismic events and for the recurrence intervals. Our implementation of these algorithms is reasonably fast and yields PDFs that are comparable to but smoother than those obtained by Markov Chain Monte Carlo type simulations (e.g., OxCal, Bronk-Ramsey, 2007). Additionally we introduce three new earthquake records from PIs we have conducted in spatial gaps in the existing data. By presenting all of this earthquake data we hope to focus further studies and help to define the distribution of earthquake risk. Because of the long historical record of earthquakes in Turkey, we can begin to address some

  7. Sun, Moon and Earthquakes

    NASA Astrophysics Data System (ADS)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  8. Three-dimensional inversion of regional P and S arrival times in the East Aleutians and sources of subduction zone gravity highs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abers, G.A.

    1994-03-10

    Free-air gravity highs over forearcs represent a large fraction of the power in the Earth`s anomalous field, yet their origin remains uncertain. Seismic velocities, as indicators of density, are estimated here as a means to compare the relative importance of upper plate sources for the gravity high with sources in the downgoing plate. P and S arrival times for local earthquakes, recorded by a seismic network in the eastern Aleutians, are inverted for three-dimensional velocity structure between the volcanic arc and the downgoing plate. A three-dimensional ray tracing scheme is used to invert the 7974 P and 6764 S arrivalsmore » for seismic velocities and hypocenters of 635 events. One-dimensional inversions show that station P residuals are systematically 0.25 - 0.5 s positive at stations 0-30 km north of the Aleutian volcanic arc, indicating slow material, while residuals at stations 10-30 km south of the arc are 0.1-0.25 s negative. Both features are explained in three-dimensional inversions by velocity variations at depths less than 25-35 km. Tests using a one-dimensional or a two-dimensional slab starting model show that below 100 km depth, velocities are poorly determined and trade off almost completely with hypocenters for earthquakes at these depths. The locations of forearc velocity highs, in the crust of the upper plate, correspond to the location of the gravity high between the trench and volcanic arc. Free-air anomalies, calculated from the three-dimensional velocity inversion result, match observed gravity for a linear density-velocity relationship between 0.1 and 0.3 (Mg m{sup {minus}3})/(km s{sup {minus}1}), when a 50-km-thick slab is included with a density of 0.055{+-}0.005 Mg m{sup {minus}3}. Values outside these ranges do not match the observed gravity. The slab alone contributes one third to one half of the total 75-150 mGal amplitude of the gravity high but predicts a high that is much broader than is observed.« less

  9. New Near-Source Tsunami Field Data for the April 1, 1946 Aleutian Earthquake, Alaska

    NASA Astrophysics Data System (ADS)

    Plafker, G.; Synolakis, C. E.; Okal, E. A.

    2001-12-01

    The April 1, 1946 Aleutian earthquake (Ms 7.4; Mw 8.2) stands out among tsunamigenic events because it generated both very high run-up near the earthquake source region and a destructive trans-Pacific tsunami. For this puzzling event, maximum near-field run-up (42 m) is more than 6 times the computed average dip slip on the source fault (Johnson and Satake, 1997). Attempts to model the near-field tsunami have been hampered by an almost total absence of reliable data on wave run-up, direction, and arrival time because the ocean coast in the region was virtually uninhabited, the earthquake and tsunami occurred at night, and there were no nearby recording tide gauges. The lone exception is the Scotch Cap Coast Guard station on the southwestern end of Unimak Island where a reinforced concrete lighthouse and its crew of 5 Coast Guardsmen were obliterated by the tsunami. Survivors at the station, who were in a communications facility on the sea cliff above the lighthouse, report that the wave arrived shortly before low tide at 2:18 A.M., some 48 minutes after the main shock was felt. Previous surveys by Coast Guard personnel indicated a maximum wave run-up elevation of 30-35 m at the station above an unspecified datum. We obtained new data on tsunami distribution along south-facing coasts between Unimak Pass on the west and Sanak Island on the east by measuring the height of driftwood and beach materials that were deposited by the tsunami above the extreme storm tide level. Our data indicate that: 1. The highest measured run-up, which is at the Scotch Cap lighthouse, was 42 m above tide level or about 37 m above present storm tide elevation; 2. Run-up along the rugged coast from Scotch Cap for 12 km NW to Sennett Point is 12.6-18 m and for 30 km east of Scotch Cap to Cape Lutke it is 24-40.6 m; 3. Run-up along the broad lowlands bordering Unimak Bight is 10-15 m and inundation is locally more than 1,000 m; 5. Run-up diminishes to 8 m or less at the SE corner of Unimak

  10. Relative Travel Time Tomography for East Asia

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; CHO, S.

    2016-12-01

    Japan island region is one of the most seismically active region in the world. As a large number of earthquakes have recently occurred along circum-Pacific belt called the ring of fire, concern over earthquakes is increasing in South Korea close to Japan. In this study, we perform seismic imaging based on relative S-wave travel-times to examine S-wave velocity upper mantle structure of East Asia. We used teleseismic events recorded at the Korea Institute of Geoscience and Mineral Resources (KIGAM) network and F-net network operated by the National Research Institute for Earth Science and Disaster Prevention (NIED). Relative travel-time residuals were obtained by a multi-channel cross-correlation method designed to automatically determine accurate relative phase arrival times. The resulting images show high-velocity anomalies along East and South side of Japan island region. These anomalies may indicate subducting Pacific and Philippine Sea plates, respectively. The velocity structure beneath southwest Japan is revealed very complex because the two slabs interact with each other there. Velocity structure of East Asia is useful to understand the tectonic evolution and the mechanism of earthquakes that occur in this region.

  11. Are Earthquake Clusters/Supercycles Real or Random?

    NASA Astrophysics Data System (ADS)

    Salditch, L.; Brooks, E. M.; Stein, S.; Spencer, B. D.

    2016-12-01

    Long records of earthquakes at plate boundaries such as the San Andreas or Cascadia often show that large earthquakes occur in temporal clusters, also termed supercycles, separated by less active intervals. These are intriguing because the boundary is presumably being loaded by steady plate motion. If so, earthquakes resulting from seismic cycles - in which their probability is small shortly after the past one, and then increases with time - should occur quasi-periodically rather than be more frequent in some intervals than others. We are exploring this issue with two approaches. One is to assess whether the clusters result purely by chance from a time-independent process that has no "memory." Thus a future earthquake is equally likely immediately after the past one and much later, so earthquakes can cluster in time. We analyze the agreement between such a model and inter-event times for Parkfield, Pallet Creek, and other records. A useful tool is transformation by the inverse cumulative distribution function, so the inter-event times have a uniform distribution when the memorylessness property holds. The second is via a time-variable model in which earthquake probability increases with time between earthquakes and decreases after an earthquake. The probability of an event increases with time until one happens, after which it decreases, but not to zero. Hence after a long period of quiescence, the probability of an earthquake can remain higher than the long-term average for several cycles. Thus the probability of another earthquake is path dependent, i.e. depends on the prior earthquake history over multiple cycles. Time histories resulting from simulations give clusters with properties similar to those observed. The sequences of earthquakes result from both the model parameters and chance, so two runs with the same parameters look different. The model parameters control the average time between events and the variation of the actual times around this average, so

  12. Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity

    NASA Astrophysics Data System (ADS)

    Codano, C.; Alonzo, M. L.; Vilardo, G.

    The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.

  13. Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.

    2011-01-01

    Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.

  14. Provision of Earthquake Early Warning to the General Public and Necessary Preparatory Process in Japan

    NASA Astrophysics Data System (ADS)

    Tsukada, S.; Kamigaichi, O.; Saito, M.; Takeda, K.; Shimoyama, T.; Nakamura, K.; Kiyomoto, M.; Watanabe, Y.

    2007-12-01

    Earthquake early warning of JMA is to enable advance countermeasures to the strong motion disaster by providing expected seismic intensity and arrival time of the strong motion, as well as estimated hypocenter parameters, before the S wave arrival. However, due to its very short available time period, it is essential to well publicize the principle and technical limit of EEW, and proper actions to be taken when it is seen or heard, to utilize EEW effectively without causing unnecessary confusion. Accordingly, JMA decided to provide EEW in two steps. Namely, JMA started to provide EEW to a limited number of users who understand the technical limit of EEW and can utilize it effectively, such as for automatic control from August 2006. At that moment, EEW was not well known to the general public, so JMA started to provide it to the general public in October 2007, after publicizing the principle and proper actions to be taken. EEWs are issued basically several times for one earthquake improving the accuracy as available data increases as time passes, securing the promptness of the first issuance at the same time. On line connected computer can utilize such multiply issued information for automatic control. But, when they are transmitted to a public, it is impossible to respond properly, and also it is impossible to transmit all by characters and voice. So, JMA considered the issuance criterion and contents of EEW when it is issued to the general public to meet the following conditions. 1) Should be issued on the best timing, to avoid the false alarm, to secure the promptness as much as possible, and to make the revised issuance as few as possible. 2) Should be issued when really a strong motion is expected, and it should be made clear where the safety actions should be taken. As a result, - Issuance criterion : when the maximum seismic intensity 5 lower(JMA scale) or over is expected by using seismic records from more than one station. - EEW contents : Origin time

  15. Foreshocks, aftershocks, and earthquake probabilities: Accounting for the landers earthquake

    USGS Publications Warehouse

    Jones, Lucile M.

    1994-01-01

    The equation to determine the probability that an earthquake occurring near a major fault will be a foreshock to a mainshock on that fault is modified to include the case of aftershocks to a previous earthquake occurring near the fault. The addition of aftershocks to the background seismicity makes its less probable that an earthquake will be a foreshock, because nonforeshocks have become more common. As the aftershocks decay with time, the probability that an earthquake will be a foreshock increases. However, fault interactions between the first mainshock and the major fault can increase the long-term probability of a characteristic earthquake on that fault, which will, in turn, increase the probability that an event is a foreshock, compensating for the decrease caused by the aftershocks.

  16. Near real-time aftershock hazard maps for earthquakes

    NASA Astrophysics Data System (ADS)

    McCloskey, J.; Nalbant, S. S.

    2009-04-01

    Stress interaction modelling is routinely used to explain the spatial relationships between earthquakes and their aftershocks. On 28 October 2008 a M6.4 earthquake occurred near the Pakistan-Afghanistan border killing several hundred and causing widespread devastation. A second M6.4 event occurred 12 hours later 20km to the south east. By making some well supported assumptions concerning the source event and the geometry of any likely triggered event it was possible to map those areas most likely to experience further activity. Using Google earth, it would further have been possible to identify particular settlements in the source area which were particularly at risk and to publish their locations globally within about 3 hours of the first earthquake. Such actions could have significantly focused the initial emergency response management. We argue for routine prospective testing of such forecasts and dialogue between social and physical scientists and emergency response professionals around the practical application of these techniques.

  17. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    NASA Astrophysics Data System (ADS)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  18. Imaging the Subduction Plate Interface Using Low-Frequency Earthquakes

    NASA Astrophysics Data System (ADS)

    Plourde, A. P.; Bostock, M. G.

    2015-12-01

    Low-frequency Earthquakes (LFEs) in subduction zones are commonly thought to represent slip on the plate interface. They have also been observed to lie near or within a zone of low shear-wave velocity, which is modelled as fluid-rich upper oceanic crust. Due to relatively large depth uncertainties in absolute hypocenters of most LFE families, their location relative to an independently imaged subucting plate and, consequently, the nature of the plate boundary at depths between 30-45 km have not been precisely determined. For a selection of LFE families in northern Washington, we measure variations in arrival time of individual LFE detections using multi-channel cross-correlation incorporating both arrivals at the same station and different events (cross-detection data), and the same event but different stations (cross-station data). Employing HypoDD, these times are used to generate relative locations for individual LFE detections. After creating templates from spatial subgroups of detections, network cross-correlation techniques will be used to search for new detections in neighbouring areas, thereby expanding the local catalogue and enabling further subdivision. By combining the source ``arrays'' and the receiver arrays from the Array of Arrays experiment we plan to interrogate plate boundary structure using migration of scattered waves from the subduction complex as previously documented beneath southern Vancouver Island.

  19. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  20. Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis

    NASA Astrophysics Data System (ADS)

    James, Christopher M.; Bourke, Emily J.; Gildfind, David E.

    2018-06-01

    To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.

  1. Missing great earthquakes

    USGS Publications Warehouse

    Hough, Susan E.

    2013-01-01

    The occurrence of three earthquakes with moment magnitude (Mw) greater than 8.8 and six earthquakes larger than Mw 8.5, since 2004, has raised interest in the long-term global rate of great earthquakes. Past studies have focused on the analysis of earthquakes since 1900, which roughly marks the start of the instrumental era in seismology. Before this time, the catalog is less complete and magnitude estimates are more uncertain. Yet substantial information is available for earthquakes before 1900, and the catalog of historical events is being used increasingly to improve hazard assessment. Here I consider the catalog of historical earthquakes and show that approximately half of all Mw ≥ 8.5 earthquakes are likely missing or underestimated in the 19th century. I further present a reconsideration of the felt effects of the 8 February 1843, Lesser Antilles earthquake, including a first thorough assessment of felt reports from the United States, and show it is an example of a known historical earthquake that was significantly larger than initially estimated. The results suggest that incorporation of best available catalogs of historical earthquakes will likely lead to a significant underestimation of seismic hazard and/or the maximum possible magnitude in many regions, including parts of the Caribbean.

  2. Order of arrival affects competition in two reef fishes.

    PubMed

    Geange, Shane W; Stier, Adrian C

    2009-10-01

    Many communities experience repeated periods of colonization due to seasonally regenerating habitats or pulsed arrival of young-of-year. When an individual's persistence in a community depends upon the strength of competitive interactions, changes in the timing of arrival relative to the arrival of a competitor can modify competitive strength and, ultimately, establishment in the community. We investigated whether the strength of intracohort competitive interactions between recent settlers of the reef fishes Thalassoma hardwicke and T. quinquevittatum are dependent on the sequence and temporal separation of their arrival into communities. To achieve this, we manipulated the sequence and timing of arrival of each species onto experimental patch reefs by simulating settlement pulses and monitoring survival and aggressive interactions. Both species survived best in the absence of competitors, but when competitors were present, they did best when they arrived at the same time. Survival declined as each species entered the community progressively later than its competitor and as aggression by its competitor increased. Intraspecific effects of resident T. hardwicke were similar to interspecific effects. This study shows that the strength of competition depends not only on the identity of competitors, but also on the sequence and timing of their interactions, suggesting that when examining interaction strengths, it is important to identify temporal variability in the direction and magnitude of their effects. Furthermore, our findings provide empirical evidence for the importance of competitive lotteries in the maintenance of species diversity in demographically open marine systems.

  3. Flashsourcing or Real-Time Mapping of Earthquake Effects from Instantaneous Analysis of the EMSC Website Traffic

    NASA Astrophysics Data System (ADS)

    Bossu, R.; Gilles, S.; Roussel, F.

    2010-12-01

    Earthquake response efforts are often hampered by the lack of timely and reliable information on the earthquake impact. Rapid detection of damaging events and production of actionable information for emergency response personnel within minutes of their occurrence are essential to mitigate the human impacts from earthquakes. Economically developed countries deploy dense real-time accelerometric networks in regions of high seismic hazard to constrain scenarios from in-situ data. A cheaper alternative, named flashsourcing, is based on implicit data derived from the analysis of the visits by eyewitnesses, the first informed persons, to websites offering real time earthquake information. We demonstrated in 2004 that widely felt earthquakes generate a surge of traffic, known as a flashcrowd, caused by people rushing websites such as the EMSC’s to find information about the shaking they have just felt. With detailed traffic analysis and metrics, widely felt earthquakes can be detected within one minute of the earthquake’s occurrence. In addition, the geographical area where the earthquake has been felt is automatically mapped within 5 minutes by statistically analysing the IP locations of the eyewitnesses, without using any seismological data. These results have been validated on more than 150 earthquakes by comparing the automatic felt maps with the felt area derived from macroseismic questionnaires. In practice, the felt maps are available before the first location is published by the EMSC. We have also demonstrated the capacity to rapidly detect and map areas of widespread damage by detecting when visitors suddenly end their sessions on the website en masse. This has been successfully applied to time and map the massive power failure which plunged a large part of Chile into darkness in March, 2010. If damage to power and communication lines cannot be discriminated from damage to buildings, the absence of sudden session closures precludes the possibility of heavy

  4. Space-Time Earthquake Prediction: The Error Diagrams

    NASA Astrophysics Data System (ADS)

    Molchan, G.

    2010-08-01

    The quality of earthquake prediction is usually characterized by a two-dimensional diagram n versus τ, where n is the rate of failures-to-predict and τ is a characteristic of space-time alarm. Unlike the time prediction case, the quantity τ is not defined uniquely. We start from the case in which τ is a vector with components related to the local alarm times and find a simple structure of the space-time diagram in terms of local time diagrams. This key result is used to analyze the usual 2-d error sets { n, τ w } in which τ w is a weighted mean of the τ components and w is the weight vector. We suggest a simple algorithm to find the ( n, τ w ) representation of all random guess strategies, the set D, and prove that there exists the unique case of w when D degenerates to the diagonal n + τ w = 1. We find also a confidence zone of D on the ( n, τ w ) plane when the local target rates are known roughly. These facts are important for correct interpretation of ( n, τ w ) diagrams when we discuss the prediction capability of the data or prediction methods.

  5. Combining Real-time Seismic and Geodetic Data to Improve Rapid Earthquake Information

    NASA Astrophysics Data System (ADS)

    Murray, M. H.; Neuhauser, D. S.; Gee, L. S.; Dreger, D. S.; Basset, A.; Romanowicz, B.

    2002-12-01

    The Berkeley Seismological Laboratory operates seismic and geodetic stations in the San Francisco Bay area and northern California for earthquake and deformation monitoring. The seismic systems, part of the Berkeley Digital Seismic Network (BDSN), include strong motion and broadband sensors, and 24-bit dataloggers. The data from 20 GPS stations, part of the Bay Area Regional Deformation (BARD) network of more than 70 stations in northern California, are acquired in real-time. We have developed methods to acquire GPS data at 12 stations that are collocated with the seismic systems using the seismic dataloggers, which have large on-site data buffer and storage capabilities, merge it with the seismic data stream in MiniSeed format, and continuously stream both data types using reliable frame relay and/or radio modem telemetry. Currently, the seismic data are incorporated into the Rapid Earthquake Data Integration (REDI) project to provide notification of earthquake magnitude, location, moment tensor, and strong motion information for hazard mitigation and emergency response activities. The geodetic measurements can provide complementary constraints on earthquake faulting, including the location and extent of the rupture plane, unambiguous resolution of the nodal plane, and distribution of slip on the fault plane, which can be used, for example, to refine strong motion shake maps. We are developing methods to rapidly process the geodetic data to monitor transient deformation, such as coseismic station displacements, and for combining this information with the seismic observations to improve finite-fault characterization of large earthquakes. The GPS data are currently processed at hourly intervals with 2-cm precision in horizontal position, and we are beginning a pilot project in the Bay Area in collaboration with the California Spatial Reference Center to do epoch-by-epoch processing with greater precision.

  6. Earthquake Triggering in the September 2017 Mexican Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Gombert, B.; Duputel, Z.; Huang, M. H.; Liang, C.; Bekaert, D. P.; Moore, A. W.; Liu, Z.; Ampuero, J. P.

    2017-12-01

    Southern Mexico was struck by four earthquakes with Mw > 6 and numerous smaller earthquakes in September 2017, starting with the 8 September Mw 8.2 Tehuantepec earthquake beneath the Gulf of Tehuantepec offshore Chiapas and Oaxaca. We study whether this M8.2 earthquake triggered the three subsequent large M>6 quakes in southern Mexico to improve understanding of earthquake interactions and time-dependent risk. All four large earthquakes were extensional despite the the subduction of the Cocos plate. The traditional definition of aftershocks: likely an aftershock if it occurs within two rupture lengths of the main shock soon afterwards. Two Mw 6.1 earthquakes, one half an hour after the M8.2 beneath the Tehuantepec gulf and one on 23 September near Ixtepec in Oaxaca, both fit as traditional aftershocks, within 200 km of the main rupture. The 19 September Mw 7.1 Puebla earthquake was 600 km away from the M8.2 shock, outside the standard aftershock zone. Geodetic measurements from interferometric analysis of synthetic aperture radar (InSAR) and time-series analysis of GPS station data constrain finite fault total slip models for the M8.2, M7.1, and M6.1 Ixtepec earthquakes. The early M6.1 aftershock was too close in time and space to the M8.2 to measure with InSAR or GPS. We analyzed InSAR data from Copernicus Sentinel-1A and -1B satellites and JAXA ALOS-2 satellite. Our preliminary geodetic slip model for the M8.2 quake shows significant slip extended > 150 km NW from the hypocenter, longer than slip in the v1 finite-fault model (FFM) from teleseismic waveforms posted by G. Hayes at USGS NEIC. Our slip model for the M7.1 earthquake is similar to the v2 NEIC FFM. Interferograms for the M6.1 Ixtepec quake confirm the shallow depth in the upper-plate crust and show centroid is about 30 km SW of the NEIC epicenter, a significant NEIC location bias, but consistent with cluster relocations (E. Bergman, pers. comm.) and with Mexican SSN location. Coulomb static stress

  7. The nature of earthquake prediction

    USGS Publications Warehouse

    Lindh, A.G.

    1991-01-01

    Earthquake prediction is inherently statistical. Although some people continue to think of earthquake prediction as the specification of the time, place, and magnitude of a future earthquake, it has been clear for at least a decade that this is an unrealistic and unreasonable definition. the reality is that earthquake prediction starts from the long-term forecasts of place and magnitude, with very approximate time constraints, and progresses, at least in principle, to a gradual narrowing of the time window as data and understanding permit. Primitive long-term forecasts are clearly possible at this time on a few well-characterized fault systems. Tightly focuses monitoring experiments aimed at short-term prediction are already underway in Parkfield, California, and in the Tokai region in Japan; only time will tell how much progress will be possible. 

  8. Verification of Reproduction Simulation of the 2011 Great East Japan Tsunami Using Time-Stamp Data

    NASA Astrophysics Data System (ADS)

    Honma, Motohiro; Ushiyama, Motoyuki

    2014-05-01

    In the 2011 off the pacific coast of Tohoku earthquake tsunami, the significant damage and loss of lives were caused by large tsunami in the pacific coastal areas of the northern Japan. It is important to understand the situation of tsunami inundation in detail in order to establish the effective measures of disaster prevention. In this study, we calculated the detailed tsunami inundation simulation of Rikuzentakata city and verified the simulation results using not only the static observed data such as inundation area and tsunami height estimated by traces but also time stamp data which were recorded to digital camera etc. We calculated the tsunami simulation by non-linear long-wave theory using the staggered grid and leap flog scheme. We used Fujii and Satake (2011)'s model ver.4.2 as the tsunami source. The inundation model of Rikuzentakata city was constructed by fine ground level data of 10m mesh. In this simulation, the shore and river banks were set in boundary of calculation mesh. At that time, we have calculated two patterns of simulation, one condition is that a bank doesn't collapse even if tsunami overflows on it, another condition is that a bank collapses if tsunami overflows on it and its discharge exceeds the threshold. We can use the inundation area data, which was obtained by Geospatial Information Authority of Japan (GSI), and height data of tsunami trace, which were obtained by the 2011 Tohoku Earthquake Joint Survey (TTJS) group, as "static" verification data. Comparing the inundation area of simulation result with its observation by GSI, both areas are matched very well. And then, correlation coefficient between tsunami height data resulted from simulation and observed by TTJS is 0.756. In order to verify tsunami arrival time, we used the time stamp data which were recorded to digital camera etc. by citizens. Ushiyama and Yokomaku (2012) collected these tsunami stamp data and estimated the arrival time in Rikuzentakata city. We compared the

  9. Analysis in natural time domain of geoelectric time series monitored prior two strong earthquakes occurred in Mexico

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, A.; Flores-Marquez, L. E.

    2009-12-01

    The short-time prediction of seismic phenomena is currently an important problem in the scientific community. In particular, the electromagnetic processes associated with seismic events take in great interest since the VAN method was implemented. The most important features of this methodology are the seismic electrical signals (SES) observed prior to strong earthquakes. SES has been observed in the electromagnetic series linked to EQs in Greece, Japan and Mexico. By mean of the so-called natural time domain, introduced by Varotsos et al. (2001), they could characterize signals of dichotomic nature observed in different systems, like SES and ionic current fluctuations in membrane channels. In this work we analyze SES observed in geoelectric time series monitored in Guerrero, México. Our analysis concern with two strong earthquakes occurred, on October 24, 1993 (M=6.6) and September 14, 1995 (M=7.3). The time series of the first one displayed a seismic electric signal six days before the main shock and for the second case the time series displayed dichotomous-like fluctuations some months before the EQ. In this work we present the first results of the analysis in natural time domain for the two cases which seems to be agreeing with the results reported by Varotsos. P. Varotsos, N. Sarlis, and E. Skordas, Practica of the Athens Academy 76, 388 (2001).

  10. Automatic analysis of the 2015 Gorkha earthquake aftershock sequence.

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Lyon-Caen, H.; Bollinger, L.; Rietbrock, A.; Letort, J.; Adhikari, L. B.

    2016-12-01

    The Mw 7.8 Gorkha earthquake, that partially ruptured the Main Himalayan Thrust North of Kathmandu on the 25th April 2015, was the largest and most catastrophic earthquake striking Nepal since the great M8.4 1934 earthquake. This mainshock was followed by multiple aftershocks, among them, two notable events that occurred on the 12th May with magnitudes of 7.3 Mw and 6.3 Mw. Due to these recent events it became essential for the authorities and for the scientific community to better evaluate the seismic risk in the region through a detailed analysis of the earthquake catalog, amongst others, the spatio-temporal distribution of the Gorkha aftershock sequence. Here we complement this first study by doing a microseismic study using seismic data coming from the eastern part of the Nepalese Seismological Center network associated to one broadband station in Everest. Our primary goal is to deliver an accurate catalog of the aftershock sequence. Due to the exceptional number of events detected we performed an automatic picking/locating procedure which can be splitted in 4 steps: 1) Coarse picking of the onsets using a classical STA/LTA picker, 2) phase association of picked onsets to detect and declare seismic events, 3) Kurtosis pick refinement around theoretical arrival times to increase picking and location accuracy and, 4) local magnitude calculation based amplitude of waveforms. This procedure is time efficient ( 1 sec/event), reduces considerably the location uncertainties ( 2 to 5 km errors) and increases the number of events detected compared to manual processing. Indeed, the automatic detection rate is 10 times higher than the manual detection rate. By comparing to the USGS catalog we were able to give a new attenuation law to compute local magnitudes in the region. A detailed analysis of the seismicity shows a clear migration toward the east of the region and a sudden decrease of seismicity 100 km east of Kathmandu which may reveal the presence of a tectonic

  11. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations

  12. GPS constraints on M 7-8 earthquake recurrence times for the New Madrid seismic zone

    USGS Publications Warehouse

    Stuart, W.D.

    2001-01-01

    Newman et al. (1999) estimate the time interval between the 1811-1812 earthquake sequence near New Madrid, Missouri and a future similar sequence to be at least 2,500 years, an interval significantly longer than other recently published estimates. To calculate the recurrence time, they assume that slip on a vertical half-plane at depth contributes to the current interseismic motion of GPS benchmarks. Compared to other plausible fault models, the half-plane model gives nearly the maximum rate of ground motion for the same interseismic slip rate. Alternative models with smaller interseismic fault slip area can satisfy the present GPS data by having higher slip rate and thus can have earthquake recurrence times much less than 2,500 years.

  13. Detection of ground motions using high-rate GPS time-series

    NASA Astrophysics Data System (ADS)

    Psimoulis, Panos A.; Houlié, Nicolas; Habboub, Mohammed; Michel, Clotaire; Rothacher, Markus

    2018-05-01

    Monitoring surface deformation in real-time help at planning and protecting infrastructures and populations, manage sensitive production (i.e. SEVESO-type) and mitigate long-term consequences of modifications implemented. We present RT-SHAKE, an algorithm developed to detect ground motions associated with landslides, sub-surface collapses, subsidences, earthquakes or rock falls. RT-SHAKE detects first transient changes in individual GPS time series before investigating for spatial correlation(s) of observations made at neighbouring GPS sites and eventually issue a motion warning. In order to assess our algorithm on fast (seconds to minute), large (from 1 cm to meters) and spatially consistent surface motions, we use the 1 Hz GEONET GNSS network data of the Tohoku-Oki MW9.0 2011 as a test scenario. We show the delay of detection of seismic wave arrival by GPS records is of ˜10 seconds with respect to an identical analysis based on strong-motion data and this time delay depends on the level of the time-variable noise. Nevertheless, based on the analysis of the GPS network noise level and ground motion stochastic model, we show that RT-SHAKE can narrow the range of earthquake magnitude, by setting a lower threshold of detected earthquakes to MW6.5-7, if associated with a real-time automatic earthquake location system.

  14. Strengthening economy through tourism sector by tourist arrival prediction

    NASA Astrophysics Data System (ADS)

    Supriatna, A.; Subartini, B.; Hertini, E.; Sukono; Rumaisha; Istiqamah, N.

    2018-03-01

    Tourism sector has a tendency to be proposed as a support for national economy to many countries with various of natural resources, such as Indonesia. The number of tourist is very related with the success rate of a tourist attraction, since it is also related with planning and strategy. Hence, it is important to predict the climate of tourism in Indonesia, especially the number of domestic or international tourist in the future. This study uses Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method to predict the number of tourist arrival to tourism strategic areas in Nusa Tenggara Barat. The prediction was done using the international and domestic tourist arrival to Nusa Tenggara Barat data from January 2008 to June 2016. The established SARIMA method was (0,1,1)(0,0,2)12 with MAPE error of 15.76. The prediction for the next six time periods showed that the highest number of tourist arrival is during September 2016 with 330,516 tourist arrivals. Prediction of tourist arrival hopefully might be used as reference for local and national government to make policies to strengthen national economy for a long period of time

  15. One dimensional P wave velocity structure of the crust beneath west Java and accurate hypocentre locations from local earthquake inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supardiyono; Santosa, Bagus Jaya; Physics Department, Faculty of Mathematics and Natural Sciences, Sepuluh Nopember Institute of Technology, Surabaya

    A one-dimensional (1-D) velocity model and station corrections for the West Java zone were computed by inverting P-wave arrival times recorded on a local seismic network of 14 stations. A total of 61 local events with a minimum of 6 P-phases, rms 0.56 s and a maximum gap of 299 Degree-Sign were selected. Comparison with previous earthquake locations shows an improvement for the relocated earthquakes. Tests were carried out to verify the robustness of inversion results in order to corroborate the conclusions drawn out from our reasearch. The obtained minimum 1-D velocity model can be used to improve routine earthquakemore » locations and represents a further step toward more detailed seismotectonic studies in this area of West Java.« less

  16. Increases in seismicity rate in the Tokyo Metropolitan area after the 2011 Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Ishibe, T.; Satake, K.; Sakai, S.; Shimazaki, K.; Tsuruoka, H.; Nakagawa, S.; Hirata, N.

    2013-12-01

    Ibaraki and northern Chiba prefectures is still continuing. The ΔCFF values for the earthquakes after March 2011 show more positive values than those before March 2011, supporting a triggering hypothesis that the 2011 Tohoku earthquake triggered the seismicity changes in the Kanto region. Dynamic stress changes due to the passage of seismic waves would also contribute the rate changes. Indeed, many remotely-triggered local events, whose occurrence times are well correlated with the arrival times of impulsive P-wave or large amplitudes of Rayleigh or Love waves, were identified from densely distributed seismograms in Japanese islands (e.g., Yukutake et al., 2011; Miyazawa, 2012). Indirectly triggered earthquakes also contribute because stress changes from neighboring indirect aftershocks could be comparable with or larger than those from a distant mainshock. Post-seismic slip and viscoelastic effects will increase the importance of earthquake triggering.

  17. Arrival Metering Precision Study

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.

    2015-01-01

    This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.

  18. The Great "Non-Event" of 7 January 2014: Challenges in CME Arrival Time and Geomagnetic Storm Strength Prediction

    NASA Astrophysics Data System (ADS)

    Mays, M. L.; Thompson, B. J.; Jian, L.; Evans, R. M.; Savani, N.; Odstrcil, D.; Nieves-Chinchilla, T.; Richardson, I. G.

    2014-12-01

    We present a case study of the 7 January 2014 event in order to highlight current challenges in space weather forecasting of CME arrival time and geomagnetic storm strength. On 7 January 2014 an X1.2 flare and CME with a radial speed ~2400 km/s was observed from active region 11943. The flaring region was only ten degrees southwest of disk center with extensive dimming south of the active region and preliminary analysis indicated a fairly rapid arrival at Earth (~36 hours). Of the eleven forecasting groups world-wide who participated in CCMC's Space Weather Scoreboard (http://kauai.ccmc.gsfc.nasa.gov/SWScoreBoard), nine predicted early arrivals and six predicted dramatic geomagnetic storm impacts (Kp predictions ranged from 6 to 9). However, the CME only had a glancing blow arrival at Earth - Kp did not rise above 3 and there was no geomagnetic storm. What happened? One idea is that the large coronal hole to the northeast of the active region could have deflected the CME. This coronal hole produced a high speed stream near Earth reaching an uncommon speed of 900 km/s four days after the observed CME arrival. However, no clear CME deflection was observed in the outer coronagraph fields of view (~5-20Rs) where CME measurements are derived to initiate models, therefore deflection seems unlikely. Another idea is the effect of the CME flux rope orientation with respect to Earth orbit. We show that using elliptical major and minor axis widths obtained by GCS fitting for the initial CME parameters in ENLIL would have improved the forecast to better reflect the observed glancing blow in-situ signature. We also explore the WSA-ENLIL+Cone simulations, the background solar wind solution, and compare with the observed CME arrival at Venus (from Venus Express) and Earth.

  19. Earthquakes, September-October 1993

    USGS Publications Warehouse

    Person, W.J.

    1993-01-01

    The fatalities in the United States were caused by two earthquakes in southern Oregon on September 21. These earthquakes, both with magnitude 6.0 and separated in time by about 2 hrs, led to the deaths of two people. One of these deaths was apparently due to a heart attack induced by the earthquake

  20. Earthquake early Warning ShakeAlert system: West coast wide production prototype

    USGS Publications Warehouse

    Kohler, Monica D.; Cochran, Elizabeth S.; Given, Douglas; Guiwits, Stephen; Neuhauser, Doug; Hensen, Ivan; Hartog, Renate; Bodin, Paul; Kress, Victor; Thompson, Stephen; Felizardo, Claude; Brody, Jeff; Bhadha, Rayo; Schwarz, Stan

    2017-01-01

    Earthquake early warning (EEW) is an application of seismological science that can give people, as well as mechanical and electrical systems, up to tens of seconds to take protective actions before peak earthquake shaking arrives at a location. Since 2006, the U.S. Geological Survey has been working in collaboration with several partners to develop EEW for the United States. The goal is to create and operate an EEW system, called ShakeAlert, for the highest risk areas of the United States, starting with the West Coast states of California, Oregon, and Washington. In early 2016, the Production Prototype v.1.0 was established for California; then, in early 2017, v.1.2 was established for the West Coast, with earthquake notifications being distributed to a group of beta users in California, Oregon, and Washington. The new ShakeAlert Production Prototype was an outgrowth from an earlier demonstration EEW system that began sending test notifications to selected users in California in January 2012. ShakeAlert leverages the considerable physical, technical, and organizational earthquake monitoring infrastructure of the Advanced National Seismic System, a nationwide federation of cooperating seismic networks. When fully implemented, the ShakeAlert system may reduce damage and injury caused by large earthquakes, improve the nation’s resilience, and speed recovery.

  1. Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace

    NASA Technical Reports Server (NTRS)

    Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett

    2013-01-01

    Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.

  2. Intermediate-term earthquake prediction

    USGS Publications Warehouse

    Knopoff, L.

    1990-01-01

    The problems in predicting earthquakes have been attacked by phenomenological methods from pre-historic times to the present. The associations of presumed precursors with large earthquakes often have been remarked upon. the difficulty in identifying whether such correlations are due to some chance coincidence or are real precursors is that usually one notes the associations only in the relatively short time intervals before the large events. Only rarely, if ever, is notice taken of whether the presumed precursor is to be found in the rather long intervals that follow large earthquakes, or in fact is absent in these post-earthquake intervals. If there are enough examples, the presumed correlation fails as a precursor in the former case, while in the latter case the precursor would be verified. Unfortunately, the observer is usually not concerned with the 'uniteresting' intervals that have no large earthquakes

  3. Earthquake forewarning — A multidisciplinary challenge from the ground up to space

    NASA Astrophysics Data System (ADS)

    Freund, Friedemann

    2013-08-01

    Most destructive earthquakes nucleate at between 5-7 km and about 35-40 km depth. Before earthquakes, rocks are subjected to increasing stress. Not every stress increase leads to rupture. To understand pre-earthquake phenomena we note that igneous and high-grade metamorphic rocks contain defects which, upon stressing, release defect electrons in the oxygen anion sublattice, known as positive holes. These charge carriers are highly mobile, able to flow out of stressed rocks into surrounding unstressed rocks. They form electric currents, which emit electromagnetic radiation, sometimes in pulses, sometimes sustained. The arrival of positive holes at the ground-air interface can lead to air ionization, often exclusively positive. Ionized air rising upward can lead to cloud condensation. The upward flow of positive ions can lead to instabilities in the mesosphere, to mesospheric lightning, to changes in the Total Electron Content (TEC) at the lower edge of the ionosphere, and electric field turbulences. Advances in deciphering the earthquake process can only be achieved in a broadly multidisciplinary spirit.

  4. Retrospective stress-forecasting of earthquakes

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Crampin, Stuart

    2015-04-01

    Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to

  5. Distributed Fiber Optic Sensors for Earthquake Detection and Early Warning

    NASA Astrophysics Data System (ADS)

    Karrenbach, M. H.; Cole, S.

    2016-12-01

    Fiber optic cables placed along pipelines, roads or other infrastructure provide dense sampling of passing seismic wavefields. Laser interrogation units illuminate the fiber over its entire length, and strain at desired points along the fiber can be determined from the reflected signal. Single-mode optical fibers up to 50 km in length can provide a distributed acoustic sensing system (DAS) where the acoustic bandwidth of each channel is limited only by the round-trip time over the length of the cable (0.0005 s for a 50 km cable). Using a 10 m spatial resolution results in 4000 channels sampled at 2.5 kHz spanning a 40 km-long fiber deployed along a pipeline. The inline strain field is averaged along the fiber over a 10 m section of the cable at each desired spatial sample, creating a virtual sensor location. Typically, a dynamic strain sensitivity of sub-nanometers within each gauge along the entire length of the fiber can be achieved. This sensitivity corresponds to a particle displacement figure of approximately -90 dB ms-2Hz-½. Such a fiber optic sensor is not as sensitive as long-period seismometers used in earthquake networks, but given the large number of channels, small to medium-sized earthquakes can be detected, depending on distance from the array, and can be located with precision through arrival time inversions. We show several examples of earthquake recordings using distributed fiber optic arrays that were deployed originally for other purposes. A 480 km long section of a pipeline in Turkey was actively monitored with a DAS fiber optic system for activities in the immediate vicinity of the pipeline. The densely spaced sensor array along the pipeline detected earthquakes of 3.6 - 7.2 magnitude range, centered near Van, Turkey. Secondly, a fiber optic system located along a rail line near the Salton Sea in California was used to create a smaller scale fiber optic sensor array, on which earthquakes with magnitudes 2.2 - 2.7 were recorded from epicenters

  6. Modelling the Time Dependence of Frequency Content of Long-period Volcanic Earthquakes

    NASA Astrophysics Data System (ADS)

    Jousset, P.; Neuberg, J. W.

    2001-12-01

    Broad-band seismic networks provide a powerfull tool for the observation and analysis of volcanic earthquakes. The amplitude spectrogram allows us to follow the frequency content of these signals with time. Observed amplitude spectrograms of long-period volcanic earthquakes display distinct spectral lines sometimes varying by several Hertz over time spans of minutes to hours. We first present several examples associated with various phases of volcanic activity at Soufrière Hills volcano, Montserrat. Then, we present and discuss two mechanisms to explain such frequency changes in the spectrograms: (i) change of physical properties within the magma and, (ii) change in the triggering frequency of repeated sources within the conduit. We use 2D and 3D finite-difference modelling methods to compute the propagation of seismic waves in simplified volcanic structures: (i) we model the gliding spectral lines by introducing continuously changing magma properties during the wavefield computation; (ii) we explore the resulting pressure distribution within the conduit and its potential role in triggering further events. We obtain constraints on both amplitude and time-scales for changes of magma properties that are required to model gliding lines in amplitude spectrograms.

  7. Catalog of Oroville, California, earthquakes; June 7, 1975 to July 31, 1976

    USGS Publications Warehouse

    Mantis, Constance; Lindh, Allan; Savage, William; Marks, Shirley

    1979-01-01

    On August 1, 1975, at 2020 GMT a magnitude 5.7 (ML) earthquake occurred 15 km south of Oroville, California, in the western foothills of the Sierra Nevada. It was preceded by 61 foreshocks that began on June 7, 1975, and was followed by thousands of aftershocks. Several studies have reported locations or analyses of various subsets of the Oroville sequence, including Morrison and others (1975), Savage and others (1975), Lester and others (1975), Toppozada and others (1975), Ryall and others (1975), Bufe and others (1976), Morrison and others (1976), and Lahr and others (1976). In this report arrival time data have been compiled from the original records at several institutions to produce a single catalog of the Oroville sequence from June 7, 1975, through July 31, 1976. This study has four objectives: to compile a list of earthquakes in the Oroville sequence that is as complete as possible above the minimum magnitude threshold of approximately 1.0;to determine accurate and uniform hypocentral coordinates for the earthquakes;to determine reliable and consistent magnitude values for the sequence; andto provide a statistically uniform basis for further investigation of the physical processes involved in the Oroville sequence as revealed by the parameters of the foreshocks and aftershocks.The basis and procedures for the data analysis are described in this report.

  8. Earthquake potential revealed by tidal influence on earthquake size-frequency statistics

    NASA Astrophysics Data System (ADS)

    Ide, Satoshi; Yabe, Suguru; Tanaka, Yoshiyuki

    2016-11-01

    The possibility that tidal stress can trigger earthquakes is long debated. In particular, a clear causal relationship between small earthquakes and the phase of tidal stress is elusive. However, tectonic tremors deep within subduction zones are highly sensitive to tidal stress levels, with tremor rate increasing at an exponential rate with rising tidal stress. Thus, slow deformation and the possibility of earthquakes at subduction plate boundaries may be enhanced during periods of large tidal stress. Here we calculate the tidal stress history, and specifically the amplitude of tidal stress, on a fault plane in the two weeks before large earthquakes globally, based on data from the global, Japanese, and Californian earthquake catalogues. We find that very large earthquakes, including the 2004 Sumatran, 2010 Maule earthquake in Chile and the 2011 Tohoku-Oki earthquake in Japan, tend to occur near the time of maximum tidal stress amplitude. This tendency is not obvious for small earthquakes. However, we also find that the fraction of large earthquakes increases (the b-value of the Gutenberg-Richter relation decreases) as the amplitude of tidal shear stress increases. The relationship is also reasonable, considering the well-known relationship between stress and the b-value. This suggests that the probability of a tiny rock failure expanding to a gigantic rupture increases with increasing tidal stress levels. We conclude that large earthquakes are more probable during periods of high tidal stress.

  9. Earthquake swarm in the non-volcanic area north of Harrat Lunayyir, western Saudi Arabia: observations and imaging

    NASA Astrophysics Data System (ADS)

    Youssof, M.; Mai, P. M.; Parisi, L.; Tang, Z.; Zahran, H. M.; El-Hadidy, S. Y.; Al-Raddadi, W.; Sami, M.; El-Hadidy, M. S. Y.

    2017-12-01

    We report on an unusual earthquake swarm in a non-volcanic area of western Saudi Arabia. Since March 2017, hundreds of earthquakes were recorded, reaching magnitude Ml 3.7, which occurred within a very narrowly defined rock volume. The seismicity is shallow, mostly between 4 to 8 km depths, with some events reaching as deep as 16 km. One set of events aligns into a well-defined horizontal tube of 2 km height, 1 km width, and 4-5 km E-W extent. Other event clusters exist, but are less well-defined. The focal mechanism solutions of the largest earthquakes indicate normal faulting, which agree with the regional stress field. The earthquake swarm occurs 75 km NW of Harrat Lunayyir. However, the area of interest doesn't seem to be associated with the well-known volcanic area of Harrat Lunayyir, which experienced a magmatic dike intrusion in 2009 with intense seismic activity (including a surface rupturing Mw 5.7 earthquake). Furthermore, the study area is characterized by a complex shear system, which host gold mineralization. Therefore, the exact origin of the swarm sequence is enigmatic as it's the first of its kind in this region. By using continuous seismological data recorded by the Saudi Geological Survey (SGS) that operates three permanent seismic stations and a temporary network of 11 broadband sensors, we analyze the seismic patterns in space and time. For the verified detected events, we assemble the body wave arrival times that are inverted for the velocity structures along with events hypocenters to investigate possible causes of this swarm sequence, that is, whether the activity is of tectonic- or hydro-thermal origin.

  10. Analysis of Deep Seafloor Arrivals Observed on NPAL04

    DTIC Science & Technology

    2012-12-03

    transmission station to the scattering point (black line) to compute the time spent on the PE-predicted path to the scattering point. This time would...arrives at the OBSs at times corresponding to caustics of the PE predicted time fronts, there are large amplitude, late arrivals that occur between... caustics and even after the PE predicted coda. Similar analysis was done for T500 to T2300 with similar results and is discussed in Section 4 of

  11. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  12. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  13. Bayesian historical earthquake relocation: an example from the 1909 Taipei earthquake

    USGS Publications Warehouse

    Minson, Sarah E.; Lee, William H.K.

    2014-01-01

    Locating earthquakes from the beginning of the modern instrumental period is complicated by the fact that there are few good-quality seismograms and what traveltimes do exist may be corrupted by both large phase-pick errors and clock errors. Here, we outline a Bayesian approach to simultaneous inference of not only the hypocentre location but also the clock errors at each station and the origin time of the earthquake. This methodology improves the solution for the source location and also provides an uncertainty analysis on all of the parameters included in the inversion. As an example, we applied this Bayesian approach to the well-studied 1909 Mw 7 Taipei earthquake. While our epicentre location and origin time for the 1909 Taipei earthquake are consistent with earlier studies, our focal depth is significantly shallower suggesting a higher seismic hazard to the populous Taipei metropolitan area than previously supposed.

  14. A physically-based earthquake recurrence model for estimation of long-term earthquake probabilities

    USGS Publications Warehouse

    Ellsworth, William L.; Matthews, Mark V.; Nadeau, Robert M.; Nishenko, Stuart P.; Reasenberg, Paul A.; Simpson, Robert W.

    1999-01-01

    A physically-motivated model for earthquake recurrence based on the Brownian relaxation oscillator is introduced. The renewal process defining this point process model can be described by the steady rise of a state variable from the ground state to failure threshold as modulated by Brownian motion. Failure times in this model follow the Brownian passage time (BPT) distribution, which is specified by the mean time to failure, μ, and the aperiodicity of the mean, α (equivalent to the familiar coefficient of variation). Analysis of 37 series of recurrent earthquakes, M -0.7 to 9.2, suggests a provisional generic value of α = 0.5. For this value of α, the hazard function (instantaneous failure rate of survivors) exceeds the mean rate for times > μ⁄2, and is ~ ~ 2 ⁄ μ for all times > μ. Application of this model to the next M 6 earthquake on the San Andreas fault at Parkfield, California suggests that the annual probability of the earthquake is between 1:10 and 1:13.

  15. Rupture History of the 2001 Nisqually Washington Earthquake

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Creager, K. C.; Crosson, R. S.

    2001-12-01

    We analyze the temporal-spatial rupture history of the magnitude 6.8 February 28, 2001 Nisqually earthquake using about two dozen 3-component strong-motion records from the Pacific Northwest Seismic Network (PNSN) and the USGS National Strong Motion Program (NSMP) network. We employ a finite-fault inversion scheme similar to Hartzell and Heaton [Bull. Seism. Soc. Am., 1983] to recover the slip history. We assume rupture initiates at the epicenter and origin time determined using PNSN P arrival times and a high-resolution 3-D velocity model. Hypocentral depth is 54 km based on our analysis of teleseismic pP-P times and the regional 3-D model. Using the IASP91 standard Earth model to explain the pP-P times gives a depth of 58 km. Three-component strong motion accelerograms are integrated to obtain velocity, low-pass filtered at 4 s period and windowed to include the direct P- and S- wave arrivals. Theoretical Green's functions are calculated using the Direct Solution Method (DSM) [Cummins, etal, Geophys. Res. Lett., 1994] for each of 169, 4km x 4km, subfaults which lie on one of the two fault plates specified by the Harvard CMT solution. A unique 1-D model that gives an adequate representation of velocity structure for each station is obtained by path averaging the 3-D tomographic model. The S velocity model is generated from the P velocity model. For Vp larger than 4.5 km/s, We use the linear relationship Vs=0.18+0.52Vp obtained from laboratory measurements of local mafic rock samples. For slower velocities, probably associated with sedimentary rocks, we derived Vs=Vp/2.04 which best fits the strong-motion S-arrival times. The resulting source model indicates unilateral rupture along a fault that is elongated in the north-south direction. Inversion for the near vertical (strike 1° , dip 72° ) and horizontal (strike 183° , dip 18° ) fault planes reveal the same source directivity, however, the horizontal fault plane gives a slightly better fit to the data than

  16. Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience

    NASA Astrophysics Data System (ADS)

    García, Alicia; De la Cruz-Reyna, Servando; Marrero, José M.; Ortiz, Ramón

    2016-05-01

    Under certain conditions, volcano-tectonic (VT) earthquakes may pose significant hazards to people living in or near active volcanic regions, especially on volcanic islands; however, hazard arising from VT activity caused by localized volcanic sources is rarely addressed in the literature. The evolution of VT earthquakes resulting from a magmatic intrusion shows some orderly behaviour that may allow the occurrence and magnitude of major events to be forecast. Thus governmental decision makers can be supplied with warnings of the increased probability of larger-magnitude earthquakes on the short-term timescale. We present here a methodology for forecasting the occurrence of large-magnitude VT events during volcanic crises; it is based on a mean recurrence time (MRT) algorithm that translates the Gutenberg-Richter distribution parameter fluctuations into time windows of increased probability of a major VT earthquake. The MRT forecasting algorithm was developed after observing a repetitive pattern in the seismic swarm episodes occurring between July and November 2011 at El Hierro (Canary Islands). From then on, this methodology has been applied to the consecutive seismic crises registered at El Hierro, achieving a high success rate in the real-time forecasting, within 10-day time windows, of volcano-tectonic earthquakes.

  17. Analysis of pre-earthquake ionospheric anomalies before the global M = 7.0+ earthquakes in 2010

    NASA Astrophysics Data System (ADS)

    Yao, Y. B.; Chen, P.; Zhang, S.; Chen, J. J.; Yan, F.; Peng, W. F.

    2012-03-01

    The pre-earthquake ionospheric anomalies that occurred before the global M = 7.0+ earthquakes in 2010 are investigated using the total electron content (TEC) from the global ionosphere map (GIM). We analyze the possible causes of the ionospheric anomalies based on the space environment and magnetic field status. Results show that some anomalies are related to the earthquakes. By analyzing the time of occurrence, duration, and spatial distribution of these ionospheric anomalies, a number of new conclusions are drawn, as follows: earthquake-related ionospheric anomalies are not bound to appear; both positive and negative anomalies are likely to occur; and the earthquake-related ionospheric anomalies discussed in the current study occurred 0-2 days before the associated earthquakes and in the afternoon to sunset (i.e. between 12:00 and 20:00 local time). Pre-earthquake ionospheric anomalies occur mainly in areas near the epicenter. However, the maximum affected area in the ionosphere does not coincide with the vertical projection of the epicenter of the subsequent earthquake. The directions deviating from the epicenters do not follow a fixed rule. The corresponding ionospheric effects can also be observed in the magnetically conjugated region. However, the probability of the anomalies appearance and extent of the anomalies in the magnetically conjugated region are smaller than the anomalies near the epicenter. Deep-focus earthquakes may also exhibit very significant pre-earthquake ionospheric anomalies.

  18. Aftershock Distribution of the Mw=7.8 April 16, 2016 Pedernales Ecuador Subduction Earthquake: Constraints from 3D Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Font, Y.; Agurto-Detzel, H.; Alvarado, A. P.; Regnier, M. M.; Rolandone, F.; Charvis, P.; Mothes, P. A.; Nocquet, J. M.; Jarrin, P.; Ambrois, D.; Maron, C.; Deschamps, A.; Cheze, J.; Peix, F., Sr.; Ruiz, M. C.; Gabriela, P.; Acero, W.; Singaucho, J. C.; Viracucha, C.; Vasconez, F.; De Barros, L.; Mercerat, D.; Courboulex, F.; Galve, A.; Godano, M.; Monfret, T.; Ramos, C.; Martin, X.; Rietbrock, A.; Beck, S. L.; Metlzer, A.

    2017-12-01

    The Mw7.8 Pedernales earthquake is associated with the subduction of the Nazca Plate beneath the South American Plate. The mainshock caused many casualties and widespread damage across the Manabi province. The 150 km-long coseismic rupture area extends beneath the coastline, near 25 km depth. The rupture propagated southward and involved the successive rupture of two discrete asperities, with a maximum slip ( 5 m) on the southern patch. The rupture area is consistent with the highly locked regions observed on interseismic coupling models, overlaps the 7.2 Mw rupture zone, and terminates near where the 1906 Mw 8.8 megathrust earthquake rupture zone is estimated to have ended. Two neighboring highly coupled patches remain locked: (A) south and updip of the coseismic rupture zone and (B) north and downdip. In this study, we are working on the earthquake locations of the first month of aftershocks and compare the seismicity distribution to the interseismic coupling, the rupture area and to early afterslip. We use continuous seismic traces recorded on the permanent network partly installed in the framework of the collaboration between l'Institut de Recherche pour le Développement (France) and the Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador. Detections are conducted using Seiscomp in play-back mode and arrival-times are manually picked. To improve earthquake locations, we use the MAXi technique and a heterogeneous a priori P-wave velocity model that approximates the large velocity variations of the Ecuadorian subduction system. Aftershocks align along 3 to 4 main clusters that strike perpendicularly to the trench, and mostly updip of the co-seismic rupture. Seismicity develops over portions of plate interface that are known to be strongly locked or almost uncoupled. The seismicity pattern is similar to the one observed during a decade of observation during the interseismic period with swarms such as the Galera alignment, Jama and Cabo

  19. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, Andrew V.; Hayes, Gavin P.; Wei, Yong; Convers, Jaime

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5–9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast.

  20. eqMAXEL: A new automatic earthquake location algorithm implementation for Earthworm

    NASA Astrophysics Data System (ADS)

    Lisowski, S.; Friberg, P. A.; Sheen, D. H.

    2017-12-01

    A common problem with automated earthquake location systems for a local to regional scale seismic network is false triggering and false locations inside the network caused by larger regional to teleseismic distance earthquakes. This false location issue also presents a problem for earthquake early warning systems where societal impacts of false alarms can be very expensive. Towards solving this issue, Sheen et al. (2016) implemented a robust maximum-likelihood earthquake location algorithm known as MAXEL. It was shown with both synthetics and real-data for a small number of arrivals, that large regional events were easily identifiable through metrics in the MAXEL algorithm. In the summer of 2017, we collaboratively implemented the MAXEL algorithm into a fully functional Earthworm module and tested it in regions of the USA where false detections and alarming are observed. We show robust improvement in the ability of the Earthworm system to filter out regional and teleseismic events that would have falsely located inside the network using the traditional Earthworm hypoinverse solution. We also explore using different grid sizes in the implementation of the MAXEL algorithm, which was originally designed with South Korea as the target network size.

  1. Real-time 3-D space numerical shake prediction for earthquake early warning

    NASA Astrophysics Data System (ADS)

    Wang, Tianyun; Jin, Xing; Huang, Yandan; Wei, Yongxiang

    2017-12-01

    In earthquake early warning systems, real-time shake prediction through wave propagation simulation is a promising approach. Compared with traditional methods, it does not suffer from the inaccurate estimation of source parameters. For computation efficiency, wave direction is assumed to propagate on the 2-D surface of the earth in these methods. In fact, since the seismic wave propagates in the 3-D sphere of the earth, the 2-D space modeling of wave direction results in inaccurate wave estimation. In this paper, we propose a 3-D space numerical shake prediction method, which simulates the wave propagation in 3-D space using radiative transfer theory, and incorporate data assimilation technique to estimate the distribution of wave energy. 2011 Tohoku earthquake is studied as an example to show the validity of the proposed model. 2-D space model and 3-D space model are compared in this article, and the prediction results show that numerical shake prediction based on 3-D space model can estimate the real-time ground motion precisely, and overprediction is alleviated when using 3-D space model.

  2. The ``exceptional'' earthquake of 3 January 1117 in the Verona area (northern Italy): A critical time review and detection of two lost earthquakes (lower Germany and Tuscany)

    NASA Astrophysics Data System (ADS)

    Guidoboni, Emanuela; Comastri, Alberto; Boschi, Enzo

    2005-12-01

    In the seismological literature the 3 January 1117 earthquake represents an interesting case study, both for the sheer size of the area in which that event is recorded by the monastic sources of the 12th century, and for the amount of damage mentioned. The 1117 event has been added to the earthquake catalogues of up to five European countries (Italy, France, Belgium, Switzerland, the Iberian peninsula), and it is the largest historical earthquake for northern Italy. We have analyzed the monastic time system in the 12th century and, by means of a comparative analysis of the sources, have correlated the two shocks mentioned (in the night and in the afternoon of 3 January) to territorial effects, seeking to make the overall picture reported for Europe more consistent. The connection between the linguistic indications and the localization of the effects has allowed us to shed light, with a reasonable degree of approximation, upon two previously little known earthquakes, probably generated by a sequence of events. A first earthquake in lower Germany (I0 (epicentral intensity) VII-VIII MCS (Mercalli, Cancani, Sieberg), M 6.4) preceded the far more violent one in northern Italy (Verona area) by about 12-13 hours. The second event is the one reported in the literature. We have put forward new parameters for this Veronese earthquake (I0 IX MCS, M 7.0). A third earthquake is independently recorded in the northwestern area of Tuscany (Imax VII-VIII MCS), but for the latter event the epicenter and magnitude cannot be evaluated.

  3. IEEE 802.15.4 ZigBee-Based Time-of-Arrival Estimation for Wireless Sensor Networks.

    PubMed

    Cheon, Jeonghyeon; Hwang, Hyunsu; Kim, Dongsun; Jung, Yunho

    2016-02-05

    Precise time-of-arrival (TOA) estimation is one of the most important techniques in RF-based positioning systems that use wireless sensor networks (WSNs). Because the accuracy of TOA estimation is proportional to the RF signal bandwidth, using broad bandwidth is the most fundamental approach for achieving higher accuracy. Hence, ultra-wide-band (UWB) systems with a bandwidth of 500 MHz are commonly used. However, wireless systems with broad bandwidth suffer from the disadvantages of high complexity and high power consumption. Therefore, it is difficult to employ such systems in various WSN applications. In this paper, we present a precise time-of-arrival (TOA) estimation algorithm using an IEEE 802.15.4 ZigBee system with a narrow bandwidth of 2 MHz. In order to overcome the lack of bandwidth, the proposed algorithm estimates the fractional TOA within the sampling interval. Simulation results show that the proposed TOA estimation algorithm provides an accuracy of 0.5 m at a signal-to-noise ratio (SNR) of 8 dB and achieves an SNR gain of 5 dB as compared with the existing algorithm. In addition, experimental results indicate that the proposed algorithm provides accurate TOA estimation in a real indoor environment.

  4. Earthquake recurrence models fail when earthquakes fail to reset the stress field

    USGS Publications Warehouse

    Tormann, Thessa; Wiemer, Stefan; Hardebeck, Jeanne L.

    2012-01-01

    Parkfield's regularly occurring M6 mainshocks, about every 25 years, have over two decades stoked seismologists' hopes to successfully predict an earthquake of significant size. However, with the longest known inter-event time of 38 years, the latest M6 in the series (28 Sep 2004) did not conform to any of the applied forecast models, questioning once more the predictability of earthquakes in general. Our study investigates the spatial pattern of b-values along the Parkfield segment through the seismic cycle and documents a stably stressed structure. The forecasted rate of M6 earthquakes based on Parkfield's microseismicity b-values corresponds well to observed rates. We interpret the observed b-value stability in terms of the evolution of the stress field in that area: the M6 Parkfield earthquakes do not fully unload the stress on the fault, explaining why time recurrent models fail. We present the 1989 M6.9 Loma Prieta earthquake as counter example, which did release a significant portion of the stress along its fault segment and yields a substantial change in b-values.

  5. Real time numerical shake prediction incorporating attenuation structure: a case for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Ogiso, M.; Hoshiba, M.; Shito, A.; Matsumoto, S.

    2016-12-01

    Needless to say, heterogeneous attenuation structure is important for ground motion prediction, including earthquake early warning, that is, real time ground motion prediction. Hoshiba and Ogiso (2015, AGU Fall meeting) showed that the heterogeneous attenuation and scattering structure will lead to earlier and more accurate ground motion prediction in the numerical shake prediction scheme proposed by Hoshiba and Aoki (2015, BSSA). Hoshiba and Ogiso (2015) used assumed heterogeneous structure, and we discuss the effect of them in the case of 2016 Kumamoto Earthquake, using heterogeneous structure estimated by actual observation data. We conducted Multiple Lapse Time Window Analysis (Hoshiba, 1993, JGR) to the seismic stations located on western part of Japan to estimate heterogeneous attenuation and scattering structure. The characteristics are similar to the previous work of Carcole and Sato (2010, GJI), e.g. strong intrinsic and scattering attenuation around the volcanoes located on the central part of Kyushu, and relatively weak heterogeneities in the other area. Real time ground motion prediction simulation for the 2016 Kumamoto Earthquake was conducted using the numerical shake prediction scheme with 474 strong ground motion stations. Comparing the snapshot of predicted and observed wavefield showed a tendency for underprediction around the volcanic area in spite of the heterogeneous structure. These facts indicate the necessity of improving the heterogeneous structure for the numerical shake prediction scheme.In this study, we used the waveforms of Hi-net, K-NET, KiK-net stations operated by the NIED for estimating structure and conducting ground motion prediction simulation. Part of this study was supported by the Earthquake Research Institute, the University of Tokyo cooperative research program and JSPS KAKENHI Grant Number 25282114.

  6. Detection of high-frequency radiation sources during the 2004 Parkfield earthquake by a matched filter analysis

    NASA Astrophysics Data System (ADS)

    Uchide, T.; Shearer, P. M.

    2009-12-01

    Introduction Uchide and Ide [SSA Spring Meeting, 2009] proposed a new framework for studying the scaling and overall nature of earthquake rupture growth in terms of cumulative moment functions. For better understanding of rupture growth processes, spatiotemporally local processes are also important. The nature of high-frequency (HF) radiation has been investigated for some time, but its role in the earthquake rupture process is still unclear. A wavelet analysis reveals that the HF radiation (e.g., 4 - 32 Hz) of the 2004 Parkfield earthquake is peaky, which implies that the sources of the HF radiation are isolated in space and time. We experiment with applying a matched filter analysis using small template events occurring near the target event rupture area to test whether it can reveal the HF radiation sources for a regular large earthquake. Method We design a matched filter for multiple components and stations. Shelly et al. [2007] attempted identifying low-frequency earthquakes (LFE) in non-volcanic tremor waveforms by stacking the correlation coefficients (CC) between the seismograms of the tremor and the LFE. Differing from their method, our event detection indicator is the CC between the seismograms of the target and template events recorded at the same stations, since the key information for detecting the sources will be the arrival-time differences and the amplitude ratios among stations. Data from both the target and template events are normalized by the maximum amplitude of the seismogram of the template event in the cross-correlation time window. This process accounts for the radiation pattern and distance between the source and stations. At each small earthquake target, high values in the CC time series suggest the possibility of HF radiation during the mainshock rupture from a similar location to the target event. Application to the 2004 Parkfield earthquake We apply the matched filter method to the 2004 Parkfield earthquake (Mw 6.0). We use seismograms

  7. Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Zhao, Dapeng; Huang, Zhouchuan; Xu, Mingjie; Wang, Liangshu; Nishizono, Yukihisa; Inakura, Hirohito

    2018-05-01

    A high-resolution model of three-dimensional (3-D) P-wave velocity (Vp) tomography of the crust in the source area of the 2016 Kumamoto earthquake (M 7.3) in West Japan is determined using a large number of arrival times of first P-waves and reflected P-waves from the Moho discontinuity (PmP). The PmP data are collected from original seismograms of the Kumamoto aftershocks and other local crustal events in Kyushu. Detailed resolution tests show that the addition of the PmP data can significantly improve the resolution of the crustal tomography, especially that of the lower crust. Our results show that significant low-velocity (low-V) anomalies exist in the entire crust beneath the active arc volcanoes, which may reflect the pathway of arc magmas. The 2016 Kumamoto earthquake occurred at the edge of a small low-V zone in the upper crust. A significant low-V anomaly is revealed in the lower crust beneath the source zone, which may reflect the arc magma and fluids ascending from the mantle wedge. These results suggest that the rupture nucleation of the 2016 Kumamoto earthquake was affected by fluids and arc magma.

  8. Incorporating Real-time Earthquake Information into Large Enrollment Natural Disaster Course Learning

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H.; Hayes, G. P.; Villasenor, A.

    2010-12-01

    Although most would agree that the occurrence of natural disaster events such as earthquakes, volcanic eruptions, and floods can provide effective learning opportunities for natural hazards-based courses, implementing compelling materials into the large-enrollment classroom environment can be difficult. These natural hazard events derive much of their learning potential from their real-time nature, and in the modern 24/7 news-cycle where all but the most devastating events are quickly out of the public eye, the shelf life for an event is quite limited. To maximize the learning potential of these events requires that both authoritative information be available and course materials be generated as the event unfolds. Although many events such as hurricanes, flooding, and volcanic eruptions provide some precursory warnings, and thus one can prepare background materials to place the main event into context, earthquakes present a particularly confounding situation of providing no warning, but where context is critical to student learning. Attempting to implement real-time materials into large enrollment classes faces the additional hindrance of limited internet access (for students) in most lecture classrooms. In Earth 101 Natural Disasters: Hollywood vs Reality, taught as a large enrollment (150+ students) general education course at Penn State, we are collaborating with the USGS’s National Earthquake Information Center (NEIC) to develop efficient means to incorporate their real-time products into learning activities in the lecture hall environment. Over time (and numerous events) we have developed a template for presenting USGS-produced real-time information in lecture mode. The event-specific materials can be quickly incorporated and updated, along with key contextual materials, to provide students with up-to-the-minute current information. In addition, we have also developed in-class activities, such as student determination of population exposure to severe ground

  9. Detailed source process of the 2007 Tocopilla earthquake.

    NASA Astrophysics Data System (ADS)

    Peyrat, S.; Madariaga, R.; Campos, J.; Asch, G.; Favreau, P.; Bernard, P.; Vilotte, J.

    2008-05-01

    -waves arrivals, allowing the localization of the 2 sources. The main shock started north of the segment close to Tocopilla. The rupture propagated southward. The second source was identified to start about 20 seconds later and was located 50 km south from the hypocenter. The network configuration provides a good resolution for the inverted slip distribution in the north-south direction, but a lower resolution for the east-west extent of the slip. However, this study of the source process of this earthquake shows a complex source with at least two slip asperities of different dynamical behavior.

  10. What Can Sounds Tell Us About Earthquake Interactions?

    NASA Astrophysics Data System (ADS)

    Aiken, C.; Peng, Z.

    2012-12-01

    It is important not only for seismologists but also for educators to effectively convey information about earthquakes and the influences earthquakes can have on each other. Recent studies using auditory display [e.g. Kilb et al., 2012; Peng et al. 2012] have depicted catastrophic earthquakes and the effects large earthquakes can have on other parts of the world. Auditory display of earthquakes, which combines static images with time-compressed sound of recorded seismic data, is a new approach to disseminating information to a general audience about earthquakes and earthquake interactions. Earthquake interactions are influential to understanding the underlying physics of earthquakes and other seismic phenomena such as tremors in addition to their source characteristics (e.g. frequency contents, amplitudes). Earthquake interactions can include, for example, a large, shallow earthquake followed by increased seismicity around the mainshock rupture (i.e. aftershocks) or even a large earthquake triggering earthquakes or tremors several hundreds to thousands of kilometers away [Hill and Prejean, 2007; Peng and Gomberg, 2010]. We use standard tools like MATLAB, QuickTime Pro, and Python to produce animations that illustrate earthquake interactions. Our efforts are focused on producing animations that depict cross-section (side) views of tremors triggered along the San Andreas Fault by distant earthquakes, as well as map (bird's eye) views of mainshock-aftershock sequences such as the 2011/08/23 Mw5.8 Virginia earthquake sequence. These examples of earthquake interactions include sonifying earthquake and tremor catalogs as musical notes (e.g. piano keys) as well as audifying seismic data using time-compression. Our overall goal is to use auditory display to invigorate a general interest in earthquake seismology that leads to the understanding of how earthquakes occur, how earthquakes influence one another as well as tremors, and what the musical properties of these

  11. Long-period ground motions at near-regional distances caused by the PL wave from, inland earthquakes: Observation and numerical simulation of the 2004 Mid-Niigata, Japan, Mw6.6 earthquake

    NASA Astrophysics Data System (ADS)

    Furumura, T.; Kennett, B. L. N.

    2017-12-01

    We examine the development of large, long-period ground motions at near-regional distances (D=50-200 km) generated by the PL wave from large, shallow inland earthquakes, based on the analysis of strong motion records and finite-difference method (FDM) simulations of seismic wave propagation. PL wave can be represented as leaking modes of the crustal waveguide and are commonly observed at regional distances between 300 to 1000 km as a dispersed, long-period signal with a dominant period of about 20 s. However, observations of recent earthquakes at the dense K-NET and KiK-net strong motion networks in Japan demonstrate the dominance of the PL wave at near-regional (D=50-200 km) distances as, e.g., for the 2004 Mid Niigata, Japan, earthquake (Mw6.6; h=13 km). The observed PL wave signal between P and S wave shows a large, dispersed wave packet with dominant period of about T=4-10 s with amplitude almost comparable to or larger than the later arrival of the S and surface waves. Thus, the early arrivals of the long-period PL wave immediately after P wave can enhance resonance with large-scale constructions such as high-rise buildings and large oil-storage tanks etc. with potential for disaster. Such strong effects often occurred during the 2004 Mid Niigata earthquakes and other large earthquakes which occurred nearby the Kanto (Tokyo) basin. FDM simulation of seismic wave propagation employing realistic 3-D sedimentary structure models demonstrates the process by which the PL wave develops at near-regional distances from shallow, crustal earthquakes by constructive interference of the P wave in the long-period band. The amplitude of the PL wave is very sensitive to low-velocity structure in the near-surface. Lowered velocities help to develop large SV-to-P conversion and weaken the P-to-SV conversion at the free surface. Both effects enhance the multiple P reflections in the crustal waveguide and prevent the leakage of seismic energy into the mantle. However, a very

  12. It's "Your" Fault!: An Investigation into Earthquakes, Plate Tectonics, and Geologic Time

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2011-01-01

    Earthquakes "have" been in the news of late--from the disastrous 2010 Haitian temblor that killed more than 300,000 people to the March 2011 earthquake and devastating tsunami in Honshu, Japan, to the unexpected August 2011 earthquake in Mineral, Virginia, felt from Alabama to Maine and as far west as Illinois. As expected, these events…

  13. The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation

    USGS Publications Warehouse

    Newman, A.V.; Hayes, G.; Wei, Y.; Convers, J.

    2011-01-01

    The moment magnitude 7.8 earthquake that struck offshore the Mentawai islands in western Indonesia on 25 October 2010 created a locally large tsunami that caused more than 400 human causalities. We identify this earthquake as a rare slow-source tsunami earthquake based on: 1) disproportionately large tsunami waves; 2) excessive rupture duration near 125 s; 3) predominantly shallow, near-trench slip determined through finite-fault modeling; and 4) deficiencies in energy-to-moment and energy-to-duration-cubed ratios, the latter in near-real time. We detail the real-time solutions that identified the slow-nature of this event, and evaluate how regional reductions in crustal rigidity along the shallow trench as determined by reduced rupture velocity contributed to increased slip, causing the 5-9 m local tsunami runup and observed transoceanic wave heights observed 1600 km to the southeast. Copyright 2011 by the American Geophysical Union.

  14. Connecting slow earthquakes to huge earthquakes.

    PubMed

    Obara, Kazushige; Kato, Aitaro

    2016-07-15

    Slow earthquakes are characterized by a wide spectrum of fault slip behaviors and seismic radiation patterns that differ from those of traditional earthquakes. However, slow earthquakes and huge megathrust earthquakes can have common slip mechanisms and are located in neighboring regions of the seismogenic zone. The frequent occurrence of slow earthquakes may help to reveal the physics underlying megathrust events as useful analogs. Slow earthquakes may function as stress meters because of their high sensitivity to stress changes in the seismogenic zone. Episodic stress transfer to megathrust source faults leads to an increased probability of triggering huge earthquakes if the adjacent locked region is critically loaded. Careful and precise monitoring of slow earthquakes may provide new information on the likelihood of impending huge earthquakes. Copyright © 2016, American Association for the Advancement of Science.

  15. Position surveillance using one active ranging satellite and time-of-arrival of a signal from an independent satellite

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Frey, R. L.; Lewis, J. R.

    1980-01-01

    Position surveillance using one active ranging/communication satellite and the time-of-arrival of signals from an independent satellite was shown to be feasible and practical. A towboat on the Mississippi River was equipped with a tone-code ranging transponder and a receiver tuned to the timing signals of the GOES satellite. A similar transponder was located at the office of the towing company. Tone-code ranging interrogations were transmitted from the General Electric Earth Station Laboratory through ATS-6 to the towboat and to the ground truth transponder office. Their automatic responses included digital transmissions of time-of-arrival measurements derived from the GOES signals. The Earth Station Laboratory determined ranges from the satellites to the towboat and computed position fixes. The ATS-6 lines-of-position were more precise than 0.1 NMi, 1 sigma, and the GOES lines-of-position were more precise than 1.6 NMi, 1 sigma. High quality voice communications were accomplished with the transponders using a nondirectional antenna on the towboat. The simple and effective surveillance technique merits further evaluation using operational maritime satellites.

  16. Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region

    USGS Publications Warehouse

    Thurber, C.; Zhang, H.; Waldhauser, F.; Hardebeck, J.; Michael, A.; Eberhart-Phillips, D.

    2006-01-01

    We present a new three-dimensional (3D) compressional vvavespeed (V p) model for the Parkfield region, taking advantage of the recent seismicity associated with the 2003 San Simeon and 2004 Parkfield earthquake sequences to provide increased model resolution compared to the work of Eberhart-Phillips and Michael (1993) (EPM93). Taking the EPM93 3D model as our starting model, we invert the arrival-time data from about 2100 earthquakes and 250 shots recorded on both permanent network and temporary stations in a region 130 km northeast-southwest by 120 km northwest-southeast. We include catalog picks and cross-correlation and catalog differential times in the inversion, using the double-difference tomography method of Zhang and Thurber (2003). The principal Vp features reported by EPM93 and Michelini and McEvilly (1991) are recovered, but with locally improved resolution along the San Andreas Fault (SAF) and near the active-source profiles. We image the previously identified strong wavespeed contrast (faster on the southwest side) across most of the length of the SAF, and we also improve the image of a high Vp body on the northeast side of the fault reported by EPM93. This narrow body is at about 5- to 12-km depth and extends approximately from the locked section of the SAP to the town of Parkfield. The footwall of the thrust fault responsible for the 1983 Coalinga earthquake is imaged as a northeast-dipping high wavespeed body. In between, relatively low wavespeeds (<5 km/sec) extend to as much as 10-km depth. We use this model to derive absolute locations for about 16,000 earthquakes from 1966 to 2005 and high-precision double-difference locations for 9,000 earthquakes from 1984 to 2005, and also to determine focal mechanisms for 446 earthquakes. These earthquake locations and mechanisms show that the seismogenic fault is a simple planar structure. The aftershock sequence of the 2004 mainshock concentrates into the same structures defined by the pre-2004 seismicity

  17. MyShake - A smartphone app to detect earthquake

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.; Schreier, L.; Kwon, Y. W.

    2015-12-01

    We designed an android app that harnesses the accelerometers in personal smartphones to record earthquake-shaking data for research, hazard information and warnings. The app has the function to distinguish earthquake shakings from daily human activities based on the different patterns behind the movements. It also can be triggered by the traditional earthquake early warning (EEW) system to record for a certain amount of time to collect earthquake data. When the app is triggered by the earthquake-like movements, it sends the trigger information back to our server which contains time and location of the trigger, at the same time, it stores the waveform data on local phone first, and upload to our server later. Trigger information from multiple phones will be processed in real time on the server to find the coherent signal to confirm the earthquakes. Therefore, the app provides the basis to form a smartphone seismic network that can detect earthquake and even provide warnings. A planned public roll-out of MyShake could collect millions of seismic recordings for large earthquakes in many regions around the world.

  18. Tsunami Source Estimate for the 1960 Chilean Earthquake from Near- and Far-Field Observations

    NASA Astrophysics Data System (ADS)

    Ho, T.; Satake, K.; Watada, S.; Fujii, Y.

    2017-12-01

    The tsunami source of the 1960 Chilean earthquake was estimated from the near- and far-field tsunami data. The 1960 Chilean earthquake is known as the greatest earthquake instrumentally ever recorded. This earthquake caused a large tsunami which was recorded by 13 near-field tidal gauges in South America, and 84 far-field stations around the Pacific Ocean at the coasts of North America, Asia, and Oceania. The near-field stations had been used for estimating the tsunami source [Fujii and Satake, Pageoph, 2013]. However, far-field tsunami waveforms have not been utilized because of the discrepancy between observed and simulated waveforms. The observed waveforms at the far-field stations are found systematically arrived later than the simulated waveforms. This phenomenon has been also observed in the tsunami of the 2004 Sumatra earthquake, the 2010 Chilean earthquake, and the 2011 Tohoku earthquake. Recently, the factors for the travel time delay have been explained [Watada et al., JGR, 2014; Allgeyer and Cummins, GRL, 2014], so the far-field data are usable for tsunami source estimation. The phase correction method [Watada et al., JGR, 2014] converts the tsunami waveforms computed by the linear long wave into the dispersive waveform which accounts for the effects of elasticity of the Earth and ocean, ocean density stratification, and gravitational potential change associated with tsunami propagation. We apply the method to correct the computed waveforms. For the preliminary initial sea surface height inversion, we use 12 near-field stations and 63 far-field stations, located in the South and North America, islands in the Pacific Ocean, and the Oceania. The estimated tsunami source from near-field stations is compared with the result from both near- and far-field stations. Two estimated sources show a similar pattern: a large sea surface displacement concentrated at the south of the epicenter close to the coast and extended to south. However, the source estimated from

  19. The interplanetary shock of September 24, 1998: Arrival at Earth

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.

    2000-11-01

    At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.

  20. Natural Time, Nowcasting and the Physics of Earthquakes: Estimation of Seismic Risk to Global Megacities

    NASA Astrophysics Data System (ADS)

    Rundle, John B.; Luginbuhl, Molly; Giguere, Alexis; Turcotte, Donald L.

    2018-02-01

    Natural Time ("NT") refers to the concept of using small earthquake counts, for example of M > 3 events, to mark the intervals between large earthquakes, for example M > 6 events. The term was first used by Varotsos et al. (2005) and later by Holliday et al. (2006) in their studies of earthquakes. In this paper, we discuss ideas and applications arising from the use of NT to understand earthquake dynamics, in particular by use of the idea of nowcasting. Nowcasting differs from forecasting, in that the goal of nowcasting is to estimate the current state of the system, rather than the probability of a future event. Rather than focus on an individual earthquake faults, we focus on a defined local geographic region surrounding a particular location. This local region is considered to be embedded in a larger regional setting from which we accumulate the relevant statistics. We apply the nowcasting idea to the practical development of methods to estimate the current state of risk for dozens of the world's seismically exposed megacities, defined as cities having populations of over 1 million persons. We compute a ranking of these cities based on their current nowcast value, and discuss the advantages and limitations of this approach. We note explicitly that the nowcast method is not a model, in that there are no free parameters to be fit to data. Rather, the method is simply a presentation of statistical data, which the user can interpret. Among other results, we find, for example, that the current nowcast ranking of the Los Angeles region is comparable to its ranking just prior to the January 17, 1994 Northridge earthquake.

  1. Tectonic Setting and Aftershocks of the Mw 6.7 Feburary 14, 2013 Earthquake in Yakutia, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Rappolee, E.; Burk, D. R.; Mackey, K. G.; Fujita, K.; Shibaev, S. V.; Koz'min, B. M.

    2016-12-01

    The details of the seismotectonics along the boundary between the Eurasian, North American, and Okhotsk plates are poorly understood. Infrequent earthquakes of moderate size (Mw > 4) in this remote region make it difficult to characterize its tectonic activity. On February 14, 2013, an Mw 6.7 earthquake along this boundary in Northern Yakutia, Russia, resulted in a long sequence of aftershocks that provide an opportunity to better understand the region's geology. A temporary deployment of four seismic stations was installed around the main shock to supplement regional station coverage. During the ten day deployment, several thousand aftershocks were recorded. We have located 112 events using both first-arriving Pn and Sn and secondary arriving Pg and Sg phase time picks. The located aftershocks define a SSE striking zone approximately 30 km long and 10 km wide, east of the Illin'-Tas fault and northwest of the Indigirka River. Location depths range from 0 to 20 km. In conjunction with locating aftershocks, a local three-layer best-fit velocity was determined consisting of an upper crust (14 km thick, VPg = 6.06 km/s and VSg = 3.53 km/s), a lower crust (21 km thick, VP* = 6.45 km/s and VS* = 3.65 km/s), and a Moho (35 km deep, VPn = 7.98 km/s and VSn = 4.53 km/s). The mainshock epicenter falls in the northwestern corner of the aftershock zone, however its focal depth is not well established. Aftershock analysis is ongoing and will possibly provide a better understanding of the earthquake rupture zone. Nonetheless, results of this study support active thrusting and mountain building as a mechanism to accommodate compression along the North America-Eurasia boundary.

  2. Augmented Lagrange Programming Neural Network for Localization Using Time-Difference-of-Arrival Measurements.

    PubMed

    Han, Zifa; Leung, Chi Sing; So, Hing Cheung; Constantinides, Anthony George

    2017-08-15

    A commonly used measurement model for locating a mobile source is time-difference-of-arrival (TDOA). As each TDOA measurement defines a hyperbola, it is not straightforward to compute the mobile source position due to the nonlinear relationship in the measurements. This brief exploits the Lagrange programming neural network (LPNN), which provides a general framework to solve nonlinear constrained optimization problems, for the TDOA-based localization. The local stability of the proposed LPNN solution is also analyzed. Simulation results are included to evaluate the localization accuracy of the LPNN scheme by comparing with the state-of-the-art methods and the optimality benchmark of Cramér-Rao lower bound.

  3. Simultaneous elastic parameter inversion in 2-D/3-D TTI medium combined later arrival times

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Wang, Tao; Yang, Shang-bei; Li, Xing-wang; Huang, Guo-jiao

    2016-04-01

    Traditional traveltime inversion for anisotropic medium is, in general, based on a "weak" assumption in the anisotropic property, which simplifies both the forward part (ray tracing is performed once only) and the inversion part (a linear inversion solver is possible). But for some real applications, a general (both "weak" and "strong") anisotropic medium should be considered. In such cases, one has to develop a ray tracing algorithm to handle with the general (including "strong") anisotropic medium and also to design a non-linear inversion solver for later tomography. Meanwhile, it is constructive to investigate how much the tomographic resolution can be improved by introducing the later arrivals. For this motivation, we incorporated our newly developed ray tracing algorithm (multistage irregular shortest-path method) for general anisotropic media with a non-linear inversion solver (a damped minimum norm, constrained least squares problem with a conjugate gradient approach) to formulate a non-linear inversion solver for anisotropic medium. This anisotropic traveltime inversion procedure is able to combine the later (reflected) arrival times. Both 2-D/3-D synthetic inversion experiments and comparison tests show that (1) the proposed anisotropic traveltime inversion scheme is able to recover the high contrast anomalies and (2) it is possible to improve the tomographic resolution by introducing the later (reflected) arrivals, but not as expected in the isotropic medium, because the different velocity (qP, qSV and qSH) sensitivities (or derivatives) respective to the different elastic parameters are not the same but are also dependent on the inclination angle.

  4. The 2000 Nemuro-Hanto-Oki earthquake, off eastern Hokkaido, Japan, and the high intraslab seismic activity in the southwestern Kuril Trench

    USGS Publications Warehouse

    Takahashi, H.; Hirata, K.

    2003-01-01

    The 2000 Nemuro-Hanto-Oki earthquake (Mw6.8) occurred in the southwestern part of the Kuril Trench. The hypocenter was located close to the aftershock region of the great 1994 Kuril earthquake (Mw8.3), named "the 1994 Hokkaido-Toho-Oki earthquake" by the Japan Meteorological Agency, for which the fault plane is still in debate. Analysis of the 2000 event provides a clue to resolve the fault plane issue for the 1994 event. The hypocenters of the 2000 main shock and aftershocks are determined using arrival times from a combination of nearby inland and submarine seismic networks with an improved azimuthal coverage. They clearly show that the 2000 event was an intraslab event occurring on a shallow-dipping fault plane between 55 and 65 km in depth. The well-focused aftershock distribution of the 2000 event, the relative location of the 1994 event with respect to the 2000 event, and the similarity between their focal mechanisms strongly suggest that the faulting of the great 1994 earthquake also occurred on a shallow-dipping fault plane in the subducting slab. The recent hypocenter distribution around the 1994 aftershock region also supports this result. Large intraslab earthquakes occuring to the southeast of Hokkaido may occur due to a strong coupling on the plate boundary, which generates relatively large stress field within the subducting Pacific plate.

  5. Changes in population evacuation potential for tsunami hazards in Seward, Alaska, since the 1964 Good Friday earthquake

    USGS Publications Warehouse

    Wood, Nathan J.; Schmidtlein, Mathew C.; Peters, Jeff

    2014-01-01

    Pedestrian evacuation modeling for tsunami hazards typically focuses on current land-cover conditions and population distributions. To examine how post-disaster redevelopment may influence the evacuation potential of at-risk populations to future threats, we modeled pedestrian travel times to safety in Seward, Alaska, based on conditions before the 1964 Good Friday earthquake and tsunami disaster and on modern conditions. Anisotropic, path distance modeling is conducted to estimate travel times to safety during the 1964 event and in modern Seward, and results are merged with various population data, including the location and number of residents, employees, public venues, and dependent care facilities. Results suggest that modeled travel time estimates conform well to the fatality patterns of the 1964 event and that evacuation travel times have increased in modern Seward due to the relocation and expansion of port and harbor facilities after the disaster. The majority of individuals threatened by tsunamis today in Seward are employee, customer, and tourist populations, rather than residents in their homes. Modern evacuation travel times to safety for the majority of the region are less than wave arrival times for future tectonic tsunamis but greater than arrival times for landslide-related tsunamis. Evacuation travel times will likely be higher in the winter time, when the presence of snow may constrain evacuations to roads.

  6. Optimizing the admission time of outbound trucks entering a cross-dock with uniform arrival time by considering a queuing model

    NASA Astrophysics Data System (ADS)

    Motaghedi-Larijani, Arash; Aminnayeri, Majid

    2017-03-01

    Cross-docking is a supply-chain strategy that can reduce transportation and inventory costs. This study is motivated by a fruit and vegetable distribution centre in Tehran, which has cross-docks and a limited time to admit outbound trucks. In this article, outbound trucks are assumed to arrive at the cross-dock with a single outbound door with a uniform distribution (0,L). The total number of assigned trucks is constant and the loading time is fixed. A queuing model is modified for this situation and the expected waiting time of each customer is calculated. Then, a curve for the waiting time is calculated. Finally, the length of window time L is optimized to minimize the total cost, which includes the waiting time of the trucks and the admission cost of the cross-dock. Some illustrative examples of cross-docking are presented and solved using the proposed method.

  7. A Large Refined Catalog of Earthquake Relocations and Focal Mechanisms for the Entire Island of Hawaii and Their Seismotectonic Implications

    NASA Astrophysics Data System (ADS)

    Lin, G.; Okubo, P.

    2015-12-01

    We present a refined catalog of earthquake locations and focal mechanisms for the Island of Hawaii, focusing on Mauna Loa and Kilauea volcanoes. The location catalog is based on first-arrival times and waveform data of both compressional and shear waves from over 181,000 events on and near the Island of Hawaii between 1986 and 2009 recorded by the seismic stations at the Hawaiian Volcano Observatory. We relocate all the earthquakes by applying ray-tracing through an existing three-dimensional velocity model, similar event cluster analysis and a differential-time relocation method. The resulting location catalog represents an extension of previous relocation studies, covering a longer time period and consisting of more events with well-constrained absolute locations. The focal mechanisms are obtained based on the compressional-wave first motion polarities by applying the HASH program to the waveform cross-correlation relocated earthquakes. Overall, the good-quality focal solutions are dominated by normal faulting in our study area, especially in the active Kaoiki and Hilea seismic zones. Kilauea caldera is characterized by a mixture of approximately equal numbers of normal, strike-slip, and reverse faults, whereas focal mechanisms in its south flank are predominantly reverse. Our results are essential for mapping the seismic strain and stress field and for understanding the seismo-volcano-tectonic relationships within the magmatic systems.

  8. Discussion of New Approaches to Medium-Short-Term Earthquake Forecast in Practice of The Earthquake Prediction in Yunnan

    NASA Astrophysics Data System (ADS)

    Hong, F.

    2017-12-01

    After retrospection of years of practice of the earthquake prediction in Yunnan area, it is widely considered that the fixed-point earthquake precursory anomalies mainly reflect the field information. The increase of amplitude and number of precursory anomalies could help to determine the original time of earthquakes, however it is difficult to obtain the spatial relevance between earthquakes and precursory anomalies, thus we can hardly predict the spatial locations of earthquakes using precursory anomalies. The past practices have shown that the seismic activities are superior to the precursory anomalies in predicting earthquakes locations, resulting from the increased seismicity were observed before 80% M=6.0 earthquakes in Yunnan area. While the mobile geomagnetic anomalies are turned out to be helpful in predicting earthquakes locations in recent year, for instance, the forecasted earthquakes occurring time and area derived form the 1-year-scale geomagnetic anomalies before the M6.5 Ludian earthquake in 2014 are shorter and smaller than which derived from the seismicity enhancement region. According to the past works, the author believes that the medium-short-term earthquake forecast level, as well as objective understanding of the seismogenic mechanisms, could be substantially improved by the densely laying observation array and capturing the dynamic process of physical property changes in the enhancement region of medium to small earthquakes.

  9. Earthquake watch

    USGS Publications Warehouse

    Hill, M.

    1976-01-01

     When the time comes that earthquakes can be predicted accurately, what shall we do with the knowledge? This was the theme of a November 1975 conference on earthquake warning and response held in San Francisco called by Assistant Secretary of the Interior Jack W. Carlson. Invited were officials of State and local governments from Alaska, California, Hawaii, Idaho, Montana, Nevada, utah, Washington, and Wyoming and representatives of the news media. 

  10. GPS Technologies as a Tool to Detect the Pre-Earthquake Signals Associated with Strong Earthquakes

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Krankowski, A.; Hernandez-Pajares, M.; Liu, J. Y. G.; Hattori, K.; Davidenko, D.; Ouzounov, D.

    2015-12-01

    The existence of ionospheric anomalies before earthquakes is now widely accepted. These phenomena started to be considered by GPS community to mitigate the GPS signal degradation over the territories of the earthquake preparation. The question is still open if they could be useful for seismology and for short-term earthquake forecast. More than decade of intensive studies proved that ionospheric anomalies registered before earthquakes are initiated by processes in the boundary layer of atmosphere over earthquake preparation zone and are induced in the ionosphere by electromagnetic coupling through the Global Electric Circuit. Multiparameter approach based on the Lithosphere-Atmosphere-Ionosphere Coupling model demonstrated that earthquake forecast is possible only if we consider the final stage of earthquake preparation in the multidimensional space where every dimension is one from many precursors in ensemble, and they are synergistically connected. We demonstrate approaches developed in different countries (Russia, Taiwan, Japan, Spain, and Poland) within the framework of the ISSI and ESA projects) to identify the ionospheric precursors. They are also useful to determine the all three parameters necessary for the earthquake forecast: impending earthquake epicenter position, expectation time and magnitude. These parameters are calculated using different technologies of GPS signal processing: time series, correlation, spectral analysis, ionospheric tomography, wave propagation, etc. Obtained results from different teams demonstrate the high level of statistical significance and physical justification what gives us reason to suggest these methodologies for practical validation.

  11. Security Implications of Induced Earthquakes

    NASA Astrophysics Data System (ADS)

    Jha, B.; Rao, A.

    2016-12-01

    The increase in earthquakes induced or triggered by human activities motivates us to research how a malicious entity could weaponize earthquakes to cause damage. Specifically, we explore the feasibility of controlling the location, timing and magnitude of an earthquake by activating a fault via injection and production of fluids into the subsurface. Here, we investigate the relationship between the magnitude and trigger time of an induced earthquake to the well-to-fault distance. The relationship between magnitude and distance is important to determine the farthest striking distance from which one could intentionally activate a fault to cause certain level of damage. We use our novel computational framework to model the coupled multi-physics processes of fluid flow and fault poromechanics. We use synthetic models representative of the New Madrid Seismic Zone and the San Andreas Fault Zone to assess the risk in the continental US. We fix injection and production flow rates of the wells and vary their locations. We simulate injection-induced Coulomb destabilization of faults and evolution of fault slip under quasi-static deformation. We find that the effect of distance on the magnitude and trigger time is monotonic, nonlinear, and time-dependent. Evolution of the maximum Coulomb stress on the fault provides insights into the effect of the distance on rupture nucleation and propagation. The damage potential of induced earthquakes can be maintained even at longer distances because of the balance between pressure diffusion and poroelastic stress transfer mechanisms. We conclude that computational modeling of induced earthquakes allows us to measure feasibility of weaponzing earthquakes and developing effective defense mechanisms against such attacks.

  12. Lack of Dependence of Dynamic Triggering on the Timing within the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Cattania, C.; McGuire, J. J.; Collins, J. A.

    2009-12-01

    Numerical models predict that dynamic triggering of earthquakes is more likely when faults are close to failure (e.g. late in their earthquake cycle), and laboratory experiments have supported this hypothesis. We attempted to test this idea by analysing data on three adjacent transform faults of the East Pacific Rise which have a relatively well defined, quasiperiodic seismic cycle with a median repeat time of 5 years. Moreover, the Gofar, Discovery and Quebrada transform faults share several seismicity properties with continental geothermal areas, including high geothermal gradients, high seismicity rates, and frequent earthquake swarms, that suggest they may be prone to dynamic triggering. We analyze an earthquake catalog of over 100,000 events recorded in 2008 by a network of 38 Ocean Bottom Seismometers. We extract Mw>6.3 mainshocks from the Global CMT catalog, and perform the β test for an array of time intervals covering from 5 hours before to 10 hours after the low-frequency Rayleigh wave arrival. To verify the presence of common seismicity patterns, β plots are also stacked for multiple earthquakes. We observe triggering after the May 12th Wenchuan earthquake. On the Quebrada transform a burst of seismicity starts during the wavetrain; in Gofar there is no response during the wave, but an increase in seismicity (β=5.08) starts about 2 h later; no triggering is visible on the Discovery fault. A Mw=6.0 earthquake ruptured the Gofar transform on September 18th, and triggered seismicity on Discovery: ~60 earthquakes (β=15.3), starting 1h after the wave arrival. We have no data from Quebrada for this period. Other instances of triggering are dubious. Stacked β plots suggest delayed triggering (Δt>1h) in Gofar and Discovery, but the statistical significance of these results is unclear. From a comparison of different fault segments, triggering does not appear to be more common at late stages in the seismic cycle. Instead, the events triggered by the largest

  13. Continuous micro-earthquake catalogue of the central Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Michailos, Konstantinos; Townend, John; Savage, Martha; Chamberlain, Calum

    2017-04-01

    The Alpine Fault is one of the most prominent tectonic features in the South Island, New Zealand, and is inferred to be late in its seismic cycle of M 8 earthquakes based on paleoseismological evidence. Despite this, the Alpine Fault displays low levels of contemporary seismic activity, with little documented on-fault seismicity. This low magnitude seismicity, often below the completeness level of the GeoNet national seismic catalogue, may inform us of changes in fault character along-strike and might be used for rupture simulations and hazard planning. Thus, compiling a micro-earthquake catalogue for the Southern Alps prior to an expected major earthquake is of great interest. Areas of low seismic activity, like the central part of the Alpine Fault, require data recorded over a long duration to reveal temporal and spatial seismicity patterns and provide a better understanding for the processes controlling seismogenesis. The continuity and density of the Southern Alps Microearthquake Borehole Array (SAMBA; deployed in late 2008) allows us to study seismicity in the Southern Alps over a more extended time period than has ever been done previously. Furthermore, by using data from other temporary networks (e.g. WIZARD, ALFA08, DFDP-10) we are able to extend the region covered. To generate a spatially and temporally continuous catalogue of seismicity in New Zealand's central Southern Alps, we used automatic detection and phase-picking methods. We used an automatic phase-picking method for both P- and S- wave arrivals (kPick; Rawles and Thurber, 2015). Using almost 8 years of seismic data we calculated about 9,000 preliminary earthquake. The seismicity is clustered and scattered and a previously observed seismic gap between the Wanganui and Whataroa rivers is also identified.

  14. Knowledge-based scheduling of arrival aircraft

    NASA Technical Reports Server (NTRS)

    Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.

    1995-01-01

    A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.

  15. The Pacific Tsunami Warning Center's Response to the Tohoku Earthquake and Tsunami

    NASA Astrophysics Data System (ADS)

    Weinstein, S. A.; Becker, N. C.; Shiro, B.; Koyanagi, K. K.; Sardina, V.; Walsh, D.; Wang, D.; McCreery, C. S.; Fryer, G. J.; Cessaro, R. K.; Hirshorn, B. F.; Hsu, V.

    2011-12-01

    The largest Pacific basin earthquake in 47 years, and also the largest magnitude earthquake since the Sumatra 2004 earthquake, struck off of the east coast of the Tohoku region of Honshu, Japan at 5:46 UTC on 11 March 2011. The Tohoku earthquake (Mw 9.0) generated a massive tsunami with runups of up to 40m along the Tohoku coast. The tsunami waves crossed the Pacific Ocean causing significant damage as far away as Hawaii, California, and Chile, thereby becoming the largest, most destructive tsunami in the Pacific Basin since 1960. Triggers on the seismic stations at Erimo, Hokkaido (ERM) and Matsushiro, Honshu (MAJO), alerted Pacific Tsunami Warning Center (PTWC) scientists 90 seconds after the earthquake began. Four minutes after its origin, and about one minute after the earthquake's rupture ended, PTWC issued an observatory message reporting a preliminary magnitude of 7.5. Eight minutes after origin time, the Japan Meteorological Agency (JMA) issued its first international tsunami message in its capacity as the Northwest Pacific Tsunami Advisory Center. In accordance with international tsunami warning system protocols, PTWC then followed with its first international tsunami warning message using JMA's earthquake parameters, including an Mw of 7.8. Additional Mwp, mantle wave, and W-phase magnitude estimations based on the analysis of later-arriving seismic data at PTWC revealed that the earthquake magnitude reached at least 8.8, and that a destructive tsunami would likely be crossing the Pacific Ocean. The earthquake damaged the nearest coastal sea-level station located 90 km from the epicenter in Ofunato, Japan. The NOAA DART sensor situated 600 km off the coast of Sendai, Japan, at a depth of 5.6 km recorded a tsunami wave amplitude of nearly two meters, making it by far the largest tsunami wave ever recorded by a DART sensor. Thirty minutes later, a coastal sea-level station at Hanasaki, Japan, 600 km from the epicenter, recorded a tsunami wave amplitude of

  16. Calibrated Multiple Event Relocations of the Central and Eastern United States

    NASA Astrophysics Data System (ADS)

    Yeck, W. L.; Benz, H.; McNamara, D. E.; Bergman, E.; Herrmann, R. B.; Myers, S. C.

    2015-12-01

    Earthquake locations are a first-order observable which form the basis of a wide range of seismic analyses. Currently, the ANSS catalog primarily contains published single-event earthquake locations that rely on assumed 1D velocity models. Increasing the accuracy of cataloged earthquake hypocenter locations and origin times and constraining their associated errors can improve our understanding of Earth structure and have a fundamental impact on subsequent seismic studies. Multiple-event relocation algorithms often increase the precision of relative earthquake hypocenters but are hindered by their limited ability to provide realistic location uncertainties for individual earthquakes. Recently, a Bayesian approach to the multiple event relocation problem has proven to have many benefits including the ability to: (1) handle large data sets; (2) easily incorporate a priori hypocenter information; (3) model phase assignment errors; and, (4) correct for errors in the assumed travel time model. In this study we employ bayseloc [Myers et al., 2007, 2009] to relocate earthquakes in the Central and Eastern United States from 1964-present. We relocate ~11,000 earthquakes with a dataset of ~439,000 arrival time observations. Our dataset includes arrival-time observations from the ANSS catalog supplemented with arrival-time data from the Reviewed ISC Bulletin (prior to 1981), targeted local studies, and arrival-time data from the TA Array. One significant benefit of the bayesloc algorithm is its ability to incorporate a priori constraints on the probability distributions of specific earthquake locations parameters. To constrain the inversion, we use high-quality calibrated earthquake locations from local studies, including studies from: Raton Basin, Colorado; Mineral, Virginia; Guy, Arkansas; Cheneville, Quebec; Oklahoma; and Mt. Carmel, Illinois. We also add depth constraints to 232 earthquakes from regional moment tensors. Finally, we add constraints from four historic (1964

  17. Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2015-01-01

    The M5.8 23 August 2011 Mineral, Virginia, earthquake was felt over nearly the entire eastern United States and was recorded by a wide array of seismic broadband instruments. The earthquake occurred ~200 km southeast of the boundary between two distinct geologic belts, the Piedmont and Blue Ridge terranes to the southeast and the Valley and Ridge Province to the northwest. At a dominant period of 3 s, coherent postcritical P-wave (i.e., direct longitudinal waves trapped in the crustal waveguide) arrivals persist to a much greater distance for propagation paths toward the northwest quadrant than toward other directions; this is probably related to the relatively high crustal thickness beneath and west of the Appalachian Mountains. The seismic surface-wave arrivals comprise two distinct classes: those with weakly dispersed Rayleigh waves and those with strongly dispersed Rayleigh waves. We attribute the character of Rayleigh wave arrivals in the first class to wave propagation through a predominantly crystalline crust (Blue Ridge Mountains and Piedmont terranes) with a relatively thin veneer of sedimentary rock, whereas the temporal extent of the Rayleigh wave arrivals in the second class are well explained as the effect of the thick sedimentary cover of the Valley and Ridge Province and adjacent Appalachian Plateau province to its northwest. Broadband surface-wave ground velocity is amplified along both north-northwest and northeast azimuths from the Mineral, Virginia, source. The former may arise from lateral focusing effects arising from locally thick sedimentary cover in the Appalachian Basin, and the latter may result from directivity effects due to a northeast rupture propagation along the finite fault plane.

  18. Microearthquake detection at 2012 M4.9 Qiaojia earthquake source area , the north of the Xiaojiang Fault in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, H.; Zhou, S.; Yan, C.

    2016-12-01

    We perform a comprehensive analysis in Yunnan area based on continuous seismic data of 38 stations of Qiaojia Network in Xiaojiang Fault from 2012.3 to 2015.2. We use an effective method: Match and Locate (M&L, Zhang&Wen, 2015) to detect and locate microearthquakes to conduct our research. We first study dynamic triggering around the Xiaojiang Fault in Yunnan. The triggered earthquakes are identified as two impulsive seismic arrivals in 2Hz-highpass-filtered velocity seismograms during the passage of surface waves of large teleseismic earthquakes. We only find two earthquakes that may have triggered regional earthquakes through inspecting their spectrograms: Mexico Mw7.4 earthquake in 03/20/2012 and El Salvador Mw7.3 earthquake in 10/14/2014. To confirm the two earthquakes are triggered instead of coincidence, we use M&L to search if there are any repeating earthquakes. The result of the coefficients shows that it is a coincidence during the surface waves of El Salvador earthquake and whether 2012 Mexico have triggered earthquake is under discussion. We then visually inspect the 2-8Hz-bandpass-filterd velocity envelopes of these years to search for non-volcanic tremor. We haven't detected any signals similar to non-volcanic tremors yet. In the following months, we are going to study the 2012 M4.9 Qiaojia earthquake. It occurred only 30km west of the epicenter of the 2014 M6.5 Ludian earthquake. We use Match and Locate (M&L) technique to detect and relocate microearthquakes that occurred 2 days before and 3 days after the mainshock. Through this, we could obtain several times more events than listed in the catalogs provided by NEIC and reduce the magnitude of completeness Mc. We will also detect microearthquakes along Xiaojiang Fault using template earthquakes listed in the catalogs to learn more about fault shape and other properties of Xiaojiang Fault. Analyzing seismicity near Xiaojiang Fault systematically may cast insight on our understanding of the features of

  19. Earthquake Early Warning: Real-time Testing of an On-site Method Using Waveform Data from the Southern California Seismic Network

    NASA Astrophysics Data System (ADS)

    Solanki, K.; Hauksson, E.; Kanamori, H.; Wu, Y.; Heaton, T.; Boese, M.

    2007-12-01

    We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the

  20. Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 M w6.5 Jiuzhaigou, China, earthquake

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Kai; Wang, Dong Zhen; Zhao, Bin; Zhang, Rui; Li, Yu; Qi, Yu Jie

    2018-05-01

    The spatio-temporal slip distribution of the earthquake that occurred on 8 August 2017 in Jiuzhaigou, China, was estimated from the teleseismic body wave and near-field Global Navigation Satellite System (GNSS) data (coseismic displacements and high-rate GPS data) based on a finite fault model. Compared with the inversion results from the teleseismic body waves, the near-field GNSS data can better restrain the rupture area, the maximum slip, the source time function, and the surface rupture. The results show that the maximum slip of the earthquake approaches 1.4 m, the scalar seismic moment is 8.0 × 1018 N·m ( M w ≈ 6.5), and the centroid depth is 15 km. The slip is mainly driven by the left-lateral strike-slip and it is initially inferred that the seismogenic fault occurs in the south branch of the Tazang fault or an undetectable fault, a NW-trending left-lateral strike-slip fault, and belongs to one of the tail structures at the easternmost end of the eastern Kunlun fault zone. The earthquake rupture is mainly concentrated at depths of 5-15 km, which results in the complete rupture of the seismic gap left by the previous four earthquakes with magnitudes > 6.0 in 1973 and 1976. Therefore, the possibility of a strong aftershock on the Huya fault is low. The source duration is 30 s and there are two major ruptures. The main rupture occurs in the first 10 s, 4 s after the earthquake; the second rupture peak arrives in 17 s. In addition, the Coulomb stress study shows that the epicenter of the earthquake is located in the area where the static Coulomb stress change increased because of the 12 May 2017 M w7.9 Wenchuan, China, earthquake. Therefore, the Wenchuan earthquake promoted the occurrence of the 8 August 2017 Jiuzhaigou earthquake.